
Vivado Design Suite User
Guide

Implementation

UG904 (v2021.2) November 24, 2021

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG904
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Revision History
The following table shows the revision history for this document.

Section Revision Summary
11/24/2021 Version 2021.2

Auto Directives New topic.

Resynth Remap Updated with clarification.

Floorplanning Phase Updated with clarification.

Incremental Directives Corrected code.

Parallel Runs New topic.

08/30/2021 Version 2021.1

Sweep (Default) Added more information.

Incremental Implementation Controls Corrected Block Memory and DSP placement example.

Using Incremental Implementation in Project Mode Corrected steps and updated image.

Using report_incremental_reuse Updated Reuse Summary example and Reference Run
Comparison.

Physical Optimization Reports Updated to clarify that report is not cumulative.

Available Logic Optimizations Added -resynth_remap.

Resynth Remap Added logic optimization.

opt_design Added [-resynth_remap] to opt_design Syntax.

Physical Synthesis Phase Added entry for Property-Based Retiming.

02/26/2021 Version 2020.2

General Updates General release updates.

08/25/2020 Version 2020.1

Appendix A: Using Remote Hosts and Compute Clusters Updated section.

Revision History

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Preparing for Implementation... 5
About the Vivado Implementation Process... 5
Navigating Content by Design Process.. 8
Managing Implementation.. 9
Configuring, Implementing, and Verifying IP..14
Guiding Implementation with Design Constraints... 14
Using Checkpoints to Save and Restore Design Snapshots.. 17

Chapter 2: Implementing the Design..19
Running Implementation in Non-Project Mode..19
Running Implementation in Project Mode.. 23
Customizing Implementation Strategies... 34
Launching Implementation Runs..40
Moving Processes to the Background.. 42
Running Implementation in Steps.. 42
About Implementation Commands.. 44
Implementation Sub-Processes.. 44
Opening the Synthesized Design.. 46
Logic Optimization.. 51
Power Optimization.. 66
Placement...68
Physical Optimization... 86
Routing... 102
Incremental Implementation.. 111

Chapter 3: Analyzing and Viewing Implementation Results............. 131
Monitoring the Implementation Run... 131
Moving Forward After Implementation... 134
Viewing Messages...136
Viewing Implementation Reports... 139

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=3

Modifying Implementation Results.. 143
Vivado ECO Flow..170

Appendix A: Using Remote Hosts and Compute Clusters....................191
Overview...191
Requirements.. 191
Manual Configuration...192
Cluster Configurations..194
Launching Jobs on Remote Hosts... 198

Appendix B: ISE Command Map..200
Tcl Commands and Options...200

Appendix C: Implementation Categories, Strategy Descriptions,
and Directive Mapping.. 201
Implementation Categories...201
Implementation Strategy Descriptions.. 201
Directives Used by opt_design and place_design in Implementation Strategies........... 203
Directives Used by phys_opt_design and route_design in Implementation Strategies. 204

Appendix D: Additional Resources and Legal Notices........................... 207
Xilinx Resources...207
Documentation Navigator and Design Hubs.. 207
References..207
Training Resources..208
Please Read: Important Legal Notices... 209

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=4

Chapter 1

Preparing for Implementation

About the Vivado Implementation Process
The Xilinx® Vivado® Design Suite enables implementation of the following Xilinx device
architectures: Versal® adaptive compute acceleration platform (ACAP), UltraScale™,
UltraScale+™, and Xilinx 7 series FPGA. A variety of design sources are supported, including:

• RTL designs

• Netlist designs

• IP-centric design flows

shows the Vivado tools flow.

Vivado implementation includes all steps necessary to place and route the netlist onto device
resources, within the logical, physical, and timing constraints of the design.

For more information about the design flows supported by the Vivado tools, see the Vivado
Design Suite User Guide: Design Flows Overview (UG892).

SDC and XDC Constraint Support
The Vivado Design Suite implementation is a timing-driven flow. It supports industry standard
Synopsys Design Constraints (SDC) commands to specify design requirements and restrictions, as
well as additional commands in the Xilinx Design Constraints format (XDC).

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=5

Figure 1: Vivado Design Suite High-Level Design Flow

High-Level
SynthesisC Sources

DSP Design (System
Generator)

IP Integration
(Embedded, Logic,

DSP…)

IP Packaging

RTL System-Level Integration
Sources-RTL,

Netlist,
Constraints

IP Catalog

Xilinx IP

Third-Party IP

User IP

Custom IP

Synthesis

Implementation

Programming
and Debug

Design Analysis
Constraints
Simulation
Debugging

Cross Probing
ECO

X12973-040716

Vivado Implementation Sub-Processes

The Vivado Design Suite implementation process transforms a logical netlist and constraints into
a placed and routed design, ready for bitstream generation. The implementation process walks
through the following sub-processes:

1. Opt Design: Optimizes the logical design to make it easier to fit onto the target Xilinx device.

2. Power Opt Design (optional): Optimizes design elements to reduce the power demands of
the target Xilinx device.

3. Place Design: Places the design onto the target Xilinx device and performs fanout replication
to improve timing.

4. Post-Place Power Opt Design (optional): Additional optimization to reduce power after
placement.

5. Post-Place Phys Opt Design (optional): Optimizes logic and placement using estimated timing
based on placement. Includes replication of high fanout drivers.

6. Route Design: Routes the design onto the target Xilinx device.

7. Post-Route Phys Opt Design (optional): Optimizes logic, placement, and routing using actual
routed delays.

8. Write Bitstream: Generates a bitstream for Xilinx device configuration. Typically, bitstream
generation follows implementation.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=6

For more information about writing the bitstream, see this link in the Vivado Design Suite User
Guide: Programming and Debugging (UG908).

Note: The Vivado Design Suite supports Module Analysis, which is the implementation of a part of a design
to estimate performance. I/O buffer insertion is skipped for this flow to prevent over-utilization of I/O. For
more information, search for “module analysis” in the Vivado Design Suite User Guide: Hierarchical Design
(UG905).

Multithreading with the Vivado Tools
On multiprocessor systems, Vivado tools use multithreading to speed up certain processes,
including DRC reporting, static timing analysis, placement, and routing. The maximum number of
simultaneous threads varies, depending on the number of processors and task. The maximum
number of threads by task is:

• DRC reporting: 8

• Static timing analysis: 8

• Placement: 8

• Routing: 8

• Physical optimization: 8

The default number of maximum simultaneous threads is based on the OS. For Windows
systems, the limit is 2; for Linux systems the default is 8. The limit can be changed using a
parameter called general.maxThreads. To change the limit use the following Tcl command:

Vivado% set_param general.maxThreads <new limit>

where the new limit must be an integer from 1 to 8, inclusive.

Tcl example on a Windows system:

Vivado% set_param general.maxThreads 2

This means all tasks are limited to two threads regardless of number of processors or the task
being executed. If the system has at least eight processors, you can set the limit to 8 and allow
each task to use the maximum number of threads.

Vivado% set_param general.maxThreads 8

To summarize, the number of simultaneous threads is the smallest of the following values:

• Maximum number of processors

• Limit of threads for the task

• General limit of threads

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=7

Parallel Runs

Vivado supports launching design runs in parallel by providing the launch_runs -jobs option to
specify the number of simultaneous runs. Each simultaneous run is an independent process,
requiring its own CPU and memory resources.

It is important to allocate sufficient resources to handle the total peak computing requirements.
For example, consider a design run that typically reports a peak usage of 20 GB RAM with
general.maxThreads set to 8. Launching 4 similar runs in parallel would require 32 processor
cores and roughly 80 GB RAM to avoid performance degradation due to competition for
computing resources by the 4 processes.

Tcl API Supports Scripting
The Vivado Design Suite includes a Tool Command Language (Tcl) Application Programming
Interface (API). The Tcl API supports scripting for all design flows, allowing you to customize the
design flow to meet your specific requirements.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835) or type <command> -help.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This
document covers the following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Vivado ECO Flow

• Configuring, Implementing, and Verifying IP

• Auto-Pipelining

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 8Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-process/versal-decision-tree-welcome.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=8

Managing Implementation
The Vivado Design Suite includes a variety of design flows and supports an array of design
sources. To generate a bitstream that can be downloaded onto a Xilinx device, the design must
pass through implementation.

Implementation is a series of steps that takes the logical netlist and maps it into the physical
array of the target Xilinx device. Implementation comprises:

• Logic optimization

• Placement of logic cells

• Routing of connections between cells

Project Mode and Non-Project Modes
The Vivado Design Suite lets you run implementation with a project file (Project Mode) or
without a project file (Non-Project Mode).

Project Mode

The Vivado Design Suite lets you create a project file (.xpr) and directory structure that allows
you to:

• Manage the design source files.

• Store the results of the synthesis and implementation runs.

• Track the project status through the design flow.

Working in Project Mode

In Project Mode, a directory structure is created on disk to help you manage design sources, run
results and reports, and track project status.

The automated management of the design data, process, and status requires a project
infrastructure that is stored in the Vivado project file (.xpr).

In Project Mode, the Vivado tools automatically write checkpoint files into the local project
directory at key points in the design flow.

To run implementation in Project Mode, you click the Run Implementation button in the IDE or
use the launch_runs Tcl command. See this link in the Vivado Design Suite User Guide: Design
Flows Overview (UG892) for more information about using projects in the Vivado Design Suite.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf;a=xUsingProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=9

Flow Navigator

The complete design flow is integrated in the Vivado Integrated Design Environment (IDE). The
Vivado IDE includes a standardized interface called the Flow Navigator.

The Flow Navigator appears in the left pane of the Vivado Design Suite main window. From the
Flow Navigator you can assemble, implement, and validate the design and IP. It features a
pushbutton interface to the entire implementation process to simplify the design flow. The
following figure shows the Implementation section of the Flow Navigator.

Figure 2: Flow Navigator, Implementation Section

IMPORTANT! This guide does not give a detailed explanation of the Vivado IDE, except as it applies to
implementation. For more information about the Vivado IDE as it relates to the entire design flow, see the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Non-Project Mode

The Vivado tools also let you work with the design in memory, without the need for a project file
and local directory. Working without a project file in the compilation style flow is called Non-
Project Mode. Source files and design constraints are read into memory from their current
locations. The in-memory design is stepped through the design flow without being written to
intermediate files.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=10

In Non-Project Mode, you must run each design step individually, with the appropriate options
for each implementation Tcl command.

Non-Project Mode allows you to apply design changes and proceed through the design flow
without needing to save changes and rerun steps. You can run reports and save design
checkpoints (.dcp) at any stage of the design flow.

IMPORTANT! In Non-Project Mode, when you exit the Vivado design tools, the in-memory design is lost.
For this reason, Xilinx recommends that you write design checkpoints after major steps such as synthesis,
placement, and routing.

You can save design checkpoints in both Project Mode and Non-Project Mode. You can only open
design checkpoints in Non-Project Mode.

Similarities and Differences Between Project Mode and Non-Project
Mode

Vivado implementation can be run in either Project Mode or Non-Project Mode. The Vivado IDE
and Tcl API can be used in both Project Mode and Non-Project Mode.

There are many differences between Project Mode and Non-Project Mode. Features not available
in Non-Project Mode include:

• Flow Navigator

• Design status indicators

• IP catalog

• Implementation runs and run strategies

• Design Runs window

• Messages window

• Reports window

Note: This list illustrates features that are not supported in Non-Project Mode. It is not exhaustive.

You must implement the non-project based design by running the individual Tcl commands:

• opt_design

• power_opt_design (optional)

• place_design

• phys_opt_design (optional)

• route_design

• phys_opt_design (optional)

• write_bitstream

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=11

You can run implementation steps interactively in the Tcl Console, in the Vivado IDE, or by using
a custom Tcl script. You can customize the design flow as needed to include reporting commands
and additional optimizations. For more information, see Running Implementation in Non-Project
Mode.

The details of running implementation in Project Mode and Non-Project Mode are described in
this guide.

For more information on running the Vivado Design Suite using either Project Mode or Non-
Project Mode, see:

• Vivado Design Suite User Guide: Design Flows Overview (UG892)

• Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

Beginning the Implementation Flow

The implementation flow typically begins by loading a synthesized design into memory. Then the
implementation flow can run, or the design can be analyzed and refined along with its constraints
and the design can be reloaded after updates.

There are two ways to begin the implementation flow with a synthesized design:

• Run Vivado synthesis. In Project Mode, the synthesis run contains the synthesis results and
those results are automatically used as the input for implementation run. In Non-Project
Mode, the synthesis results are in memory after synth_design completes, and implementation
can continue from that point.

• Load a synthesized netlist. Synthesized netlists can be used as the input design source, for
example when using a third-party tool for synthesis.

To initiate implementation:

• In Project Mode, launch the implementation run.

• In Non-Project Mode run a script or interactive commands.

To analyze and refine constraints, the synthesized design is loaded without running
implementation.

• In Project Mode, you accomplish this by opening the Synthesized Design, which is the result
of the synthesis run.

• In Non-Project Mode, you use the link_design command to load the design.

You can also drive the implementation flow using design checkpoints (.dcp) in Non-Project Mode.
Opening a checkpoint loads the design and restores it to its original state, which might include
placement and routing data. This enables re-entrant implementation flows, such as loading a
routed design and editing the routing, or loading a placed design and running multiple routes
with different options.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=12

Importing Previously Synthesized Netlists

The Vivado Design Suite supports netlist-driven design by importing previously synthesized
netlists from Xilinx or third-party tools. The netlist input formats include:

• Structural Verilog

• Structural SystemVerilog

• EDIF

• Xilinx NGC

• Synthesized Design Checkpoint (DCP)

IMPORTANT! NGC format files are not supported in the Vivado Design Suite for UltraScale and later
devices. It is recommended that you regenerate the IP using the Vivado Design Suite IP customization tools
with native output products. Alternatively, convert_ngc  Tcl utility to convert NGC files to EDIF or
Verilog formats. However, Xilinx recommends using native Vivado IP rather than XST-generated NGC
format files going forward.

IMPORTANT! When using IP in Project Mode or Non-Project Mode, always use the XCI file and not the
DCP file. This ensures that IP output products are used consistently during all stages of the design flow. If
the IP was synthesized out-of-context and already has an associated DCP file, the DCP file is automatically
used and the IP is not re-synthesized. For more information, this link in the Vivado Design Suite User
Guide: Designing with IP (UG896).

For more information on the source files and project types supported by the Vivado Design Suite,
see the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

Starting From RTL Sources

At a minimum, Vivado implementation requires a synthesized netlist. A design can start from a
synthesized netlist, or from RTL source files.

IMPORTANT! If you start from RTL sources, you must first run Vivado synthesis before implementation
can begin. The Vivado IDE manages this automatically if you attempt to run implementation on an un-
synthesized design. The tools allow you to run synthesis first.

For information on running Vivado synthesis, see the Vivado Design Suite User Guide: Synthesis
(UG901).

Creating and Opening the Synthesized Design in Non-Project Mode

In Non-Project Mode, you must run the Tcl command synth_design to create and open the
synthesized design. You can also run the Tcl command link_design to open a synthesized
netlist in any supported input format. You can open a synthesized design checkpoint file using
the open_checkpoint command.

For more information, see Opening the Synthesized Design.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xAddingExistingIPToAProject
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=13

Loading the Design Netlist in Project Mode Before Implementation

In Project Mode, after synthesis of an RTL design, or with a netlist-based project open, you can
load the design netlist for analysis before implementation.

To open a synthesized design, do one of the following:

• From the main menu, run Flow → Open Synthesized Design.

• In the Flow Navigator, run Synthesis → Open Synthesized Design.

• In the Design Runs window, select the synthesis run and select Open Run from the context
menu.

Configuring, Implementing, and Verifying IP
For information on importing IP into your design prior to synthesis, see this link in the Vivado
Design Suite User Guide: Designing with IP (UG896).

Guiding Implementation with Design
Constraints

There are three types of design constraints, physical constraints, timing constraints and power
constraints. These are defined as follows.

Physical Constraints Definition
Physical constraints define a relationship between logical design objects and device resources
such as:

• Package pin placement.

• Absolute or relative placement of cells, including Block RAM, DSP, LUT, and flip-flops.

• Floorplanning constraints that assign cells to general regions of a device.

• Device configuration settings.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf;a=xCreatingAnIPCustomization
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=14

Timing Constraints Definition
Timing constraints define the frequency requirements for the design, and are written in Xilinx
Design Constraints (XDC) which is based on industry standard SDC.

Without timing constraints, the Vivado Design Suite optimizes the design solely for wire length
and routing congestion, and makes no effort to assess or improve design performance.

Power Constraints Definition
Power constraints define the settings needed for accurate power analysis. These settings include:

• Operating conditions such as voltage settings, power and current budgets, and operating
environment details.

• Switching activity rates for:

○ Design objects: individual nets and pins.

○ Design object types such as block RAMs, DSPs, and transceivers.

○ Global set and reset signals.

Vivado power analysis uses timing constraints to determine switching rates and applies
vectorless propagation to determine toggle rates throughout the design. Without power
constraints, a default 12.5% toggle rate is used. However, applying accurate switching activity to
override defaults is essential for accurate power calculations.

For further information see the Vivado Design Suite User Guide: Power Analysis and Optimization
(UG907).

UCF Format Not Supported
IMPORTANT! The Vivado Design Suite does not support the UCF format.

For information on migrating UCF constraints to XDC commands, see this link in the ISE to Vivado
Design Suite Migration Guide (UG911).

Constraint Sets Apply Lists of Constraint Files to
Your Design
A constraint set is a list of constraint files that can be applied to your design in Project Mode. The
set contains design constraints captured in XDC or Tcl files.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug911-vivado-migration.pdf;a=xMigratingUCFConstraintsToXDC
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=15

Allowed Constraint Set Structures

The following constraint set structures are allowed:

• Multiple constraint files within a constraint set

• Constraint sets with separate physical and timing constraint files

• A master constraint file

• A new constraint file that accepts constraint changes

• Multiple constraint sets

TIP: Separate constraints by function into different constraint files to (a) make your constraint strategy
clearer, and (b) to facilitate targeting timing and implementation changes.

Multiple Constraint Sets Are Allowed

You can have multiple constraint sets for a project. Multiple constraint sets allow you to use
different implementation runs to test different approaches.

For example, you can have one constraint set for synthesis, and a second constraint set for
implementation. Having two constraint sets allows you to experiment by applying different
constraints during synthesis, simulation, and implementation.

Organizing design constraints into multiple constraint sets can help you:

• Target various Xilinx devices for the same project. Different physical and timing constraints
might be needed for different target devices.

• Perform what-if design exploration. Use constraint sets to explore various scenarios for
floorplanning and over-constraining the design.

• Manage constraint changes. Override master constraints with local changes in a separate
constraint file.

TIP: To validate the timing constraints, run report_timing_summary  and
report_methodology  on the synthesized design. Fix problematic constraints before implementation!

For more information on defining and working with constraints that affect placement and
routing, see this link in the Vivado Design Suite User Guide: Using Constraints (UG903).

Adding Constraints as Attribute Statements
Constraints can be added to HDL sources as attribute statements. Attributes can be added to
both Verilog and VHDL sources to pass through to Vivado synthesis or Vivado implementation.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf;a=xPhysicalConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=16

In some cases, constraints are available only as HDL attributes, and are not available in XDC. In
those cases, the constraint must be specified as an attribute in the HDL source file. For example,
Relatively Placed Macros (RPMs) must be defined using HDL attributes. An RPM is a set of logic
elements (such as FF, LUT, DSP, and RAM) with relative placements.

You can define RPMs using U_SET and HU_SET attributes and define relative placements using
Relative Location Attributes.

For more information about Relative Location Constraints, see this link in the Vivado Design Suite
User Guide: Using Constraints (UG903).

For more information on constraints that are not supported in XDC, see the ISE to Vivado Design
Suite Migration Guide (UG911).

Using Checkpoints to Save and Restore Design
Snapshots

The Vivado Design Suite uses a physical design database to store placement and routing
information. Design checkpoint files (.dcp) allow you to save and restore this physical database at
key points in the design flow. A checkpoint is a snapshot of a design at a specific point in the
flow.

This design checkpoint file includes:

• Current netlist, including any optimizations made during implementation

• Design constraints

• Implementation results

Checkpoint designs can be run through the remainder of the design flow using Tcl commands.
They cannot be modified with new design sources.

IMPORTANT! In Project Mode, the Vivado design tools automatically save and restore checkpoints as the
design progresses. In Non-Project Mode, you must save checkpoints at appropriate stages of the design
flow, otherwise, progress is lost.

Writing Checkpoint Files
Run File →  Checkpoint →  Write to capture a snapshot of the design database at any point in the
flow. This creates a file with a dcp extension.

The related Tcl command is write_checkpoint.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf;a=xDefiningRelativelyPlacedMacros
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=17

Reading Checkpoint Files
Run File → Checkpoint → Open to open the checkpoint in the Vivado Design Suite. The design
checkpoint is opened as a separate in-memory design.

The related Tcl command is open_checkpoint.

Chapter 1: Preparing for Implementation

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=18

Chapter 2

Implementing the Design

Running Implementation in Non-Project
Mode

To implement the synthesized design or netlist onto the targeted Xilinx® devices in Non-Project
Mode, you must run the Tcl commands corresponding to the Implementation sub-processes:

• Opt Design (opt_design): Optimizes the logical design to make it easier to fit onto the
target Xilinx device.

• Power Opt Design (power_opt_design) (optional): Optimizes design elements to reduce
the power demands of the target Xilinx device.

• Place Design (place_design): Places the design onto the target Xilinx device and replicates
logic to improve timing.

• Post-Place Power Opt Design (power_opt_design) (optional): Additional optimization to
reduce power after placement.

• Post-Place Phys Opt Design (phys_opt_design) (optional): Optimizes logic and placement
using estimated timing based on placement. Includes replication of high fanout drivers.

• Route Design (route_design): Routes the design onto the target Xilinx device.

• Post-Route Phys Opt Design (phys_opt_design) (optional): Optimizes logic, placement,
and routing using actual routed delays.

• Write Bitstream (write_bitstream): Generates a bitstream for Xilinx device configuration
except for Versal® ACAP devices. Typically, bitstream generation follows implementation.

• Write Device Image (write_device_image): Generates a programmable device image for
programming a Versal device.

For more information about writing the bitstream or creating a device image, see this link in the
Vivado Design Suite User Guide: Programming and Debugging (UG908).

These steps are collectively known as implementation. Enter the commands in any of the
following ways:

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=19

• In the Tcl Console from the Vivado® IDE.

• From the Tcl prompt in the Vivado Design Suite Tcl shell.

• Using a Tcl script with the implementation commands and source the script in the Vivado
Design Suite.

Non-Project Mode Example Script
The following script is an example of running implementation in Non-Project Mode. Assuming
the script is named run.tcl, you would call the script using the source command in the Tcl
shell.

Note: The read_xdc step reads XDC constraints from the XDC files and applies constraints to design
objects. Therefore all netlist files must be read into Vivado and link_design should be run before
read_xdc to ensure that the XDC constraints can be applied to their intended design objects.

source run.tcl

Step 1: Read in top-level EDIF netlist from synthesis tool read_edif c:/
top.edf
Read in lower level IP core netlists read_edif c:/core1.edf
read_edif c:/core2.edf

Step 2: Specify target device and link the netlists
Merge lower level cores with top level into single design link_design -
part xc7k325tfbg900-1 -top top

Step 3: Read XDC constraints to specify timing requirements read_xdc c:/
top_timing.xdc
Read XDC constraints that specify physical constraints such as pin
locations read_xdc c:/top_physical.xdc

Step 4: Optimize the design with default settings opt_design

Step 5: Place the design using the default directive and save a
checkpoint # It is recommended to save progress at certain intermediate
steps
The placed checkpoint can also be routed in multiple runs using different
options place_design -directive Default
write_checkpoint post_place.dcp

Step 6: Route the design with the AdvancedSkewModeling directive. For
more information
on router directives type 'route_design -help' in the Vivado Tcl Console
route_design -directive AdvancedSkewModeling

Step 7: Run Timing Summary Report to see timing results
report_timing_summary -file post_route_timing.rpt
Run Utilization Report for device resource utilization report_utilization
-file post_route_utilization.rpt

Step 8: Write checkpoint to capture the design database;
The checkpoint can be used for design analysis in Vivado IDE or TCL API
write_checkpoint post_route.dcp

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=20

Key Steps in Non-Project Mode Example Script
The key steps in the Non-Project Mode Example Script are as follows:

• Step 1: Read Design Source Files

• Step 2: Build the In-Memory Design

• Step 3: Read Design Constraints

• Step 4: Perform Logic Optimization

• Step 5: Place the Design

• Step 6: Route the Design

• Step 7: Run Required Reports

• Step 8: Save the Design Checkpoint

Step 1: Read Design Source Files

EDIF netlist design sources are read into memory through use of the read_edif command.
Non-Project Mode also supports an RTL design flow, which allows you to read source files and
run synthesis before implementation.

Use the read_checkpoint command to add synthesized design checkpoint files as sources.

The read_* Tcl commands are designed for use with Non-Project Mode. The read_* Tcl
commands allow the Vivado tools to read a file on the disk and build the in-memory design
without copying the file or creating a dependency on the file.

This approach makes Non-Project Mode highly flexible with regard to design.

IMPORTANT! You must monitor any changes to the source design files, and update the design as needed.

Step 2: Build the In-Memory Design

The Vivado tools build an in-memory view of the design using link_design. The
link_design command combines the netlist based source files read into the tools with the
Xilinx part information, to create a design database in memory.

There are two important link_design options:

• The -part option specifies the target device.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=21

• The -top option specifies the top design for implementation. If the top-level netlist is EDIF
and the -top option is not specified, the Vivado tools will use the top design embedded in
the EDIF netlist. If the top-level netlist is not EDIF but structural Verilog, the -top option is
required. The -top option can also be used to specify a submodule as the top, for example
when running the Module Analysis flow to estimate performance and utilization.

All actions taken in Non-Project Mode are directed at the in-memory database within the Vivado
tools.

The in-memory design resides in the Vivado IDE for interaction with the design data in a
graphical form. tools, whether running in batch mode, Tcl shell mode for interactive Tcl
commands, or in the

Step 3: Read Design Constraints

The Vivado Design Suite uses design constraints to define requirements for both the physical and
timing characteristics of the design.

For more information, see Guiding Implementation with Design Constraints.

The read_xdc command reads an XDC constraint file, then applies it to the in-memory design.

TIP: Although Project Mode supports the definition of constraint sets, containing multiple constraint files
for different purposes, Non-Project Mode uses multiple read_xdc  commands to achieve the same effect.

Step 4: Perform Logic Optimization

Logic optimization is run in preparation for placement and routing. Optimization simplifies the
logic design before committing to physical resources on the target part.

The Vivado netlist optimizer includes many different types of optimizations to meet varying
design requirements. For more information, see Logic Optimization.

Step 5: Place the Design

The place_design command places the design. For more information, see Placement. After
placement, the progress is saved to a design checkpoint file using the write_checkpoint
command.

Step 6: Route the Design

The route_design command routes the design. For more information, see Routing.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=22

Step 7: Run Required Reports

The report_timing_summary command runs timing analysis and generates a timing report
with details of timing violations. The report_utilization command generates a summary of
the percentage of device resources used along with other utilization statistics.

In Non-Project Mode, you must use the appropriate Tcl command to specify each report that you
want to create. Each reporting command supports the -file option to direct output to a file.

See this link the Vivado Design Suite Tcl Command Reference Guide (UG835) for further information
on the report_timing_summary command and this link for further information on
report_utilization command.

You can output reports to files for later review, or you can send the reports directly to the Vivado
IDE to review now. For more information, see Viewing Implementation Reports.

Step 8: Save the Design Checkpoint

Saves the in-memory design into a design checkpoint file. The saved in-memory design includes
the following:

• Logical netlist

• Physical and timing related constraints

• Xilinx part data

• Placement and routing information

In Non-Project Mode, the design checkpoint file saves the design and allows it to be reloaded for
further analysis and modification.

For more information, see Using Checkpoints to Save and Restore Design Snapshots.

Running Implementation in Project Mode
In Project Mode, the Vivado IDE allows you to:

• Define implementation runs that are configured to use specific synthesis results and design
constraints.

• Run multiple strategies on a single design.

• Customize implementation strategies to meet specific design requirements.

• Save customized implementation strategies to use in other designs.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 23Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing_summary
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_utilization
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=23

IMPORTANT! Non-Project Mode does not support predefined implementation runs and strategies. Non-
project based designs must be manually moved through each step of the implementation process using Tcl
commands. For more information, see Running Implementation in Non-Project Mode.

Creating Implementation Runs
You can create and launch new implementation runs to explore design alternatives and find the
best results. You can queue and launch the runs serially or in parallel using multiple, local CPUs.

On Linux systems, you can launch runs on remote servers. For more information, see Appendix A:
Using Remote Hosts and Compute Clusters.

Defining Implementation Runs

To define an implementation run:

1. From the main menu, select Flow → Create Runs.

Alternatively, in the Flow Navigator, select Create Implementation Runs from the
Implementation popup menu. Or, in the Design Runs window, select Create Runs from the
popup menu.

The Create New Runs wizard opens.

2. Select Implementation on the first page of the Create New Runs wizard, and click Next.

3. The Configure Implementation Runs page appears, as shown in the following figure. Specify
settings as described in the steps below the figure.

a. In the Name column, enter a name for the run or accept the default name.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=24

b. Select a Synth Name to choose the synthesis run that will generate (or that has already
generated) the synthesized netlist to be implemented. The default is the currently active
synthesis run in the Design Runs window. For more information, see Appendix C:
Implementation Categories, Strategy Descriptions, and Directive Mapping.

Note: In the case of a netlist-driven project, the Create Run command does not require the name
of the synthesis run.

Alternatively, you can select a synthesized netlist that was imported into the project from
a third-party synthesis tool. For more information, see the Vivado Design Suite User Guide:
Synthesis (UG901).

c. Select a Constraints Set to apply during implementation. The optimization, placement,
and routing are largely directed by the physical and timing constraints in the specified
constraint set.

For more information on constraint sets, see the Vivado Design Suite User Guide: Using
Constraints (UG903).

d. Select a target Part.

The default values for Constraints Set and Part are defined by the Project Settings when
the Create New Runs command is executed.

For more information on the Project Settings, see this link in the Vivado Design Suite User
Guide: System-Level Design Entry (UG895).

TIP: To create runs with different constraint sets or target parts, use the Create New Runs
command. To change these values on existing runs, select the run in the Design Runs window and
edit the Run Properties.

e. Select a Strategy.

Strategies are a defined set of Vivado implementation feature options that control the
implementation results. Vivado Design Suite includes a set of pre-defined strategies. You
can also create your own implementation strategies.

Select from among the strategies shown in Appendix C: Implementation Categories,
Strategy Descriptions, and Directive Mapping. The strategies are broken into categories
according to their purposes, with the category name as a prefix. The categories are shown
in Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping.

For more information see Defining Implementation Strategies.

TIP: The optimal strategy can change between designs and software releases.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf;a=xConfiguringProjectSettings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=25

The purpose of using Performance strategies is to improve design performance at the
expense of run time. You should always try to meet timing goals, using the Vivado
implementation defaults first, before choosing a Performance strategy. This ensures that
your design has sufficient margin for absorbing timing closure impact due to design
changes. But if your design goals cannot be met, and if increased run time is acceptable,
the Performance_Explore strategy is a good first choice. It covers all types design types.

IMPORTANT! Strategies containing the terms SLL or SLR are for use with SSI devices only.

TIP: Before launching a run, you can change the settings for each step in the implementation
process, overriding the default settings for the selected strategy. You can also save those new
settings as a new strategy. For more information, see Changing Implementation Run Settings.

f. Click More to define additional runs. By default, the next strategy in the sequence is
automatically chosen. Specify names and strategies for the added runs.

g. Use the Make Active check box to select the runs you wish to initiate.

h. Click Next.

4. The Launch Options page appears, as shown in the following figure. Specify options as
described in the steps below the figure.

Note: The Launch runs on remote hosts and Launch runs on Cluster options shown in the previous
figure are Linux-only. They are not visible on Windows machines.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=26

a. Specify the Launch directory, the location at which implementation run data is created
and stored.

The default directory is located in the local project directory structure. Files for
implementation runs are stored by default at: <project_name>/
<project_name>.runs/<run_name>.

TIP: Defining a directory location outside the project directory structure makes the project non-
portable, because absolute paths are written into the project files.

b. Use the radio buttons and drop-down options to specify settings appropriate to your
project. Choose from the following:

• Select the Launch runs on local host option if you want to launch the run on the local
machine.

• Use the Number of jobs drop-down menu to define the number of local processors to
use when launching multiple runs simultaneously.

• Select Launch runs on remote hosts (Linux only) if you want to use remote hosts to
launch one or more jobs.

• Use the Configure Hosts button to configure remote hosts. For more information, see
Appendix A: Using Remote Hosts and Compute Clusters.

