
Abstract
Dynamic Function eXchange (DFX) enables great flexibility within Xilinx® silicon, empowering
you to load applications on demand, deliver updates to deployed systems, and reduce power
consumption. Platform designs allow for collaboration between groups, where one group can
focus on infrastructure and another on hardware acceleration. However, DFX has fundamental
flow requirements that lead to longer Vivado® Design Suite compile times and expose challenges
with multi-user environments. The abstract shell flow removes some of these barriers, creating a
more efficient path through the Vivado tools for DFX. Abstract shells open new possibilities for
collaboration and compile-time efficiency for DFX platform solutions.

White Paper

Solution Efficiencies for Dynamic
Function eXchange Using Abstract

Shells
WP533 (v1.0) June 22, 2021

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 1

https://www.xilinx.com

Introduction
Dynamic Function eXchange is a powerful capability within Xilinx FPGAs and adaptive SoCs that
expands the flexibility of the silicon. Functions can be uploaded on the fly, delivering new
functionality to one part of the device while the rest remains operational, expanding the effective
usage of the device while reducing downtime. This time-multiplexed silicon usage approach
allows you to do more with less, providing a critical advantage for designers looking to save cost,
power, and time.

DFX also enables multi-user environments, allowing multiple groups or multiple companies to
share the programmable logic space. One group (call them the primary user) creates the
infrastructure of the design, from board-level considerations like memory access and
communication links to safety and security details and run-time managers. The primary user
locks down this static platform and leaves one or more empty work spaces for other groups
(secondary users) to fill.

However, DFX requires some upfront considerations:

• DFX designs require a specific design structure and layout to match the chip-within-a-chip
paradigm. This more rigid structure can incur a penalty in the form of a longer design
processing time.

• Accelerated functions can be delivered to work spaces that are within platforms on-premises
or in the cloud. The standard Vivado DFX flow requires that the complete locked static image
be present to provide the context to place and route these accelerated functions. This
requirement could expose proprietary design information owned by the primary user in multi-
user scenarios.

Figure 1: Concepts of Dynamic Function eXchange

Static Design

DFX Region

DFX
Region

f3

f2

f1

g1

g2

g3

X25432-060721

DFX enables new possibilities, but these two operating conditions might not be desirable for all
systems or designs. An enhanced approach is needed to alleviate these concerns.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=2

Abstract Shells to the Rescue
The abstract shell feature was released in the Vivado Design Suite 2020.2 for all UltraScale+™
devices and provides a few key advantages over the standard DFX flow.

What are Abstract Shells?

The standard DFX flow in Vivado tools requires multiple passes through the implementation
tools. The first pass establishes the place and route results for the static design along with one
reconfigurable module (RM) per reconfigurable partition (RP). This static design image is the
platform that is configured into the target device to remain operational during subsequent partial
reconfiguration events. Each successive pass through implementation uses the locked static
image as the framework to implement all remaining RMs. You are not permitted to modify the
static design to ensure consistent context, but the static design must be opened in memory to
allow the Vivado tools to understand the working design environment. Even if a target
reconfigurable region is very small, the full static design image must be opened, which takes time
and memory.

The abstract shell flow creates a trimmed down version of static design for a given RP.
Fundamentally, an abstract shell is the minimal design image needed to provide the context for
implementing a new RM and generating a partial bitstream for that module. The logical design of
the shell contains the boundary interface to the module instantiation. The Pblock of the partition,
including the expanded routing region, is captured as part of the design constraints, as are any
clocking and boundary timing requirements. All logical and physical resource usage within the
region is included to ensure the RM does not try to use anything already consumed by the static
design. A partial bitstream is built for a physical region of the device and contains programming
information for both static and dynamic parts of the design. It is critical that the static parts of
these bitstreams remain absolutely identical.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=3

Figure 2: Abstraction of the Full Static Design (Left) Using an Abstract Shell (Right)

The optimized abstract shell provides the following key benefits:

• The shell checkpoints can be significantly smaller than a full shell. This lowers the compile
time and memory use for new RMs.

• For designs with more than one RP, runs can be set up to implement all RMs in parallel,
because full design configurations are not needed.

• For scenarios where multiple users are involved, design security is a benefit. Because the vast
majority of the static design is removed, the vast majority of proprietary design information is
not visible in the abstract shell.

