
Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Modeling Concepts

Introduction

The Very High Speed Integrated Circuit Hardware Description Language (VHDL) modeling language
supports three kinds of modeling styles: dataflow, structural and behavioral. Dataflow and structural
modeling are used to model combinatorial circuits whereas behavioral modeling is used for both
combinatorial and sequential circuits. This lab illustrates the use of all three types of modeling by creating
simple combinatorial circuits targeting Nexys4-DDR board and using the Vivado software tool. Please
refer to the Vivado tutorial on how to use the Vivado tool for creating projects and verifying digital circuits.

The Basys3 board has the following components:
• 1,800 Kbits of fast block RAM

• 33,280 logic cells in 5200 slices (each slice contains four 6-input LUTs and 8 flip-flops)

• Five clock management tiles, each with a phase-locked loop (PLL)

• 90 DSP slices
• Internal clock speeds exceeding 450MHz

• On-chip analog-to-digital converter (XADC)

• 16 User Switches
• 16 User LEDs

• 5 User Pushbuttons

• 4-digit 7-segment display

• Three Pmod connectors
• Pmod for XADC signals

• 12-bit VGA output

• USB-UART Bridge
• Serial Flash

• Digilent USB-JTAG port for FPGA programming and communication

• USB HID Host for mice, keyboards and memory sticks

The Basys3 board is shown below.

Modeling Concepts Lab Workbook

Artix-7 1-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

The Nexys4-DDR board has the following components:
• 128 MiB DDR 2 SDRAM

• 16Mbytes Quad-SPI PCM non-volatile memory
• PWM audio output

• Temperature sensor

• 10/100 Ethernet PHY

• USB-UART and USB-HID port (for mouse/keyboard)
• 12-bit VGA port

• 100MHz CMOS oscillator

• 32 I/O’s routed to expansion connectors (including XADC I/Os)
• GPIO includes 16 LEDs, 5 buttons, 16 slide switches two tri-color LEDs and two 4-digit

seven-segment displays

The Nexys4-DDR board is shown below.

Objectives

After completing this lab, you will be able to:
• Create scalar and wide combinatorial circuits using dataflow, structural and behavioral modeling

• Write models to read switches and push buttons, and output on LEDs and 7-segment displays

• Simulate and understand the design output
• Create hierarchical designs

• Synthesize, implement and generate bitstreams

• Download bitstreams into the board and verify functionality

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-3
 xup@xilinx.com
 © copyright 2015 Xilinx

VHDL Structure Part 1

Before describing the different modelling styles in VHDL, it is useful to describe a VHDL module
components.

A VHDL module has a well-defined structure that may appear bewildering to someone just learning VHDL
but allows the module to be defined in a clear and logical manner. A typical VHDL module has two main
portions: (1) entity declaration and (2) architecture block. The entity declaration defines the module’s input
and output ports of a device. The architecture block in VHDL defines the functionality of the device.

entity example_code is port(

 port_1 : in std_logic;

 port_2 : out std_logic_vector(1 downto 0)

);

architecture example_code_arch of example_code is

…
end example_code_arch;

 The entity may contain the port names, the port sizes and the directions (input/output). The architecture
block may include instantiated components and local signals/nets. The architecture block can be further
broken down into three sub-sections: (1) component declarations, (2) signal declarations and a (3)
functional code. The component declaration is required to describe a hierarchical design. The signal
declarations are required for local connections between various blocks within the functional code. The
functional code can be described in number of ways, as explained later in this lab.

