
Vivado Design Suite User
Guide

System-Level Design Entry

UG895 (v2020.2) February 12, 2021

See all versions
of this document

UG895 (v2021.2) October 27, 2021

Xilinx is creating an environment where employees,
customers, and partners feel welcome and included. To that
end, we’re removing non-inclusive language from our
products and related collateral. We’ve launched an internal
initiative to remove language that could exclude people or
reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-
inclusive language in our older products as we work to make
these changes and align with evolving industry standards.
Follow this link for more information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG895
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Revision History
The following table shows the revision history for this document.

Section Revision Summary
02/12/2021 Version 2020.2

Creating a Project Updated the graphics.

Board File Linter Added.

Revision History

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 2Send Feedback
UG895 (v2021.2) October 27, 2021

10/27/2021: Released with Vivado® Design Suite 2021.2 without changes from 2020.2.

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5
Overview...5
Launching the Vivado Design Suite in Project and Non-Project Mode................................ 5

Chapter 2: Working with Projects... 8
Overview...8
Project Types..8
Creating a Project..10
Using the Vivado Design Suite Platform Board Flow..26
Managing Projects.. 29
Using the Project Summary... 33
Configuring Project Settings..35
Creating a Project Using a Tcl Script... 45

Chapter 3: Working with Source Files... 47
Overview...47
Creating and Adding Design Sources... 48
Working with IP Sources.. 55
Working with IP Integrator Sources... 61
Working with Vivado HLS Sources...65
Working with Model Composer Sources..66
Working with System Generator Sources.. 66
Editing Source Files... 67
Working with Simulation Sources... 73
Working with Constraints...74
Working with Sources in Non-Project Mode..82

Chapter 4: Elaborating the RTL Design...85
Overview...85
Elaborating the Design in Project Mode...86
Elaborating the Design in Non-Project Mode..95

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 3Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=3

Chapter 5: Debugging the Design... 97
Overview...97
RTL-Level Design Simulation..97
In-System Debugging... 98

Appendix A: Board File...99
Introduction... 99
Understanding the Platform Board Flow .. 100
Defining Board Files..102
Board File Linter.. 117
Understanding Preset Files..118
Additional Files and Special Considerations.. 120

Appendix B: Vivado Naming Conventions.. 123
Introduction... 123

Appendix C: Additional Resources and Legal Notices........................... 125
Xilinx Resources...125
Solution Centers.. 125
Documentation Navigator and Design Hubs.. 125
References..126
Training Resources..127
Please Read: Important Legal Notices... 127

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 4Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=4

Chapter 1

Introduction

Overview
This user guide provides an overview of the Vivado® Design Suite with an emphasis on the
different project types, using the tool through the GUI and Tcl, with a project and without. The
Vivado Design Suite enables you to take your design from full register-transfer level (RTL)
creation to bitstream generation. System-level design entry consists of setting up your design,
including creating a project (if applicable), creating and adding source files, adding block design
and IP cores, elaborating the RTL design, and inserting and configuring debug information. You
can enter your design using the graphical user interface (GUI), known as the Vivado Integrated
Design Environment (IDE), or using Tcl commands and scripts.

Launching the Vivado Design Suite in Project
and Non-Project Mode

You can launch the Vivado Design Suite and run the tools using different methods depending on
your preference. For example, you can choose a Tcl script-based compilation style method in
which you manage sources and the design process yourself, also known as Non-Project Mode.
Alternatively, you can use a project-based method to automatically manage your design process
and design data using projects and project states, also known as Project Mode. Either of these
methods can be run using a Tcl scripted batch mode or run interactively in the Vivado IDE. For
more information on the different design flow modes, see this link in the Vivado Design Suite User
Guide: Design Flows Overview (UG892).

Working with Tcl
If you prefer to work directly with Tcl, you can interact with your design using Tcl commands
using either of the following methods:

• Enter individual Tcl commands in the Vivado Design Suite Tcl shell outside of the Vivado IDE.

• Enter individual Tcl commands in the Tcl Console at the bottom of the Vivado IDE.

Chapter 1: Introduction

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 5Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf;a=UnderstandingProjectModeAndNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=5

• Run Tcl scripts from the Vivado Design Suite Tcl shell.

• Run Tcl scripts from the Vivado IDE.

For more information about using Tcl and Tcl scripting, see the Vivado Design Suite User Guide:
Using Tcl Scripting (UG894), Vivado Design Suite Tcl Command Reference Guide (UG835), and Vivado
Design Suite User Guide: Design Flows Overview (UG892). For a step-by-step tutorial that shows
how to use Tcl in the Vivado tools, see the Vivado Design Suite Tutorial: Design Flows Overview
(UG888).

Launching the Vivado Design Suite Tcl Shell

Use the following command to invoke the Vivado Design Suite Tcl shell either at the Linux
command prompt or within a Windows Command Prompt window:

vivado -mode tcl

Note: On Windows, you can also select Start → All Programs → Xilinx Design Tools → Vivado <version> → 
Vivado <version> Tcl Shell.

Launching the Vivado Tools Using a Batch Tcl Script

You can use the Vivado tools in batch mode by supplying a Tcl script when invoking the tool. Use
the following command either at the Linux command prompt or within a Windows Command
Prompt window:

vivado -mode batch -source <your_Tcl_script>

Note: When working in batch mode, the Vivado tools exit after running the specified script.

Working with the Vivado IDE
If you prefer to work in a GUI, you can launch the Vivado IDE from Windows or Linux. For more
information on the Vivado IDE, see the Vivado Design Suite User Guide: Using the Vivado IDE
(UG893) and Vivado Design Suite User Guide: Design Flows Overview (UG892).

RECOMMENDED: Launch the Vivado IDE from the directory containing your project, or your working
directory. This makes it easier to locate the project file, log files, and journal files, which are written to the
launch directory.

TIP: For quick access to information on different parts of the Vivado IDE, click the Quick Help button in
the window or dialog box.

Launching the Vivado IDE on Windows

Select Start → All Programs → Xilinx Design Tools → Vivado <version> → Vivado <version>.

Chapter 1: Introduction

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 6Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=6

Note: You can also double-click the Vivado IDE shortcut icon on your desktop.

Figure 1: Vivado Desktop Icon

TIP: You can right-click the Vivado IDE shortcut icon on the Microsoft Windows desktop, and select
Properties to update the Start In field. This makes it easier to locate the project file, log files, and journal
files, which are written to the launch directory. See the Vivado Design Suite User Guide: Using the Vivado
IDE (UG893) for information on the default location of the log and journal files.

Launching the Vivado IDE from the Command Line on Windows or
Linux

To launch the Vivado Design Suite from the Linux or Windows command line, you must install
and configure the tool to run on the local machine. Installation adds the Vivado tools to the
PATH.

When the tool is installed, enter the following at the command prompt:

vivado

When you enter this command, it automatically runs vivado -mode gui to launch the Vivado
IDE. If you need help, type vivado -help.

TIP: To add the Vivado tools path to your current shell/command prompt, run settings64.bat or
settings64.sh from the <install_path>/Vivado/<version>  directory.

Launching the Vivado IDE from the Vivado Design Suite Tcl Shell

When the Vivado Design Suite is running in an interactive Tcl command shell in Tcl mode, you
can use the following command at the Tcl prompt to launch the Vivado IDE and open the Vivado
tool GUI:

start_gui

Chapter 1: Introduction

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 7Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=7

Chapter 2

Working with Projects

Overview
When working in Project Mode, you can enter your design using various project types. This
chapter describes each project type and explains how to create and manage projects. It also
covers the Project Summary, Project Settings, and how to create a project using a Tcl script.

Project Types
Using the Vivado® Design Suite, you can create the following types of projects. Each project type
includes different input source types.

• RTL Projects

• Post-Synthesis Projects

• I/O Planning Projects

• Imported Projects

Note: A project cannot be changed to a different project type after it is created. The only exception is
the I/O planning project, which can be used as the basis for an RTL project.

