

Vivado Design Suite Tutorial

Power Analysis and Optimization

UG997 (v2022.2) October 19, 2022

Xilinx is creating an environment where employees, customers, and partners feel welcome and included. To that end, we're removing noninclusive language from our products and related collateral. We've launched an internal initiative to remove language that could exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive language in our older products as we work to make these changes and align with evolving industry standards. Follow this <u>link</u> for more information.

AMD7 XILINX

Table of Contents

Lab 1: Power Analysis and Optimization Tutorial	4
Software Requirements	
Locating Tutorial Design Files	4
Lab 2: Running Power Analysis in the Vivado Tool	6
Introduction	
Designing with Versal	
Designing with UltraScale+	
Conclusion	
Lab 3: Running Timing Simulation and Estimating Power	30
Introduction	
Step 1: Configuring and Running the Timing Simulation using Vivado Simulator	
Step 2: Running Report Power in Vectorless Mode	
Step 3: Running Report Power with Vivado Simulator SAIF Data	33
Generating a SAIF File using Questa Advanced Simulator	35
Step 1: Configuring and Running Timing Simulation in Questa Advanced Simulator	37
Step 2: Running Report Power in Vectorless Mode	39
Step 3: Running Report Power with Questa Advanced Simulator SAIF Data	
Conclusion	41
Lab 4: Performing Power Optimization	42
Introduction	
Step 1: Setting Up Options to Run Power Optimization	42
Step 2: Running report_power_opt to Examine User/Design Specific Power	
Optimizations	44
Step 3: Running report_power to Examine Power Savings	46
Step 4: Turning Off Optimizations on Specific Signals and Rerunning the Implementation	
Step 5: Running report_power_opt to Examine Tool Optimizations Again	
Step 6: Saving Power using UltraScale+ Block RAM in Cascaded Mode	
Conclusion	

Appendix A: Additional Resources and Legal Notices	50
Xilinx Resources	
Documentation Navigator and Design Hubs	
References	50
Revision History	51
Please Read: Important Legal Notices	51

I ab 1

Power Analysis and Optimization Tutorial

This tutorial introduces the power analysis and optimization model recommended for use with the Xilinx[®] Vivado[®] Integrated Design Environment (IDE). The tutorial describes the basic steps involved in taking a small example design from RTL to implementation, estimating power through the different stages, and using simulation data to enhance the accuracy of the power analysis. It also describes the steps involved in using the power optimization tools in the design.

VIDEO: The Vivado Design Suite Quick Take Video: Power Estimation and Analysis Using Vivado shows bow the Vivado Design Suite can help you to estimate power consumption in your design and reviews best practices for getting the most accurate estimation.

VIDEO: The Vivado Design Suite QuickTake Video: Power Optimization Using Vivado describes the factors 0 that affect power consumption in an FPGA, shows how the Vivado Design Suite helps to minimize power consumption in your design, and looks at some advanced control and best practices for getting the most out of Vivado power optimization.

Software Requirements

This tutorial requires the latest Vivado Design Suite software is installed. For installation instructions and information, see the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973).

Locating Tutorial Design Files

1. Download the reference design files:

ug997-vivado-power-analysis-optimization-tutorial.zip

2. Extract the zip file contents into any write-accessible location.

This tutorial refers to the location of the extracted ug997-vivado-power-analysisoptimization-tutorial.zip file contents as <Extract_Dir>.

f IM

IMPORTANT! You will modify the tutorial design data while working through this tutorial. Use a new copy of the original data each time you start this tutorial.

The ug997-vivado-power-analysis-optimization-tutorial.zip file includes a readme file which contains the details and version history of the design files along with the folders of Versal[®] ACAP and UltraScale+[™] design files.

UltraScale+ Tutorial Design Files

You can find a separate UltraScale+ folder containing the UltraScale+ tutorial design files in the contents of the zip file.

The following table describes the contents of the UltraScale+[™] tutorial design files:

Files	Description
/src	Contains the design HDL and testbench for the simulation.
/src/dut_fpga.v	Top module for the design.
/src/dut.v	Other design blocks.
/src/Cascade_bram.v	
/src/Noncascade_bram.v	
/src/bram_top_cascade.v	
/src/bram_top_noncascade.v	
/src/bram_tdp_cas.v	
/src/bram_tdp_noncas.v	
dut_fpga_zcu102.xdc	Contains clocking and timing constraints for the design.
/src/testbench.v	Testbench for simulating the design.

Versal Device Tutorial Design Files

You can find a separate Versal folder containing the Versal device tutorial design files in the contents of the zip file.

The following table describes the contents of the Versal device tutorial design files:

Table 1: Example table

Files	Description
design.tcl	Tcl script to create design using IPI

Lab 2

Running Power Analysis in the Vivado Tool

Introduction

In this lab, you learn about the Power Analysis and Optimization features in the Vivado[®] IDE. The lab walks you through the project creation and power analysis steps at the synthesis stage, using the Vivado Report Power feature in the vectorless mode. It also demonstrates using the Switching Activity Interchange Format (SAIF) file that is generated from the Post-Synthesis Functional simulation for Vivado report power analysis.

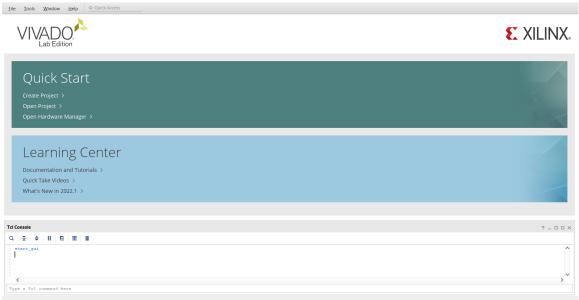
You will analyze power of the design in Vivado IDE. Then you will examine some of the major features in the Report Power window and closely examine some power specific Tcl commands. You will also learn how to simulate the design in the timing simulation stage using both the Vivado simulator and Questa Advanced Simulator to create a SAIF file.

You will also learn how to achieve power optimization after <code>opt_design</code> in the Vivado IDE. You will examine the power optimization report and selectively turn power optimizations ON or OFF on specific signals, nets, modules, or hierarchy.

```
AMDA
XILINX
```

Designing with Versal

Step 1: Creating a New Project


IP integrator (IPI) is used to create the design.

On Linux, do the following.

1. Go to the directory where the lab materials are stored:

```
cd <Extract_Dir>/Versal (for Versal devices)
```

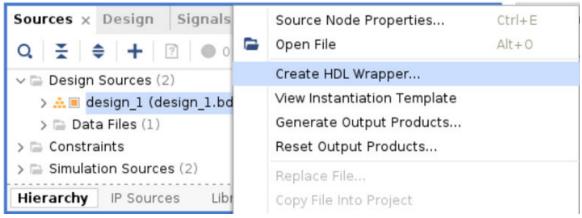
2. Launch Vivado IDE: vivado

On Windows, do the following.

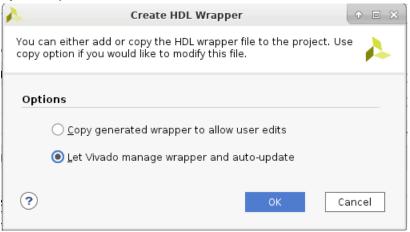
3. Launch the Vivado IDE by selecting Start → All Programs → Xilinx Design Tools → Vivado 2022.x → Vivado 2022.x (x denotes the latest version of Vivado 2022 IDE).

As an alternative, click the Vivado 2022.x Desktop icon to start the Vivado IDE.

The Vivado IDE Getting Started page contains links to open or create projects, and to view documentation.


- 4. In the Getting Started page, click in Tcl Console to type the command.
- 5. Type the following command to generate a block design (BD): source <Extract_Dir/</pre> Versal/design.tcl.

Note: It might take a moment for the design to initialize in Vivado IDE.


AMD7 XILINX

Tcl Console	? _ 🗆 🖒 X
⊖ start_gui ⊖ Warning: Tried to connect to session manager, Could not open network socket	Â
source C:\vivado_pover_tutorial\design.tcl	0

- 6. When the block design is generated, you can find the block design file (design_1.bd) in the Sources window. A top-level HDL wrapper around the block design is needed because a BD source cannot be synthesized.
- 7. To generate HDL wrapper:
 - a. Right-click on your block design source file (design_1.bd) under Design Sources drop-down.
 - b. Click Create HDL Wrapper option.

c. In the Create HDL Wrapper dialog box, select Let Vivado manage wrapper and autoupdate option and click OK.

The design is now ready for synthesis.

AMD XILINX

Step 2: Synthesizing the Design

- 1. Click **Run Synthesis** in the Flow Navigator.
- 2. The Synthesis Completed dialog box appears after synthesis is completed on the design.

💫 Synthesis Completed 🛛 🗠 🗙
i Synthesis successfully completed. Next
O <u>R</u> un Implementation
Open Synthesized Design
◯ <u>V</u> iew Reports
Don't show this dialog again
OK Cancel

3. Select **Open Synthesized Design** in the Synthesis Completed dialog box and then click **OK** to open the synthesized design.

Step 3: Report Power Setup

Vivado IDE allows you to specify the input data to the Report Power tool to enhance the accuracy of the power analysis.

In Vivado IDE, you can configure thermal, environmental, and power supply options to mimic the board level settings as closely as possible. For information on setting these options, see the *Vivado Design Suite User Guide: Power Analysis and Optimization* (UG907).

- 1. In the main menu bar, select **Reports** \rightarrow **Report Power**.
- 2. Examine the Environment tab in the Report Power dialog box.

	DЛ
XILI	NX

nvironment	power_1 Power Supply	switching	<u>O</u> utput			0
Device Settir	ngs					
Temp grad	e:	extended	~			
Pro <u>c</u> ess:		maximum	~			
Environment	Settings					
Output <u>L</u> oa	d:		0 🌲	pF	[0 - 10000]
[] Junction	temperature:		100.0	°C		
Ambient te	mperature:		25 🌲	°C		
Effective	e ØJA:		5.163	°C/W	[0-100]	

3. In the Environment tab, set **Process** to maximum for worst case power analysis. Examine the Power Supply tab.

IMPORTANT! By default, Vivado Report Power uses nominal values for voltage supply sources. Voltage is a large factor contributing to both static and dynamic power. For the most accurate analysis, ensure that actual voltage values are entered for each supply. Similarly, ensure that the temperature and other environmental factors match the actual operating conditions.