 …
architecture example_code_arch of example code is

 component instance1 is port(

 port_in : in std_logic;

 …

 port_out : out std_logic

);

 component instance2 is port(

 …

 port_out4 : out std_logic_vector(3 downto 0);

);

 signal sig_a : std_logic;

 signal sig_b : std_logic_vector(1 downto 0);

 signal sig_c : std_logic_vector(3 downto 0);

 …

begin

 comp1 : instance1

 port map (

 port_in => sig_a;

 …

 port_out => sig_b;

);

 comp2 : instance2

port map(

 …

 port_out4 => sig_c;

);

 comp3 : instance1

Modeling Concepts Lab Workbook

Artix-7 1-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

 port map(

 …

);

 sig_a <= port_1 and sig_c(0);

process(sig_c) begin

 port_2 <= sig_c(3 downto 1);

 end process;

end example_code_arch;

The functional block of architecture block is where the module functionality and how it is implemented are
defined. The above example shows instantiated components with their ports mapped to signals. This
allows multiple use of the same components as one would use multiple ICs of a same kind in a typical
system.

Processes and direct assignments may also reside in the same architecture block. Assignments outside
of processes are nearly always combinatorial, as can be seen in the example above where an and

operation is performed on port_1 and sig_c(0) and output to sig_a. Such statements are used to describe
dataflow modeling. Processes are used if sequential operations need to be executed when specific
signals toggle, as can be seen above where the sensitivity is to sig_c. If sig_c is a clock signal then the
process block may describe a sequential behavior. Such blocks are used to describe functionality
behaviorally.

Dataflow Modeling Part 2

Dataflow modeling can be used to describe combinational circuits. The basic mechanism used is the
concurrent assignment. In a concurrent assignment, a value is assigned to a signal. The syntax of a

concurrent assignment statement is:

LHS_signal <= RHS_expression;

Where LHS_signal is a destination net of one or more bit, and RHS_expression is an expression
consisting of various operators. The target in the expression can be one of the following:

1. A scalar net (e.g. 1st and 2nd examples above)
2. A vector net
3. Constant bit-select of a vector
4. Constant part-select of a vector
5. Combinations of any of the above

The assignment operations involve the basic Boolean functions (operators): and, or, xor, nand, nor

and xnor. These are (by default) two inputs and one output. The example below shows dataflow

modelling for a two input/one output circuit.

entity AND_gate is

port (a: in std_logic;

 b: in std_logic;

 c: out std_logic

);

architecture AND_gate_dataflow_arch of AND_gate is

begin

c <= a and b;

end AND_gate_dataflow_arch;

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-5
 xup@xilinx.com
 © copyright 2015 Xilinx

Here is another example showing or function:

z <= x or y;

To have multiple inputs for a logical operator, one can cascade multiple operations in an assignment
statement:

z <= v and w and x and y;

The example above represents a four input to one output and gate. Multiple inputs and various logical

operations can be combined in a signal output function, such as:

z <= v and w or x nor y;

Interconnections between various objects must explicitly be done through nets. Nets may be scalar or
vector and must be defined before they are used. For example,

signal y : std_logic; // scalar net

signal sum : std_logic_vector(3 downto 0); // vector net

STD_LOGIC defines a scalar net and STD_LOGIC_VECTOR defines a vector net of a specified
width/size in bits. The destination (LHS) can also be either a scalar or a vector.

There are many other operators supported by VHDL. The & operator concatenates two signals. For
example,

signal m : STD_LOGIC; -- scalar

signal switches : STD_LOGIC_VECTOR (7 downto 0); -- vector

…

switches <= switches(7 downto 1) & m;

The operation above concatenates signal m as the last bit to form the eight bit wide switches.

The not operation can have only one input and out output. The logical value that is present at the input of

the operation will be inverted at the output. For inputs with a constant logic value, pull-up and pull-down
with a single output (no input) only are also supported in the VHDL syntax as ‘H’ or ‘L’ constant values

if the destination is of STD_LOGIC. For example:

 z <= ‘H’;

 y <= ‘L’;

Dataflow modeling is useful when a circuit is combinational. An example is the multiplexer. A multiplexer
is a simple circuit which connects one of many inputs to an output.

2-1. Create a 2-to-1 multiplexer using dataflow modeling.

2-1-1. Open Vivado and create a blank project called lab1_2_1.

2-1-2. Create and add the VHDL module with three inputs (x, y, s) and one output (m) using dataflow
modeling.

