
Lab Workbook Behavioral Modeling and Timing Constraints

 www.xilinx.com/university Artix-7 7-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Behavioral Modeling and Timing Constraints

Introduction

Behavioral modeling was introduced in Lab 1 as one of three widely used modeling styles. Additional
capabilities with respect to testbenches were further introduced in Lab 4. However, there more constructs
available in this modeling style which are particularly useful for complex sequential digital circuits design.
Sequential circuits require clocking, and with clocking there is always a frequency or speed involved at
which the circuit can be run. The expected speed can be communicated to the tools through specific
timing constraints via the XDC file. In this lab you will learn more language constructs and timing
constraints concepts. Please refer to the Vivado tutorial on how to use the Vivado tool for creating
projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:
• Use various language constructs using behavioral modeling

• Communicate timing expectations through timing constraints

Behavioral Modeling Part 1

As mentioned in previous labs, the primary mechanisms through which the behavior of a design can be
modeled are: initial and always statements. .The initial statement is mainly used in testbenches

to generate inputs at a desired time, whereas the always statement is mainly used to describe the

functionality of the circuit. Both the initial and always statements may have simple or block of

(having enclosed between begin … end) procedural statement(s).

A procedural statement is one of

procedural_assignment (blocking or non-blocking)
conditional_statement
case_statement
loop_statement
wait_statement
event_trigger
sequential_block
task (user or system)

When multiple procedural statements are enclosed between begin … end, they execute sequentially.
Since an always statement executes continuously, they are typically controlled using either delay control

or event control mechanisms. Here is an example of a delay controlled procedural statement:

always

 #5 CLK = ~CLK;

In the above example, the statement will execute after every 5 units of time specified in the Verilog code,
inverting the signal value every time it executes, thus generating a clock of 10 units period. The #5 CLK

= ~CLK statement is considered a delay control, meaning the time delay between the statement

encountered and actually executed is 5 time units. When the delay appears on the left side (as in above
case), it is also considered as an inter-statement delay where the statement is blocked for that much time
then gets evaluated and the result is assigned to the target. Below is the example that illustrates the
effect of the inter-statement delay:

initial

begin

 #5 SIG1 = 3;

 #4 SIG1 = 7;

Behavioral Modeling and Timing Constraints Lab Workbook

Artix-7 7-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

 #2 SIG1 = 4;

end

The SIG1 signal will get the value of 3 at 5, value of 7 at 9, and value of 4 at 11 time units.

wire test;

always @(test)

begin

 #5 CLK = ~CLK;

end

The above always statement will execute only when there is a change in value (an event) on a wire test.

The change in value can be 0 -> 1, 1 -> 0, 0 -> x, x->1, x -> 0, 1 -> z, z -> 0, 0 -> z, z -> 1 or 1->x. When
the event occurs, the logical value of CLK will be flipped after 5 time units.

wire test;

always @(posedge test)

begin

 #5 CLK = ~CLK;

end

The above always statement will execute only when there is a rising edge change (0 -> 1, 0 -> x, 0 -> z,
z->1, x->1) in value on a wire test. When the event occurs, the logical value of CLK will be flipped after 5
time units. Such events are called edge-triggered events. In contrast to edge-triggered events, there can
be another type of event called a level-sensitive event control.

wait (SUM > 22)

 SUM = 0;

wait (DATA_READY)

 DATA = BUS;

In the above examples, SUM is assigned 0 only when SUM is greater than 22, and DATA is assigned
whatever the value is on BUS when DATA_READY is asserted.

Until now, we have been dealing with the inter-statement delay which helps to model an inertial delay in
the behavior of the code. There is another kind of delay, called an intra-statement, which is used to
model the transport delay using the assignment statement. Here is an example of it:

DONE = #5 1’b1:

In this statement, the intra-statement delay value is mentioned on the right side of the assignment
operator. The right hand side expression is evaluated when encountered, but the result of the expression
is only assigned after the stated delay.

1-1. Write a testbench using inter-statement delays to produce the following
waveform for the port named PORT_A.