AM	DЛ
XILI	NX

timate power consun vc1902-vsva2197-2M		n the netlist design and part	A
Res <u>u</u> lts name: powe	r_1		0
Environment Po	wer Supply	<u>S</u> witching <u>O</u> utput	
Design Power Budge	et w		
Settings			
Vcci <u>n</u> t:	0.800 🌲 V	[0.775 - 0.825]	^
VCC_SOC:	0.800 🗘 V	[0.775 - 0.825]	
VCC_IO:	0.800 🗘 V	[0.775 - 0.825]	
VCCRAM:	0.800 🗘 V	[0.775 - 0.825]	
Vccaux:	1.500 🗘 V	[1.425 - 1.575]	
VCC_PMC:	0.800 🗘 V	[0.775 - 0.825]	
VCC0 <u>5</u> 03:	3.300 🗘 V	[3.135 - 3.465]	
VCC0_5 <u>0</u> 0:	3.300 🌲 V	[3.135 - 3.465]	
VCC0_50 <u>1</u> :	3.300 🗘 V	[3.135 - 3.465]	
VCC0_50 <u>2</u> :	3.300 🗘 V	[3.135 - 3.465]	
VCCAUX_PMC:	1.500 🗘 V	[1.425 - 1.575]	
VCCAUX_SMON:	1.500 🌲 V	[1.425 - 1.575]	
VCC_PSLP:	0.800 🗘 V	[0.775 - 0.825]	~
Legend			
User Defined	Calculated	Default	

4. In the Switching tab, expand Constrained Clocks and examine the constrained clocks in the design.

IMPORTANT! Make sure all the relevant clocks in the design are constrained. All the design clocks must be defined using *create_clock* or *create_generated_clock* XDC constraints, so that Report Power recognizes the clocks.

Make sure that the Default toggle rate is set to 12.5% and Default Static Probability is set to 0.5. This is applied to primary input ports (non-clock) and black box outputs.

XILINX	

		Power		2 20	0
timate power cons vc1902-vsva2197-2		on the net	list desi	gn and pa	art
Res <u>u</u> lts name: pov	wer_l				
Environment P	ower Supply	<u>S</u> witchi	ng 🖸	utput	
Beset switching Switching Activity f	g activity before for Resets: No	report pov ne	wer	*	
Simulation Setti	ngs				
Simulation activ	vity file (.saif):				
Default Activity	Settings				
Default toggle	rate:	12.5	[0 - 100	0]	
Default Static F	robability:	0.5	[0.0 - 1	.0]	
Enable Rate Set	tings				
	S	Static Prob	ability	Τος	gle Rate
BRAM Port Ena	ble:		[0.0 - 1	.0]	[0 - 1
BRAM Write Ena	able:		[0.0 - 1	.0]	[0 - 1
Bidi Output Por	t Enable:		[0.0 - 1	.0]	[0 - 1
Toggle Rate Set	tings				
	5	Static Prob	ability	Тор	gle Rate
Primary Output	S:		[0.0 - 1	.0]	[0 - 1
Logic					
Registers:			[0.0 - 1	.0]	[0 - 1
C 000000000000000000000000000000000000					

- 5. In the Output tab of the Report Power dialog box, specify **Export to file** as power_1.pwr.
- Specify the Output XPE file as power_1.xpe. After creating this file, when Report Power runs, you can import the file and its results into the Xilinx Power Estimator. For information on importing the file into the Xilinx Power Estimator, see the Xilinx Power Estimator User Guide (UG440).
- 7. Specify the RPX file by setting Interactive report file as power_1.rpx to write the results of the Report Power command. The saved RPX file can be reloaded using the **Reports** → **Open Interactive Report** command to provide interaction or cross-probing with the open design.

A			Report	Power			•	×
E	Estimate power c «cvc1902-vsva219	onsumption 97-2MP-e-S.	based o	n the netlis	at design and	l part		
	Res <u>u</u> lts name:	power_1					Ø	
	<u>E</u> nvironment	Power S	upply	<u>s</u> witchin	g <u>O</u> utput			
	✓ Output XPE	file:	power_	1.xpe		6		
	✓ Interactive	report file:	power_	1.rpx		6		
	🕑 Export to fi	e:	power_	1.pwr		6		
			Output	file format:	● <u>TXT</u>	⊖x <u>m</u> l		
					Overwrite	○ <u>А</u> рре	nd	
	?				ОК	C	ancel]

Legends in Report Power Tool

The following legends appear consistently in the Report Power tool:

- **Constraint:** Displays when the nets are defined as clock with timing constraints. The defined frequency of a clock determines the switching activity.
- **Simulation:** Displays when the nets with switching activities are derived from simulation's .saif file.
- User Defined: Displays when the nets with user set switching activities are derived from set_switching_activity power Tcl command.
- Estimated: Displays when the nets with switching activities are generated by report_power vectorless propagation engine.
- **Default:** Displays when the nets include default switching activities. If you use set_switching_activity on input port nets or on internal nets before running report_power (vectorless propagation), the report tool displays the default.

Step 4: Running Report Power

1. Click **OK** on the Report Power dialog box.

This runs the report_power command.

2. Examine the power report, power_1, that is generated in the Power window in Vivado IDE.

Note: Due to continuous accuracy improvements in Vivado tools, the actual power numbers you see might be slightly different than the ones that appear in the following figures.

Power									? _ 🗆 🖓
Q ≚ ♦ C 📕	Summary								
Settings Summay (30.017 W, Margin: N/A) Power Supply V Utilization Details Hierarchical (3.573 W) Clocks (0.007 W) > Sat/Reset (0 W) Set/Reset (0 W) Set/Reset (0 W) Clock Manager (0.23 W) V0 (1.213 W) OTY (0.465 W) > VOC_DDRMC (0.315 W) NOC (0.21 W) DDRMC (0.106 W) PS (1.337 W)	Power estimation from Synthesized derived from constraints files, simi vectorless analysis. Note: these et can change after implementation. Total On-Chip Power: Design Power Budget: Power Budget Margin: Junction Temperature: Thermal Margin: Effective 8JA: Power supplied to off-chip devices: Confidence level: Launch Power Constraint Advisor t invalid switching activity	Jation files or 30.017 W Not Specified N/A 100.0°C 0.0°C (26.1 W) 2.5°C/W 0 W Low	On-Chip P	Dynamic: 6% 34% 13% 9%	Clocks: Logic: XPLL: I/O: GTY: NOC_DDRMC: PS:				

- 3. Examine the power breakdown in the power report by block type (Logic, GTY, I/O, etc.).
- 4. Examine the current consumption by individual rails in the Power Supply view.

Power										? _ 🗆 🖓
Q ¥ ♦ C 🖬	Power Supply							User Defined	Default	Calculated
Settings	Supply Source	Voltage (V)	Total (A)	Dynamic (A)	Static (A)	Budget (A)	Margin (A)			
Summary (30.017 W, Margin: N/A)	Vccint	0.800	26.237	0.162	26.075	Unspecified	NA			
Power Supply	VCC_SOC	0.800	3.599	0.394	3.205	Unspecified	NA			
 Utilization Details 	VCC_IO	0.800	1.034	0.719	0.315	Unspecified	NA			
Hierarchical (3.573 W)	VCCRAM	0.800	0.272	0.000	0.272	Unspecified	NA			
Clocks (0.007 W)	Vccaux	1.500	3.634	0.240	3.394	Unspecified	NA			
Signals (0 W)	VCC_PMC	0.800	0.355	0.265	0.090	Unspecified	NA			
Data (0 W)	VCC0_503	3.300	0.300	0.000	0.300	Unspecified	NA			
Clock Enable (0 W)	VCC0_500	1.800	0.058	0.058	0.000	Unspecified	NA			
Set/Reset (0 W)	VCC0_501	1.800	0.000	0.000	0.000	Unspecified	NA			
Logic (0.006 W)	VCC0 502	1.800	0.331	0.031	0.300	Unspecified	NA			
Clock Manager (0.23 W)	VCCAUX PMC	1.500	0.270	0.068	0.202	Unspecified	NA			
VO (1.213 W)	VCCAUX_SMON	1.500	0.104	0.000	0.104	Unspecified	NA			
GTY (0.465 W)	VCC_PSLP	0.800	0.430	0.215	0.216	Unspecified	NA			
V NOC_DDRMC (0.315 W) NOC (0.21 W)	VCC PSFP	0.800	2.391	0.865	1.525	Unspecified	NA			
DDRMC (0.106 W)	Vcco33	3.300	0.000	0.000	0.000	Unspecified	NA			
PS (1.337 W)	Vcco25	2.500	0.000	0.000	0.000	Unspecified	NA			
F3 (1.337 W)	Vcco18	1.800	0.000	0.000	0.000	Unspecified	NA			
	Vcco15	1.500	0.410	0.001	0.409	Unspecified	NA			
	Vcco135	1.350	0.000	0.000	0.000	Unspecified	NA			
	Vcco12	1.200	0.448	0.422	0.026	Unspecified	NA			
	Vccoll	1.100	0.000	0.000	0.000	Unspecified	NA			
	Vcco10	1.000	0.000	0.000	0.000	Unspecified	NA			
	VCC FUSE	1.800	0.000	0.000	0.000	Unspecified	NA			
	VCC BATT	1.500	0.000	0.000	0.000	Unspecified	NA			
	GTY AVCCAUX	1.500	0.066	0.002	0.064	Unspecified	NA			
	GTY AVCC	0.880	0.481	0.118	0.363	Unspecified	NA			
	GTY_AVTT	1.200	0.531	0.202	0.329	Unspecified	NA			

5. Examine the hierarchical breakdown of the power in the **Utilization Details** → **Hierarchical** view.

ower												? _ 🗆
Q ¥ ♦ C 🖬	🔍 🔮 Hierarchical											
Settings	Utilization	Name	Clocks (W)	Logic (W)	Clock Manager (W)	XPLL (W)	I/O (W)	GTY (W)	NOC (W)	DDRMC (W)	NOC_DDRMC (W)	PS (W)
Summary (30.017 W, Margin: N/A)	3.573 W (12% of total)	N design_1_wrapper										
Power Supply	3.573 W (12% of total)	I design_1_i (design_1)	0.007	0.006	0.23	0.23	1.213	0.465	0.21	0.106	0.315	1.337
Utilization Details	> 🔲 1.762 W (6% of total)	🚺 axi_noc_0 (design_1_ax	0.004	<0.001	0.23	0.23	1.213	< 0.001	0.21	0.106	0.315	< 0.001
Hierarchical (3.573 W)	> 🛯 1.341 W (4% of total)	🚺 versal_cips_0 (design_1	<0.001	0.004	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	1.337
Clocks (0.007 W)	> 0.467 W (2% of total)	I gt_quad_base_0 (desig	0.001	0.001	<0.001	< 0.001	< 0.001	0.465	< 0.001	< 0.001	< 0.001	< 0.001
✓ Signals (0 W)	> 0.002 W (<1% of total)	I axis_vio_0 (design_1_ax	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Data (0 W)	> 0.001 W (<1% of total)	I gt_bridge_ip_0 (design_	0.001	0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Clock Enable (0 W)	<0.001 W (<1% of total)	🖴 Leaf Cells (3)										
Set/Reset (0 W)												
Logic (0.006 W)												
Clock Manager (0.23 W)												
VO (1.213 W)												
GTY (0.465 W)												
GTY (0.465 W)												
GTY (0.465 W) ~ NOC_DDRMC (0.315 W)												