Modeling Concepts Lab Workbook

Artix-7 1-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Hint: Click the Green Plus button on the Add Sources on the New Project window. Then Click
Create File. Name the file lab1_2_1, click OK. Verify the target language and Simulator
Language are set to VHDL. Click Next twice.

2-1-3. Add the appropriate board related master XDC file to the project.

Hint: Click the Green Plus button on the Add Constraints on the New Project window. Click Add
File. Select the Basys3_Master.xdc (for Basys3) or Nexys4DDR_Master.xdc (for Nexys4 DDR)
file. Click Next.

2-1-4. Select xc7a35tcpg236-1 (for Basys3) or xc7a100tcsg324-1 (for Nexys4 DDR) in the Default Part
in the New Project window. Click Next. Click Finish.

2-1-5. A Define Module window will appear, Create the three inputs (x, y, s) and one output (m) by
clicking under Port Name and entering the variables. Change the Direction by clicking on the
drop down and selecting the correct direction. Click OK.

2-1-6. Open the lab1_2_1.vhd file to edit the content. After the closing semicolon (;) add the structural
logic of the circuit above. Select File > Save File or CRTL s.

2-1-7. Click on the Elaborated Design tab of the RTL Analysis.

2-1-8. Click on Schematic to view the gate-level modeling design.

2-1-9. Edit the XDC file. Uncomment and assign SW0 and SW1 to x and y, SW7 to s, and LED0 to m.
Save the XDC file

2-1-10. Synthesize the design (refer Step 3 of the Vivado 2015.1 Tutorial).

2-1-11. Implement the design (refer Step 4 of the Vivado 2015.1 Tutorial).

2-1-12. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality (refer Step 6 of the Vivado 2015.1 Tutorial for steps involved in creating and
downloading the bitstream).

2-2. Create a two-bit wide 2-to-1 multiplexer using dataflow modeling.

2-2-1. Open Vivado and create a blank project called lab1_2_2.

2-2-2. Create and add the VHDL module with two 2-bit inputs (x[1:0], y[1:0]), a one bit select input (s),
and two-bit output (m[1:0]) using dataflow modeling.

2-2-3. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to x[1:0], SW2 and SW3 to y[1:0], SW7 to s, and LED0 and LED1 to
m[1:0].

2-2-4. Synthesize the design.

2-2-5. Implement the design.

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-7
 xup@xilinx.com
 © copyright 2015 Xilinx

2-2-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Adding assignment delays

Delays can be added to concurrent assignments as seen below:

LHS_net <= RHS_expression after [delay] ns;

The statement is evaluated at any time any of the source operand value changes and the result is
assigned to the destination net after the delay unit. For example,

out1 <= in1 and in2 after 2 ns; --perform the desired function and

assign the result after 2 nanoseconds.

Another example in which a scalar and vector nets are declared and used

signal A : in std_logic; --scalar net declaration

signal B : in std_logic_vector (2 downto 0); --vector nets

declaration

signal C : in std_logic_vector (3 downto 0);

C <= ‘0’ & B & A after 5 ns; -- A & B are concatenated to a 1-bit ‘0’

value and is then assigned to vector C. The operation is executed after

5 ns.

2-3. Model a two-bit wide 2-to-1 multiplexer using dataflow modeling with net
delays of 3 ns.

2-3-1. Open Vivado and create a blank project called lab1_2_3.

2-3-2. Create and add the VHDL module with two 2-bit inputs (x0, x1, y0, y1), a one bit select input (s),
and two-bit output (m0, m1) using dataflow modeling. Each assignment statement should have 3
ns delay.

2-3-3. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to x[1:0], SW2 and SW3 to y[1:0], SW7 to s, and LED0 and LED1 to
m[1:0].

2-3-4. Add the provided testbench (mux_2bit_2_to_1_dataflow_tb.vhd) to the project.

Verify the Testbench includes the correct file name.

2-3-5. Simulate the design for 100 ns and analyze the output.

2-3-6. Synthesize the design.

2-3-7. Implement the design.