RTL Projects
You can use the Vivado Design Suite to manage the entire design flow from RTL creation through
bitstream generation. You can add RTL source files, IP from the Xilinx IP catalog, block designs
created in the Vivado IP integrator, digital signal processing (DSP) sources, and EDIF netlists for
hierarchical modules. IP can include XCI or XCIX files generated by the Vivado tools, legacy XCO
files generated by the CORE Generator tool, and precompiled EDIF or NGC-format netlists. For
more detailed RTL information see Chapter 4: Elaborating the RTL Design.

Note: ISE® IP is only supported for 7 series devices. ISE format IP (.ngc) are no longer supported with
UltraScale™ devices. Users should migrate their IP to the native Vivado Design Suite format prior to
beginning UltraScale device designs.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 8Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=8

From an RTL project, you can elaborate and analyze the RTL to ensure proper syntax and design
constructs, launch and manage various synthesis and implementation runs, and analyze the
design and run results. You can also experiment with different constraints or implementation
strategies to achieve timing closure.

Post-Synthesis Projects
You can create projects using synthesized netlists created using Vivado synthesis, XST, or any
supported third-party synthesis tool. For example, the Vivado Design Suite can import EDIF,
NGC, or structural Verilog format netlists, XCI files (all output products including the DCP must
be already generated), as well as Vivado design checkpoint (DCP) files. The netlist can be made
up of a single file that is all-inclusive or a set of files that are hierarchical and consist of multiple,
module-level netlists.

IMPORTANT! NGC format files are not supported in the Vivado Design Suite for UltraScale devices. It is
recommended that you regenerate the IP using the Vivado Design Suite IP customization tools with native
output products. Alternatively, you can use the NGC2EDIF command to migrate the NGC file to EDIF
format for importing. However, Xilinx recommends using native Vivado IP rather than XST-generated NGC
format files going forward.

You can analyze and simulate the netlist logic, launch and manage various implementation runs,
and analyze the placed and routed design. You can also experiment with different constraints or
implementation strategies.

RECOMMENDED: Always reference the Vivado IP using the XCI or XCIX file. Xilinx does not recommend
reading just the IP DCP file. While the DCP does contain constraints, it does not provide other output
products that an IP could deliver and that could be needed, such as ELF, COE, and Tcl scripts.

Note: ISE IP is only supported for 7 series devices. ISE format IP NGC (.ngc) are no longer supported with
UltraScale devices. Users should migrate their IP to native Vivado format prior to beginning UltraScale
designs.

Note: When you import an NGC or EDIF file with embedded timing constraints, the constraints are not
used by the Vivado Design Suite. Design constraints must be formatted as XDC commands. For
information on creating Xilinx design constraints (XDC) files, see Vivado Design Suite User Guide: Using
Constraints (UG903). For information on converting user constraints files (UCF) to XDC constraints, see ISE
to Vivado Design Suite Migration Guide (UG911).

I/O Planning Projects
You can perform clock resource and I/O planning early in the design cycle by creating an empty
I/O planning project. You can define I/O ports within the Vivado IDE or import them with either
comma separated value (CSV) or XDC input files. You can also create empty I/O planning projects
to explore the logic resources available on the different device architectures.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 9Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=9

After I/O assignment, the Vivado IDE can create CSV, XDC, and RTL output files for use later in
the design flow when RTL sources or netlists are available. The output files can also be used to
create schematic symbols for use in the printed circuit board (PCB) design process.

Certain types of IP, such as Memory, GT, PCIe®, and Ethernet interfaces have I/O ports
associated with them. These IP need to be configured in a Manage IP project, or a RTL project.
See the Migrating to an RTL Design section in the Vivado Design Suite User Guide: I/O and Clock
Planning (UG899) and Clock Planning for IP with I/O Ports for more information.

Note: You can use an I/O planning project as the basis for an RTL-based design project. For more
information, see Migrating to an RTL Design section in the Vivado Design Suite User Guide: I/O and Clock
Planning (UG899).

Imported Projects
You can import RTL project data from Synopsys Synplify, XST, or ISE® Design Suite Project
Navigator to migrate a project into the Vivado tools. The project source files and compilation
order are imported, but implementation results and settings are not.

Creating a Project
The New Project wizard takes you through the steps to define a project name and location, add
source files and constraint files to the project, and select a target device. Refer to Appendix B:
Vivado Naming Conventions for information on naming files and projects.

CAUTION! The Windows operating system has a 260 character limit for path lengths which can affect the
Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating
projects, defining IP or managed IP projects, or creating block designs.

1. In the Vivado IDE, select File → Project → New.

Note: Alternatively, you can also select Create Project on the Getting Started Page.

2. In the New Project wizard, review the overview, and click Next.

3. In the Project Name page, set the following options, and click Next.

• Project name: Specifies the name of the project (for example, project_1).

• Project location: Specifies the location for the new project directory.

• Create Project Subdirectory: Adds a subdirectory with the same name as the project to the
specified project location.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 10Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf;a=MigratingToAnRTLDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf;a=MigratingToAnRTLDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=10

Note: By default, this check box is enabled and the project file (.xpr extension) is created at
<project_location>/<project_name>. All folders and data files created for the project are
stored in the <project_name> subdirectory. If you disable this check box, the project file (.xpr
extension) is created at <project_location>, and all folders and data files created for the project
are stored in that project location.

Figure 2: New Project Wizard—Project Name Page

4. In the Project Type page, specify the type of project, which determines the types of source
files that are associated with the project.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 11Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=11

Figure 3: New Project Wizard—Project Type Page

5. Depending on the type of project you are creating, continue with the instructions in one of
the following sections. The remaining pages of the wizard guide you through adding
appropriate sources to the project.

• Creating an RTL Project

• Creating a Post-Synthesis Project

• Creating an I/O Planning Project

• Importing an External Project

• Tcl Commands for Working with Projects

Creating an RTL Project
An RTL project may have RTL, Block Design, IP and/or RTL sources. This dialog lets you specify
which sources to add during project creation. Addition files can be added later during RTL code
development, analysis as well as synthesis and implementation. For more information on RTL
development and analysis, see Chapter 4: Elaborating the RTL Design.

1. Follow the steps in Creating a Project.

2. In the Project Type page, select RTL Project, and click Next.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 12Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=12

Note: If necessary, you can select Do not specify sources at this time. This skips the steps of adding
design sources and enables you to select the target part and create the project.

Note: Extensible platforms are used by Vitis software platform to incorporate software kernels. Setting
this project property enables platform properties to add interfaces which can then be augmented by
Vitis software platform. For more information on extensible platforms, see Creating Embedded
Platforms in Vitis.

3. In the Add Sources page, set the following options, and click Next:

• Add Files: Opens a file browser so you can select files to add to the project. You can add
the following file types to an RTL project: Verilog, VHDL, SystemVerilog, BD, XCI, EDIF,
NGC, BMM, ELF, and other file types.

Note: In the Add Source Files dialog box, each file or directory is represented by an icon indicating it
as a file or folder. A small red square indicates it is read only.

• Add Directories: Opens a directory browser to add source files from the selected
directories. Files in the specified directory with valid source file extensions are added to
the project.

• Add Sources from Subdirectories: Specifies that the tool should scan the listed directory's
directory tree for additional sources.

• Create File: Opens the Create Source File dialog box in which you can create new VHDL,
Verilog, Verilog header, or SystemVerilog files. Create Source File dialog box, set the
following options:

• File type: Specifies one of the following file formats: Verilog file (.v extension), Verilog
Header file (.vh extension)., SystemVerilog file (.sv extension), VHDL file (.vhdl
extension), or Memory Files (.mem extension).

• File name: Specifies a name for the new HDL source file.

• File location: Specifies a location in which to create the file.

Note: A placeholder for the file is added to the list of sources. The file is created when you click
Finish.

• Library: Specifies the RTL library for a file or directory. You can select a library name, or
specify a new library name by typing in the Library text field.

Note: This option applies to VHDL files only. By default, HDL sources are added to the
xil_defaultlib library. You can create or reference additional user VHDL libraries as needed.
For Verilog and SystemVerilog files, leave the library set to xil_defaultlib.

• HDL Source for: Specifies whether the source being loaded is an RTL source file for
synthesis and simulation or an RTL test bench for simulation only.

• Remove: Removes the selected source files from the list of files to be added.