The “=” assignment operator in procedural assignment statements are used as a blocking procedural
assignment. As the name indicates, the subsequent statement is blocked until the current assignment is
done. Here is an example that explains the concept:

always @(A or B or CIN)

begin

 reg T1, T2, T3;

 T1 = A & B;

Lab Workbook Behavioral Modeling and Timing Constraints

 www.xilinx.com/university Artix-7 7-3
 xup@xilinx.com
 © copyright 2015 Xilinx

 T2 = B & CIN;

 T3 = A & CIN;

end

The T1 assignment occurs first, T1 is computed, then the second statement is executed, T2 is assigned
and then the third statement is executed and T3 is assigned. Here is another example.

initial

begin

 CLR = #5 0;

 CLR = #4 1;

 CLR = #10 0;

end

Another kind of assignment operator, where the assignment operator “<=” used is called non-blocking.
The statement that uses the non-blocking operator does not block the execution; however the assignment
is scheduled to occur in the future. When the non-blocking assignment is executed, the right-hand side
expression is evaluated at that time and its value is scheduled to be assigned to the left-hand side target
and the execution continues with the next statement. The non-blocking statements are widely used for
content transfer across multiple registers (often in parallel) when a desired clock event occurs.

always @(posedge CLK)

begin

 T1 <= #5 A & B;

 T2 <= #8 B & CIN;

 T3 <= #2 A & CIN;

end

In this example, when the positive edge event on the CLK occurs, A, B, and CIN values are noted
(captured), and then T1 gets an updated value after a 5 time units delay, T2 gets updated after a 8 time
units delay, and T3 gets updated after a 2 time units delay all after the same rising edge of the CLK
signal. Here is another example that generates the output shown in the waveform diagram.

initial

begin

 CLR <= #5 1;

 CLR <= #4 0;

 CLR <= #10 0;

end

Behavioral Modeling and Timing Constraints Lab Workbook

Artix-7 7-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-2. Write a testbench using intra-statement delays to produce the following
waveform.

So far we have seen constructs which allow generation of stimulus unconditionally. However, many times
we like to have different stimulus generation upon certain conditions. Verilog HDL provides control
altering statements such as if, if … else, and if … else if. The general syntax of an if

statement is:

if (condition-1)

 procedural_statement
[else if (condition-2)
 procedural_statement]
[else

 procedural_statement]

If the procedural_statement above consists of more than one statement then they are enclosed between
a begin…end block.

It is possible to have nested if statements. In such case, the else part is associated to the closest if

part. For example, below, the else part is associated to the if (RESET) condition,

if (CLK)

 if (RESET)

 Q <= 0;
 else

 Q <= D;

The if statement is commonly used to create a priority structure, giving higher priority to the condition
listed first.

1-3. Write a behavioral model to design a 1-bit 4-to-1 mux using the if-else-if
statement. Develop a testbench to verify the design. Assign the four input
channels to SW3-SW0 (SW3 is assigned to most significant channel and
will have the lowest priority, and so on) and select lines to SW5-SW4 and
output to LED0. Verify your design in the hardware using the Basys3 or the
Nexys4 DDR board. Look at the Project Summary report and make sure
that no latches or registers resources are used or inferred.

Another widely used statement is a case statement. The case statement is generally used when we

want to create a parallel structure (unlike priority). The case statements are commonly used in creating

the finite state machine. The syntax of the case statement is:

case [case_expression]

 case_item_expr [, case_item_expression] : procedural_statement

 …

 …

 [default: procedural_statement]

endcase

Lab Workbook Behavioral Modeling and Timing Constraints

 www.xilinx.com/university Artix-7 7-5
 xup@xilinx.com
 © copyright 2015 Xilinx

The case_expression is evaluated first (whenever there is an event on it), and the value is matched with
the case_item_expr in the order they are listed. When the match occurs, the corresponding
procedural_statement is executed. The procedural_statement, if it consists of multiple statements, is
enclosed in a begin … end block. The default case covers all values that are not covered by any of the
case_item_expr. In the case_expression, the x and z (if present) is compared literally in case_item_expr.
That is they are not considered don’t case. If you want to consider them as don’t care than you can use
casex or casez statement instead of case. In the casez statement, the value z that appears in the

case_expression and case_item_expr is considered as don’t care. In the casex statement, both the

values x and z are considered as don’t care

1-4. Design a gray code generator using the case statement. The design will
take a 4-bit BCD input through SW3-SW0 and will output the corresponding
gray code value on the four LEDS, LED3-LED0, provided that the enable
input on SW4 is TRUE. If the enable input is FALSE or the input is not BCD
then LED3-LED0 should all be turned ON and LED4 should also be turned
ON. Look at the Project Summary report and make sure that no latches or
registers resources are used.