6. Examine the Clocks view and the various Signals views (Data, Clock Enable and Set/Reset).

Power						? _ 🗆	1 P X
Q 素 ≑ C 📓	Q 🔮 Clocks				Constra	int 🗌 Calcula	ated
Settings	Utilization	Name	Frequency (MHz)	Buffer	Clock Buffer Enable (%)	Enable Signal	Fan
Summary (30.017 W, Margin: N/A)	 0.007 W (<1% of total) 	N design_1_wrapper					
Power Supply	> 0.003 W (<1% of total)	<pre>_ design_1_i/versal_cips_0/inst/pspmc_0/inst/pmc_pl_ref_clk[0]</pre>	100.000	N/A	N/A	N/A	3
 Utilization Details 	> 0.001 W (<1% of total)	<pre>_ design_1_i/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/pll_clk_xpll</pre>	3200.000	N/A	N/A	N/A	
Hierarchical (3.573 W)	> 0.001 W (<1% of total)	<pre>_ design_1_i/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/pll_clktoxphy[0]</pre>	3200.000	N/A	N/A	N/A	
Clocks (0.007 W)	> 0.001 W (<1% of total)	<pre>_ design_1_i/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/pll_clktoxphy[2]</pre>	3200.000	N/A	N/A	N/A	
✓ Signals (0 W)	> 0.001 W (<1% of total)	design_1_i/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/bank1_xpll0_fifo_rd_clk	800.000	N/A	N/A	N/A	
Data (0 W)	> <0.001 W (<1% of total)	<pre>_ design_1_i/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/bank1_clkout0</pre>	800.000	N/A	N/A	N/A	
Clock Enable (0 W)	> <0.001 W (<1% of total)	design_1_l/axi_noc_0/inst/MC0_ddrc/inst/noc_ddr4_phy/inst/mc_clk_xpll	800.000	N/A	N/A	N/A	
Set/Reset (0 W)	> <0.001 W (<1% of total)	ddr4 dimm1 sma clk clk p	200.000	N/A	N/A	N/A	
Logic (0.006 W)							
Clock Manager (0.23 W)							
1/0 (1.213 W)							
GTY (0.465 W)							
VOC_DDRMC (0.315 W)							
NOC (0.21 W)							
DDRMC (0.106 W)							
PS (1.337 W)							

Step 5: Implementing the Design

This tutorial helps you understand power analysis with and without power optimization. In this step, you will run Implementation without power optimization.

- 1. In the Flow Navigator, click Run Implementation.
- 2. When the Save Project dialog box is displayed before launching implementation, click **Don't Save**.

Designing with UltraScale+

Step 1: Creating a New Project

To create a project, use the New Project wizard to name the project, to add RTL source files and constraints, and to specify the target device.

On Linux, do the following.

1. Go to the directory where the lab materials are stored:

cd <Extract_Dir>/UltraScale+ (for UltraScale+ devices)

2. Launch Vivado IDE: vivado

Eile Iools Window Help Q. Quick Access	
	£ XILINX.
Quick Start Create Project > Open Project > Open Hardware Manager >	
Learning Center Documentation and Tutorials > Quick Take Videos > What's New in 2022.1 >	
Td Console Q 😤 ♦ II 🕢	? _ D & X
start_gui	, ,

On Windows, do the following.

3. Launch the Vivado IDE by selecting Start → All Programs → Xilinx Design Tools → Vivado 2022.x → Vivado 2022.x (x denotes the latest version of Vivado 2022 IDE).

As an alternative, click Vivado 2022.x Desktop icon to start the Vivado IDE.

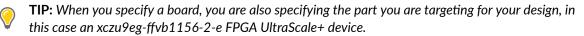
The Vivado IDE Getting Started page contains links to open or create projects and to view documentation.

- 4. In the Getting Started page, click **Create New Project** to start the New Project wizard.
- 5. Click **Next** to continue to the next screen.

AM	DЛ
XILI	NX

🝌 New Vivado Lab	Edition Project	×
Specify the name a	nd location for a new Vivado Lab Edition project.	4
<u>P</u> roject name:	vivado_power_tutorial	8
Project location:	C:/vivado_power_tutorial	© ····
Create project	subdirectory	
Project will be cre	ated at: C:/vivado_power_tutorial/vivado_power_tutorial	
	ок	Cancel

- 6. In the Project Name page, name the new project vivado_power_tutorial and enter the project location (C:\Vivado_Power_Tutorial). Make sure to check the **Create project** subdirectory option and click Next.
- 7. In the Project Type page, specify the type of project to create as **RTL Project** and make sure to uncheck the **Do not specify sources at this time** option. Click **Next**.
- 8. In the Add Sources page, do the following.
 - a. Set Target Language to Verilog and Simulator language to Mixed.
 - b. Click the Add Files button.
 - c. In the Add Source Files dialog box, navigate to the <Extract_Dir>/UltraScale
 +/src directory.
 - d. Select all of the Verilog (.v) source files, and click OK.
 - e. In the Add Sources page, change the HDL Source For the ${\tt testbench.v}$ file to Simulation only.


 \times

🝌 New Project

Add Sources

- _	• •	+				
	Index	Name	Library	HDL Source For	Location	
•	1	Cascaded_bram.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	2	Noncascade_bram.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	3	bram_tdp_cas.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	4	bram_tdp_noncas.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	5	bram_top_cascade.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	6	bram_top_noncascade.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	7	dut.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	8	dut_fpga.v	xil_defaultlib	Synthesis & Simulation 🔹	C:/vivado_power_tutorial/UltraScalePlus/src	
•	9	testbench.v	xil_defaultlib	Simulation only	C:/vivado_power_tutorial/UltraScalePlus/src	
C opy <u>s</u> Add sc	ources into	subdirectories	<u>A</u> dd F		<u>C</u> reate File	
let lan	iguage: V	erilog 🗸 Simulator	language: Mix	ed 🗸		

- f. Verify that the files are added and **Copy sources into project** is checked. Click **Next**.
- 9. In the Add Constraints (optional) page, click Add Files and select dut_fpga_zcu102.xdc in the file browser. In the directory structure, you will find the dut_fpga_zcu102.xdc file below the /src folder.
- 10. Click **Next** to continue.
- 11. In the Default Part page, click **Boards** and select Zynq UltraScale+ ZCU102 Evaluation Board.

12. Review the New Project Summary page. Verify that the data appears as expected, per the steps above, and click **Finish**.

Note: It might take a moment for the project to initialize in the Vivado IDE.

AMD**Z**I XILINX

<u>File Edit Flow Tools Reports</u>	Wurgen refert Ten Teh	luick Access		Ready
🖻 + + E E X 🕨 I				📰 Default Layout 🗸 🗸
low Navigator — — ₹ ≑ ?	PROJECT MANAGER - power_tutorial1			?
PROJECT MANAGER	Sources ? _ □ ◻ ×	Project Summary		? 🗆 🗆 X
Settings		Overview Dashboar	d	1000
Language Templates	> Design Sources (1) > Constraints (1)	Settings Edit		
👎 IP Catalog	<pre>> Simulation Sources (1) > _ sim_1 (1)</pre>	Project name: Project location:	power_tutorial1 /proj/dsv.xhd/uditr/POWER/Repo/ug997/usp/power_tutorial1	
IP INTEGRATOR	> 🚍 Utility Sources	Product family:	Zynq UltraScale+ MPSoCs	
Create Block Design Open Block Design	Hierarchy Libraries Com4 ▶ ≣	Project part: Top module name:	Zynq UltraScale+ ZCU102 Evaluation Board (xczu9eg-ffvb1156-2-e) Not defined	1
Generate Block Design	Properties ? _ 🗆 🖾 ×	Target language: Simulator language:	Verilog Mixed	
SIMULATION	♦ ♦ ♦	Board Part		
Run Simulation		Display name:	Zyng UltraScale+ ZCU102 Evaluation Board	
RTL ANALYSIS	Select an object to see properties	Board part name: Board revision:	xilinx.com:zcu102:part0:3.4	
> Open Elaborated Design		Connectors:	1.1 No connections	
SYNTHESIS	Tcl Console Messages Log R	eports Design Runs	×	? _ 🗆 🖾
Run Synthesis Open Synthesized Design	Q ★ ♦ ≪ ▶ ≫ +	F %		
	Name Constraints Status ∨ ▷ synth 1 constrs 1 Not start		THS WBSS TPWS Total Power Failed Routes LUT FF BRAM URAM DSP Star	t Elapsed Run Strategy Vivado Synthesis
IMPLEMENTATION Run Implementation	▷ impl_1 constrs_1 Not start	ed		Vivado Implemen
> Open Implemented Design				

13. In the Settings dialog box (**Tools** → **Settings** → **Tool Settings** → **Project**), enter the tutorial project directory in the Specify project directory field, so that all reports are saved in the tutorial project directory. Then click **OK**.

Now, the design is ready for synthesis.

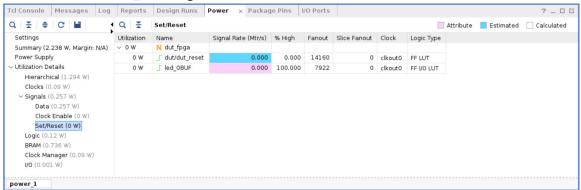
Step 2: Synthesizing the Design

- 1. Click Run Synthesis in the Flow Navigator.
- 2. The Synthesis Completed dialog box appears after the synthesis is completed on the design.

3. Select **Open Synthesized Design** in the Synthesis Completed dialog box to open the synthesized design. Click **OK**.

Step 3: Report Power Setup

For infomration on setting up report power, refer to the Step 3: Report Power Setup section in Designing with Versal.


Step 4: Running Report Power

For information on running the report power, refer to the Step 4: Running Report Power section in Designing with Versal.

Step 5: Viewing the Power Properties

This step walks you through the process of getting the display of static probability and toggle rate for a signal in the property window.

- 1. Note the total power (Total On-Chip Power) in the Power Report Summary view.
- 2. Click the Set/Reset item in the Power Report.
- 3. Click on the dut/dut_reset signal.

4. Note that there is a Power view in the Net Properties window that displays the net properties for the dut/dut_reset signal. Click on Load Power Properties to get the power information for the first time.

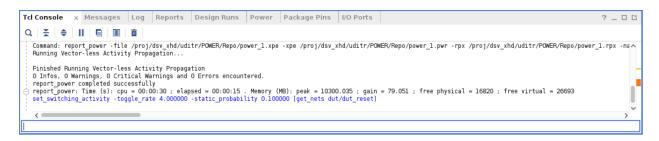
Net Properties				?	_ 🗆 🕫 🗙
∫ dut_reset				-	+ 0
Output					
Toggle rate: 0.0 % Static probability: 0.0					
	Edit Proper	ties			
General Properties Connectivity	Power All	ases Cell Pins	Nodes	Tiles	Pips

5. Note that the Toggle rate is 0% and the Static probability is 0 for the dut/dut_reset signal, indicating that reset is always de-asserted in the design.

