
Migrating Spartan-6 Designs to
7 Series & Beyond

Adam Taylor

Complex Engineering Made Simple

www.adiuvoengineering.com

1

Migration from Spartan-6 Designs to 7 Series and Beyond

Abstract – This white paper will outline the challenges and mitigation strategies which can be

implemented when migrating from a Xilinx Spartan-6 FPGA to a Xilinx 7 series device or beyond.

Contents
Migration from Spartan-6 to 7 Series and Beyond ... 1

Abstract ... 1

List of Figures .. 2

Introduction .. 3

Spartan-6 to 7 Series Architectural Differences ... 3

Logic Cells - .. 3

Block RAM ... 4

DSP .. 5

Clock .. 5

Memory Interfaces .. 5

Transceivers and PCIe ... 6

Additional New Features... 6

Selecting the Most Appropriate Device .. 7

Tool Chain Changes ... 9

Inference vs Instantiation – .. 9

Design Analysis Report (DAR) - ... 10

Quality of Result Assessment (QoRA) ... 10

Clock Interaction and Clock Domain Crossing Reports – .. 11

RTL Migration Example ... 15

MicroBlaze Migration.. 18

ISE System Generator Designs .. 19

Wrap Up .. 19

References .. 19

2

List of Figures

Figure 1 – Spartan-6 and 7 Series CLB Structure .. 4

Figure 2 – Spartan-6 and 7 Series Block RAM Blocks ... 4

Figure 3 – Spartan-6 DSP48A1 and 7 Series DSP48E1 Structures ... 5

Figure 4 – XADC Structure 7 Series ... 6

Figure 5 – Device Selection Spartan-6 to 7 Series Flow Chart .. 7

Figure 6 – Vivado Language Template .. 10

Figure 7 – Vivado IP Integrator MicroBlaze Block Diagram .. 12

Figure 8- Vivado Clock Domain Crossing Report ... 13

Figure 9- Vivado Clock Interaction Report .. 13

Figure 10 – Design Migration Flow Chart ISE to Vivado and Vitis .. 14

Figure 11 – Vivado Constraints Wizard ... 16

Figure 12 – Vivado I/O Assignment Wizard .. 17

Figure 13 – XPS MicroBlaze Creation for Spartan-6 Implementation ... 18

3

Introduction

The semiconductor shortage is having significant impacts on the supply chain, and this is

especially true for older nodes such as the 45nm upon which the Spartan®-6 device is
fabricated. Although there are still challenges with 7 series and UltraScale™/UltraScale+™
deliveries, I am informed that more modern nodes exhibit an improved long-term supply

situation.

In this white paper, we are going to understand the differences between the Spartan-6 and

7 series architectures. We will also discuss how we can select the most appropriate migration
device from the 7 series range along with how to migrate the tool chain from ISE® to Vivado®.
This white paper will also examine how best to migrate a range of designs from pure RTL-based

designs to those which contain a significant element of IP and softcore microcontrollers such as

MicroBlaze™ within the programmable logic fabric.

First introduced in 2009, the Spartan-6 family is based on a 45 nm process and provides

developers within the standard LX version 3.8K and 147K logic cells, up to 576 I/O, 180 DSP
slices, and 268 18Kb block RAMS. The transceiver enabled LXT versions provides the logic
resources of the LX family and provide up to eight GTP transceivers and 1 PCI Express end

point.

Both the LX and LXT range of devices provide hard integrated memory controllers, which

support DDR, DDR2, DDR3, and LPDDR with data rates up to 800 Mb/s.

Introduced in 2010, the 7 series consist of five families of devices including the Virtex®-7,

Kintex®-7, Artix®-7, Zynq®-7000, and Spartan®-7. This range of families in the 7 series

provides developers sufficient capacity, capability, and performance to migrate a Spartan-6

device but also enables significant opportunity for future product enhancement.

Spartan-6 to 7 Series Architectural Differences

Logic - The fundamental element of an FPGA is the logic cell. Both the Spartan-6
and 7 series have a function generator which consists of a six input Look Up Table (LUT) with
two associated flip flops. Several of these function generators and flip flop structures are
combined to create a slice. Each slice contains eight function generators and 16 flip flops. Within
7 series devices, there are two types of slices -- Slice_M and Slice_L. The LUT within the
Slice_M can act as distributed memories or shift registers. This is not possible within Slice_L.
Architecturally, two slices are combined to create a configurable logic block.

