

© Copyright 2020 Xilinx
www.embedded-world.eu

Emerging SoC Performance/Power Challenges and
a Dozen Techniques

Jerry Wong
Technical Marketing

Xilinx, Inc.
San Jose, USA

jerry.wong@xilinx.com

Abstract—Many emerging high performance embedded SoCs
are based on accelerators ... This presents the unique problem with
multiple peer processes and achieving the highest
Performance/Power ... We will discuss a fitting architecture, and
over a dozen techniques for increasing Performance/Power by
using Power Management ... The examples will center around the
Xilinx Zynq UltraScale+ MPSoC and Versal ACAP parts.

Keywords—System-on-Chip SoC Design Performance Power
Software FPGA Hardware Xilinx MPSoC ACAP

I. INTRODUCTION

The topic deals with Performance/Power, and reveals over a
dozen methods to achieve it … 16 methods to be exact.

Why didn’t you mention my favorite Power Management
feature (e.g. Linux Driver Runtime Power Management or DDR
Self-Refresh)? In a 30-minute talk, the purpose is not to discuss
an exhaustive list, but a selection chosen to spark your own
innovation, and to highlight a few clever solutions.

So, why Performance/Power? Certainly, there are some edge
applications that require it for considerations such as battery,
power over Ethernet, and Energy Star compliance. But have you
also considered Automotive, where air cooling demands low
power modes when parked? Or considered the PCIe and other
limits to the power spec? Or considered the total cost of
ownership of a cloud server that includes the total power
consumed and cooling costs?

Performance/Power is stated to be important to our users …
In a survey of Xilinx customers, performance/power was the #3
reason why they chose Xilinx (Fig. 1) …

A modern SoC can be composed of a group of processors
and a group of accelerators. This system can already have an
inherent Performance/Power advantage due to its optimized
accelerators. But to increase this advantage, the challenge can be
management of shared resources (memory, clocks, I/O) (Fig. 2).
Which processor should be aware of the state of all the others,
and does that one master need to stay “On” to manage? This
challenge

will be addressed during the discussion of the various
Performance/Power optimization methods.

Fig. 1. Performance/Power one of the top customer reasons for choosing

Fig. 2. Modern SoC needs to manage shared resources

© Copyright 2020 Xilinx

We will start with 11 Processing Unit (PU) methods,
followed by 5 Programmable Logic (PL) methods, and finally
one “bonus” method.

II. ELEVEN PROCESSING UNIT (PU) METHODS

A. Method 1 - Turn off what you are not using

Ideally this can be done automatically. Your Linux drivers
can be written so that the driver “probe” would inform the
system that the hardware should automatically be turned on.

https://github.com/torvalds/linux/blob/master/drivers/soc/xi
linx/zynqmp_pm_domains.c

B. Method 2 - Consolidate decision making

By having one unit aware of the states of all other units, this
simplifies the task for all the others. But that one unit must be
“on” to control the others, so your system has that minimum
power. Additionally, the reliability of that unit should match the
required reliability of the system. Therefore, it makes sense to
dedicate a low-power and triple-redundant processor to the task,
a Platform Management Unit (PMU) (Fig 3).

C. Method 3 - “Suspend” How far off is “Off”

By having an external unit manage the switching, we can
achieve a lower processor power than its Wait For Interrupt
(WFI). In this lower power “suspend” state, we can also turn off
peripheral devices. Additionally, we do not need to worry about
the processor receiving an interrupt. It can be fully turned off,
with the PMU receiving the interrupt. On interrupt, the PMU
would power the processor back “On” and inform it that it has
received a “Resume” rather than a “Boot” (Fig 4).

D. Method 4 - Domain Switching saves static power

So how do you save static power? If an entire logical block
(processor and peripherals) is not used, and that logical block
can be turned off at its Voltage Regulators (e.g. PMICs) it can
be considered a Power Domain (Fig 5). This requires some
foresight in the partitioning into Power Domains, but can save
significant power.

E. Method 5 - Heterogeneous Architecture

A Heterogeneous Architecture means that a task can be
accomplished by dissimilar Processors and/or Accelerators. This
allows the designer to mix-and-match performance according to
the optimum type for each sub-task. The innovation here is to
architect the SoC so the processors and accelerators use the same
multi-ported DDR. By sharing the same DDR, the data does not
need to be buffer-copied when we wish to “hand off” the sub-
tasks between Processors and Accelerators (Fig 6).

F. Method 6 - CPU Hotplug

Multi-core processors can shut down unused cores. This
familiar CPU concept has a place on an SoC. The SoC can also
take advantage of the Linux “CPU Idle” feature that
automatically turns “Off” cores when they are not in use (Fig 7).

Fig. 5. Platform Managemen Unit (PMU) consolidates decision making

Fig. 3. “Suspend” lets PMU receive interrupt, a lower power solution

Fig. 4. Power Domains can be turned off at the voltage regulators to save
static power

© Copyright 2020 Xilinx
www.embedded-world.eu

G. Method 7 - Frequency Scaling

Frequency scaling slows the processors when performance
is not needed. The innovation here is to design your dividers to
be glitch-less, so switching frequencies can be safely done while
processing (Fig 8).

H. Method 8 - Wait For Interrupt (WFI)

This needs to be mentioned, since it is often missed in coding
corner cases. In general, plan for the power management features
you need, and remember to code their corner cases.

I. Method 9 - Duty Cycle

Does your use case allow you to turn off the processor
between processing? A process that is “Off” 90% of the time can
save considerable power. The platform should be architected to
minimize the suspend and resume latencies (Fig 9).