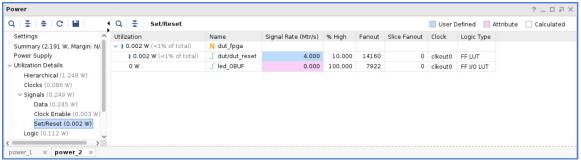
Step 6: Editing Power Properties and Refining the Power Analysis

Assume that the reset is asserted for 10% of the cycles in this design. Switching activity can be set accordingly to re-estimate the power.

- 1. In the Net Properties window, click the Edit Properties button.
- 2. In the Edit Power Properties dialog box, change the Toggle rate to 4% and the Static probability to 0.1.


roperties	•
lut_reset.	- 🍌
4.000 🌲	%
0.1 🌲	[0.0 - 1.0]
ОК	Cancel
	4.000 ‡

- 3. Click OK.
- 4. In the Net Properties window, observe that the Toggle Rate and Static Probability values turn a different color to indicate that they are user defined.


Net Properties \times	Clock Regions	? _ 🗆 🖸
_ dut_reset		$\leftarrow \Rightarrow \diamond$
Output		
Toggle rate: Static probability:	4.0 % 0.1	
Legend: 📃 User Defi	ned	
		_
	Edit Properties	
General Propertie	s Connectivity	Power Aliases 4 ▶ ≣

You can also observe the equivalent Tcl command that is executed in the Tcl Console.

- 5. Re-run Report Power (**Reports** \rightarrow **Report Power**).
- 6. Change the Output text File and Output XPE File in the Output tab to **power_2.pwr** and **power_2.xpe** respectively.
- 7. In the Switching tab, set Switching Activity for Resets: to None. Then click OK.
- 8. In the Power window, note the change in total power reported in the power_2 report compared to the power_1 report. The total power has decreased due to the change in the Signal Rate for the dut/dut_reset signal. Because the signal is a reset signal, an increase in its activity will significantly reduce the activity of other signals in the design. The Signal Rate of the dut/dut_reset signal is now color coded as being User Defined in both, the properties window and the Set/Reset view of the Power Report.

Xilinx recommends you to double-check the signal rates and percentage high (%High) values of high impact I/O ports, control signals (such as resets and clock enables) and high fanout nets. This is an opportunity to guide the Report Power tool towards the accurate power estimation.

See the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) for more information on switching activity.

TIP: In the Tcl console, use the *set_switching_activity* command to change the signal rate and static probability of signals and use *report_switching_activity* to query the values that are set on the signals.

```
set_switching_activity -signal_rate 4 -static_probability 0.1 \
[get_nets dut/dut_reset]
report_switching_activity [get_nets dut/dut_reset]
```

IMPORTANT! Switching activity can also be specified in terms of toggle rate. Toggle rate is always associated with a clock. The primary ports can be associated with a specific clock using the set_input_delay and set_output_delay commands. If no clock association is found, Report Power will associate the ports with respect to the capturing clock.

For a clock of 100 MHz and a toggle rate of 4, the equivalent signal rate will be 4 MTr/s (signal_rate = toggle_rate * Freq = 4×100 MHz).

Step 7: Running Functional Simulation with SAIF Output

Now that you have created a Vivado Design Suite project for the tutorial design, you can set up and launch the Vivado simulator to run post-synthesis functional simulation. Simulation will generate a switching activity interchange format file (SAIF) that will enable you to do more accurate power estimation on your design.

- 1. In the Flow Navigator, click **Settings** to open the Settings dialog box and set the simulation properties in the Simulation section.
- 2. In the Simulation section of Settings dialog box, note that the following Simulation defaults are automatically set for you based on the design files:
 - Simulator language: Mixed
 - Simulation set: **sim_1**
 - Simulation top-module name: testbench

Lab 2: Running Power Analysis in the Vivado Tool

Q-	Simulation						
Project Settings	Specify various settings as	sociate	ed to Simulation	n		1	
General							
Simulation	Target simulator:	V	/ivado Simulator			~	
Elaboration	Simulator language:	N	lixed			~	
Synthesis		Te la	lixed			~	
Implementation	Simulation set:		🖕 sim_1				
Bitstream > IP			estbench	ench 💿			
	Generate simulation sc	ipts o	nlv				
Tool Settings							
Project	Compilation Elabora	ion	Simulation	Netlist	Advanced	1	
IP Defaults > Vivado Store	compliation clabora	.1011	Sindiación	Nethst	Advanced		
Source File	Verilog options:						
Display						= 11	
Help	<u>G</u> enerics/Parameters o	otions	:				
> Text Editor	xsim.compile.tcl.pre						
3rd Party Simulators	xsim.compile.xvhdl.no	sort		6			
> Colors	xsim.compile.xvlog.no	sort					
Selection Rules	xsim.compile.xvlog.rel	эх					
Shortcuts	xsim.compile.xvhdl.rel	эх					
> Strategies	xsim.compile.xsc.more	_optic	ons				
> Remote Hosts	xsim.compile.xvlog.mo	re_opt	tions				
> Window Behavior	xsim.compile.xvhdl.mc	re_opt	tions				
	Select an option above to	see a	a description of	it		_	

- 3. In the Elaboration tab of the Simulation section, make sure the xsim.elaborate.debug_level is set to **typical**, which is the default value.
- 4. In the Simulation tab, enter the SAIF file name as power_tutorial_func.saif for xsim.simulate.saif. Observe that the xsim.simulate.runtime is 1000 ns.
- 5. Make sure to check the xsim.simulate.log_all_signals box.
- 6. Click OK.

AMD**A** Xilinx

Simulation Specify various settings assoc Target simulator:	iated to Simulatio	n		2
Target simulator:				
ranget binnanacon	Vivado Simulato)r		
Simulator language:	Mixed			
	-			
		er		 •
		Netlist Adv	anced	
		1000ps		C
	nals	1000113		
xsim.simulate.no_quit				
xsim.simulate.custom_tc	I			
xsim.simulate.wdb				
	I.			
		power_tutorial_fu	-	
			_	
xsim.simulate.add_positi xsim.simulate.xsim.more			U	
	Simulation set: Simulation top module name: Generate simulation script Compilation Elaboratio xsim.simulate.tcl.post xsim.simulate.runtime xsim.simulate.log_all_sign xsim.simulate.no_quit xsim.simulate.custom_tcl xsim.simulate.wdb xsim.simulate.saif_scope xsim.simulate.saif_ xsim.simulate.saif_ xsim.simulate.saif_ xsim.simulate.add_positii	Simulation set: Simulation top module name: design_1_wrapp Generate simulation scripts only Compilation Elaboration Simulation xsim.simulate.tcl.post xsim.simulate.runtime xsim.simulate.log_all_signals xsim.simulate.oquit xsim.simulate.custom_tcl xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_scope	Simulation set: implication Simulation top module name: design_1_wrapper Generate simulation scripts only Compilation Elaboration Simulation Netlist Advector xsim.simulate.tcl.post xsim.simulate.runtime 1000ns xsim.simulate.log_all_signals xsim.simulate.custom_tcl xsim.simulate.saif_scope xsim.simulate.saif_signals xsim.simulate.saif_signals xsim.simulate.adl_positional	Simulation set: iminimized in the set of t

The simulation settings are now properly configured. You can launch the Vivado simulator to perform a post-synthesis functional simulation of the design.

Note: The power reporting and analysis are not performed at the RTL level. They are performed at the netlist level.

7. In the Flow Navigator, click **Run Simulation** \rightarrow **Run Post-Synthesis Functional Simulation**.

Run Simulatio	<u>on</u>
	Run Behavioral Simulation
Y RTL ANALYSI	Run Post-Synthesis Functional Simulation
> Open Elat	Run Post-Synthesis Timing Simulation
✓ SYNTHESIS	Run Post-Implementation Functional Simulation
Run Synth	Run Post-Implementation Timing Simulation

When you launch the Run Post-Synthesis Functional Simulation command, the Vivado simulator is invoked to run the simulation.

cope x Sources	_ 🗆 🖸	Objects × Protocol I	? _ 🗆 🗳	Untitled 1				? 🗆 [
2	•	Q	•	ର୍ 💾 ଭ୍ ର୍	20 🗶 📲 H	▶ 1≝ ≝r + [[+ →[-	
ame Design Unit	Block T ^	Name	Value ^			0.002 ns		
📒 testl testbench	Verilog M	18 sys_clk_p	1	Name	Value	0,000 pr 1200,000 pr	1400,000 pc	1600,000 pc 1800,000 p
> 📒 du dut_fpga	Verilog M	🕌 sys_clk_n	0			0.000 ns 200.000 ns		600.000 ns 800.000 n
📒 gibi 🛛 gibi	Verilog M	👪 led	1	🕌 sys_clk_p	0		_	
		🕌 pass	1	🔓 sys_clk_n	1			
		> 😻 WATCHDOG[31:0]	10000	led	x			
				🔓 pass	x			
				> 😻 WATCHDO	000186a0	(000186a0	

After the simulation completes, click \mathbf{x} at the top right corner to close the simulation window.

Step 8: Incorporating SAIF Data into Power Analysis

The SAIF output file requested in the simulation run is generated in the project directory. This SAIF file is used to further guide the power analysis algorithm.

1. Ensure that the requested SAIF file is generated. Check to see that the SAIF file requested in the simulation settings prior to running simulation appears in this directory:

<project_directory>/power_tutorial1/power_tutorial1.sim/sim_1/ synth/ func/power_tutorial_func.saif

- 2. In the Flow Navigator window, click on Open Synthesized Design to expand options.
- 3. From the Synthesized Design options, select Report Power.
- 4. In the Report Power dialog box, set the Results name to power_3.
- 5. In the Output tab of Report Power dialog box, make the following changes:
 - Set the Output text File to power_3.pwr
 - Set the Output XPE File to **power_3.xpe**
- 6. In the Environment tab of Report Power dialog box, make sure that the Process is set to **maximum**.
- 7. In the Switching tab of Report Power dialog box, specify the SAIF file location.

ate power consumption base eg-ffvb1156-2-e. Its name: power_3 ironment <u>Power Suppl</u> Reset switching activity befo	y <u>S</u> witching	esign and <u>O</u> utput	part	\$
ironment Power Suppl		<u>O</u> utput	1	0
Reset switching activity befo		<u>O</u> utput		
	re report power			î
tching Activit <u>y</u> for Resets:	None	~		
ulation Settings				
Simulation activity file (.saif)	: 1_1/synth/func/	ksim/power	_tutorial_func.saif 🛛	
fault Activity Settings				
Default toggle rate:	12.5 [0 -]	100]		
Default Static Probability:	0.5 [0.0	-1.0]		
able Rate Settings				
	Static Probabilit	y 1	oggle Rate	
BRAM Port Enable:	[0.0	-1.0]	[0-100]	
BRAM Write Enable:	[0.0	-1.0]	[0 - 100]	
Bidi Output Port Enable:	[0.0	-1.0]	[0 - 100]	
ggle Rate Settings				_
	Static Probabilit	у т	oggle Rate	
Primary Outputs:	[0.0	- 1.0]	[0-100]	
Logic				
Ronistore	10.0	- 1 01	10 - 1 001	~
			ок	Cancel

8. Click **OK** in the Report Power dialog box.

The ${\tt report_power}$ command runs, and the Power Report power_3 is generated in the Power window.