While Slice_M and Slice_L are identical between the Spartan-6 and 7 series devices,
Spartan-6 devices also have a Slice_X. Slice_X is the most basic logical structure of the three
slice configurations. Functions that were implemented using a Slice_X can be easily
accommodated within the Slice_L, which are available within the 7 series. Of course, retargeting
of Slice_X to Slice_L is automatic in synthesis. As Slice_X provides only the most basic logic
functionality, migration to Slice_L in 7 series devices can result in performance improvement.

4

Figure 1 – Spartan-6 and 7 Series CLB Structure

Block RAM – One of the largest differences between Spartan-6 and 7 series devices is in the
block Ram. Spartan-6 block RAMs are arranged as 18Kb blocks which can be configured as two
9Kb memories. In comparison, 7 series devices provide 36Kb blocks which can be configured as
two 18Kb memories.

For most applications, the re-targeting should be automatic during synthesis. If, for example,
there are many smaller memories like <9Kb, then a larger 7 series device capable of supporting
that memory granularity may be required.

However, 7 series block RAM offers the designer several significant improvements which can be
very useful. This includes capabilities like providing build in FIFO, cascading block RAMs, and
built-in error correction codes.

Figure 2 – Spartan-6 and 7 Series Block RAM Blocks

5

DSP – Being able to leverage the parallelism of programmable logic to implement filters, FFTs,

and arithmetic algorithms is a key benefit of FPGA implementation. Both Spartan-6 and Spartan-
7 provide dedicated DSP slices that enable the developer to implement multiply accumulate
functions. In the Spartan-6, the developer is provided with a DSP48A1 which provides 18x18
signed multiplication while 7 series devices play DSP48E1 which implements a 25x18 signed
multiply. Architecturally, the DSP48E1 provided in 7 series devices also enables the
implementation of an Algorithmic Logic Unit (ALU) and enables support of Single Instruction
Multiple Data (SIMD) mode which allows increased throughput. The DSP48E1 is also capable of
implementing pattern detection and 17-bit shifter structures as required by the application.

Mapping to the DSP48E1 from the DSP48A1 should be mostly automatic by the Vivado
synthesis engine. However, to implement advanced modes such as SIMD, language templates
are provided in the Vivado editor to allow ease of implementation to achieve the best
performance.

Figure 3 – Spartan-6 DSP48A1 and 7 Series DSP48E1 Structures

Clock – The clocking architecture of 7 series devices is significantly simpler than that previously

provided in the in Spartan-6 devices. Clocking in Spartan-6 has different buffer types which
determined connections and connectivity, for example, BUFG, BUFH, and BUFIO2 or BUFPLL.
Resource wise, the Spartan-6 FPGA provides the developer with Digital Clock Managers (DCM) and
Phase Locked Loops (PLL) clocking resources.

7 series devices provide the user with a simpler clocking architecture which, along with flexibility,
provides a significant improvement in performance. Within a 7 series Clock Management Tile
(CMT), MMCM and PLLs are provided and associated with each I/O bank.

Spartan-6 designs which use either a PLL or DCM_SP will migrate to a MMCM in a 7 series
device. We must, of course, make sure we set the necessary parameters such as clock in period
correctly. While most other buffers (e.g., BUFH and BUFG) will migrate automatically during
synthesis, buffers that are specific to Spartan-6 like BUFIO2 will need to be migrated in the
design if directly instantiated in the design.

Memory Interfaces – Being able to interface with high-performance external memories is critical

for many designs. Both Spartan-6 and 7 series devices provide the user with the ability to
achieve this. However, the Spartan-6 implementation uses an integrated memory block whereas
7 series devices use a Soft IP core to implement the memory controller where only the memory

6

PHY is hardened. This provides 7 series devices with a more flexible approach to I/O allocation
and design which can be critical when working with complex PCB designs. 7 series Memory
Interface Controller can support DDR3, DDR3L, DDR2, and LPDDR2 providing maximum
flexibility in selecting the memory.

Transceivers and PCIe – Spartan-6 LXT devices provide the developer with multi-gigabit

transceivers in the GTP at a maximum speed of 3.2 Gb/s. 7 series devices which support
transceivers can support higher data rates or up to 6/25 Gb/s. 7 series GTPs provide a quad
implementation per tile compared to the dual-tile GTP in Spartan-6 architecture. The GTP clock
has also evolved in 7 series devices, enabling TX and RX to be independently clocked from any
PLL. This is different than in the Spartan-6 GTP dual tile where the TX and RX must use the
same clock. 7 series GTPs also provide new capabilities such as Continuous Time Linear
Equalization (CTLE) with auto adaptation and post equalization eye scan.