• Select Launch runs on Cluster (Linux only) if you want to use a compute cluster
command to launch one or more jobs. Use the drop down menu to select one of the
natively supported Vivado Clusters (lsf, sge or slurm) or a User Define Cluster that has
been added previously.

• Select the Generate scripts only option if you want to export and create the run
directory and run script but do not want the run script to launch at this time. The
script can be run later outside the Vivado IDE tools.

• Select Do not launch now if you want to save the new runs, but you do not want to
launch or create run scripts at this time.

5. Click Next to review the Create New Runs Summary.

6. Click Finish to create the defined runs and execute the specified launch options.

New runs are added to the Design Runs window. See Using the Design Runs Window.

Using the Design Runs Window
The Design Runs window displays all synthesis and implementation runs created in the project. It
includes commands to configure, manage, and launch the runs.

Opening the Design Runs Window

Select Window →  Design Runs to open the Design Runs window.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=27

Design Runs Window Functionality

• Each implementation run appears indented beneath the synthesis run of which it is a child.

• A synthesis run can have multiple implementation runs. Use the tree widgets in the window to
expand and collapse synthesis runs.

• The Design Runs window is a tree table window.

For more information on working with the columns to sort the data in this window, see this link
in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Figure 3: Design Runs Window

Run Status

The Design Runs window reports the run status, including when:

• The run has not been started.

• The run is in progress.

• The run is complete.

• The run is out-of-date.

Run Times

The Design Runs window reports start and elapsed run times.

Run Timing Results

The Design Runs window reports timing results for implementation runs including WNS, TNS,
WHS, THS, and TPWS.

Out-of-Date Runs

Runs can become out-of-date when source files, constraints, or project settings are modified. You
can reset and delete stale run data in the Design Runs window.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf;a=xUsingDataTableWindows
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=28

Active Run

All views in the Vivado IDE reference the active run. The Log window, Report window, Status
Bar, and Project Summary display information for the active run. The Project Summary window
displays only compilation, resource, and summary information for the active run.

TIP: Only one synthesis run and one implementation run can be active in the Vivado IDE at any time.

The active run is displayed in bold text. To make a run active:

1. Select the run in the Design Runs window.

2. Select Make Active from the popup menu.

Changing Implementation Run Settings

Select a run in the Design Runs window to display the current configuration of the run in the Run
Properties window, shown in the following figure.

In the Run Properties window, you can change:

• The name of the run

• The Xilinx part targeted by the run

• The run description

• The constraints set that both drives the implementation and is the target of new constraints
from implementation

For more information on the Run Properties window, see this link in the Vivado Design Suite User
Guide: Using the Vivado IDE (UG893).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf;a=xUsingTheRunPropertiesWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=29

Figure 4: Implementation Run Properties Window

Specifying Design Run Settings
Specify design run settings in the Design Run Settings dialog box, shown in the following figure.
To open the Design Run Settings dialog box:

1. Right-click a run in the Design Runs window.

2. Select Change Run Settings from the popup menu to open the Design Run Settings dialog
box, shown in the following figure.

TIP: You can change the settings only for a run that has a Not Started status. Use Reset Run to return
a run to the Not Started status. See Resetting Runs.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=30

Figure 5: Design Run Settings Dialog Box

The Design Run Settings dialog box displays the following:

• The implementation strategy currently employed by the run.

• The command options associated with that strategy for each step of the implementation
process. The three command options are described below.

Strategy

Selects the strategy to use for the implementation run. Vivado Design Suite includes a set of pre-
defined implementation strategies, or you can create your own.

For more information, see Defining Implementation Strategies.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=31

Description

Describes the selected implementation strategy.

Options

When you select a strategy, each step of the Vivado implementation process displays in a table in
the lower part of the dialog box:

• Opt Design (opt_design)

• Power Opt Design (power_opt_design) (optional)

• Place Design (place_design)

• Post-Place Power Opt Design (power_opt_design) (optional)

• Post-Place Phys Opt Design (phys_opt_design) (optional)

• Route Design (route_design)

• Post-Route Phys Opt Design (phys_opt_design) (optional)

• Write Bitstream (write_bitstream)

Click the command option to view a brief description of the option at the bottom of the Design
Run Settings dialog box.

Modifying Command Options

To modify command options, click the right-side column of a specific option. You can do the
following:

• Select options with predefined settings from the pull down menu.

• Select or deselect a check box to enable or disable options.

Note: The most common options for each implementation command are available through the check
boxes. Add other supported command options using the More Options field. Syntax: precede option
names with a hyphen and separate options from each other with a space.

• Type a value to define options that accept a user-defined value.

• Options accepting a file name and path open a file browser to let you locate and specify the
file.

• Insert a custom Tcl script (called a hook script) before and after each step in the
implementation process (tcl.pre and tcl.post).

Inserting a hook script lets you perform specific tasks before or after each implementation
step (for example, generate a timing report before and after Place Design to compare timing
results).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=32

For more information on defining Tcl hook scripts, see this link in the Vivado Design Suite Tcl
Command Reference Guide (UG835).

TIP: Relative paths in the tcl.pre  and tcl.post  scripts are relative to the appropriate run directory
of the project they are applied to: <project>/<project.runs>/<run_name>.

Use the DIRECTORY property of the current project or current run to define the relative paths in
your Tcl scripts:

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

Save Strategy As

Select the Save Strategy As icon next to the Strategy field to save any changes to the strategy as
a new strategy for future use.

CAUTION! If you do not select Save Strategy As , changes are saved to the current implementation run,
but are not preserved for future use.

Verifying Run Status
The Vivado IDE processes the run and launches implementation, depending on the status of the
run. The status is displayed in the Design Runs window (shown in the following figure).

• If the status of the run is Not Started, the run begins immediately.

• If the status of the run is Error, the tools reset the run to remove any incomplete run data,
then restarts the run.

• If the status of the run is Complete (or Out-of-Date), the tools prompt you to confirm that the
run should be reset before proceeding with the run.

Resetting Runs

To reset a run:

1. Select a run in the Design Runs window.

2. Right-click and select Reset Runs from the popup menu.

Resetting an implementation run returns it to the first step of implementation (opt_design) for
the selected run.

As shown in the following figure, the Vivado tools prompt you to confirm the Reset Runs
command, and optionally delete the generated files from the run directory.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug894-vivado-tcl-scripting.pdf;a=xDefiningTclHookScripts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=33

TIP: The default setting is to delete the generated files. Disable this check box to preserve the generated
run files.

Deleting Runs

To delete runs from the Design Runs window:

1. Select the run.

2. Select Delete from the popup menu.

As shown in the following figure, the Vivado tools prompt you to confirm the Delete Runs
command, and optionally delete the generated files from the run directory.

TIP: The default setting is to delete the generated files. Disable this check box to preserve the generated
run files.

Customizing Implementation Strategies
Implementation Settings define the default options used when you define new implementation
runs. Configure these options in the Vivado IDE.

Figure 6: Implementation Settings shows the Implementation page in the Settings dialog box. To
open this dialog box from the Vivado IDE, select Tools → Settings from the main menu.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=34

TIP: The Settings command is not available in the Vivado IDE when running in non-project mode. In this
case, you can define and preserve implementation strategies as Tcl scripts that can be used in batch mode,
or interactively in the Vivado IDE.

Accessing Implementation Settings for the Active
Run from Flow Navigator
You can also access Implementation Settings for the active implementation run by selecting
Settings at the top of the Flow Navigator, and then clicking the Implementation category. The
Settings dialog box, shown in the following figure, contains the following fields:

• Default constraint set: Select the constraint set to be used by default for the implementation
run.

• Report Settings: Use this menu to select the report strategy. You can choose from a preset
report strategy or define your own strategy to choose which reports to run at each design
step.

• Incremental Implementation: Specify the Incremental Compile checkpoint, if desired.

• Strategy: Select the strategy to use for the implementation run. The Vivado Design Suite
includes a set of pre-defined strategies. You can also create your own implementation
strategies and save changes as new strategies for future use. For more information see
Defining Implementation Strategies.

• Description: Describes the selected implementation strategy. The description of user-defined
strategies can be changed by entering a new descriptions. The description of Vivado tools
standard implementation strategies cannot be changed.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=35

Figure 6: Implementation Settings

Defining Implementation Strategies
A run strategy is a defined approach for resolving the synthesis or implementation challenges of
the design.

• Strategies are defined in pre-configured sets of options for the Vivado implementation
features.

• Strategies are tool and version specific.

• Each major release of the Vivado Design Suite includes version-specific strategies.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=36

Figure 7: Default Implementation Strategies

Vivado implementation includes several commonly used strategies that are tested against
internal benchmarks.

TIP: You cannot save changes to the predefined implementation strategies. However, you can copy,
modify, and save the predefined strategies to create your own.

Accessing Currently Defined Strategies
To access the currently defined run strategies, select Tools → Settings in the Vivado IDE main
menu.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=37

Reviewing, Copying, and Modifying Strategies
To review, copy, and modify run strategies:

1. Select Tools → Settings from the main menu.

2. Select Strategies in the left-side panel.

3. Select Run Strategies to review, copy, or modify run strategies. The Run Strategies page
(shown in the previous figure) contains a list of pre-defined run strategies for various tools
and release versions.

Note: For information on reviewing, copying, or modifying Report Strategies, see this link in Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906).

4. In the Flow pull-down menu, select the appropriate Vivado Implementation version for the
available strategies. A list of included strategies is displayed.

5. Create a new strategy or copy an existing strategy:

• To create a new strategy, click the Create Strategy button on the toolbar or select it
from the right-click menu.

• To copy an existing strategy, select Copy Strategy from the toolbar or from the popup
menu. The Vivado design tools create a copy of the currently selected strategy and add it
to the User Defined Strategies list. Vivadothen displays the strategy options on the right
side of the dialog box for you to modify.

6. Provide a name and description for the new strategy as follows:

• Name: Enter a strategy name to assign to a run.

• Type: Specify Synthesis or Implementation.

• Tool Version: Specify the tool version.

• Description: Enter the strategy description displayed in the Design Run results table.

7. Edit the Options for the various implementation steps:

• Design Initialization (init_design)

• Opt Design (opt_design)

• Power Opt Design (power_opt_design) (optional)

• Place Design (place_design)

• Post-Place Power Opt Design (power_opt_design) (optional)

• Post-Place Phys Opt Design (phys_opt_design) (optional)

• Route Design (route_design)

• Post-Route Phys Opt Design (phys_opt_design) (optional)

• Write Bitstream (write_bitstream) (all devices except Versal)

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 38Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug906-vivado-design-analysis.pdf;a=xConfigurableReportStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=38

• Write Device Image (write_device_image) (Versal devices)

TIP: Select an option to view a brief description of the option at the bottom of the Design Run Settings
dialog box.

8. Click the right-side column of a specific option to modify command options. See the previous
figure for an example.

You can then:

• Select predefined options from the pull down menu.

• Enable or disable some options with a check box.

• Type a user-defined value for options with a text entry field.

• Use the file browser to specify a file for options accepting a file name and path.

• Insert a custom Tcl script (called a hook script) before and after each step in the
implementation process (tcl.pre and tcl.post). This lets you perform specific tasks
either before or after each implementation step (for example, generating a timing report
before and after Place Design to compare timing results).

For more information on defining Tcl hook scripts, see this link in the Vivado Design Suite
User Guide: Using Tcl Scripting (UG894).

Relative paths in the tcl.pre and tcl.post scripts are relative to the appropriate run
directory of the project they are applied to: <project>/<project.runs>/
<run_name>.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug894-vivado-tcl-scripting.pdf;a=xDefiningTclHookScripts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=39

You can use the DIRECTORY property of the current project or current run to define the
relative paths in your scripts:

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

9. Click OK to save the new strategy.

The new strategy is listed under User Defined Strategy. The Vivado tools save user-defined
strategies to the following locations:

• Linux OS: $HOME/.Xilinx/Vivado/strategies

• Windows: C:\Users\<username>\AppData\Roaming\Xilinx\Vivado\strategies

Sharing Run Strategies
Design teams that want to create and share strategies can copy any user-defined strategy from
the user directory to the <InstallDir>/Vivado/<version>/strategies directory, where
<InstallDir> is the installation directory of the Xilinx software, and <version> is the
release version.

Launching Implementation Runs
You can launch the active implementation run, or select multiple runs to launch at once.

Launching a Single Implementation Run
Do any of the following to launch the active implementation run in the Design Runs window.

Launching a single implementation run initiates a separate process for the implementation.

TIP: Select a run in the Design Runs window to launch a run other than the active run.

• Select Run Implementation in the Flow Navigator.

• Select Flow →  Run Implementation from the main menu.

• Select Run Implementation from the toolbar menu.

• Select a run in the Design Runs window and select Launch Runs from the popup menu.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=40

Launching Multiple Runs
You can launch multiple runs at the same time by selecting them in the Design Runs window, as
follows:

1. Use Shift or Ctrl to select multiple runs.

Note: You can choose both synthesis and implementation runs when selecting multiple runs in the
Design Runs window. The Vivado IDE manages run dependencies and launches runs in the correct
order.

2. Select Launch Runs to open the Launch Runs dialog box, shown in the following figure.

Note: You can select Launch Runs from the popup menu, or from the Design Runs window toolbar
menu.

3. Select Launch directory.

The default launch directory is in the local project directory structure. Files for
implementation runs are stored at: <project_name>/<project_name>.runs/
<run_name>.

TIP: Defining any non-default location outside the project directory structure makes the project non-
portable because absolute paths are written into the project files.

4. Specify Options.

• Select Launch runs on local host if you want to launch the run on the local machine.

• Use the Number of jobs drop-down menu to define the number of local processors to use
when launching multiple runs simultaneously.

• Select Launch runs on remote hosts (Linux only) if you want to use remote hosts to launch
one or more jobs.

• Use the Configure Hosts button to configure remote hosts. For more information, see
Appendix A: Using Remote Hosts and Compute Clusters.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=41

• Select Launch runs using LSF (Linux only) if you want to use LSF (Load Sharing Facility)
bsub command to launch one or more jobs. Use the Configure LSF button to set up the
bsub command options and test your LSF connection.

TIP: LSF, the Load Sharing Facility, is a subsystem for submitting, scheduling, executing, monitoring,
and controlling a workload of batch jobs across compute servers in a cluster.

• Select the Generate scripts only option if you want to export and create the run directory
and run script but do not want the run script to launch at this time. The script can be run
later outside the Vivado IDE tools.

Moving Processes to the Background
As the Vivado IDE initiates the process to run synthesis or implementation, it reads design files
and constraint files in preparation for the run. The Starting Run dialog box, shown in the
following figure, lets you move this preparation to the background.

Putting this process into the background releases the Vivado IDE to perform other functions
while it completes the background task. The other functions can include functions such as
viewing reports and opening design files. You can use this time, for example, to review previous
runs, or to examine reports.

CAUTION! When you put this process into the background, the Tcl Console is blocked. You cannot
execute Tcl commands, or perform tasks that require Tcl commands, such as switching to another open
design.

Figure 8: Starting Run - Background Process

Running Implementation in Steps
Vivado implementation consists of a number of smaller processes such as:

• Opt Design (opt_design)

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=42

• Power Opt Design (power_opt_design) (optional)

• Place Design (place_design)

• Post-Place Power Opt Design (power_opt_design) (optional)

• Post-Place Phys Opt Design (phys_opt_design) (optional)

• Route Design (route_design)

• Post-Route Phys Opt Design (phys_opt_design) (optional)

• Write Bitstream (write_bitstream) (all devices except Versal)

• Write Device Image (write_device_image) (Versal devices)

The Vivado tools let you run implementation as a series of steps, rather than as a single process.

How to Run Implementation in Steps
To run implementation in steps:

1. Right-click a run in the Design Runs window and select Launch Next Step: <Step> or Launch
Step To from the popup menu shown in the following figure.

Valid <Step> values depend on which run steps have been enabled in the Run Settings. The
steps that are available in an implementation run are:

• Opt Design: Optimizes the logical design and fit sit onto the target Xilinx device.

• Power Opt Design: Optimizes elements of the design to reduce power demands of the
implemented device.

• Place Design: Places the design onto the target Xilinx device.

• Post-Place Power Opt Design: Additional optimization to reduce power after placement.

• Post-Place Phys Opt Design: Performs timing-driven optimization on the negative-slack
paths of a design.

• Route Design: Routes the design onto the target Xilinx device.

• Post-Route Phys Opt Design: Optimizes logic, placement, and routing, using actual routed
delays.

• Write Bitstream (all devices except Versal devices): Generates a bitstream for Xilinx device
configuration. Although not technically part of an implementation run, bitstream
generation is available as an incremental step.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=43

• Write Device Image (Versal devices): Generates a programmable device image for
programming a Versal device.

2. Repeat Launch Next Step: <Step> or Launch Step To as needed to move the design through
implementation.

3. To back up from a completed step, select Reset to Previous Step: <Step> from the Design
Runs window popup menu.

Select Reset to Previous Step to reset the selected run from its current state to the prior
incremental step. This allows you to:

• Step backward through a run.

• Make any needed changes.

• Step forward again to incrementally complete the run.

About Implementation Commands
The Xilinx Vivado Design Suite includes many features to manage and simplify the
implementation process for project-based designs. These features include the ability to step
manually through the implementation process.

For more information, see Running Implementation in Project Mode.

Non-Project based designs must be manually taken through each step of the implementation
process using Tcl commands or Tcl scripts.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

For more information, see Running Implementation in Non-Project Mode.

Implementation Sub-Processes
In project mode, the implementation commands are run in a fixed order. In non-project mode the
commands can be run in a similar order, but can also be run repeatedly, iteratively, and in a
different sequence than in project mode.

IMPORTANT! Implementation Commands are re-entrant.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=44

Implementation commands are re-entrant, which means that when an implementation command
is called in non-project mode, it reads the design in memory, performs its tasks, and writes the
resulting design back into memory. This provides more flexibility when running in non-project
mode.

Examples:

• opt_design followed by opt_design -remap

The Remap operation occurs on the opt_design results.

• place_design called on a design that contains some placed cells

The existing cell placement is used as a starting point for place_design.

• route_design called on a design that contains some routing

The existing routing is used as a starting point for route_design.

• route_design called on a design with unplaced cells

Routing fails because cells must be placed first.

• opt_design called on a fully-placed and routed design

Logic optimization might optimize the logical netlist, creating new cells that are unplaced, and
new nets that are unrouted. Placement and routing might need to be rerun to finish
implementation.

Putting a design through the Vivado implementation process, whether in project mode or non-
project mode, consists of several sub-processes:

• Open Synthesized Design: Combines the netlist, the design constraints, and Xilinx target part
data, to build the in-memory design to drive implementation.

• Opt Design: Optimizes the logical design to make it easier to fit onto the target Xilinx device.

• Power Opt Design (optional): Optimizes design elements to reduce the power demands of the
target Xilinx device.

• Place Design: Places the design onto the target Xilinx device.

• Post-Place Power Opt Design (optional): Additional optimization to reduce power after
placement.

• Post-Place Phys Opt Design (optional): Optimizes logic and placement using estimated timing
based on placement. Includes replication of high fanout drivers.

• Route Design: Routes the design onto the target Xilinx device.

• Post-Route Phys Opt Design: Optimizes logic, placement, and routing using actual routed
delays (optional).

• Write Bitstream: Generates a bitstream for Xilinx device configuration (except Versal device).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=45

• Write Device Image: Generates a programmable device image for programming a Versal
device.

Note: Although not technically part of an implementation run, Write Bitstream and Write Device Image are
available as a separate step.

To provide a better understanding of the individual steps in the implementation process, the
details of each step, and the associated Tcl commands, are documented in this chapter. The
following table provides a list of sub-processes and their associated Tcl commands.

Table 1: Implementation Sub-processes and Associated Tcl Commands

Sub-Process Tcl Command
Open Synthesized Design synth_design

open_checkpoint

open_run

link_design

Opt Design opt_design

Power Opt Design power_opt_design

Place Design place_design

Phys Opt Design phys_opt_design

Route Design route_design

Write Bitstream (all devices except Versal) write_bitstream

Write Device Image (Versal devices) write_device_image

For a complete description of the Tcl reporting commands and their options, see the Vivado
Design Suite Tcl Command Reference Guide (UG835).

Opening the Synthesized Design
The first steps in implementation are to read the netlist from the synthesized design into memory
and apply design constraints. You can open the synthesized design in various ways, depending on
the flow used.

Creating the In-Memory Design
To create the in-memory design, the Vivado Design Suite uses the following process to combine
the netlist files, constraint files, and the target part information:

1. Assembles the netlist.

The netlist is assembled from multiple sources if needed. Designs can consist of a mix of
structural Verilog, EDIF, and Vivado IP.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xsynth_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xopen_checkpoint
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xopen_run
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xlink_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xopt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xpower_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xplace_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xphys_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xroute_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_bitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_device_image
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=46

IMPORTANT! NGC format files are not supported in the Vivado Design Suite for UltraScale™ devices.
It is recommended that you regenerate the IP using the Vivado Design Suite IP customization tools
with native output products. Alternatively, you can use the convert_ngc Tcl utility to convert NGC files
to EDIF or Verilog formats. However, Xilinx recommends using native Vivado IP rather than XST-
generated NGC format files going forward.

2. Transforms legacy netlist primitives to the currently supported subset of Unisim primitives.

TIP: Use report_transformed_primitives  to generate a list of transformed cells.

3. Processes constraints from XDC files.

These constraints include both timing constraints and physical constraints such as package
pin assignments and Pblocks for floorplanning.

IMPORTANT! Review critical warnings that identify failed constraints. Constraints might be placed
on design objects that have been optimized or no longer exist. The Tcl command 'write_xdc -
constraints INVALID' also captures invalid XDC constraints.

4. Builds placement macros.

The Vivado tools create placement macros of cells, based on their connectivity or placement
constraints to simplify placement.

Examples of placement macros include:

• An XDC-based macro.

• A relatively placed macro (RPM).

Note: RPMs are placed as a group rather than as individual cells.

• A long carry chain that needs to be placed in multiple CLBs.

Note: The primitives making up the carry chains must belong to a single macro to ensure that
downstream placement aligns it into vertical slices.

Tcl Commands
The Tcl commands shown in the following table can be used to read the synthesized design into
memory, depending on the source files in the design, and the state of the design.

Table 2: Modes in Which Tcl Commands Can Be Used

Command Project Mode Non-Project Mode
synth_design X X
open_checkpoint X
open_run X
link_design X X

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=47

synth_design

The synth_design command can be used in both Project Mode and Non-Project Mode. It runs
Vivado synthesis on RTL sources with the specified options, and reads the design into memory
after synthesis.

synth_design Syntax

synth_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]
 [-include_dirs <args>] [-generic <args>] [-
verilog_define <args>]
 [-flatten_hierarchy <arg>] [-gated_clock_conversion
<arg>]
 [-directive <arg>] [-rtl] [-bufg <arg>] [-no_lc]
 [-shreg_min_size <arg>] [-mode <arg>] [-fsm_extraction
<arg>]
 [-rtl_skip_mlo] [-rtl_skip_ip] [-rtl_skip_constraints]
 [-srl_style <arg>] [-keep_equivalent_registers]
 [-resource_sharing <arg>] [-cascade_dsp <arg>]
 [-control_set_opt_threshold <arg>] [-incremental <arg>]
 [-max_bram <arg>] [-max_uram <arg>] [-max_dsp <arg>]
 [-max_bram_cascade_height <arg>] [-
max_uram_cascade_height <arg>]
 [-retiming] [-no_srlextract] [-assert] [-
no_timing_driven]
 [-sfcu] [-debug_log] [-quiet] [-verbose]

synth_design Example Script

The following is an excerpt from the create_bft_batch.tcl script found in the examples/
Vivado_Tutorials directory of the software installation.

Setup design sources and constraints
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc

Run synthesis, report utilization and timing estimates, write design
checkpoint
synth_design -top bft -part xc7k70tfbg484-2 -flatten rebuilt
write_checkpoint -force $outputDir/post_synth

For more information on using the synth_design example script, see the Vivado Design Suite
Tutorial: Design Flows Overview (UG888) and the Vivado Design Suite User Guide: Synthesis
(UG901).

The synth_design example script reads VHDL and Verilog files, reads a constraint file, and
synthesizes the design on the specified part. The design is opened by the Vivado tools into
memory when synth_design completes. A design checkpoint is written after completing
synthesis.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=48

For more information on the synth_design Tcl command, see this link in the Vivado Design
Suite Tcl Command Reference Guide (UG835). This reference guide also provides a complete
description of the Tcl commands and their options.

open_checkpoint

The open_checkpoint command opens a design checkpoint file (DCP), creates a new in-
memory project and initializes a design immediately in the new project with the contents of the
checkpoint. This command can be used to open a top-level design checkpoint, or the checkpoint
created for an out-of-context module.

Note: In previous releases, the read_checkpoint command was used to read and initialize checkpoint
designs. Beginning in version 2014.1, this function is provided by the open_checkpoint command. The
behavior of read_checkpoint has been changed such that it only adds the checkpoint file to the list of
source files. This is consistent with other read commands such as read_verilog, read_vhdl, and
read_xdc. A separate link_design command is required to initialize the design and load it into
memory when using read_checkpoint.

When opening a checkpoint, there is no need to create a project first. The open_checkpoint
command reads the design data into memory, opening the design in Non-Project Mode. Refer to
this link in the Vivado Design Suite User Guide: Design Flows Overview (UG892) for more
information on Project Mode and Non-Project Mode.

IMPORTANT! In the incremental compile flow, the read_checkpoint  command is still used to specify
the reference design checkpoint.

open_checkpoint Syntax

open_checkpoint [-part <arg>] [-quiet] [-verbose] <file>

open_checkpoint Example Script

Read the specified design checkpoint and create an in-memory design.
open_checkpoint C:/Data/post_synth.dcp

The open_checkpoint example script opens the post synthesis design checkpoint file.

open_run

The open_run command opens a previously completed synthesis or implementation run, then
loads the in-memory design of the Vivado tools.

IMPORTANT! The open_run  command works in Project Mode only. Design runs are not supported in
Non-Project Mode.

Use open_run before implementation on an RTL design to open a previously completed Vivado
synthesis run then load the synthesized netlist into memory.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xsynth_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf;a=xUnderstandingProjectModeAndNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=49

TIP: Because the in-memory design is updated automatically, you do not need to use open_run  after
synth_design . You need to use open_run  only to open a previously completed synthesis run from an
earlier design session.

The open_run command is for use with RTL designs only. To open a netlist-based design, use
link_design.

open_run Syntax

open_run [-name <arg>] [-quiet] [-verbose] <run>

open_run Example Script

Open named design from completed synthesis run
open_run -name synth_1 synth_1

The open_run example script opens a design (synth_1) into the Vivado tools memory from the
completed synthesis run (also named synth_1).

If you use open_run while a design is already in memory, the Vivado tools prompt you to save
any changes to the current design before opening the new design.

link_design

The link_design command creates an in-memory design from netlist sources (such as from a
third-party synthesis tool), and links the netlists and design constraints with the target part.

TIP: The link_design  command supports both Project Mode and Non-Project Mode to create the
netlist design. Use link_design -part <arg>  without a netlist loaded, to open a blank design for
device exploration.

link_design Syntax

link_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]
 [-mode <arg>] [-pr_config <arg>] [-reconfig_partitions
<args>]
 [-partitions <args>] [-quiet] [-verbose]

link_design Example Script

Open named design from netlist sources.
link_design -name netDriven -constrset constrs_1 -part xc7k325tfbg900-1

If you use link_design while a design is already in memory, the Vivado tools prompt you to
save any changes to the current design before opening the new design.

RECOMMENDED: After creating the in-memory synthesized design in the Vivado tools, review Errors and
Critical Warnings for missing or incorrect constraints. After the design is successfully created, you can
begin running analysis, generating reports, applying new constraints, or running implementation.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=50

Note: For more information on the Partial Reconfiguration options of link_design, see this link in the
Vivado Design Suite User Guide: Dynamic Function eXchange (UG909).

Immediately after opening the in-memory synthesized design, run report_timing_summary
to check timing constraints. This ensures that the design goals are complete and reasonable. For
more detailed descriptions of the report_timing_summary command, see this link in the
Vivado Design Suite Tcl Command Reference Guide (UG835).

BUFG Optimization
Mandatory logic optimization (MLO), which occurs at the beginning of link_design, supports the
use of the CLOCK_BUFFER_TYPE property to insert global clock buffers. Supported values are
BUFG for 7 series, and BUFG and BUFGCE for UltraScale, UltraScale+™, and Versal devices. The
value NONE can be used for all architectures to suppress global clock buffer insertion through
MLO and opt_design. For BUFG and BUFGCE, MLO inserts the corresponding buffer type to
drive the specified net.

Use of CLOCK_BUFFER_TYPE provides the advantage of controlling buffer insertion using XDC
constraints so that no design source or netlist modifications are required. Buffers inserted using
CLOCK_BUFFER_TYPE are not subject to any limits, so the property must be used cautiously to
avoid introducing too many global clocks into the design, which may result in placement failures.
For more information, see the Vivado Design Suite Properties Reference Guide (UG912).

Logic Optimization
Logic optimization ensures the most efficient logic design before attempting placement. It
performs a netlist connectivity check to warn of potential design problems such as nets with
multiple drivers and un-driven inputs. Logic optimization also performs block RAM power
optimization.

Often design connectivity errors are propagated to the logic optimization step where the flow
fails. It is important to ensure valid connectivity using DRC Reports before running
implementation.

Logic optimization skips optimization of cells and nets that have DONT_TOUCH properties set
to a value of TRUE. Logic optimization also skips optimization of design objects that have directly
applied timing constraints and exceptions. This prevents constraints from being lost when their
target objects are optimized away from the design. An Info message at the end of each
optimization stage provides a summary of the number of optimizations prevented due to
constraints. Specific messages about which constraint prevented which optimizations can be
generated with the -debug_log switch.

The Tcl command used to run Logic Optimization is opt_design.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 51Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug909-vivado-partial-reconfiguration.pdf;a=xReadingDesignModules
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing_summary
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=51

Common Design Errors
One common error that can cause logic optimization to fail is using undriven LUT inputs, where
the input is used by the LUT logic equation. This results in an error such as:

ERROR: [Opt 31-67] Problem: A LUT6 cell in the design is missing a
connection on input pin I0, which is used by the LUT equation.

This error often occurs when the connection was omitted while assembling logic from multiple
sources. Logic optimization identifies both the cell name and the pin, so that it can be traced back
to its source definition.

Available Logic Optimizations
The Vivado tools can perform the logic optimizations on the in-memory design.

IMPORTANT! Logic optimization can be limited to specific optimizations by choosing the corresponding
command options. Only those specified optimizations are run, while all others are disabled, even those
normally performed by default.

The following table describes the order in which the optimizations are performed when more
than one option is selected. This ordering ensures that the most efficient optimization is
performed.

Table 3: Optimization Ordering for Multiple Options

Phase Name Option Default
1 Retargeting -retarget X

2 Constant Propagation -propconst X

3 Sweep -sweep X

41 Mux Optimization -muxf_remap

51 Carry Optimization -carry_remap

6 Control Set Merging -control_set_merge

7 Equivalent Driver Merging -merge_equivalent_drivers

8 BUFG Optimization -bufg_opt X

9 Shift Register Optimization -shift_register_opt X

10 MBUFG Optimization -mbufg_opt

11 DSP Register Opt -dsp_register_opt

12 Control Set Reduction (property controlled) X

13 Module-Based Fanout Opt -hier_fanout_limit <arg>

14 Remap -remap

15 Resynth Remap -resynth_remap

16 Resynth Area -resynth_area

17 Resynth Sequential Area -resynth_seq_area

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=52

Table 3: Optimization Ordering for Multiple Options (cont'd)

Phase Name Option Default
18 Block RAM Power Opt -bram_power_opt X

Notes:
1. Phase 4 and 5 are not supported for Versal. Phase 10 is only supported for Versal.

When an optimization is performed on a primitive cell, the OPT_MODIFIED property of the cell
is updated to reflect the optimizations performed on the cell. When multiple optimizations are
performed on the same cell, the OPT_MODIFIED value contains a list of optimizations in the
order they occurred. The following table lists the OPT_MODIFIED property value for the various
opt_design options:

Table 4: Optimization Options and Values

opt_design Option OPT_MODIFIED Value
-bufg_opt BUFG_OPT
-carry_remap CARRY_REMAP
-control_set_merge CONTROL_SET_MERGE
-hier_fanout_limit HIER_FANOUT_LIMIT
-merge_equivalent_drivers MERGE_EQUIVALENT_DRIVERS
-muxf_remap MUXF_REMAP
-propconst PROPCONST
-remap REMAP
-resynth_remap REMAP
-resynth_area RESYNTH_AREA
-resynth_seq_area RESYNTH_AREA
-retarget RETARGET
-shift_register_opt SHIFT_REGISTER_OPT
-sweep SWEEP

Retargeting (Default)

When retargeting the design from one device family to another, retarget one type of block to
another. For example, retarget instantiated MUXCY or XORCY components into a CARRY4
block; or retarget DCM to MMCM. In addition, simple cells such as inverters are absorbed into
downstream logic. When the downstream logic cannot absorb the inverter, the inversion is
pushed in front of the driver, eliminating the extra level of logic between the driver and its loads.
After the transformation, the driver’s INIT value is inverted and set/reset logic is transformed to
ensure equivalent functionality.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=53

Constant Propagation (Default)

Constant Propagation propagates constant values through logic, which results in:

• Eliminated logic:

For example, an AND with a constant 0 input.