• Move Up / Move Down: Moves the file or directory up/down in the list order. The order
of the files affects the order of elaboration and compilation during downstream processes

such as synthesis and simulation.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 13Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/html_docs/xilinx2021_2/vitis_doc/create_embedded_platforms.html#ovk1596051745117__section_ds5_tfr_nnb
https://www.xilinx.com/html_docs/xilinx2021_2/vitis_doc/create_embedded_platforms.html#ovk1596051745117__section_ds5_tfr_nnb
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=13

• Scan and Add RTL Include Files into Project: Scans all RTL source files and adds any
referenced Verilog 'include files into the project structure.

• Copy Sources into Project: Copies the added source files and include files into the local
project directory instead of referencing the original files. If you added directories of source
files using Add Directories, the directory structure is maintained when the files are copied
locally into the project. For more information, see Using Remote Sources or Copying
Sources into Project.

• Add Sources from Subdirectories: Adds source files from the subdirectories of directories
specified with Add Directories.

• Target Language: Specifies the target language for the design as either Verilog or VHDL.
New RTL files default to the specified target language. Output files are generated from the
design in the specified target language.

• Simulator Language: Specifies the language in which output products are generated for
simulation as well as the file types used for third party simulation scripts. For more
information, see the Vivado Design Suite User Guide: Logic Simulation (UG900).

• Add Sources: Invokes a file browser so you can select Xilinx Core Instance (XCI) files,
which are native to the Vivado Design Suite, a Core Container (XCIX) file, which is a single
file representation for an IP, or CORE Generator core (XCO) files. You can also add Block
Design files (BD) from the Vivado IP Integrator feature, or Mathworks Simulink project
files (SLX or MDL) for DSP sub-designs.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 14Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=14

Figure 4: New Project Wizard—Add Sources Page

The XCI file is an IP-XACT component instance XML file that records the values of project
options, customization parameters, and port parameters used to create the IP. The XCIX is
a compressed binary file containing the entire IP directory and all output products,
including the XCI, synthesis, simulation and support files. See the Core Container section
in the Vivado Design Suite User Guide: Designing with IP (UG896) for more details.

Note: When you add XCI or XCIX IP created with the Vivado IP catalog, the Vivado IDE
automatically imports all available generated targets, such as HDL sources, into the project. When
you run synthesis, the IP and the top-level design are synthesized together.

You can also load parameterized cores into the project from within the Vivado IDE using
the IP Catalog, as described in Working with IP Sources.

4. Optional: In the Add Constraints page, set the following options, and click Next:

• Add Files: Invokes a file browser so you can select Synopsys Design Constraint (SDC) or
XDC files to add to the project.

• Create File: Creates a new top-level XDC file for the project.

• Remove: Removes the selected file from the constraint list.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 15Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=15

• Move Up / Move Down: Moves a constraint file up or down in the listed order. Commands
are order-dependent; the last-read command of a constraint overwrites the effects of an

earlier command.

• Copy Constraint Files into Project: Copies constraint files into the local project directory
instead of referencing the original files.

Note: Any SDC or XDC file found in the same directories as the RTL or netlist source files associated
with the project are automatically listed as constraint files to be added to the project. You can remove
these files as needed.

Figure 5: New Project Wizard—Add Constraints Page

5. In the Default Part page, select a Xilinx part or targeted design platform (TDP) board, and
click Next:

• Parts: Lists available devices. Information about the device resources displays in a table
view, such as I/O pin count, the number of look-up tables (LUTs) and flip-flops (FFs), and
available block RAM. You can filter the list using the Product Category, Family, Sub-Family,
Package, Speed Grade, and Temp Grade filters. You can also use the Search field to find
specific devices.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 16Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=16

The Vivado Design Suite installation process lets you select which Xilinx devices to install
in order to reduce the disk space required by the Vivado tool. If you need to target a part
that is not currently installed on your system, you must exit the tool and install the
additional parts of interest. Refer to this link in Vivado Design Suite User Guide: Release
Notes, Installation, and Licensing (UG973) for more information.

• Boards: Lists available development boards, or TDP boards, and the Xilinx part used on the
board. Information about device resources displays in a table view similar to the one
shown for Parts. You can filter the list using the Vendor, Display Name, and Board Rev
filters. You can also use the Search field to find specific board parts.

RECOMMENDED: When you select a board that supports the Vivado Design Suite platform board
flow, you can take advantage of automated features in the Vivado IP catalog and Vivado IP integrator.
For example, you can automatically create I/O constraints for IP that supports the interfaces available
on the selected board. For more information, see Using the Vivado Design Suite Platform Board Flow.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 17Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug973-vivado-release-notes-install-license.pdf;a=xAddingAdditionalToolsAndDevices
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=17

Figure 6: New Project Wizard—Default Part Page

6. In the New Project Summary page, view the selected options that define the project, and
click Finish. When you click Finish the project directory structure is created, any files that
should be made local to the project are copied, and the project file is written. Any design
sources that need to be created must be defined as shown in the following step, and then are
written to disk.

7. Optional: If you used the Create File option in step 3, to create a new HDL module and add it
to the project, a Define Module dialog box appears.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 18Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=18

Figure 7: Define Module Dialog Box

The RTL source files are created and added to your project. The Sources window lists the
newly defined modules. These new source files define the Verilog module or VHDL entity,
but you must edit the files to define the logic or architecture for these blocks. To edit the new
source files in the Vivado IDE Text Editor, double-click the file or select Open File from the
right-click menu. For information on editing the newly created file, see Editing Source Files.

Creating a Post-Synthesis Project
A post-synthesis project begins with a synthesized netlist, fully generated block designs, fully
generated IP, and corresponding constraints. You can then analyze, floorplan, and implement the
design.

Note: You can use either XST or third-party synthesis tools to create the synthesized netlist.

IMPORTANT! When working with EDIF and NGC files, the top cell name must match the name of the file.

1. Follow the steps in Creating a Project.

2. In the Project Type page, select Post-Synthesis Project, and click Next.

Note: If necessary, you can select Do not specify sources at this time. This skips the steps of adding
design sources and enables you to select the target part and create the project.

3. In the Add Netlist Sources page, use the following options to specify netlist files to read,
identify the file containing the top module, and define directories to search for lower-level
module netlist, and click Next.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 19Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=19

• Add Files: Invokes a file browser so you can select netlist files (structural Verilog,
SystemVerilog, EDIF or NGC), BD Files, and XCI files (all the output products for the IP
must be generated, including the DCP), or design checkpoint files (DCP) to add to the
project.

RECOMMENDED: Always reference the IP using the XCI file. Always reference a Block Design
using the BD file; it is not recommended to read only the IP or BD DCP file. While the DCP does
contain constraints, it does not provide other output products that an IP or BD could deliver and
that could be needed, such as ELF, COE, and Tcl scripts.

Note: Enable the Top radio button for the file that contains the top-level netlist.

• Add Directories: Invokes a directory browser so you can select directories to search for
modules. Files in the specified directory with valid source file extensions are added to the
project.

• Remove: The button removes the selected source files and directories from the list.

• Move Up / Move Down: Moves the file or directory up/down in the list order. The order

of the files affects the processing order.

• Copy Sources into Project: Copies files into the local project directory instead of
referencing the original files. If you added directories of source files using Add Directories,
the directory structure is maintained when the files are copied locally into the project. For
more information, see Using Remote Sources or Copying Sources into Project.

• Add Sources from Subdirectories: Looks for netlist files in the subdirectories of directories
specified with Add Directories.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 20Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=20

Figure 8: New Project Wizard—Add Netlist Sources Page

4. Optional: In the Add Constraints page, set the following options, and click Next:

• Add Files: Invokes a file browser so you can select SDC or XDC files to add to the project.

• Create File: Creates a new top-level XDC file for the project.

• Remove: Removes the selected file from the constraint list.

• Move Up / Move Down: Moves a constraint file up or down in the listed order. Commands
are order-dependent; the last-read command of a constraint overwrites the effects of an

earlier command.

• Copy Constraints into Project: Copies constraint files into the local project directory
instead of referencing the original files.

