
Lab Workbook  Modeling Latches and Flip-flops 

 

 www.xilinx.com/university Nexys4 5-1 
 xup@xilinx.com 
 © copyright 2013 Xilinx 

Modeling Latches and Flip-flops 

Introduction 

Sequential circuits are digital circuits in which the output depends not only on the present input (like 
combinatorial circuits), but also on the past sequence of inputs.  In effect, these circuits must be able to 
remember something about the past history of the inputs. Thus the timing concept is introduced and the 
clock signal provides the timing essence to the sequential circuits.  Latches and flip-flops are commonly 
used memory devices in sequential circuits.  Please refer to the Vivado tutorial on how to use the Vivado 
tool for creating projects and verifying digital circuits. 

Objectives  

After completing this lab, you will be able to: 

 Model various types of latches 

 Model flip-flops with control signals 

Latches  Part 1 

Storage elements can be classified into latches and flip-flops. A latch is a device with exactly two stable 
states: a high-output and a low-output. A latch has a feedback path, so information can be retained by the 
device. Therefore latches are volatile memory devices, and can store one bit of data for as long as the 
device is powered. As the name suggests, latches are used to "latch onto" information and hold the data 
in place. 

An SR latch (Set/Reset) is an asynchronous device: it works independently of control signals and relies 
only on the state of the S and R inputs.  The symbol, the circuit using NOR gates, and the truth table are 
shown below. 

     

Though Xilinx FPGA can implement such a latch using one LUT (Look-Up Table) circuit, the following 
VHDL code shows how such circuit can be modeled using structural and dataflow modeling. 

 

architecture SR_latch of SR_latch_dataflow is begin 

Q <= Qbar nor R; 

Qbar <= Q nor S; 

end SR_latch; 

 

 

 

architecture SR_latch of SR_latch_dataflow_arch is begin 

 Q_i <= Q after 2ns; 

 Qbar_i <= Qbar after 2ns; 

 Q <= not(R or Qbar) after 2ns; 

 Qbar <= not(S or Q) after 2ns; 

end SR_latch; 

 



Modeling Latches and Flip-flops Lab Workbook 

 

Nexys4 5-2 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2013 Xilinx 

1-1. Design a SR latch (you can base it on the example shown above).  
Synthesize the design and view the RTL schematic of the Open 
Synthesized Design. Develop a testbench to test (see waveform below) and 
validate the design.  Simulate the design. Assign S input to SW0 and R 
input to SW1.  Assign Q to LED0 and Qbar to LED1. Implement the design 
and verify the functionality in hardware.  

 

1-1-1. Open Vivado and create a blank project called lab5_1_1. 

1-1-2. Create and add the VHDL module with the SR_latch_dataflow code. 

1-1-3. Synthesize the design and view the schematic under the Open Synthesized Design process 
group.  Verify that it uses 2 LUTs and 4 IOs (2 IBUF, and 2 OBUF). 

1-1-4. Implement the design and view the project summary.  It should show 2 LUTs, 2 slice, and 4 IOs.  

1-1-5. Develop a testbench (see waveform above) to test and validate the design. 

1-1-6. Create and add the XDC file, assigning S input to SW0, R input to SW1, Q to LED0, and Qbar to 
LED1. 

1-1-7. Re-implement the design. 

1-1-8. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

 

 

 

 

 

 

 

 



Lab Workbook  Modeling Latches and Flip-flops 

 

 www.xilinx.com/university Nexys4 5-3 
 xup@xilinx.com 
 © copyright 2013 Xilinx 

In some situations it may be desirable to dictate when the latch can and cannot latch. The gated SR 
latch is a simple extension of the SR latch which provides an Enable line which must be driven high 
before data can be latched. Even though a control line is now required, the SR latch is not synchronous, 
because the inputs can change the output even in the middle of an enable pulse.  When the Enable input 
is low, then the outputs from the AND gates must also be low, thus the Q and bar Q outputs remain 
latched to the previous data. Only when the Enable input is high can the state of the latch change, as 
shown in the truth table. When the enable line is asserted, a gated SR latch is identical in operation to an 
SR latch.  The Enable line is sometimes a clock signal, but is usually a read or writes strobe.  The symbol, 
circuit, and the truth table of the gates SR latch are shown below. 

    

1-2. Design a gated SR latch (shown in the figure above) using dataflow 
modeling.  Synthesize the design and view the schematic of the Open 
Synthesized Design. Develop a testbench to test (generate input as shown 
below) and validate the design.  Simulate the design. Assign S input to 
SW0, R input to SW1, and Enable input to SW2.  Assign Q to LED0 and 
Qbar to LED1. Implement the design and verify the functionality in the 
hardware.  