When it comes to implementing PCIe, 7 series devices support both PCIe Gen 1 and Gen 2 in
the Artix-7 range. This allows the user to benefit from greater performance as bandwidth is
significantly increased if desired.

Additional New Features – As would be expected, the 7 series range also introduced new

features which provide benefits to the developer. The first of these is the XADC which is a 1
MSPS ADC which enables the developer to observe the internal supply voltages and die
temperature. This can be very useful when implementing self-test and anti-tamper features. The
XADC is also able to quantize 16 external differential signals, removing the need for additional
low-speed ADCs used in board monitoring. Along with the ability to provide bitstream security,
this is also enhanced in the XADC with the provision of AES256 CBC encryption and SHA-256
authentication.

Figure 4 – XADC Structure 7 Series

7

Selecting the Most Appropriate Device

Each Spartan-6 design considered for migration is unique and the developer must think through
each case individually. At a high level, it is possible to consider device selection from the flow
chart below. This flow chart is based upon three key decisions points:

1. MicroBlaze – If a MicroBlaze is used in the design, we need to determine if we want to
continue using the MicroBlaze or migrate to a higher performing A9 or A53 in the Zynq
SoC or Zynq MPSoC families. Migration from MicroBlaze to Arm® processor cores is
something we will look at in detail in another blog. However, the Xilinx Vitis framework
and BSP generation does a lot of the heavy lifting for us.

2. Transceivers Used – We need to determine if high speed multi-gigabit transceivers are
being used as part of the application being migrated.

3. Size of the Spartan-6 Device – We can fit the device in a Spartan-7 device if the
Spartan-6 device does not use transceivers and is a smaller device than the
XCS6LX100. However, we need to consider a device from the Artix family if the
Spartan-6 device for migration is larger.

Figure 5 – Device Selection Spartan-6 to 7 Series Flow Chart

These decision points are high-level decision points intended to guide potential device selection.
Once the recommended family has been selected, the engineer performing the migration needs
to carefully look through and consider additional salient points of the design and consider the
following to identify the actual target migration device:

1. Number of block RAMS, DSP, clock management tiles, required.

2. Maximum number of I/O pins required along with the number of differential pins

required.

3. I/O standards required – 7 series I/O is provided in two classes: High Range (HR) and
High Performance. HR banks support I/O standards of 3v3 and 2v5, while HP banks
support I/O standards up to 1v8 and are intended to support higher-performance
interfaces. We also need to identify the specialist I/O structures used in the Spartan-6

8

mitigation. Crucially ODELAY is only available within HPIO banks which means the
engineer must consider selecting a device in the Kintex-7 range.

4. Company supply chain preference – It might be sensible to select a slightly larger or
different device if the design will migrate to align with company supply chain preferences
and the purchase of common components which can be used across several projects
within the company.

While migration from Spartan-6 to a 7 series device comes with overheads, it also comes with
opportunity. Depending upon the device selected for migration, a larger device or higher
performance device could be selected. For example, a Kintex-7 part can be used in place of an
Artix-7 or an MPSoC in place of a Zynq-7000 SoC. These selections provide the resources to
support future product roadmap enhancements that may have previously been limited due to
device utilization constraints. This is also the case when using a Zynq SoC or Zynq MPSoC in
place of a MicroBlaze processor. This provides easy support for a range of now commonly used
interfaces such as USB and Gigabit Ethernet as well as advanced solutions such as SATA or
DisplayPort.

9

Tool Chain Changes

The major change between Spartan-6 implementations and 7 series implementations is the tool

chain used for development and implementation. Spartan-6 devices use the ISE, EDK,

PlanAhead, and SDK tool chain while 7 series use the Vivado and Vitis tool chains. Vivado is a

quantum leap in capability compared to the older ISE tool chain. Vivado enables developers to

work with pure RTL designs and leverage a large inbuilt IP Library using IP integrator. IP

Integrator is ideal for creating embedded system designs which contain processors within either

the processing system of a heterogeneous System on Chip or softcore implemented in logic

such as MicroBlaze.

Vivado provides developers with end-to-end capability and includes synthesis, place and route,

bit generation, and hardware programming and debugging. Embedded software development

takes place within Vitis, which is an eclipse-based software development environment.

