
Vivado Design Suite Tutorial

Logic Simulation

UG937 (v2022.1) May 31, 2022

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG937
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf


Table of Contents
Chapter 1: Vivado Simulator Overview.............................................................. 4

Introduction................................................................................................................................. 4
Tutorial Description.....................................................................................................................5
Locating Tutorial Design Files....................................................................................................6
Software and Hardware Requirements.................................................................................... 7

Chapter 2: Lab 1: Running the Simulator in Vivado IDE........................... 8
Step 1: Creating a New Project.................................................................................................. 8
Step 2: Adding IP from the IP Catalog.................................................................................... 14
Step 3: Running Behavioral Simulation.................................................................................. 20
Conclusion..................................................................................................................................22

Chapter 3: Lab 2: Debugging the Design.........................................................23
Step 1: Opening the Project..................................................................................................... 23
Step 2: Displaying Signal Waveforms..................................................................................... 24
Step 3: Using the Analog Wave Viewer...................................................................................26
Step 4: Working with the Waveform Window........................................................................28
Step 5: Changing Signal Properties........................................................................................ 32
Step 6: Saving the Waveform Configuration..........................................................................33
Step 7: Re-Simulating the Design............................................................................................35
Step 8: Using Cursors, Markers, and Measuring Time......................................................... 36
Step 9: Debugging with Breakpoints...................................................................................... 39
Step 10: Relaunch Simulation.................................................................................................. 44
Conclusion..................................................................................................................................46

Chapter 4: Lab 3: Running Simulation in Batch Mode............................. 47
Step 1: Preparing the Simulation............................................................................................ 47
Step 2: Building the Simulation Snapshot..............................................................................49
Step 3: Manually Simulating the Design.................................................................................50
Conclusion..................................................................................................................................51

Chapter 5: Lab 4: System Verilog Feature.......................................................52

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=2


Creating an Example Design....................................................................................................52
Functional Coverage................................................................................................................. 62
Random Constraint................................................................................................................... 68

Chapter 6: Lab 5: Running UVM example........................................................71
Creating a New Project............................................................................................................. 71

Chapter 7: Lab 6: Running GTM-Wizard example....................................... 75
Overview.....................................................................................................................................75
Feature Covered........................................................................................................................ 75

Appendix A: Additional Resources and Legal Notices............................. 86
Xilinx Resources.........................................................................................................................86
Documentation Navigator and Design Hubs.........................................................................86
Revision History......................................................................................................................... 86
Please Read: Important Legal Notices................................................................................... 87

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=3


Chapter 1

Vivado Simulator Overview
IMPORTANT! This tutorial requires the use of the Kintex®-7 family of devices or UltraScale™ devices. If
you do not have this device family installed, you must update your Vivado® tools installation. Refer to the
Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for more information
on Adding Design Tools or Devices to your installation.

Introduction
This Xilinx® Vivado® Design Suite tutorial provides designers with an in-depth introduction to
the Vivado simulator.

VIDEO: You can also learn more about the Vivado simulator by viewing the quick take video at Vivado
Logic Simulation.

TRAINING: Xilinx provides training courses that can help you learn more about the concepts presented in
this document. Use these links to explore related courses:

• Designing FPGAs Using the Vivado Design Suite 1 Training Course

• Designing FPGAs Using the Vivado Design Suite 2 Training Course

• Designing FPGAs Using the Vivado Design Suite 3 Training Course

The Vivado simulator is a Hardware Description Language (HDL) simulator that lets you perform
behavioral, functional, and timing simulations for VHDL, Verilog, and mixed-language designs.
The Vivado simulator environment includes the following key elements:

• xvhdl and xvlog: Parsers for VHDL and Verilog files, respectively, that store the parsed files
into an HDL library on disk.

• xelab: HDL elaborator and linker command. For a given top-level unit, xelab loads up all sub-
design units, translates the design units into executable code, and links the generated
executable code with the simulation kernel to create an executable simulation snapshot.

• xsim: Vivado simulation command that loads a simulation snapshot to effect a batch mode
simulation, or a GUI or Tcl-based interactive simulation environment.

• Vivado Integrated Design Environment (IDE): An interactive design-editing environment that
provides the simulator user-interface.

Chapter 1: Vivado Simulator Overview

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  4Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug973-vivado-release-notes-install-license
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=4


Tutorial Description
This tutorial demonstrates a design flow in which you can use the Vivado® simulator for
performing behavioral, functional, or timing simulation from the Vivado Integrated Design
Environment (IDE).

IMPORTANT! Tutorial files are configured to run the Vivado simulator in a Windows environment. To run
elements of this tutorial under the Linux operating system, some file modifications may be necessary.

You can run the Vivado simulator in both Project Mode (using a Vivado design project to manage
design sources and the design flow) and in Non-Project mode (managing the design more
directly). For more information about Project Mode and Non-Project Mode, refer to the Vivado
Design Suite User Guide: Design Flows Overview (UG892).

The following figure shows a block diagram of the tutorial design.

Figure 1: Tutorial Design

Chapter 1: Vivado Simulator Overview

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  5Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug892-vivado-design-flows-overview
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=5


The tutorial design consists of the following blocks:

• A sine wave generator that generates high, medium, and low frequency sine waves; plus an
amplitude sine wave (sinegen.vhd).

• DDS compilers that generate low, middle, and high frequency waves: (sine_low.vhd,
sine_mid.vhd, and sine_high.vhd).

• A Finite State Machine (FSM) to select one of the four sine waves (fsm.vhd).

• A debouncer that enables switch-selection between the raw and the debounced version of
the sine wave selector (debounce.vhd).

• A design top module that resets FSM and the sine wave generator, and then multiplexes the
sine select results to the LED output (sinegen_demo.vhd).

• A simple testbench (testbench.v) to initiate the sine wave generator design that:

○ Generates a 200 MHz input clock for the design system clock, sys_clk_p.

○ Generates GPIO button selections.

○ Controls raw and debounced sine wave select.

Note: For more information about testbenches, see Writing Efficient Test Benches (XAPP199).

Locating Tutorial Design Files
There are separate project files and sources for each of the labs in this tutorial. You can find these
at the link provided below or under Support → Documentation → Development Tools (Product
Type) → Hardware Development (Product Category) → Vivado – ML Editions (Product) → 
Tutorials (Doc Type) on the Xilinx website.

1. Download the reference design files.

2. Extract the zip file contents into any write-accessible location.

This tutorial refers to the extracted file contents of ug937-design-files directory as
<Extract_Dir>.

RECOMMENDED: You modify the tutorial design data while working through this tutorial. Use a new
copy of the design files each time you start this tutorial.

The following table describes the contents of the ug937-design-files.zip file.

Chapter 1: Vivado Simulator Overview

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  6Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=xapp199&ft:locale=en-US
https://www.xilinx.com/member/forms/download/design-license.html?cid=4101e0ff-a3d6-4971-aed7-871c683ddd3e&filename=ug937-design-files.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=6


Table 1: Design File Contents

Directories/Files Description
/completed Contains the completed files, and a Vivado 2022.x project of

the tutorial design for reference.
(x denotes the latest version of Vivado 2022 IDE)

/scripts Contains the scripts you run during the tutorial.
/sim Contains the testbench.v file.

/sources Contains the HDL files necessary for the functional
simulation.

readme.txt readme.txt is a readme file about the contents and
version history of this tutorial design.

/uvm UVM example needed for Lab 5

Software and Hardware Requirements
This tutorial requires that the 2022.1 Vivado® ML Editions software release is installed. The
following partial list describes the operating systems that the Vivado® ML Editions supports on
x86 and x86-64 processor architectures:

• Microsoft Windows Support: 

• Windows 10 Professional (32-bit and 64-bit), English/Japanese

• Linux Support: 

• Red Hat Enterprise Workstation/Server 7.8-8.3 (64-bit), English/Japanese

• SUSE Linux Enterprise 15.2 (32-bit and 64-bit)

• CentOS 7.4 - 8.3 (64-bit), English/Japanese

• Ubuntu Linux 16.04.5 LTS;16.04.6 LTS; 18.04.1 LTS; 18.04.2 LTS, 18.04.3 LTS; 18.04.4 LTS;
and 18.04.5 LTS (64-bit), English/Japanese

Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a
complete list and description of the system and software requirements.

Chapter 1: Vivado Simulator Overview

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  7Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug973-vivado-release-notes-install-license
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=7


Chapter 2

Lab 1: Running the Simulator in
Vivado IDE

In this lab, you create a new Vivado® Design Suite project, add HDL design sources, add IP from
the Xilinx® IP catalog, and generate IP outputs needed for simulation. Then you run a behavioral
simulation on an elaborated RTL design.

Step 1: Creating a New Project
The Vivado® Integrated Design Environment (IDE), as shown in the following figure, lets you
launch simulation from within design projects, automatically generating the necessary simulation
commands and files.

Create a new project for managing source files, add IP to the design, and run behavioral
simulation:

1. On Windows, launch the Vivado IDE by selecting Start → All Programs → Xilinx Design Tools 
→ Vivado 2022.x → Vivado 2022.x.

(x denotes the latest version of Vivado 2022 IDE)

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=8


Note: Your Vivado ML Editions installation might be called something other than Xilinx® Design Tools
on the Start menu.