• Any licensed IP in the static design are not included in their entirety in the abstract shell. This
means that license checks are bypassed during abstract runs.

Abstract Shell Design Flow
This section compares the abstract shell flow and the default DFX flow, examining the underlying
commands to produce and then use abstract shells. With the abstract shell flow, the
implementation of the parent configuration is absolutely identical to the standard DFX flow
where you implement the static design and then lock down those results. The flow does not
diverge until the static-only design result is saved. The write_abstract_shell command is
used to black box the target partition, trim away unneeded static, lock the remaining design, and

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=4

validate the result using pr_verify. This command must be called for any RP that is to become
an abstract shell, because each RP has a unique footprint and connection to the static design.
Finally, the implementation of the remaining RMs matches the standard flow, but now the focus
is on a single RP for each child run. Instead of building new full-design configurations to
implement (or reuse) multiple RMs per design, each RM is implemented in its own run in its own
abstract shell, leading to greater efficiency.

Note: In the Vivado Design Suite, the abstract shell flow is supported in non-project Tcl mode.

Figure 3: Design Flow for the Abstract Shell Solution

Standard DFX
Flow

Abstract Shell
Flow

write_abstract_shell

write_checkpoint

Place and Route

X25427-060621

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=5

The parent design configuration can be used to create a full device programming image. With the
initial RMs included in any RPs, each creates partial bitstreams. Abstract shell runs can generate
additional partial bitstreams for the functions they implement. In single-user environments,
within a single company or design group, additional full design configurations can be created for
bitstream generation by linking routed static and dynamic checkpoints. Any combination of static
and reconfigurable images can be rebuilt to create any full or partial bitstreams needed for the
target system. There is no limitation compared to a standard DFX flow in this regard.

Abstract shell compile times are faster in nearly every scenario. How much faster depends on the
structure of the design. Designs with very large dynamic regions and minimal static produce
modest gains given that very little static is removed to create the shell. For example, Xilinx
Alveo™ platform designs, which contain very little static logic, can be compiled more than twice
as fast using the abstract shell flow. This can add up to big savings when you consider the static
platform is rarely revisited; the primary usage is to build new RMs. For designs with smaller
dynamic regions and larger static regions, the gains are much greater—across a varied design
suite, improvements that can be 5, 10, or more times faster than the standard DFX flow.
Although the creation of the abstract shell takes time, it is a step that is not done often. The
following figure shows the compile-time savings (gray line) using the abstract shell across a
variety of UltraScale+ device designs.

Figure 4: Compile-time Savings

The following image is a closer look at a specific sample design. This design has a dynamic region
that covers about a quarter of the device, with a static region that is not much more than a single
super logic region (SLR) in the three SLR Virtex® UltraScale+™ FPGA (VU9P). After the static
design is implemented, new RMs can take 1.5 hours to compile, partly due to the 266 MB static
design checkpoint. Using the abstract shell flow, the design checkpoint of the shell shrinks to
only 10 MB, memory usage is cut by a third, and compile time is cut by two thirds.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=6

Figure 5: Example of a Full Shell (Left) Compared to an Abstract Shell (Right)

Abstract Shell for Multi-User Environments
Using the abstract shell flow is a tremendous benefit when employing DFX for multi-user
environments. DFX enables you to build a solution with a dynamic application space within a
Xilinx device. You can build a platform that can be passed to another user to later fill in the space
with any number of applications to be swapped on the fly. The platform built by the primary user
locks down key details that must not change including memory interfaces, communication
channels, and design safety and security features. The secondary user inserts their functionality
into this locked context to be accelerated in hardware. In this scenario, using the standard DFX
design flow, the primary user shares the full static design checkpoint with the secondary user,
potentially exposing design secrets. The secondary user also needs licenses for any IP contained
within the static design, even though they are not implementing that part of the design.

With the abstract shell flow, the bulk of the static design is stripped away, hiding proprietary
design information. Some fragments might still remain based on connectivity with the target
dynamic region, which means that the primary user needs to examine the contents of the
abstract shell before distributing it. However, in nearly all cases, there is not enough information
to reverse engineer the functionality. For the same reason, IP license checks are bypassed for any
IP in the static shell, because it is impossible to use that IP other than how it is implemented by
the primary user.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=7

IMPORTANT! Because the IP functionality is passed to the secondary user within the static design
bitstream, it is the responsibility of the primary user to review the terms and conditions of any IP to ensure
they have redistribution rights for that intellectual property.