Note: Any SDC or XDC file found in the same directories as the RTL or netlist source files associated
with the project are automatically listed as constraint files to be added to the project.

5. In the Default Part page, select a Xilinx part or TDP board, and click Next:

• Parts: Lists available devices. Information about the device resources displays in a table
view. You can filter the list using the Product Category, Family, Sub-Family, Package, Speed
Grade, and Temp Grade filters. You can also use the Search field to find specific devices.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 21Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=21

• Boards: Lists available TDP boards, and the Xilinx part used on the board. Information
about device resources displays in a table view, such as I/O pin count, the number of LUTs
and flip-flops, and available block RAM. You can filter the list using the Vendor, Display
Name, and Board Rev filters. You can also use the Search field to find specific board parts.

6. In the New Project Summary page, view the selected options that define the project, and
click Finish.

Creating an I/O Planning Project
You can use an I/O planning project for device exploration and for planning the device pinout for
an in-progress system-level design. You can create this type of project prior to completing the
HDL or the synthesized netlist. For example, this allows you to exchange design information with
the system-level or PCB designer. For more information about I/O planning, see the Vivado
Design Suite User Guide: I/O and Clock Planning (UG899).

1. Follow the steps in Creating a Project.

2. In the Project Type page, select I/O Planning Project, and click Next.

3. Optional: In the Import Ports dialog box, use the following options to select a file for
importing I/O Port definitions and constraints, and click Next.

• Import CSV: Selects a CSV file with I/O Ports definitions. For more information on CSV
files, see the Vivado Design Suite User Guide: I/O and Clock Planning (UG899).

• Import XDC: Selects an XDC with I/O Port-related constraints only.

• Do not import I/O ports at this time: Creates an empty project. You can create or import
I/Os later.

Note: Use an RTL project to perform I/O pin planning on a design using RTL header or source files.

Figure 9: New Project Wizard—Import Ports Page

4. In the Default Part page, select a Xilinx part or TDP board, and click Next:

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 22Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=22

• Parts: Lists available devices. Information about the device resources displays in a table
view. You can filter the list using the Product Category, Family, Sub-Family, Package, Speed
Grade, and Temp Grade filters. You can also use the Search field to find specific devices

• Boards: Lists available TDP boards, and the Xilinx part used on the board. Information
about device resources displays in a table view, such as I/O pin count, the number of LUTs
and flip-flops, and available block RAM. You can filter the list using the Vendor, Display
Name, and Board Rev filters. You can also use the Search field to find specific board parts.

5. In the New Project Summary page, review the options you selected to define the project, and
click Finish to create and open the project.

Note: For more information on Memory IP I/O planning, see the Vivado Design Suite User Guide: I/O and
Clock Planning (UG899).

Importing an External Project
You can import an existing RTL-level project file created outside of the Vivado IDE, for example,
using Synopsys Synplify, XST, or ISE Design Suite Project Navigator. The Vivado IDE detects the
source files in the specified project and automatically adds the files to the new project. Settings
such as top module, target device, and VHDL library assignment are imported from the existing
project.

Note: For more information on importing an XST or ISE Design Suite project, see the ISE to Vivado Design
Suite Migration Guide (UG911).

1. Follow the steps in Creating a Project.

2. In the Project Type page, select Imported Project, and click Next.

3. In the Import Project page, use the following options to specify the project file to import, and
click Next.

• ISE: Imports the specified Xilinx ISE Design Suite (.xise extension) project file.

• Synplify: Imports the specified Synplify (.prj extension) project file.

• XST: Imports the specified XST (.xst extension) project file.

• Copy Sources into Project: Copies files into the local project directory instead of
referencing the original files.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 23Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=23

4. In the New Project Summary page, review the options that define the project, and click
Finish.

Note: The target part for the project is defined with the settings of the imported project.

The Vivado IDE imports the RTL source files and constraint files from the specified project,
and creates a project file in the specified directory. The Vivado IDE writes a summary of the
import process to the Import Summary Report log file in the new project directory. In this
summary file, you can review the steps used in creating the project as well as any errors or
warnings.

Tcl Commands for Working with Projects
Following are Tcl commands associated with creating a project. For an example script, see
Creating a Project Using a Tcl Script.

Note: For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

Tcl Commands for Creating a Project

Following are the associated Tcl commands:

• Tcl Commands: create_project and set_property

• Tcl Command Example (RTL Project):

create_project my_project C:/team/designs/my_project -part
xc7k325tffg676-2
set_property DESIGN_MODE RTL [current_fileset]

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 24Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=24

• Tcl Command Examples (Post-Synthesis Project):

create_project my_IO_project C:/team/designs/my_IO_project -part
xc7k325tffg676-2
set_property design_mode GateLvl [current_fileset]

• Tcl Command Examples (I/O Planning Project):

create_file project_io C:/projects/project_io -part xc7vx485tffg1157-1
set_property design_mode PinPlanning [current_fileset]

Tcl Commands for Importing a Project

Following are the associated Tcl commands:

• Tcl Command:

create_project and import_xise set_property DESIGN_MODE RTL
[current_fileset]

• Tcl Command Examples:

create_project project_import_ise C:/projects/project_import_ise
import_xise C:/projects/old/wave_gen_vhd_s6/wave_gen_vhd_s6.xise -
copy_sources

Tcl Commands for Adding Design Sources, Constraints Files, and
Simulation Sources

Following are the associated Tcl commands:

• Tcl Command: add_files or import_files

• Tcl Command Examples:

add_files top.v
import_files -fileset constrs_1 C:/projects/sources/timing.xdc
add_files -norecurse source_dir
import_files source_dir

Note: The add_files command references the file from its current location. The import_files
command copies the file into the project.

CAUTION! The read_xdc , read_vhdl , read_verilog , read_ip , and read_edif  Tcl
commands are designed for use with Non-Project Mode only. For more information, see Working with
Sources in Non-Project Mode.

TIP: You can use the PATH_MODE  property with the add_files  Tcl command to specify whether to
use absolute or relative paths. By default, relative paths are used. For more information, see the Vivado
Design Suite Properties Reference Guide (UG912).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 25Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=25

Tcl Commands for Adding Existing IP Sources

Following are the associated Tcl commands:

• Tcl Command: add_files or import_ip

• Tcl Command Example:

import_ip C:/projects/sources/char_fifo/char_fifo.xci

Note: The add_files command references the XCI file and associated output products from their
current location. The import_ip command copies the XCI file and associated output products into the
project.

Tcl Commands for Setting the Project Part

Following are the associated Tcl commands:

• Tcl Command: create_project or set_property

• Tcl Command Examples:

create_project my_project C:/projects/my_project -part xc7k325tffg676-2
set_property PART xc7k70tfbg676-2 [current_project]

Note: You can set the part either when you create the project or after you create the project.

Note: It is easy to get a template script by running the write_project_tcl command on an existing or
example project.

Using the Vivado Design Suite Platform Board
Flow

The Vivado Design Suite lets you create projects using Xilinx target design platform boards (TDP),
or user-specified boards that have been added to a board repository. When you select a specific
board, the Vivado design tools show information about the board, and enable additional designer
assistance as part of IP customization, and for IP integrator designs.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 26Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=26

Figure 10: New Project Wizard—Default Part/Board

Adding User-Boards to a Repository
The Vivado Design Suite installation includes board definition files for the TDP boards that are
delivered as part of the tool. You can also create your own board files, using the schema
described in Appendix A: Board File, to add to a board repository to be used with Vivado Design
Suite.

In order to add your own board files, or third-party files, to the board repository you must define
the following parameter either in your Vivado_init.tcl file, or soon after opening the Vivado
Design Suite:

set_param board.repoPaths [list "<path1>" “<path2>” “...”]

These paths can also be added in the GUI using Tools > Setting > XHub Store > Board Repository

For more information about the Vivado_init.tcl file refer to this link in the Vivado Design
Suite Tcl Command Reference Guide (UG835).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 27Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf;a=ScriptingInTcl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=27

TIP: The Vivado Design Suite board repository at <Vivado_install_location>/data/boards is always read
regardless of the value of this parameter.