Vivado IP is standardized around the Arm eXtensible Interface (AXI) and provides three classes

of interface:

• AXI MM – Full Memory Mapped interconnect capable of supporting burst access to

increase throughput. This is ideal for Direct Memory Transfer.

• AXI Lite – Reduced single-beat memory mapped interface intended for configuration and

control of IP within the programmable logic.

• AXI Stream – Unidirectional point to point high-speed data channel with no address

component.

Migration between ISE and Vivado for pure RTL design can be as simple as creating a new

project, selecting the targeted device, and importing the RTL. Of course, if there are any IP

blocks specific to the Spartan-6 instantiated and not inferred, the RTL must be updated to

remove them. However, the RTL design should generally be implemented with minor

modifications.

The main difference between the ISE and Vivado is in how constraints are used. ISE uses the

UCF format while Vivado uses XDC which are based on the SDC format. Within our design, we

can use constraints to define timing, I/O standards, and control the implementation and

placement of design elements.

Conversion from UCF to XDC is straightforward and well documented within UG911. An

example of timing constraint and I/O constraint migration is presented in the RTL Migration

Example chapter.

To help get started creating XDC constraints for timing, I/O, and placement constraints, Vivado

provides several wizards which are enabled under the synthesis and implementation views.

These are helpful in walking you through constraint creation.

One of the most significant challenges developers face is achieving timing closure. Vivado

provides the developer with significant design analysis and reporting for greater design insight.

Inference vs Instantiation – One of the challenges of migration from the Spartan-6 to the

7 series is the migration of instantiated modules, for example, block RAM or DSP slices. Initially,
the developer may consider implementing a similar instantiation in the migrated design of the
7 series primitive.

However, to attain the most portable and flexible design, it is better to update the RTL to infer the
desired primitive. Just as we do not instantiate CLBs and define their logic function and
connections, nor should we in RTL design when it comes to working with block RAMs, DSPs,
and

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug911-vivado-migration.pdf

10

other functions. Of course, this could bring about iterations to ensure the RTL description is
correctly interpreted by the synthesis tool and the correct primitive used.

If we want to infer specific primitives in synthesis within Vivado, we can leverage the language
templates available within the Vivado Editor. Language templates also enable the developer to
insert the coding structure which will be mapped by the synthesis tool to the desired primitive.
Templates are provided in both VHDL and Verilog regardless of the developers preferred
language.

Figure 6 – Vivado Language Template

Whether migrating a design or starting a new one from scratch, it is best to use inference over

instantiation whenever possible to ensure the design is portable and does not encounter future

migration issues.

Design Analysis Report (DAR) - Enables the user to understand the design challenges (e.g.,

congestion) and make changes to the design or constraints. The design analysis report will

provide information on the following:

• Timing – Provides information on the timing and physical characteristics of timing paths.

• Complexity – Provides information on routing complexity and LUT distribution.

• Congestion – Provides information on routing congestion.

Quality of Result Assessment (QoRA) – Provides information on the design which can be used

by the developer to understand its complexity and if it can be implemented and achieve timing

closure. Along with a detailed report, the QoRA will present a design score which indicates the

probably of the design implementing with no issues.

11

Table 1 – Vivado QoRA Scores

In addition to the result assessment, the tool will also make Quality of Result Suggestions

(QoRS) which can, in some instances, enable suggestions to be automatically applied once the

flow is rerun.

Clock Interaction and Clock Domain Crossing Reports – Vivado provides the developer with a

greater understanding of clock interaction and clock domain crossing issues. The CDC report will

provide developers with a greater understanding of the CDC paths within the design. This report

is available following the completion of synthesis.

The clock interaction report enables an easy viewing of the clocks in the design and their

interaction as well as outlines the relationships between the clocks. This enables a system-level

view of how clocks interact and guide the creation of necessary timing relationship constraints.

12

Figure 7 – Vivado IP Integrator MicroBlaze Block Diagram

13

Figure 8- Vivado Clock Domain Crossing Report

Figure 9- Vivado Clock Interaction Report

To understand the migration complexity from ISE to Vivado, the following flow chart can be used

to scope migration steps and complexity.

14

Figure 10 – Design Migration Flow Chart ISE to Vivado and VITIS

15

RTL Migration Example

One of the primary interfaces used in space electronics is SpaceWire. This is a differential high-
speed communications protocol like firewire so both the flight FPGA and test equipment needs to
implement SpaceWire. Several SpaceWire test equipment units use the Spartan-6 to implement
the SpaceWire Codec. One example which is available open source (BSD License) is the 4 Links
400 Mbps Codec. This provides high-speed SpaceWire communication targeted to a Spartan-6
LX45T.