2. In the Vivado IDE Getting started page, click Create Project.

3. In the New Project wizard, click Next and enter a project name: project_xsim.

4. For the Project location, browse to the folder containing the extracted tutorial data,
<Extract_Dir>. Make sure to check the Create project subdirectory option and click Next.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=9


Note: The Create project subdirectory option is preselected.

5. In the Project Type page, select RTL Project and click Next.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=10


6. In the Add Source page, click Add Directories and add the extracted tutorial design data:

• <Extract_Dir>/sources

• <Extract_Dir>/sim

Note: You can press the Ctrl key to click and select multiple files or directories.

7. Set the Target Language to Verilog to indicate the netlist language for synthesis.

8. Set the Simulator language to Mixed as shown in the following figure.

The Simulator language indicates which languages the logic simulator supports or requires.
Vivado Design Suite ensures the availability of simulation models of any IP cores in the
design by using the available synthesis files to generate the required language-specific
structural simulation model when generating output targets. For more information on
working with IP cores and the Xilinx IP catalog, refer to the Vivado Design Suite User Guide:
Designing with IP (UG896). You can also work through the Vivado Design Suite Tutorial:
Designing with IP (UG939).

9. Click Next.

10. Click Next to bypass the Add Constraints page.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  11Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug896-vivado-ip
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug939-vivado-designing-with-ip-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=11


In the Default Part page shown in the following figure, select Boards, and then select either
Kintex®-7 KC705 Evaluation Platform for 7 series or Kintex-UltraScale KCU105 Evaluation
Platform for UltraScale devices and click Next.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=12


Note: The Add sources from subdirectories option is preselected.

11. Review the New Project Summary page.

12. Click Finish to create the project.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=13


Vivado opens the new project in the Vivado IDE, using the default view layout.

Step 2: Adding IP from the IP Catalog
The Sources window displays the source files that you have added during project creation. The
Hierarchy tab displays the hierarchical view of the source files.

1. Click the  icon in the Sources window to expand the folders as shown in the following
figure. Expand all  button can be used to view all the files at all levels of hierarchy.

Notice that the Sine wave generator (sinegen.vhd) references cells that are not found in
the current design sources. In the Sources window, the missing design sources are marked by
the missing source icon .

Note: The missing source icon is used to view only the missing sources. This is useful in viewing the
missing sources in larger designs.

Now, add the sine_high, sine_mid, and sine_low modules to the project from the
Xilinx IP catalog.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=14


Adding Sine High
1. In the Flow Navigator, select the IP Catalog button.

The IP catalog opens in the graphical windows area. For more information on the specifics of
the Vivado® IDE, refer to theVivado Design Suite User Guide: Using the Vivado IDE (UG893).

2. In the Search field of the IP catalog, type DDS.

The Vivado IDE highlights the DDS Compilers in the IP catalog.

3. Under any category, double-click the DDS Compiler.

The Customize IP wizard opens as shown in the following figure:

4. In the IP Symbol tab on the left, ensure that Show disabled ports is unchecked.

5. Specify the following on the Configuration tab:

• Component Name: type sine_high

• Configuration Options: select SIN COS LUT only

• Noise Shaping: select None

• Under Hardware Parameters, set Phase Width to 16 and Output Width to 20

6. On the Implementation tab, set Output Selection to Sine.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  15Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug893-vivado-ide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=15


7. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low).

8. On the Summary tab, review the settings and click OK.

When the sine_high IP core is added to the design, the output products required to
support the IP in the design must be generated. The Generate Output Products dialog box
displays, as shown in the following figure.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=16


The output products allow the IP to be synthesized, simulated, and implemented as part of
the design. For more information on working with IP cores and the Xilinx® IP catalog, refer to
the Vivado Design Suite User Guide: Designing with IP (UG896). You can also work through the
Vivado Design Suite Tutorial: Designing with IP (UG939).

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  17Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug896-vivado-ip
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug939-vivado-designing-with-ip-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=17


9. Click Generate to generate the default output products for sine_high. A dialog box opens
saying that the Out of context module run was launched for generating output products.
Click OK.

Adding Sine Mid
1. In the IP catalog, double-click the DDS Compiler IP a second time.

2. Specify the following on the Configuration tab:

• Component Name: type sine_mid

• Configuration Options: select SIN COS LUT only

• Noise Shaping: select None

• Under Hardware Parameters, set the Phase Width to 8, and the Output Width to 18

3. On the Implementation tab, set the Output Selection to Sine.

4. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low).

5. Select the Summary tab, review the settings and click OK as shown in the following figure:

When the sine_mid IP core is added to the design, the Generate Output Products dialog
box displays to generate the output products required to support the IP in the design.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=18


6. Click Generate to generate the default output products for sine_mid. A dialog box opens
saying that the Out of context module run was launched for generating output products.
Click OK.

Adding Sine Low
1. In the IP catalog, double-click the DDS Compiler IP for the third time.

2. Specify the following on the Configuration tab:

• Component Name: type sine_low

• Configuration Options: select SIN COS LUT only

• Noise Shaping: select None

• Under Hardware Parameters, set the Phase Width to 6 and the Output Width to 16

3. On the Implementation tab, set the Output Selection to Sine.

4. On the Detailed Implementation tab, set Control Signals to ARESETn (active-Low).

5. Select the Summary tab, review the settings as seen in the following figure, and click OK.

When the sine_low IP core is added to the design, the Generate Output Products dialog box
displays to generate the output products required to support the IP in the design.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=19


6. Click Generate to generate the default output products for sine_low. A dialog box opens
saying that the Out of context module run was launched for generating output products.
Click OK.

Step 3: Running Behavioral Simulation
After you have created a Vivado® project for the tutorial design, you set up and launch Vivado®

simulator to run behavioral simulation. Set the behavioral simulation properties in Vivado® tools:

1. In the Flow Navigator, right-click Simulation and then click Simulation Settings. Alternatively,
click Settings in the Flow Navigator under Project Manager to open the Settings window.
Select Simulation from the Settings window. The following defaults are automatically set:

• Simulation set: select sim_1

• Simulation top-module name: set testbench

2. In the Elaboration tab, as shown in the following figure, ensure that the debug level is set to
typical which is the default value.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=20


3. In the Simulation tab, observe that the Simulation Run Time is 1000ns.

4. Click OK.

With the simulation settings properly configured, you can launch the Vivado simulator to
perform a behavioral simulation of the design.

5. In the Flow Navigator, click Run Simulation → Run Behavioral Simulation.

Functional and timing simulations are available post-synthesis and post-implementation.
Those simulations are outside the scope of this tutorial.

When you launch the Run Behavioral Simulation command, the Vivado tool runs xvlog and
xvhdl to analyze the design and xelab in the background to elaborate and compile the
design into a simulation snapshot, which the Vivado simulator can run. When that process is
complete, the Vivado tool launches xsim to run the simulation.

In the Vivado IDE, the simulator GUI opens after successfully parsing and compiling the
design as shown in the following figure. By default, the top-level HDL objects display in the
Waveform window.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=21


Conclusion
In this lab, you have created a new Vivado® Design Suite project, added HDL design sources,
added IP from the Xilinx® IP catalog and generated IP outputs needed for simulation, and then
run behavioral simulation on the elaborated RTL design.

This concludes Lab 1. You can continue Lab 2 at this time by starting at Step 2: Displaying Signal
Waveforms.

You can also close the simulation, project, and the Vivado IDE to start Lab 2 at a later time.

1. Click File → Close Simulation to close the open simulation.

2. Select OK if prompted to confirm closing the simulation.

3. Click File → Close Project to close the open project.

4. Click File → Exit to exit the Vivado tool.

Chapter 2: Lab 1: Running the Simulator in Vivado IDE

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=22


Chapter 3

Lab 2: Debugging the Design
The Vivado® simulator GUI contains the Waveform window, and Object and Scope windows. It
provides a set of debugging capabilities to quickly examine, debug, and fix design problems. See
the Vivado Design Suite User Guide: Logic Simulation (UG900) for more information about the GUI
components.

In this lab, you:

• Enable debug capabilities

• Examine a design bug

• Use debug features to find the root cause of the bug

• Make changes to the code

• Re-compile and re-launch the simulation

Step 1: Opening the Project
This lab continues from the end of Lab 1 in this tutorial. You must complete Lab 1 prior to
beginning Lab 2. If you closed the Vivado IDE, or the tutorial project, or the simulation at the end
of Lab 1, you must reopen them.

Start by loading the Vivado Integrated Design Environment (IDE) by selecting Start → All
Programs → Xilinx Design Tools → Vivado 2022.x → Vivado 2022.x.

Note:

1. Your Vivado ML Editions installation might be called something other than Xilinx Design Tools on the
Start menu.

2. As an alternative, click the Vivado 2022.x Desktop icon to start the Vivado IDE.

The Vivado IDE opens. Now, open the project from Lab 1, and run behavioral simulation.

1. From the main menu, click File → Project → Open Recent and select project_xsim, which
you saved in Lab 1.

2. After the project has opened, from the Flow Navigator click Run Simulation → Run
Behavioral Simulation.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  23Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=23


The Vivado simulator compiles your design and loads the simulation snapshot.

Step 2: Displaying Signal Waveforms
In this section, you examine features of the Vivado simulator GUI that help you monitor signals
and analyze simulation results, including:

• Running and restarting the simulation to review the design functionality, using signals in the
Waveform window and messages from the testbench shown in the Tcl console.