Using the IP Catalog with the Platform Board Flow
A Board tab is available in the Customize IP dialog box when you are working with IP from the
Xilinx IP catalog that supports the platform board flow. You can select the board interfaces to use
in the IP customization. Based on the IP interfaces supported by the selected board part, IP
configuration options change to enable physical constraint generation specific to the board, such
as I/O locations and I/O standards. For more information on configuring board-related IP see
Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994).

Figure 11: Board Tab in the Customize IP Dialog Box

Using the Vivado IP Integrator with the Platform
Board Flow
Optionally, you can use the Vivado IP integrator to add IP to your block design. If you selected a
board for the project, the Board window is available in IP integrator in the toolbar by selecting
Window>Boards. This window shows the IP interfaces that are available on the selected board,
and which of those interfaces have been used.

Vivado IP integrator instantiates the pre-configured IP and assigns the physical board constraints,
such as I/O location and I/O standards for the IP, as well as any related parameters used for
implementation and device configuration.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 28Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=28

After configuration, all of the board physical constraints are automatically passed to the
downstream synthesis and implementation tools. For more information on using the platform
board flow, see this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994).

Figure 12: Board Window in Vivado IP Integrator

Managing Projects
Opening a Project
When a project is opened, the Vivado IDE restores the state of the project from the time the
project was closed. The project state includes the current source file order, disabled and enabled
source files, active and target constraint files, and the state of synthesis, simulation, and
implementation runs.

To open a project, use one of the following methods:

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 29Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=UsingTheBoardFlowInIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=29

• In the Getting Started page, click Open Project.

• Select File > Project > Open.

• Click the Open Project toolbar button .

• In the Tcl Console, enter the open_project command.

From the Open Project dialog box, you can select a project file (.xpr extension). The File Preview
window in the Open Project dialog box displays information about the currently selected file.

Note: Alternatively, you can double-click the Vivado IDE project file (.xpr extension) in Windows Explorer
to open the project.

Tcl Command for Opening a Project

Following is the associated Tcl command:

• Tcl Command: open_project

• Tcl Command Example: open_project c:/projects/project_1.xpr

Opening Multiple Projects
To open multiple projects in a single session, use any of the methods described in Opening a
Project to open an additional project while a project is already open. The Vivado IDE prompts
you to close the current project. If you do not close the first project, both projects are opened.
Each open project has a separate IDE window.

When opening multiple projects from the same Vivado IDE application process, be aware that
the commands used in all open projects are written to the Tcl Console. When reviewing the
transcript of commands, it might not be clear which project the commands are associated with. In
addition, there is only a single vivado.jou and a single vivado.log file for the application for
all projects.

Note: System memory requirements can hinder performance when opening multiple projects.

Saving a Project
Projects are automatically saved for you. For example, any time you make a change to a project,
such as changes to source configuration, properties on files, or run options, the project is
automatically saved on disk.

TIP: However, changes to the design constraints are not automatically saved as part of the project. You
must use the Save Constraints command, or Save Constraints As..., to write constraint changes to disk.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 30Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=30

To save a project to a new location, select File → Project → Save As. This copies the entire project
directory structure to a specified location and maintains the status of the existing runs when run
results are included.

Tcl Command for Saving a Project

Following is the associated Tcl command:

• Tcl Command: save_project_as

• Tcl Command Example: save_project_as new_project c:/projects/
project_1.xpr

Closing a Project
To close a project, select File → Close Project. When you close a project, you are prompted to
save any unsaved changes to the design or source files.

Tcl Command for Closing a Project

Following is the associated Tcl command: close_project

Archiving Projects
You can create a project archive to store as backup or to send to a remote site. When archiving a
project, the Vivado IDE does the following:

• Parses the hierarchy of the design.

• Copies the required source files, include files, and remote files from the library directories.

• Copies the constraints.

• Optionally, copies the results of the various synthesis, simulation, and implementation runs.

• Creates a ZIP file of the project.

To archive a project:

1. Select File → Project → Archive.

2. In the Archive Project dialog box, set the following options, and click OK.

• Archive name: Specifies the name of the project archive.

• Temporary location: (Windows only) Specifies a temporary directory to copy files to when
creating the project archive. The temporary directory is created if it does not exist, and is
emptied when the archive process is complete. By default, the Vivado tool creates a
temporary directory inside of the current working directory.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 31Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=31

• Include configuration settings: Includes the Vivado_init.tcl file, which contains Tcl
initialization commands that are helpful in debugging your design. For more information,
see the Vivado Design Suite Tcl Command Reference Guide (UG835).

• Include run results: Includes the settings and results of the runs performed on the project.
Including the results of synthesis and implementation runs can significantly increase the
size of the project archive.

• Include local IP cache results: Includes the information included in the local IP cache (if
any) to speed up IP generation times using version of the tools.

Figure 13: Archive Project Dialog Box

The Vivado IDE creates a project archive in ZIP file format that contains the required source
files, include files, and run files (if specified) as well as an archive.log file of the archival
process. You can review the creation of the archive in the archive.log file.

You can also use the write_project_tcl command to generate a tcl script that will
recreate the current project. The script will keep the project settings and sources, but may
not retain output products or design state.

Tcl Command for Archiving a Project

Following is the associated Tcl command:

• Tcl Command: archive_project

• Tcl Command Example: archive_project -exclude_run_results proj3.zip

Note: To avoid the 256 character limit on Windows, use the -temp_dir option to specify a temporary
directory to copy files to when creating the project archive.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 32Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=32

Working with Source Control Systems
VIDEO: See the Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control for
an introduction to working with source control systems.

Using the Project Summary
The Vivado IDE includes an interactive Project Summary that updates dynamically as design
commands are run and as the design progresses through the design flow. The Project Summary
includes the Overview tab and a user-configurable Dashboard, as shown in the following figure.
For information, see this link in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

To open the Project Summary, do either of the following:

• Select Windows → Project Summary.

• Select the Project Summary toolbar button .

Note: The Overview tab in the Project Summary appears by default.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 33Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=xUsingTheProjectSummary
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=33

Figure 14: Project Summary

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 34Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=34

Configuring Project Settings
You can configure settings to meet specific needs for each project. Settings include general
settings related to the top module definition as well as settings for the following: simulation,
synthesis, implementation, bitstream, and IP.

To open the Settings dialog box, use any of the following methods:

• Select Tools → Settings.

• Click the Settings toolbar button .

• In the Flow Navigator, click Settings in the Project Manager section, or right click on:

○ SIMULATION to get Simulation Settings

○ RTL ANALYSIS to get Elaboration Settings

○ SYNTHESIS to get Synthesis Settings

○ IMPLEMENTATION to get Implementation Settings

○ PROGRAM AND DEBUG to get Bitstream Settings.

• In the Project Summary, click the Edit link next to the Settings header, or click the strategy or
flow in either the Synthesis or Implementation section.

Depending on how you invoke the Settings dialog box, the appropriate category appears by
default. For example, if you click Simulation Settings in the Flow Navigator, the Simulation
category appears in the Settings dialog box. The following sections provide detailed information
for each category.

General Settings
The General settings enable you to specify the project name, part, target language, target
simulator, top module name, and language options.

• Name: Specifies the project name.

• Project Device: Specifies the target device to be used as a default for both synthesis and
implementation. Click the browse button to open the Select Device dialog box to choose a
device.

Note: If you have multiple synthesis or implementation runs, you can also change the device used for a
specific run by changing the run settings from the Run Properties window. For more information, see
the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 35Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=35

• Target Language: Specifies the target output language for the design as either Verilog or
VHDL. The tool generates RTL output from the design in the specified target language.
Specific examples of output controlled by the target language are synthesis, simulation, top-
level wrappers, test benches, and IP instantiation templates.

• Default Library: Specifies the default library for the project. All files without an explicit library
specification are compiled in this library. You can select a library name, or specify a new library
name by typing in the Library text field.

• Top Module Name: Specifies the top RTL module name of the design. You can also enter a
lower-level module name to experiment with synthesis on a specific module. Click the browse
button to automatically search for the top module and display a list of possible top modules.

• Language Options:

IMPORTANT! The settings here apply to synthesis. You can also define Verilog options and Generics/
Parameters options from the Settings - Simulation dialog box. The simulation settings apply to the
simulation fileset and affect simulation but not synthesis.