As this is an RTL project, a new Vivado project can be created that targets the desired device. In
this case, I created a project targeting a Spartan-7 XC7S50 device. However, the UCF which defines both
the pin out and the timing requirements will need migration.

The main conversion here is from the UCF used in ISE to the XDC used in Vivado. Conversion is
straightforward. The first element we need to convert is the timing constraints. In the UCF file, the
timing constraints are defined by the TNM_NET and TIMESPEC constraints. For this project they
are defined as follows:

Clock timing contraints
NET "iclock" TNM_NET = iclock;
TIMESPEC TS_iclock = PERIOD "iclock" 8 ns HIGH 50%;

In this definition, signal iclock is the output from an IBUFDS. Downstream, the design has DCM
and global buffers but iclock is root clock.

In Vivado, we would use the XDC create clock command

create_clock -period 8.000 -name CLK_125MHz_p -waveform {0.000 4.000} [get_ports
CLK_125MHz_p]

When I migrated the design to Vivado, I accounted for the slight difference in how Vivado
analyzes clocks compared to ISE. Vivado assigns time zero to the point at which the clock is
defined and ignores all delays upstream of the declaration point. As such, clocks should be
defined at the primary input pins. If a clock is created in a design logic (e.g., counter, DCM etc.),
that should be defined using the create generated clock constraint.

If you are concerned about which clock constraint to use, you don’t need to write the constraint
by hand in Vivado. You can use the Timing Wizard in Vivado (under the tools menu) once the
synthesis has been completed. The timing wizard will walk you through the creation of a target
constraint file (XDC) while the definition of constraints will save to the target constraints file.

https://www.4links.co.uk/index.php/blog/4links-open-sources-400mbps-spacewire-codec
https://www.4links.co.uk/index.php/blog/4links-open-sources-400mbps-spacewire-codec

16

Figure 11 – Vivado Constraints Wizard

With the timing issues addressed, the final stage of the migration of this design is to port the

I/O constraints from the UCF to the XDC file. The current definition in the UCF is as follows:

NET Din2_p LOC = "M16" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";

NET Din2_n LOC = "M18" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";

NET Sin2_p LOC = "L17" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";

NET Sin2_n LOC = "L18" | IOSTANDARD = LVDS_33 | DIFF_TERM = "TRUE";

Again, we need to convert these to a XDC format suitable for use with Vivado. If desired, we can

write a XDC file by hand in the existing XDC file created for the project.

set_property IOSTANDARD LVDS_25 [get_ports Din1_p]

set_property IOSTANDARD LVDS_25 [get_ports Din1_n]

set_property IOSTANDARD LVDS_25 [get_ports Din2_p]

set_property IOSTANDARD LVDS_25 [get_ports Din2_n]

set_property PACKAGE_PIN A3 [get_ports Din1_p]

set_property PACKAGE_PIN A5 [get_ports Din2_p]

17

Alternatively, can use the I/O Ports tab in the synthesis view to define the pin allocation, I/O
standard, and any other I/O required features if you are unsure of the exact format. Like the
timing information, this will be saved to the target XDC file which can be inspected to
understand the XDC syntax.

Figure 12 – Vivado I/O Assignment Wizard

We can now build and implement the project and generate the bit stream that is ready for porting
to the new target 7 series device. Of course, this is a relatively straightforward port of a
straightforward RTL design.

18

MicroBlaze Migration

Many Spartan-6 designs include a MicroBlaze softcore processor which performs sequential
processing implementing UART communications, network stacks, and human machine
interfacing.

Within the Spartan-6 MicroBlaze ecosystem, solutions are developed using Xilinx Platform Studio
to create the processor and the Software Development Kit (SDK) to create the application
software. While XPS does provide the ability to create MicroBlaze solutions using AXI
interconnects, most Spartan-6 MicroBlaze designs are implemented using older interface
standards which are the Processor Local Bus (PLB) and Local Memory Bus (LMB). These
busses are used to connect the MicroBlaze to peripheral interfaces like UART and GPIO, along
with memories such as on chip BRAM and external DDR.

Figure 13 – XPS MicroBlaze Creation for Spartan-6 Implementation

Of course, many MicroBlaze solutions contain custom IP cores which perform application-
specific functions. This custom peripheral needs to be updated to support AXI interfacing if not
already supported. The updated IP can be reused in the updated Vivado project and connected
to the MicroBlaze processor.