• Reduced logic:

For example, A 3-input AND with a constant 1 input is reduced to a 2-input AND.

• Redundant logic:

For example, A 2-input OR with a logic 0 input is reduced to a wire.

Sweep (Default)

Sweep removes load-less cells and unconnected nets and does other optimizations, such as the
following:

• Performs tie off on Macro Pins, flip-flop D pins

• Replicates flip-flops driving multiple OBUFs

• Based on feedback loop, updates with changes made to MMCM compensation attributes

• If only one output is used, retargets dual port RAMs to single port

• Optimizes SRLC32E/SRLC16E/ODDR/IDDR/CARRY4 cells for area (if possible)

• Removes unused IDELAYCTRL and groups IOs to be controlled by optimal number of
IDELAYCTRL

• Inserts IBUFs and OBUFs to legalize connectivity for certain cells

Mux Optimization

Remaps MUXF7, MUXF8, and MUXF9 primitives to LUT3 to improve routability. You can limit
the scope of mux remapping by using the MUXF_REMAP cell property instead of the -
muxf_remap option. Set the MUXF_REMAP property to TRUE on individual MUXF primitives.

Note: Not applicable to Versal®.

TIP: To further optimize the netlist after the mux optimization is performed, combine the mux optimization
with remap (opt_design -muxf_remap -remap).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=54

Carry Optimization

Remaps CARRY4 and CARRY8 primitives of carry chains to LUTs to improve routability. When
running with the -carry_remap option, only single-stage carry chains are converted to LUTs. You
can control the conversion of individual carry chains of any length by using the CARRY_REMAP
cell property. The CARRY_REMAP property is an integer that specifies the maximum carry chain
length to be mapped to LUTs. The CARRY_REMAP property is applied to CARRY4 and CARRY8
primitives and each CARRY primitive within a chain must have the same value to convert to
LUTs. The minimum supported value is 1.

Example: A design contains multiple carry chains of lengths 1, 2, 3, and 4 CARRY8 primitives. The
following assigns a CARRY_REMAP property on all CARRY8 primitives:

Vivado% set_property CARRY_REMAP 2 [get_cells -hier -filter {ref_name ==
CARRY8}]

After opt_design, only carry chains of length 3 or greater CARRY8 primitives remain mapped
to CARRY8. Chains with a length of 1 and 2 are mapped to LUTs.

Note: Not applicable to Versal.

TIP: Remapping long carry chains to LUTs may significantly increase delay even with further optimization
by adding the remap option. Xilinx recommends only remapping smaller carry chains, those consisting of
one or two cascaded CARRY primitives.

Control Set Merging

Reduces the drivers of logically-equivalent control signals to a single driver. This is like a reverse
fanout replication, and results in nets that are better suited for module-based replication.

Equivalent Driver Merging

Reduces the drivers of all logically-equivalent signals to single drivers. This is similar to control set
merging but is applied to all signals, not only control signals.

You can limit the scope of equivalent driver and control set merging by using the
EQUIVALENT_DRIVER_OPT cell property. Setting the EQUIVALENT_DRIVER_OPT property to
MERGE on the original driver and its replicas triggers the merge equivalent driver phase during
opt_design and merges the drivers with that property. Setting the
EQUIVALENT_DRIVER_OPT property to KEEP on the original driver and its replicas prevents the
merging of the drivers with that property during the equivalent driver merging and the control
set merging phase.

Note: Some interfaces require a one to one mapping from FF driver to interface pin and merging these
logically-equivalent signals to a single driver can result in unroutable nets. In that case set a
DONT_TOUCH property to TRUE or set the EQUIVALENT_DRIVER_OPT property to KEEP on those
registers.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=55

BUFG Optimization (Default)

Logic optimization conservatively inserts global clock buffers on clock nets and high-fanout non-
clock nets such as device-wide resets. In Versal devices BUFG_FABRIC clock buffers are inserted
on high-fanout non-clock nets.

For 7 series designs, clock buffers are inserted as long as 12 total global clock buffers are not
exceeded.

For UltraScale, UltraScale+, and Versal designs, clock buffers are inserted as long as 24 total
global clock buffers are not exceeded, not including BUFG_GT buffers.

For non-clock nets:

• The fanout must be above 25,000.

• The clock period of the logic driven by the net is below a device/speed grade specific limit.

For fabric-driven clock nets, the fanout must be 30 or greater.

Note: To prevent BUFG Optimization on a net, assign the value NONE to the CLOCK_BUFFER_TYPE
property of the net. Some clock buffer insertion that is required to legalize the design can also occur in
mandatory logic optimization.

MBUFG Optimization

For Versal devices, a new Multi-Clock Buffer (MBUFG) provides divide by 1, 2, 4, 8 clocks of the
clock input on its O1, O2, O3, O4 outputs. The MBUFG clock outputs are all routed on the same
global clock routing resources and only divided once they reach the BUFDIV_LEAF route-thru
Bels. MBUFG driven clocks consume less routing resources and clock skew is minimized for
synchronous CDC paths between clocks driven by the same MBUFG because the common node
is closer to the source and destination.

The MBUFG optimization transforms parallel clock buffers driven by a common driver or clock
modifying block (CMB), such as MMCM, DPLL, or XPLL, to MBUFG. The transformation occurs if
the divide factors of the parallel clocks are divide by 1, 2, 4, 8 of a common clock. For CMB
driven clocks, the phase shift has to be 0 and the duty cycle 50%. If the clock nets driven by the
BUFGs have conflicting constraints such as CLOCK_DELAY_GROUP or USER_CLOCK_ROOT the
transformation is also prevented. The transformation is only occurring when it is safe to do so
without corrupting timing constraints. The following transformations are supported:

• Parallel BUFGCEs connected to a CMB to an MBUFGCE.

• Parallel BUFGCE_DIVs connected to a common clock driver to an MBUFGCE.

• Parallel BUFG_GTs connected to a common clock driver to an MBUFG_GT.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=56

In addition to the global optimization using the -mbufg_opt option, you can control the
conversion of selected BUFGs to MBUFG using the MBUFG_GROUP property. You must set the
MBUFG_GROUP constraint on the net segment directly connected to the clock buffer. The
following example shows the property applied to two clock nets, which are directly driven by the
clock buffers:

set_property MBUFG_GROUP grp1 [get_nets -of [get_pins {BUFG_inst_0/O
BUFG_inst_1/O}]

The picture in the following figure shows an MMCM driving several BUFGCE buffers. The
CLKOUTn driven clocks are integer divides of 1, 2, 4, 8 of the CLKOUT1 driven clock. After the
MBUFG optimization the four BUFGCEs are transformed to a single MBUFGCE and the
CLKOUT1 driven clock is connected to the MBUFGCE I pin. The loads that were driven by the
BUFGCEs are connected to the MBUFGCE O1, O2, O3, O4 pins.

Figure 9: MBUFG Optimization

Shift Register Optimization (Default)

Shift register optimization includes multiple transformations.

• SRL fanout optimization: if an SRL (LUT-based shift register) primitive drives a fanout of 100
or greater, a register stage is taken from the end of the SRL chain and transformed into a
register primitive. This enables more flexible downstream replication if the net becomes
timing-critical. In general it is easier to replicate high-fanout register drivers compared to high
fanout SRL drivers.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=57

• Transformation between SRL and register primitives:

○ An SRL primitive can be converted to a logically equivalent chain of register primitives
using the SRL_TO_REG property with a value of true. This transform is typically used to
increase the number of available pipeline register stages that can be spread to allow signals
to traverse long distances within a device. Increasing the number of register stages can
increase the clock frequency at the expense of higher latency.

○ A chain of register primitives can be converted to a logically equivalent SRL primitive using
the REG_TO_SRL property with a value of true. This transform is typically used to reduce
the number of pipeline register stages used by signals to traverse long distances within a
device. Having too many register stages may create congestion or other placement
problems.

• Selective movement of pipeline stages between SRLs and register chains: These
transformations can be used when a pipeline register chain consists of SRLs and register
primitives. A register stage can be pulled out of or pushed into SRLs on either the SRL inputs
or SRL outputs. This allows increased control of pipeline register structures to address under
and over-pipelining.

○ Under-pipelining: To pull a register from an SRL through its input, apply the SRL property
SRL_STAGES_TO_REG_INPUT with value 1. To pull a register stage from an SRL output,
apply SRL_STAGES_TO_REG_OUTPUT with value 1.

○ Over-pipelining: To push a register into an SRL input, apply the SRL property
SRL_STAGES_TO_REG_INPUT with value -1. To push a register stage into an SRL output,
apply SRL_STAGES_TO_REG_OUTPUT with value -1.

Note: All transforms from registers to SRLs are only possible if control sets are compatible.

Shift Register Remap

This is a set of optimizations that convert shift registers between discrete register chains and
SRLs which are the LUTRAM-based shift register primitives. These optimizations specify global
thresholds to convert from one form to another. The optimizations are used to balance utilization
of registers and LUTRAM-based SRLs. High SRL utilization can lead to congestion and converting
small SRLs to registers can help ease congestion and simultaneously improve performance by
providing discrete registers to cover more distance for critical paths. However congestion can
emerge again when register utilization becomes too high. Converting very long register chains to
SRLs can absorb register stages and their routing which helps reduce congestion.

The optimizations are accessed using the -srl_remap_mode option which takes a Tcl list of
lists as an argument to define the mode. Following are the different types of optimizations.

• Converting small SRLs to registers: For this optimization use the max_depth_srl_to_ffs mode:

○ opt_design -srl_remap_modes {{max_depth_srl_to_ffs <depth>}}

○ Here all SRLs of depth <depth> and smaller are remapped to register chains.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=58

• Converting large shift register chains to SRLs: For this optimization use the
min_depth_ffs_to_srl mode:

○ opt_design -srl_remap_modes {{min_depth_ffs_to_srl <depth>}}

○ Here all register chains greater than depth <depth> are remapped to SRL primitives.

• Automatic target utilization optimizations: This mode uses the following syntax:

○ -srl_remap_modes {{target_ff_util <ff_util> target_lutram_util
<lutram_util>}}

Here you specify percent utilization targets (0 to 100) for both registers and LUTRAMs. If the
current utilization exceeds a target, Vivado will convert from the overutilized resource type to
the other until the utilization target is met. When converting from SRLs to registers, Vivado
begins with the smallest SRLs. When converting from registers to SRLs, Vivado begins with the
largest register chains.

Note: The max_depth_srl_to_ffs and min_depth_ffs_to_srl can be used simultaneously but cannot be used
with the target utilization settings.

DSP Register Opt

This option is used to perform various optimizations on DSP slice pipeline, input and output
registers to improve timing within and to and from the DSP slices. The table below lists the
available optimization.

Note: Not applicable to Versal.

Table 5: DSP Register Opt Available Optimizations

Optimization Type Configuration Required
to Trigger

Post Optimization
State Timing Requirement

MREG to PREG MREG=1, PREG=0 MREG=0, PREG=1 Timing from MREG is critical
(slack less than 0.5 ns), and
timing to MREG is not critical
(slack greater than 1 ns)

PREG to MREG MREG=0, PREG=1 MREG=1, PREG=0 Timing to PREG is critical
(slack less than 0.5 ns), and
timing from PREG is not
critical (slack greater than 1
ns).

MREG to ADREG ADREG=0, MREG=1 ADREG=1, MREG=0 Timing to MREG is critical
(slack less than 0.5 ns), and
timing from MREG is not
critical (slack greater than 1
ns)

ADREG to MREG ADREG=1, MREG=0 ADREG=0, MREG=1 Timing from ADREG is critical
(slack less than 0.5 ns), and
timing to ADREG is not
critical (slack greater than 1
ns)

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=59

Table 5: DSP Register Opt Available Optimizations (cont'd)

Optimization Type Configuration Required
to Trigger

Post Optimization
State Timing Requirement

AREG/BREG push out to
fabric

AREG=1/2, BREG=1/2 AREG=0/1, BREG=0/1,
FDRE in fabric

Timing to AREG/BREG is
critical (slack less than 0.5
ns), and timing from AREG/
BREG is not critical (slack
greater than 1 ns)

AREG/BREG pull in from
fabric

AREG=0/1, BREG=0/1,
FDRE in fabric

AREG=1/2, BREG=1/2 Timing to DSP input is critical
(slack less than 0.5 ns)

AREG and BREG to MREG AREG=1/2, BREG=1/2,
MREG=0

AREG=0/1, BREG=0/1,
MREG=1

Timing from AREG/BREG is
critical (slack less than 0.5
ns), and timing to AREG/
BREG is not critical (slack
greater than 1 ns)

MREG to AREG
and BREG

AREG=0, BREG=0, MREG=1 AREG=1, BREG=1, MREG=0 Timing to MREG is critical
(slack less than 0.5 ns), and
timing from MREG is not
critical (slack greater than 1
ns)

PREG push out to fabric PREG=1 PREG=0, FDRE in fabric Timing from PREG is critical
(slack less than 0.5 ns), and
timing to PREG is not critical
(slack greater than 1 ns)

PREG pull in from fabric PREG=0, FDRE in fabric PREG=1 Timing from DSP output is
critical (slack less than 0.5
ns)

Control Set Reduction

Designs with several unique control sets can have fewer options for placement, resulting in
higher power and lower performance. Designs with fewer control sets have more options and
flexibility in terms of placement, generally resulting in improved results. The number of unique
control sets can be reduced by applying the CONTROL_SET_REMAP property to a register that
has a control signal driving the synchronous set/reset pin or CE pin. This triggers the optional
control set reduction phase and maps the set/reset and/or CE logic to the D-input of the register.
If possible, the logic is combined with an existing LUT driving the D-input, which prevents extra
levels of logic.

The CONTROL_SET_REMAP property supports the following values:

• ENABLE - Remaps the EN input to the D-input.

• RESET - Remaps the synchronous S or R input to the D-input.

• ALL - Same as ENABLE and RESET.

• NONE or unset - No optimization (Default).

Note: This optimization is automatically triggered when the CONTROL_SET_REMAP property is detected
on any register.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=60

Module-Based Fanout Optimization

Net drivers with fanout greater than the specified limit, provided as an argument with this option,
will be replicated according to the logical hierarchy.

For each hierarchical instance driven by the high-fanout net, if the fanout within the hierarchy is
greater than the specified limit, then the net within the hierarchy is driven by a replica of the
driver of the high-fanout net.

IMPORTANT! Each use of logic optimization affects the in-memory design, not the synthesized design
that was originally opened.

Remap

Remap combines multiple LUTs into a single LUT to reduce the depth of the logic. Selective
remap can be triggered by applying the LUT_REMAP property to a group of LUTs. Chains of LUTs
with LUT_REMAP values of TRUE are collapsed into fewer logic levels where possible. Remap
optimization can combine LUTs that belong to different levels of logical hierarchy into a single
LUT to reduce logic levels. Remapped logic is combined into the LUT that is furthest downstream
in the logic cone.

This optimization also replicates LUTs with the LUT_REMAP property that have fanout greater
than one before the transformation.

Note: Setting the LUT_REMAP property to FALSE does not prevent LUTs from getting remapped when
running opt_design with the -remap option.

Aggressive Remap

Similar to Remap, Aggressive Remap combines multiple LUTs into a single LUT to reduce logic
depth. Aggressive Remap is a more exhaustive optimization than Remap, and may achieve further
logic level reduction than Remap at the expense of longer runtime.

Resynth Area

Resynth Area performs re-synthesis in area mode to reduce the number of LUTs.

Resynth Sequential Area

Resynth Sequential Area performs re-synthesis to reduce both combinational and sequential
logic. Performs a superset of the optimization of Resynth Area.

Block RAM Power Optimization (Default)

Block RAM Power Optimization enables power optimization on block RAM cells including:

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=61

• Changing the WRITE_MODE on unread ports of true dual-port RAMs to NO_CHANGE.

• Applying intelligent clock gating to block RAM outputs.

Property-Only Optimization

This is a non-default option where opt_design runs only those phases that are triggered by
opt_design properties. If no such properties are found, opt_design exits and leaves the
design unchanged.

opt_design lists the opt_design cell properties that trigger optimizations when using this
option.

Resynth Remap

Remaps the design to improve the critical paths in timing-driven mode by performing re-
synthesis to reduce the depth of logic. This timing-based approach will replicate LUTs with fanout
and collapse smaller LUTs into bigger functions at the expense of longer optimization runtime.

Note: LUTs with BEL constraints will still be optimized by Resynth Remap. To prevent optimization on LUTs
with BEL constraints, add a DONT_TOUCH property with value TRUE to the LUT.

opt_design
The opt_design command runs Logic Optimization.

opt_design Syntax

opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt] [-remap]
 [-aggressive_remap] [-resynth_remap] [-resynth_area] [-
resynth_seq_area]
 [-directive <arg>] [-muxf_remap] [-hier_fanout_limit <arg>]
 [-bufg_opt] [-mbufg_opt] [-shift_register_opt] [-dsp_register_opt]
 [-srl_remap_modes <arg>] [-control_set_merge]
 [-merge_equivalent_drivers] [-carry_remap] [-debug_log]
 [-property_opt_only] [-quiet] [-verbose]

opt_design Example Script

Run logic optimization with the remap optimization enabled, save results
in a checkpoint, report timing estimates
opt_design -directive AddRemap
write_checkpoint -force $outputDir/post_opt
report_timing_summary -file $outputDir/post_opt_timing_summary.rpt

The opt_design example script performs logic optimization on the in-memory design, rewriting
it in the process. It also writes a design checkpoint after completing optimization, and generates
a timing summary report and writes the report to the specified file.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=62

Restrict Optimization to Listed Types

Use command line options to restrict optimization to one or more of the listed types. For
example, the following is another method for skipping the block RAM optimization that is run by
default:

opt_design -retarget -propconst -sweep -bufg_opt -shift_register_opt

Using Directives

Directives provide different modes of behavior for the opt_design command. Only one
directive can be specified at a time. The directive option is incompatible with other options. The
following directives are available:

• Explore: Runs multiple passes of optimization.

• ExploreArea: Runs multiple passes of optimization with emphasis on reducing combinational
logic.

• AddRemap: Runs the default logic optimization flow and includes LUT remapping to reduce
logic levels.

• ExploreSequentialArea: Runs multiple passes of optimization with emphasis on reducing
registers and related combinational logic.

• RuntimeOptimized: Runs minimal passes of optimization, trading design performance for
faster run time.

• NoBramPowerOpt: Runs all the default opt_design optimizations except block RAM Power
Optimization.

• ExploreWithRemap: Same as the Explore directive but includes the Remap optimization.

• Default: Runs opt_design with default settings.

The following table provides an overview of the optimization phase for the different directives.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=63

Optimization Phases for Directives

Table 6: Optimization Phases for Directives

Phase Default Explore ExploreWith
Remap ExploreArea AddRemap ExploreSequential

Area
NoBram

PowerOpt
Runtime

Optimized
1 Retargeting Retargeting Retargeting Retargeting Retargeting Retargeting Retargeting Retargeting

2 Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant Propagation Constant
Propagation

Constant
Propagation

3 Sweep Sweep Sweep Sweep Sweep Sweep Sweep Sweep

4 BUFG
Optimization

BUFG
Optimization

BUFG Optimization BUFG
Optimization

BUFG
Optimization

BUFG Optimization BUFG Optimization BUFG Optimization

5 Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

6 Block RAM
Power Opt

Constant
Propagation

Constant
Propagation

Constant
Propagation

Remap Constant Propagation

7 Sweep Sweep Sweep Block RAM
Power Opt

Sweep

8 Block RAM
Power Opt1

Remap Resynth Area Resynth Area

9 Block RAM Power
Opt1

Block RAM
Power Opt

Resynth Sequential Area

10 Block RAM Power Opt

Notes:
1. Phase not run in UltraScale/UltraScale+/Versal designs.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=64

Using the -debug_log and -verbose Options

To better analyze optimization results, use the -debug_log option to see additional details of
the logic affected by opt_design optimization. The log displays additional messages of logic
that is reduced due to constant values and loadless logic that is subject to removal.

The log also displays detailed messages about optimizations that are prevented due to
constraints. Use the -verbose option to see full details of all logic optimization performed by
opt_design. The -verbose option is off by default due to the potential for a large volume of
additional messages. Use the -verbose option if you believe it might be helpful.

RECOMMENDED: To improve tool run time for large designs, use the -verbose  option only in shell or
batch mode and not in the GUI mode.

IMPORTANT! The opt_design  command operates on the in-memory design. If run multiple times, the
subsequent run optimizes the results of the previous run. Therefore you must reload the synthesized design
before adding either the -debug_log  or -verbose  options.

Logic Optimization Constraints

Logic Preservation

The Vivado Design Suite respects the DONT_TOUCH property during logic optimization. It does
not optimize away nets or cells with these properties. To speed up the net selection process, nets
with DONT_TOUCH properties are pre-filtered and not considered for physical optimization. For
more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901).

You would typically apply the DONT_TOUCH property to leaf cells to prevent them from being
optimized. DONT_TOUCH on a hierarchical cell preserves the cell boundary, but optimization
might still occur within the cell and constants can still be propagated across the boundary. To
preserve a hierarchical net, apply the DONT_TOUCH property to all net segments using the -
segments option of get_nets.

The tools automatically add DONT_TOUCH properties of value TRUE to nets that have
MARK_DEBUG properties of value TRUE. This is done to keep the nets intact throughout the
implementation flow so that they can be probed at any design stage. This is the recommended
use of MARK_DEBUG. However, on rare occasions DONT_TOUCH might be too restrictive and
could prevent optimization such as constant propagation, sweep, or remap, leading to more
difficult timing closure. In such cases, you can set DONT_TOUCH to a value of FALSE, while
keeping MARK_DEBUG TRUE. The risk in doing this is that nets with MARK_DEBUG can be
optimized away and no longer probed.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug901-vivado-synthesis.pdf;a=xSynthesisAttributes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=65

Logic Optimization

Certain optimizations can be performed on specific objects rather than the entire design. These
optimizations are triggered by object properties. Logic Optimization detects the presence of
these properties and automatically runs the necessary optimization phases.

This is true for all properties except for shift register optimizations properties, which require the
-shift_register_opt option. The following is a summary of properties for object-specific
optimization.

Table 7: Logic Optimization Properties

Property Description
MUXF_REMAP Set to TRUE on MUXF primitives to convert them to LUTs

CARRY_REMAP Set the threshold on CARRY primitives to convert to LUTs

SRL_TO_REG1 Set to TRUE on SRL primitives to convert them to register
chains

REG_TO_SRL1 Set to TRUE on register chains to convert them to SRL
primitives

SRL_STAGES_TO_REG_INPUT1 Set to the appropriate value on an SRL primitive to move a
register across its input

SRL_STAGES_TO_REG_OUTPUT1 Set to the appropriate value on an SRL primitive to move a
register across its output

LUT_REMAP Set to TRUE on cascaded LUTs to reduce LUT levels

CONTROL_SET_REMAP Set on registers to specify the type of control signal to
remap to LUTs

EQUIVALENT_DRIVER_OPT Set on logically-equivalent drivers to force or prevent
merging

Notes:
1. Requires -shift_register_opt option to perform optimization.

Power Optimization
Power optimization is an optional step that optimizes dynamic power using clock gating. It can be
used in both Project Mode and Non-Project Mode, and can be run after logic optimization or
after placement to reduce power demand in the design. Power optimization includes Xilinx
intelligent clock gating solutions that can reduce dynamic power in your design, without altering
functionality.

For more information, see the Vivado Design Suite User Guide: Power Analysis and Optimization
(UG907).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 66Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=66

Vivado Tools Power Optimization
The Vivado power optimization analyzes all portions of the design, including legacy and third-
party IP blocks. It also identifies opportunities where actively changing signals can be clock-gated
because they are not being read every clock cycle. This reduces switching activity which in turn
reduces dynamic power.

Using Clock Enables (CEs)

The Vivado power optimizer takes advantage of the abundant supply of Clock Enables (CEs).
Power optimization creates gating logic to drive register clock enables such that registers only
capture data on relevant clock cycles.

Note that in actual silicon, CEs are actually gating the clock rather than selecting between the D
input and feedback Q output of the flip-flop. This increases the performance of the CE input but
also reduces clock power.

Intelligent Clock Gating

Figure 10: Intelligent Clock Gating

sig sig

Power
Consumption

CE

AfterBefore

Power
Consumption

X16625-040716

Intelligent clock gating also reduces power for dedicated block RAMs in either simple dual-port
or true dual-port mode, as shown in the following figure.

These blocks include several enables:

• Array enable

• Write enable

• Output register clock enable

Most of the power savings comes from using the array enable. The Vivado power optimizer
implements functionality to reduce power when no data is being written and when the output is
not being used.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=67

Figure 11: Leveraging Block RAM Enables

Before

address

data in

data
out

After

address

data in
data
out

ce

X16626-040716

power_opt_design
The power_opt_design command analyzes and optimizes the design. It analyzes and
optimizes the entire design as a default. The command also performs intelligent clock gating to
optimize power.

power_opt_design Syntax

power_opt_design [-quiet] [-verbose]

If you do not want to analyze and optimize the entire design, configure the optimizer with
set_power_opt. This lets you specify the appropriate cell types or hierarchy to include or
exclude in the optimization. You can also use set_power_opt to specify the specific Block
RAM cells for optimization in opt_design.

The syntax for set_power_opt is:

set_power_opt [-include_cells <args>] [-exclude_cells <args>] [-clocks
<args>] [-cell_types <args>] [-quiet] [-verbose]

Note: Block RAM power optimization is skipped if it is run using opt_design.

RECOMMENDED: If you want to prevent block RAM Power Optimization on specific block RAMs during
opt_design, use set_power_opt -exclude_cells [get_cells <bram_insts>].

Placement
The Vivado Design Suite placer places cells from the netlist onto specific sites in the target Xilinx
device. Like the other implementation commands, the Vivado placer works from, and updates,
the in-memory design.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=68

Design Placement Optimization
The Vivado placer simultaneously optimizes the design placement for:

• Timing slack: Placement of cells in timing-critical paths is chosen to minimize negative slack.

• Wirelength: Overall placement is driven to minimize the overall wirelength of connections.

• Congestion: The Vivado placer monitors pin density and spreads cells to reduce potential
routing congestion.

Design Rule Checks
Before starting placement, Vivado implementation runs Design Rule Checks (DRCs), including
user-selected DRCs from report_drc, and built-in DRCs internal to the Vivado placer. Internal
DRCs check for illegal placement, such as Memory IP cells without LOC constraints and I/O
banks with conflicting IOSTANDARDs.

Clock and I/O Placement
After design rule checking, the Vivado placer places clock and I/O cells before placing other logic
cells. Clock and I/O cells are placed concurrently because they are often related through complex
placement rules specific to the targeted Xilinx device. For UltraScale, UltraScale+, and Versal
devices, the placer also assigns clock tracks and pre-routes the clocks. Register cells with IOB
properties are processed during this phase to determine which registers with an IOB value of
TRUE should be mapped to I/O logic sites. If the placer fails to honor an IOB property of TRUE, a
critical warning is issued.

Placer Targets

The placer targets at this stage of placement are:

• I/O ports and their related logic

• Global clock buffers

• Clock management tiles (MMCMs and PLLs)

• Gigabit Transceiver (GT) cells

Placing Unfixed Logic

When placing unfixed logic during this stage of placement, the placer adheres to physical
constraints, such as LOC properties and Pblock assignments. It also validates existing LOC
constraints against the netlist connectivity and device sites. Certain IP (such as Memory IP and
GTs) are generated with device-specific placement constraints.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=69

IMPORTANT! Due to the device I/O architecture, a LOC property often constrains cells other than the cell
to which LOC has been applied. A LOC on an input port also fixes the location of its related I/O buffer,
IDELAY, and ILOGIC. Conflicting LOC constraints cannot be applied to individual cells in the input path.
The same applies for outputs and GT-related cells.

Clock Resources Placement Rules

Clock resources must follow the placement rules described in the 7 Series FPGAs Clocking
Resources User Guide (UG472), UltraScale Architecture Clocking Resources User Guide (UG572) and
Versal ACAP Clocking Resources Architecture Manual (AM003). For example, an input that drives a
global clock buffer must be located at a clock-capable I/O site, must be located in the same
upper or lower half of the device for 7 series devices, and in the same clock region for UltraScale
devices. These clock placement rules are also validated against the logical netlist connectivity and
device sites.

When Clock and I/O Placement Fails

If the Vivado placer fails to find a solution for the clock and I/O placement, the placer reports the
placement rules that were violated, and briefly describes the affected cells.

Placement can fail because of several reasons, including:

• Clock tree issues caused by conflicting constraints

• Clock tree issues that are too complex for the placer to resolve

• RAM and DSP block placement conflicts with other constraints, such as Pblocks

• Over-utilization of resources

• I/O bank requirements and rules

In some cases, the Vivado placer provisionally places cells at sites, and attempts to place other
cells as it tries to solve the placement problem. The provisional placements often pinpoint the
source of clock and I/O placement failure. Manually placing a cell that failed provisional
placement might help placement converge.

TIP: Use place_ports  to run the clock and I/O placement step first. Then run place_design . If
port placement fails, the placement is saved to memory to allow failure analysis. For more information, run
place_ports -help  from the Vivado Tcl command prompt.

For more information about UltraScale clock tree placement and routing, see the UltraFast Design
Methodology Guide for Xilinx FPGAs and SoCs (UG949).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 70Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=70

Global Placement, Detailed Placement, and Post-
Placement Optimization
After Clock and I/O placement, the remaining placement phases consist of global placement,
detailed placement, and post-placement optimization.

Global Placement

Global placement consists of two major phases: floorplanning and physical synthesis.

Floorplanning Phase

During floorplanning, the design is partitioned into clusters of related logic and initial locations
are chosen based on placement of I/O and clocking resources. Pblock constraints are treated as
hard during this phase, even if they have the IS_SOFT property set to True. When targeting SSI
devices, the design is also partitioned into different SLRs to minimize SLR crossings and their
associated delay penalties. Soft SLR floorplan constraints can be applied to guide the logic
partitioning during this phase. For more information about Using Soft SLR Floorplan Constraints,
see the UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949).

Physical Synthesis Phase

During physical synthesis, the placer can perform various physical optimizations that will
optimize the netlist for later placement phases based on the initial placement of the design after
the floorplanning stage. For example, for fanout based replication the replicated driver can be co-
located with its loads because the initial placement is known. This alleviates congestion that can
be introduced when replication is done without knowledge of placement prior to
place_design. Optimizations are considered based on internal parameters and for timing
based optimizations the timing is evaluated and the optimization is committed if timing is
improved. The following optimizations are available as shown in as shown in the following figure.

Figure 12: Summary of Physical Synthesis Optimizations

• LUT Decomposition and Combining: LUT Decomposition breaks LUT shapes if it improves
timing (only LUTs with SOFT_HLUTNM property are considered). LUT combining combines
LUTs if it improves utilization.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 71Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=71

• Property-Based Retiming: Property-based retiming provides user-controlled retiming through
setting a property on a register or LUT. This optimization is ideal for critical paths with
sufficient margin on timing startpoints or endpoints. Two properties control retiming in PSIP.
PSIP_RETIMING_BACKWARD with value of TRUE performs backward retiming and
PSIP_RETIMING_FORWARD with value of TRUE performs forward retiming. The properties
can be applied to a register or LUT. When PSIP_RETIMING_FORWARD with value TRUE is
applied to a register, PSIP forward retimes over all LUT loads driven by the Q pin of the
register. When PSIP_RETIMING_FORWARD with value TRUE is applied to a LUT primitive,
the register driving the LUT will be moved to the output of the LUT. When
PSIP_RETIMING_BACKWARD with value TRUE is applied to a register, PSIP backward
retimes over the LUT driving the D pin of the register. Note that the backward retiming
property on the register will not trigger backward retiming over control set pin driver LUTs.
When PSIP_RETIMING_BACKWARD with value TRUE is applied to a LUT primitive, the
register driven by the LUT will be moved to LUT inputs. Multi-level retiming is supported by
applying the property to all LUT primitives along the path. All retimed cells will have the
PHYS_OPT_MODIFIED property set to RETIMING.

Retiming does not work for the following:

• Moving logic across macro, such as BRAM, UltraRAM, and DSPs
• Register packed in I/O sites
• Paths with different startpoint/endpoint clocks
• Paths with timing exceptions
• Properties that prevent optimization, such as DONT_TOUCH, ASYNC_REG, and so forth.