Verilog HDL also supports various loop statements to do the same function a number of times. The
supported loop statements are:

forever loop

repeat loop

while loop

for loop

The forever loop statement is used when the procedural statement(s) need to be executed

continuously. Some kind of timing control must be used within the procedural statement if a periodic
output is desired. For example, to generate a clock of 20 units period, the following code can be used.

initial

begin

 CLK = 0;

 forever

 #10 CLK = ~CLK;

 end

The repeat loop statement is used when the procedural statement(s) need to be executed for a
specified number of times. Note: if the loop count expression is an x or a z, then the loop count is treated
as a 0.

repeat (COUNT)
 SUM = SUM +5;

The while loop statement’s procedural statement(s) are executed until certain conditions become false.

while (COUNT < COUNT_LIMIT)

 SUM = SUM +5;

The for loop statement is used when the procedural statement(s) need to be executed for a specified

number of times. Unlike the repeat statement, an index variable is used which can be initialized to any

desired value, it can be further updated by whatever value is required, and a condition can be given to
terminate the loop statement. The loop index variable is normally defined as an integer type. Here is an
example of the loop statement.

integer K;

for (K=0; K < COUNT_LIMIT; K = K+1)

 SUM = SUM + K;

Behavioral Modeling and Timing Constraints Lab Workbook

Artix-7 7-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-5. Write a model of a counter which counts in the sequence mentioned below.
The counter should use behavioral modeling and a case statement.
Develop a testbench to test it. The testbench should display the counter
output in the simulator console output. Simulate using the clock period of
10 units for 200 ns. 000, 001, 011, 101, 111, 010, (repeat 000). The counter
will have an enable signal (SW1), a reset signal (SW0), and a clock signal
(SW15). The output of the counter will be on LED2-LED0.

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets { clk }];

Add the above code to the XDC file and set the clock as SW15.

Timing Constraints Part 2

In combinatorial logic design, delays through the circuits will depend on the number of logic levels, the
fan-out (number of gate inputs a net drives) on each net, and the capacitive loading on the output nets.
When such circuits are placed between flip-flops or registers, they affect the clock speeds at which
sequential designs can be operated. The synthesis and implementation tools will pack the design in LUT,
flip-flops, and registers, as well as place them appropriately if the expected performance is communicated
to them via timing constraints. Timing constraints can be categorized into global timing or path specific
constraints. The path specific constraints have higher priority over global timing constraints, and the
components which are used in those specific paths are placed and routed first.

The global timing constraints cover most of the design with very few lines of instructions. In any pure
combinatorial design, the path-to-path constraint is used to describe the delay the circuit can tolerate. In
sequential circuits, period, input delay, and output delay constraints are used. All four kinds of the timing
constraints are shown in the figure below.

In the above figure, the paths which are covered between ADATA input and D port of FLOP1, BUS input
and D port of FLOP4 can be constrained by a constraint called SET_INPUT_DELAY command. The
set_input_delay command indicates how much time is spent between the Q output of a FF in the
upstream device, the routing delay in the upstream device as well as the board delay. The tools will
subtract that delay from the clock period of the clock signal listed in the command and will use the
resulting delay to place and route the path between the input and the D input of FF. It will also consider
delay experienced by the clock arriving to the clock port of the destination FF (e.g. FLOP1 in the above
diagram). The max and min qualifiers are used for the setup and hold checks.

The paths between the port Q of FLOP3 and output OUT1, Q port of FLOP5 and OUT1, Q port of FLOP5
and OUT2 can be constrained by SET_OUTPUT_DELAY command. Again, the delay mentioned
indicates how much delay is spent in the board delay, routing delay and the setup delay of the FF in the
downstream device.

Lab Workbook Behavioral Modeling and Timing Constraints

 www.xilinx.com/university Artix-7 7-7
 xup@xilinx.com
 © copyright 2015 Xilinx

The paths between CDATA and OUT2 can be constrained by the SET_MAX_DELAY constraint.

The paths between Q port of FLOP1 and D port of FLOP2, Q port of FLOP2 and D port of FLOP3, Q port
of FLOP4 and D port of FLOP5 can be constrained by the period constraint. The period constraint is
created using the create_clock command. The create_clock command may refer ot a pin of the FPGA
design or may not refer any pins. When the clock pin is not referred, a virtual clock will be created. When
the pin is referred, the period parameter indicates rising to rising edge delay and waveform option
indicates when the rising edge occurs and the second number indicates when the falling edge occurs.
The waveform option can be used to create clocks of non-50% duty cycle and/or phase delayed clock
signal.

create_clock –name CLK –period 10.0 –waveform (0 5.0) [get_ports CLK]

set_input_delay –clock CLK –max 3.0 [all_inputs]

set_input_delay –clock CLK –min 1.0 [all_inputs]

set_output_delay –clock CLK 2.0 [all_outputs]

set_max_delay 5.0 –from [get_ports CDATA] –to [get_ports OUT2]

Note that the clock period is defined at 10 ns. This is applied throughout the example for consistency.
Further details on the syntax of each constraint type can be found in UG903, the Vivado Using
Constraints Guide.

Conclusion

In this lab you learned about various constructs available in behavioral modeling. You also learned about
blocking and non-blocking operators as well as concepts and the need of timing constraints. Providing
the timing constraints to the implementation tools the generated output can be made to meet the design’s
timing specifications.

