
WP386 (v1.0) February 15, 2011 www.xilinx.com 1

© Copyright 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Xilinx® FPGAs offer up to two million logic cells
currently, and they continue to expand. Hierarchical
design is becoming more popular with designs of
this complexity because it allows users to preserve
completed portions of the design, deliver complex IP
place-and-route results, and develop multiple blocks
in parallel. These methods can lead to fewer design
runs, reduced verification time, and more consistent
timing closure, resulting in reduced time to market.

Complex design issues can be addressed using
block-based flows where working blocks can be
preserved at the netlist level, and optionally at the
placement or even the routing level. Unchanged
blocks are automatically preserved during synthesis
and implementation.

The main benefit of this flow is to reduce the number
of implementation iterations during the timing
closure phase.

White Paper: FPGA Design Tools

WP386 (v1.0) February 15, 2011

Hierarchical Design Using
Synopsys and Xilinx FPGAs

By: Kate Kelley

http://www.xilinx.com

2 www.xilinx.com WP386 (v1.0) February 15, 2011

Synopsys Synplify Compile Point Feature and Setup

Synopsys Synplify Compile Point Feature and Setup

Compile Points Overview
Using the Synplify compile point synthesis feature, block-based design has been
available in Synplify Pro and Synplify Premier tools for several years. Blocks
(partitions) are specified at the RTL level prior to synthesis; these points identify areas
that can then be compiled and mapped separately. During subsequent runs, the
software automatically detects which blocks have changed and recompiles and maps
only the changed blocks. With a traditional bottom-up flow — a manual process —
design dependencies often make it difficult to put the design together. Automated
block-based design affords an easy-to-use bottom-up flow that is devoid of these
traditional drawbacks.

Design Practices for Compile Points
In a traditional bottom-up flow, the design is divided into different parts that can be
processed independently. This approach has been used when parts of the design need
to be isolated to stabilize the results or to isolate the IP blocks. The designer can freeze
these portions of the design, while at the same time can work independently (or even
in parallel) on the rest of the design.

Another reason for a bottom-up flow is to speed up the design process. And on very
large designs (e.g., for designs targeting devices over 500,000 LUTs), a top-down
approach is often not ideal due to memory and run-time limits.

Compile point synthesis lets the user define design blocks as needed to compose the
ideal mix of incremental synthesis and to change that mix at any time during the
design process. The designer can choose which blocks of the FPGA can be synthesized
independently of each other. The Synplify Pro and Synplify Premier tools treat each
compile point as an independent block, which allows the designer or other team
members to work separately on other parts of the design.

Constraints are not automatically budgeted for the compile point block; therefore,
manual time budgeting — the creation of constraints for each block — is required.
Since compile point constraints directly affect the quality of results, it is key to provide
timing constraints for each compile point block.

For best results when using compile point and design preservation flows, a design
change in one module must not affect any preserved modules. This is accomplished by
rendering the module boundary “hard” during synthesis and implementation; this
means that there is no optimization during synthesis or implementation across this
hard boundary.

To get the best QoR and utilization, several design guidelines must be followed
closely:

• Inputs and outputs of modules should be registered with no combinatorial logic
between the registers and module boundaries. This prevents a path that crosses a
partition boundary from being critical because there is no logic optimization
across boundaries. If it is not possible to register both inputs and outputs, it is
better to register the outputs.

• Having constants as inputs or outputs to a compile point is not recommended
because of the impact this has on QoR. Constants are not propagated across
boundaries. This can cause utilization and QoR issues if input constants are used
to disable unused design features in a module. In a flat flow, unused logic is

http://www.xilinx.com

Synopsys Synplify Compile Point Feature and Setup

WP386 (v1.0) February 15, 2011 www.xilinx.com 3

optimized away, but this does not occur when compile points are used.
• Active-Low control signals on resets and clock enables must be used with caution.

Because logic cannot cross a boundary, even inverters on control signals can be
affected. This is especially critical for reset and clock enables because no local
inverters exist on these pins. If the design uses an active-Low control signal, the
signal should be inverted in the top level and then the active-Low signal can be
used throughout the design.