• Very High-Fanout Optimization: Very High-Fanout Optimization replicates registers driving
high-fanout nets (fanout > 1000, slack < 2.0 ns).

• Critical Cell Optimization: Critical-Cell Optimization replicates cells in failing paths. If the
loads on a specific cell are placed far apart, the cell might be replicated with new drivers
placed closer to load clusters. This optimizations often applies to nets driving large block RAM
or URAM arrays or large number of DSPs as the sites for these blocks are spread over a wider
area of the device. High fanout is not a requirement for this optimization to occur (slack < 0.5
ns).

• Fanout Optimization: Nets with a MAX_FANOUT property value that is less than the actual
fanout of the net are considered for fanout optimization. The user can force the replication of
a register or a LUT driving a net by adding the FORCE_MAX_FANOUT property to the net.
The value of the FORCE_MAX_FANOUT specifies the maximum physical fanout the nets
should have after the replication optimization. The physical fanout in this case refers to the
actual site pin loads, not the logical loads. For example if the replica drives multiple LUTRAM
loads that are all grouped in the same slice, the combined fanout will be 1 for all of the
LUTRAMs in the same slice. The FORCE_MAX_FANOUT forces the replication during physical
synthesis regardless of the slack of the signal. The user can force replication based on physical
device attributes with the MAX_FANOUT_MODE property. The property can take on the
value of CLOCK_REGION, SLR, or MACRO. For example, the MAX_FANOUT_MODE property
with a value of CLOCK_REGION replicates the driver based on the physical clock region, the
loads placed into same clock region will be clustered together. The MAX_FANOUT_MODE

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=72

property takes precedence over the FORCE_MAX_FANOUT property and physical synthesis
will try to honor both by applying MAX_FANOUT_MODE based optimization first and then all
its replicated drivers will inherit the FORCE_MAX_FANOUT property to do further replication
within a clock region. This is illustrated in the following figure example where a register drives
four loads; two registers and two MACRO loads (Block RAM, UltraRAM or DSP). Replication
provides separate drivers for the register loads and MACRO loads and then the driver for the
MACRO loads is replicated until the FORCE_MAX_FANOUT property value is satisfied.

Figure 13: Applying MAX_FANOUT_MODE with value MACRO together with
FORCE_MAX_FANOUT

• DSP Register Optimization: DSP Register Optimization can move registers out of the DSP cell
into the logic array or from logic to DSP cells if it improves the delay on the critical path.

• Shift Register to Pipeline Optimization: Shift Register to Pipeline Optimization turns a shift
register with fixed length to dynamically adjusted register pipeline and places the pipeline
optimally to improve timing. Only SRLs with the PHYS_SRL2PIPELINE attribute set to TRUE
are considered for this optimization. The pull/push of FFs happens on the SRL's Q-pin. The
SRL length needs to be fixed and dynamic SRLs are not supported for this optimization.

• Shift Register Optimization: The shift register optimization improves timing on negative slack
paths between shift register cells (SRLs) and other logic cells.

• Block RAM Register Optimization: Block RAM Register Optimization can move registers out
of the block RAM cell into the logic array or from logic to block RAM cells if it improves the
delay on the critical path.

• URAM Register Optimization: UltraRAM Register Optimization can move registers out of the
UltraRAM cell into the logic array or from logic to UltraRAM cells if it improves the delay on
the critical path.

• Dynamic/Static Region Interface Net Replication: Optimization to replicate drivers on static
design to reconfigurable module boundary paths in DFX flow.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=73

• Equivalent Driver Rewire Optimization: This optimization redistributes loads between
logically-equivalent drivers to minimize routing overlap and provide a more optimal co-
location of drivers and loads. This helps reduce utilization and congestion and allows later
placer stages to move drivers and loads more optimally to improve QoR.

For more information on these optimizations see Available Physical Optimizations in the Physical
Optimization section. Physical synthesis in the placer is run by default in all of the placer
directives. At the end of the physical synthesis phase, a table shows the summary of
optimizations.

Detailed Placement

Detailed placement takes the design from the initial global placement to a fully-placed design,
generally starting with the largest structures (which serve as good anchors) down to the smallest.
The detail placement process begins by placing large macros such as multi-column URAM, block
RAM, and DSP block arrays, followed by LUTRAM array macros, and smaller macros such as
user-defined XDC Macros. Logic placement is iterated to optimize wirelength, timing, and
congestion. LUT-FF pairs are packed into CLBs with the additional constraints that registers in
the CLB must share common control sets.

Post-Placement Optimization

After all logic locations have been assigned, Post-Placement Optimization performs the final
steps to improve timing and congestion. These include improving critical path placement and the
optional BUFG insertion phase during which the placer can route high fanout nets on global
routing tracks to free up fabric routing resources. High-fanout nets (fanout > 1000) driving
control signals with a slack greater than 1.0 ns are considered for this optimization. The loads are
split between critical loads and high positive slack loads. The high positive slack loads are driven
through a BUFGCE which is placed at the nearest available site to the original driver, whereas the
critical loads remain connected to the original driver. This optimization is performed only if there
is no timing degradation. BUFG Insertion is on by default and can be disabled with the -
no_bufg_opt option.

RECOMMENDED: Run report_timing_summary  after placement to check the critical paths. Paths
with very large negative setup slack might need manual placement, further constraining, or logic
restructuring to achieve timing closure.

place_design
The place_design command runs placement on the design. Like the other implementation
commands, place_design is re-entrant in nature. For a partially placed design, the Vivado
placer uses the existing placement as the starting point instead of starting from scratch.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=74

place_design Syntax

place_design [-directive <arg>] [-no_timing_driven] [-timing_summary]
 [-unplace] [-post_place_opt] [-no_psip] [-no_bufg_opt]
 [-quiet] [-verbose]

place_design Example Script

Run placement, save results to checkpoint, report timing estimates
place_design
write_checkpoint -force $outputDir/post_place
report_timing_summary -file $outputDir/post_place_timing_summary.rpt

The place_design example script places the in-memory design. It then writes a design
checkpoint after completing placement, generates a timing summary report, and writes the
report to the specified file.

Using Directives
Directives provide different modes of behavior for the place_design command. Only one
directive can be specified at a time. The directive option is incompatible with other options with
the exception of -no_fanout_opt, -no_bufg_opt, -quiet, and -verbose. Use the -
directive option to explore different placement options for your design.

Placer Directives

Because placement typically has the greatest impact on overall design performance, the Placer
has the most directives of all commands. The following table shows which directives might
benefit which types of designs.

Table 8: Directive Guidelines

Directive Designs Benefited
BlockPlacement Designs with many block RAM, DSP blocks, or both
ExtraNetDelay Designs that anticipate many long-distance net connections and nets

that fan out to many different modules
SpreadLogic Designs with very high connectivity that tend to create congestion
ExtraPostPlacementOpt All design types
SSI SSI designs that might benefit from different styles of partitioning to

relieve congestion or improve timing.

Available Directives

• Explore: Higher placer effort in detail placement and post-placement optimization.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=75

• WLDrivenBlockPlacement: Wirelength-driven placement of RAM and DSP blocks. Override
timing-driven placement by directing the Placer to minimize the distance of connections to
and from blocks. This directive can improve timing to and from RAM and DSP blocks.

• EarlyBlockPlacement: Timing-driven placement of RAM and DSP blocks. The RAM and DSP
block locations are finalized early in the placement process and are used as anchors to place
the remaining logic.

• ExtraNetDelay_high: Increases estimated delay of high fanout and long-distance nets. This
directive can improve timing of critical paths that meet timing after place_design but fail
timing in route_design due to overly optimistic estimated delays. Two levels of pessimism are
supported: high and low. ExtraNetDelay_high applies the highest level of pessimism.

• ExtraNetDelay_low: Increases estimated delay of high fanout and long-distance nets. This
directive can improve timing of critical paths that have met timing after place_design but
fail timing in route_design due to overly optimistic estimated delays. Two levels of
pessimism are supported: high and low. ExtraNetDelay_low applies the lowest level of
pessimism.

• SSI_SpreadLogic_high: Spreads logic throughout the SSI device to avoid creating congested
regions. Two levels are supported: high and low. SpreadLogic_high achieves the highest level
of spreading.

• SSI_SpreadLogic_low: Spreads logic throughout the SSI device to avoid creating congested
regions. Two levels are supported: high and low. SpreadLogic_low achieves a minimal level of
spreading.

• AltSpreadLogic_high: Spreads logic throughout the device to avoid creating congested
regions. Three levels are supported: high, medium, and low. AltSpreadLogic_high achieves the
highest level of spreading.

• AltSpreadLogic_medium: Spreads logic throughout the device to avoid creating congested
regions. Three levels are supported: high, medium, and low. AltSpreadLogic_medium achieves
a nominal level of spreading.

• AltSpreadLogic_low: Spreads logic throughout the device to avoid creating congested regions.
Three levels are supported: high, medium, and low. AltSpreadLogic_low achieves a minimal
level of spreading.

• ExtraPostPlacementOpt: Higher placer effort in post-placement optimization.

• ExtraTimingOpt: Use an alternate set of algorithms for timing-driven placement during the
later stages.

• SSI_SpreadSLLs: Partition across SLRs and allocate extra area for regions of higher
connectivity.

• SSI_BalanceSLLs: Partition across SLRs while attempting to balance SLLs between SLRs.

• SSI_BalanceSLRs: Partition across SLRs to balance number of cells between SLRs.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=76

• SSI_HighUtilSLRs: Force the placer to attempt to place logic closer together in each SLR.

• RuntimeOptimized: Run fewest iterations, trade higher design performance for faster run
time.

• Quick: Absolute, fastest run time, non-timing-driven, performs the minimum required for a
legal design.

• Default: Run place_design with default settings.

Auto Directives

When closing timing on challenging designs, users may choose to run many different
place_design directives in order to select the best timing result. Auto directives uses machine
learning to predict the best directives to run. Users can benefit by only running these directives
instead of the full sweep of directives listed in Available Directives.

Machine learning prediction of directives have a margin of error. As a consequence, it is
recommended to run 3 Auto_n directives and take the best result. The directives predicted are
equivalent to the ones mentioned in Available Directives, so there is no benefit in running auto
directives in addition to these.

To enable the feature, set the place_design -directive <value> where value is:

• Auto_1: High performing predicted directive

• Auto_2: Second best predicted directive

• Auto_3: Third best predicted directive

Using the -unplace Option

The -unplace option unplaces all cells and all ports in a design that do not have fixed locations.
An object with fixed location has an IS_LOC_FIXED property value of TRUE.

Using the -no_timing_driven Option

The -no_timing_driven option disables the default timing driven placement algorithm. This
results in a faster placement based on wire lengths, but ignores any timing constraints during the
placement process.

Using the -timing_summary Option

After placement, an estimated timing summary is output to the log file. By default, the number
reflects the internal estimates of the placer. For example:

INFO: [Place 30-746] Post Placement Timing Summary WNS=0.022. For the most
accurate timing information please run report_timing.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=77

For greater accuracy at the expense of slightly longer run time, you can use the -
timing_summary option to force the placer to report the timing summary based on the results
from the static timing engine.

INFO: [Place 30-100] Post Placement Timing Summary | WNS=0.236 | TNS=0.000 |

where:

• WNS = Worst Negative Slack

• TNS = Total Negative Slack

Using the -verbose Option

To better analyze placement results, use the -verbose option to see additional details of the
cell and I/O placement by the place_design command.

The -verbose option is off by default due to the potential for a large volume of additional
messages. Use the -verbose option if you believe it might be helpful.

Using the -post_place_opt Option

Post placement optimization is a placement optimization that can potentially improve critical
path timing at the expense of additional run time. The optimization is performed on a fully placed
design with timing violations. For each of the top few critical paths, the placer tries moving
critical cells to improve delay and commits new cell placements if they improve estimated delay.
For designs with longer run times and relatively more critical paths, these placement passes
might further improve timing.

Using the -no_psip Option

The -no_psip option disables the default physical synthesis algorithm in the placer.

Using the -no_bufg_opt Option

The -no_bufg_opt option disables the default BUFG insertion algorithm in the placer.

Auto-Pipelining
You can optionally insert additional pipeline registers during placement to address timing closure
challenges on specific buses and interfaces.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=78

Using the AXI Register Slice in Auto-Pipelining Mode

The AXI Register Slice IP core is typically used for adding pipeline registers between memory
mapped or streaming AXI interfaces to help close timing. For larger devices, adding the right
amount of pipelining without overly increasing the register utilization and the application latency
is a common challenge. To simplify the pipeline insertion task and allow the Vivado placer more
flexibility, you can use the auto-pipeline optimization feature for the AXI Register Slice IP core.
When this feature is enabled, a special physical synthesis phase (between the floorplanning and
global placer phases) inserts and places the additional pipeline stages based on setup timing slack
and SLR distance. The AXI Register Slice IP core remains compliant with the AXI handshake
protocol despite the increased latency due to the use of small FIFOs.

You can enable this feature in the IP Configuration Wizard. Set the Register Slice Options (REG_*)
to Multi SLR Crossing. In addition, set the Use timing-driven pipeline insertion for all Multi-SLR
channels option to 1 to enable auto-pipelining. The following figure shows an example.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=79

Figure 14: Example AXI Register Slice IP Settings to Enable Auto-Pipelining Feature

Using Auto-Pipelining on Custom Interfaces

Auto-pipelining is not limited to the AXI Register Slice IP. You can also control auto-pipelining on
custom interfaces using the properties shown in the following table, which are specified in the
RTL. For more information, see the Vivado Design Suite Properties Reference Guide (UG912).

Table 9: Properties for Auto-Pipelining on Custom Interfaces

Property Name Object Format/Range Description
AUTOPIPELINE_MODULE hierarchical cell Boolean Establishes a separate name-space

for all group names defined
throughout sub-hierarchies. This
property must be used when a
module with auto-pipelining
properties is instantiated several
times in the design.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 80Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=80

Table 9: Properties for Auto-Pipelining on Custom Interfaces (cont'd)

Property Name Object Format/Range Description
AUTOPIPELINE_GROUP net String (case-insensitive) Establishes the auto-pipeline group

name of signals that must receive
an equal number of auto-inserted
pipeline flip-flops.

AUTOPIPELINE_INCLUDE net String (case-insensitive) Specifies the name of another
AUTOPIPELINE_GROUP to include
when applying the
AUTOPIPELINE_LIMIT.

AUTOPIPELINE_LIMIT net 0 < integer <= 24 Defines the maximum number of
auto-inserted pipeline flip-flops for
associated groups.

All nets that belong to the same AUTOPIPELINE_GROUP must have an equal number of pipeline
registers inserted on each tagged signal. Following are additional considerations:

• If an AUTOPIPELINE_GROUP does not reference an AUTOPIPELINE_INCLUDE group, the
number of pipeline stages inserted into the AUTOPIPELINE_GROUP must be between 0 and
the AUTOPIPELINE_LIMIT.

• If an AUTOPIPELINE_GROUP references an AUTOPIPELINE_INCLUDE group, the sum of the
pipeline stages inserted into the AUTOPIPELINE_GROUP and the AUTOPIPELINE_INCLUDE
group must be between 0 and the AUTOPIPELINE_LIMIT.

When you specify the AUTOPIPELINE_GROUP, AUTOPIPELINE_LIMIT, and
AUTOPIPELINE_INCLUDE properties on a register in RTL, the Vivado tools automatically
propagate the properties to the net directly connected to the output of the register. For best
timing QoR, Xilinx recommends the following:

• Only apply the AUTOPIPELINE_* properties to registers with no clock enable and no reset
control signals.

• Create distinct hierarchies for both sides of the interface, and apply a different
USER_SLR_ASSIGNMENT with a different string to each side. The strings must not be
SLR<n>. The soft floorplanning constraints guide the Vivado placer to move the two groups of
registers to different SLRs as needed to improve timing QoR. For example, if hierarchy hierA
includes the source registers, and hierB includes the destination registers, you must add the
following constraints:

set_property USER_SLR_ASSIGNMENT apSrcGrpA [get_cells hierA]
set_property USER_SLR_ASSIGNMENT apDstGrpB [get_cells hierB]

IMPORTANT! The auto-pipelining feature changes the latency of the design. Therefore, you must ensure
the functionality remains correct for the specified AUTOPIPELINE_LIMIT range. If the handshake circuitry
is required, you must add appropriate logic, such as a FIFO, with enough depth to support backpressure
without losing data. The Vivado tools do not verify the correctness of the design logic.

Note: For the best timing QoR results, the auto-pipeline properties must be set on registers without clock
enable or reset logic.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=81

The following figure shows how the auto-pipeline properties are used in the AXI Register Slice
RTL.

Figure 15: Example of Auto-Pipelining RTL Property Usage

The following logic diagram shows one AXI channel of the AXI Register Slice with nets tagged
with auto-pipeline properties.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=82

Figure 16: Auto-Pipelining Logic Diagram

AXI Register Slice IP
(one AXI channel shown)

AXI Master

AXI Slave

AUTOPIPELINE_MODULE=1

s_ready s_handshake s_payload

AUTOPIPELINE_GROUP=”resp”
AUTOPIPELINE_GROUP=”fwd”
AUTOPIPELINE_LIMIT=24
AUTOPIPELINE_INCLUDE=”resp”

m_ready m_handshake m_payload

FIFO
32-deep (fixed)

PUSH

POP EMPTY

PAYLOADVALIDREADY

PAYLOADVALIDREADY

X22928-061419

Reviewing the Auto-Pipelining Implementation Results

The following tables are printed in the Vivado log file during the floorplanning phase of
place_design:

• Summary of Latency Increase due to Auto-Pipeline Insertion: This table details the number of
pipeline stages inserted for each group.

• Summary of Physical Synthesis Optimizations: This table shows the total number of inserted
pipeline registers and the number of auto-pipeline groups optimized (Optimized Cells/Nets).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=83

The following figure shows an example of the Summary of Latency Increase Due to Auto-Pipeline
Insertion table.

Figure 17: Example of Summary of Latency Increase Due to Auto-Pipeline Insertion
Table

The following figure shows an example of the Summary of Physical Synthesis Optimizations
table.

Figure 18: Summary of Physical Synthesis Options for Auto Pipeline Table

The inserted pipeline registers can be retrieved based on their names as follows:

<origCellName>_psap and <origCellName>_psap_<N>

Figure 19: Summary of Physical Synthesis Optimizations for Pipeline2SRL Table

The following figure shows the path from SLR2 to SLR0 where nine pipeline stages were
automatically inserted during place_design.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=84

Figure 20: Schematic View of Auto-Pipeline Inserted Registers

The following figure shows the same example in the Device view.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=85

Figure 21: Device View of Auto-Pipeline Inserted Registers

Physical Optimization
Physical optimization performs timing-driven optimization on the negative-slack paths of a
design. Physical optimization has two modes of operation: post-place and post-route.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=86

In post-place mode, optimization occurs based on timing estimates based on cell placement.
Physical optimization automatically incorporates netlist changes due to logic optimizations and
places cells as needed.

In post-route mode, optimization occurs based on actual routing delays. In addition to
automatically updating the netlist on logic changes and placing cells, physical optimization also
automatically updates routing as needed.

IMPORTANT! Post-route physical optimization is most effectively used on designs that have a few failing
paths. Using post-route physical optimization on designs with WNS<-0.200 ns or more than 200 failing
end points can result in long run time with little improvement to QoR.

Overall physical optimization is more aggressive in post-place mode, where there is more
opportunity for logic optimization. In post-route mode, physical optimization tends to be more
conservative to avoid disrupting timing-closed routing. Before running, physical optimization
checks the routing status of the design to determine which mode to use, post-place or post-
route.

If a design does not have negative slack, and a physical optimization with a timing based
optimization option is requested, the command exits quickly without performing optimization. To
balance runtime and design performance, physical optimization does not automatically attempt
to optimize all failing paths in a design. Only the top few percent of failing paths are considered
for optimization. So it is possible to use multiple consecutive runs of physical optimization to
gradually reduce the number of failing paths in the design.

Available Physical Optimizations
The Vivado tools perform the physical optimizations on the in-memory design, as shown in the
following table.

IMPORTANT! Physical optimization can be limited to specific optimizations by choosing the
corresponding command options. Only those specified optimizations are run, while all others are disabled,
even those normally performed by default.

Table 10: Post-Place and Post-Route Physical Optimizations

Option Name
post-place post-route

valid default valid default
High-Fanout
Optimization

Y Y N n/a

Placement
Optimization

Y Y Y Y

Routing Optimization N n/a Y Y

Rewiring Y Y Y Y

Critical-Cell
Optimization

Y Y Y N

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=87

Table 10: Post-Place and Post-Route Physical Optimizations (cont'd)

Option Name
post-place post-route

valid default valid default
DSP Register
Optimization

Y Y N n/a

Block RAM Register
Optimization

Y Y N n/a

URAM Register
Optimization

Y N N n/a

Shift Register
Optimization

Y Y N n/a

Critical Pin
Optimization

Y Y Y Y

Block RAM Enable
Optimization

Y Y N n/a

Hold-Fixing Y N Y N

Negative-Edge FF
Insertion

Y N N n/a

Retiming Y N Y N

Forced Net Replication Y N N n/a

SLR-Crossing
Optimization

Y N Y Y

Clock Optimization N n/a Y Y

When an optimization is performed on a primitive cell, the PHYS_OPT_MODIFIED property of
the cell is updated to reflect the optimizations performed on the cell. When multiple
optimizations are performed on the same cell, the PHYS_OPT_MODIFIED value contains a list of
optimizations in the order they occurred. The following table lists the phys_opt_design
options that trigger an update to the PHYS_OPT_MODIFIED property and the corresponding
value.

Table 11: Optimization Options and Values

phys_opt_design Option PHYS_OPT_MODIFIED Value
-fanout_opt FANOUT_OPT
-placement_opt PLACEMENT_OPT
-slr_crossing_opt SLR_CROSSING_OPT
-rewire REWIRE
-insert_negative_edge_ffs INSERT_NEGEDGE
-critical_cell_opt CRITICAL_CELL_OPT
-dsp_register_opt DSP_REGISTER_OPT
-bram_register_opt BRAM_REGISTER_OPT
-uram_register_opt URAM_REGISTER_OPT
-shift_register_opt SHIFT_REGISTER_OPT
-force_replication_on_nets FORCE_REPLICATION_ON_NETS

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=88

Table 11: Optimization Options and Values (cont'd)

phys_opt_design Option PHYS_OPT_MODIFIED Value
-clock_opt CLOCK_OPT

Fanout Optimization

High-Fanout Optimization works as follows:

1. High fanout nets, with negative slack within a percentage of the WNS, are considered for
replication.

2. Loads are clustered based on proximity, and drivers are replicated and placed for each load
cluster.

Timing is re-analyzed, and logical changes are committed if timing is improved.

TIP: Replicated objects are named by appending _replica  to the original object name, followed by the
replicated object count.

Placement-Based Optimization

Optimizes placement on the critical path by re-placing all the cells in the critical path to reduce
wire delays.

Routing Optimization

Optimizes routing on critical paths by re-routing nets and pins with shorter delays.

Rewiring

Optimizes the critical path by swapping connections on LUTs to reduce the number of logic levels
for critical signals. LUT equations are modified to maintain design functionality.

Critical-Cell Optimization

Critical-Cell Optimization replicates cells in failing paths. If the loads on a specific cell are placed
far apart, the cell might be replicated with new drivers placed closer to load clusters. High fanout
is not a requirement for this optimization to occur, but the path must fail timing with slack within
a percentage of the worst negative slack.

DSP Register Optimization

DSP Register Optimization can move registers out of the DSP cell into the logic array or from
logic to DSP cells if it improves the delay on the critical path.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=89

Block RAM Register Optimization

Block RAM Register Optimization can move registers out of the block RAM cell into the logic
array or from logic to block RAM cells if it improves the delay on the critical path.

URAM Register Optimization

UltraRAM Register Optimization can move registers out of the UltraRAM cell into the logic array
or from logic to UltraRAM cells if it improves the delay on the critical path.

Shift Register Optimization

The shift register optimization improves timing on negative slack paths between shift register
cells (SRLs) and other logic cells.

If there are timing violations to or from shift register cells (SRL16E or SRLC32E), the optimization
extracts a register from the beginning or end of the SRL register chain and places it into the logic
fabric to improve timing. The optimization shortens the wirelength of the original critical path.

The optimization only moves registers from a shift register to logic fabric, but never from logic
fabric into a shift register, because the latter never improves timing.

The prerequisites for this optimization to occur are:

• The SRL address must be one or greater, such that there are register stages that can be moved
out of the SRL.

• The SRL address must be a constant value, driven by logic 1 or logic 0.

• There must be a timing violation ending or beginning from the SRL cell that is among the
worst critical paths.

Certain circuit topologies are not optimized:

• SRLC32E that are chained together to form larger shift registers are not optimized.

• SRLC32E using a Q31 output pin.

• SRL16E that are combined into a single LUT with both O5 and O6 output pins used.

Registers moved from SRLs to logic fabric are FDRE cells. The FDRE and SRL INIT properties are
adjusted accordingly as is the SRL address. Following is an example.

A critical path begins at a shift register (SRL16E) srl_inste, as shown in the following figure.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=90

Figure 22: Critical Path Starting at Shift Register srl_inste

After shift register optimization, the final stage of the shift register is pulled from the SRL16E and
placed in the logic fabric to improve timing, as shown in the following figure.

Figure 23: Critical Path after Shift Register Optimization

The srl_inste SRL16E address is decremented to reflect one fewer internal register stage.
The original critical path is now shorter as the srlopt register is placed closer to the downstream
cells and the FDRE cell has a relatively faster clock-to-output delay.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=91

Critical Pin Optimization

Critical Pin Optimization performs remapping of logical LUT input pins to faster physical pins to
improve critical path timing. A critical path traversing a logical pin mapped to a slow physical pin
such as A1 or A2 is reassigned to a faster physical pin such as A6 or A5 if it improves timing. A
cell with a LOCK_PINS property is skipped, and the cell retains the mapping specified by
LOCK_PINS. Logical-to-physical pin mapping is given by the command get_site_pins.

Block RAM Enable Optimization

The block RAM enable optimization improves timing on critical paths involving power-optimized
block RAMs.

Pre-placement block RAM power optimization restructures the logic driving block RAM read and
write enable inputs, to reduce dynamic power consumption. After placement, the restructured
logic might become timing-critical. The block RAM enable optimization reverses the enable-logic
optimization to improve the slack on the critical enable-logic paths.

Hold-Fixing

Hold-Fixing attempts to improve the slack of high-hold violators by increasing the delay on the
hold critical path.

Aggressive Hold-Fixing

Performs optimizations to insert data path delay to fix hold-time violations. This optimization
considers significantly more hold violations than the standard hold-fix algorithm.

TIP: Hold-Fixing only fixes hold time violations above a certain threshold. This is because the router is
expected to fix any hold time violations that are less than the threshold.

Negative-Edge Register Insertion

Inserts negative-edge triggered registers to fix difficult hold time violations. A register insertion
splits a hold-critical timing path into two half-period paths, making it easier to meet hold
requirements. As the name implies, only negative-edge-triggered register insertion is supported
which fixes hold violations between two positive-edge-triggered sequential cells.

Retiming

Retiming improves the delay on the critical path by moving registers across combinational logic.
The phys_opt_design retiming optimization supports forward retiming.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=92

Forced Net Replication

Forced Net Replication forces the net drivers to be replicated, regardless of timing slack.

Replication is based on load placements and requires manual analysis to determine if replication
is sufficient. If further replication is required, nets can be replicated repeatedly by successive
commands. Although timing is ignored, the net must be in a timing-constrained path to trigger
the replication.

SLR-Crossing Optimization

Performs post-place or post-route optimizations to improve the path delay of inter-SLR
connections. The optimization adjusts the locations of the driver, load, or both along the SLR
crossing. Replication is supported in post-route optimization if the driver has inter- and intra-SLR
loads. A TNS cleanup option is supported with the -tns_cleanup switch with the -
slr_crossing_opt switch. TNS cleanup allows some slack degradation on other paths when
performing inter-SLR path optimization as long as the overall WNS of the design does not
degrade. For UltraScale devices, either a TX_REG or an RX_REG SLL register can be targeted. In
UltraScale+ devices both, TX_REG and RX_REG registers on the same inter-SLR connection can
be targeted.

SLL Register Hold Fix

Performs SLL register hold fix optimization for UltraScale+ devices. Use this option when the
router is having trouble resolving hold violations on SLR crossing paths between the dedicated
SLL TX_REG and RX_REG registers.

Clock Optimization

Inserts global buffers to create useful skew between critical path start and endpoints. To improve
setup timing, buffers are inserted to delay the destination clock.

Routing Optimization

Performs routing optimization on timing-critical nets to reduce delay.

Path Group Optimization

Performs post-place and post-route optimizations on the specified path groups only.

TIP: Use the group_path  Tcl command to set up the path groups that are targeted for optimization.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=93

Physical Optimization Messages
TIP: Physical Optimization reports each net processed for optimization, and a summary of the optimization
performed (if any).

A summary, as shown in the following figure, is provided at the end of physical optimization
showing statistics of each optimization phase and its impact on design performance. This
highlights the types of optimizations that are most effective for improving WNS.

Figure 24: Summary of Physical Synthesis Optimizations

phys_opt_design
The phys_opt_design command runs physical optimization on the design. It can be run in
post-place mode after placement and in post-route mode after the design is fully-routed.

phys_opt_design Syntax

phys_opt_design [-fanout_opt] [-placement_opt] [-routing_opt]
[-slr_crossing_opt] [-rewire] [-insert_negative_edge_ffs]
[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt] [-
uram_register_opt] [-bram_enable_opt] [-shift_register_opt] [-hold_fix] [-
aggressive_hold_fix] [-retime]
[-force_replication_on_nets <args>] [-directive <arg>] [-critical_pin_opt]
[-clock_opt] [-path_groups <args>] [-tns_cleanup] [-sll_reg_hold_fix] [-
quiet] [-verbose]

Note: The -tns_cleanup option can only be run in conjunction with the -slr_crossing_opt option.

phys_opt_design Example Script

open_checkpoint top_placed.dcp

Run post-place phys_opt_design and save results phys_opt_design
write_checkpoint -force $outputDir/top_placed_phys_opt.dcp
report_timing_summary -file $outputDir/top_placed_phys_opt_timing.rpt

Route the design and save results route_design
write_checkpoint -force $outputDir/top_routed.dcp report_timing_summary -

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=94

file $outputDir/top_routed_timing.rpt

Run post-route phys_opt_design and save results phys_opt_design
write_checkpoint -force $outputDir/top_routed_phys_opt.dcp
report_timing_summary -file $outputDir/top_routed_phys_opt_timing.rpt

The phys_opt_design example script runs both post-place and post-route physical
optimization. First, the placed design is loaded from a checkpoint, followed by post-place
phys_opt_design. The checkpoint and timing results are saved. Next the design is routed,
with progress saved afterwards. That is followed by post-route phys_opt_design and saving
the results. Note that the same command phys_opt_design is used for both post-place and
post-route physical optimization. No explicit options are used to specify the mode.

Using Directives

Directives provide different modes of behavior for the phys_opt_design command. Only one
directive can be specified at a time, and the directive option is incompatible with other options.
The available directives are described below.

• Explore: Run different algorithms in multiple passes of optimization, including replication for
very high fanout nets, SLR crossing optimization, and a final phase called Critical Path
Optimization where a subset of physical optimizations are run on the top critical paths of all
endpoint clocks, regardless of slack.

• ExploreWithHoldFix: Run different algorithms in multiple passes of optimization, including
hold violation fixing, SLR crossing optimization and replication for very high fanout nets.

• ExploreWithAggressiveHoldFix: Run different algorithms in multiple passes of optimization,
including aggressive hold violation fixing, SLR crossing optimization and replication for very
high fanout nets.

TIP: Hold-Fixing only fixes hold time violations above a certain threshold. This is because the router is
expected to fix any hold time violations that are less than the threshold.

• AggressiveExplore: Similar to Explore but with different optimization algorithms and more
aggressive goals. Includes a SLR crossing optimization phase that is allowed to degrade WNS
which should be regained in subsequent optimization algorithms. Also includes a hold
violation fixing optimization.

• AlternateReplication: Use different algorithms for performing critical cell replication.

• AggressiveFanoutOpt: Uses different algorithms for fanout-related optimizations with more
aggressive goals.

• AddRetime: Performs the default phys_opt_design flow and adds register retiming.

• AlternateFlowWithRetiming: Perform more aggressive replication and DSP and block RAM
optimization, and enable register retiming.

• Default: Run phys_opt_design with default settings.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=95

• RuntimeOptimized: Run fewest iterations, trade higher design performance for faster run
time.

TIP: All directives are compatible with both post-place and post-route versions of phys_opt_design.

Using the -verbose Option

To better analyze physical optimization results, use the -verbose option to see additional details
of the optimizations performed by the phys_opt_design command.