Power			? _ 🗆 2
Q ¥ ≑ C ₩ -	Summary		
Settings Summary (2.401 W, Margin: f Power Supply Utilization Details Hierarchical (1.454 W) Clocks (0.082 W) Signals (0.368 W) Data (0.367 W) Clock Enable (0.001 V Set/Reset (<0.001 W) Logic (0.167 W) BRAM (0.716 W) Clock Manager (0.09 W) VO (0.001 W)	Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation. Total On-Chip Power: 2.401 W Design Power Budget: Not Specified Power Budget Margin: N/A Junction Temperature: 27.3°C Thermal Margin: 72.7°C (69.9 W) Effective ØJA: 1.0°C/W Power supplied to off-chip devices: 0 W Confidence level: High Launch Power Constraint Advisor to find and fix invalid switching activity	On-Chip Power Dynamic: 1.454 W (61%) 5% Clocks: 0.082 W (6%) 5% Clocks: 0.082 W (6%) 5% Clocks: 0.082 W (6%) 5% Clocks: 0.082 W (6%) 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%	

Go to the I/O view in the Power window. Note that all the I/O port activity data is set from simulation data we specified. The data is color coded to indicate activity rates read from the simulation output file.

QIOCH	Q # 10							100	Cincu	Inter		Can	atrole		Calculated
									Serie	Lation	9. -	-00	stan		
Settings	Utilization	Name	10 Type	VO Standard	Drive Strength	Input Pins	Output Pins	Bidir Pins	-		1.44	÷.	-	an i	Signal Rate.
Summary (1.332 W)	 10.005 W (1% of sotal) 	🔐 dut_fpga													
Power Supply	0.004 W (<1% of total)	₽ sys_dk_in_p	HP	DIFF_SSTL.	NA	1	0	0							400.00
· Utilization Details	> 10.001 W (<1% of total)	tmc_out	HR	LVCM0833	12.000	0	10	0		-		-	-		1.00
Hierarchical (0.889 W)	1<0.001 W (<1% of total)	2 gsio_out_pass	HR	LVCM0833	12.000	0	1	0	1	4.4		144.1	-	-	1.00
Clocks (0.01 W)	<0.001 W (<1% of lotal)	- led	HP	LVCMD815	12.000	0	1	0				14			1.00
Clock Enable (<0.001 W Selflesst (<0.001 W) Logic (0.003 W) BRAW (0.805 W) Clock Manager (0.117 W) KO (0.005 W)															

10. Note the difference in total power numbers (Total On-Chip Power in the Summary view) between a pure vectorless run in the power_1 results versus with the post synthesis functional simulation data in the power_3 results. Also note that the dut/dut_reset signal rates are overwritten by simulation SAIF data.

Power										? _ 🗆 🔊 X
Q ¥ ≑ C Ш	Q 🔮 Set/Reset								Simulation	Calculated
Settings	Utilization	Name	Signal Rate (Mtr/s)	% High	Fanout	Slice Fanout	Clock	Logic Type		
Summary (2.401 W, Margin: I	✓ 【 <0.001 W (<1% of total)	N dut_fpga								
Power Supply	<0.001 W (<1% of total)	_ dut/dut_reset	1.000	19.494	14160	0	clkout0	FF LUT		
 Utilization Details 	<0.001 W (<1% of total)	_ led_OBUF	1.000	80.496	7922	0	clkout0	FF I/O LUT		
Hierarchical (1.454 W)										
Clocks (0.082 W)										
 Signals (0.368 W) 										
Data (0.367 W)										
Clock Enable (0.001 V										
Set/Reset (<0.001 W)										
Logic (0.197 W)										
BRAM (0.716 W)										
Clock Manager (0.09 W)										
I/O (0.001 W)										
<>										
power_1 × power_2 ×	power_3 ×									

Step 9: Implementing the Design

This tutorial helps you understand power analysis with and without power optimization. In this step, you will run Implementation without power optimization.

- Run this command in the Tcl console:set_property STEPS.OPT_DESIGN.ARGS.DIRECTIVE NoBramPowerOpt [get_runs impl_1].
- 2. In the Flow Navigator, click **Run Implementation**.
- 3. When the Save Project dialog box is displayed to save the project before launching implementation, click **Don't Save**.

~	Save Proje	ct	+ = ×
? Sav	ve project before launchi	ng implementatio	n?
Data to ⊮ <u>s</u> y	Save nthesized Design - const <u>Sa</u> ve	rs_1 - dut_fpga_zo	cu102.xdc Cancel

Conclusion

In this lab, you have learned how to set the power analysis in the Vivado. In Lab 3, you will learn about the timing simulation and its effect on the power analysis.

, IMPORTANT! The subsequent chapters discuss about UltraScale+™ device only.

AMD7 XILINX

Lab 3

Running Timing Simulation and Estimating Power

Introduction

In this lab, you will learn about generating a SAIF file after running a timing level simulation using Vivado[®] simulator and Questa Advanced Simulator. The lab will walk you through the steps to create a SAIF file, run timing simulation, and estimate power using the SAIF data.

Note: This lab onwards, Xilinx[®] UltraScale+[™] example design is used to explain the process of estimating the power through different stages, and using simulation data to enhance the accuracy of the power analysis.

Step 1: Configuring and Running the Timing Simulation using Vivado Simulator

1. In the Implementation Complete dialog box, select **Open Implemented Design** and click **OK** to open the implemented design. When prompted to save the project before opening an implemented design, click **Don't Save**.

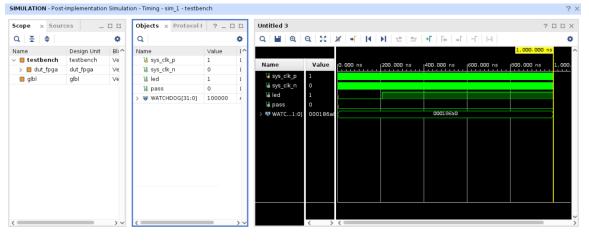
Now you are ready to set up and launch the Vivado simulator to run post implementation timing simulation. You will set the timing simulation properties in Vivado IDE, then run the timing simulation.

- 2. In the Flow Navigator, click **Settings** and select **Simulation** to set the timing simulation properties. In the Settings dialog box, note that the following defaults are automatically set:
 - Simulation set: sim_1
 - Simulation top-module name: testbench
- 3. In the Elaboration tab, make sure that debug_level is set to **typical**, which is the default value.
- 4. In the Simulation tab, set the SAIF file name xsim.simulate.saif to **power_tutorial_timing_xsim.saif**.
- 5. Set the xsim.simulate.saif_scope to testbench/dut_fpga.

- 6. Observe that the simulation run time xsim.simulate.runtime is 1000ns.
- 7. Check xsim.simulate.log_all_signals.
- 8. Click OK.

Simulation						
Specify various s	ettings associa	ated to S	Simulatior	1		^
Target simulator		Vivado	Simulator			~
Simulator langua	ige:	Mixed				~
Sim <u>u</u> lation set:		🗅 sim_3	1			\sim
Simulation top m	odule name:	testben	ch		Ø	
		100 M				
🗌 Generate sim	ulation scripts	only				
Compilation	Elaboration	Simu	lation	Netlist	Advanced	
xsim.simulat	te.tcl.post					
	•		1000ns			0
		als*	1000110	V		-
	-					
xsim, simulat	te.saif scope		testben	ch/dut fpa	a	8
				in One of the		0
xsim.simulat	te.saif all sign	als		_)	
50000000000000000000000000000000000000						
		ince nam	ne for whi	ch power e	stimation is	
	Specify various s Target simulator Simulator langua Simulation set: Simulation top m Generate sim Compilation xsim.simula xsim.simula xsim.simula xsim.simula xsim.simula xsim.simula xsim.simula	Specify various settings associal Target simulator: Simulator language: Simulation set: Simulation top module name: Generate simulation scripts Compilation Elaboration xsim.simulate.tcl.post xsim.simulate.runtime xsim.simulate.runtime xsim.simulate.log_all_sign xsim.simulate.custom_tcl xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_scope	Specify various settings associated to S Target simulator: Vivado S Simulator language: Mixed Simulator language: Mixed Simulation set: Image: sim	Specify various settings associated to Simulation Target simulator: Vivado Simulator Simulator language: Mixed Simulation set: imited Simulation set: imited Simulation top module name: testbench Generate simulation scripts only Compilation Elaboration Xsim.simulate.tcl.post imited xsim.simulate.log_all_signals* imited xsim.simulate.orguit imited xsim.simulate.custom_tcl imited xsim.simulate.saif_scope testben xsim.simulate.saif_all_signals imited xsim.simulate.saif_scope testben xsim.simulate.saif_scope testben xsim.simulate.saif_scope testben xsim.simulate.saif_scope testben xsim.simulate.saif_scope testben xsim.simulate.saif_scope testben	Specify various settings associated to Simulation Target simulator: Vivado Simulator Simulator language: Mixed Simulation set: sim_1 Simulation top module name: testbench Generate simulation scripts only Compilation Elaboration Simulate.tcl.post xsim.simulate.tcl.post xsim.simulate.log_all_signals* xsim.simulate.log_all_signals* xsim.simulate.or_upit xsim.simulate.saif_scope testbench/dut_fpgi xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_scope testbench/dut_fpgi xsim.simulate.saif_all_signals xsim.simulate.saif_scope xsim.simulate.saif_scope xsim.simulate.saif_all_signals xsim.simulate.saif_scope	Specify various settings associated to Simulation Target simulator: Vivado Simulator Simulator language: Mixed Simulation set: iminit Simulation set: iminit Simulation top module name: testbench Generate simulation scripts only Compilation Elaboration Simulate.tcl.post xsim.simulate.tcl.post xsim.simulate.no_quit xsim.simulate.oustom_tcl xsim.simulate.custom_tcl xsim.simulate.saif_scope testbench/dut_fpga xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.saif_all_signals xsim.simulate.xsim.more_options

With the simulation settings properly configured, you can launch the Vivado simulator to perform a timing simulation of the post implemented design.