• Verilog Options: Click the browse button to set the following options in the Verilog
Options dialog box.

• Verilog Include Files Search Paths: Specifies the paths to search for files referenced by
'include statements in the source Verilog files.

• Defines: Specifies Verilog macro definitions for the project.

• Uppercase all identifiers: Sets all Verilog identifiers to uppercase.

• Generics/Parameters: VHDL supports generics while Verilog supports defining parameters
for constant values. Both of these techniques allow parameterized designs that can be
reused in different situations. Click the browse button to define generic and parameter
values to override defaults defined in the source files.

• Loop Count: Specifies the maximum loop iteration value. The default is 1000.

Note: The Loop Count option is used during RTL elaboration but does not apply to synthesis. For
synthesis, you must specify the -loop_iteration_limit switch in the More Options field of the
Synthesis Settings dialog box.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 36Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=36

Figure 15: General Settings

Simulation Settings
The Simulation settings enable you to specify the simulation set, the simulation top module
name, and a tabbed listing of compilation and simulation options. You can select an option to see
a description at the bottom of the dialog box. For more information on the Simulation Settings,
see the Using Simulation Settings section in Vivado Design Suite User Guide: Logic Simulation
(UG900).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 37Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=37

Figure 16: Simulation Settings

Elaboration Settings
When opening an elaborated design, as discussed in Chapter 4: Elaborating the RTL Design,
there are two settings that can be enabled or disabled to change the elaboration of the RTL
design, as shown in the following figure.

The Elaboration page allows you to set options for the elaborated netlist view. This view is
available from the Flow Navigator in RTL Analysis → Open Elaborated Design.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 38Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=38

Figure 17: Elaboration Settings

• Link IP Module Options: The Blackbox model (stub file): Treats all IP which were synthesized
out-of-context as a black box. The Netlist model: Uses the synthesized netlist for IP that were
synthesized out-of-context.

• Constraint Options: Load constraints: Applies all active constraints to the elaborated design
(timing and physical).

The following Tcl commands can be defined on the source fileset to enable the RTL elaboration
settings:

set_property elab_link_dcps true [current_fileset]
set_property elab_load_timing_constraints true [current_fileset]

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 39Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=39

Note: Use false to disable these settings.

Synthesis Settings
The Synthesis Settings enable you to specify the constraints set, the synthesis strategy, the
synthesis options, and what reports to generate. The options are defined by the selected
synthesis strategy or synthesis reporting strategy, but you can override these with your own
settings. You can select an option to see a description at the bottom of the dialog box. For more
information on the Synthesis Settings, see the Using Simulation Settings section in the Vivado
Design Suite User Guide: Synthesis (UG901).

Note: You can pre-synthesize IP in your project, which decreases the synthesis runtime. For information on
using this bottom-up synthesis flow, see the Vivado Design Suite User Guide: Designing with IP (UG896).

TIP: You can add Tcl scripts to be sourced before and after synthesis using the tcl.pre  and tcl.post 
files. For more information, see the Vivado Design Suite User Guide: Using Tcl Scripting (UG894).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 40Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=40

Figure 18: Synthesis Settings

Implementation Settings
The Implementation Settings enable you to specify the constraints set, the implementation
strategy, the implementation options, and what reports to generate. The options are defined by
the selected implementation strategy or implementation reporting strategy, but you can override
these with your own settings. For example, you can use the options to run optional steps such as
power optimization and physical synthesis. You can select an option to see a description at the
bottom of the dialog box. For more information on the Implementation Settings, see the
Customizing Implementation Strategies in the Vivado Design Suite User Guide: Implementation
(UG904).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 41Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=41

TIP: You can add Tcl scripts to be sourced before and after any stage of implementation using the
tcl.pre  and tcl.post  files available at each stage. For more information, see the Vivado Design
Suite User Guide: Using Tcl Scripting (UG894).

Figure 19: Implementation Settings

Bitstream Settings
The Bitstream Settings enable you to define options prior to generating the bitstream. You can
select an option to see a description at the bottom of the dialog box. For more information on
the Bitstream Settings, see the Changing the Bitstream File Format Settings section in the Vivado
Design Suite User Guide: Programming and Debugging (UG908).

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 42Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=42

Figure 20: Bitstream Settings

IP Settings
The IP Settings include the sub-sections:

• Repository: Specifies directories to add to the IP repositories list. IP can either be packaged by
you or acquired from a third-party supplier. After you click Add, to add a repository, you can
see the IP within each repository.

• Packager: Sets default values for packaging new IP, including vendor, library, and taxonomy.
This tab also allows you to set the default behavior when opening the IP Packager and allows
you to specify file extensions to be filtered automatically.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 43Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=43

Note: If necessary, you can change the default values for packaging IP during the IP packaging process.

For more information on the IP Settings, see the Using IP Settings section in the Vivado Design
Suite User Guide: Designing with IP (UG896).

The IP Settings and the Vivado IP catalog are only available when working with an RTL project or
when using Manage IP from the Getting Started page. When using Manage IP, a subset of the IP
settings is available unless a project is created.

Figure 21: IP Settings

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 44Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=44

Tcl Command for Configuring Project Settings
Following is the associated Tcl command for configuring different properties for the project. The
example shows how to configure the target language property for the project:

• Tcl Command: set_property

• Tcl Command Example: set_property target_language Verilog
[current_project]

RECOMMENDED: You can set multiple properties, including properties for the project or for synthesis or
implementation runs. The best way to learn the property name and target is by performing the operation in
the Vivado IDE and looking at the corresponding Tcl commands in the Tcl Console.

Creating a Project Using a Tcl Script
You can use the write_project_tcl command to generate a tcl script that will re-create the
current project. The script will keep the project settings and sources, but may not retain output
products or design state.

As an alternative to creating a project in the Vivado IDE, you can create a project using a Tcl
script. Most actions run in the Vivado IDE result in a Tcl command being executed. The Tcl
commands appear in the Vivado IDE Tcl Console and are also captured in the vivado.jou and
vivado.log files. The vivado.jou file contains just the commands, and the vivado.log file
contains both commands and any returned messages. You can use these files to develop scripts
for use with Project Mode. Refer to Output Files in Appendix A of the Vivado Design Suite User
Guide: Using the Vivado IDE (UG893) for information on where the vivado.jou and log files are
written.

For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835).

Following is a sample script that creates a project, adds various sources, configures settings,
launches synthesis and implementation runs, and creates a bitstream.

Typical usage: vivado -mode tcl -source run_bft_project.tcl
Create the project and directory structure
create_project -force project_bft_batch ./project_bft_batch -part
xc7k70tfbg484-2
#
Add various sources to the project
add_files {./Sources/hdl/FifoBuffer.v ./Sources/hdl/async_fifo.v \
./Sources/hdl/bft.vhdl}
add_files -fileset sim_1 ./Sources/hdl/bft_tb.v
add_files ./Sources/hdl/bftLib/
add_files -fileset constrs_1 ./Sources/bft_full.xdc
#
Now import/copy the files into the project

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 45Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=45

import_files -force
#
Set VHDL library property on some files
set_property library bftLib [get_files {*round_*.vhdl core_transform.vhdl \
bft_package.vhdl}]
#
Update to set top and file compile order
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
#
Launch Synthesis
launch_runs synth_1
wait_on_run synth_1
open_run synth_1 -name netlist_1
#
Generate a timing and power reports and write to disk
Can create custom reports as required
report_timing_summary -delay_type max -report_unconstrained -
check_timing_verbose \
-max_paths 10 -input_pins -file syn_timing.rpt
report_power -file syn_power.rpt
#
Launch Implementation
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1
#
Generate a timing and power reports and write to disk
comment out the open_run for batch mode
open_run impl_1
report_timing_summary -delay_type min_max -report_unconstrained \
-check_timing_verbose -max_paths 10 -input_pins -file imp_timing.rpt
report_power -file imp_power.rpt
#
Can open the graphical environment if visualization desired
comment out the for batch mode
#start_gui

TIP: You can break up a line in your Tcl script using the backslash (\) character at the end of a line to
indicate the line continuation. The line that follows the backslash is processed as part of the preceding line.