The -verbose option is off by default due to the potential for a large volume of additional
messages. Use the -verbose option if you believe it might be helpful.

IMPORTANT! The phys_opt_design  command operates on the in-memory design. If run twice, the
second run optimizes the results of the first run.

Physical Optimization Constraints
The Vivado Design Suite respects the DONT_TOUCH property during physical optimization. It
does not perform physical optimization on nets or cells with these properties. To speed up the
net selection process, nets with DONT_TOUCH properties are pre-filtered and not considered
for physical optimization. Additionally, Pblock assignments are obeyed such that replicated logic
inherits the Pblock assignments of the original logic. Timing exceptions are also copied from
original to replicated cells.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901).

The DONT_TOUCH property is typically placed on leaf cells to prevent them from being
optimized. DONT_TOUCH on a hierarchical cell preserves the cell boundary, but optimization
can still occur within the cell.

The tools automatically add DONT_TOUCH properties of value TRUE to nets that have
MARK_DEBUG properties of value TRUE. This is done to keep the nets intact throughout the
implementation flow so that they can be probed at any design stage. This is the recommended
use of MARK_DEBUG. However, there might be rare occasions on which the DONT_TOUCH is
too restrictive and prevents optimizations such as replication and retiming, leading to more
difficult timing closure. In those cases DONT_TOUCH can be set to a value of FALSE while
keeping MARK_DEBUG TRUE. The consequence of removing the DONT_TOUCH properties is
that nets with MARK_DEBUG can be optimized away and no longer probed. If a MARK_DEBUG
net is replicated, only the original net retains MARK_DEBUG, not the replicated nets.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug901-vivado-synthesis.pdf;a=xSynthesisAttributes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=96

Physical Optimization Reports
The Tcl reporting command report_phys_opt provides details of each optimization performed
by phys_opt_design at a very fine level of detail. It must be run in the same Vivado session as
phys_opt_design while the optimization history resides in memory.

Therefore, if a report is desired, it is recommended to include the report_phys_opt command
in Tcl scripts immediately following the last phys_opt_design command.

The reports are available only for post-placement phys_opt_design optimizations. The
reports are not cumulative. Each phys_opt run has a different phys_opt report that only
accounts for the changes made during that particular run of phys_opt_design.

The following report example shows the first entry of a fanout optimization involving a register
named pipeline_en. The following details are shown in the report:

1. The original driver pipeline_en drives 816 loads and the paths containing this high fanout net
fail timing with WNS of -1.057 ns.

2. The driver pipeline_en was replicated to create one new cell, pipeline_en_replica.

3. The 816 loads were split between pipeline_en_replica, which takes 386 loads, and the original
driver pipeline_en, which takes the remaining 430 loads.

4. After replication and placement of pipeline_en_replica, the WNS of pipeline_en_replica paths
is +0.464 ns, and the WNS of pipeline_en paths is reduced to zero.

5. The placement of the original driver pipeline_en was changed to improve WNS based on the
locations of its reduced set of loads.

Figure 25: Fanout Optimization Report

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=97

Interactive Physical Optimization
Beginning with the 2015.3 release, Physical Optimization has the capability to "replay"
optimization using an interactive Tcl command iphys_opt_design. The iphys_opt_design
command describes a specific optimization occurrence, such as a the replication of a critical cell
or the pulling of a set of registers from a block RAM. The command includes all the information
necessary to recreate both the netlist and the placement changes required for the optimization
occurrence.

Interactive physical optimization can be used in two ways:

• Applying post-placement physical optimizations to the pre-placement netlist to improve the
overall placement result and improve design performance.

• Saving the physical optimizations in a Tcl script to be repeated as needed

Retrofitting phys_opt_design Netlist Changes

The design flow involving retrofit is described in the following figure.

Figure 26: Design Flow Involving Retrofit

opt_design

place_design

phys_opt_design

Original Run
...

opt_design

place_design

phys_opt_design

Replay Run
...

iphys_opt_design
Tcl script

write_iphys_opt_tcl

read_iphys_opt_tcl

... ...
X15050-040716

Two runs are involved, which are the “original run,” where phys_opt_design is run after
place_design and the “replay run,” where phys_opt_design netlist changes are performed
before placement.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=98

After the original run, the phys_opt_design optimizations are saved to a Tcl script file using
the Tcl command write_iphys_opt_tcl. The script contains a series of
iphys_opt_design Tcl commands to recreate exactly the design changes performed by
phys_opt_design in the original run. You can save the optimizations from the current design
in memory or after opening an implemented design or checkpoint where phys_opt_design
has performed optimization.

The same design and constraints are used for the replay run. Before place_design runs, the
read_iphys_opt_tcl command processes the iphys_opt_design command script and
applies the netlist changes from the original run. As a result of the netlist changes, the design in
the replay run might be more suitable for placement than the original run. The design now
incorporates the benefits of the phys_opt_design optimizations before placement, such as
fewer high-fanout nets after replication and fewer long distance paths from block RAM outputs.

Similar to the phys_opt_design command, the read_iphys_opt_tcl command has
options to limit the replayed design steps to certain types, such as fanout optimization, block
RAM register optimization, and rewiring.

Repeating phys_opt_design Design Changes

The design flow for repeating phys_opt_design design changes is shown in the following
figure.

Figure 27: Design Flow when Repeating phys_opt_design Changes

opt_design

place_design

phys_opt_design

Original Run
...

opt_design

place_design

phys_opt_design

Replay Run
...

iphys_opt_design
Tcl script

write_iphys_opt_tcl read_iphys_opt_tcl

... ...
X15049-040716

This flow differs from the retrofit flow in two aspects:

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=99

• The iphys_opt_design changes are incorporated after place_design instead of
beforehand.

• Both placement changes as well as netlist changes are captured in the iphys_opt_design
Tcl script.

Typically, you would use this flow to gain more control over the post-place phys_opt_design
step. Custom "recipes" are created from combinations of replayed optimizations and new
optimizations resulting in many possibilities for exploration of design closure.

The write_iphys_opt_tcl and read_iphys_opt_tcl commands have a -place option
to replay the placement changes from phys_opt_design. This option should be used in this
flow to repeat phys_opt_design steps after placement.

Interactive Physical Optimization Command Reference

The interactive physical optimization commands, along with corresponding options, are
described below.

write_iphys_opt_tcl

This command writes a file containing the iphys_opt_design Tcl commands corresponding to
the physical optimizations performed in the current design.

Syntax:

write_iphys_opt_tcl [-place] [-quiet] [-verbose] <output file>

The -place option directs the command to include placement information with the
iphys_opt_tcl commands. Use this option when you intend to apply placement with netlist
changes during iphys_opt_design command replay.

The write_iphys_opt_tcl command can be used any time after phys_opt_design has
been run.

read_iphys_opt_tcl

This command reads a file containing the iphys_opt_design Tcl commands corresponding to
the physical optimizations performed in a previous run.

Syntax:

read_iphys_opt_tcl [-fanout_opt] [-critical_cell_opt] [-placement_opt] [-
rewire] [-dsp_register_opt] [-bram_register_opt]
[-uram_register_opt][-shift_register_opt] [-critical_pin_opt] [-
insert_negative_edge_ffs] [-slr_crossing_opt]
[-include_skipped_optimizations] [-quiet] [-verbose] <input file>

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=100

The read_iphys_opt_design command has many of the same options as
phys_opt_design to limit the scope of replayed optimizations to only those specified. These
options include:

• -fanout_opt

• -critical_cell_opt

• -placement_opt

• -rewire

• -dsp_register_opt

• -bram_register_opt

• -uram_register_opt

• -shift_register_opt

• -insert_negative_edge_ffs

• -slr_crossing_opt

• -critical_pin_opt

Apply the skipped optimizations that are defined in the input Tcl script, as well as the standard
optimizations. These are optimizations identified by phys_opt_design that are skipped
because suitable locations for optimized logic cannot be found. When this option is specified, the
iphys_opt_design command will attempt to use the included skipped optimizations in the
pre-placement netlist.

iphys_opt_design

The iphys_opt_design command is a low-level Tcl command that performs a physical
optimization. All default phys_opt_design optimizations can be performed using
iphys_opt_design. Although it is possible to modify iphys_opt_design commands, and
even to create them from scratch, you would typically write them to a script and replay them in a
separate run.

RECOMMENDED: Avoid using the Tcl source command to execute a script of iphys_opt_design 
commands. For most efficient processing of commands and for fastest runtime, use the
read_iphys_opt_tcl command instead.

Syntax

iphys_opt_design [-fanout_opt] [-critical_cell_opt] [-placement_opt] [-
rewire] [-net <arg>] -cluster <args> -place_cell <args> [-place]
[-dsp_register_opt] [-bram_register_opt] [-uram_register_opt] [-
shift_register_opt] [-slr_crossing_opt] [-cell <arg>]
[-packing][-unpacking][-port <arg>] [-critical_pin_opt] [-
skipped_optimization][-insert_negative_edge_ffs]
[-quiet] [-verbose]

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=101

Routing
The Vivado router performs routing on the placed design, and performs optimization on the
routed design to resolve hold time violations.

The Vivado router starts with a placed design and attempts to route all nets. It can start with a
placed design that is unrouted, partially routed, or fully routed.

For a partially routed design, the Vivado router uses the existing routes as the starting point,
instead of starting from scratch. For a fully-routed design, the router checks for timing violations
and attempts to re-route critical portions to meet timing.

Note: The re-routing process is commonly referred to as "rip-up and re-route."

The router provides options to route the entire design or to route individual nets and pins.

When routing the entire design, the flow is timing-driven, using automatic timing budgeting
based on the timing constraints.

Routing individual nets and pins can be performed using two distinct modes:

• Interactive Router mode

• Auto-Delay mode

The Interactive Router mode uses fast, lightweight timing modeling for greater responsiveness in
an interactive session. Some delay accuracy is sacrificed with the estimated delays being
pessimistic. Timing constraints are ignored in this mode, but there are several choices to
influence the routing:

• Resource-based routing (default): The router chooses from the available routing resources,
resulting in the fastest router runtime.

• Smallest delay (the -delay option): The router tries to achieve the smallest possible delay
from the available routing resources.

• Delay-driven (the -max_delay and -min_delay options): Specify timing requirements
based on a maximum delay, minimum delay, or both. The router tries to route the net with a
delay that meets the specified requirements.

In Auto-Delay mode, the router runs the timing-driven flow with automatic timing budgeting
based on the timing constraints, but unlike the default flow, only the specified nets or pins are
routed. This mode is used to route critical nets and pins before routing the remainder of the
design. This includes nets and pins that are setup-critical, hold-critical, or both. Auto-Delay mode
is not intended for routing individual nets in a design containing a significant amount of routing.
Interactive routing should be used instead.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=102

For best results when routing many individual nets and pins, prioritize and route these
individually. This avoids contention for critical routing resources.

Routing requires a one-time “run time hit” for initialization, even when editing routes of nets and
pins. The initialization time increases with the size of the design and with the size of the device.
The router does not need to be re-initialized unless the design is closed and reopened.

Design Rule Checks
Before starting routing, the Vivado tools run Design Rule Checks (DRC), including:

• User-selected DRCs from report_drc

• Built-in DRCs internal to the Vivado router engine

Routing Priorities
The Vivado Design Suite routes global resources first, such as clocks, resets, I/O, and other
dedicated resources.

This default priority is built into the Vivado router. The router then prioritizes data signals
according to timing criticality.

Impact of Poor Timing Constraints
Post-routing timing violations are sometimes the result of incorrect timing constraints.

Before you experiment with router settings, make sure that you have validated the constraints
and the timing picture seen by the router. Validate timing and constraints by reviewing timing
reports from the placed design before routing.

Common examples of the impact of poor timing constraints include:

• Cross-clock paths and multi-cycle paths in which a positive hold time requirement causes
route delay insertion

• Congested areas, which can be addressed by targeted fanout optimization in RTL synthesis or
through physical optimization

RECOMMENDED: Review timing constraints and correct those that are invalid (or consider RTL changes)
before exploring multiple routing options. For more information, see this link in UltraFast Design
Methodology Guide for Xilinx FPGAs and SoCs (UG949).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 103Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug949-vivado-design-methodology.pdf;a=xCheckingThatYourDesignIsProperlyConstrained
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=103

Router Timing Summary
At the end of the routing process, the router reports an estimated timing summary calculated
using actual routing delays. However, to improve run time, the router uses incremental timing
updates rather than doing the full timing computation to calculate the timing summary.
Consequently, the estimated WNS can be more pessimistic (by a few ps) than actual timing. It is
therefore possible for the router WNS to be negative while the actual WNS is positive. If the
router reports estimated WNS that is negative, the message is a warning, not a critical warning.

TIP: When you run route_design -directive Explore, the router timing summary is based on
signoff timing.

IMPORTANT! You must check the actual signoff timing using report_timing_summary  or run
route_design  with the -timing_summary  option.

route_design
The route_design command runs routing on the design.

route_design Syntax

route_design [-unroute] [-release_memory] [-nets <args>] [-
physical_nets] [-pins <arg>] [-directive <arg>] [-tns_cleanup]
[-no_timing_driven] [-preserve] [-delay] [-auto_delay]
[-max_delay <arg>] [-min_delay <arg>] [-timing_summary] [-finalize] [-
ultrathreads] [-quiet] [-verbose]

Using Directives

When routing the entire design, directives provide different modes of behavior for the
route_design command. Only one directive can be specified at a time. The directive option is
incompatible with most other options to prevent conflicting optimizations. The following
directives are available:

• Explore: Allows the router to explore different critical path placements after an initial route.

• AggressiveExplore: Directs the router to further expand its exploration of critical path
routes while maintaining original timing budgets. The router runtime might be significantly
higher compared to the Explore directive because the router uses more aggressive
optimization thresholds to attempt to meet timing constraints.

• NoTimingRelaxation: Prevents the router from relaxing timing to complete routing. If the
router has difficulty meeting timing, it runs longer to try to meet the original timing
constraints.

• MoreGlobalIterations: Uses detailed timing analysis throughout all stages instead of just
the final stages, and runs more global iterations even when timing improves only slightly.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=104

• HigherDelayCost: Adjusts the internal cost functions of the router to emphasize delay
over iterations, allowing a tradeoff of run time for better performance.

• RuntimeOptimized: Run fewest iterations, trade higher design performance for faster run
time.

• AlternateCLBRouting: Chooses alternate routing algorithms that require extra runtime
but may help resolve routing congestion.

• Quick: Absolute, fastest compile time, non-timing-driven, performs the minimum required for
a legal design.

• Default: Run route_design with default settings.

Trading Compile Time for Better Routing

The following directives are methods of trading compile time for potentially better routing
results:

• NoTimingRelaxation

• MoreGlobalIterations

• HigherDelayCost

• AdvancedSkewModeling

• AggressiveExplore

Using Other route_design Options

Following are more details on the route_design options and option values where applicable.

• -nets: This limits operation to only the list of nets specified. The option requires an argument
that is a Tcl list of net objects. Note that the argument must be a net object, the value
returned by get_nets, as opposed to the string value of the net names.

• -pins: This limits operation only to the specified pins. The option requires an argument,
which is a Tcl list of pin objects. Note that the argument must be a pin object, the value
returned by get_pins, as opposed to the string value of the pin names.

• -delay: By default, the router routes individual nets and pins with the fastest run time, using
available resources without regard to timing criticality. The -delay option directs the router
to find the route with the smallest possible delay.

• -min_delay and -max_delay: These options can be used only with the pin option and to
specify a desired target delay in picoseconds. The -max_delay option specifies the
maximum desired slow-max corner delay for the routing of the specified pin. Similarly the -
min_delay option specifies the minimum fast-min corner delay. The two options can be
specified simultaneously to create a desired delay range.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=105

• -auto_delay: Use with -nets or -pins option to route in timing constraint-driven mode.
Timing budgets are automatically derived from the timing constraints so this option is not
compatible with -min_delay, -max_delay, or -delay.

• -preserve: This option routes the entire design while preserving existing routing. Without -
preserve, the existing routing is subject to being unrouted and re-routed to improve critical-
path timing. This option is most commonly used when "pre-routing" critical nets, that is,
routing certain nets first to ensure that they have best access to routing resources. After
achieving those routes, the -preserve option ensures they are not disrupted while routing
the remainder of the design. Note that -preserve is completely independent of the
FIXED_ROUTE and IS_ROUTE_FIXED net properties. The route preservation lasts only for the
duration of the route_design operation in which is it used. The -preserve option can be
used with -directive, with one exception, the -directive Explore option, which
modifies placement, which in turn modifies routing.

• -unroute: The -unroute option removes routing for the entire design or for nets and pins,
when combined with the nets or pin options. The option does not remove routing for nets
with FIXED_ROUTE properties. Removing routing on nets with FIXED_ROUTE properties
requires the properties to be removed first.

• -timing_summary: The router outputs a final timing summary to the log, based on its
internal estimated timing which might differ slightly from the actual routed timing due to
pessimism in the delay estimates. The -timing_summary option forces the router to call the
Vivado static timing analyzer to report the timing summary based on the actual routed delays.
This incurs additional run time for the static timing analysis. The -timing_summary is
ignored when the -directive Explore option is used.

When the -directive Explore option is used, routing always calls the Vivado static
timing analyzer for the most accurate timing updates, whether or not the -timing_summary
option is used.

• -tns_cleanup: For optimal run time, the router focuses on improving the Worst Negative
Slack (WNS) path as opposed to reducing the Total Negative Slack (TNS). The -tns_cleanup
option invokes an optional phase at the end of routing, during which the router attempts to fix
all failing paths to reduce the TNS. Consequently, this option might reduce TNS at the
expense of run time but might not affect WNS. Use the -tns_cleanup option during
routing when you intend to follow router runs with post-route physical optimization. Use of
this option during routing ensures that physical optimization focuses on the WNS path and
that effort is not wasted on non-critical paths that can be fixed by the router. Running
route_design -tns_cleanup on an already routed design only invokes the TNS cleanup
phase of the router and does not affect WNS (TNS cleanup is re-entrant). This option is
compatible with -directive.

• -physical_nets: The -physical_nets option operates only on logic 0 and logic 1
routes. The option covers all logic constant values in the design and is compatible with the -
unroute option. Because constant 0 and 1 tie-offs in the physical device have no exact
correlation to logical nets, these nets cannot be routed and unrouted reliably using the -nets
and -pins options.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=106

• -ultrathreads: This option shortens router runtime at the expense of repeatability. With -
ultrathreads, the router runs faster but there is a very small variation in routing between
identical runs.

• -release_memory: After router initialization, router data is kept in memory to ensure
optimal performance. This option forces the router to delete its data from memory and release
the memory back to the operating system. This option should not be required for mainstream
use and is provided in case router memory must be manually managed, for example, with
extremely large designs.

• -finalize: When routing interactively you can specify route_design -finalize to
complete any partially routed connections.

For UltraScale+ designs, this step is required if placement and routing of registers was
changed as part of an ECO task.

• -no_timing_driven: This option disables timing-driven routing and is used primarily for
testing the routing feasibility of a design.

• -eco: This option is used with incremental mode to get a shorter runtime after some ECO
modifications to the design while keeping the routability and timing closure.

Routing Example Script 1

Route design, save results to checkpoint, report timing estimates
route_design
write_checkpoint -force $outputDir/post_route
report_timing_summary -file $outputDir/post_route_timing_summary.rpt

The route_design example script performs the following steps:

1. Routes the design

2. Writes a design checkpoint after completing routing

3. Generates a timing summary report

4. Writes the report to the specified file.

Routing is performed as part of an implementation run, or by running route_design after
place_design as part of a Tcl script.

The router provides info in the log to indicate progress, such as the current phase (initialization,
global routing iterations, and timing updates). At the end of global routing, the log includes
periodic updates showing the current number of overlapping nets as the router attempts to
achieve a fully legalized design. For example:

Phase 4.1 Global Iteration 0
Number of Nodes with overlaps = 435
Number of Nodes with overlaps = 3
Number of Nodes with overlaps = 1
Number of Nodes with overlaps = 0

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=107

The timing updates are provided throughout the flow showing timing closure progress.

Timing Summary

[Route 35-57] Estimated Timing Summary | WNS=0.105 | TNS=0 | WHS=0.051 |
THS=0

where:

• WNS = Worst Negative Slack

• TNS = Total Negative Slack

• WHS = Worst Hold Slack

• THS = Total Hold Slack

Note: Hold time analysis can be skipped during intermediate routing phases. If hold time is not performed,
the router shows a value of "N/A" for WHS and THS.

After routing is complete, the router reports a routing utilization summary and a final estimated
timing summary.

Router Utilization Summary

Global Vertical Routing Utilization = 15.3424 %
Global Horizontal Routing Utilization = 16.3981 %
Routable Net Status*
*Does not include unroutable nets such as driverless and loadless.
Run report_route_status for detailed report.
Number of Failed Nets = 0
Number of Unrouted Nets = 0
Number of Partially Routed Nets = 0
Number of Node Overlaps = 0

Routing Example Script 2

Get the nets in the top 10 critical paths, assign to $preRoutes set
preRoutes [get_nets -of [get_timing_paths -max_paths 10]]

route $preRoutes first with the smallest possible delay route_design -
nets [get_nets $preRoutes] -delay

preserve the routing for $preRoutes and continue with the rest of the
design route_design -preserve

In this example script, a few critical nets are routed first, followed by routing of the entire design.
It illustrates routing individual nets and pins (nets in this case), which is typically done to address
specific routing issues such as:

• Pre-routing critical nets and locking down resources before a full route.

• Manually unrouting non-critical nets to free up routing resources for more critical nets.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=108

The first route_design command initializes the router and routes essential nets, such as
clocks.

Routing Example Script 3

get nets of the top 10 setup-critical paths
set preRoutes [get_nets -of [get_timing_paths -max_paths 10]]

get nets of the top 10 hold-critical paths
lappend preRoutes [get_nets -of [get_timing_paths -hold -max_paths 10]]

route $preRoutes based on timing constraints route_design -nets [get_nets
$preRoutes] -auto_delay

preserve the routing for $preRoutes and continue with the rest of the
design route_design -preserve

As in example 2, a few critical nets are routed first, followed by routing of the entire design. The
difference is the use of -auto_delay instead of -delay. The router performs timing-driven
routing of the critical nets, which sacrifices some runtime for greater accuracy. This is particularly
useful for situations in which nets are involved in both setup-critical and hold-critical paths, and
the routes must fall within a delay range to meet both setup and hold requirements.

Routing Example Script 4

route_design
Unroute all the nets in u0/u1, and route the critical nets first
route_design -unroute [get_nets u0/u1/*]
route_design -delay -nets [get_nets $myCritNets]
route_design -preserve

The strategy in this example script illustrates one possible way to address timing failures due to
congestion. In the example design, some critical nets represented by $myCritNets need routing
resources in the same device region as the nets in instance u0/u1. The nets in u0/u1 are not as
timing-critical, so they are unrouted to allow the critical nets $myCritNets to be routed first,
with the smallest possible delay. Then route_design -preserve routes the entire design.
The -preserve switch preserves the routing of $myCritNets while the unrouted u0/u1 nets
are re-routed. Table 12 summarizes the commands in the example.

Router Messaging

The router provides helpful messages when it struggles to meet timing goals due to congestion
or excessive hold violation fixing. The router commonly exhibits these symptoms when it
struggles:

• Excessive runtimes, on the order of hours per iteration

• Large number of overlaps reported, in the hundreds or thousands

• Setup and hold slacks become progressively worse, as seen in the Estimated Timing
Summaries

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=109

The router might provide further warning messages when any of the following occurs:

• Congestion is expected to have negative timing closure impact, which typically occurs when
the congestion level is 5 or greater. Level 5 indicates a congested region measuring 32x32
(2^5 = 32).

• The overall router hold-fix effort is expected to be very high, which impacts the ability to meet
overall setup requirements.

• Specific endpoint pins become both setup-critical and hold-critical and it is difficult or
impossible to satisfy both. The message includes the names of up to ten pins for design
analysis.

• Specific CLBs experience high pin utilization or high routing resource utilization which results
in local congestion. The messages will include the names of up to ten of the most congested
CLBs.

• In extreme cases with severe congestion, the router warns that congestion is preventing the
router from routing all nets, and the router will prioritize the successful completion of routing
all nets over timing optimizations.

When targeting UltraScale devices or later, the router generates a table showing initial estimated
congestion when congestion might affect timing closure. The table does not show specific
regions but gives a measure of different types of congestion for an overall assessment. The
congestion is categorized into bins of Global (design-wide), Long (connections spanning several
CLBs), and Short Congestion. The tables of different runs can be compared to determine which
have better chances of meeting performance goals without being too negatively impacted by
congestion.

INFO: [Route 35-449] Initial Estimated Congestion

| | Global Congestion | Long Congestion | Short Congestion |
| | | | |
| Direction | Size | % Tiles | Size | % Tiles | Size | %
Tiles |
NORTH	8x8	0.13	4x4	0.11	32x32	1.14
SOUTH	8x8	0.21	4x4	0.35	16x16	1.03

EAST	2x2	0.05	2x2	0.15	8x8	0.97
WEST	2x2	0.03	2x2	0.17	8x8	0.83

Report Design Analysis provides complexity and congestion analysis that can give further insight
into the causes of congestion and potential solutions. The congestion reporting also includes an
Average Initial Routing Congestion, which is not exactly the same as the congestion reported by
the router, but can be analyzed against the pre-route design to determine which regions are
causing problems. For further information on Report Design Analysis, refer to the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 110Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=110

Intermediate Route Results

Even when routing fails, the router continues and tries to provide a design that is as complete as
possible to aid in debug. If the routing is not complete, you might have to intervene manually.

Use the report_route_status command to identify nets with routing errors. For more
information see this link in the UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs
(UG949).

The router reports routing congestion during Route finalize. The highest congested regions are
listed for each direction (North, East, South, and West). For each region, the information includes
the dimensions in routing tiles, the routing utilization labeled "Max Cong," and the bounding box
coordinates (lower-left corner to upper-right corner). The “INT_xxx” numbers are the coordinates
of the interconnecting routing tiles that are visible in the device routing resource view.

Table 12: Commands Used During Routing for Design Analysis

Command Function
report_route_status Reports route status for nets

report_timing Performs path endpoint analysis

report_design_analysis Provides information about congested areas

For a complete description of the Tcl reporting commands and their options, see the Vivado
Design Suite Tcl Command Reference Guide (UG835).

Incremental Implementation
Incremental Implementation refers to the implementation phase of the incremental compile
design flow that:

• Preserves QoR predictability by reusing prior placement and routing from a reference design.

• Speeds up place and route run time or attempts last mile timing closure.

A diagram of the incremental implementation design flow is provided in the following figure.

This diagram also illustrates the incremental synthesis flow. For more details about incremental
synthesis flow, see the "Incremental Synthesis" section in the Vivado Design Suite User Guide:
Synthesis (UG901).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 111Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug949-vivado-design-methodology.pdf;a=xRouting
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_route_status
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_design_analysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=111

Figure 28: Incremental Compile Design Flow

Reference
RTL

Synthesis

Normal
Place &
Route

Reference
Checkpoint

RTL
Change

Netlist
ChangeReference

Netlist

Revised RTL

Synthesis

Revised
Netlist

Incrementa
l Place &

Route

Revised
Checkpoint

Incremental
Run

X16627-040716

Incremental Implementation Flow Designs
As shown in the previous figure, the Incremental Run requires a reference checkpoint to be read
in to start the incremental place and route. The read_checkpoint -incremental
<reference>.dcp command initiates the incremental flow and must be issued before
place_design.

Reference Design

The reference design is typically a fully routed checkpoint from a previous iteration or a different
variation of the incremental design. If using a different variation or a design, it is important that
the hierarchy names from the reference design match the incremental design.

When lower levels of reuse are required, for example reusing only RAM and DSP block
placement, it is acceptable to have as little as the placement information for those cells in the
reference checkpoint. The reference design must match device. It is also recommended to match
tool version but this is not a requirement.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=112

Incremental Design

The incremental design is the updated design that is to be run through the implementation tools.
It can include RTL Changes, Netlist Changes, or both.

Constraint changes are allowed but general tightening of constraints will significantly impact
placement and routing and is generally best added outside of the incremental flow.

Incremental Directives
There are three directives that control how the incremental flow behaves. Incremental directives
are set using the command:

read_checkpoint -incremental -directive <directiveName> <reference>.dcp

RuntimeOptimized

The RuntimeOptimized directive tries to reuse as much placement and routing information from
the reference run as possible. The timing target will be the same as the reference run. If the
reference run has WNS -0.050, then the incremental run will not try to close timing on this
design and instead also target -0.050. This impacts setup time only. This is the default behavior
when no directive is specified.

TimingClosure

The TimingClosure directive will reuse placement and routing from the reference but it will rip up
paths that do not meet timing and try to close them. Some run time intensive algorithms are run
to get as much timing improvement as possible but as the placement is largely given up front
gains are limited. This technique can be effective on designs with a reference WNS > -0.250 ns.

Note: For further chance of closing timing, run report_qor_suggestions to generate automated
design enhancements.

Quick

Quick is a special mode that does not call the timer during place and route and instead uses the
placement of related logic as a guide. It is the fastest mode but not applicable for most designs.
Designs will need WNS > 1.000 ns to be effective. These are typically ASIC emulation or
prototyping designs.

Note: In versions 2019.1 and before, the same behavior was achieved via directive mapping at
place_design and route_design. The Explore directive was mapped to TimingClosure, Quick mapped to
Quick and other directives mapped to RuntimeOptimized.

CAUTION! Users upgrading from 2019.1 and earlier who are specifying the Explore or Quick directives for
place_design will need to specify the incremental directive to achieve the equivalent functionality in
2020.1.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=113

Incremental Modes
The incremental implementation works in one of three modes: automatic, high reuse or low
reuse.

Automatic Incremental

Automatic Incremental Implementation allows a user to activate the Incremental Implementation
flow but let Vivado decide whether to use the default or incremental algorithms at the time
read_checkpoint -auto_incremental is issued. It bases this decision on the quality of
the reference checkpoint.

In order to accept the reference checkpoint, the following criteria must be met:

• 94% cell matching

• 90% net matching

• WNS > -0.250

By guaranteeing a good reference checkpoint, the incremental flow can get good QoR results and
when the checkpoint is poor a new place and route solution is sought.

In project mode, the updating of the checkpoint is also managed for you and is adhering to the
above criteria. In non project mode, the user has control over whether to update the checkpoint.

The flow is activated using the following command:

read_checkpoint -incremental -auto_incremental <reference>.dcp

When updating the checkpoint, it is worth checking to ensure that WNS has not degraded
beyond acceptable limits. This can be done by running the following command at the end of the
implementation flow:

if {[get_property SLACK [get_timing_path]] > -0.250} {
file copy -force <postroute>.dcp <reference>.dcp
}

High Reuse Mode

In High Reuse mode, incremental implementation is run if cell reuse is above 75%. When cell
reuse is below this, placement information is not reused and the flow will continue with the
default algorithms. The target WNS is determined by a combination of both the reference
checkpoint and the directive.

For high reuse mode, the following message is printed in the log file after place_design has
started:

INFO: [Place 46-42] Incremental Compile is being run in High Reuse Mode.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=114

Low Reuse Mode

In Low Reuse mode, reuse is determined by the read_checkpoint -reuse_object
<objects> -incremental <reference>.dcp switch. In this mode:

• The user can target cell types, hierarchical cells, clock regions and SLRs to be reused.

• The Target WNS is always 0.

• Incremental directives are ignored and the directives from the default place and route
algorithms are used.

Low reuse mode is most effective on designs that are exhibiting challenges to the place and route
in specific areas. Examples of use cases are:

• Reusing Block Memory or DSP placement from a good run can improve the total number of
good runs at each place and route iteration.

• Reusing a particular level of hierarchy that closes timing intermittently.

You can determine if the tool is in low reuse mode by examining the log file after place_design
has started for the following message:

INFO: [Place 46-42] Incremental Compile is being run in Low Reuse Mode.

Running Incremental Place and Route
After the reference checkpoint is read by Vivado, the following actions are taken:

• Physical optimizations that match the ones in the reference run are carried out on the
incremental design automatically.

• The netlist in the incremental design is compared to the reference design to identify matching
cells and nets.

• Placement from the reference design checkpoint is reused to place matching cells in the
incremental design.

• Routing is reused to route matching nets on a per-load-pin basis. If a load pin disappears due
to netlist changes, then its routing is discarded, otherwise it is reused. Therefore it is possible
to have partially-reused routes.

Incremental placement and incremental routing might discard cell placements and net routes
instead of reusing them, if it helps improve routability of the netlist or helps maintain
performance comparable to that of the reference design.

Design objects that do not match between the reference design and the current design are
placed after incremental placement is complete and routed after routing is complete.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=115

read_checkpoint -incremental
After the current design is loaded, load the reference design checkpoint using the
read_checkpoint -incremental <dcp> command. The -incremental option enables
the Incremental Compile design flow for subsequent place and route operations.