• Adding signals from the testbench and other design units to the Waveform window so you
can monitor their status.

• Adding groups and dividers to better identify signals in the Waveform window.

• Changing signal and wave properties to better interpret and review the signals in the
Waveform window.

• Using markers and cursors to highlight key events in the simulation and to perform zoom and
time measurement features.

• Using multiple waveform configurations.

Add and Monitor Signals
The focus of the tutorial design is to generate sine waves with different frequencies. To observe
the function of the circuit, you monitor a few signals from the design. Before running simulation
for a specified time, you can add signals to the wave window to observe the signals as they
transition to different states over the course of the simulation.

By default, the Vivado® simulator adds simulation objects from the testbench to the Waveform
window. In the case of this tutorial, the following testbench signals load automatically:

• Differential clock signals (sys_clk_p and sys_clk_n). This is a 200 MHz clock generated
by the testbench and is the input clock for the complete design.

• Reset signal (reset). Provides control to reset the circuit.

• GPIO buttons (gpio_buttons[1:0]). Provides control signals to select different frequency
sine waves.

• GPIO switch (gpio_switch). Provides a control switch to enable or disable debouncer logic.

• LEDs (leds_n[3:0]). A placeholder bus to display the results of the simulation.

You add some new signals to this list to monitor those signals as well.

If necessary, in the Scopes window, click the  sign to expand the testbench. (It might be
expanded by default.)

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=24


An HDL scope, or scope, is defined by a declarative region in the HDL code, such as a module,
function, task, process, or named blocks in Verilog. VHDL scopes include entity/architecture
definitions, blocks, functions, procedures, and processes.

1. In the Scopes window, click to select the dut object.

The current scope of the simulation changes from the whole testbench to the selected
object. The Objects window updates with all the signals and constants of the selected scope,
as shown in figure below.

2. From the Objects window, select signals sine[19:0] and sineSel[1:0] and add them
into Wave Configuration window using one of the following methods:

• Drag and drop the selected signals into the Waveform window.

• Right-click on the signal to open the popup menu, and select Add to Wave Window.

Note: You can select multiple signals by holding down the CTRL key during selection.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=25


Step 3: Using the Analog Wave Viewer
The sine[19:0] signals you are monitoring are analog signals, which you can view better in Analog
wave mode. You can choose to display a given signal as Digital or Analog in the Waveform
window.

1. In the Waveform window, select the sine[19:0] signal.

2. Right-click to open the popup menu, and select Waveform Style → Analog, as shown in the
figure below.

3. Right-click to open the popup menu again, and select Radix → Signed Decimal as shown in
the figure below.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=26


Logging Waveforms for Debugging
The Waveform window lets you review the state of multiple signals as the simulation runs.
However, due to its limited size, the number of signals you can effectively monitor in the
Waveform window is limited. To identify design failures during debugging, you might need to
trace more signals and objects than can be practically displayed in the Waveform window. You
can log the waveforms for signals that are not displayed in the Waveform window, by writing
them to the simulation waveform database (WDB). After simulation, you can review the
transitions on all signals captured in the waveform database file.

In the Scope window, right-click on dut under testbench. Click Log to Wave Database from
the options list. Select Objects in Scope option. The specified signals are written to a waveform
database.

Using the Tcl Command
Enable logging of the waveform for the specified HDL objects by entering the following
command in the Tcl console:

log_wave [get_objects /testbench/dut/*] [get_objects /testbench/dut/
U_SINEGEN/*]

Note: See the Vivado Design Suite Tcl Command Reference Guide (UG835) for more information on the
log_wave command.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  27Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug835-vivado-tcl-commands
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=27


This command enables signal dumping for the specified HDL objects, /testbench/dut/*
and /testbench/dut/U_SINEGEN/*.

Note: * symbol specifies all the HDL objects in a scope.

The log_wave command writes the specified signals to a waveform database, which is written
to the simulation folder of the current project:

<project_name>/<project_name>.sim/sim_1/behav/xsim

Step 4: Working with the Waveform Window
Now that you have configured the simulator to display and log signals of interest into the
waveform database, you are ready to run the simulator again.

1. Run the simulation by clicking the Run All button .

Observe the sine signal output in the waveform. The Wave window can be unlocked from
Main window layout to view it as standalone.

2. Click the Float button  in the title bar of the Waveform Configuration window.

3. Click the Zoom Fit button  to display the whole time spectrum in the Waveform
Configuration window.

Notice that the low frequency sine output is incorrect. You can view the waveform in detail by
zooming into the Waveform window. When you zoom into the waveform, you can use the
horizontal and vertical scroll bars to pan down the full waveform.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=28


Figure 2: Waveform

As seen in the figure above, when the value of sineSel is 0, which indicates a low frequency sine
selection, the analog sine[19:0] output is not a proper sine wave, indicating a problem in the
design or the testbench.

Grouping Signals
Next, you add signals from other design units to better analyze the functionality of the whole
design. When you add signals to the Waveform window, the limited size of the window makes it
difficult to display all signals at the same time. Reviewing all signals would require the use of the
vertical scroll bar, making the review process difficult.

You can group related signals together to make viewing them easier. With a group, you can
display or hide associated signals to make the Waveform window less cluttered, and easier to
understand.

1. In the Waveform window, select all signals in the testbench unit: sys_clk_p, sys_clk_n,
reset, gpio_buttons, gpio_switch, and leds_n.

Note: Press and hold the Ctrl key, or Shift key, to select multiple signals.

2. With the signals selected right-click to open the popup menu and select New Group. Rename
it as TB Signals.

The Vivado® simulator creates a collapsed group in the waveform configuration window. To
expand the group, click  to the left of the group name.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=29


3. Create another signal group called DUT Signals to group signals sine[19:0] and
sine_sel[1:0].

You can add or remove signals from a group as needed. Cut and paste signals from the list of
signals in the Waveform window, or drag and drop a signal from one group into another.

You can also drag and drop a signal from the Objects window into the Waveform window, or
into a group.

You can ungroup all signals, thereby eliminating the group. Select a group, right-click to open
the popup menu and select Ungroup.

To better visualize which signals belong to which design units, add dividers to separate the
signals by design unit.

Adding Dividers
Dividers let you create visual breaks between signals or groups of signals to more easily identify
related objects.

1. In the Waveform window, right-click to open the popup menu and select New Divider. The
Name dialog box opens to let you name the divider you are adding to the Waveform window.

2. Add two dividers named:

• Testbench

• SineGen

3. Move the SineGen divider above the DUT Signals group.

TIP: You can change divider names at any time by highlighting the divider name and selecting the Rename
command from the popup menu, or change the color with Divider Color.

Adding Signals from Sub-modules
You can also add signals from different levels of the design hierarchy to study the interactions
between these modules and the testbench. The easiest way to add signals from a sub-module is
to filter objects and then select the signals to add to the Waveform view.

Add signals from the instantiated sine_gen_demo module (DUT) and the sinegen module
(U_SINEGEN).

1. In the Scopes window, select and expand the Testbench, then select and expand DUT.

Simulation objects associated with the currently selected scope display in the Objects
window.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=30


By default, all types of simulation objects display in the Objects window. However, you can
limit the types of objects displayed by selecting the object filters at the top of the Objects
window. The following figure shows the Objects window with the Input and Output port
objects enabled, and the other object types are disabled. Move the cursor to hover over a
button to see the tooltip for the object type.

2. Use the Objects window toolbar to enable and disable the different object types.

The types of objects that can be filtered in the Objects window include Input, Output, Inout
ports, Internal Signals, Constants, and Variables.

3. In the Scopes window, select the U_SINEGEN design unit.

4. In the Waveform window, right-click in the empty space below the signal names, and use the
New Group command to create three new groups called Inputs, Outputs, and Internal
Signals.

TIP: If you create the group on top of, or containing, any of the current objects in the Waveform
window, simply drag and drop the objects to separate them as needed.

5. In the Objects window, select the Input filter to display the Input objects.

6. Select the Input objects in the Objects window, and drag and drop them onto the Input group
you created in the Waveform window.

Repeat steps 5 and 6 above to filter the Output objects and drag them onto the Output group,
and filter the Internal Signals and drag them onto the Internal Signals group, as shown in the
following figure.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=31


Step 5: Changing Signal Properties
You can also change the properties of some of the signals shown in the Waveform window to
better visualize the simulation results.

Viewing Hierarchical Signal Names
By default, the Vivado® simulator adds signals to the waveform configuration using a short name
with the hierarchy reference removed. For some signals, it is important to know to which module
they belong.

1. In the Waveform window, hold Ctrl and click to select the sine[19:0] and
sineSel[1:0] signals listed in the DUT signals group, under the SineGen divider.

2. Hold Ctrl, and click to select the sine[19:0] signals listed in the Outputs group, under the
SineGen divider.

3. Right-click in the Waveform window to open the popup menu, and select the Name → Long
command.

The displayed name changes to include the hierarchical path of the signal. You can now see
that the sine[19:0] signals under the DUT Signals group refers to different objects in the
design hierarchy than the sine[19:0] signals listed under the Outputs group. See the
figure below.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=32


Viewing Signal Values
You can better understand some signal values if they display in a different radix format than the
default, for instance, binary values instead of hexadecimal values. The default radix is
Hexadecimal unless you override the radix for a specific object.