2-3-8. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Modeling Concepts Lab Workbook

Artix-7 1-8 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Structural Modeling Part 3

Structural modeling involves connecting instantiated components to define the functionality of a circuit.
Component instantiations can be of other modules and/or device primitives. Using gate-level allow the
construction of simple combinatorial circuits.

Repeating the example from Part 2 above,

entity AND_gate_structural is

port (a: in std_logic;

 b: in std_logic;

 c: in std_logic;

 d: out std_logic

);

architecture AND_gate_struct of AND_gate_structural is

 component and2 port

 (

i0, i1 : in bit;

 O : out bit

) end component;

Signal a_int : STD_LOGIC;

begin

 and_comp_1 : and2 port map (

 i0 => a,

 i1 => b,

 o => a_int

);

 and_comp_2 : and2 port map (

 i0 => a_int,

 i1 => c,

 o => d

);

end AND_gate_arch;

Components can also be connected via signals declared in the architecture block for more complex circuit
implementations. The simple example below illustrates how this is done.

entity AND_OR_gate_structural is

port (a: in std_logic;

 b: in std_logic;

 c: in std_logic;

 d: out std_logic;

);

architecture AND_OR_gate_struct of AND_OR_gate_structural is

 component and2 port

 (

i0, i1 : in bit;

 o : out bit

) end component;

 component or2 port

 (i

i0, i1 : in bit;

 o : out bit

) end component;

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-9
 xup@xilinx.com
 © copyright 2015 Xilinx

 Signal e : bit;

begin

 and_comp : and2 port map (

 i0 => a;

 i1 => b;

 o => e;

);

 or_comp : or2 port map (

 i0 => c;

 i1 => e;

 o => d;

);

end AND_gate_arch;

3-1. Re-create the earlier lab 2-2 using structural modeling.

3-1-1. Open Vivado and create a blank project called lab1_3_1.

3-1-2. Create and add the VHDL module with two 2-bit inputs (x0, x1, y0, y1), a one bit select input (s),
and two-bit output (m0, m1) using dataflow modeling. Each assignment statement should have 3
ns delay.

3-1-3. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to x[1:0], SW2 and SW3 to y[1:0], SW7 to s, and LED0 and LED1 to
m[1:0].

3-1-4. Synthesize the design.

3-1-5. Implement the design.

3-1-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Behavioral Modeling Part 4

Behavioral modeling is used to describe complex circuits. In VHDL, behavioral modeling is done in the
architecture block. Within the architecture block, processes are defined to model sequential circuits. The
mechanisms (statements) for modeling the behavior of a design are:

--The following process is only used to initialize signals in a design

at the beginning of runtime.

process begin
 a <= ‘1’;

 b <= ‘0’;

 …

 wait;

end process;

Modeling Concepts Lab Workbook

Artix-7 1-10 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

--The following process runs when any signal in the sensitivity list

has an event, i.e. change in a value.

process (c, d, e)

begin

 <behavioral code here>

end process;

A module may contain an arbitrary number of process statements and these may contain one or more

statements within them. The statements appearing within the process statement body are categorized as
procedural statements. The processes are executed in a concurrent manner (i.e. the order in which they
appear in the model does not matter) with respect to each other whereas the procedural statements are
executed in a sequential manner (i.e. the order in which they appear does matter). A
procedural_statement is one of the following:

1. Procedural assignments
2. Conditional statements
3. Case statements
4. Loop statements
5. Wait statements

The first process block in the example above is executed at time 0. A wait statement is needed at the

last line of the process block to stop the process block from executing again. The process statements

with a sensitivity list are executed during the rest of the time whenever any of the signals in the sensitivity
list changes.

The process statement may be synthesizable, and the resulting circuit may be a combinatorial or

sequential circuit. In order for the model to generate a combinatorial circuit, the process block (i) should

not have edge sensitive statements and must have all output generated in every conditional statement or
case statement within the process.