Incremental Implementation Controls

If no command arguments (other than -incremental) are specified, the tool reuses as much of the
reference checkpoint information that it can. However, command arguments can be applied to
the read_checkpoint -incremental command that give the user control over what is used
and not reused.

-auto_incremental Option

This enables the automatic incremental flow described in Automatic Incremental.

-reuse_objects Option

-reuse_objects <cell objects>

The -reuse_objects can take either cells, clock regions or SLRs as an argument. When
specifying cells, use the get_cells command. When using get_cells, hierarchical or leaf cells
can be specified along with cell types when using the -filter switch. When specifying clock
regions (get_clock_regions) or SLRs (get_slrs) for reuse, the cells in the region of the reference
checkpoint will be reused if they exist in the incremental run. When specifying any of the
arguments, net reuse is inferred based on the cells identified for reuse.

-fix_objects Option

-fix_objects <cell objects>

The -fix_objects option can be used to lock a subset of cells. These cells are not touched by
the incremental place and route tools. The -fix_objects option only works on cells that
match and are identified for cell reuse. This is the full design space when -reuse_objects is
not specified, or the associated cells when -reuse_objects is specified.

Examples

The following are examples of their use:

• To reuse and fix only Block Memory placement:

read_checkpoint -incremental routed.dcp -reuse_objects [all_rams] -
fix_objects [all_rams]

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=116

• To reuse and fix only DSP placement:

read_checkpoint -incremental routed.dcp -reuse_objects [all_dsps] -
fix_objects [all_dsps]

• To reuse both Block Memory and DSP placement, and fix the placement of all cells specified
for reuse:

read_checkpoint -incremental routed.dcp -reuse_objects [all_rams] \
-reuse_objects [all_dsps] -fix_objects [current_design]

• To reuse all cells at and below the level of hierarchy indicated and allow the tools some
flexibility to deal with changes in critical areas:

read_checkpoint -incremental routed.dcp \
-reuse_objects [get_cells <cell_name>] -fix_objects [get_cells
<cell_name>]

Using report_incremental_reuse

The report_incremental_reuse command is available at any stage of the flow after
read_checkpoint -incremental has been used. The report allows the user to compare the
following between the reference and current design runs:

• Examine cell, net, I/O and pin reuse in the current run

• Runtimes

• Timing WNS at each stage of the flow

• Tool options

• Tool versions

• iphys_opt_design replaying optimization

• QoR suggestions applied with the incremental flow

By examining the cell reuse and the other factors mentioned above, a user can determine the
effectiveness of the incremental. Where the flow is judged ineffective, a user would typically
update the checkpoint to a newer version of the design or adjust the tool flow. The report is split
into seven sections.

Flow Summary

This reports the general information for the current whole incremental flow:

1. Incremental Flow Summary
+--------------------------+----------------+
| Flow Information | Value |
+--------------------------+----------------+
| Synthesis Flow | Default |
| Auto Incremental | No |

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=117

Incremental Directive	TimingClosure
Reuse mode	High
Target WNS	-0.160
QoR Suggestions	0
+--------------------------+----------------+

Reuse Summary

This contains an overview of the cells, nets, pins, and ports that are reused. An example is:

2. Reuse Summary
+------+--------------------+------------------+------------------+--------+
| Type |Matched % (of Total)|Reuse % (of Total)|Fixed % (of Total)| Total |
+------+--------------------+------------------+------------------+--------+
| Cells| 100.00 | 99.82 | 0.38 | 688982 |
| Nets | 99.98 | 99.72 | 0.00 | 795869 |
| Pins | - | 99.11 | - | 2823905|
| Ports| 100.00 | 100.00 | 100.00 | 667 |
+------+--------------------+------------------+------------------+--------+

Note: Pins Matched is left as empty due to initial not checking.

Reference Checkpoint Information

This contains information about the reference checkpoint. From this section you can examine the
following:

• Vivado version that generated it

• Stage of the implementation

• Recorded WNS and WHS

• Speedfile version information of both the reference and incremental runs

An example is:

3. Reference Checkpoint Information
+----------------------------------+----------------------------+
| DCP Information | Value |
+----------------------------------+----------------------------+
| Vivado Version | 2020.2 |
| DCP State | POST_ROUTE |
| Recorded WNS | -0.305 |
| Recorded WHS | 0.000 |
| Reference Speed File Version | PRODUCTION 1.27 02-28-2020 |
| Incremental Speed File Version | PRODUCTION 1.27 02-28-2020 |
+----------------------------------+----------------------------+

* Recorded WNS/WHS timing numbers are estimated timing numbers. They may
vary slightly from sign-off timing numbers.

Comparison with Reference Run

This contains useful metrics about a comparison with the reference run. From this section you
can compare the following:

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=118

• Runtime information

• WNS at each stage of the flow

• Tool options at each stage of the flow.

Figure 29: Reference Run Comparison Example

Optimization Comparison with Reference Run

This section contains the iphys_opt_design replaying information which is retrieved from the
reference dcp, along with the RQS suggestions derived, generated, and applied in the current
incremental flow. An example is:

5.1 iphys_opt_replay Optimizations
+-------------------------+--------+------------+
| iphys_opt_design replay | Reused | Not Reused |
+-------------------------+--------+------------+
hold_fix	113	0
fanout_opt	2	0
critical_cell_opt	10	0
restruct_opt	4	0
+-------------------------+--------+------------+

5.2 QoR Suggestion Optimizations
+--+-------+
| QoR Suggestions | Value |
+--+-------+
QoR Suggestions	0
Suggestions Included In References	0
Yet to apply	0
Applied	0
Failed to apply	0
New Suggestions	0
Yet to apply	0
Applied	0
Failed to apply	0
Non Incremental Friendly New Suggestions	0
+--+-------+

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=119

Command Comparison with Reference Run

This section contains the commands executed for flow command comparison. An example is:

6.1 Reference:

opt_design -directive Default
place_design -directive ExtraPostPlacementOpt
phys_opt_design -directive AlternateFlowWithRetiming
phys_opt_design -directive AggressiveFanoutOpt
phys_opt_design -directive AggressiveExplore
phys_opt_design -directive AlternateReplication
route_design -directive Explore
phys_opt_design -directive Explore

6.2 Incremental:

opt_design -directive Default
read_checkpoint -directive TimingClosure -incremental
/group/2020.1/post_route_phys_opt2.dcp

Non-reuse Information

This contains metrics about what was not reused and why. The following is an example:

7. Non Reuse Information
+--+------+
| Type | % |
+--+------+
| Non-Reused Cells | 0.17 |
| Discarded illegal placement due to netlist changes | 0.17 |
| Discarded to improve timing | 0.01 |
| Partially reused nets | 0.00 |
| Non-Reused nets | 0.27 |
| Non-Reused Ports | 0.00 |
+--+------+

Factors Affecting Run Time Improvement

Factors that can affect run time improvement include:

• The amount of change in timing-critical areas. If critical path placement and routing cannot be
reused, more effort is required to preserve timing. Also, if the small design changes introduce
new timing problems that did not exist in the reference design, higher effort and run time
might be required, and the design might not meet timing.

• The initialization portion of the place and route run time. In short place and route runs, the
initialization overhead of the Vivado placer and router might eliminate any gain from the
incremental place and route process. For designs with longer run times, initialization becomes
a small percentage of the run time.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=120

Using Incremental Implementation
In both Project Mode and Non-Project Mode, incremental implementation mode is entered when
you load the reference design checkpoint using the read_checkpoint -incremental
<dcp_file> command where <dcp_file> specifies the path and file name of the reference
design checkpoint. Loading the reference design checkpoint with the -incremental option
enables the Incremental Compile design flow for subsequent place and route operations. In Non-
Project Mode, read_checkpoint -incremental should follow opt_design and precede
place_design.

Using Incremental Implementation in Non-Project Mode

To specify a design checkpoint file (DCP) to use as the reference design, and to run incremental
place in Non-Project Mode:

1. Load the current design.

2. Run opt_design.

3. Run read_checkpoint -incremental <dcp_file>.

4. Run place_design.

5. Run phys_opt_design (optional). Run phys_opt_design if it was used in the reference
design.

6. Run route_design.

link_design; # to load the current design opt_design
read_checkpoint -incremental <dcp_file>
place_design
phys_opt_design;
route_design

Using Incremental Implementation in Project Mode

In Project Mode, you can set the incremental compile option in two ways: in the Design Runs
window and in the Implementation section of the Settings dialog box. To set the incremental
compile option in the Design Runs window:

1. Right-click a run in the Design Runs window.

2. Click Set Incremental Implementation from the context menu.

To set Incremental Implementation in the Settings dialog box:

1. In the Flow Navigator, select Settings under Project Manager.

2. Select Implementation.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=121

3. Next to Incremental Implementation, select the button to enable the Incremental
Implementation dialog box.

To enable the incremental flow:

1. Select the Specify design checkpoint radio button.

2. Next you have the option to set the directive. When unselected, this is set to the default
value RuntimeOptimized, other values are TimingClosure and Quick.

3. Select whether you want a static reference checkpoint using the New design checkpoint
option or one that automatically updates if a newer suitable reference checkpoint is available
by selecting the Automatically use the checkpoint from the previous run option. This also
allows a directory to be selected so that the checkpoint can be stored in an area outside the
project structure to make it more version control friendly.

The following is an example of Tcl commands that can set up the incremental flow to use the
TimingClosure directive and reference a static checkpoint:

set_property AUTO_INCREMENTAL_CHECKPOINT 0 [get_runs impl_1]
set_property incremental_checkpoint.directive TimingClosure [get_runs
impl_1]
add_files -fileset utils_1 -norecurse ./top_routed.dcp
set_property incremental_checkpoint ./top_routed.dcp [get_runs impl_1]

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=122

The following is an example of the Tcl commands required to set up the incremental flow to use
the RuntimeOptimized directive and automatically update the checkpoint:

set_property AUTO_INCREMENTAL_CHECKPOINT 1 [get_runs <run_name>]
set_property AUTO_INCREMENTAL_CHECKPOINT.DIRECTORY <directory> [get_runs
impl_1]
set_property incremental_checkpoint.directive RuntimeOptimized [get_runs
impl_1]

To disable incremental compile for the current run (or clear the reference to start over again
without a reference checkpoint in Automatic mode), do one of the following:

• Select Disable incremental compile in the Incremental Implementation dialog box, or

• Run the following command in the Tcl Console:

set_property AUTO_INCREMENTAL_CHECKPOINT 0 [get_runs <run_name>]
set_property incremental_checkpoint "" [get_runs impl_1]

Orphaned Route Segments

Some cells might have been eliminated from the current design, or moved during placement,
leaving orphaned route segments from the reference design. If you are running in the Vivado IDE,
you might see potentially problematic nets. These orphaned or improperly connected route
segments are cleaned up during incremental routing by the Vivado router.

The following INFO message appears during placement.

INFO: [Place 46-2] During incremental compilation, routing data from the
original checkpoint is applied during place_design. As a result, dangling
route segments and route conflicts may appear in the post place_design
implementation due to changes between the original and incremental
netlists. These routes can be ignored as they will be subsequently resolved
by route_design. This issue will be cleaned up automatically in
place_design in a future software release.

Using Synplify Compile Points
The Incremental Compile flow is most effective when the revised and reference designs are most
similar, preferably with at least 95 percent of the cells matching. Synthesis flows such as Synplify
Compile Points minimize the amount of netlist changes resulting from RTL changes. Compile
points are logical boundaries across which no optimization might occur. This sacrifices some
design performance for predictability, but when combined with Incremental Compile, the
resulting flow yields even more run time savings and predictability.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=123

Synplify provides two different compile point flows, which are automatic and manual. In the
automatic compile point mode, compile points are automatically chosen by synthesis, based on
existing hierarchy and utilization estimates. This is a pushbutton mode. Aside from enabling the
flow, there is no action required on your part. To enable, check the Auto Compile Point check box
in the GUI or add the following setting to the Synplify project:

set_option -automatic_compile_point 1

The manual compile point flow offers more flexibility, but requires more interaction to choose
compile points. The flow involves compiling the design, then using either the SCOPE editor
Compile Points tab or the define_compile_point setting. For further information on compile
point flows, see the Synplify online help.

Using Incremental Synthesis

Vivado Synthesis can be run incrementally. In this flow, the tool will have a reference run that will
be referred to in later runs. It will be able to detect when the design has changed and then only
re-run synthesis on sections of the design that have changed. The key advantage of this flow is
that for designs with small changes, the runtime will be greatly reduced. In addition, the QoR of
the design will fluctuate less when small changes are inserted into the RTL.

Saving Post-Reuse Checkpoints
After read_checkpoint -incremental applies the reference checkpoint to the current
design, the incremental reuse data is retained throughout the flow. If a checkpoint is saved, then
reloaded in the same or a separate Vivado Design Suite session, it remains in incremental compile
mode. Consider the following command sequence:

opt_design; # optimize the current design
read_checkpoint -incremental reference.dcp; # apply reference data to
current design write_checkpoint incr.dcp; # save a snapshot of the current
design
read_checkpoint incr.dcp
place_design
write_checkpoint top_placed.dcp; # save incremental placement result
route_design

Upon read_checkpoint incr.dcp, the Vivado tools determine that incremental data exists,
and the subsequent place_design and route_design commands run incrementally.

Even if you exit and restart the Vivado Design Suite, in the following command sequence the
route_design command is run in incremental mode, using the routing data from the original
reference checkpoint reference.dcp:

read_checkpoint top_placed.dcp
phys_opt_design
route_design

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=124

Constraint Conflicts
Constraints of the revised design can conflict with the physical data of the reference checkpoint.
When conflicts occur, the behavior depends on the constraint used. This is illustrated in the
following examples.

LOC Constraint Conflict Example

A constraint assigns a fixed location RAMB36_X0Y0 for a cell cell_A. However in the reference
checkpoint reference.dcp, cell_A is placed at RAMB36_X0Y1 and a different cell cell_B is
placed at RAMB36_X0Y0.

After running read_checkpoint -incremental reference.dcp, cell_A is placed at
RAMB36_X0Y0 and cell_B is unplaced. The cell cell_B is placed during incremental placement.

PBlock Conflict Example

In the reference checkpoint there are no Pblocks, but one has been added to the current run.
Where there is a conflict, the placement data from the reference checkpoint is used.

Incremental Compile Advanced Analysis
The Vivado tools provide reporting, timing labels, and object properties for advanced reuse
analysis.

Reuse Reporting

The report_incremental_reuse command provides options for more detailed analysis,
similar to report_utilization.

-cells <list of cells>

The -cells option limits the reuse reporting to the list of given cells instead of reporting reuse
of the entire design.

For example, limit the reuse reporting to only block RAM:

report_incremental_reuse -cells [get_cells -hierarchical -filter
{ PRIMITIVE_TYPE =~ BLOCKRAM.*.* }]

Incremental Reuse Summary

1. Reuse Summary

+----------+----------------------+--------------------+--------------------
+-------+

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=125

| Type | Matched % (of Total) | Reuse % (of Total) | Fixed % (of Total)
| Total |
+----------+----------------------+--------------------+--------------------
+-------+

| Cells | 100.00 | 100.00 | 0.00
| 16 |
+----------+----------------------+--------------------+--------------------
+-------+

2. Reference Checkpoint Information

+-------------------+-------------------------+
| DCP Location: | ./impl_1/bft_routed.dcp |
+-------------------+-------------------------+

+----------------------------------+-------------------------------+
| DCP Information | Value |
+----------------------------------+-------------------------------+
Vivado Version	v2018.1
DCP State	POST_ROUTE
Recorded WNS	1.749
Recorded WHS	0.024
Reference Speed File Version	PRODUCTION 1.24.01 01-12-2017
Incremental Speed File Version	PRODUCTION 1.24.01 01-12-2017
+----------------------------------+-------------------------------+

3. Comparison with Reference Run

+----------------+---------------------+-----------------------
+--------------------------+
| | WNS(ns) |Runtime(elapsed)(hh:mm)| Runtime(cpu)
(hh:mm) |
+----------------+---------+-----------+-----------+-----------+-----------
+--------------+
| Stage |Reference|Incremental| Reference |Incremental|Reference |
Incremental |
+----------------+---------+-----------+-----------+-----------+-----------
+--------------+
| synth_design | 1.09 | | < 1 min | 00:01 |
| 00:01 |

| opt_design | | | 00:01 | 00:01 | 00:01
| 00:01 |

| read_checkpoint| | | | < 1 min | | <
1 min |
| place_design | 2.338 | 1.721 | < 1 min | < 1 min | < 1 min

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=126

| < 1 min |
| route_design | 1.749 | 1.746 | 00:01 | 00:01 | 00:01 |
00:001 |
+----------------+---------+-----------+-----------+-----------+-----------
+--------------+

4. Non Reuse Information

+------------------+----------+
| Type | % |
+------------------+----------+

| Non-Reused Cells | 0.00 |
+------------------+----------+

Hierarchical Implementation Reuse Summary

The -hierarchical option displays a breakdown of cell reuse at each hierarchical level.
Following is an example of report_incremental_reuse -hierarchical:

Note: The sample report has been truncated horizontally and vertically to fit.

1. Summary

+-----------------------------+------------------+--------+------
+---------------------+
| Instance | Module | Reused | New |
Discarded(Illegal)* |
+-----------------------------+------------------+--------+------
+---------------------+
| bft | (top) |3607 | 9 |
2 |
| (bft) | (top) |210 | 9 |
2 |
| arnd1 | round_1 |256 | 0 |
0 |
| transformLoop[0].ct | coreTransform_43 |32 | 0 |
0 |
| transformLoop[1].ct | coreTransform_38 | 32 | 0 |
0 |
| transformLoop[2].ct | coreTransform_42 | 32 | 0 |
0 |
| transformLoop[3].ct | coreTransform_40 | 32 | 0 |
0 |
| transformLoop[4].ct | coreTransform_45 | 32 | 0 |
0 |
+-----------------------------+------------------+--------+-------
+---------------------+
* Discarded illegal placement due to netlist changes
** Discarded to improve timing
*** Discarded placement by user
**** Discarded due to its control set source is unguided
***** Discarded due to its connectivity has Loc Fixed Insts

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=127

The reuse status of each cell is reported, beginning with the top-level hierarchy, then covering
each level hierarchy contained within that level. The report progresses to the lowest level of
hierarchy contained within the first submodule, then moves on to the next one.

In this example, the top level cell is bft with a cumulative reuse total of 3,607 cells with 9 new
cells. The row with bft in parentheses show the cell reuse status contained within bft and but not
its submodules. Of the 3,607 cells, only 210 are within bft and the remainder are within its
submodules. However, all nine new cells are within bft. Within bft is a submodule arnd1
containing 256 reused cells, and no cells within arnd1 itself, only in submodules
transformLoop[0].ct, transformLoop[1].ct, and so on.

There are five columns indicating cell reuse status at each level, although only the first one
Discarded(Illegal) is shown. These columns have footnote references in the report with further
reasons for discarding reused placement.

* Discarded illegal placement due to netlist changes

** Discarded to improve timing

*** Discarded placement by user

**** Discarded due to its control set source is unguided

***** Discarded due to its connectivity has Loc Fixed Insts

Instead of reporting all hierarchical levels, you can use the -hierarchical_depth option to
limit the number of submodules to an exact number of levels. The following is the previous
example, adding -hierarchical_depth of 1:

report_incremental_reuse -hierarchical -hierarchical_depth 1

1. Summary

+----------+--------+--------+-----+---------------------+
| Instance | Module | Reused | New | Discarded(Illegal)* |
+----------+--------+--------+-----+---------------------+
| bft | (top) | 3607 | 9 | 2 |
+----------+--------+--------+-----+---------------------+

This limits reporting to the top level bft. If you had used a -hierarchical_depth of 2, the top
and each level of hierarchy contained within bft would be reported, but nothing below those
hierarchical cells.

Hierarchical Implementation Reuse Summary

1. Summary

+------------------+---------------+--------+-----+---------------------+
| Instance | Module | Reused | New | Discarded(Illegal)* |

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=128

+------------------+---------------+--------+-----+---------------------+

bft	(top)	3607	9	2
(bft)	(top)	210	9	2
arnd1	round_1	256	0	0
arnd2	round_2	256	0	0
arnd3	round_3	256	0	0
arnd4	round_4	256	0	0
egressLoop[0].egressFifo	FifoBuffer_6	173	0	0
+------------------+----------------+--------+-----+---------------------+

Timing Reports

After completing an incremental place and route, you can analyze timing with details of cell and
net reuse. Objects are tagged in timing reports to show the level of physical data reuse. This
identifies whether or not your design updates are affecting critical paths.

The following references are used with their associated meaning:

• (ROUTING): Both the cell placement and net routing are reused.

• (PLACEMENT): The cell placement is reused but the routing to the pin is not reused.

• (MOVED): Neither the cell placement nor the routing to the pin is reused.

• (NEW): The pin, cell, or net is a new design object, not present in the reference design.

See the following example.

Routing SLICE_X65Y175 FDRE(Prop_EFF_SLICEL_C_Q)
0.114 -0.446 r base_mb_i/microblaze_0/Q net (fo=637, routed) 0.752 0.306
base_mb_i/microblaze_0/reset_bool_for_rst
Routing SLICE_X73Y171 FDRE r
base_mb_i/microblaze_0/command_reg_clear_reg/R

The above report, as it appears in the Vivado IDE, appears below.

Figure 30: Incremental Reuse Summary in Vivado

To remove the labels from the timing report, use the report_timing -no_reused_label
option.

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=129

Object Properties

The read_checkpoint -incremental command assigns two cell properties which are
useful for analyzing incremental flow results using scripts or interactive Tcl commands.

• IS_REUSED: A boolean property on cell, port, net, and pin objects. The property is set to
TRUE on the respective object if any of the following incremental data is reused:

• A cell placement

• A package pin assignment for a port

• Any portion of the routing for a net

• Routing to a pin

• REUSE_STATUS: A string property on cells and nets denoting the reuse status after
incremental placement and routing.

Possible values for cells are:

• New

• Reused

• Discarded placement to improve timing

• Discarded illegal placement due to netlist changes

Possible values for nets are:

• REUSED

• NON_REUSED

• PARTIALLY_REUSED

• IS_MATCHED: A Boolean property assigned to a primitive-level cell. The property is set to
TRUE on leaf cells that have matching leaf cells in the reference design. Matching cells are
eligible for placement reuse.

TIP: Xilinx has published several applications in XHUB, in the Incremental Compile package. These
applications include visualization of placement and routing reuse when analyzing critical path and other
design views. Also included is an application for automatic Incremental Compile for the project flow, which
automatically manages reference checkpoints for incremental design runs.

TIP: For more information on how to effectively use incremental compile, see this link in the UltraFast
Design Methodology Guide for Xilinx FPGAs and SoCs (UG949).

Chapter 2: Implementing the Design

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug949-vivado-design-methodology.pdf;a=xIncrementalFlows
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=130

Chapter 3

Analyzing and Viewing
Implementation Results

Monitoring the Implementation Run
Monitoring the implementation run allows you to:

• Read the compilation information.

• Review warnings and errors in the Messages window.

• View the Project Summary.

• Open the Design Runs window.

Monitor the status of a Synthesis or Implementation run in the Log window.

Viewing the Run Status Display
The status of a run that is in progress can be displayed in two ways for synthesis and
implementation runs. These status displays show that a run is in progress. They allow you to
cancel the run if desired.

• You can find a run status indicator in the project status bar at the upper right corner of the
Vivado® IDE, as shown in the following figure. The run status indicator displays a scrolling bar
to indicate that the run is in process. You can click Cancel to end the run.

• You can also find a run status indicator in the Design Runs window, as shown at the bottom
left of the following figure. It displays a circular arrow (noted in red in the figure) to indicate
that the run is in process. You can select the run and use the Reset Run command from the
popup menu to cancel the run.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=131

Canceling or Resetting the Run

If you cancel a run that is in-progress, by clicking either Cancel or Reset Run, the Vivado IDE
prompts you to delete any run files created during the canceled run, as shown in the following
figure.

Figure 31: Cancel Implementation

Select Delete Generated Files to clear the run data from the local project directories.

RECOMMENDED: Delete any data created as a result of a canceled run to avoid conflicts with future
runs.

Viewing the Log in the Log Window
The Log window opens in the Vivado IDE after you launch a run. It shows the standard output
messages. It also displays details about the progress of each individual implementation process,
such as place_design and route_design.

The Log window, shown in the following figure, can help you understand where different
messages originate to aid in debugging the implementation run.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=132

Figure 32: Log Window

Pausing Output
Click the Pause output button to pause the output to the Log window. Pausing allows you to
read the log while implementation continues running.

Displaying the Project Status
The Vivado IDE uses several methods to display the project status and which step to take next.
The project status reports only the results of the major design tasks.

The project status is displayed in the Project summary and the Status bar. It allows you to
immediately see the status of a project when you open the project, or while you are running the
design flow commands, including:

• RTL elaboration

• Synthesis

• Implementation

• Bitstream generation

Viewing Project Status in the Project Status Bar

The project status is displayed in the project status bar in the upper-right corner of the Vivado
IDE.

Figure 33: Project Status Example

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=133

As the run progresses through the Synthesize, Implement, and Write Bitstream commands, the
Project Status Bar changes to show either a successful or failed attempt. Failures are displayed in
red text.

Viewing Out-of-Date Status

If source files or design constraints change, and either synthesis or implementation was
previously completed, the project might be marked as Out-of-Date, as shown in the following
figure.

The project status bar shows an Out-of-Date status. Click more info to display which aspects of
the design are out of date. It might be necessary to rerun implementation, or both synthesis and
implementation.

Figure 34: Implementation Out-of-Date

Forcing Runs Up-to-Date

Click Force-up-to-date to force the implementation or synthesis runs up to date. Use Force-up-
to-date if you changed the design or constraints, but still want to analyze the results of the
current run.

TIP: The Force-up-to-date command is also available from the popup menu of the Design Runs window
when an out-of-date run is selected.

Moving Forward After Implementation
After implementation has completed, for both Project Mode and Non-Project Mode, the
direction you take the design next depends on the results of the implementation.

• Is the design fully placed and routed, or are there issues that need to be resolved?

• Have the timing constraints and design requirements been met, or are their additional changes
required to complete the design?

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=134

• Are you ready to generate the bitstream for the Xilinx part?

Recommended Steps After Implementation
The recommended steps after implementation are:

1. Review the implementation messages.

2. Review the implementation reports to validate key aspects of the design:

• Timing constraints are met (report_timing_summary).

• Utilization is as expected (report_utilization).

• Power is as expected (report_power).

3. Write the bitstream file.

Writing the bitstream file includes a final DRC to ensure that the design does not violate any
hardware rules.

4. If any design requirements have not been met:

• In Project Mode, open the implemented design for further analysis.

• In Non-Project Mode, open a post-implementation design checkpoint.

For more information on analysis of the implemented design, see this link in the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906).

Moving Forward in Non-Project Mode
In Non-Project Mode, the Vivado Design Suite generated messages for the design session, and
wrote the messages to the Vivado log file (vivado.log). Examine this log file and the reports
generated from the design data to view an accurate assessment of the current project state.

Moving Forward in Project Mode
In Project Mode, the Vivado Design Suite displays the messages from the log file in the Messages
window. It also automates the creation and delivery of numerous reports for you to review.

In Project Mode, after an implementation run is complete in the Vivado IDE, you are prompted
for the next step, as shown in the following figure.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 135Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug906-vivado-design-analysis.pdf;a=xDesignAnalysisWithinTheIDE
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=135

Figure 35: Project Mode - Implementation Completed Dialog Box

In the Implementation Completed dialog box:

1. Select the appropriate option:

• Open Implemented Design: Imports the netlist, design constraints, the target part, and the
results from place and route into the Vivado IDE for design analysis and further work as
needed.

• Generate Bitstream: Launches the Generate Bitstream dialog box. For more information,
see this link in the Vivado Design Suite User Guide: Programming and Debugging (UG908).

• View Reports: Opens the Reports window for you to select and view the various reports
produced by the Vivado tools during implementation. For more information, see Viewing
Implementation Reports.

2. Click OK.

Viewing Messages
IMPORTANT! Review all messages. The messages might suggest ways to improve your design for
performance, power, area, and routing. Critical warnings might also expose timing constraint problems that
must be resolved.

Viewing Messages in Non-Project Mode
In Non-Project Mode, review the Vivado log file (vivado.log) for:

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 136Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=136

• The commands that you used during a single design session.

• The results and messages from those commands.

RECOMMENDED: Open the log file in the Vivado text editor and review the results of all commands for
valuable insights.

Viewing Messages in Project Mode
In Project Mode, the Messages window, shown in the following figure, displays a filtered list of
the Vivado log. This list includes only the main messages, warnings, and errors. The Messages
window sorts by feature, and includes toolbar options to filter and display only specific types of
messages.

Figure 36: Messages Window

Use the following features when viewing messages in Project Mode:

• Click the expand and collapse tree widgets to view the individual messages.

• Check the appropriate check box in the banner to display errors, critical warnings, warnings,
and informational messages in the Messages window.

• Select a linked message in the Messages window to open the source file and highlight the
appropriate line in the file.

• Run Search for Answer Record from the Messages window popup menu to search the Xilinx
Customer Support database for answer records related to a specific message.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=137

Incremental Compile Messages
The Vivado tools log file reports incremental placement and routing summary results from
Incremental Compile.

Incremental Placement Summary

The following example of the Incremental Placement Summary includes a final assessment of cell
placement reuse and run time statistics.

+---
----+
|Incremental Placement Summary |
+---
----+
| Type | Count | Percentage |
+---
----+
Total instances	33406	100.00
Reused instances	32390	96.96
Non-reused instances	1016	3.04
New	937	2.80
Discarded illegal placement due to netlist changes	16	0.05
Discarded to improve timing	63	0.19
+---		
----+		
Incremental Placement Runtime Summary		
+---		
----+		
Initialization time(elapsed secs)	79.99	
Incremental Placer time(elapsed secs)	31.19	
+---
----+

Incremental Routing Summary

The Incremental Routing Summary displays reuse statistics for all nets in the design. The
categories reported include:

• Fully Reused: The entire routing for a net is reused from the reference design.

• Partially Reused: Some of the routing for a net from the reference design is reused. Some
segments are re-routed due to changed cells, changed cell placements, or both.

• New/Unmatched: The net in the current design was not matched in the reference design.

Incremental Routing Reuse Summary
Type

Fully reused nets	30393	96.73
Partially reused nets	0	0.00
Non-reused nets	1028	3.27

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=138

Viewing Implementation Reports
The Vivado Design Suite generates many types of reports, including reports on:

• Timing, timing configuration, and timing summary.

• Clocks, clock networks, and clock utilization.

• Power, switching activity, and noise analysis.

When viewing reports, you can:

• Browse the report file using the scroll bar.

• Click Find or Find in Files to search for specific text.

Reporting in Non-Project Mode
In Non-Project Mode, you must run these reports manually.

• Use Tcl commands to create an individual report.

• Use a Tcl script to create a series of reports.

Example Tcl Script

Report the control sets sorted by clk, clkEn
report_control_sets -verbose -sort_by {clk clkEn} -file C:/Report/
cntrl_sets.rpt
Run Timing Summary Report for post implementation timing
report_timing_summary -file C:/Reports/post_route_timing.rpt -name time1
Run Utilization Report for device resource utilization
report_utilization -file C:/Reports/post_route_utilization.rpt

Opening Reports in a Vivado IDE Window
You can open these reports in a Vivado IDE window. In the example Tcl script above, the
report_timing_summary command:

• Uses the -file option to direct the output of the report to a file.

• Uses the -name option to direct the output of the report to a Vivado IDE window.

Figure 38: Control Sets Report shows an example of a report opened in a Vivado IDE window.

TIP: The directory to which the reports are to be written must exist before running the report, or the file
cannot be saved, and an error message will be generated.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=139

Getting Help with Implementation Reports
Use the Tcl help command in the Vivado IDE or at the Tcl command prompt. For a complete
description of the Tcl reporting commands and their options, see the Vivado Design Suite Tcl
Command Reference Guide (UG835).

Reporting in Project Mode
In Project Mode, many reports are generated automatically. View report files in the Reports
window, shown in the following figure.

The Reports window usually opens automatically after synthesis or implementation commands
are run. If the window does not open do one of the following:

1. Select the Reports link in the Project Summary.

2. Select Windows → Reports.

TIP: The tcl.pre  and tcl.post options of an implementation run let you output custom reports at
each step in the process. These reports are not listed in the Reports window, but can be customized to
meet your specific needs. For more information, see Changing Implementation Run Settings.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 140Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=140

Figure 37: Example Reports View

The reports available from the Reports window contain information related to the run. The
selected report opens in text form in the Vivado IDE, as shown in the following figure.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=141

Figure 38: Control Sets Report

Cross Probing from Reports
In both Project Mode and Non-Project Mode, the Vivado IDE supports cross probing between
reports and the associated design data in different windows (for example, the Device window).

• You generate the report using a menu command or Tcl command.