9. In the Flow Navigator, click **Run Simulation** → **Run Post-Implementation Timing Simulation**.

AMD7 XILINX

 SIMULATION 	Net Properties X C
Run Simulatio	n
	Run Behavioral Simulation
 RTL ANALYSIS Open Elab 	Run Post-Synthesis Functional Simulation Run Post-Synthesis Timing Simulation
	Run Post-Implementation Functional Simulation
SYNTHESIS Bun Syntheses	Run Post-Implementation Timing Simulation

10. After the Vivado simulator finishes simulating the design, ensure that the requested SAIF file is generated. Check to see that the requested SAIF file in the simulation settings prior to running simulation appears in this directory:

```
<project_directory>/power_tutorial1/power_tutorial1.sim/ sim_1/
impl/timing/power_tutorial_timing_xsim.saif
```


Step 2: Running Report Power in Vectorless Mode

1. In the Flow Navigator, select **Open Implemented Design** → **Report Power** to open the Report Power dialog box.

You can also select **Reports** \rightarrow **Report Power** from the main menu.

2. In the Report Power dialog box, in the Environment tab, make sure that the Process is set to **maximum** and click **OK**.

The Report Power command creates a power report under the power_1 tab in the Power window.

3. Note the total power (Total On-Chip Power) in the power report in the Summary page.

Q, ¥ ≑ C 💾	Summary		
Settings Summary (2.387 W, Margin: N/A) Power Supply Utilization Details Hierarchical (1.413 W) Clocks (0.152 W) Signals (0.359 W) Data (0.356 W) Clock Enable (0.002 W)	Design Power Budget: No Power Budget Margin: N/A Junction Temperature: 27. Thermal Margin: 72.	files of Dynamic: 1.413 W (59%) 87 W 59% Clocks: 0.152 W (11%) 25% Signals: 0.359 W (25%) 3°C Logic: 0.090 W (6%) 5°C (69.9 W) 50% MMCM: 0.098 W (7%)	
Set/Reset (<0.001 W) Logic (0.09 W) BRAM (0.711 W) Clock Manager (0.098 W) VO (0.004 W)	Power supplied to off-chip devices: 0 W	Jium Device Static: 0.975 W (41%)	

Vectorless analysis is done based on default switching activity specification on the primary ports and the design clocks.

Refer to Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) for more information on vectorless power analysis.

Step 3: Running Report Power with Vivado Simulator SAIF Data

The project directory contains the requested SAIF output file in the previous timing simulation run. We use this SAIF file to further guide the power analysis algorithm.

- 1. From the main menu, select **Reports** \rightarrow **Report Power**.
- 2. In the Report Power dialog box, specify the SAIF file location in the Switching tab.

The SAIF file, which was requested in the simulation settings prior to running timing simulation, should appear in this directory:

```
<project_directory>/power_tutorial1/power_tutorial1.sim/ sim_1/
impl/timing/power_tutorial_timing_xsim.saif
```

3. Click **OK** in the Report Power dialog box.

After the Report Power command completes, the Power windows displays the power_2 power report.

In the Tcl console, observe that the SAIF file is read successfully and that 100% of the design nets are matched. This assures you that the generated SAIF file is correct and matched with all design nets.

Q ≚ ♦ C 🖬 🔹	Summary				
Settings Summary (2.507 W, Margin: N/ Power Supply	Power analysis from Implemented n derived from constraints files, simul vectorless analysis.		On-Chip	hip Power Dynamic: 1.530 W (61%)	
 ✓ utilization Details Hierarchical (1.53 W) Clocks (0.149 W) ✓ Signals (0.398 W) Data (0.398 W) Clock Enable (0.001 W) Clock Reable (<0.001 W) Logic (0.167 W) 			61% 39%	1156 Logic: 0.167 W (11%) 8RAM: 0.714 W (47%) 4756 MMCM: 0.998 W (6%)	
BRAM (0.714 W) Clock Manager (0.098 W) I/O (0.004 W)	Confidence level: <u>Launch Power Constraint Advisor</u> to invalid switching activity	High find and fix		Device Static: 0.977 W (39%)	

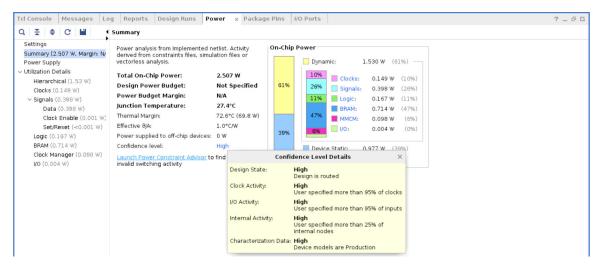
- 4. Note the change in total power (Total On-Chip Power in the Summary view) in the power_2 report compared to the power_1 report. The total power estimated in the report generated with SAIF file data will be different than the total power estimated in the vectorless run (power_1 results).
- 5. Examine the summary and block level (On-Chip Power) power distribution in the Summary view of the power report.
- 6. Go to the **Utilization Details** → **Signals** → **Data** view in the power report. Note that all the Signal Rate data is set from simulation data that the SAIF file has provided.

The data is color coded to indicate activity rates read from the simulation output file.

Q 🛣 🗢 C 📓 🕴	🔍 著 Data				Simulation	n 🗌 Calculat	ted
Settings	Utilization	Name	Signal Rate (Mtr/s)	% High	Fanout	Slice Fanout	Clo
Summary (2.507 W, Margin: N/	0.398 W (16% of total)	N dut_fpga					
Power Supply	<0.001 W (<1% of total)	<pre>_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_b[9]</pre>	79.000	60.316	7	7	clk
Utilization Details	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[26].bram_top_noncascade/addr_a[9]	79.000	39.674	7	7	clk
Hierarchical (1.53 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[26].bram_top_noncascade/addr_a[0]	79.000	60.316	7	7	clk
Clocks (0.149 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[3].bram_top_noncascade/addr_a[2]	79.000	60.316	7	7	cl
Signals (0.398 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[27].bram_top_noncascade/addr_a[7]	79.000	60.316	7	7	cl
Data (0.398 W)	<0.001 W (<1% of total)	<pre>_ dut/Noncascade_bram/gen_dut1[3].bram_top_noncascade/addr_a[5]</pre>	79.000	60.316	7	7	cl
Clock Enable (0.001 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_a[1]	79.000	39.674	7	6	cli
Set/Reset (<0.001 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[7].bram_top_noncascade/addr_b[10]	79.000	39.674	7	6	cli
Logic (0.167 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[25].bram_top_noncascade/addr_a[7]	79.000	60.316	7	7	cl
BRAM (0.714 W)	<0.001 W (<1% of total)	<pre>_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_b[7]</pre>	79.000	39.674	7	7	cl
Clock Manager (0.098 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[27].bram_top_noncascade/addr_b[5]	79.000	39.673	7	7	cl
VO (0.004 W)	-0.001 W (~1% of total)	E dut/Noncascade bram/gen dut1[23] bram ton noncascade/addr a[10]	79.000	60 215	7	6	cll

7. In the Summary view of the power_1 report (the report generated by the vectorless analysis), click **Confidence level**.

The Confidence Level is a measurement of the accuracy and the completeness of the input data that the Report Power uses while performing power analysis.


Notice that the Confidence Level is Medium for the vectorless analysis because less than 25% of internal nodes are user specified for **Internal Activity**.

Cl Console Messages Log Q 🛬 🖨 C 💾	Reports Design Runs Power	× Package Pin	I/O Ports	? –
Settings Summary (2.387 W, Margin: N/A) Power Supply Utilization Details Hierarchical (1.413 W) Clocks (0.155 W) Clock (0.155 W) Deta (0.356 W) Clock Fanable (0.002 W) Set/Reset (<0.001 W) Logic (0.09 W) BRAM (0.711 W) Clock Manager (0.098 W)	Power analysis from implementer derived from constraints files, sir vectorless analysis. Total On-Chip Power: Design Power Budget: Power Budget Margin: Junction Temperature: Thermal Margin: Effective 8JA: Power supplied to off-chip device Confidence level: Launch Power Constraint Advisor	2.387 W Not Specified N/A 27.3°C 72.7°C (69.9 W) 1.0°C/W vs: 0 W Medium	On-Chip Power Dynamic: 1.413 W (59%) 11% Clocks: 0.152 W (11%) 25% Signals: 0.359 W (25%) 6% Logic: 0.090 W (6%) 6% RAM: 0.711 W (50%) 7% V0: 0.004 W (1%) Device Static: 0.975 W (41%) Confidence Level Details ×	
VO (0.004 W)	invalid switching activity	Design Sta Clock Activ VO Activity Internal Ac Character	Design is routed High User specified more than 95% of clocks High User specified more than 95% of inputs	

8. In the Summary view of the power_2 report (the report generated by the analysis for which you specified a SAIF file as input), click **Confidence level** (the following figure).

Notice that the Confidence Level has increased to High, because more than 25% of internal nodes are user specified for **Internal Activity**.

Generating a SAIF File using Questa Advanced Simulator

The following steps will take you through the process of SAIF file creation, running timing simulation, and estimating power using SAIF data using the Questa Advanced Simulator.

IMPORTANT! Make sure that the Vivado Design Suite knows where to pick up the Questa Advanced Simulator tool. You can either:

Manually set the path to ModelSim/Questa Advanced Simulator using the \$PATH environment variable

or

In Vivado IDE, click **Tools** \rightarrow **Settings** \rightarrow **Tool Settings**, and define the path to the Questa Advanced Simulator on the 3rd Party Tools page.

Make sure the Default Compiled Library Paths points to a valid location for the compiled Xilinx simulation libraries.

To create new compiled libraries:

- 1. In the 3rd Party Simulators page, specify the compiled library path for Questa Advanced Simulator in the **Questa** field under Default Compiled Library Paths. Enter the **Compiled library location** specified during the compiled library generation. It should point to the compile_simlib directory.
- 2. Click **OK** to define the path and generate compiled libraries.

*	3rd Party Sim	ulators				
Project Settings General	Specify install paths and default compiled library paths.					
Simulation	Install Paths					
Elaboration Synthesis	ModelSim:					
Implementation	QuestaSim:	/tools/dist/questa/lnx64/10.6c/bin	⊘ ····			
Bitstream > IP	Xcelium:					
ool Settings	VCS:					
Project	Riviera:					
IP Defaults > Vivado Store	ActiveHDL:					
Source File	GCC Install Paths					
Display Help	ModelSim:					
> Text Editor	QuestaSim:					
3rd Party Simulators	Xcelium:					
> Colors Selection Rules	VCS:		•••			
Shortcuts	Riviera:					
> Strategies > Remote Hosts	ActiveHDL:					
> Window Behavior	Default Compi	led Library Paths				
	ModelSim:					
	Questa:					
	Xcelium:					
	VCS:					
	Riviera:		、			

AMD**7** XILINX

Step 1: Configuring and Running Timing Simulation in Questa Advanced Simulator

Now you are ready to set up and launch the Questa Advanced Simulator to run postimplementation timing simulation. You will set the timing simulation properties in the Vivado IDE, and run the timing simulation

- 1. In the Flow Navigator, right-click **Simulation** to select **Simulation Settings**. Set the timing simulation properties.
- 2. In the Simulation Settings tab, set the Target simulator to Questa Advance Simulator.
- 3. Click **Yes** to change your target simulator to Questa Advanced Simulator.

