
Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Artix-7 6-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Modeling Registers and Counters

Introduction

When several flip-flops are grouped together, with a common clock, to hold related information the resulting
circuit is called a register. Just like flip-flops, registers may also have other control signals. You will
understand the behavior of a register with additional control signals. Counters are widely used sequential
circuits. In this lab you will model several ways of modeling registers and counters. Please refer to the
Vivado tutorial on how to use the Vivado tool for creating projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:

• Model various types of registers
• Model various types of counters

Registers Part 1

In a computer system, related information is often stored at the same time. A register stores bits of
information in such a way that systems can write to or read out all the bits simultaneously. Examples of
registers include data, address, control, and status. Simple registers will have separate data input and
output pins but clocked with the same clock source. A simple register model is shown below.

module Register (input [3:0] D, input Clk, output reg [3:0] Q);

 always @(posedge Clk)

 Q <= D;

endmodule

Notice that this is similar to a simple D Flip-flop with multiple data port.

The simple register will work where the information needs to be registered every clock cycle. However,
there are situations where the register content should be updated only when certain condition occurs. For
example, a status register in a computer system gets updated only when certain instructions are
executed. In such case, a register clocking should be controlled using a control signal. Such registers will
have a clock enable pin. A model of such register is given below.

module Register_with_synch_load_behavior(input [3:0] D, input Clk, input

load, output reg [3:0] Q);

 always @(posedge Clk)

 if (load)

 Q <= D;

endmodule

Another desired behavior of registers is to reset the content when certain condition occurs. A simple
model of a register with synchronous reset and load (reset has a higher priority over load) is shown below

module Register_with_synch_reset_load_behavior(input [3:0] D, input Clk,

input reset, input load, output reg [3:0] Q);

 always @(posedge Clk)

 if (reset)

 begin

 Q <= 4'b0;

 end else if (load)

 begin

 Q <= D;

 end

endmodule

Modeling Registers and Counters Lab Workbook

Artix-7 6-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-1. Model a 4-bit register with synchronous reset and load using the model
provided above. Develop a testbench and simulate the design. Assign Clk,
D input, reset, load, and output Q. Verify the design in hardware.

1-1-1. Open Vivado and create a blank project called lab6_1_1.

1-1-2. Create and add the Verilog module that will model the 4-bit register with synchronous reset and
load. Use the code provided in the above example.

1-1-3. Develop a testbench and simulate the design for 300ns. Analyze the output.

1-1-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins, assigning Clk to SW15, D input to SW3-SW0, reset to SW4, load to SW5, and Q to LED3-

LED0.

1-1-5. Add the following line of code in the XDC file to allow SW15 be used as a clock

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets { clk }];

1-1-6. Synthesize the design.

1-1-7. Implement the design.

Look at the Project Summary, Utilization table, and note that 1 BUFG and 11 IOs are used.

1-1-8. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

In some situations, it is necessary to set the register to a pre-defined value. For such a case, another
control signal, called set, is used. Typically, in such registers, reset will have a higher priority over set, and
set will have a higher priority over load control signal.

1-2. Model a 4-bit register with synchronous reset, set, and load signals.
Assign Clk, D input, reset, set, load, and output Q. Verify the design in
hardware.

1-2-1. Open Vivado and create a blank project lab6_1_2.

1-2-2. Create and add the Verilog module that will model the 4-bit register with synchronous reset, set,
and load control signals.

1-2-3. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Artix-7 6-3
 xup@xilinx.com
 © copyright 2015 Xilinx

1-2-4. Synthesize the design.

1-2-5. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-2-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

The above registers are categorized as parallel registers. There are another kind of registers called shift
registers. A shift register is a register in which binary data can be stored and then shifted left or right when
the control signal is asserted. Shift registers can further be sub-categorized into parallel load serial out,
serial load parallel out, or serial load serial out shift registers. They may or may not have reset signals.

In Xilinx FPGA, LUT can be used as a serial shift register with one bit input and one bit output using one
LUT as SRL32 providing efficient design (instead of cascading up to 32 flip-flops) provided the code is
written properly. It may or may not have enable signal. When the enable signal is asserted, the internal
content gets shifted by one bit position and a new bit value is shifted in. Here is a model for a simple one-
bit serial shift in and shift out register without enable signal. It is modeled to shift for 32 clock cycles
before the shifted bit brought out. This model can be used to implement a delay line.

module simple_one_bit_serial_shift_register_behavior(input Clk, input

ShiftIn, output ShiftOut);

 reg [31:0] shift_reg;

 always @(posedge Clk)

 shift_reg <= {shift_reg[30:0], ShiftIn};

 assign ShiftOut = shift_reg[31];

endmodule

The above model can be modified if we want to implement a delay line less than 32 clocks. Here is the
model for the delay line of 3 clocks.

module delay_line3_behavior(input Clk, input ShiftIn, output ShiftOut);

 reg [2:0] shift_reg;

 always @(posedge Clk)

 shift_reg <= {shift_reg[1:0], ShiftIn};

 assign ShiftOut = shift_reg[2];

endmodule

1-3. Model a 1-bit delay line shift register using the above code. Develop a
testbench and simulate the design using the stimuli provided below.
Assign Clk, ShiftIn, and output ShiftOut. Verify the design in hardware.

1-3-1. Open Vivado and create a blank project lab6_1_3.

1-3-2. Create and add the Verilog module that will model the 1-bit delay line shift register using the
provided code.

Modeling Registers and Counters Lab Workbook

Artix-7 6-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

1-3-3. Develop a testbench and simulate the design for 200ns.

1-3-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

1-3-5. Synthesize the design.