• Text reports do not support cross probing.

For example, the Reports window includes a text-based Timing Summary Report under Route
Design (as shown in Figure 37).

When analyzing timing, it is helpful to see the design data associated with critical paths, including
placement and routing resources in the Device window.

To regenerate the report in the Vivado IDE, select Tools → Timing → Report Timing Summary.
The resulting report allows you to cross-probe among the various views of the design.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=142

Cross Probing Between Timing Report and Device Window Example

The following figure shows an example of cross probing between the Timing Summary report and
the Device window. The following steps take place in this Non-Project Mode example:

• A post-route design checkpoint is opened in the Vivado IDE.

• The Timing Summary report is generated and opened using report_timing_summary -
name.

• The Routing Resources are enabled in the Device window.

• When the timing path is selected in the Timing Summary report, cross probing on the path
occurs automatically in the Device window, as shown in the following figure.

Figure 39: Cross-Probing Between Timing Report and Device Window

For more information on analyzing reports and strategies for design closure, see the Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906).

Modifying Implementation Results
This section describes how to modify placement, routing, and logic for your design.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 143Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=143

Modifying Placement
The Vivado tools track two states for placed cells, Fixed and Unfixed, which describes the way in
which the Vivado tools view placed cells in the design.

Fixed Cells

Fixed cells are those that you have placed yourself, or the location constraints for the cells have
been imported from an XDC file.

• The Vivado Design Suite treats these placed cells as Fixed.

• Fixed cells are not moved unless directed to do so.

• The FF in the following figure is shown in orange (default) to indicate that it is Fixed.

Unfixed Cells

Unfixed cells have been placed by the Vivado tools in implementation, during the
place_design command, or on execution of one of optimization commands.

• The Vivado Design Suite treats these placed cells as Unfixed (or loosely placed).

• These cells can be moved by the implementation tools as needed in design iterations.

• The LUT in the following figure is shown in blue (default) to indicate that it is Unfixed.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=144

Figure 40: Logic Placed in a Slice

Both LOCS and BELS can be fixed. The placement above generates the following constraints:

set_property is_bel_fixed true [get_cells [list {usbEngine0/u4/u6/
csr0_reg[6]}]]
set_property is_loc_fixed true [get_cells [list {usbEngine0/u4/u6/
csr0_reg[6]}]]

There is no placement constraint on the LUT. Its placement is unfixed, indicating that the
placement should not go into the XDC.

Fixing Placer-Placed Logic

To fix cells placed by the Vivado placer in the Vivado IDE:

1. Select the cells.

2. Choose Fix Cells from the popup menu.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=145

To fix cell placement with Tcl, use a command of this form:

set_property is_bel_fixed TRUE [get_cells [list {fftEngine/
control_reg_reg[1]_i_1}]]
set_property is_loc_fixed TRUE [get_cells [list {fftEngine/
control_reg_reg[1]_i_1}]]

For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

Placing and Moving Logic by Hand

You can place and move logic by hand.

• If the cell is already placed, drag and drop it to a new location.

• If the cell is unplaced:

1. Click the Drag & Drop Modes toolbar button and select Create BEL Constraint Mode.

2. Drag the logic from the Netlist window, or from the Timing Report window, onto the
Device window.

The logic snaps to a new legal location.

TIP: When dragging logic to a location in the Device Window, the GUI allows you to drop the logic only on
legal locations. If the location is illegal (for example, because of control set restriction for Slice FFs), the
logic does not "snap" to the new location in the Device view, and it cannot be assigned.

Hand-placing logic can be slow, and used in specific situations only. The constraints are fragile
with respect to design changes because the cell name is used in the constraint.

Placing Logic Using a Tcl Command

You can place logic onto device resources of the target part using the place_cell Tcl
command. Cells can be placed onto specific BEL sites (for example, SLICE_X49Y60/A6LUT) or
into available sites (for example, SLICE_X49Y60). If you specify the site but not the BEL, the tool
determines an appropriate BEL within the specified site if one is available. You can use the
place_cell command to place cells or to move placed cells from one site on the device to
another site. The command syntax is the same for placing an unplaced cell or for moving a placed
cell.

TIP: When assigning logic to an illegal location (for example, because of control set restriction for Slice
FFs), the Tcl Console issues an error message, and the assignment is ignored.

Cells that have been placed using the place_cell Tcl command are treated as Fixed by the
Vivado tool.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=146

Modifying Routing
The Device View allows you to modify the routing for your design. You can Unroute, Route, and
Fix Routing on any individual net.

To Unroute, Route, or Fix Routing on a net:

1. Open Device window.

2. Select the net.

• Unrouted nets are indicated by a red flyline.

• Partially routed nets are highlighted in yellow.

• Nets with fixed routing are indicated by a dashed route.

3. Right-click and select Unroute, Route, or Fix Routing.

• Unroute and Route: Calls the router in re-entrant mode to perform the operation on the
net. For more information, see route_design.

• Fix Routing: Deposits the route, marks it fixed in the route database, and fixes the LOC
and BEL of the driver and the load of the net. You can also enter Assign Routing Mode to
route a net manually. For more information, see Manual Routing, below.

TIP: All net commands are available from the context menu on a net.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=147

Figure 41: Modify Routing

Manual Routing
Manual routing allows you to select specific routing resources for your nets. This gives you
complete control over the routing paths that a signal is going to take. Manual routing does not
invoke route_design. Routes are directly updated in the route database.

You might want to use manual routing when you want to precisely control the delay for a net. For
example, assume a source synchronous interface, in which you want to minimize routing delay
variation to the capture registers in the device. To accomplish this, you can assign LOC and BEL
constraints to the registers and I/Os, and then precisely control the route delay from the IOB to
the register by manual routing the nets.

Manual routing requires detailed knowledge of the device interconnect architecture. It is best
used for a limited number of signals and for short connections.

Manual Routing Rules

Observe these rules during manual routing:

• The driver and the load require a LOC constraint and a BEL constraint.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=148

• Branching is not allowed during manual routing, but you can implement branches by starting a
new manual route from a branch point.

• LUT loads must have their pins locked.

• You must route to loads that are not already connected to a driver.

• Only complete connections are permitted. Antennas are not allowed.

• Overlap with existing unfixed routed nets is allowed. Run route_design after manual
routing to resolve any conflicts due to overlapping nets.

Entering Assign Routing Mode

To enter Assign Routing mode:

1. Open Device window.

2. Be sure that Routing Resources in the Device window is selected.

3. Enable the Layers for Unrouted Net and Partially Routed Net in the Device Options Layers
view, shown in the following figure.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=149

4. Select the net that requires routing.

• Unrouted nets are indicated by a red flyline.

• Partially routed nets are highlighted in yellow.

5. Right-click and select Enter Assign Routing Mode.

The Assign Routing Mode: Target Load Cell Pin dialog box opens.

6. Optionally, select a load cell pin to which you want to route.

7. Click OK.

Note: To display partially routed or unrouted nets in the Device window, ensure that those layers are
selected in the Device Options menu, shown in the following figure.

You are now in Manual Routing Mode. A Routing Assignment window, shown in the following
figure, appears next to the Device window.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=150

Routing Assignment Window

Figure 42: Routing Assignment Window

The Routing Assignment window is divided into the Options, Assigned Nodes, and Neighbor
Nodes sections:

• The Options section, shown in the following figure, controls the settings for the Routing
Assignment window.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=151

○ The Number of hops value allows you to specify the number of routing hops that can be
assigned for neighbor nodes. This also affects the Neighbor Nodes displayed. If the number
of hops is greater than 1, only the last node of the route is displayed in the Neighbor Nodes
section.

○ The Maximum number of neighbors value allows you to limit the number of neighbor
nodes that are displayed in the Neighbor Nodes section. Only the last node of the route is
displayed.

○ The Allow overlap with unfixed nets switch controls whether overlaps of assigned routing
with existing unfixed routing is allowed. Any overlaps need to be resolved by running the
route_design command after fixed route assignment.

The Options section is hidden by default. To show the Options section, click Show.

• The Assigned Nodes section shows the nodes that already have assigned routing. Each
assigned node is displayed as a separate line item.

In the Device window, nodes with assigned routing are highlighted in orange. Any gaps
between assigned nodes are shown in the Assigned Nodes section as a GAP line item. To
auto-route gaps:

○ Right-click a net gap in the Assigned Nodes section.

○ Select Auto-route from the context-sensitive menu.

To assign the next routing segment, select an assigned node before or after a gap, or the last
assigned node in the Assigned Nodes section.

• The Neighbor Nodes section (shown in the following section) displays the allowed neighbor
nodes, highlights the current selected nodes (in white). and highlights the allowed neighbor
nodes (white dotted) in the Device window.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=152

Figure 43: Assign Next Routing Segment

Assigning Routing Nodes

Once you have decided which Neighbor Node to assign for your next route segment, you can:

• Right-click the node in the Neighbor Nodes section and select Assign Node.

• Double-click the node in the Neighbor Nodes section.

• Click the node in the Device View.

After you have assigned routing to a Neighbor Node, the node is displayed in the assigned nodes
section and highlighted in orange in the Device View.

Assign nodes until you have reached the load, or until you are ready to assign routing with a gap.

Un-Assigning Routing Nodes

To un-assign nodes:

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=153

1. Go to the Assigned Nodes pane of the Routing Assignment window.

2. Select the nodes to be un-assigned.

3. Right-click and select Remove.

The nodes are removed from the assignment.

Exiting Assign Routing Mode

To finish the routing assignment and exit Assign Routing Mode, click the Assign Routing button
in the Routing Assignment window.

The Assign Routing dialog box is displayed, as shown in the following figure, allowing you to
verify the assigned nodes before they are committed.

Figure 44: Assign Routing Dialog Box

Canceling Out of Assign Routing Mode

If you are not ready to commit your routing assignments, you can cancel out of the Assign
Routing Mode using one of the following methods:

• Click Exit Mode in the Routing Assignment window, or

• Right-click in the Device window and select Exit Assign Routing Mode.

When the routes are committed, the driver and load BEL and LOC are also fixed.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=154

Verifying Assigned Routes

• Assigned routes appear as dotted green lines in the Device View.

• Partially assigned routes appear as dotted yellow lines in the Device view.

The following figure shows an example of an assigned and partially assigned route.

Figure 45: Assigned Partially Assigned Routing

Branching

When assigning routing to a net with more than one load, you must route the net in the following
steps:

1. Assign routing to one load following the steps provided in Entering Assign Routing Mode.

2. Assign routing to all the branches of the net.

The following figure shows an example of a net that has assigned routing to one load and
requires routing to two additional loads.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=155

Figure 46: Assign Branching Route

Assigning Routing to a Branch

To assign routing to a branch:

1. Go to Device window.

2. Select the net to be routed.

3. Right-click and select Enter Assign Routing Mode.

The Assign Routing Mode: Target Load Cell Pin window opens, showing all loads.

Note: The loads that already have assigned routing have a checkmark in the Routed column of the
table.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=156

4. Select the load to which you want to route.

5. Click OK. The Assign Routing Mode: Branch Start dialog box, shown in the following figure,
opens.

6. Select the node from which you want to branch off the route for your selected load.

7. Click OK.

8. Follow the steps shown in Assigning Routing Nodes.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=157

Locking Cell Inputs and Adding DONT_TOUCH Constraint on LUT
Loads

You must ensure that the inputs of LUT loads to which you are routing are not being swapped
with other inputs on those LUTs. To do so, lock the cell inputs of LUT loads as follows:

1. Open Device window.

2. Select the load LUT.

3. Right-click and select Lock Cell Input Pins.

The equivalent Tcl command is:

set_property LOCK_PINS {NAME:BEL_PIN} <cell object>

To prevent pin swapping in Physical Synthesis in the Placer, a DONT_TOUCH constraint needs to
be applied to the LUT cell. The Tcl command is:

set_property DONT_TOUCH TRUE <cell object>

For nets that have fixed routing and multiple LUT loads, the following Tcl script can be used to
lock the cell inputs of all the LUT loads.

set fixed_nets [get_nets -hierarchical -filter IS_ROUTE_FIXED] foreach
LUT_load_pin [get_pins -leaf -of [get_nets $fixed_nets] \
-filter DIRECTION==IN&&REF_NAME=~LUT*] {
set pin [get_property REF_PIN_NAME $LUT_load_pin]
set BEL_pin [file tail [get_bel_pins -of [get_pins $LUT_load_pin]]] set
LUT_name [get_property PARENT_CELL $LUT_load_pin]
need to handle condition when LOCK_pins property already exists on LUT
set existing_LOCK_PIN [get_property LOCK_PINS [get_cells $LUT_name]]
if { $existing_LOCK_PIN ne "" } {
reset_property LOCK_PINS [get_cells $LUT_name]
}
set_property LOCK_PINS \
[lsort -unique [concat $existing_LOCK_PIN $pin:$BEL_pin]] [get_cells
$LUT_name]
}

Directed Routing Constraints
Fixed route assignments are stored as Directed Routing Strings in the route database. In a
Directed Routing String, branching is indicated by nested {curly braces}.

For example, consider the route described in the following figure. In this simplified illustration of
a route, the various elements are indicated as shown in the following table (Directed Routing
Constraints).

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=158

Table 13: Directed Routing Constraints

Elements Indicated By
Driver and Loads Orange Rectangles

Nodes Red lines

Switchboxes Blue rectangles

A simplified version of a Directed Routing String for that route is as follows:

{A B { D E T } C { F G H I M N } {O P Q} R J K L S }

The route branches at B and C. The main trunk of this route is A B C R J K L S.

Figure 47: Branch Route Example

D

L1

L2

L4

L3

A B

E T

I M N

Q
PO

G

H

F

D

C

R

J
K L S

X16628-040716

Using the find_routing_path Command to Create Directed Routing
Constraints

The find_routing_path Tcl command can be used to create directed routing constraints. You
can then assign the created constraints to the FIXED_ROUTE property of a net to lock down the
routing.

For partially routed nets, the nodes can be found associated directly to the net. Refer to the
Vivado Design Suite Properties Reference Guide (UG912) for more information on the relationship
between these objects.

The find_routing_path command returns one of the following:

• A list of nodes representing the route path found from the start point to the end point.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 159Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=159

• no path found if the command runs but has no result.

• An error if the command fails to run.

Modifying Logic
Properties on logical objects that are not Read Only can be modified after Implementation in the
Vivado IDE as well as Tcl.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

To modify a property on an object in Device window:

1. Select the object.

2. Modify the property value of the object in the Properties view of the Properties window.

These properties can include everything from block RAM INITs to the clock modifying
properties on MMCMs. There is also a special dialog box to set or modify INIT on LUT
objects. This dialog box allows you to specify the LUT equation and have the tools determine
the appropriate INIT.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 160Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=160

Saving Modifications

• To capture the changes to the design made in memory, write a checkpoint of the design.

Because the assignments are not back-annotated to the design, you must add the assignments
to the XDC for them to impact the next run.

• To save the constraints to your constraints file in Project Mode, select File → Constraints → 
Save.

Modifying the Netlist
Netlists sometimes require changes to fix functional logic bugs, meet timing closure, or insert
debug logic. You can modify an existing netlist using Tcl commands post-synthesis, post-place,
and post-route.

Netlist Modifying Commands

The following commands allow you to modify an existing netlist:

• create_port

• remove_port

• create_cell

• remove_cell

• create_pin

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 161Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_port
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xremove_port
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_cell
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xremove_cell
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_pin
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=161

• remove_pin

• create_net

• remove_net

• connect_net

• disconnect_net

Note: For more information about these Tcl commands, see the Vivado Design Suite Tcl Command Reference
Guide (UG835), or type <command> -help.

The netlist modifying commands work on a post-synthesis, post-place or post-route netlist.
Before the netlist is modified, it must be loaded into memory. The netlist modifying commands
allow you to make logical changes to the netlist when it is in memory. You can use the
write_checkpoint command to save changes.

TIP: The Vivado tools allows you to make netlist changes unconditionally using the netlist modifying
commands. However, logical changes can lead to invalid physical implementation. It is recommended to
run DRCs after performing your netlist changes. In addition, DRCs are run as part of the process of adding
the logical changes to the physical implementation. These DRCs flag any invalid netlist changes or new
physical restrictions that need to be addressed before physical implementation can commence.

Logical changes are reflected in the schematic view as soon as the netlist modifying commands
are executed. The following figure shows an example of a cell that was created using a LUT1 as a
reference cell.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 162Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xremove_pin
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xremove_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xconnect_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xdisconnect_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=162

Figure 48: Cell Created Using LUT1 as a Reference Cell

When the output of the LUT1 is connected to an OBUF, the schematic reflects this change
showing the ECO_INV/O pin no longer with a "no-connect." The following figure shows the
resulting schematic view.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=163

Figure 49: Schematic After Connection of LUT1 to an OBUF

Use Cases

The following examples show some of the most common use cases for netlist modifications. The
examples show the schematic of the original logical netlist, list the netlist modifying Tcl
commands, and show the schematic of the resulting modified netlist.

Use Case 1: Inverting the Logical Value of a Net

Inverting the logical value of a net can be as simple as modifying the existing LUT equations of a
LUTx primitive, or it can require inserting a LUT1 that is configured to invert the output from its
input. The schematic in the following figure shows a FDRE primitive that is driving the output
port wbOutputData[0] through an OBUF.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=164

Figure 50: FDRE Primitive Driving Output Port through an OBUF

The following Tcl commands show how to add an inverter between the output of the FDRE and
the OBUF:

create_cell -reference LUT1 ECO_INV set_property INIT 2'h1 [get_cells
ECO_INV]
disconnect_net -net {n_0_SuspendM_pad_0_o_reg} -objects \ [get_pins
{SuspendM_pad_0_o_reg/Q}]
connect_net -net {n_0_SuspendM_pad_0_o_reg} -objects [get_pins {ECO_INV/O}]
create_net ECO_INV_in
connect_net -net ECO_INV_in -objects [get_pins {SuspendM_pad_0_o_reg/Q
ECO_INV/I0}]

In this example script, LUT1 cell ECO_INV is created, and the INIT value is set to 2'h1, which
implements an inversion. The net between the FDRE and OBUF is disconnected from the Q
output pin of the FDRE, and the output of the inverting LUT1 cell ECO_INV is connected to the I
input pin of the OBUF. Finally, a net is created and connected between the Q output pin of the
FDRE and the I0 input pin of the inverting LUT1 cell.

The following figure shows the schematic of the resulting logical netlist changes.

Figure 51: Schematic Showing Netlist Changes After Adding Inverter

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=165

After the netlist has been successfully modified, the logical changes must be implemented. The
LUT1 cell must be placed, and the nets to and from the cell routed. This must occur without
modifying placement or routing of parts of the design that have not been modified. The Vivado
implementation commands automatically use incremental mode when place_design is run on
the modified netlist, and the log file reflects that by showing the Incremental Placement
Summary:

+--+
|Incremental Placement Summary |
+--+
| Type | Count | Percentage |
+--------------------------+----------+------------+
Total instances	3834	100.00
Reused instances	3833	99.97
Non-reused instances	1	0.03
New	1	0.03
+--------------------------+----------+------------+

To preserve existing routing and route only the modified nets, use the route_design
command. This incrementally routes only the changes, as you can see in the Incremental Routing
Reuse Summary in the log file:

+--+
|Incremental Routing Reuse Summary |
+--+
|Type | Count | Percentage |
+---------------------+-----------+----------------+
Fully reused nets	6401	99.97
Partially reused nets	0	0.00
Non-reused nets	2	0.03
+---------------------+-----------+----------------+

Instead of automatically placing and routing the modified netlist using the incremental
place_design and route_design commands, the logical changes can be committed using
manual placement and routing constraints. For more information see the Modifying Placement
and Modifying Routing sections earlier in this chapter.

Use Case 2: Adding a Debug Port

You can easily route an internal signal to a debug port with a netlist change. The schematic below
shows the pin demuxState_reg/Q, which you can observe on an external port of the device.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=166

Figure 52: Schematic Showing demuxState_reg

The following Tcl script shows how to add a port to the existing design and route the internal
signal to the newly created port.

create_port -direction out debug_port_out
set_property PACKAGE_PIN AB20 [get_ports {debug_port_out}]
set_property IOSTANDARD LVCMOS18 [get_ports [list debug_port_out]]
create_cell -reference [get_lib_cells [get_libs]/OBUF] ECO_OBUF1
create_net ECO_OBUF1_out
connect_net -net ECO_OBUF1_out -objects ECO_OBUF1/O
connect_net -net ECO_OBUF1_out -objects [get_ports debug_port_out]
connect_net -net [get_nets -of [get_pins demuxState_reg/Q]] -objects
ECO_OBUF1/I

The example script accomplishes the following:

• Creates a debug port.

○ Assigns it to package pin AB20.

○ Assigns it an I/O standard of LVCMOS18.

• Creates an OBUF that drives the debug port through net ECO_OBUF1_out.

• Creates a net to connect the output of the demuxState_reg register to the input of the OBUF.

The following figure shows the schematic of the resulting logical netlist changes.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=167

Figure 53: Schematic after Adding/Routing a Debug Port

After the netlist has been successfully modified, the logical changes must be implemented.
Because the port has been assigned to a package pin, the OBUF driving the port is automatically
placed in the correct location. Therefore, the placer does not have anything to place and
therefore incremental compile is not triggered when running place_design followed by
route_design. To route the newly added net that connects the internal signal to the OBUF
input, use the route_design -nets command or route the net manually to avoid a full
route_design pass which might change the routing for other nets. Alternatively, you can run
route_design -preserve, which preserves existing routing. See Using Other route_design
Options.

Use Case 3: Adding a Pipeline Stage to Improve Timing

Adding registers along a path to split combinational logic into multiple cycles is called pipelining.
Pipelining improves register-to-register performance by introducing additional latency in the
pipelined path. Whether pipelining works depends on the latency tolerance of your design. The
schematic in the following figure shows the critical path originating at a RAMB36E1 and going
through two LUT6 cells before terminating at an FF. Adding a pipeline stage can improve timing
for the critical path and can be accomplished by modifying the netlist.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=168

Figure 54: Schematic Prior to Addition of Pipeline Register

The following Tcl script shows how to insert a pipeline register between the two LUT6 cells. The
register is implemented with the same control signals as the load register.

create_cell -reference [get_lib_cells -of [get_cells
{wbOutputData_reg[29]}]] ECO_pipe_stage[29]
foreach control_pin {C CE R} {
connect_net -net [get_nets -of [get_pins wbOutputData_reg[29]/$
{control_pin}]] \
-objects [get_pins ECO_pipe_stage[29]/${control_pin}]
}
disconnect_net -objects \
{egressLoop[4].egressFifo/buffer_fifo/
infer_fifo.block_ram_performance.fifo_ram_reg/DOBDO[29]}
create_net {egressLoop[4].egressFifo/buffer_fifo/ECO_pipe_stage[29]_in}
connect_net -hierarchical -net
{egressLoop[4].egressFifo/buffer_fifo/ECO_pipe_stage[29]_in} -objects \
[list \
{ECO_pipe_stage[29]/D} \

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=169

{egressLoop[4].egressFifo/buffer_fifo/
infer_fifo.block_ram_performance.fifo_ram_reg/DOBDO[29]}]
connect_net -hierarchical -net {egressLoop[4].egressFifo/buffer_fifo/
dout2_in[29]}
-objects [list \ {ECO_pipe_stage[29]/Q}]

The following figure shows the schematic of the resulting logical netlist changes.

Figure 55: Schematic Showing Addition of Pipeline Register

After the netlist has been successfully modified, the logical changes must be committed.
Accomplish this using the place_design and route_design commands.

Vivado ECO Flow
IMPORTANT! ECOs only work on design checkpoints. The ECO Layout is only available after a design
checkpoint has been opened in the Vivado IDE.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=170

Engineering change orders (ECOs) are modifications to the post implementation netlist with the
intent to implement the changes with minimal impact to the original design. Vivado provides an
ECO flow, which allows you to modify a design checkpoint, implement the changes, run reports
on the changed netlist, and generate programming files.

Common use cases for the ECO flow are:

• Modifying debug probes of ILA and/or VIO cores in the design.

• Routing an internal net to a package pin for external probing.

• Evaluating what-if scenarios (improving timing, fixing logic bugs, and so on).

The advantage of the ECO flow is fast turn-around time by taking advantage of the incremental
place and route features of the Vivado tool.

The Vivado IDE provides a predefined layout to support the ECO flow. To access the ECO
Layout, select Layout →  ECO.

ECO Navigator

The ECO Navigator provides access to the commands that are required to complete an ECO.

Scratch Pad

The scratch pad tracks netlist changes and place and route status for Cells, Pins, Ports, and Nets.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=171

Figure 56: Vivado ECO Layout

ECO Flow Chart
The figure below shows a typical ECO flow. You open a previously implemented design. After
modifying the netlist, if the design is not fully placed, you run Incremental Place.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=172

Otherwise you can skip straight to Incremental route. After that you can save your changes to a
new checkpoint and write new programming and debug probe files and Open the Hardware
manger to program your device. If you are satisfied with your changes you can incorporate them
into your original design. Otherwise, you can start at the beginning of the ECO flow until the
design is working as expected.

Figure 57: ECO Flow Chart

Open DCP

Modify Netlist

Incr. Route

Fully
Placed?

Yes

No

Write new DCP, BIT, LTX

Open Hardware Manager

Design
Working?

Incorporate Changes in Original Design

Incr. Place

Yes

No

X16519-040716

TIP: When you re-run implementation in project mode the results in the previous run directory will be
deleted. Save the ECO checkpoint to a new directory or create a new implementation run for your
subsequent compile to preserve the changes to the ECO checkpoint.

ECO Navigator Use
The ECO Navigator provides access to all of the commands required to complete an ECO. The
ECO Navigator is divided into four sections: Edit, Run, Report, and Program.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=173

Edit Section

The Edit section of the ECO Navigator (shown in the below figure) provides access to all the
commands that are required to modify the netlist.

Figure 58: ECO Navigator Edit Commands

• Create Net: Opens the Create Net dialog box, which allows you to create new nets in the
current loaded design. Nets can be created hierarchically from the top level of the design, or
within any level of the hierarchy by specifying the hierarchical net name. Bus nets can be
created with increasing or decreasing bus indexes, using negative and positive index values. To
create a bus net, turn on Create bus and specify the beginning and ending index values.

If you select a pin or port, you can have the newly created net automatically connect to them
by selecting the Connect selected pins and ports check box.

Figure 59: Create Net Dialog Box

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=174

• Create Cell: Opens the Create Cell dialog box, which allows you to add cells to the netlist of
the currently loaded design. You can add new cell instances to the top- level of the design, or
hierarchically within any module of the design. Instances can reference an existing cell from
the library or design source files, or you can add a black box instance that references cells that
have not yet been created. If a LUT cell is created, you can specify a LUT equation in the
Specify LUT Equation dialog box by selecting it.

Figure 60: Create Cell Dialog Box

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=175

Figure 61: Specify LUT Equation Dialog Box

• Create Port: Opens the Create Port dialog box, in which you can create a port and specify
such parameters as direction, width, single-ended, or differential. New ports are added at the
top level of the design hierarchy. You can create bus ports with increasing or decreasing bus
indexes, using negative and positive index values. You can also specify I/O standard, pull type,
and ODT type. When a Location is specified, the port is assigned to a package pin.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=176

Figure 62: Create Port Dialog Box

• Create Pin: Opens the Create Pin dialog box, which allows you to add single pins or bus pins
to the current design. You can define attributes of the pin, such as direction and bus width, as
well as the pin name. You can create bus pins with increasing or decreasing bus indexes, using
negative and positive index values. A pin must be created on an existing cell instance, or it is
considered a top-level pin, which should be created using the create_port command. If the
instance name of a cell is not specified, the pin cannot be created.

Figure 63: Create Pin Dialog Box

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=177

• Connect Net: The selected pin or port is connected to the selected net. If a net is not selected,
the Connect Net dialog box opens, which allows you to specify a net to connect to the
selected pins or ports in the design. The window displays a list of nets at the current selected
level of hierarchy that can be filtered dynamically by typing a net name in the search box. The
selected net will be connected across levels of hierarchy in the design, by adding pins and
hierarchical nets as needed to complete the connection.

Figure 64: Connect Net Dialog Box

• Disconnect Net: Disconnects the selected net, pin, port or cell from the net in the current
design. If a cell is selected, all nets connected to that cell will be disconnected.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=178

• Replace Debug Probes: Opens the Replace Debug Probes dialog box, if a debug core has
previously been inserted into the design. The Replace Debug Probes dialog box contains
information about the nets that are probed in your design using the ILA and/or VIO cores. You
can modify the nets that are connected to the debug probe by clicking the icon next to the net
name in the Probe column. This opens the Choose Nets dialog box, which allows you to select
a new net to connect to the debug probe.

Figure 65: Replace Debug Probes Dialog Box

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=179

Figure 66: Choose Nets Dialog Box

• Place Cell: Places the selected cell onto the selected device resource.

• Unplace Cell: Unplaces the selected cell from its current placement site.

• Delete Objects: Deletes the selected objects from the current design.

Run Section

The Run section of the ECO Navigator, shown in the figure below, provides access to all the
commands required to implement the current changes.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=180

Figure 67: ECO Navigator Run Commands

• Check ECO: Runs the ECO checks rule deck on the current design.

TIP: The Vivado tools allows you to make netlist changes unconditionally using the ECO commands.
However, logical changes can lead to invalid physical implementation. Run the Check ECO function to
flag any invalid netlist changes or new physical restrictions that need to be addressed before physical
implementation can commence.

• Optimize Logical Design: In some cases, it is desirable to run opt_design on the modified
design to optimize the netlist. This command opens the Optimize Logical Design dialog box,
allowing you to specify options for the opt_design command. Any options that are entered
in the dialog box are appended to the opt_design command as they are typed. For example,
to run opt_design -sweep, type -sweep under Options.

Figure 68: Optimize Logical Design Dialog Box

• Place Design: Runs incremental place_design on the modified netlist as long as 75% or
more of the placement can be reused. The Incremental Placement Summary at the end of
place_design provides statistics on incremental reuse. Selecting this command opens the
Place Design dialog box and allows you to specify options for the place_design command.
Any options that are entered in the dialog box are appended to the place_design
command as they are typed.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=181

Refer to Incremental Implementation for additional information on Incremental Place and
Route.

Figure 69: Place Design Dialog Box

• Optimize Physical Design: In some cases it is desirable to run phys_opt_design on the
modified design to perform physical optimization on the netlist. This command opens the
Optimize Physical Design dialog box and allows you to specify options for the
phys_opt_design command. Any options that are entered in the dialog box are appended
to the phys_opt_design command as they are typed. For example, to run
phys_opt_design -fanout_opt, type -fanout_opt under Options.

Figure 70: Optimize Physical Design Dialog Box

• Route Design: Selecting this command opens the Route Design dialog box. Depending on the
selection, this command allows you to perform an Incremental Route of the modifications
made to the design, Route the selected pin, or Route selected nets. If Incremental Route is
selected on a modified netlist that has less than 75% of reused nets, the tool reverts to the
non-incremental route_design.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=182

Figure 71: Route Design Dialog Box

Refer to Incremental Implementation for additional information on incremental Place and
Route.

Depending on your selection, you have four options to route the ECO changes:

• Incremental Route: This is the default option.

• Route selected pin: This option limits the route operation to the selected pin.

• Route selected non-Power nets: This option routes only the selected signal nets.

• Route selected Power nets: This option routes only the selected VCC/GND nets.

Report Section

The Report Section of the ECO Navigator, shown in the figure below, provides access to all the
commands that are required to run reports on the modified design.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=183

Figure 72: ECO Navigator Report Commands

For more information on these commands, refer to the Vivado Design Suite User Guide: Using the
Vivado IDE (UG893).

Program Section

The Program section of the ECO Navigator, shown in the figure below, provides access to the
commands that allow you to save your modifications, generate a new BIT file for programming
and a new LTX file for your debug probes, and program the device.

Figure 73: ECO Navigator Program Commands

• Save Checkpoint As: This command allows you to save your modifications to a new
checkpoint.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 184Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=184

Figure 74: Save Checkpoint As Dialog Box

• Generate Bitstream: This command allows you to generate a new .bit file for programming.

Figure 75: Generate Bitstream Dialog Box

• Write Debug Probes: This command allows you to generate a new .ltx file for your debug
probes. If you made changes to your debug probes using the Replace Debug Probes
command, you need to save the updated information to a new debug probes file (LTX) to
reflect the changes in the Vivado Hardware Manager.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=185

Figure 76: Write Debug Probes Dialog Box

Scratch Pad
The Scratch Pad is updated as changes are made to the loaded checkpoint. See the following
figure. The Object Name column displays hierarchical names of Cells, Nets, Ports, and Pins. The
Connectivity (Con) column tracks the connectivity of the objects and the Place and Route (PnR)
column tracks the place and route status of the objects. In the Scratch Pad shown in the
following figure, notice that check marks in the Con and PnR columns identify connectivity and
place/route status. Looking at this figure, you can identify the following:

• The port ingressFifoWrEn_debug has been added and assigned to a package pin.