- 4. Set questa.simulate.saif to power_tutorial_timing_questasim.saif.
- 5. Set **questa.simulate.saif_scope** to testbench/dut_fpga.
- 6. Make sure to check the questa.simulate.log_all_signals box.
- 7. Note that the questa.simulate.runtime is 1000ns.

AMD**Z** XILINX

Q-	Simulation							
Project Settings	Specify various s	Specify various settings associated to Simulation						
General								
Simulation	Target simulator	Simulator language: M		sta Advanced Simulator				
Elaboration	Simulator langu						~	
Synthesis				2 <u>0</u>				
Implementation	Sim <u>u</u> lation set:		🗅 sim_	_1			~	
Bitstream > IP	Simulation top n	Simulation top module name: t		nch		8		
2 IF	Compiled library	location:	3/projec	t 3 cache	/compile s	mlib/questa 🔅		
Tool Settings				_oreaction	/compile_o	minor que o cu 🦢		
Project	🗌 Generate sim	nulation scripts	s only					
IP Defaults					_			
> Vivado Store	Compilation	Elaboration	n Sim	ulation	Netlist	Advanced		
Source File	questa sim	ulate tel post						
Display		questa.simulate.tcl.post questa.simulate.runtime		1000ns			0	
Help > Text Editor		questa.simulate.log_all_signals			v			
da, temperaturation	· · · · · · · · · · · · · · · · · · ·	ulate.custom			•			
3rd Party Simulators > Colors		ulate.custom_ ulate.custom						
Selection Rules		ulate.custom_ ulate.custom						
Shortcuts	1.0.00000000000000000000000000000000000	ulate.sdf dela		sdfmax			~	
> Strategies		ulate.ieee wai	-	Sumax	~		×	
> Remote Hosts		-		teethen	_			
> Window Behavior		questa.simulate.saif_scope questa.simulate.saif			testbench/dut_fpga power tutorial timing questasim.			
				power_t	utoriai_timi	ng_questasim		
	questa.sim	ulate.vsim.moi	re_op					
	questa.simul	ate.saif						
	Specify SAIF file							

- 8. Click **OK**. With the simulation settings properly configured, you can launch the Questa Advanced Simulator to perform a timing simulation of the design.
- 9. In the Flow Navigator, click **Run Simulation** → **Run Post-Implementation Timing Simulation**.

✓ SIMULATION Run Simulation	1/0 Bank 48
	Run Behavioral Simulation
 RTL ANALYSIS Open Elabor 	Run Post-Synthesis Functional Simulation Run Post-Synthesis Timing Simulation
	Run Post-Implementation Functional Simulation
✓ SYNTHESIS	Run Post-Implementation Timing Simulation

A separate Questa Advanced Simulator window opens and starts simulating the design.

10. After the Questa Advanced Simulator has finished simulating the design, make sure that the requested SAIF file is generated. Check to see that the SAIF file requested in the simulation settings prior to running simulation appears in this directory:

<project_directory>/power_tutorial1/power_tutorial1.sim/ sim_1/ impl/timing/power_tutorial_timing_questasim.saif

Step 2: Running Report Power in Vectorless Mode

IMPORTANT! If SAIF based *report_power* has already been run in this session, run the *reset_switching_activity -all* command in the Tcl console. This clears the SAIF data in the power engine from the earlier runs.

- 1. Close any open Report Power views.
- 2. In the Flow Navigator, select **Implemented Design** → **Report Power** to open the Report Power dialog box.

Alternatively, select **Reports** \rightarrow **Report Power** in the main menu.

- 3. In the Report Power dialog box, make the following settings:
 - Specify the Results name as **power_1**.
 - In the Environment tab, set the Process to maximum.
 - In the Switching tab, leave the Simulation activity file empty.
- 4. Verify that all the input settings are correct and click **OK**.

The Report Power command creates a power report under the power_1 tab in the results windows area. Note that the total power for vectorless analysis runs with default switching rates.

Q 素 ♦ C 💾	4 Summary						
Settings Summary (2.438 W, Margin: N/A) Power Supply	 Power analysis from implemented netliderived from constraints files, simulation vectorless analysis. 		n-Chip Po	wer Dynamic	: 1	1.462 W (60%) —	
 Vtilization Details Hierarchical (1.462 W) Clocks (0.156 W) ✓ Signals (0.371 W) 	· · · · · · · · · · · · · · · · · · ·	438 W ot Specified /A	60%	25%	Clocks: Signals: Logic:	0.156 W (11%) 0.371 W (25%) 0.097 W (7%)	
Data (0.371 W) Clock Enable (0 W) Set/Reset (0 W)	Thermal Margin: 72	7.4°C 2.6°C (69.9 W) 0°C/W	40%	50%	BRAM: MMCM: I/O:	0.736 W (50%) 0.098 W (7%) 0.004 W (0%)	
Logic (0.097 W) BRAM (0.736 W) Clock Manager (0.098 W) VO (0.004 W)		edium		Device S	itatic: (0.975 W (40%)	

AMD**7** XILINX

Step 3: Running Report Power with Questa Advanced Simulator SAIF Data

The SAIF output file requested in the simulation run is generated under the project directory. We use this SAIF file to further guide the power estimation algorithm.

- 1. In the main menu bar, select **Reports** \rightarrow **Report Power**.
- 2. In the Report Power dialog box, specify the SAIF file location in the Switching tab.

The SAIF file, which was requested in the simulation settings prior to running simulation, should appear here:

```
<project_directory>/power_tutorial1/power_tutorial1.sim/ sim_1/
impl/timing/power_tutorial_timing_questasim.saif
```

3. Click **OK** in the Report Power dialog box.

The Report Power command runs, and the Power Report power_2 is generated in the Power tab of the results windows area.

Tcl Console Messages Log	Reports Design Runs Tim	ing Power >	Methodolo	gy DRC	Package Pins	I/O Ports	? _ 🗆 !
Q ≚ ♦ C 🖬 🔹	Summary						
Settings Summary (2.505 W, Margin: N/4 Power Supply	Power analysis from implemented no derived from constraints files, simul vectorless analysis.		On-Chip Po	wer Dynamic:	1.528 W	(61%)	
 Vitilization Details Hierarchical (1.528 W) Clocks (0.149 W) Signals (0.397 W) 	Total On-Chip Power: Design Power Budget: Power Budget Margin:	2.505 W Not Specified N/A	61%	26%	Signals: 0.397	W (10%) W (26%) W (11%)	
Data (0.396 W) Clock Enable (0.001 W) Set/Reset (<0.001 W) Logic (0.167 W)	Junction Temperature: Thermal Margin: Effective 8JA: Power supplied to off-chip devices:	27.4°C 72.6°C (69.8 W) 1.0°C/W 0 W	39%	47%	BRAM: 0.714 MMCM: 0.098 I/O: 0.004		
BRAM (0.714 W) Clock Manager (0.098 W) I/O (0.004 W)	Confidence level: Launch Power Constraint Advisor to invalid switching activity	High find and fix		Device Sta	itic: 0.977 W	(39%)	
mpl_1 (saved) × power_1 ×	power_2 ×						

- 4. In the Tcl console, observe the read_saif results. This shows the percentage of design nets matched with simulation SAIF. This is important for accurate power analysis.
- 5. Go to the **Signals** → **Data** view in the Power Report and scroll to the right. Note that all the Signal Rate data is set from simulation SAIF data that you provide.

The data is color coded to indicate activity rates read from the Simulation output file.

Q	🔍 著 Data				📃 Simu	lation 🗌 Cal	culated
Settings	Utilization	Name	Signal Rate (Mtr/s)	% High	Fanout	Slice Fanout	Clock
Summary (2.505 W, Margin: N/4	0.396 W (16% of total)	N dut_fpga					
Power Supply	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_b[9]	79.000	60.332	7	7	clkout
 Utilization Details 	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[26].bram_top_noncascade/addr_a[9]	79.000	39.658	7	7	clkout
Hierarchical (1.528 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[26].bram_top_noncascade/addr_a[0]	79.000	60.332	7	7	clkout
Clocks (0.149 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[3].bram_top_noncascade/addr_a[2]	79.000	60.332	7	7	clkout
✓ Signals (0.397 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[27].bram_top_noncascade/addr_a[7]	79.000	60.332	7	7	clkout
Data (0.396 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[3].bram_top_noncascade/addr_a[5]	79.000	60.332	7	7	clkout
Clock Enable (0.001 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_a[1]	79.000	39.660	7	6	clkout
Set/Reset (<0.001 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[7].bram_top_noncascade/addr_b[10]	79.000	39.656	7	6	clkout
Logic (0.167 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[25].bram_top_noncascade/addr_a[7]	79.000	60.326	7	7	clkout
BRAM (0.714 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[23].bram_top_noncascade/addr_b[7]	79.000	39.659	7	7	clkout
Clock Manager (0.098 W)	<0.001 W (<1% of total)	_ dut/Noncascade_bram/gen_dut1[27].bram_top_noncascade/addr_b[5]	79.000	39.659	7	7	clkout
I/O (0.004 W)	I <0 001 W (<1% of total)	E dut/Noncescede brem/gen dut1[23] brem top popcescede/eddr e[10]	79.000	60 331	7	6	clkout

6. Note the change in total power (Total On-Chip Power in the Summary view) in the power_2 report compared to the power_1 report. The total power estimated in the report generated with SAIF file data will be different than the total power estimated in the vectorless run (power_1 results).

Conclusion

In this lab, you have learned how to generate a SAIF file after running a timing level simulation using a Vivado Simulator and Questa Advanced Simulator.

In Lab 4, you will learn about using the Power Optimization features in the Vivado IDE.

Lab 4

Performing Power Optimization

Introduction

In this lab, you will learn about using the Power Optimization features in Vivado[®] for UltraScale+[™] devices. The lab will take you through the steps for invoking Power Optimization after synthesizing the design. It will also guide you on how to use the power optimization report, make decisions and selectively turn off power optimization on signals, blocks, and hierarchies.

TIP: When you run Implementation on your design, the Vivado tools may perform block RAM power optimizations by default during opt_design . These optimizations do not affect performance, and have little impact on area and compile time. In the previous Lab, the default block RAM power optimization was disabled (Step 9 of Lab 2) by setting a NoBramPowerOpt directive to opt_design .

Step 1: Setting Up Options to Run Power Optimization

- 1. In the Flow Navigator, right-click Implementation and select Implementation Settings.
- 2. In the Project Settings dialog box, select Implementation tab to make the following settings:
 - In the Opt Design settings, set the **-directive** option to **Default**.

Block RAM optimization runs in the Default setting for Opt Design during Implementation. Block RAM optimization was disabled in the previous lab. It is now re-enabled when the design runs Power Optimization.