 

1-2-1. Open Vivado and create a blank project called lab5_1_2. 

1-2-2. Create and add the VHDL module that will model the gated SR latch using dataflow modeling. 
Assign 2 units delay to each assignment statement used in the model. 

1-2-3. Synthesize the design and view the schematic under the Open Synthesized Design process 
group.  Verify that it uses 2 LUTs and 5 IOs. 

1-2-4. Implement the design and view the Utilization Report.  It should show 2LUTs, 1 slice, and 5 IOs. 

1-2-5. Develop a testbench to test and validate the design.  It should generate the input stimuli as 
shown in the figure above. 

1-2-6. Create and add the XDC file, assigning S input to SW0, R input to SW1, Enable to SW2, Q to 
LED0, and Qbar to LED1. 

1-2-7. Re-implement the design. 



Modeling Latches and Flip-flops Lab Workbook 

 

Nexys4 5-4 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2013 Xilinx 

1-2-8. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

The D latch (D for "data") or transparent latch is a simple extension of the gated SR latch that removes 
the possibility of invalid input states (metastability). Since the gated SR latch allows us to latch the output 
without using the S or R inputs, we can remove one of the inputs by driving both the Set and Reset inputs 
with a complementary driver, i.e. we remove one input and automatically make it the inverse of the 
remaining input. The D latch outputs the D input whenever the Enable line is high, otherwise the output is 
whatever the D input was when the Enable input was last high. This is why it is also known as a 
transparent latch - when Enable is asserted, the latch is said to be "transparent" - it signals propagate 
directly through it as if it isn't there. 

   

D-latches can be modeled in behavioral modeling as shown below. 

 
architecture behavior of D_latch is begin 

process (D, Enable) begin 

 if (Enable = ‘1’) then 

  Q <= D; 

  Qbar <= not(D); 

 end if; 

end process; 

end behavior; 

 

Note that since we do not say what to do when Enable is low, the circuit “remembers” the previous state.  

While Enable is high and since the always block is also sensitive to D, Q and Qbar will be updated at 

any time D changes, giving it a “transparent” behavior.  The distinction between the blocking and non-
blocking assignment is covered in Lab 7 (Testbenches for Sequential Circuits). 

1-3. Design a D latch (shown in the figure above) using dataflow modeling.  
Synthesize the design and view the schematic of the Open Synthesized 
Design. Develop a testbench to test (generate input as shown below) and 
validate the design.  Simulate the design. Assign D input to SW0, and 
Enable input to SW1.  Assign Q to LED0 and Qbar to LED1. Implement the 
design and verify the functionality in hardware.  

 

 

1-3-1. Open Vivado and create a blank project called lab5_1_3. 



Lab Workbook  Modeling Latches and Flip-flops 

 

 www.xilinx.com/university Nexys4 5-5 
 xup@xilinx.com 
 © copyright 2013 Xilinx 

1-3-2. Create and add the VHDL module that will model the D latch using dataflow modeling. Assign 2 
units delay to each assignment statement used in the model. 

1-3-3. Synthesize the design and view the schematic under the Open Synthesized Design process 
group.  Verify that it uses 2 LUTs and 4 IOs. 

1-3-4. Implement the design and view the Utilization Report.  It should show 2 LUTs, 1 slice, and 4 IOs. 

1-3-5. Develop a testbench to test and validate the design.  It should generate the input stimuli as 
shown in the figure above. 

1-3-6. Create and add the XDC file, assigning D input to SW0, Enable input to SW1, Q to LED0, and 
Qbar to LED1. 

1-3-7. Re-implement the design. 

1-3-8. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

Flip-flops  Part 2 

Flip-flops are clocked circuits whose output may change on an active edge of the clock signal based on 
its input.  Unlike latches, which are transparent and in which output can change when the gated signal is 
asserted upon the input change, flip-flops normally would not change the output upon input change even 
when the clock signal is asserted. Flip-flops are widely used in synchronous circuits. 

The D flip-flop is a widely used type of flip-flop.  It is also known as a data or delay flip-flop. The D flip-flop 
captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the 
clock). That captured value becomes the Q output. At other times, the output Q does not change. The D 
flip-flop can be viewed as a memory cell or a delay line.  The active edge in a flip-flop could be rising or 
falling.  The following figure shows rising (also called positive) edge triggered D flip-flop and falling 
(negative edge) triggered D flip-flop.   