• The net ingressFifoWrEn has been connected to the newly created Port, but the connection
has not yet been routed to the port.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=186

Figure 77: Scratch Pad

Scratch Pad Toolbar Commands

The Scratch Pad commands are:

• Search: Searches the Scratch Pad for objects by name.

• Collapse All: Displays objects by groups, and does not display individual members of the
group.

• Expand All: Shows an expanded view of all members of a group.

• Group by Type: Displays the objects by type, or in the order they have been added.

• Add selected objects: Adds selected objects to the Scratch Pad.

• Remove selected objects: Removes selected objects from the Scratch Pad.

Scratch Pad Pop-up Menu

When you right-click in the Scratch Pad, the following pop-up menu commands are available:

• Clear Scratch Pad: Clears the contents of the Scratch Pad.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=187

• Add Objects to Scratch Pad: Adds unconnected, unplaced, or unrouted objects to the Scratch
Pad.

• Select Array Elements: Selects all the elements in an array if one element has been selected.

• Clone: Creates a copy of the selected object.

• Connect Net to Output Port: Opens the Connect Net to Output Port dialog box, which allows
you to connect the selected net to an external port. See the following figure.

• Elide Setting: Specifies how to truncate long object names that do not fit in the Object Name
column. Choices are Left, Middle, and Right.

• Object Properties: Opens the Object Properties dialog box.

• Report Net Route Status: Reports the route status of the selected net.

• Select Driver Pin: Selects the driver pin of the selected net.

• Unplace: Unplaces the selected I/O ports.

• Configure I/O Ports: Assigns various properties of the selected I/O ports.

• Split Diff Pair: Removes the differential pair association from the selected port.

• Auto-place I/O Ports: Places I/O ports using the Autoplace I/O Ports wizard.

• Place I/O Ports in Area: Assigns the currently selected ports onto pins in the specified area.

• Place I/O Ports Sequentially: Assigns the currently selected ports individually onto package
pins.

• Fix Ports: Fixes the selected placed I/O ports.

• Unfix Ports: Unfixes the selected placed I/O ports.

• Floorplanning: Assign selected cells to Pblock.

• Highlight Leaf Cells: Highlights the primitive logic for the selected cell.

• Unhighlight Leaf Cells: Unhighlights the primitive logic for the selected cell.

• Delete: Deletes the selected objects.

• Highlight: Highlights the selected objects.

• Unhighlight: Unhighlights the selected objects.

• Mark: Draws a marker for the selected object.

• Unmark: Removes the marker for the selected object.

• Schematic: Creates a schematic from the selected objects.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=188

• Show Connectivity: Shows the connectivity of the selected object.

• Find: Opens the Find dialog box to find objects in the current design or device by filtering Tcl
properties and objects.

• Export to Spreadsheet: Writes the contents of the Scratch Pad to a Microsoft Excel
spreadsheet.

Figure 78: Connect Net to Output Port Dialog Box

Schematic Window
Logical changes are reflected in the schematic view as soon as the netlist is changed. The
following figure shows an updated schematic based on the netlist changes.

TIP: Use the Mark Objects and Highlights Objects command to help you keep track of objects in the
Schematic Window as you make changes to the netlist.

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=189

Figure 79: Schematic Window

Chapter 3: Analyzing and Viewing Implementation Results

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=190

Appendix A

Using Remote Hosts and Compute
Clusters

Overview
The Xilinx® Vivado® Integrated Design Environment (IDE) supports simultaneous parallel
execution of synthesis and implementation runs on multiple Linux hosts. You can accomplish this
manually by configuring individual hosts or by specifying the commands to launch jobs on
existing compute clusters.

Currently Linux is the only operating system Vivado supports for remote host configurations.
Remote host settings are accessible through the Tools menu by selecting Tools →  Settings  → 
Remote Hosts.

Requirements
The requirements for launching synthesis and implementation runs on remote Linux hosts are:

• Vivado tools installation is assumed to be available from the login shell, which means that
$XILINX_VIVADO and $PATH are configured correctly in your .cshrc/.bashrc setup scripts.

For Manual Configuration, if you do not have Vivado set up upon login (CSHRC or BASHRC),
use the Run pre-launch script option, described below, to define an environment setup script
to be run prior to all jobs.

• Vivado IDE installation must be visible from the mounted file systems on remote machines. If
the Vivado IDE installation is stored on a local disk on your own machine, it might not be
visible from remote machines.

• Vivado IDE project files (.xpr) and directories (.data and .runs) must be visible from the
mounted file systems on remote machines. If the design data is saved to a local disk, it might
not be visible from remote machines.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=191

Manual Configuration
Manual configuration of remote hosts allows you to specify individual machine names on which
Vivado can execute. Vivado will open a Secure Shell (SSH) on these machines and spawn
additional Vivado processes. Host names can be added by clicking the add button shown in the
following figure. Once added, the number of jobs per host can selected and hosts can optionally
be disabled. The specific command used to launch the jobs must be provided.

Optionally, users can configure pre- and post-launch scripts and an email address if you desire to
be notified once the jobs complete.

IMPORTANT! Use caution when specifying the “launch jobs with” command. For example, removing
BatchMode=yes might cause the remote process to hang because the Secure Shell incorrectly prompts for
an interactive password.

RECOMMENDED: Test each host to ensure proper setup before submitting runs to the host.

A “greedy,” round-robin style algorithm is used to submit jobs to the remote hosts. Before
launching runs on multiple Linux hosts it is important to configure SSH so that the host does not
require a password each time you launch a remote run.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=192

Figure 80: Manual Configuration of Remote Hosts

Setting Up SSH Key Agent Forward
You can configure SSH with the following commands at a Linux terminal or shell.

Note: This is a one-time step. When successfully set-up, this step does not need to be repeated.

1. Run the following command at a Linux terminal or shell to generate a public key on your
primary machine. Though not required, it is a good practice to enter (and remember) a private
key phrase when prompted for maximum security.

ssh-keygen -t rsa

2. Append the contents of your publish key to an authorized_keys file on the remote
machine. Change remote_server to a valid host name:

cat ~/.ssh/id_rsa.pub | ssh remote_server “cat - >> ~/.ssh/
authorized_keys”

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=193

3. Run the following command to prompt for your private key pass phrase, and enable key
forwarding:

ssh-add

You should now be able to ssh to any machine without typing a password. The first time you
access a new machine, it prompts you for a password. It does not prompt upon subsequent
access.

TIP: If you are always prompted for a password, contact your System Administrator.

Cluster Configurations
Compute Clusters are groups of machines configured through third party tools that accept jobs,
schedule them, and efficiently allocate the compute resources. Common compute clusters
include LSF, SGE and SLURM. To add custom compute clusters to Vivado, you can click the plus
tool bar button shown in figure def and provide a name for the cluster configuration. You then
need to specify the command necessary to submit a job to the cluster, cancel a job on the cluster,
and the cluster type. Vivado natively support LSF, SGE and SLURM. For any other cluster you can
choose CUSTOM in the combo box. The configuration can be tested by pressing the test
configuration button.

Figure 81: Cluster Configurations Settings Dialog Box

SLURM Specific Configuration
You can configure Vivado to run on SLURM using ssh to connect the client to the scheduler.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=194

Figure 82: SLURM Compute Nodes

In this example, the client machine name is xcolc200189, the scheduler machine name is
xcolc200185.

1. Set up SSH keys on client and scheduler to enable ssh without password.

2. Start Vivado on the client machine.

3. Create a custom SLURM cluster.

a. Open the Vivado Settings dialog box (Tools → Settings).

b. Select Tool Settings → Remote Hosts → Cluster Configuration.

c. Click the "+" button in the toolbar to create a new cluster configuration.

d. Fill in the form as follows. Important to leave the Type as CUSTOM.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=195

4. Launch a job on the cluster to test the configuration.

a. Select File → Project → Open Example.

b. Click Next. Select BFT and click Next.

c. Select a name and directory and click Next.

d. Select the default part (xc7k70tfbg484-2) and click Next.

e. Click Finish. In the Design Runs window, select synth_1 row and click the green play
toolbar button.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=196

f. In the Launch Runs dialog box, choose Launch runs on cluster and in the combo box,
select the custom cluster name created above.

g. Click OK to launch the job.

h. In a terminal, ssh into the scheduler machine and check to see the job running using the
squeue command on the scheduler machine.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=197

i. See the job complete successfully in the Vivado session running on the client.

Launching Jobs on Remote Hosts
Once remote hosts are configured, using them to launch Vivado jobs is easy. The following figure
shows the launch runs dialog box. When launching a run, choose either Launch runs on remote
hosts or Launch runs on cluster and choose a specific cluster. The jobs will use your
preconfigured settings to execute.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=198

Figure 83: Launch Runs Dialog Box

Jobs can be executed on the user configured remote hosts or clusters.

Appendix A: Using Remote Hosts and Compute Clusters

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=199

Appendix B

ISE Command Map

Tcl Commands and Options
Some command line options in the Xilinx® Vivado® IDE implementation are one-to-one
equivalents of Xilinx Integrated Software Environment (ISE®) Design Suite commands.

The following table lists various ISE tool command line options, and their equivalent Vivado
Design Suite Tcl command and Tcl command options. For more information about Tcl commands,
see the Vivado Design Suite Tcl Command Reference Guide (UG835) or type <command> -help.

Table 14: ISE Command Map

ISE Command Vivado Tcl Command and Option
ngdbuild -p partname link_design -part partname

ngdbuild -a (insert pads) synth_design -mode out_of_context (opposite)

ngdbuild -u (unexpanded blocks) Enabled by default, generates critical warnings.

ngdbuild -quiet link_design -quiet

map -detail opt_design -verbose

map -lc auto Enabled by default in place_design

map -logic_opt opt_design and phys_opt_design

map -mt place_design automatically runs multi-threaded. See Multithreading
with the Vivado Tools for details.

map -ntd place_design -non_timing_driven

map -power power_opt_design

map -u link_design -mode out_of_context, opt_design
-retarget (skip constant propagation and sweep)

par -mt route_design automatically runs multi-threaded. See Multithreading
with the Vivado Tools for details.

par -k The route_design command is always re-entrant.

par -nopad The -nopad behavior is the Vivado tools default behavior. You must use
report_io to obtain the PAD file report generated by PAR.

par -ntd route_design -no_timing_driven

Appendix B: ISE Command Map

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 200Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=200

Appendix C

Implementation Categories,
Strategy Descriptions, and Directive
Mapping

Implementation Categories
Table 15: Implementation Categories

Category Purpose
Performance Improve design performance

Area Reduce LUT count

Power Add full power optimization

Flow Modify flow steps

Congestion Reduce congestion and related problems

Implementation Strategy Descriptions
Table 16: Implementation Strategy Descriptions

Implementation Strategy Name Description
Vivado® Implementation Defaults Balances runtime with trying to achieve timing closure.

Performance_Explore Uses multiple algorithms for optimization, placement, and
routing to get potentially better results.

Performance_ExplorePostRoutePhysOpt Similar to Peformance_Explore but adds phys_opt_design
after routing for further improvements.

Performance_LBlockPlacement Ignore timing constraints for placing block RAM and DSPs,
use wirelength instead.

Performance_LBlockPlacementFanoutOpt Ignore timing constraints for placing block RAM and DSPs,
use wirelength instead, and perform aggressive replication
of high fanout drivers.

Performance_EarlyBlockPlaceent Finalize placement of Block RAM and DSPs in the early
stages of global placement.

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=201

Table 16: Implementation Strategy Descriptions (cont'd)

Implementation Strategy Name Description
Performance_NetDelay_high To compensate for optimistic delay estimation, add extra

delay cost to long distance and high fanout connections
(high setting, most pessimistic).

Performance_NetDelay_low To compensate for optimistic delay estimation, add extra
delay cost to long distance and high fanout connections low
setting, least pessimistic).

Performance_Retiming Combines retiming in phys_opt_design with extra
placement optimization and higher router delay cost.

Performance_ExtraTimingOpt Runs additional timing-driven optimizations to potentially
improve overall timing slack.

Performance_RefinePlacement Increase placer effort in the post-placement optimization
phase, and disable timing relaxation in the router.

Performance_SpreadSLL A placement variation for SSI devices with tendency to
spread SLR crossings horizontally.

Performance_BalanceSLL A placement variation for SSI devices with more frequent
crossings of SLR boundaries.

Congestion_SpreadLogic_high Spread logic throughout the device to avoid creating
congested regions (high setting is the highest degree of
spreading).

Congestion_SpreadLogic_medium Spread logic throughout the device to avoid creating
congested regions (medium setting is the medium degree
of spreading).

Congestion_SpreadLogic_low Spread logic throughout the device to avoid creating
congested regions (low setting is the lowest degree of
spreading).

Congestion_SpreadLogic_Explore Similar to Congestion_SpreadLogic_high, but uses the
Explore directive for routing.

Congestion_SSI_SpreadLogic_high Spread logic throughout the device to avoid creating
congested regions, intended for SSI devices (high setting is
the highest degree of spreading).

Congestion_SSI_SpreadLogic_low Spread logic throughout the device to avoid creating
congested regions, intended for SSI devices (low setting is
the lowest degree of spreading).

Area_Explore Uses multiple optimization algorithms to get potentially
fewer LUTs.

Area_ExploreSequential Similar to Area_Explore but adds optimization across
sequential cells.

Area_ExploreWithRemap Similar to Area_Explore but adds the remap optimization to
compress logic levels.

Power_DefaultOpt Adds power optimization (power_opt_design) to reduce
power consumption.

Power_ExploreArea Combines sequential area optimization with power
optimization (power_opt_design) to reduce power
consumption.

Flow_RunPhysOpt Similar to the Implementation Run Defaults, but enables the
physical optimization step (phys_opt_design).

Flow_RunPostRoutePhysOpt Similar to Flow_RunPhysOpt, but enables the Post-Route
physical optimization step with the -directive Explore
option.

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=202

Table 16: Implementation Strategy Descriptions (cont'd)

Implementation Strategy Name Description
Flow_RuntimeOptimized Each implementation step trades design performance for

better run time. Physical optimization (phys_opt_design)
is disabled.

Flow_Quick Fastest possible runtime, all timing-driven behavior
disabled. Useful for utilization estimation.

Directives Used by opt_design and
place_design in Implementation Strategies

Table 17: Directives Used by opt_design and place_design in Implementation
Strategies

Strategy opt_design -directive place_design -directive
Performance_Explore Explore Explore

Performance_ExplorePostRoutePhysOpt Explore Explore

Performance_ExploreWithRemap ExploreWithRemap Explore

Performance_WLBlockPlacement Default WLDrivenBlockPlacement

Performance_WLBlockPlacementFanoutOpt Default WLDrivenBlockPlacement

Performance_EarlyBlockPlacement Explore EarlyBlockPlacement

Performance_NetDelay_high Default ExtraNetDelay_high

Performance_NetDelay_low Explore ExtraNetDelay_low

Performance_Retiming Default ExtraPostPlacementOpt

Performance_ExtraTimingOpt Default ExtraTimingOpt

Performance_RefinePlacement Default ExtraPostPlacementOpt

Performance_SpreadSLLs Default SSI_SpreadSLLs

Performance_BalanceSLLs Default SSI_BalanceSLLs

Performance_BalanceSLRs Default SSI_BalanceSLRs

Performance_HighUtilSLRs Default SSI_HighUtilSLRs

Congestion_SpreadLogic_high Default AltSpreadLogic_high

Congestion_SpreadLogic_medium Default AltSpreadLogic_medium

Congestion_SpreadLogic_low Default AltSpreadLogic_low

Congestion_SSI_Spreadlogic_high Default SSI_SpreadLogic_high

Congestion_SSI_Spreadlogic_low Default SSI_SpreadLogic_low

Area_Explore ExploreArea Default

Area_ExploreSequential ExploreSequentialArea Default

Area_ExploreWithRemap ExploreWithRemap Default

Power_DefaultOpts Default Default

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=203

Table 17: Directives Used by opt_design and place_design in Implementation
Strategies (cont'd)

Strategy opt_design -directive place_design -directive
Power_ExploreArea ExploreSequentialArea Default

Flow_RunPhysOpt Default Default

Flow_RunPostRoutePhysOpt Default Default

Flow_RuntimeOptimized RuntimeOptimized RuntimeOptimized

Flow_Quick RuntimeOptimized Quick

Directives Used by phys_opt_design and
route_design in Implementation Strategies

Table 18: Directives Used by phys_opt_design and route_design in Implementation
Strategies

Strategy phys_opt_design -directive route_design -directive
Performance_Explore Explore Explore

Performance_ExplorePostRoutePhysOpt Explore1 Explore

Performance_ExploreWithRemap Explore NoTimingRelaxation

Performance_WLBlockPlacement Explore Explore

Performance_WLBlockPlacementFanoutOpt AggressiveFanoutOpt Explore

Performance_EarlyBlockPlacement Explore Explore

Performance_NetDelay_high AggressiveExplore NoTimingRelaxation

Performance_NetDelay_low AggressiveExplore NoTimingRelaxation

Performance_Retiming AlternateFlowWithRetiming Explore

Performance_ExtraTimingOpt Explore NoTimingRelaxation

Performance_RefinePlacement Default NoTimingRelaxation

Performance_SpreadSLLs Explore Explore

Performance_BalanceSLLs Explore Explore

Performance_BalanceSLRs Explore Explore

Performance_HighUtilSLRs Explore Explore

Congestion_SpreadLogic_high AggressiveExplore AlternateCLBRouting

Congestion_SpreadLogic_medium Explore AlternateCLBRouting

Congestion_SpreadLogic_low Explore AlternateCLBRouting

Congestion_SSI_SpreadLogic_high AggressiveExplore AlternateCLBRouting

Congestion_SSI_SpreadLogic_low Explore AlternateCLBRouting

Area_Explore Not enabled Default

Area_ExploreSequential Not enabled Default

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=204

Table 18: Directives Used by phys_opt_design and route_design in Implementation
Strategies (cont'd)

Strategy phys_opt_design -directive route_design -directive
Area_ExploreWithRemap Not enabled Default

Power_DefaultOpts Not enabled Default

Power_ExploreArea Not enabled Default

Flow_RunPhysOpt Explore Default

Flow_RunPostRoutePhysOpt Explore1 Default

Flow_RuntimeOptimized Not enabled RuntimeOptimized

Flow_Quick Not enabled Quick

Notes:
1. Explore applies to both post-place and post-route phys_opt_design.

Listing the Strategies for a Release
You can list the Synthesis and Implementation Strategies for a particular release using the
list_property_value command in an open Vivado project. The following are examples using
a Vivado version 2017.3 project containing synthesis run synth_1 and implementation run
impl_1.

Vivado% join [list_property_value strategy [get_runs synth_1]] \n
Vivado Synthesis Defaults
Flow_AreaOptimized_high
Flow_AreaOptimized_medium
Flow_AreaMultThresholdDSP
Flow_AlternateRoutability
Flow_PerfOptimized_high
Flow_PerfThresholdCarry
Flow_RuntimeOptimized

Vivado% join [list_property_value strategy [get_runs impl_1]] \n
Vivado Implementation Defaults
Performance_Explore
Performance_ExplorePostRoutePhysOpt
Performance_WLBlockPlacement
Performance_WLBlockPlacementFanoutOpt
Performance_EarlyBlockPlacement
Performance_NetDelay_high
Performance_NetDelay_low
Performance_Retiming
Performance_ExtraTimingOpt
Performance_RefinePlacement
Performance_SpreadSLLs
Performance_BalanceSLLs
Congestion_SpreadLogic_high
Congestion_SpreadLogic_medium
Congestion_SpreadLogic_low
Congestion_SpreadLogic_Explore
Congestion_SSI_SpreadLogic_high
Congestion_SSI_SpreadLogic_low
Area_Explore
Area_ExploreSequential
Area_ExploreWithRemap

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=205

Power_DefaultOpt Power_ExploreArea
Flow_RunPhysOpt
Flow_RunPostRoutePhysOpt
Flow_RuntimeOptimized
Flow_Quick

The list of strategies also includes user-defined strategies.

Listing the Directives for a Release
You can display the list of directives for a command for a particular release. This is done
programmatically using Tcl to list the properties of the runs. Each design run has a property
corresponding to a Design Runs step command:

STEPS.<STEP>_DESIGN.ARGS.DIRECTIVE

Where <STEP> is one of SYNTH, OPT, PLACE, PHYS_OPT, or ROUTE. This property is an enum
type, so all supported values can be returned using list_property_value.

Following is an example:

Vivado% list_property_value STEPS.SYNTH_DESIGN.ARGS.DIRECTIVE [get_runs
synth_1]
RuntimeOptimized
AreaOptimized_high
AreaOptimized_medium
AlternateRoutability
AreaMapLargeShiftRegToBRAM
AreaMultThresholdDSP
FewerCarryChains
Default

The following Tcl example shows how to list the directives for each synthesis and implementation
command using a temporary, empty project:

create_project p1 -force -part xcku035-fbva900-2-e

#get synth_design directives
set steps [list synth]
set run [get_runs synth_1] foreach s $steps {
puts "${s}_design Directives:"
set dirs [list_property_value STEPS.${s}_DESIGN.ARGS.DIRECTIVE $run] set
dirs [regsub -all {\s} $dirs \n]
puts "$dirs\n"
}

#get impl directives
set steps [list opt place phys_opt route] set run [get_runs impl_1]
foreach s $steps {
puts "${s}_design Directives:"
set dirs [list_property_value STEPS.${s}_DESIGN.ARGS.DIRECTIVE $run] set
dirs [regsub -all {\s} $dirs \n]
puts "$dirs\n"
}
close_project -delete

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=206

Appendix D

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix D: Additional Resources and Legal Notices

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 207Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=207

Vivado Design Suite User Guides

1. Vivado Design Suite User Guide: Design Flows Overview (UG892)

2. Vivado Design Suite User Guide: Hierarchical Design (UG905)

3. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

4. Vivado Design Suite User Guide: Designing with IP (UG896)

5. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

6. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

7. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

8. Vivado Design Suite User Guide: Synthesis (UG901)

9. Vivado Design Suite User Guide: Using Constraints (UG903)

10. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

11. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

12. Vivado Design Suite User Guide: Programming and Debugging (UG908)

13. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)

14. Vivado Design Suite Properties Reference Guide (UG912)

15. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

16. Versal ACAP Clocking Resources Architecture Manual (AM003)

Other Vivado Design Suite Documents

1. 7 Series FPGAs Clocking Resources User Guide (UG472)

2. UltraScale Architecture Clocking Resources User Guide (UG572)

3. Vivado Design Suite Tcl Command Reference Guide (UG835)

4. ISE to Vivado Design Suite Migration Guide (UG911)

5. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

Vivado Design Suite Documentation Site

1. Vivado Design Suite Documentation

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

Appendix D: Additional Resources and Legal Notices

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 208Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=208

1. Designing FPGAs Using the Vivado Design Suite 1

2. Designing FPGAs Using the Vivado Design Suite 2

3. Designing FPGAs Using the Vivado Design Suite 3

4. Designing FPGAs Using the Vivado Design Suite 4

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix D: Additional Resources and Legal Notices

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 209Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training%3Bd%3Ddesigning-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training%3Bd%3Ddesigning-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training%3Bd%3Ddesigning-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training%3Bd%3Ddesigning-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=209

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan,
Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix D: Additional Resources and Legal Notices

UG904 (v2021.2) November 24, 2021 www.xilinx.com
Implementation 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=%20Vivado%20Design%20Suite%20User%20Guide%3A%20Implementation&releaseVersion=2021.2&docPage=210

	 Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Preparing for Implementation
	About the Vivado Implementation Process
	SDC and XDC Constraint Support
	Vivado Implementation Sub-Processes

	Multithreading with the Vivado Tools
	Parallel Runs

	Tcl API Supports Scripting

	Navigating Content by Design Process
	Managing Implementation
	Project Mode and Non-Project Modes
	Project Mode
	Working in Project Mode
	Flow Navigator

	Non-Project Mode
	Similarities and Differences Between Project Mode and Non-Project Mode
	Beginning the Implementation Flow
	Importing Previously Synthesized Netlists
	Starting From RTL Sources

	Creating and Opening the Synthesized Design in Non-Project Mode
	Loading the Design Netlist in Project Mode Before Implementation

	Configuring, Implementing, and Verifying IP
	Guiding Implementation with Design Constraints
	Physical Constraints Definition
	Timing Constraints Definition
	Power Constraints Definition
	UCF Format Not Supported
	Constraint Sets Apply Lists of Constraint Files to Your Design
	Adding Constraints as Attribute Statements

	Using Checkpoints to Save and Restore Design Snapshots
	Writing Checkpoint Files
	Reading Checkpoint Files

	Ch. 2: Implementing the Design
	Running Implementation in Non-Project Mode
	Non-Project Mode Example Script
	Key Steps in Non-Project Mode Example Script
	Step 1: Read Design Source Files
	Step 2: Build the In-Memory Design
	Step 3: Read Design Constraints
	Step 4: Perform Logic Optimization
	Step 5: Place the Design
	Step 6: Route the Design
	Step 7: Run Required Reports
	Step 8: Save the Design Checkpoint

	Running Implementation in Project Mode
	Creating Implementation Runs
	Defining Implementation Runs

	Using the Design Runs Window
	Design Runs Window Functionality
	Out-of-Date Runs
	Active Run
	Changing Implementation Run Settings

	Specifying Design Run Settings
	Strategy
	Description
	Modifying Command Options
	Save Strategy As

	Verifying Run Status
	Resetting Runs
	Deleting Runs

	Customizing Implementation Strategies
	Accessing Implementation Settings for the Active Run from Flow Navigator
	Defining Implementation Strategies
	Accessing Currently Defined Strategies
	Reviewing, Copying, and Modifying Strategies
	Sharing Run Strategies

	Launching Implementation Runs
	Launching a Single Implementation Run
	Launching Multiple Runs

	Moving Processes to the Background
	Running Implementation in Steps
	How to Run Implementation in Steps

	About Implementation Commands
	Implementation Sub-Processes
	Opening the Synthesized Design
	Creating the In-Memory Design
	Tcl Commands
	synth_design
	open_checkpoint
	open_run
	link_design

	BUFG Optimization

	Logic Optimization
	Common Design Errors
	Available Logic Optimizations
	Retargeting (Default)
	Constant Propagation (Default)
	Sweep (Default)
	Mux Optimization
	Carry Optimization
	Control Set Merging
	Equivalent Driver Merging
	BUFG Optimization (Default)
	MBUFG Optimization
	Shift Register Optimization (Default)
	Shift Register Remap
	DSP Register Opt
	Control Set Reduction
	Module-Based Fanout Optimization
	Remap
	Aggressive Remap
	Resynth Area
	Resynth Sequential Area
	Block RAM Power Optimization (Default)
	Property-Only Optimization
	Resynth Remap

	opt_design
	Using Directives
	Optimization Phases for Directives

	Using the -debug_log and -verbose Options

	Logic Optimization Constraints
	Logic Preservation
	Logic Optimization

	Power Optimization
	Vivado Tools Power Optimization
	Using Clock Enables (CEs)
	Intelligent Clock Gating

	power_opt_design

	Placement
	Design Placement Optimization
	Design Rule Checks
	Clock and I/O Placement
	Global Placement, Detailed Placement, and Post-Placement Optimization
	Global Placement
	Floorplanning Phase
	Physical Synthesis Phase

	Detailed Placement
	Post-Placement Optimization

	place_design
	Using Directives
	Placer Directives
	Available Directives
	Auto Directives
	Using the -unplace Option
	Using the -no_timing_driven Option
	Using the -timing_summary Option
	Using the -verbose Option
	Using the -post_place_opt Option
	Using the -no_psip Option
	Using the -no_bufg_opt Option

	Auto-Pipelining
	Using the AXI Register Slice in Auto-Pipelining Mode
	Using Auto-Pipelining on Custom Interfaces
	Reviewing the Auto-Pipelining Implementation Results

	Physical Optimization
	Available Physical Optimizations
	Fanout Optimization
	Placement-Based Optimization
	Routing Optimization
	Rewiring
	Critical-Cell Optimization
	DSP Register Optimization
	Block RAM Register Optimization
	URAM Register Optimization
	Shift Register Optimization
	Critical Pin Optimization
	Block RAM Enable Optimization
	Hold-Fixing
	Aggressive Hold-Fixing
	Negative-Edge Register Insertion
	Retiming
	Forced Net Replication
	SLR-Crossing Optimization
	SLL Register Hold Fix
	Clock Optimization
	Routing Optimization
	Path Group Optimization

	Physical Optimization Messages
	phys_opt_design
	Using Directives
	Using the -verbose Option

	Physical Optimization Constraints
	Physical Optimization Reports
	Interactive Physical Optimization
	Retrofitting phys_opt_design Netlist Changes
	Repeating phys_opt_design Design Changes
	Interactive Physical Optimization Command Reference

	Routing
	Design Rule Checks
	Routing Priorities
	Impact of Poor Timing Constraints
	Router Timing Summary
	route_design
	Using Directives
	Trading Compile Time for Better Routing
	Using Other route_design Options
	Routing Example Script 1
	Routing Example Script 2
	Routing Example Script 3
	Routing Example Script 4
	Router Messaging
	Intermediate Route Results

	Incremental Implementation
	Incremental Implementation Flow Designs
	Incremental Directives
	Incremental Modes
	Automatic Incremental
	High Reuse Mode
	Low Reuse Mode

	Running Incremental Place and Route
	read_checkpoint -incremental
	Incremental Implementation Controls
	Using report_incremental_reuse
	Factors Affecting Run Time Improvement

	Using Incremental Implementation
	Using Incremental Implementation in Non-Project Mode
	Using Incremental Implementation in Project Mode
	Orphaned Route Segments

	Using Synplify Compile Points
	Using Incremental Synthesis

	Saving Post-Reuse Checkpoints
	Constraint Conflicts
	Incremental Compile Advanced Analysis
	Reuse Reporting
	Incremental Reuse Summary
	Hierarchical Implementation Reuse Summary
	Hierarchical Implementation Reuse Summary

	Timing Reports
	Object Properties

	Ch. 3: Analyzing and Viewing Implementation Results
	Monitoring the Implementation Run
	Viewing the Run Status Display
	Canceling or Resetting the Run

	Viewing the Log in the Log Window
	Pausing Output
	Displaying the Project Status
	Viewing Project Status in the Project Status Bar
	Viewing Out-of-Date Status
	Forcing Runs Up-to-Date

	Moving Forward After Implementation
	Recommended Steps After Implementation
	Moving Forward in Non-Project Mode
	Moving Forward in Project Mode

	Viewing Messages
	Viewing Messages in Non-Project Mode
	Viewing Messages in Project Mode
	Incremental Compile Messages

	Viewing Implementation Reports
	Reporting in Non-Project Mode
	Opening Reports in a Vivado IDE Window
	Getting Help with Implementation Reports
	Reporting in Project Mode
	Cross Probing from Reports
	Cross Probing Between Timing Report and Device Window Example

	Modifying Implementation Results
	Modifying Placement
	Fixing Placer-Placed Logic
	Placing and Moving Logic by Hand
	Placing Logic Using a Tcl Command

	Modifying Routing
	Manual Routing
	Manual Routing Rules
	Entering Assign Routing Mode
	Routing Assignment Window
	Assigning Routing Nodes
	Un-Assigning Routing Nodes
	Exiting Assign Routing Mode
	Canceling Out of Assign Routing Mode
	Verifying Assigned Routes
	Branching
	Assigning Routing to a Branch
	Locking Cell Inputs and Adding DONT_TOUCH Constraint on LUT Loads

	Directed Routing Constraints
	Using the find_routing_path Command to Create Directed Routing Constraints

	Modifying Logic
	Saving Modifications

	Modifying the Netlist
	Netlist Modifying Commands
	Use Cases
	Use Case 1: Inverting the Logical Value of a Net
	Use Case 2: Adding a Debug Port
	Use Case 3: Adding a Pipeline Stage to Improve Timing

	Vivado ECO Flow
	ECO Flow Chart
	ECO Navigator Use
	Edit Section
	Run Section
	Report Section
	Program Section

	Scratch Pad
	Scratch Pad Toolbar Commands
	Scratch Pad Pop-up Menu

	Schematic Window

	Appx. A: Using Remote Hosts and Compute Clusters
	Overview
	Requirements
	Manual Configuration
	Setting Up SSH Key Agent Forward

	Cluster Configurations
	SLURM Specific Configuration

	Launching Jobs on Remote Hosts

	Appx. B: ISE Command Map
	Tcl Commands and Options

	Appx. C: Implementation Categories, Strategy Descriptions, and Directive Mapping
	Implementation Categories
	Implementation Strategy Descriptions
	Directives Used by opt_design and place_design in Implementation Strategies
	Directives Used by phys_opt_design and route_design in Implementation Strategies
	Listing the Strategies for a Release
	Listing the Directives for a Release

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