1-3-6. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-3-7. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

The following code models a four-bit parallel in shift left register with load and shift enable signal..

module Parallel_in_serial_out_load_enable_behavior(input Clk, input ShiftIn,

input [3:0] ParallelIn, input load, input ShiftEn, output ShiftOut, output

[3:0] RegContent);

 reg [3:0] shift_reg;

always @(posedge Clk)

 if(load)

 shift_reg <= ParallelIn;

 else if (ShiftEn)

 shift_reg <= {shift_reg[2:0], ShiftIn};

 assign ShiftOut = shift_reg[3];

 assign RegContent = shift_reg;

endmodule

1-4. Model a 4-bit parallel in left shift register using the above code. Develop a
testbench and simulate the design using the stimuli provided below.
Assign Clk, ParallelIn, load, ShiftEn, ShiftIn, RegContent, and ShiftOut.
Verify the design in hardware.

1-4-1. Open Vivado and create a blank project lab6_1_4.

1-4-2. Create and add the Verilog module that will model the 4-bit parallel in left shift register using the
provided code.

1-4-3. Develop a testbench and simulate the design for 400ns.

Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Artix-7 6-5
 xup@xilinx.com
 © copyright 2015 Xilinx

1-4-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

1-4-5. Synthesize the design.

1-4-6. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-4-7. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

1-5. Write a model for a 4-bit serial in parallel out shift register. Develop a
testbench and simulate the design. Assign Clk, ShiftEn, ShiftIn, ParallelOut,
and ShiftOut. Verify the design in hardware.

1-5-1. Open Vivado and create a blank project lab6_1_5.

1-5-2. Create and add the Verilog module that will model the 4-bit serial in parallel shift register.

1-5-3. Develop a testbench and simulate the design for 400ns.

1-5-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

1-5-5. Synthesize the design.

1-5-6. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-5-7. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality

Counters Part 2

Counters can be asynchronous or synchronous. Asynchronous counters count the number of events
solely using an event signal. Synchronous counters, on the other hand, use a common clock signal so
that when several flip-flops must change state, the state changes occur simultaneously.

A binary counter is a simple counter which counts values up when an enable signal is asserted and will
reset when the reset control signal is asserted. Of course, a clear signal will have a higher priority over

Modeling Registers and Counters Lab Workbook

Artix-7 6-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

the enable signal. The following diagram shows such a counter. Note that clear is an asynchronous
negative logic signal whereas Enable is synchronous positive logic signal.

2-1. Design a 8-bit counter using T flip-flops, extending the above structure to
8-bits. Your design needs to be hierarchical, using a T flip-flop in
behavioral modeling, and rest either in dataflow or gate-level modeling.
Develop a testbench and validate the design. Assign Clock input, Clear_n,
Enable, and Q. Implement the design and verify the functionality in
hardware.

2-1-1. Open Vivado and create a blank project lab6_2_1.

2-1-2. Create and add the Verilog module to provide the desired functionality.

2-1-3. Develop a testbench and validate the design.

2-1-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

2-1-5. Synthesize the design and view the schematic under the Synthesized Design process group.
Indicate what kind and how many resources are used.

2-1-6. Implement the design.

2-1-7. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

2-1-8. Counters can also be implemented using D flip-flops since a T flip-flop can be constructed using a
D flip-flop as shown below.

Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Artix-7 6-7
 xup@xilinx.com
 © copyright 2015 Xilinx

2-2. Modify the 8-bit counter using D flip-flops. The design should be
hierarchical, defining D flip-flop in behavioral modeling, creating T flip-flop
from the D flip-flop, implementing additional functionality using dataflow
modeling. Assign Clock input, Clear_n, Enable, and Q. Implement the
design and verify the functionality in hardware.

2-2-1. Open Vivado and create a blank project lab6_2_2.

2-2-2. Create and add the Verilog module to provide the desired functionality.

2-2-3. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

2-2-4. Synthesize the design and view the schematic under the Synthesized Design process group.

2-2-5. Implement the design.

2-2-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Other types of binary counters include (i) up, (ii) down, and (iii) up-down. Each one of them may have
count enable and reset as control signals. There may be situation where you may want to start the count
up/down from some non-zero value and stop when some other desired value is reached. Here is an
example of a 4-bit counter which starts with a value 10 and counts down to 0. When the count value 0 is
reached, it will re-initialize the count to 10. At any time, if the enable signal is negated, the counter
pauses counting until the signal is asserted back. It assumes that load signal is asserted to load the pre-
defined value before counting has begun.

 reg [3:0] count;

 wire cnt_done;

 assign cnt_done = ~| count;

 assign Q = count;

 always @(posedge Clock)

 if (Clear)

 count <= 0;

 else if (Enable)

 if (Load | cnt_done)

 count <= 4'b1010; // decimal 10

 else

 count <= count - 1;

2-3. Model a 4-bit down-counter with synchronous load, enable, and clear as
given in the code above. Develop a testbench (similar to the waveform
shown below) and verify the design works. Assign Clock input, Clear,
Enable, Load, and Q. Implement the design and verify the functionality in
hardware.

Modeling Registers and Counters Lab Workbook

Artix-7 6-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

2-3-1. Open Vivado and create a blank project lab6_2_3.

2-3-2. Create and add the Verilog module to provide the desired functionality.

2-3-3. Develop a testbench and validate the design.

2-3-4. Add the appropriate board related master XDC file to the project and edit it to include the related
pins. Note: You may have to add the CLOCK_DEDITCATED_ROUTE property for the Clk pin
depending on which switch you select.

2-3-5. Synthesize the design and view the schematic under the Synthesized Design process group.

2-3-6. Implement the design.

2-3-7. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Conclusion

In this lab, you learned how various kinds of registers and counters work. You modeled and verified the
functionality of these components. These components are widely used in a processor system design.