• Unused inputs or outputs in a module with compile points must be avoided.
Because the boundaries are hard, inputs unused inside the module or outputs
unconnected to any logic outside the module are not optimized away. This can
lead to packing errors or higher utilization. If it is not possible to remove unused
inputs or outputs from a module, then a wrapper that contains only the used
inputs and outputs can be created. The compile point should be on this wrapper,
and the unused inputs and outputs of the critical module can then be optimized
away.

Compile points and partitions follow the logical hierarchy of the design. Some
common rules for creating good hierarchy for compile points include:

• Logic that needs to be optimized, implemented, and verified together should be
kept in the same hierarchy. All designs have hierarchy, but to attain maximum
performance, the hierarchy should be defined in the context of the FPGA layout.
This might require adding additional levels of hierarchy so that two critical
modules can be synthesized and implemented in the same partition.

• Logic that needs to be packed together should be kept in the same level of
hierarchy. This includes registers that need to be packed in larger components like
block RAM and DSP. This rule also affects I/O logic that needs to be packed
together.

• The number of compile points and partitions is also important. Too many compile
points can degrade performance because there are no optimizations across
boundaries. In one design, for example, there might be just one compile point on a
critical portion of the design; other designs might have five to ten compile points.
The ideal number of compile points is design dependent. The best candidate for a
compile point is a module or core that is expected to have limited/no changes or
difficult-to-meet timing.

Synplify's Compile Point Flow
User-defined compile points can be used on any FPGA whether the design is small or
very large. Since a compile point is an independent synthesis unit, it is up to the user
to determine how many and how large the compile points are.

There are a few principle reasons why a designer should consider using compile
points during the FPGA design process:

• Memory consumption is smaller (compared to top-down processing without
compile points).

• Incremental synthesis maintains design stability.
• A run-time advantage is realized because incremental synthesis is executed only

on those blocks that have changed.
• A run-time advantage is realized for multiple instantiations of a compile point.
• Synplify automatically determines which compile points should be

re-synthesized based on design changes.

http://www.xilinx.com

4 www.xilinx.com WP386 (v1.0) February 15, 2011

Synopsys Synplify Compile Point Feature and Setup

• Synplify Compile Points can be used in conjunction with the new Xilinx Design
Preservation flow, which improves the repeatability of results.

If the designer’s only goal is synthesis run-time savings, Synplify Pro and Synplify
Premier software include an automatic compile points flow, which automatically
divides the design into compile point blocks for faster parallel synthesis on multiple
processors. This flow has minimal impact on QoR because interface time budgeting is
performed for the compile points. However, this automatic compile point flow is not
compatible with the Xilinx Design Preservation Flow.

Resynthesizing Compile Points
Synplify Pro and Premier determine which compile points need to be resynthesized
based on the design changes that occurred.

The following cause a compile point to be resynthesized:

• Changing an RTL design
• Changing the compile point SDC file
• Changing any synthesis option
• Adding or removing a compile point

The following do not cause a compile point to be resynthesized:

• Adding comments to the HDL file
• Changing the timestamp of a design file
• Changing the top level SDC file

http://www.xilinx.com

Synopsys Synplify Compile Point Feature and Setup

WP386 (v1.0) February 15, 2011 www.xilinx.com 5

Synplify Setup for Compile Points
This setup procedure is designed to be used with the new Xilinx ISE® software Design
Preservation flow.

For the FPGA design flow to take advantage of the Design Preservation feature, Use
Xilinx Partition Flow must be enabled in the Synplify Option menu on the Device
tab, as shown in Figure 1.
X-Ref Target - Figure 1

Figure 1: Synthesis Implementation Options

WP386_01_121710

http://www.xilinx.com

6 www.xilinx.com WP386 (v1.0) February 15, 2011

Synopsys Synplify Compile Point Feature and Setup

Next, the compile points for the design must be identified and set up. The design must
be compiled first so that the tool has the needed database to identify potential compile
points. New compile points can be defined through the Pro/Premier SCOPE GUI,
where the setup is automated. The first step is to create a new constraint file using
SCOPE and choose Compile Point as the file type, as shown in Figure 2.