J. Method 10 - Consolidate PLLs

Complex SoCs can have several PLLs for design flexibility.
If you can design with multiples of the same frequencies, you
can use fewer PLLs. Each PLL saved can be 12 mW to 20 mW
(Fig 10). Switching PLLs can be architected to be glitch-less, but
changing PLL frequencies requires settling, so is not inherently
glitch-less. The PLL frequency can still be changed while
processing by switching all users to a stable clock source while
the PLL frequency is settling.

Fig. 7. Heterogeneous systems sharing the DDR can avoid buffer copies
when performing parts of the same task

Fig. 8. Idle processor cores can be turned off manually or automatically

Fig. 6. Glitch-less dividers for switching frequencies while processing

Fig. 9. Duty cycle possible by minimizing suspend and resume latencies

Fig. 10. Multiple PLLs can be configured while processing with glitch-less
switching

© Copyright 2020 Xilinx

K. Method 11 - Interconnect performance

Advanced SoCs have multiple clock domains. Interconnects
allow data to communicate between clock domains. These
interconnects use a moderate amount of power just for clocking,
even when no data is flowing. If your system state requires little
data flow, the interconnect clocks can be scaled down until
needed. If the interconnect clock is scaled down during suspend,
it can be scaled up again during the process of resume. This
trades off a good suspend power with a good resume latency (Fig
11).

To conclude the Processing Unit (PU) methods, we have a
table of typical PU power states. Note the variable power
benefit, and resume latency times.

TABLE I. TYPICAL PU POWER STATES

PU State
Parameters

Power Undo Latency

Full Performance ZU9 3240mW 100%

Turn off Unused Cores 1920mW 81% 86ms

Frequency Scaling 1800mW 75% 70us

APU Suspend 955mW 40% 15ms

FPD Off 345mW 14% 79ms

RPU Suspend 325mW 13%
immeasurably

small time

Deep Sleep 30mW 1% 129us

a. Note: Measurements taken on a single ZCU102 board running the example code

Here is a link to a pre-built design example with source code.
“Generated binaries for reference … Petalinux 2019.1 generated
images”

https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841757/ZU+Example
+-+Typical+Power+States

III. FIVE PROGRAMMABLE LOGIC (PL) METHODS

A. Method 12 - Partial Reconfiguration Dynamic Function
eXchange (DFX)

DFX allows you to change your Programmable Logic (PL)
design. This can be beneficial if you can (1) fit into a smaller
part and benefit from the lower static power, or (2) swap a design
to a lower power “standby design” (e.g. less resolution), or (3)
eliminate an entire module by repurposing an existing module.
The innovation with DFX is the ability to switch out a portion of
the design while the rest of the design continues to run (Fig 12).

B. Method 13 - Hardened Cores

Optimized “Hardened Cores” can save power over new
designs if the generic solution is good enough. The dynamic
power is dependent on switching so it may be like the dynamic
power of a good custom design (Fig 13).

C. Method 14 - PL Clock (Frequency) Scaling

If full performance is not needed, dynamic power can be
saved by reducing the clock frequency. This can be implemented
by having a clock divider in PL. The control bits of the clock
divider can then be mapped to the bits of an Advanced
eXtensible Interface (AXI) so they can be controlled by a
processor (Fig 14).

D. Method 15 - Clock Gating

You can switch clocks to portions of your circuit. Dynamic
power is saved if that portion of the design is not being clocked
and is not switching. Typical applications include uni-
directional data only requiring half the design, or lower

Fig. 13. Clock domain interconnects can be scaled down if maximum
throughput is not needed

Fig. 11. DFX allows reprogramming a portion of PL while the rest
continues to run

Fig. 12. Optimized hardened cores can save a little

© Copyright 2020 Xilinx
www.embedded-world.eu

resolution requiring a narrowed bit width. Again, this clock
gating can be controlled by a processor and the bits of an AXI
(Fig 15).

To conclude the Programmable Logic (PL) methods, we
have a table of typical PL power states. Note the variable power
benefit, and the implied scaling of the performance.

TABLE II. TYPICAL PL POWER STATES

PL State
Parameters

Power Notes

Full Performance ECC 1970mW 100% 200MHz

Hardened Cores 1840mW 93% Few seconds DFX

Frequency Scaling 1120mW 57% 50MHz

Clock Gating 994mW 50% ¼ being clocked

Idle 770mW 39% Static PL power

PLD Off 0mW 0%
Can reload from

RAM
b. Note: Measurements taken on a single ZCU102 board running the example code

Here is a link to a pre-built design example with source code.
Section 4.1: 2019.1 ZCU102 (PL) Download

https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841681/Zynq+UltraS
cale+MPSoC+Power+Advantage+Tool+part+1+-
+Introduction+to+the+Power+Advantage+Tool

IV. ONE “BONUS” METHOD

A. Method 16 - New performance/power modes reached

The final method is to architect a specific design for a family
of applications. Moore’s Law is slowing down the benefit of

shrinking silicon, so there is an increased focus on squeezing
more performance by design. The following example of the
Xilinx Versal ACAP AI Engine (AIE) solves significant vector
processing problems with 6x – 10x performance and with an
incremental improvement to performance/power (Fig 16).

AIE achieves these benchmarks by being an optimized
Vector Processing System (all memory local), and by being
adjacent to Programmable Logic (PL). This allows the bulk of a
problem to be efficiently solved by the AIE, and its corner cases
solved efficiently by PL (Fig 17).

Fig. 14. New accelerators to achieve 6x-10x existing performance with
incremental improvement to power

Fig. 16. PL clock divider controlled by AXI

Fig. 17. PL clock gating controlled by AXI