• In the Power Opt Design settings, check the is_enabled box.

This ensures Power Optimization runs after opt_design. Enabling the Power Opt **Design** option prior to place_design results in a complete power optimization to be performed. This option yields the best possible power saving from the Vivado tools.

	DЛ
XILI	NX

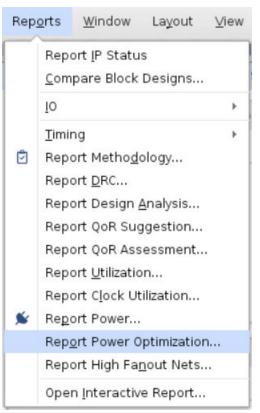
Q-	Implementation						
Project Settings	Specify various settings asso	Specify various settings associated to Implementation					
General							
Simulation	Constraints						
Elaboration							
Synthesis	<u>C</u> onstraints 🗅 constrs_	Constraints 🗁 constrs_1 (active)					
Implementation	Report Settings						
Bitstream							
> IP	Strategy: 🔓 Vivado Imp	lementation Default Reports (Vivado Im	ip 🗸				
Tool Settings	Settings						
Project	is_enabled	V	~				
IP Defaults	tcl.pre		•••				
> Vivado Store	tcl.post		• • •				
Source File	-verbose						
Display	-directive*	Default	~				
Help	More Options						
> Text Editor	<pre></pre>						
3rd Party Simulators > Colors	is_enabled						
Selection Rules	tcl.pre		•••				
Shortcuts	tcl.post		•••				
> Strategies	More Options						
> Remote Hosts	✓Place Design (place_des	ign)					
> Window Behavior	tcl.pre						
	tcl.post						
	-directive	Default	~				
	More Options						
	YPost-Place Power Opt Design (power opt design)						
	is_enabled Optionally run this step as pa maximize power saving.	art of the flow. This step optimizes desig	gn to				

- 3. Click OK.
- 4. In the Create New Run dialog box, click **Yes** to Properties for the completed run 'impl_1' have been modified. Do you want to preserve the state of 'impl_1' and apply these changes to a new run?.

- 5. In the Create Run dialog box, set the **Run Name** to impl_2.
- 6. Click OK.

7. In the Flow Navigator, select **Run Implementation**. Click **Don't Save** when the Save Project window pops up to save both Synthesis and Implementation constraints.

1	Save Project 🔶 🗉 💈	2					
? Save project before launching implementation?							
Data	a to Save						
	🖉 Synthesized Design - constrs_1 - dut_fpga_zcu102.xdc						
✓ Implemented Design - constrs_1 - dut_fpga_zcu102.xdc							
	S <u>a</u> ve <u>D</u> on't Save Cancel						


You are running Implementation with Power Optimization turned on.

8. In the Implementation Completed dialog box, select **Open Implemented Design** and click **OK**. Click **Don't Save** when the Save Project window pops up to save both Synthesis and Implementation constraints.

Step 2: Running report_power_opt to Examine User/Design Specific Power Optimizations

- 1. In the Flow Navigator, select Implemented Design.
- 2. From the main menu, select **Reports** \rightarrow **Report Power Optimization**.

AMD**7** Xilinx

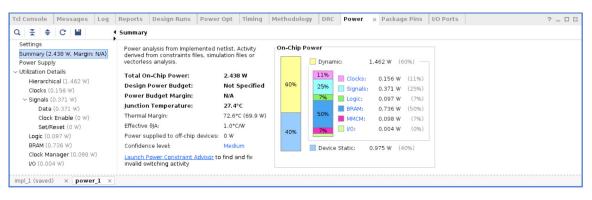
The Report Power Optimization dialog box appears, as shown in the following figure.

Rep	ort Power Optimization	(+ D
Report power optir	mization.	- 🍂
Results <u>n</u> ame:	power_opt_1	Ø
Export to file:		
	Output file format: 🍥 <u>T</u> XT	[─] ⊻ML
	() <u>O</u> verwrite	O Append
🕑 Open in a new	/ta <u>b</u>	
?	ок	Cancel

- 3. Enter power_opt_1 for the Results name.
- 4. Ensure that the Open in a new tab option is checked.
- 5. Click **OK**. Alternatively, execute the following command in the Tcl Console:

```
report_power_opt -name power_opt_1
```


- 6. Observe the report power_opt_1 is generated in the Power Opt window. When the report opens, the Summary view is displayed in the report.
- 7. In the Summary view, the gated items are listed for all blocks. Under Hierarchical Information, block wise information of all gated instances are available.


Step 3: Running report_power to Examine Power Savings

- 1. In the main menu bar, select **Reports** \rightarrow **Report Power**.
- 2. In the Report Power dialog box, make the following settings
 - Specify the Results name as power_1.
 - In the Environment tab, make sure the Process is set to maximum.
- 3. Click OK. Alternatively in the Tcl Console, execute this Tcl command:

report_power -name power_1

4. In the Summary view of the Power Report, some power savings compared to the nonoptimized power run in the previous lab.

You can generate a bitstream to program the hardware and measure its power, to observe the power saving in hardware.

Step 4: Turning Off Optimizations on Specific Signals and Rerunning the Implementation

In this step you will learn how to turn off the power optimization on specific block RAMs.

IMPORTANT! Power optimization works to minimize the impact on timing while maximizing power savings. However, in certain cases, if timing degrades after power optimization, you can identify and apply power optimizations only on non-timing critical clock domains or modules using the *set_power_opt* XDC command.

See the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) for more information on the set_power_opt command.

There are no tool gated blocks in this design, but assume that this block RAM is in the critical path:

```
dut/Cascaded_bram/gen_dut[0].bram_top_cascade/bram_cas/mem_reg_bram_0
```

This step makes sure the tool does not gate this block RAM.

1. In the Tcl Console, type this command:

```
set_power_opt -exclude_cells [get_cells dut/Cascaded_bram/
gen_dut[0].bram_top_cascade/bram_cas/mem_reg_bram_0]
```

This prevents the tool from gating this block RAM.

- 2. From the Flow Navigator choose **Run Implementation**, which in turn reruns power_opt_design.
- 3. Click **Save** in the Save Project dialog box to save the synthesized design and implemented design constraints before launching implementation.

Click **OK** on the Save Constraints dialog box to save the changes in constraints from the set_power_opt command.

~	Save Constraints	↑ □ ×
	rite new unsaved constraints to te that file with the new constra	
○ <u>C</u> reate a new file		
File type:	D XDC	~
File name:		
Fil <u>e</u> location	🖬 <local project="" to=""></local>	~
Ostation (€ Select an existing)	file	
📘 dut_fpga	_zcu102.xdc	~
?	ок	Cancel

4. In the Implementation Completed dialog box, select Open Implemented Design and click OK.

AMD

Step 5: Running report_power_opt to Examine Tool Optimizations Again

- 1. In the main menu bar, select **Reports** \rightarrow **Report Power Optimization**.
- 2. In the Report Power Optimization dialog box, type in the Results name as **power_opt_2**. Alternatively, execute this Tcl command in the Tcl Console:

```
report_power_opt -name power_opt_2
```

3. In the generated report power_opt_2, excluded block RAM will no longer be in the list of **Tool Gated BRAMs**.

Note: This block RAM is no longer in the list of Tool Gated BRAMs: dut/Cascaded_bram/gen_dut[0].bram_top_cascade/bram_cas/mem_reg_bram_0

Step 6: Saving Power using UltraScale+ Block RAM in Cascaded Mode

UltraScale+ architecture-based devices provide the capability to cascade the data out from one block RAM to the next block RAM serially. This will enable the devices to create a deeper block RAM in a bottom-up fashion. When used in cascaded mode, the power consumption is considerably low compared to the block RAM used in non-cascaded mode.

1. To view this in power report, go to the **Hierarchical** view under **Utilization Details** on the left panel and observe the cascaded and non-cascaded block RAM power.

Tcl Console Messages Lo	g Reports Design Runs Power	Opt Timing DRC	Methodolo	gy Power	× Packa	age Pins	I/O Ports		?.	_ 🗆 🖸
Q ≚ ≑ C	🔍 著 Hierarchical									
Settings	Utilization	Name	Clocks (W)	Signals (W)	Data (W)	Logic (W)	BRAM (W)	Clock Manager (W)	MMCM (W)	I/0 (W
Summary (2.438 W, Margin: N/	 1.462 W (60% of total) 	N dut_fpga								
Power Supply	 1.359 W (56% of total) 	I dut (dut)	0.155	0.371	0.371	0.097	0.736	<0.001	< 0.001	< 0.0
Utilization Details	> 0.92 W (38% of total)	I Noncascade_bram (No	0.119	0.204	0.204	0.055	0.542	< 0.001	< 0.001	< 0.00
Hierarchical (1.462 W)	> 🔲 0.439 W (18% of total)	I Cascaded_bram (Casc	0.036	0.167	0.167	0.042	0.194	< 0.001	< 0.001	< 0.00
Clocks (0.156 W)	0.1 W (4% of total)	🗀 Leaf Cells (12)								
✓ Signals (0.371 W)	0.003 W (<1% of total)	📒 in_diff_bufg (IBUFDS)	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0
Data (0.371 W)										
Clock Enable (0 W)										
Set/Reset (0 W)										
Logic (0.097 W)										
BRAM (0.736 W)										
Clock Manager (0.098 W)										
1/0 (0.004 W)										
>	<									
impl 1 (saved)										

Conclusion

In this tutorial, we have accomplished the following:

- Used the Report Power dialog box to verify and set device, thermal, and environmental conditions that contribute to power estimation.
- Synthesized the design and estimated the power after synthesis.
- Set switching activities on an I/O port and re-ran Report Power.
- Ran functional simulation using the Vivado simulator and generated a SAIF file that is data to feed to Report Power for a more accurate power analysis.
- Implemented the design, ran post-implementation timing simulation using the Vivado simulator, and generated a SAIF file that is data to feed to Report Power for a more accurate power analysis.
- Ran Questa Advanced Simulator post-implementation timing simulation and generated a SAIF file that is data to feed to Report Power for a more accurate power analysis.
- Performed power measurement on the design implemented in a ZCU102 and VCK190 Evaluation Boards.
- Learned how to achieve power optimization as part of an implementation run.
- Examined the power optimization report and selectively turned off power optimizations on a cell in the design.
- Examined the power saving of UltraScale+ block RAMs in cascaded mode when compared to block RAMs in Non-cascaded mode.

AMD7 XILINX

Appendix A

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open DocNav:

- From the Vivado[®] IDE, select Help → Documentation and Tutorials.
- On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In DocNav, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this guide:

- 1. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
- 2. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
- 4. Xilinx Power Estimator User Guide (UG440)

Revision History

10/19/2022: Released with Vivado® Design Suite 2022.2 without changes from 2022.1.

Section	Revision Summary				
06/15/2022 Version 2022.1					
General updates	Entire document				

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:// www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Copyright

© Copyright 2012-2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.