Here is an example of a 2-to-1 multiplexer model. Note that begin and end statements in this example are
redundant. The code is also truncated for better readability

signal m : STD_LOGIC_VECTOR;

…

process (x, y, s)

begin

 if(s=’0’) then

 m <= y;

 else

 m <= x;

end if;

end;

4-1. Create a 2-to-1 multiplexer using behavioral modeling.

4-1-1. Open Vivado and create a blank project called lab1_4_1.

4-1-2. Create and add the VHDL module with three inputs (x, y, s) and one output (m) using behavioral
modeling. Use the example code given above for modeling a multiplexer.

4-1-3. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to x and y, SW2 to s, and LED0 to m.

4-1-4. Synthesize the design.

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-11
 xup@xilinx.com
 © copyright 2015 Xilinx

4-1-5. Implement the design.

4-1-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

4-2. Create a two-bit wide 2-to-1 multiplexer using behavioral modeling.

4-2-1. Open Vivado and create a blank project called lab1_4_2.

4-2-2. Create and add the VHDL module with two-bit input (x[1:0], y[1:0]), a one bit select input (s), and
two-bit output (m[1:0]) using behavioral modeling.

4-2-3. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to x[1:0], SW2 and SW3 to y[1:0], SW7 to s, and LED0 and LED1 to
m[1:0].

4-2-4. Synthesize the design.

4-2-5. Implement the design.

4-2-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Mixed-design Style Modeling Part 5
Complex systems can be described in VHDL using mixed-design style modeling. This modeling style
supports hierarchical description. The design can be described using:

• Dataflow modeling (covered in Part 2),

• Structural modeling (covered in Part 3),

• Behavioral modeling (covered in Part 4),
• and combinations of the above.

As an example of mixed style modeling, one can build 3-to1 multiplexer using multiple instances of 2-to-1
multiplexer.

In the above diagram, u, v, w are data inputs whereas S0, S1 are select signals, and the output is m. It
uses two instances of 2-to-1 multiplexer. The truth table and the top-level symbol are as provided.

Modeling Concepts Lab Workbook

Artix-7 1-12 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

5-1. Model a 3-to-1 multiplexer using 2-to-1 multiplexers.

5-1-1. Open Vivado and create a blank project called lab1_5_1.

5-1-2. Create a top-level VHDL module with three data inputs (u[0:1], y[0:1], w[0:1]), two select inputs
(s0, s1), and one bit output (m[0:1]) using the previously defined 2-to-1 multiplexer. You can use
any style designed 2-to-1 multiplexer (1-1, 2-1, or 3-1). Wire them up as shown in the above
diagram.

5-1-3. Add the used 2-to-1 model file to the project.

5-1-4. Add the appropriate board related master XDC file to the project. Edit the added XDC file to
assign SW0 and SW1 to u and u, SW2 and SW3 to v and v, SW4 and SW5 to w and w, SW6 to
s0, SW7 to s1, and LED0 and LED1 to m and m.

5-1-5. Synthesize and implement the design.

5-1-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-13
 xup@xilinx.com
 © copyright 2015 Xilinx

5-2. Model a BCD to 7-Segment Decoder.

A 7-segment display consists of seven segments, numbered 0 to 6 or a to g which can be used to display
a character. Depending on the input type, a type conversion may be needed. If you want to display a
binary coded decimal (BCD) using 4-bit input, a BCD to 7-segment decoder is required. The table below
shows the bit pattern you need to put to display a digit (note that to turn ON a segment you need to put
logic 0).

.

Input 0 or a 1 or b 2 or c 3 or d 4 or e 5 or f 6 or g

0000 0 0 0 0 0 0 1

0001 1 0 0 1 1 1 1

0010 0 0 1 0 0 1 0

0011 0 0 0 0 1 1 0

0100 1 0 0 1 1 0 0

0101 0 1 0 0 1 0 0

0110 0 1 0 0 0 0 0

0111 0 0 0 1 1 1 1

1000 0 0 0 0 0 0 0

1001 0 0 0 0 1 0 0

1010 to

1111

X X X X X X x

Where x is don’t care.