When programming the device in a single-user environment, the standard DFX approach is still
good. Any full design image can be assembled by linking static and reconfigurable routed
checkpoints then calling write_bitstream to generate a full device BIT file. However, for
multi-user environments, the primary user must supply an initial full-device bitstream to initially
program the Xilinx device. This image can have any sort of default application in the dynamic
region, from a functionless gray box, to a hello world, to a test application that exercises some
fundamental features of the system. Then, the secondary user partially reconfigures the device to
load in their accelerated functions using partial bitstreams generated from abstract shell runs.

Figure 6: Programming Flow for Multi-User Environments

Static Bitstream
(full device)

Partial
Bitstreams

Primary User

Dynamic
Function

Abstract Shell

Abstract
Shell

Secondary UserFull Shell

Licensed
IP

Proprietary
Design

Dynamic
Workspace

X25428-061021

This multi-user environment example shows all the benefits of DFX:

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=8

• Hardware acceleration of applications with on-the-fly dynamic function swapping

• Fast compilation through the Vivado DFX development flow

• Removal of any sensitive design information from the static platform

It is critical that all full and partial bitstreams remain in sync for any DFX methodology, including
the abstract shell. Even though partial bitstreams can be generated from within the abstract shell
environment, they are compatible with the original static design used to create the shell. This can
be confirmed by calling pr_verify to compare the abstract shell alone versus the abstract shell
with any routed RM, or by reassembling different full-design configurations and running
pr_verify again.

Abstract Shell for Flat Designs
The abstract shell flow can even help designs not using dynamic reconfiguration. Large FPGA
designs can experience long compile times through place and route due to the sheer volume of
information to be considered during this process. For these designs, especially in larger multi-SLR
Virtex UltraScale+ devices, DFX can be used to establish an in-context hierarchical design (HD)
flow solution. This reduces the granularity of design iterations by segmenting the design into
smaller, more manageable pieces. You set up the hierarchy to have a thin top-level wrapper and
multiple RPs. When a minor iteration is required within one portion of the design, only that RM
must be re-implemented. The abstract shell flow further enhances this approach by carving away
the rest of the design, focusing attention on the modified module, significantly reducing compile
time.

This in-context HD approach requires a segmented and floorplanned design. Resource utilization
or performance limited designs are not good candidates for this methodology because applying
DFX prevents logic optimization across boundaries and restricts placement within the target
Pblocks. However, if your design can be divided into independent building blocks that occupy
their own regions of the device, DFX with the abstract shell flow can greatly improve
productivity when making small design changes.

In the following image, a four-SLR VU13P is divided into four reconfigurable partitions, one per
SLR. Each RP can be extracted as an abstract shell, allowing each to be implemented
independently. These abstract shells can be shared with different team members or simply run in
parallel. When each region is complete, the RM-level checkpoint is linked with the routed-and-
locked top-level checkpoint before bitstream generation is done.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=9

Figure 7: Improving Productivity with Segmented Dynamic Regions

Conclusion
Abstract shells for DFX is a powerful tool that can significantly improve design processing time
and enhance design security. Examine your design structure and goals to see if abstract shells
can provide benefits for your environment. For more information on abstract shell and DFX,
consult the Vivado Design Suite User Guide: Dynamic Function eXchange (UG909). A tutorial design
is included as Lab 9 within the Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947).
These documents and more are available on the DFX page.

References
These documents provide supplemental material useful with this white paper:

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/vivado/dfx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=10

1. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

2. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
6/22/2021 Version 1.0

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=11

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells

WP533 (v1.0) June 22, 2021 www.xilinx.com
White Paper 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=White_Papers&docId=WP533&Title=Solution%20Efficiencies%20for%20Dynamic%20Function%20eXchange%20Using%20Abstract%20Shells&releaseVersion=1.0&docPage=12

	Solution Efficiencies for Dynamic Function eXchange Using Abstract Shells
	Abstract
	Introduction
	Abstract Shells to the Rescue
	Abstract Shell Design Flow
	Abstract Shell for Multi-User Environments
	Abstract Shell for Flat Designs
	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