Migrating a Spartan-6 design that contains a MicroBlaze to a 7 series device requires more
porting than a pure RTL design but also offers potentially more capability and design reuse.

To get started porting a Spartan-6 MicroBlaze design to a 7 series device, we must first recreate
the MicroBlaze design in the Vivado IP Integrator. This enables a MicroBlaze processor to be
implemented and connected to the necessary library IP in an integrated environment. The Vivado
IP Integrator is not only board aware, enabling peripherals to be configured for specific board
configurations such as DDR memories, UARTs, PCIe interfaces, but it’s also able to automate
connections between AXI interfaces to accelerate solution development.

When dealing with MicroBlaze applications, engineers must also address a change in software
development tool from SDK to Vitis. Vivado will provide the Xilinx Shell Archive (XSA) which
enables Vitis to create a platform including a board support package of APIs to enable SW
developers to interface and work with the IP peripherals within the design.

19

The software application from SDK must be imported into Vitis and updated to support the new
IP peripherals. Vitis makes upgrading easier by allowing an exported SDK project to be imported
into Vitis.

ISE System Generator Designs
Some designs in Spartan-6 FPGAs may be developed using ISE System Generator. Like MicroBlaze

solutions, these designs are best migrated by recreating the design in Model Composer in Vivado.

Like the MicroBlaze solution, there are several reasons for this including a change in available IP

cores and migrating to AXI interfacing on IP blocks.

The easier migration path is therefore recreating where the ISE System Generator design is used as a

reference design to support the creation in Model Composer.

Wrap Up
Developers needing to convert a design from Spartan-6 to 7 series devices may at first be daunted

but as outlined in this white paper, the steps taken to select a suitable migration device and

migrate the design are straightforward and achievable.

References
The following references may be of assistance in migrating from Spartan 6 to 7 series and beyond

devices.

1. www.adiuvoengineering.com
2. UG911: ISE to Vivado Design Suite Migration Guide
3. UG429: 7 Series Migration Methodology Guide
4. UG1026: UltraScale Architecture Migration Methodology Guide
5. UG904: Vivado User Guide - Implementation
6. UG949: UltraFast™ Design Methodology Guide
7. XAPP1311: Hot Swapping with FPGAs
8. WP484: DDR2/DDR3 Low-Cost PCB Design Guidelines for Artix-7 and Spartan-7 FPGAs
9. XAPP1313: Spartan-7 FPGA Configuration with SPI Flash and Bank 14 at 1.35V
10. XAPP1286: 7 Series FPGAs Gen2 Integrated Block for PCIe to AXI4-Lite Bridge
11. WP473: Software Migration to 64-bit ARM Heterogeneous Platforms
12. WP470: Unleash the Unparalleled Power and Flexibility of Zynq UltraScale+ MPSoCs
13. WP482: Managing Power and Performance with the Zynq UltraScale+ MPSoC
14. 53109: Vivado - Are Spartan-6, Virtex-6 and older devices supported in the Vivado design

tools?
15. 44225: 7 Series Power Sequencing - Hot-swap/-plug capability
16. 40603: MIG 7 Series FPGAs DDR3/DDR2 - Clocking Guidelines
17. 43989: 7 Series, UltraScale, UltraScale+ FPGAs and MPSoC devices - LVDS_33, LVDS_25,

LVDS_18, LVDS inputs and outputs for High Range (HR) and High Performance (HP) I/O banks
18. 62332: 14.7 ISE - Artix-7 and Zynq device support clarification

http://www.adiuvoengineering.com/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug911-vivado-migration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug429_7Series_Migration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1026-ultrascale-migration-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1311-hot-swapping-fpgas.pdf
https://www.xilinx.com/support/documentation/white_papers/wp484-a7-s7-ddr2-3-pcb.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1313-spartan-spi-config.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1286-pcie-axi4-lite-bridge.pdf
https://www.xilinx.com/support/documentation/white_papers/wp473-migration-to-64-bit-arm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp470-ultrascale-plus-power-flexibility.pdf
https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
https://support.xilinx.com/s/article/53109?language=en_US
https://support.xilinx.com/s/article/44225?language=en_US
https://support.xilinx.com/s/article/40603?language=en_US
https://support.xilinx.com/s/article/43989?language=en_US
https://support.xilinx.com/s/article/62332?language=en_US