Chapter 2: Working with Projects

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 46Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=46

Chapter 3

Working with Source Files

Overview
Source files include design sources, intellectual property (IP) sources added from the Xilinx® IP
catalog, RTL design sources, digital signal processing (DSP) sources added from the System
Generator tool, and IP subsystems, also known as block designs, created by the IP integrator
feature of the Vivado® Design Suite. Source files also include simulation source files and
constraints files that specify timing requirements for the design and physical constraints defining
the Xilinx device resources used by the design. When working in Project Mode, you can create
and add source files using the Vivado IDE, or using Tcl commands or scripts, and the Vivado IDE
automatically manages your source files within the project. You can create and manage source
files that are local to the current project, or remotely referenced from a library or separate
directory. You can add Verilog, VHDL, and SystemVerilog source files to a project at any point in
the design flow.

Note: For information on source file management when working with Zynq®-7000 devices, Zynq®

UltraScale+™ MPSoC devices, and MicroBlaze™ processors, see Vivado Design Suite User Guide: Embedded
Processor Hardware Design (UG898).

When working in Non-Project Mode, you can create these source files using Tcl commands or
scripts, but you must manually manage your source files. The majority of this chapter covers
creating and managing sources in Project Mode. Working with Sources in Non-Project Mode
covers creating and managing sources in Non-Project Mode. For more information on Project and
Non-Project design flow modes, see this link in the Vivado Design Suite User Guide: Design Flows
Overview (UG892).

When source files are added to the Vivado Design Suite, whether in Project Mode or Non-
Project Mode, the tool maintains both a relative path and an absolute path to the file. When a
design is opened, by default the Vivado Design Suite applies the relative path first to locate files
and directories, then applies the absolute path if the file is not found. This feature is controlled
through the PATH_MODE property, which defaults to RelativeFirst. You can change this behavior
for specific design sources by setting the PATH_MODE property for those files. Refer to the
PATH_MODE property in Vivado Design Suite Properties Reference Guide (UG912) for more
information.

Note: For information on Tcl commands associated with adding sources, see Tcl Commands for Adding
Design Sources, Constraints Files, and Simulation Sources.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 47Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf;a=UnderstandingProjectModeAndNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf;a=PathMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=47

Creating and Adding Design Sources
In the Vivado® IDE, you can create and manage design source files, including HDL or netlist files.
With a project open in the Vivado® IDE, the Sources window displays the Design Sources,
Constraints, and Simulation Sources that are the collection of files, or filesets, making up the
current project.

Figure 22: Sources Window

The Sources window provides different ways of viewing the source files associated with a
project, including the following views:

• Hierarchy: Displays the hierarchy of the design modules and instances, along with the source
files that contain them. The Vivado IDE automatically detects the top of the design hierarchy,
though you can manually change it as needed.

• IP Sources: Displays all of the files defined by an IP core, a block design added from the
Vivado IP integrator, or a DSP module added from System Generator.

• Libraries: Displays design sources sorted into their various libraries.

• Compile Order: Displays source files in the order in that they will be compiled, first to last, and
shows the processing order for constraints. The Compile Order view can display the
processing order used for synthesis, implementation, or simulation.

TIP: For information on the icons used in the Sources window, see Using the Sources Window in the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 48Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=UsingTheSourcesWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=48

Creating New Source Files
1. To create new design sources to add to your project, select File > Add Sources.

Note: Alternatively, you can select Add Sources from the right-click menu in the Sources window, or
click Add Sources in the Flow Navigator.

2. In the Add Sources wizard select Add or Create Design Sources, and click Next.

3. In the Add or Create Design Sources page, press the Create button and select the Create File
command from the sub-menu to create new source files.

4. In the Create Source File dialog box, set the following options, and click OK:

• File type: Specifies one of the following file formats: Verilog file (.v extension), Verilog
Header file (.vh extension), SystemVerilog file (.sv extension), VHDL file (.vhdl or .vhd
extension), or Memory file (.mem).

• File name: Specifies a name for the new HDL source file.

• File location: Specifies a location in which to create the file.

A placeholder for the file is added to the list of sources displayed in the Sources window. The
file is not created until you click Finish in the Add Sources wizard.

TIP: You can click Create File multiple times to define several new modules to add to the project.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 49Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=49

Figure 23: Create Source File Dialog Box

5. In the Add or Create Design Sources page, specify the appropriate library for the source file.

Figure 24: Add Sources Wizard—Setting Library

By default, all HDL sources are added to the xil_defaultlib library. In the Library
column, you can reference an existing library name, or manually type a new library name to
specify additional user VHDL libraries as needed.

6. Click Finish to create the new source files, and add them to the project.

With a new source file created, the Vivado IDE opens the Define Modules dialog box to help
you define the ports for the module or entity declaration.

7. In the Define Modules dialog box, you can define the module or entity for the Verilog, Verilog
Header, SystemVerilog, or VHDL code using the following options:

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 50Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=50

Figure 25: Define Modules Dialog Box

• New Source Files: This field appears if you created multiple files, letting you select the
name of the module you want to define.

• Entity name/Module name: Specifies the name for the entity construct in the VHDL code
or the module name in the Verilog or SystemVerilog code.

Note: The name defaults to the file name but can be changed.

• Architecture name: Specifies the Architecture for VHDL source files. By default, the name
is Behavioral.

Note: This option does not appear when defining Verilog or SystemVerilog modules.

• I/O Port Definitions: Define the ports to be added to the module definition:

• Port Name: Defines the name of the port to appear in the RTL code.

• Direction: Specifies whether the port is an Input, Output, or Bidirectional port.

• Bus: Specifies whether the port is a bus port. Define the width of the bus using the
MSB and LSB options.

• MSB: Defines the number of the most significant bit (MSB). This combines with the LSB
field to determine the width of the bus being defined.

• LSB: Defines the number of the least significant bit (LSB).

Note: MSB and LSB are ignored if the port is not a bus port.

The Sources window lists the newly defined modules. To edit the new source files in the
Vivado IDE Text Editor, double-click the file or select Open File from the right-click menu.
See Using the Text Editor in theVivado Design Suite User Guide: Using the Vivado IDE (UG893)
for information on editing the file.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 51Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=UsingTheTextEditor
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=51

Adding Design Sources
1. Select File → Add Sources.

Note: Alternatively, you can click Add Sources in the Flow Navigator, or select Add Sources from the
right-click menu in the Sources window.

2. In the Add Sources wizard, select Add or Create Design Sources, and click Next.

3. In the Add or Create Design Sources page, set the following options, and click Finish.

• Add Files: Opens a file browser so you can select files to add to the project. You can add
the following file types to an RTL project: HDL, EDIF, NGC, BMM, ELF, DCP, and other file
types.

Note: In the Add Source Files dialog box, each file or directory is represented by an icon indicating it
as a file or folder. A small red square indicates it is read only.

• Add Directories: Opens a directory browser to add source files from the selected
directories. Files in the specified directory with valid source file extensions are added to
the project.

• Create File: Opens the Create Source File dialog box in which you can create new VHDL,
Verilog, Verilog header, or SystemVerilog files.

• Library: Specify the RTL library for a single file, or the files in a directory, by selecting a
library from the currently defined library names, or specify a new library name by typing in
the Library text field.

Note: This option applies to VHDL files only. By default, HDL sources are added to the
xil_defaultlib library. You can create or reference additional user VHDL libraries as needed.
For Verilog and SystemVerilog files, leave the library set to xil_defaultlib.

• Remove: Removes the selected source files from the list of files to be added.

• Move Up / Move Down: Moves the file or directory up/down in the list order. The order
of the files affects the order of elaboration and compilation during downstream processes
such as synthesis and simulation. See Specifying the Top Module and Reordering Source
Files.

• Scan and Add RTL Include Files into Project: Scans the added RTL files and adds any
referenced Verilog 'include files into the local project directory structure.

• Copy Sources into Project: Copies files into the local project directory instead of
referencing the original files.

Note: If you added directories of source files using Add Directories, the directory structure is
maintained when the files are copied locally into the project. For more information, see Using
Remote Sources or Copying Sources into Project.