Supported radix values are Binary, Hexadecimal, Octal, ASCII, Signed and Unsigned decimal. You
can set any of the above values as Default using Default Radix option.

1. In the Waveform window, select the following signals:

s_axis_phase_tdata_sine_high, s_axis_phase_tdata_sine_mid and
s_axis_phase_tdata_sine_low.

2. Right-click to open the popup menu, and select Radix → Binary.

The values on these signals now display using the specified radix.

Step 6: Saving the Waveform Configuration
You can customize the look and feel of the Waveform window, and then save the Waveform
configuration to reuse in future simulation runs. The Waveform configuration file defines the
displayed signals, and the display characteristics of those signals.

1. In the Waveform window, click the Settings  button on the title bar menu.

The Waveform Options dialog box opens to the General tab.

2. Ensure the Default Radix is set to Hexadecimal.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=33


This defines the default number format for all signals in the Waveform window. The radix can
also be set for individual objects in the Waveform window to override the default.

3. Select the Draw Waveform Shadow, as shown in the following figure, to enable or disable the
shading under the signal waveform.

By default, a waveform is shaded under the high transitions to make it easier to recognize the
transitions and states in the Waveform window.

You can also enable or disable signal indices, so that each signal or group of signals is
identified with an index number in the Waveform window.

4. Check or uncheck the Show signal indices check box to enable or disable the signal list
numbering.

5. Check or uncheck the Show grid lines check box to enable or disable the grid lines in
waveform window.

6. Check the Snap to Transition check box to snap the cursor to transition edges.

7. In the Waveform Options dialog box, select the Colors view.

Examine the Waveform Color Options dialog box. You can configure the coloring for
elements of the Waveform window to customize the look and feel. You can specify custom
colors to display waveforms of certain values, so you can quickly identify signals in an
unknown state, or an uninitialized state.

The Waveform window configures with your preferences. You can save the current waveform
configuration so it is available for use in future Vivado® simulation sessions.

By default, the Vivado simulator saves the current waveform configuration setting as
testbench_behav.wcfg.

8. In the Waveform window sidebar menu, select the Save Wave Configuration button .

9. Save the Wave Configuration into the project folder with the filename tutorial_1.wcfg.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=34


10. Click Yes. The file is added to the project simulation fileset, sim_1, for archive purposes.

TIP: You can also load a previously saved waveform configuration file using the File → Simulation
Waveform → Open Configuration command.

Working with Multiple Waveform Configurations
You can also have multiple Waveform windows, and waveform configuration files open at one
time. This is useful when the number of signals you want to display exceeds the ability to display
them in a single window. Depending on the resolution of the screen, a single Waveform window
might not display all the signals of interest at the same time. You can open multiple Waveform
windows, each with their own set of signals and signal properties, and copy and paste between
them.

1. To add a new Waveform window, select File → Simulation Waveform → New Configuration.

An untitled Waveform window opens with a default name. You can add signals, define
groups, add dividers, set properties and colors that are unique to this Waveform window.

2. Select signal groups in the first Waveform window by pressing and holding the Ctrl key, and
selecting the following groups: Inputs, Outputs, and Internal Signals.

3. Right-click to open the popup menu, and select Copy, or use the shortcut Ctrl+C on the
selected groups to copy them from the current Waveform window.

4. Select the new Waveform window to make it active.

5. Right-click in the Waveform window and select Paste, or use the shortcut Ctrl+V to paste the
signal groups into the prior Waveform window.

6. Select File → Simulation Waveform → Save Configuration or click the Save Wave
Configuration button, and save the waveform configuration to a file called
tutorial_2.wcfg.

7. When prompted to add the waveform configuration to the project, select No.

8. Click the  icon to close the new Waveform window.

Step 7: Re-Simulating the Design
With the various signals, signal groups, dividers, and attributes you have added to the Waveform
window, you are now ready to simulate the design again.

1. Click the Restart button  to reset the circuit to its initial state.

2. Click the Run All button .

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=35


The simulation runs for about 7005 ns. If you do not restart the simulator prior to executing
the Run All command, the simulator runs continuously until interrupted.

3. After the simulation is complete, click the Zoom Fit button  to see the whole simulation
timeline in the Waveform window. Figure below shows the current simulation results.

Step 8: Using Cursors, Markers, and
Measuring Time

The Finite State Machine (U_FSM) module used in the top-level of the design generates three
different sine-wave select signals for specific outputs of the SineGen block. You can identify
these different wave selections better using Markers to highlight them.

1. In the Waveform window select the /testbench/dut/sineSel[1:0] signal.

2. In the waveform sidebar menu, click the Go to Time 0 button .

The current marker moves to the start of the simulation run.

3. Enable the Snap to Transition check box in the General tab of settings window to snap the
cursor to transition edges.

4. From the waveform toolbar menu, click the Next Transition button .

The current marker moves to the first value change of the selected sineSel[1:0] signal, at
3.5225 microseconds.

5. Click the Add Marker button .

6. Search for all transitions on the sineSel signal, and add markers at each one.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=36


With markers identifying the transitions on sineSel, the Waveform window should look
similar to the following figure. As previously observed, the low frequency signals are incorrect
when the sinSel signal value is 0.

You can also use the main Waveform window cursor to navigate to different simulation times,
or locate value changes. In the next steps, you use this cursor to zoom into the Waveform
window when the sineSel is 0 to review the status of the output signal, sine[19:0], and
identify where the incorrect behavior initiates. You also use the cursor to measure the period
of low frequency wave control.

TIP: By default, the Waveform window displays the time unit in microseconds. However, you can use
whichever measurement you prefer while running or changing current simulation time, and the
Waveform window adjusts accordingly.

7. In the Waveform window, click the Go to Time 0 button , then click the Zoom in button
 repeatedly to zoom into the beginning of the simulation run.

8. Continue to zoom in the Waveform window as needed, until you can see the reset signal
asserted low, and you can see the waveform of the clock signals, sys_clk_p and
sys_clk_n, as seen in the following figure.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=37


The Waveform window zooms in or out around the area centered on the cursor.

9. Place the main Waveform window cursor on the area by clicking at a specific time or point in
the waveform.

You can also click on the main cursor, and drag it to the desired time.

10. Because 0 is the initial or default FSM output, move the cursor to the first posedge of
sys_clk_p after reset is asserted low, at time 102.5 ns, as seen in the following figure.

You can use the Waveform window to measure time between two points on the timeline.

11. Place a marker at the time of interest, 102.5 ns, by clicking the Add Marker button .

12. Click to select the marker.

The Floating Ruler option that is available in the General tab of waveform Settings displays a
ruler at the bottom of the Waveform window useful for measuring time between two points.
Use the floating ruler to measure the sineSel control signal period, and the corresponding
output_sine[19:0] values during this time frame.

When you select the marker, a floating ruler opens at the bottom of the Waveform window,
with time 0 on the ruler positioned at the selected marker. As you move the cursor along the
timeline, the ruler measures the time difference between the cursor and the marker.

TIP: Enable the Floating Ruler checkbox from the General tab of Waveform Settings, if the ruler does
not appear when you select the marker.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=38


You can move the cursor along the timeline in a number of ways. You can scroll the horizontal
scroll bar at the bottom of the Waveform window. You can zoom out, or zoom fit to view
more of the time line, reposition the cursor as needed, and then zoom in for greater detail.

13. Select sineSel from the list of signals in the Waveform window and use the Next Transition
command to move to the specific transition of interest.

As shown in above figure, the ruler measures a time period of 3.420 ns as the period that
FSM selected the low frequency output.

Step 9: Debugging with Breakpoints
You have examined the design using cursors, markers, and multiple Waveform windows. Now
you use Vivado® simulator debugging features, such as breakpoints, and line stepping, to debug
the design and identify the cause of the incorrect output.

1. First, open the tutorial design test bench to learn how the simulator generates each design
input.

2. Open the testbench.v file by double-clicking the file in the Sources window, if it is not
already open.

The source file opens in the Vivado IDE Text Editor, as shown in the following figure.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=39


Note: You can also select File → Text Editor → Open File from the main menu, or Open File from the
popup menu in the Sources window. You can also select an appropriate design object in the Scopes
window or Objects window, right-click and select Go to Source Code.

Using Breakpoints
A breakpoint is a user-determined stopping point in the source code used for debugging the
design. When simulating a design with set breakpoints, simulation of the design stops at each
breakpoint to verify the design behavior. After the simulation stops, an indicator shows in the
text editor next to the line in the source file where the breakpoint was set, so you can compare
the Wave window results with a particular event in the HDL source.

You use breakpoints to debug the error with the low frequency signal output that you previously
observed. The erroneous sine[19:0] output is driven from the sineGen VHDL block. Start
your debugging with this block.

1. Select the U_SINEGEN scope in the Scope window to list the objects of that scope in the
Objects window.

2. In the Objects window, right-click sine[19:0] and use Go to Source Code to open the
sinegen.vhd source file in the Text Editor.

TIP: If you do not see the sine[19:0] signal in the Objects window, make sure that the filters at the
top of the Objects window are set properly to include Output objects.

Looking through the HDL code, the clk, reset, and sel inputs are correct as expected. Set
your first breakpoint after the reset asserts low at line 137.