Because the design is compiled prior to this step, all available modules in the design
are listed, and any of them can be chosen by the user as new compile points.

Multiple compile point types are available to synthesis users. For the Xilinx Design
Preservation flow, however, only two types are supported: 1) locked, partition and
2) locked. The locked, partition type is available for backward compatibility to the older
Xilinx Project Navigator partition flow. Xilinx strongly recommends that the new
partition flow in PlanAhead™ software v12.1 and later be used. Both compile point
types are available for the PlanAhead software v12.1 and later releases.

When the compile point is defined, the Synplify tool automatically adds a new
constraint file corresponding to the newly created compile point. It is the user’s
responsibility to add any relevant constraints (such as PERIOD constraints) to the
specific compile points to maintain quality of results.

X-Ref Target - Figure 2

Figure 2: Create a New Scope File

WP386_02_121710

http://www.xilinx.com

Xilinx Design Preservation Flow and Setup

WP386 (v1.0) February 15, 2011 www.xilinx.com 7

The Synplify tools give detailed reports on the individual compile points during
synthesis. The reports include data indicating if individual compile points were
resynthesized due to source file changes. If there was no need to resynthesize a
specific compile point, the report shows it as Unchanged, as shown in Figure 3.

Because the Use Xilinx Partition Flow option was set during synthesis, Synplify can
create additional data (xpartition.pxml file) needed for the ISE software to take
advantages of its design preservation flow. This file can be created in the TCL console
by using the following command:

sxml2pxml -design_name elevator -idir /project/syn/rev_1 -odir
/project/implementation/par_1

This file can also be created in a script file by using the Synplify batch command. The
above TCL command must be included in a TCL script:

synplify_pro -batch script.tcl

The command must be run in batch mode with the TCL command using the -tclcmd
option. For example:

synplify_pro -batch -tclcmd "sxml2pxml -design_name <value> [-idir <value>
-odir <value>]"

Xilinx Design Preservation Flow and Setup

Benefits of Design Preservation Flow
The main benefit of Design Preservation is to reduce the number of implementation
iterations during the timing closure phase. When timing has been met on a portion of
the design, the implementation results (placement and routing) are used in the next
iteration. This prevents portions of the design that previously met timing from failing
timing in the current run.

A second benefit of Design Preservation is to reduce time during the verification
phase. Since the same implementation is used, it is not necessary to do a full
verification on modules that have not changed.

Reducing the implementation run time is not a primary goal but is often a secondary
benefit. The implementation run time changes for each design run depends on which
modules are being implemented. If the changed module has very tight timing
requirements, run time might be longer. If the changed module meets timing easily
and the critical paths are in preserved modules, run time might be shorter.

X-Ref Target - Figure 3

Figure 3: Summary of Compile Points

WP386_03_021011

http://www.xilinx.com

8 www.xilinx.com WP386 (v1.0) February 15, 2011

Xilinx Design Preservation Flow and Setup

Design Preservation Flow Impact
As long as the design guidelines specified in Synopsys Synplify Compile Point Feature
and Setup are followed, there is little QoR impact to the design. The positive impact is
repeatable QoR for the unchanged compile points, which can greatly reduce the
timing closure phase.

Design Preservation Flow Setup
Existing design scripts can be used with compile points and partitions. During
synthesis, the compile points define which modules are to be used as partitions.
During implementation, an xml file called xpartition.pxml defines the partitions
and specifies if they should be imported or implemented. Figure 4 is an example of a
simple pxml file. This file is created by Synplify as described in Synplify Setup for
Compile Points.

The user decides if the Xilinx implementation tools use a command line (or batch) flow
or use a PlanAhead tool flow. In the command line flow, the pxml file generated by
Synplify is used to control the partitions. In the PlanAhead tool flow, the user imports
a pxml file to define the partitions, but further control (for example, what to
implement versus what to import) is controlled by the user.

Implementation via Command Line
After the pxml file is created by Synplify, the Xilinx implementation tools can be run.
The pxml file must be copied to the implementation directory and then the Xilinx tools
or any existing batch file can be run. Synplify has set the partition properties to
implement or import based on which compile points were synthesized. The same
timing closure techniques are used with partitions as without. There are a few
exceptions; the map options for global optimization, the high and extra high options
for power, and SmartGuide are not compatible with partitions.