The positive edge triggered D flip-flop can be modeled using behavioral modeling as shown below.  

 
architecture behavior of D_ff is begin 

process (clk) begin 

 if rising_edge(clk) then 

  Q <= D; 

 end if; 

end process; 

end behavior; 

 

Note that the process block is sensitive to any change to clk value, however the rising_edge function 

(defined in IEEE library) checks for the value change from any value to final value of ‘1’.  When a change 
(event) on the sensitive signal occurs, the statements in the if block will be executed.   

 

2-1. Model a D flip-flop using behavioral modeling.   Develop a testbench to 
validate the model (see diagram below).  Simulate the design.  



Modeling Latches and Flip-flops Lab Workbook 

 

Nexys4 5-6 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2013 Xilinx 

 

2-1-1. Open Vivado and create a blank project called lab5_2_1. 

2-1-2. Create and add the VHDL module that will model simple D flip-flop. 

2-1-3. Develop a testbench to validate the design behavior.  It should generate the input stimuli as 
shown in the above timing diagram. 

The following circuit and timing diagrams illustrate the differences between D-latch, rising edge triggered 
D flip-flop and falling edge triggered D flip-flops. 

   

2-2. Model the circuit, as shown above, using behavioral modeling.   You will 
use three process blocks.  Develop a testbench generating input as shown 
above.  Simulate and validate the design.  

2-2-1. Open Vivado and create a blank project called lab5_2_2. 

2-2-2. Create and add the VHDL module that will model the given circuit. 

2-2-3. Develop a testbench to test and analyze the design behavior.  It should generate the input stimuli 
as shown in the timing diagram. 

Often it is necessary to have the synchronous element to start with a defined output.  It is also desired 
and required in some circuits to force the synchronous element to a known output ignoring input at the D 
input.  The D flip-flop discussed above can be modified to have such functionality.  Such D flip-flop is 
known as D flip-flop with synchronous set and reset capabilities if the desired output is obtained on the 
active edge of the clock, otherwise it is viewed to have asynchronous preset and clear.  The models of 
each kind are shown below. 

 
architecture behavior of D_ff_with_synch_reset is begin 

process (clk) begin 

if rising_edge(clk) begin 

 if (reset = ‘1’) then 

  Q <= ‘0’; 

 else 

  Q <= D; 

 end if; 

end if; 



Lab Workbook  Modeling Latches and Flip-flops 

 

 www.xilinx.com/university Nexys4 5-7 
 xup@xilinx.com 
 © copyright 2013 Xilinx 

end process; 

end behavior; 

 

architecture behavior of D_ff_with_asynch_reset is begin 

process (clk, clear) begin 

 if (clear = ‘1’) then 

  Q <= ‘0’; 

 elsif rising_edge(clk) then 

  Q <= D; 

 end if; 

end process; 

end behavior; 

2-3. Model the D flip-flop with synchronous reset using behavioral modeling.   
Develop a testbench to test (generate input as shown) and validate the 
design.  Simulate the design. Assign D input to SW0, reset to SW1, Clk to 
SW15, and output Q to LED0.  Verify the design in hardware. 

 

2-3-1. Open Vivado and create a blank project called lab5_2_3. 

2-3-2. Create and add the VHDL module that will model the D flip-flop with synchronous reset. 

2-3-3. Develop a testbench to test and analyze the design behavior.  It should generate the input stimuli 
as shown in the timing diagram. 

2-3-4. Create and add the XDC file, assigning D input to SW0, reset input to SW1, Clk to SW2, and Q to 
LED0. 

2-3-5. Synthesize and implement the design. 

Look at the Project Summary and note that 1 BUFG and 4 IOs are used.  The BUFG is used 
because the clock signal is used in the design.   

2-3-6. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

In FPGAs, LUT and FF located in different configurable logic blocks (CLB) are connected using routing 
resources.  During implementation, the tools will use these resources depending on the way the circuits 
are modeled, the type and amount of resources required, and the speed at which the circuit is going to be 
driven.  Often resources used for exchanging information are placed close to each other; however, there 
can be a situation when it may not be possible. When related flip-flops, between which the information 
gets exchanged are placed away from each other, the clocks arriving at the source and destination flip-
flops may not be at the same time creating what is called clock-skew.  The clock-skew can alter the 
behavior of the circuit.  In some other cases, certain flip-flops may not need to update their output at 
every asserted clock edges.  In order to control the behavior, flip-flops in FPGA have an additional control 
signal called Clock Enable (CE).  In ASIC technology, gated clocks are used to control the behavior. A 
symbol of the flip-flop with CE is shown below.  