3. Scroll to line 137 in the file.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=40


Add a breakpoint at line 137 in sinegen.vhd. Note that the breakpoint can be set only on
the executable lines. The Vivado® simulator marks the executable lines with an empty red

circle , on the left hand margin of the Text Editor, beside the line numbers.

Setting a breakpoint causes the simulator to stop at that point, every time the simulator
processes that code, or every time the counter is incremented by one.

4. Click the red circle  in the left margin, to set a breakpoint, as shown in the following figure.

Observe that the empty circle becomes a red dot  to indicate that a breakpoint is set on

this line. Clicking on the red dot  removes the breakpoint and reverts it to the empty circle

.

Note: To delete all breakpoints in the file, right-click on one of the breakpoints and select Delete All
Breakpoints.

Debugging in the Vivado simulator, with breakpoints and line stepping, works best when you
can view the Tcl Console, the Waveform window, and the HDL source file at the same time,
as shown in the following figure.

5. Resize the windows, and use the window Float command  or the New Vertical Group
command to arrange the various windows so that you can see them all.

6. Click the Restart button  to restart the simulation from time 0.

7. Run the simulation by clicking the Run All button .

The simulation runs to time 102.5 ns, or near the start of first counting, and stops at the
breakpoint at line 137. The focus within the Vivado IDE changes to the Text Editor, where it

shows the breakpoint indicator  and highlights the line.

A message also displays in the Tcl Console to indicate that the simulator has stopped at a
specific time, displayed in picoseconds, indicating the line of source code last executed by the
simulator.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=41


TIP: When you have arranged windows to perform a specific task, such as simulation debug in this
case, you can save the view layout to reuse it when needed. Use the Layout → Save Layout As
command from the main menu to save view layouts. See the Vivado Design Suite User Guide: Using
the Vivado IDE (UG893) for more information on arranging windows and using view layouts.

8. Continue the simulation by clicking the Run All button .

The simulation stops again at the breakpoint. Take a moment to examine the values in the
Waveform window. Notice that the sine[19:0] signals in the Outputs group are
uninitialized, as are the sine_l[15:0] signals in the Internal Signals group.

9. In the Text Editor, add another breakpoint at line 144 of the sinegen.vhd source file.

This line of code runs when the value of sel is 0. This code assigns, with bit extension, the
low frequency signal, sine_l, to the output, sine.

10. In the Waveform window, select sine_l[15:0] in the Internal Signals group, and holding
Ctrl, select sine[19:0] in the Outputs group.

These selected signals are highlighted in the Waveform window, making them easier for you
to monitor.

11. Run the simulation by clicking the Run All button .

Once again, the simulation stops at the breakpoint, this time at line 144.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  42Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug893-vivado-ide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=42


Stepping Through Source Code
Another useful Vivado® simulator debug tool is the Line Stepping feature. With line stepping,
you can run the simulator one-simulation unit (line, process, task) at a time. This is helpful if you
are interested in learning how each line of your source code affects the results in simulation.

Step through the source code line-by-line and examine how the low frequency wave is selected,
and whether the DDS compiler output is correct.

1. On the Vivado simulator toolbar menu, click the Step button .

The simulation steps forward to the next executable line, in this case in another source file.
The fsm.vdh file is opened in the Text Editor. You may need to relocate the Text Editor to let
you see all the windows as previously arranged.

Note: You can also type the step command at the Tcl prompt.

2. Continue to Step through the design, until the code returns to line 144 of sinegen.vhd.

You have stepped through one complete cycle of the circuit. Notice in the Waveform window
that while sel is 0, signal sine_l is assigned as a low frequency sine wave to the output
sine. Also, notice that sine_l remains uninitialized.

3. For debug purposes, initialize the value of sine_l by entering the following add_force
command in the Tcl console:

add_force /testbench/dut/U_SINEGEN/sine_l 0110011011001010

This command forces the value of sine_l into a specific known condition, and can provide a
repeating set of values to exercise the signal more vigorously, if needed. Refer to the Vivado
Design Suite User Guide: Logic Simulation (UG900) for more information on using add_force.

4. Continue the simulation by clicking the Run All button  a few more times.

In the Waveform window, notice that the value of sine_l[15:0] is now set to the value
specified by the add_force command, and this value is assigned to the output signal
sine[19:0] since the value of sel is still 0.

Trace the sine_l signal in the HDL source files, and identify the input for sine_l.

5. In the Text Editor, right-click to open the popup menu, and select the Find in files option to
search for sine_l.

6. Select the Match whole word and Enabled design sources checkboxes, as shown in the
following figure, and click Find.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  43Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=43


The Find in Files results display at the bottom of the Vivado IDE, with all occurrences of
sine_l found in the sinegen.vhd file.

7. Expand the Find in Files results to view the results in the sinegen.vhd file.

The second result, on line 111, identifies a problem with the design. At line 111 in the
sinegen.vhd file, the m_axis_data_tdata_sine_low signal is assigned to sine_l.
Since line 111 is commented out, the sine_l signal is not connected to the low frequency
DDS compiler output, or any other input.

8. Uncomment line 111 in the sinegen.vhd file, and click the Save File button .

9. In the Tcl Console, remove the force on sine_l: remove_forces -all

Step 10: Relaunch Simulation
By using breakpoints and line stepping, you identified the problem with the low frequency output
of the design and corrected it.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=44


Because you modified the source files associated with the design, you must recompile the HDL
source and build new simulation snapshot. Do not just restart the simulation at time 0 in this
case but rebuild the simulation from scratch.

1. In sinegen.vhd, select one of the breakpoints, right-click and select Delete All
Breakpoints.

2. Click the Relaunch button  on the main toolbar menu.

Note: If prompted to save the Wave Config file, click yes.

The Vivado® simulator recompiles the source files with xelab, and re-creates the simulation snapshot.
Now you are ready to simulate with the corrected design files. The relaunch button will be active only
after one successful run of Vivado Simulator using launch_simulation. If you run the simulation in a
Batch/Scripted mode, the relaunch button would be greyed out.

3. Click the Run All button  to run the simulation.

Observe the sine[19:0], the analog signal in the waveform configuration. The low
frequency sine wave looks as expected. The Tcl console results are:

[@3518000] LEDS_n = 0100
[@3523000] LEDS_n = 0001
[@3523000] LEDS_n = 0001
[@6008000] LEDS_n = 0101
[@6013000] LEDS_n = 0010
[@6013000] LEDS_n = 0010
$finish called at time : 7005 ns : File "ug937/sim/testbench.v" Line 63

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=45


Conclusion
After reviewing the simulation results, you may close the simulation, and close the project. This
completes Lab 2. Up to this point in the tutorial, between Lab 1 and Lab 2, you have:

• Run the Vivado® simulator using the Project Mode flow in Vivado® IDE

• Created a project, added source files, and added IP

• Added a simulation-only file (testbench.v)

• Set simulation properties and launched behavioral simulation

• Added signals to the Waveform window

• Configured and saved the Waveform Configuration file

• Debugged the design bug using breakpoints and line stepping.

• Corrected an error, re-launched simulation, and verified the design

In Lab 3, you will examine the Vivado simulator batch mode.

Chapter 3: Lab 2: Debugging the Design

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=46


Chapter 4

Lab 3: Running Simulation in Batch
Mode

You can use the Vivado® simulator Non-Project Mode flow to simulate your design without
setting up a project in Vivado® Integrated Design Environment (IDE).

In this flow, you:

• Prepare the simulation project manually by creating a Vivado simulator project script.

• Create a simulation snapshot file using the Vivado simulator xelab utility.

• Start the Vivado simulator GUI by running the xsim command with the resulting snapshot.

Step 1: Preparing the Simulation
The Vivado® simulator Non-Project Mode flow lets you simulate your design without setting up a
project in the Vivado® IDE.

You can compile the HDL files in a design, and create a simulation snapshot by either:

• Creating a Vivado simulator project script, specifying all HDL files to be compiled, and using
the xelab command to create a simulation snapshot, or

• Using specific Vivado simulator parser commands, xvlog and xvhdl, to parse individual source
files and write the parsed files into an HDL library on disk, and then using xelab to create a
simulation snapshot from the parsed files

Creating the Vivado Simulator Project File
A Vivado® simulator project script specifies design source files and libraries to parse and compile
for simulation. This method is useful to create a simulation project script that can be run
repeatedly over the course of project development.

The format for a Vivado simulator project script (prj file) is as follows:

verilog | vhdl| sv <library_name> {<file_name>.v|.vhd|.sv

Chapter 4: Lab 3: Running Simulation in Batch Mode

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=47


where,

• verilog | vhdl | sv specifies whether the design source is a Verilog, VHDL, or SV file.

• <library_name> specifies the library into which you may compile the source file. If
unspecified, the default library for compilation is work.

• <file_name>.v|.vhd|.sv specifies the name of the design source file to compile.

IMPORTANT! While you can specify one or more Verilog source files on a single command line, you can
only specify one VHDL source on a single command line.

In this step, you build a Vivado simulator project script by editing an existing project script to add
missing source files. The command lines for the project script should be constructed using the
syntax described above.