X-Ref Target - Figure 4

Figure 4: Xpartition.pmxl File

WP386_04_021011

http://www.xilinx.com

Xilinx Design Preservation Flow and Setup

WP386 (v1.0) February 15, 2011 www.xilinx.com 9

Implementation via PlanAhead Tool
In ISE Design Suite 12.2 and later, the initial pxml file can be imported into PlanAhead
tool to define the partitions, but after the project is created, management of the
partitions is done manually. After the pxml file is imported, the design is
implemented in the standard way.

After the design is implemented, partitions can be promoted for use in the next run, as
shown in Figure 5. The user selects which partitions should be promoted and the
PlanAhead tool manages the rest. Promoted partitions are automatically set to Import
on the next run.
X-Ref Target - Figure 5

Figure 5: Promoting Partitions

WP386_05_121710

http://www.xilinx.com

10 www.xilinx.com WP386 (v1.0) February 15, 2011

Xilinx Design Preservation Flow and Setup

After a design change, any partitions associated with changed compile points must be
set to Implement. This is done in the Partitions tab in the Implementation Run
Properties window, as shown in Figure 6.

For partitions that are set to Import, the placement and routing information is copied
and pasted into the new design. Partitions that are set to Implement are placed and
routed around the imported partitions.

Whether the command line/batch flow or the PlanAhead tool flow is chosen, there are
partition reporting sections in the ngdbuild, map, and par reports, as shown in this
example:

Partition Implementation Status

Preserved Partitions:

Partition "/top/Express_Car"

Partition "/top/Main_Car"

Partition "/top/Tracking_Module"

Implemented Partitions:

Partition "/top":
Attribute STATE set to IMPLEMENT.

Partition "/top/Control_Module":
Attribute STATE set to IMPLEMENT.

X-Ref Target - Figure 6

Figure 6: Partition State in the Implementation Run Properties Window

WP386_06_021011

http://www.xilinx.com

Conclusion

WP386 (v1.0) February 15, 2011 www.xilinx.com 11

Conclusion
The use of Synplify's compile points in conjunction with the Xilinx Design
Preservation flow helps solve complex design issues. By working on one module and
then reusing the synthesis and implementation results in the next iteration, these
flows allow a user to focus on solving one issue at a time. Used together, these two
flows reduce the number of required iterations through the implementation tools and
improve the repeatability of results when targeting Xilinx FPGAs. To take advantage of
these benefits, however, it is important to carefully consider the design's hierarchy
during the RTL design phase.

Related Documents
UG748, Hierarchical Design Methodology Guide

WP362, Repeatable Results with Design Preservation

Synopsys FPGA Synthesis User Guide

Synopsys FPGA Synthesis Reference Manual

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Information”) is provided “AS-IS” with no warranty of
any kind, express or implied. Xilinx does not assume any liability arising from your use of the
Information. You are responsible for obtaining any rights you may require for your use of this
Information. Xilinx reserves the right to make changes, at any time, to the Information without notice and
at its sole discretion. Xilinx assumes no obligation to correct any errors contained in the Information or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE INFORMATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

Date Version Description of Revisions

02/15/11 1.0 Initial Xilinx release.

http://www.synopsys.com/home.aspx
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/white_papers/wp362.pdf
http://www.synopsys.com/home.aspx

	Hierarchical Design Using Synopsys and Xilinx FPGAs
	Synopsys Synplify Compile Point Feature and Setup
	Compile Points Overview
	Design Practices for Compile Points
	Synplify's Compile Point Flow
	Resynthesizing Compile Points
	Synplify Setup for Compile Points

	Xilinx Design Preservation Flow and Setup
	Benefits of Design Preservation Flow
	Design Preservation Flow Impact
	Design Preservation Flow Setup
	Implementation via Command Line
	Implementation via PlanAhead Tool

	Conclusion
	Related Documents
	Revision History
	Notice of Disclaimer