Modeling Latches and Flip-flops Lab Workbook 

 

Nexys4 5-8 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2013 Xilinx 

 

 

 
architecture behavior of D_ff_with_ce is begin 

process (clk) begin 

if rising_edge(clk) then 

 if (ce = ‘1’) then 

  Q <= D; 

 end if; 

end if; 

end process; 

end behavior; 

 

architecture behavior of D_ff_with_ce_and_synch_reset is begin 

process (clk) begin 

if rising_edge(clk) then 

 if (reset = ‘1’) then 

  Q <= ‘0’; 

 elsif (ce = ‘1’) then 

  Q <= D; 

 end if; 

end if; 

end process; 

end behavior; 

 

2-4. Model the D flip-flop with synchronous reset and clock enable using 
behavioral modeling.   Develop a testbench to test (generate input as 
shown) and validate the design.  Simulate the design. Assign D input to 
SW0, reset to SW1, Clk to SW15, ce to SW2, and output Q to LED0.  Verify 
the design in hardware. 

 

 

2-4-1. Open Vivado and create a blank project called lab5_2_4. 

2-4-2. Create and add the VHDL module that will model the D flip-flop with synchronous reset and clock 
enable. 

2-4-3. Develop a testbench to test and analyze the design behavior. It should generate the input stimuli 
as shown in the above timing diagram. 



Lab Workbook  Modeling Latches and Flip-flops 

 

 www.xilinx.com/university Nexys4 5-9 
 xup@xilinx.com 
 © copyright 2013 Xilinx 

2-4-4. Create and add the XDC file, assigning D to SW0, reset to SW1, Clk to SW15, ce to SW3, and Q 
to LED0. 

2-4-5. Synthesize and implement the design. 

Look at the Project Summary and note that 1 BUFG and 5 IOs are used.  The BUFG is used 
because the clock signal is used in the design.   

2-4-6. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

In digital circuits, another kind of flip-flop, called T or Toggle, is used to implement clock divider circuits.   
It can be used to divide the input by 2.  If more than one T flip-flop is cascaded then the clock division can 
be 2 power of the number of flip-flops used. The T flip-flop has a T input (data), a clock input, and 
optionally reset and enable control signals.  

 
architecture behavior of T_ff is begin 

process (clk) begin 

if falling_edge(clk) then 

 Q <= not(Q); 

end if; 

end process; 

end behavior; 

 

The T flip-flop can also have a control signal called CE (clock enable) which will allow clock division to 
take place only when it is asserted. The following code models the functionality of the T flip-flop that is 
sensitive to a falling edge of clock and has active-low reset and active-high T control signals. 

 
architecture behavior of T_ff_enable is begin 

process (clk) begin 

 if falling_edge(clk) then 

if (enable = ‘1’) and (T = ‘1’) then 

   Q <= not(Q); 

  else 

   Q <= Q; 

  end if; 

 end if; 

end process; 

end behavior; 

 

2-5. Model a T flip-flop with synchronous negative-logic reset and clock enable 
using the above code.   Assign T input to SW0, enable to SW1, Clk to SW15, 
and output Q to LED0.  Verify the design in hardware. 

2-5-1. Open Vivado and create a blank project lab5_2_5. 

2-5-2. Create and add the VHDL module that will model the D flip-flop with synchronous reset and clock 
enable. 



Modeling Latches and Flip-flops Lab Workbook 

 

Nexys4 5-10 www.xilinx.com/university  
 xup@xilinx.com 
 © copyright 2013 Xilinx 

2-5-3. Create and add the XDC file, assigning T input to SW0, enable input to SW1, Clk to SW15, and Q 
to LED0.  

2-5-4. Synthesize and implement the design. 

2-5-5. Generate the bitstream, download it into the Nexys4 board, and verify the functionality. 

 

Conclusion  

In this lab, you learned the functionality of various kinds of latches and flip-flops.  You modeled and 
verified the functionality of these components.  Xilinx also provides some basic latches and flip-flops 
library components which a designer can instantiate and use instead of writing a model.  Writing a model 
provides portability across vendors and technologies whereas instantiating library components enable a 
quick use of a component without re-inventing the wheel.  

Here is the table that lists some of the the functionality and the corresponding library component 
supported by the Vivado Synthesis Tool.  Please refer to ug953-vivado-7series-libraries.pdf file for more 
components and instantiation examples. 

 

FDCE D Flip-Flop with Asynchronous Clear and Clock Enable 

FDPE D Flip-Flop with Asynchronous Preset and Clock Enable 

FDRE D Flip-Flop with Synchronous Reset and Clock Enable 

LDCE Transparent Latch with Asynchronous Clear and gate Enable 

LDPE Transparent Latch with Asynchronous Preset and gate Enable 

 

 

 

 
 

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug953-vivado-7series-libraries.pdf