1. Browse to the <Extract_Dir>/scripts folder.

2. Open the simulate_xsim.prj project script with a text editor.

3. Add the following commands to the project script:

vhdl xil_defaultlib "../sources/sinegen.vhd"
vhdl xil_defaultlib "../sources/debounce.vhd"
vhdl xil_defaultlib "../sources/fsm.vhd"
vhdl xil_defaultlib "../sources/sinegen_demo.vhd"
verilog xil_defaultlib "../sim/testbench.v"

4. Save and close the file.

You do not need to list the sources based on any specific order of dependency. The xelab
command resolves the order of dependencies, and automatically processes the files accordingly.

TIP: For your reference, a completed version of the tutorial files can be found in the ug937-design-
files/completed  folder.

Manually Parsing Design Files
As an alternative to creating a Vivado® simulator project script, you can compile individual design
source files directly from the command line using the xvlog or xvhdl commands to parse the
design sources and write them to an HDL library. You could use this method for simple simulation
runs, or to define a shell script and makefile compilation flow.

Parse individual or multiple Verilog files using the xvlog command with the following syntax
format:

xvlog [options] <verilog_file | list_of_files>

Parse individual VHDL files using the xvhdl command with the following syntax format:

xvhdl [options] <VHDL_file>

Chapter 4: Lab 3: Running Simulation in Batch Mode

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=48


For a complete list of available xvlog and xvhdl command options, see the Vivado Design Suite
User Guide: Logic Simulation (UG900). The parse_standalone.bat file in <Extract_Dir>/
scripts or <Extract_Dir>/completed provide examples of running xvlog and xvhdl
directly.

Step 2: Building the Simulation Snapshot
In this step, you use the xelab command on the project script you previously edited
(simulate_xsim.prj) to elaborate, compile, and link all the sources for the design. The xelab
utility creates a simulation snapshot that lets you to simulate the design in the Vivado® simulator.

The typical xelab command syntax is:

xelab -prj <project_file> -s <simulation snapshot> <library>.<top_unit>

where,

• -prj <project_file>: Specifies a Vivado simulation project script to use for input.

• -s <simulation_snapshot>: Specifies the name of the output simulation snapshot.

• <library>.<top_unit>: Specifies the library and top-level module of the design.

Running xelab
In this step, you use the xelab command with the project file completed in Step 1 to elaborate,
compile, and link all the design sources to create the simulation snapshot. To run the xelab
command, open and configure a command window.

1. On Windows, open a Command Prompt window. On Linux, simply skip to the next step.

2. Change directory to the Xilinx installation area, and run settings64.bat as needed to setup the
Xilinx tool paths for your computer:

cd install_path\Vivado\2022.x\

settings64.bat

Note: The settings64.bat file configures the path on your computer to run the Vivado ML
Editions.

TIP: When running the xelab , xsc , xsim , xvhdl , or xvlog  commands in batch files or scripts, it
may also be necessary to define the XILINX_VIVADO environment variable to point to the installation
hierarchy of the Vivado ML Editions. To set the XILINX_VIVADO variable, you can add one of the
following to your script or batch file:

Chapter 4: Lab 3: Running Simulation in Batch Mode

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  49Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=49


On Windows -

set XILINX_VIVADO=<Vivado_install_area>/Vivado/2022.x

On Linux -

setenv XILINX_VIVADO <Vivado_install_area>/Vivado/2022.x 

or

export XILINX_VIVADO=<Vivado_install_area>/Vivado/2022.x

3. Change directory to the <Extract_Dir>/scripts folder.

The provided xelab batch file, xelab_batch.bat, is incomplete and you must modify it
using the xelab syntax as previously described to produce the correct simulation snapshot.

4. Edit the xelab_batch.bat file to add the following options:

• Specify the project file: -prj simulate_xsim.prj

• Specify the output simulation snapshot: -s run_sineGen

• Specify the library and top-level design unit: xil_defaultlib.testbench

For a complete list of available xelab command options, see the Vivado Design Suite User
Guide: Logic Simulation (UG900).

5. Save and close the batch file.

6. In the command window, run the xelab_batch.bat file to compile and create the
simulation snapshot.

xelab_batch.bat

7. Examine the xelab output as it is transcribed to the Command Prompt window.

Note: The xelab command also writes xelab.log file in the directory from which it was run. The log
file contains all of the messages and results of the xelab command for you to review.

TIP: You can also use the xelab  command after the xvlog  and xvhdl  commands have parsed
the HDL design sources to read the specified simulation libraries. The xelab  command would be the
same as described here, except that it would not require the -prj  option since there would be no
simulation project file.

Step 3: Manually Simulating the Design
In this step, you launch the Vivado® simulator GUI by running the xsim command with the
simulation snapshot that you generated using the xelab command in Step 2: Building the
Simulation Snapshot. After you complete this step, you can use the Vivado simulator GUI to
explore the design in more detail.

Chapter 4: Lab 3: Running Simulation in Batch Mode

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  50Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=50


In the same command window that you used for Step 2, type the following command:

xsim run_sineGen -gui -wdb simulate_xsim.wdb -view xsim_waveConfig

where:

• run_sineGen -gui: Specifies the simulation snapshot that you generated using xelab,
and launches Vivado simulator in GUI mode.

• -wdb: Specifies the file name of the simulation waveform database file to output, or write,
upon completion of the simulation run.

• -view: Opens the specified waveform configuration file within the Vivado simulator GUI.

Note: You can use the waveform configuration file specified above, or use the tutorial_1.wcfg file that
you created in Lab 2 of this tutorial.

The Vivado Simulator GUI opens and loads the design (see the following figure). The simulator
time remains at 0 ns until you specify a run time. Run the simulation and explore the design.

Conclusion
In this tutorial, you:

• Created a Vivado® IDE project

• Downloaded source files and ran Vivado simulation

• Examined the simulation customization features

• Debugged and fixed a known issue within the source files

• Ran a Vivado simulation in batch mode using the Vivado simulation executable and switch
options

Chapter 4: Lab 3: Running Simulation in Batch Mode

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=51


Chapter 5

Lab 4: System Verilog Feature
Vivado® simulator now supports synthesizable as well as test bench/verification feature of
System Verilog IEEE 1800-2012. In this chapter, you will go through a System Verilog example to
learn about different debugging capabilities added in the Vivado simulator. You will use an IP
example design provided with Vivado.

Creating an Example Design
You will now generate an AXI-VIP example design.

1. Open Vivado®.

2. Create a project with the name mySystemVerilog by invoking the following command in
Vivado Tcl Console.

create_project mySystemVerilog ./mySystemVerilog

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=52


3. You will create an AXI-VIP example design that includes the following features:

• Random Constraint

• Dynamic Types and Class

• Virtual Interface

• Assertion

• Clocking Block

4. Invoke the following commands in Tcl Console:

a. create_ip -name axi_vip -vendor xilinx.com -library ip -version
1.1 -module_name axi_vip_0

b. open_example_project -force [get_ips axi_vip_0]

Now you have created an example design for AXI-VIP with the name axi_vip_0_ex.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=53


Launching Simulation
You have an example project ready. Next, you will run the behavioral simulation. By default, the
simulation runs in a pre-compiled mode where the source code for static IP is not added in the
project. Run the simulation in a non-precompiled mode for a better understanding of the feature.
Invoke the following commands in Tcl Console:

• set_property sim.use_ip_compiled_libs 0 [current_project]

• launch_simulation

This will run the simulation for 1000 ns.

Debugging Using Vivado Simulator
Vivado® simulator supports System Verilog feature. In this exercise, you will explore the System
Verilog feature using the following:

• Scope Window

• Object Window

• Tcl Console

Scope Window

System Verilog has a building block called interface. It differs in functionality when you compare
it with the module.

1. On the Scope window, click Expand All button .

2. You can now view the IF and PC interface instances. The IF and PC interface instance icons
are different than the module icons.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=54


3. Right-click IF and select Go to Source Code. It will point to an interface definition.

Object Window

In System Verilog, all the net/variables are static type. They exist throughout the simulation. In
System Verilog, dynamic type is a new type along with static type. Class, Queue, and Associative
Array are some examples of dynamic type.

Unlike static type variables (int a; wire [7:0] b;), dynamic type variables do not have a fixed size
throughout the simulation. Variables keep changing during run-time. Through Object window,
you can view the value of a dynamic type variable during the simulation.

1. Click Restart button 

2. From the Scope window, select scope
axi_vip_0__exdes_adv_mst_active_pt_mem__slv_passive.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=55


3. Maximize the Objects window. As the simulation is yet to start, observe the Queue and Class
dynamic type in the Data Type column. The Value for Queue appears empty while for class it
appears null.

4. On Scope window, double-click axi_vip_0__exdes_adv_mst_active_pt_mem__slv_passive to
see the text file.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=56


5. On the text editor window, click the circle on line number 95 to add a break point.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=57


6. Click Run All button, the simulation will stop at line number 95. On the Object window
master_monitor_transaction_queue value appears empty.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=58


7. On the Vivado® simulator toolbar menu, click the Step button . It executes the current
statement that is on line number 95 where the simulation is currently waiting. At this
statement, you are pushing an element after the execution. Your queue will be populated
with a single element.

8. In the Object window, the master_monitor_transaction_queue value is populated.
This way you can view the value of any dynamic type on the Object window.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=59


Tcl Console

Like Objects window, you can view the value of any dynamic type variable from Tcl Console as
well.

