

Adaptable compute platforms in autonomous driving

Xilinx Adapt Automotive | January 2021

MANNAN A

Matthias Tan | Pony.ai

Pony.ai at a glance

Leading AD technology

L4 technology: Full-stack software and hardware system, vehicle-agnostic

Diverse ODD coverage: Dense urban, suburban to highway

Strong partnership ecosystem

Partnerships with OEMs, T1s and suppliers

Backing from leading strategic and financial investors

Impactful target markets

Urban, personalized Mobility-as-a-Service, and long-haul logistics

Robotaxi and logistics operations in US and China

System engineering plays key role in autonomous driving

- Varying sensor strategies, usecase / ODD dependent
- Frequent iterations, L4 still in active development phase

AD compute platforms need to meet high requirements

Computational challenges in L4 AD

Strict computation latency requirements – 99% latency

High performance while maintaining power efficiency

Deterministic runtime behavior needed

Customizable platform adaptable to different computational tasks

High standards for functional safety and validation

Cost-efficient and **scalable** design across AD market use-cases

Case study 1: Lidar and camera sensor fusion

CPU & GPU implementation
Baseline
• 250 W
Not real-timeNon-deterministic latency
 Cache hit rate ~60% Computing core utilization rate <10%
 Sensor fusion discrepancy ~1/3 car length

	FPGA implementation
	12x improvement
	• 30 W
	Cycle accurate pipelineDeterministic fixed latency
	 Cache hit rate ~100% (custom memory architecture) Computing core utilization rate ~100%
	No sensor fusion discrepancy

Case study 2: Scan Match localization

Scan Match method for accurate L4 AD localization...

LIDAR scan (real-time)

Landmark

- · Scan Match: Compares real-time LIDAR scans with pre-built HD map to achieve accurate localization necessary for L4
- Requirements: Low, deterministic latency times, power-efficient

... on FPGA compute platform for optimal performance

Ideal use-case for FPGAs

- Scan Match memory-intensive algorithm
- FPGAs ideal platform for designing high-performance data pipelines with tailored memory architectures

FPGA-based compute solution highlights

- Real-time localization with deterministic latency
- Significant power-efficiency improvement vs GPU solution

Adaptable compute platforms key enabler towards scalable autonomous and connected mobility

Trend towards centralized E/E architectures...

Zone ECU or central computer Functionalities Central vehicle computer

... increases need for adaptable compute platforms

Increasing requirements on compute hardware...

- · High-end onboard processing power
- Data processing from ADAS / AD systems, personalized mobility (IVI), ubiquitous connectivity (cloud)
- Consolidation of function-specific ECUs to fewer, more versatile domain-specific DCUs

and software...

- Software content and complexity growing rapidly
- Software-based features increasingly drive product differentiation

highlights need for adaptable compute platforms

- Future-proof expensive compute HW through vehicle life cycle
- De-couple SW application development from vehicle SOP and physical life cycle
- Faster market scalability and standardization potential, e.g., less vertically integrated OEMs which do not 'own silicon'

Summary

Development of L4 autonomous technology complex system engineering challenge

AD compute platforms need to meet high-performance requirements across diverse tasks

Adaptable compute platforms key enabler towards scalable autonomous and connected mobility