The Basys3 board contains two a four-digit common anode seven-segment LED display modules. Each
of the four digits within a module is composed of seven segments arranged in a pattern shown below,
with an LED embedded in each segment. Segment LEDs can be individually illuminated, so any one of
128 patterns can be displayed on a digit by illuminating certain LED segments and leaving the others
dark. Of these 128 possible patterns, the ten corresponding to the decimal digits are the most useful.

Modeling Concepts Lab Workbook

Artix-7 1-14 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

[Reference – Basys3 Reference Manual]

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit
node, but the LED cathodes remain separate. The common anode signals are available as four “digit
enable” input signals to the 4-digit display. The cathodes of similar segments on all four displays are
connected into seven circuit nodes labeled CA through CG (so, for example, the four “D” cathodes from
the four digits are grouped together into a single circuit node called “CD”). These seven cathode signals
are available as inputs to the 4-digit display. This signal connection scheme creates a multiplexed display,
where the cathode signals are common to all digits but they can only illuminate the segments of the digit
whose corresponding anode signal is asserted.

 [Reference – Basys3 Reference Manual]

The Nexys4 DDR board contains two four-digit common anode seven-segment LED display modules.
Each of the four digits within a module is composed of seven segments arranged in a pattern shown
below, with an LED embedded in each segment. Segment LEDs can be individually illuminated, so any
one of 128 patterns can be displayed on a digit by illuminating certain LED segments and leaving the
others dark. Of these 128 possible patterns, the ten corresponding to the decimal digits are the most
useful.

Lab Workbook Modeling Concepts

 www.xilinx.com/university Artix-7 1-15
 xup@xilinx.com
 © copyright 2015 Xilinx

[Reference – Nexys4 DDR Reference Manual]

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit
node, but the LED cathodes remain separate. The common anode signals are available as four “digit
enable” input signals to the 4-digit display. The cathodes of similar segments on all four displays are
connected into seven circuit nodes labeled CA through CG (so, for example, the four “D” cathodes from
the four digits are grouped together into a single circuit node called “CD”). These seven cathode signals
are available as inputs to the 4-digit display. This signal connection scheme creates a multiplexed display,
where the cathode signals are common to all digits but they can only illuminate the segments of the digit
whose corresponding anode signal is asserted.

 [Reference – Nexys4 DDR Reference Manual]

A scanning display controller circuit can be used to show a four-digit number on this display. This circuit
drives the anode signals and corresponding cathode patterns of each digit in a repeating, continuous
succession, at an update rate that is faster than the human eye can detect. If the update or “refresh” rate
is slowed to around 45 hertz, most people will begin to see the display flicker. You will design and use
the scanning circuit starting with Lab 8 (Architecture Wizard and IP Catalog).

5-2-1. Open Vivado and create a blank project called lab1_5_2.

5-2-2. Create a top-level VHDL module, named bcdto7segment_dataflow with 4-bit data input (x[3:0]),
anode enable output signals (an[3:0]), and 7-bit output (seg[6:0]) using dataflow modeling (Hint:
You will have to derive seven expressions for the 7 segments on paper). Assign appropriate logic
to an[3:0] in the model so you can display only on the right most display..

5-2-3. Add the board related master XDC file to the project. Edit the added XDC file to assign SW3-SW0
to x[3:0]. Assign CA, CB, CC, CD, CE, CF, CG to seg[0] through seg[6] and pins J17, J18, T9,

Modeling Concepts Lab Workbook

Artix-7 1-16 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

J14, P14, T14, K2, U13 to an7, an6, an5, an4,an3, an2, an1, an0 (Nexys4 DDR board) or pins
U2,U4,V4,W4 to an3, an2, an1, an0 (Basys3 board).

5-2-4. Synthesize the design.

5-2-5. Implement the design.

5-2-6. Generate the bitstream, download it into the Basys3 or the Nexys4 DDR board, and verify the
functionality.

Conclusion

In this lab, you learned three types of modeling. You created Vivado projects to develop various models.
You implemented the design and verified the functionality.