1. Click Restart button .

2. From the Scope window, select scope
axi_vip_0__exdes_adv_mst_active_pt_mem__slv_passive present under the top module.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=60


3. In Tcl console, invoke the report_objects command to display all objects present in the
selected scope. Also, the Queue and Class appear as object type.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=61


4. Invoke the get_value command to find the current value of an object. The get value of
mst_monitor_transaction is returning null as its Class type while empty parenthesis
appears for master_monitor_transaction_queue which is a Queue type.

5. Click Run All button . The simulation stops at the line where you have added the break
point.

6. Invoke get_value master_moniter_transaction_queue command and notice that it
is still empty.

7. On the Vivado® simulator toolbar menu, click the Step button . It executes the current
statement that is on line number 95 where the simulation is currently waiting. At this
statement, you are pushing an element after the execution. Your queue will be populated
with a single element.

8. Invoke the get_value master_moniter_transaction_queue command and notice 1
entry in the Queue. Like the Objects window, you can read the value of any dynamic type
variable in Tcl Console.

Functional Coverage
Functional coverage is a user defined metric that measures the extent to which the design
specification, as enumerated by features in the test plan, was exercised. It can be used to
measure whether interesting scenarios, corner cases, specification invariants, or other applicable
design conditions—captured as features of the test plan—have been observed, validated, and
tested.

The Vivado® simulator supports functional coverage. If your design contains any functional
coverage statement, the tool will generate a database (coverage database). To view coverage
database, Vivado simulator provides a utility named as xcrg (Xilinx Coverage Report Generator).
Refer to the Vivado Design Suite User Guide: Logic Simulation (UG900) for more information on
functional coverage and xcrg.

In the present example design, you will add a functional coverage code to view the utility of xcrg.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  62Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=62


Cover Group Declaration
covergroup my_cover_group @(posedge aclk);
 m_axi_awlen_cp : coverpoint m_axi_awlen;
 m_axi_awcache_cp : coverpoint m_axi_awcache {
        option.comment = "cp with transition bins";
        bins a1 = (1=>2);
        bins b1 = (1,3=>4,5);
        bins b2[] = (1,3=>4,5);
        bins b3 = (1=>2), ([4:6] => 11,12);
        }
m_axi_bresp_cp : coverpoint m_axi_bresp;
endgroup
my_cover_group obj1 = new();

In this example, you are declaring a covergroup named as my_cover_group and the sampling
event as posedge aclk. This covergroup contains three coverpoints. You will add the cover group
declaration code in the example design.

1. In Tcl console invoke the following command:

current_scope /axi_vip_0__exdes_adv_mst_active_pt_mem__slv_passive/DUT/
ex_design/axi_vip_mst

2. Double-click axi_vip_mst scope to see the source code.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=63


3. The following file path will appear in the text editor, then add the cover group declaration
before endmodule and save it.

axi_vip_0_ex/axi_vip_0_ex.ip_user_files/bd/ex_sim/ip/
ex_sim_axi_vip_mst_0/sim/ex_sim_axi_vip_mst_0.sv

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=64


4. In Tcl console, invokeclose_sim command to close the simulation running previously.

5. In Tcl console, invoke reset_simulation command to clean the simulation directory.

6. In Tcl console, invoke launch_simulation command to run the simulation.

7. Click Run All button .

The simulation will stop after reaching $finish statement. The Vivado® simulator has generated
the coverage database at the following location with the name (default name) xsim.covdb:

./axi_vip_0_ex.sim/sim_adv_mst_active__pt_passive__slv_comb/behav/xsim/

Invoke the following command to generate a report:

xcrg -report_format html -dir ./axi_vip_0_ex.sim/
sim_adv_mst_active__pt_passive__slv_comb/behav/xsim/xsim.covdb/

This will generate a directory with the name xcrg_report, it contains a .html report. The
following is the description of an example report:

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=65


1. Open dashboard.html file. The file contains details such as command, version, date and
coverage summary that shows only 9.375% of total bins are covered.

2. Click Groups button.

3. Click the link under group report.

4. You will see a detailed report as shown in the following figure:

This way you can view the coverage and change your test bench/seed value to improve the
coverage.

Assertion
In System Verilog, you have the following two types of assertion:

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=66


• Immediate assertion

• Concurrent Assertion

Immediate Assertion

Evaluated like an expression in ‘if’ statement.

always@(posedge clk)
assert(data == 4’b1010);

Concurrent Assertion

This assertion is based on clock semantic and use sampled value of their expression. These
assertions can expand over multiple cycle.

always@ (posedge clk)
    a1: assert property (a ##2 b);

a2: assert property (@(posedge clk) a ##2b);

In Vivado® simulator, the concurrent assertion of 2nd form that is used outside the procedural
block is supported.

1. In Tcl Console, invoke close_sim command to close the simulation running previously.

2. In Tcl Console, invoke reset_simulation command to clean the simulation directory.

3. In Tcl Console, invoke launch_simulation command to run the simulation.

4. In Tcl Console, invoke the following command:

current_scope /axi_vip_0__exdes_adv_mst_active_pt_mem__slv_passive/DUT/
ex_design/axi_vip_passthrough/inst/IF/PC

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=67


5. Double-click the scope PC to open the source code.

6. Observe that line number 1144 onwards all the property declarations and assertions have
been used.

Random Constraint
System Verilog has random constraint, which is used to generate a random value. Using this
feature, you can even set the constraint on a random variable.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=68


For each simulation, the simulator is supposed to generate fixed set of values. In this example,
randomize call is happening 10 times so each time the simulator is expected to assign a different
value on variable ‘b1’. If we close the simulation and run it again, the simulator is expected to give
same 10 set of values like the previous run. This is called as random stability.

module top();
class c1;
rand bit [3:0] b1;
endclass
c1 obj1 = new();
initial
begin
    for(int i = 0; i < 10; i++)
    begin
        #5 obj1.randomize();
        $display("At time %t the value is %p", $time, obj1);
   end
end
endmodule

If you want different set of values, you should change the random seed value. In Vivado®

simulator, it is done by passing -seed option to xsim. In Tcl Console, you need to invoke the
following command:

set_property -name {xsim.simulate.xsim.more_options} -value {-seed 2000} -
objects [get_filesets sim_adv_mst_active__pt_passive__slv_comb]

With seed, you have to provide any integer value. So just by changing a ‘seed’ value, you can get
a different value. You do not need to do compilation and elaboration again.

1. Add the following code in a file and name it as random.sv.

module top();
class c1;
rand bit [3:0] b1;
endclass
c1 obj1 = new();
initial
begin
    for(int i = 0; i < 10; i++)
    begin
        #5 obj1.randomize();
        $display("At time %t the value is %p", $time, obj1);
   end
end
endmodule

2. Perform the following:

a. Invoke xvlog -sv random.sv command to compile the code.

b. Invoke xelab top -s top command to elaborate the code.

c. Invoke xsim top run -all command to simulate the code.

Observe the output.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=69


run -all

At time                 5000 the value is '{b1:3}
At time                10000 the value is '{b1:7}
At time                15000 the value is '{b1:7}
At time                20000 the value is '{b1:0}
At time                25000 the value is '{b1:0}
At time                30000 the value is '{b1:5}
At time                35000 the value is '{b1:9}
At time                40000 the value is '{b1:3}
At time                45000 the value is '{b1:12}
At time                50000 the value is '{b1:0}

3. Type in "exit" to leave the simulation and then re-run step 2c and notice the value is similar to
the previous one.

Note: If you are running this in the Vivado® GUI, exiting will exit all of Vivado and you will need to do
all of step 2 again, not just 2c.

4. Simulate the code with different SV seed xsim top -sv_seed 5000 and observe that the
value is different. Thus, you can generate different value without going through compile and
elaboration step.

Chapter 5: Lab 4: System Verilog Feature

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=70


Chapter 6

Lab 5: Running UVM example
Vivado® integrated design environment supports Universal Verification Methodology (UVM) in
Vivado simulator (XSIM). UVM version 1.2 is pre-compiled and shipped with Vivado.

Through this tutorial, let's take an UVM based example and run it in Vivado Simulator.

Note: Go to directory ug937-vivado-design-suite-tutorial-design-files/ug937-design-
files/uvm of tutorial which was downloaded at the start of Chapter 2: Lab 1: Running the Simulator in
Vivado IDE.

Creating a New Project
1. Create a new Vivado RTL project in 2022.1, targeting to the required device.

2. Add the directories src and verif to the project by clicking on the + button.

3. Mention the UVM verification files for simulation only.

Chapter 6: Lab 5: Running UVM example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=71


4. After the hierarchy is updated, ensure to select adder_4_bit_tb_top.sv file as top
module.

5. For UVM, you need to provide test name, here the test name is
adder_4_bit_basic_test. For this add -testplusarg
UVM_TESTNAME=adder_4_bit_basic_test -testplusarg
UVM_VERBOSITY=UVM_LOW to xsim.more_options

Chapter 6: Lab 5: Running UVM example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=72


6. Launch simulation.

This can run simulation for 1000 ns by default. Click run all  to complete the simulation.
You can see following in TCL console.

Following are the steps to use UVM in Non-Project/Batch Mode:

Chapter 6: Lab 5: Running UVM example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=73


1. To run the simulation in non-project mode, change the current working directory to the run
folder. cd ./Adder_4_bit/run

2. For standalone simulation in Vivado you can source run_xsim.csh on Linux and
run_xsim.bat on windows or source run.tcl using the below command in Linux/
Windows. Vivado –mode batch –source run.tcl

3. Once the simulation gets finished you can observe the UVM test results in the Shell or
command prompt as shown in the following figure.

Directory Structure of both project and non project mode:

• src & verif - Design and verification environment related files.

• Run - Location to run simulation in Non project mode.

• UVM_test - Project Mode XSIM simulation.

Chapter 6: Lab 5: Running UVM example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=74


Chapter 7

Lab 6: Running GTM-Wizard
example

Overview
PAM4 encodes 2-bits of binary data to into four voltage levels. Through this tutorial, we can
create an example to verify designs with PAM4 signals.

Since four voltage levels are not supported by implementation tools. So the PAM4 connections
are created as regular single bit wire. For simulation purposes, the PAM4 signals of the design are
made accessible in testbench via integer ports of a special module (xil_dut_bypass) that gets
generated as part of this flow. The generated bypass module is not part of the DUT but has
direct access to PAM4 signals of the DUT. This module can be instantiated in testbench to
directly drive/observe PAM4 signals.

Feature Covered
The following features are covered in the GTM-Wizard:

1. Detection of designs with PAM4 signals, designs instantiating GTM_DUAL and automatic
generation bypass module (xil_dut_bypass).

2. Simple sanity check for design that should instantiate bypass module.

3. A mechanism to view PAM4 signals in Waveform Viewer for XSim users.

4. Provide a way to generate bypass module for export simulation flow.

In this tutorial, we would generate an GTM-Wizard example design, which usage PAM4 signal. To
generate that, please follow steps below:

1. Create project in Vivado 2022.1 without adding source/constraint file Create project → next 
→ next → next → next → next.

2. In the Default Part page, select Virtex UltraScale+ 58G and select parts as shown in the
following figure and click Next.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=75


3. Check the summary report and click Finish.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=76


4. Under Project Manager, click on IP Catalog and search for gtm_wizard and then double-
click Virtex UltraScale+ FPGAs Transceivers Wizard.

5. Click OK on default configuration and click Skip on Generate Output Product dialog box.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=77


6. On Sources window, right-click the generated XCI file, click Open IP Example Design, and
specify the location.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=78


At this stage, you have an example ready to run simulation.

Before heading towards simulation, here are few things from PAM4 point of view:

1. xil_dut_bypass module definition is generated on run time by tool which contain
hierarchical reference to GTM_DUAL.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=79


2. This xil_dut_bypass module generation is controled by the Configure Design for
Hierarchical Access option, which is set by default.

Note: For old behavior, please uncheck Configure Design for Hierarchical Access.

Once design is created, we can run it either through launch_simulation or
export_simulation.

• Launch_simulation: 

1. Click Run Behavioral Simulation. This will run simulation with Vivado Simulator.

2. Once snapshot is created and loaded, simulation will stop after 1000 ns. Let’s look at
xil_dut_bypass definition. Double-click xil_dut_bypass in the Scope window to see the
source file. Notice the hierarchical reference from the top module till the leaf level
instance.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=80


3. Right-click xil_dut_bypass and add to waveform.

4. Click Restart  then run all.

5. Once simulation is complete, section all signal of xil_dut_bypass in waveform, right-click
and select Waveform Style to Analog.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=81


6. Go to analog setting under waveform style and change the value like below for better
waveform.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=82


7. Observe the analog value of signals.

Note: For running same design with third party simulators, please refer to Vivado Design Suite User
Guide: Logic Simulation (UG900)

• Export_simulation: The following are the two flows for export simulation:

• Export simulation with xil_dut_bypass generated: 

1. Invoke command export_simulation -simulator xsim -
generate_hier_access on Vivado IDE.

This generates scripts in <your_local_path>/export_sim/xsim.

2. In the generated vlog.prj, observe xil_dut_bypass.sv. This is because
launch_simulation has generated and added this as part of project.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  83Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=83


3. Invoke gtm_wizard_ultrascale_0_example_top_sim.sh it runs the simulation.
If you want to run in GUI mode, add -gui to xsim command of else part.

4. Follow step-3 to step-7 under launch_simulation and you will able to see same
waveform/output as launch_simulation.

• Export simulation without xil_dut_bypass: 

1. Invoke gtm_wizard_ultrascale_0_example_top_sim.sh -gen_bypass.

2. It runs the simulation for delta time unit and generate hierarchical path in log file.

3. In generated simulate.log, note down the entry
xilinx_hier_bypass_ports:gtm_wizard_ultrascale_0_example_top_si
m.u_e….

4. Generate xil_dut_bypass.sv by invoking generate_hier_access -log ./
simulate.log on Vivado TCL console.

5. Observe xil_dut_bypass.sv generate in current directory.

6. Add this xil_dut_bypass.sv in vlog.prj as sv xil_defaultlib ./
xil_dut_bypass.sv.

7. Invoke gtm_wizard_ultrascale_0_example_top_sim.sh it runs simulation. If
you want to run in GUI mode, add -gui to xsim command of else part.

8. Follow step-3 to step-7 under launch_simulation and you can see same waveform/
output as launch_simulation.

• Generating xil_dut_bypass for non-vivado project: 

1. Create compile order of the design (<design>.prj).

2. Execute XSim simulator tools to generate the simulator log file:

a. xelab -prj <design>.prj -top <testbench-top>.

b. xsim -R <testbench-top> --testplusarg GEN_BYPASS.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=84


3. Verify <simulator>.log file generated and that it contains the
xilinx_hier_bypass_ports string with the hierarchical path information. For
example:

xilinx_hier_bypass_ports:tb.dut_i.gtmWiz_00.gtm_i 
in:integer:in1:in_var1 in:integer:in2:in_var2 
out:integer:out1:out_var1 out:integer:out2:out_var2

4. Download generate_hier_access.tcl utility from GitHub:

wget https://raw.githubusercontent.com/Xilinx/XilinxTclStore/2020.1-
dev/tclapp/xilinx/projutils/generate_hier_access.tcl

5. Execute generate_hier_access.tcl to generate the sources for hierarchical
access simulation:

a. # /usr/bin/tclsh.

b. source generate_hier_access.tcl.

c. generate_hier_access -bypass dut_bypass -testbench <module>
-directory <path> -log <simulator>.log. Instantiate this dut_bypass
in test bench with proper connection.

6. Add <path>/dut_bypass.sv to <design>.prj.

7. Run simulator tools to simulate the design in <design>.prj.

Chapter 7: Lab 6: Running GTM-Wizard example

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=85


Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Revision History
The following table shows the revision history for this document.

Appendix A: Additional Resources and Legal Notices

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  86Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=86


Section Revision Summary
05/31/2022 Version 2022.1

Creating a New Project & Random Constraint Updated the content.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix A: Additional Resources and Legal Notices

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  87Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=87


Copyright

© Copyright 2012-2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan,
Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Appendix A: Additional Resources and Legal Notices

UG937 (v2022.1) May 31, 2022  www.xilinx.com
Logic Simulation  88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG937&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2022.1&docPage=88

	Vivado Design Suite Tutorial
	Table of Contents
	Ch. 1: Vivado Simulator Overview
	Introduction
	Tutorial Description
	Locating Tutorial Design Files
	Software and Hardware Requirements

	Ch. 2: Lab 1: Running the Simulator in Vivado IDE
	Step 1: Creating a New Project
	Step 2: Adding IP from the IP Catalog
	Adding Sine High
	Adding Sine Mid
	Adding Sine Low

	Step 3: Running Behavioral Simulation
	Conclusion

	Ch. 3: Lab 2: Debugging the Design
	Step 1: Opening the Project
	Step 2: Displaying Signal Waveforms
	Add and Monitor Signals

	Step 3: Using the Analog Wave Viewer
	Logging Waveforms for Debugging
	Using the Tcl Command

	Step 4: Working with the Waveform Window
	Grouping Signals
	Adding Dividers
	Adding Signals from Sub-modules

	Step 5: Changing Signal Properties
	Viewing Hierarchical Signal Names
	Viewing Signal Values

	Step 6: Saving the Waveform Configuration
	Working with Multiple Waveform Configurations

	Step 7: Re-Simulating the Design
	Step 8: Using Cursors, Markers, and Measuring Time
	Step 9: Debugging with Breakpoints
	Using Breakpoints
	Stepping Through Source Code

	Step 10: Relaunch Simulation
	Conclusion

	Ch. 4: Lab 3: Running Simulation in Batch Mode
	Step 1: Preparing the Simulation
	Creating the Vivado Simulator Project File
	Manually Parsing Design Files

	Step 2: Building the Simulation Snapshot
	Running xelab

	Step 3: Manually Simulating the Design
	Conclusion

	Ch. 5: Lab 4: System Verilog Feature
	Creating an Example Design
	Launching Simulation
	Debugging Using Vivado Simulator
	Scope Window
	Object Window
	Tcl Console


	Functional Coverage
	Cover Group Declaration
	Assertion
	Immediate Assertion
	Concurrent Assertion


	Random Constraint

	Ch. 6: Lab 5: Running UVM example
	Creating a New Project

	Ch. 7: Lab 6: Running GTM-Wizard example
	Overview
	Feature Covered

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Revision History
	Please Read: Important Legal Notices