• Add Sources from Subdirectories: Adds source files from the subdirectories of directories
specified using the Add Directories option.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 52Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=52

Specifying the Top Module and Reordering Source
Files
By default, the Vivado Design Suite automatically determines the top-level of the design
hierarchy and the order of elaboration, synthesis, and simulation for source files added to the
project. this can be controlled through the use of the Hierarchy Update settings in the right-click
menu of the Sources Window. Refer to Hierarchy Update in Sources Window Commands in the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893) for more information.

The hierarchy of the design is displayed in the Hierarchy view of the Sources window. The
compilation file order is displayed in the Compile Order view of the Sources window.

You can override the automatic determination of the top module by manually specifying the top
of the design hierarchy. To specify the top module, select a module in the Sources window and
select Set as Top from the right-click menu in the Hierarchy view of the Sources window.

Note: If the specified top module cannot be found in the design source files and the hierarchy update mode
is set to automatic, the selected top is automatically reset to the best candidate.

When you change the top module, the Vivado IDE automatically reorders files in the Hierarchy
and the Compile Order tabs of the Sources window according to the requirements of the new
top module. Select Refresh Hierarchy from the right-click menu in the Sources window to
reorder files based on changes to the source files.

You can override the automatic determination of the compile order using Hierarchy Update from
the right-click menu command in the Sources window. You can specify the manual compile order
mode by selecting Hierarchy Update → Automatic Update, Manual Compile Order or Hierarchy
Update → No Update, Manual Compile Order in the right-click menu of the Sources window. In
manual mode, you can manually order files according to your own requirements. To manually
order source files, select a file and drag it up or down in the file list order in the Compile Order
view of Sources window. Alternatively, after selecting the file, use Move Up, Move Down, Move
to Top, or Move to Bottom from the Sources window right-click menu.

To see a full list of the compile or evaluation order for all sources, use the
report_compile_order command in the Tcl Console. This command lists the order that files
are compiled or evaluated for synthesis, implementation, and simulation. RTL compile order is
listed for synthesis and simulation. Constraints evaluation order is listed for synthesis and
implementation.

Enabling or Disabling Source Files
When you add or create source files, the source files are enabled in the Sources window by
default. You can disable source files to prevent them from being elaborated, synthesized, or used
in simulation. Enabling and disabling source files at different stages in the design lets you manage
different design configurations in a single project.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 53Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=SourcesWindowCommands
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=53

• To disable source files, select the files in the Sources window, and select the Disable File right-
click menu command.

• To enable disabled files, select the files in the Sources window, and select the Enable File
right-click menu command.

Using Remote Sources or Copying Sources into
Project
To provide project management flexibility, you can reference source files from a remote location
or copy the source files into the local project directory. When you reference remote files, the
Vivado IDE automatically detects changes to the referenced file, then prompts you to Refresh
your open designs or to Synthesize with the latest updates made to the file.

If you move or archive the project, you can copy remote files into the project so that the files are
contained within the project. To copy sources into the project, do one of the following:

• When you add sources to the project using the Add Sources command, you can copy the
sources to the local project directory by selecting the Copy Sources into Project option.

• If you initially add the sources as remote sources, but later want to copy them into the project
directory, use Copy File into Project or Copy All Files into Project in the right-click menu in
the Sources window to copy some or all individual remote source files into the project
directory.

Updating Local Source Files
When referencing remote sources, the Vivado IDE automatically detects source file changes.
However, with source files that are copied to the local project, any changes to the original source
file are not recognized. You must manually update local source files, if necessary.

You can update source files that are copied into the local project directory using either of the
following methods:

• In the Sources window, select the file, and select Replace File from the right-click menu.

A file browser opens with the original source file referenced. If the original location changed,
you are required to browse to the location and select the file. Click OK to reload the original
source file, and update the project file with any changes to the source file.

Note: You can also specify a different file, and the Vivado IDE replaces the selected file with the new
file. For instance, if the original file is File_1.v, and you select File_2.v, the original File_1.v is
removed from the project and File_2.v is copied into the project.

• In the Sources window, select Add Sources from the right-click menu to add the newly
updated source files to the project.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 54Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=54

The Vivado IDE imports the added file into the project. However, because there is already a
local source with the same name, the Import Source Conflicts dialog box prompts you to
resolve the conflict by overwriting the existing file or by not loading the newly added file. This
happens only if the Copy Sources into Project box is checked in the Add Sources wizard;
otherwise, the externally referenced file of the same name is added to the project.

Figure 26: Import Source Conflicts Dialog Box

Working with IP Sources
Note: For more information on IP, including adding, packaging, simulating, and upgrading IP, see the Vivado
Design Suite User Guide: Designing with IP (UG896).

In the Vivado IDE, you can add and manage the following types of IP cores in an RTL project:

• Vivado Design Suite Xilinx Core Instance files (XCI)

XCI format IP cores are native to the Vivado Design Suite and can be added to the design or
project by customizing the IP core from the Xilinx IP catalog, or by using the File → Add
Sources command to directly add the files. The XCI file stores the configuration and constraint
options for an IP core that you specify, or customize, when you add the IP to a design.

IMPORTANT! When using IP in either Project Mode or Non-Project Mode, always add the XCI file to
the design; not a synthesized DCP file. The use of the XCI file ensures that the output products of the IP
core that are needed by the tool are generated and used consistently throughout the design flow.

• Vivado Design Suite Core Container files (XCIX)

The Core Container feature simplifies working with revision control systems by providing a
single file representation of an IP. The IP configuration and all generated output files are
contained in one compressed binary file with an extension of XCIX. This extension is similar to
the XCI file used for the IP customization file and works in a similar way. When adding or
reading an IP, you can specify the XCIX file. For more information, see this link in the Vivado
Design Suite User Guide: Designing with IP (UG896).

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 55Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf;a=xUsingACoreContainerForCommonFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=55

• User IP packaged with Vivado IP packager (XCI)

The Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118) describes how
to package user-defined IP for use in the Xilinx IP catalog. User IP repositories can be added
to the catalog using the IP_REPO_PATHS property, which defines the path for one or more
directories containing third-party or user-defined IP. Refer to the IP_REPO_PATHS property in
Vivado Design Suite Properties Reference Guide (UG912) for more information.

• CORE Generator IP cores (XCO)

Legacy IP from the CORE Generator tool are supported by the Vivado Design Suite. These
legacy IP are locked when imported into a design, and require a corresponding NGC (netlist)
file to support implementation of the IP into a design. Otherwise, if an XCI upgrade for the IP
is available, you can right-click the IP core, and select Upgrade IP from the right-click menu.

• Third-party IP Netlists

In some cases, third-party providers offer IP as synthesized NGC or EDIF netlists. You can load
these files into a project or design as hierarchical design sources using the Add Sources
command. For information, see Creating and Adding Design Sources.

Adding IP from the IP Catalog
TIP: By default, the IP Catalog only displays IP cores that are compatible with, or supported by the target
part (or board) for the current project. You can change the default setting to show all IP in the catalog by

deselecting the Hide toolbar button in the Vivado IP catalog.

You can add IP cores from the Xilinx IP catalog, into your design hierarchy, by selecting IP from
the catalog, and customizing the IP for your design. Customization involves modifying
parameters or features of the IP core, and adding the IP source files into your design project. The
IP catalog also lists the interfaces that are available for use in IP Integrator.

1. To begin, select the IP Catalog in the Flow Navigator of the Vivado IDE. This opens the
catalog as shown below.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 56Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf;a=IPRepoPaths
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=56

Figure 27: Xilinx IP Catalog

For information on filtering the IP cores displayed in the IP Catalog, and other details of
working with the catalog, see this link in Vivado Design Suite User Guide: Designing with IP
(UG896).

Select an IP from the IP Catalog and customize the IP for use in your design using one of the
following methods:

• From the IP Catalog, select the IP and select the Customize IP command from the right-
click menu.

• Double-click the selected IP to open the Customize IP dialog box for the selected IP core.

The Customize IP dialog box shows the various parameters and options available to
customize the IP. The contents of the Customize IP dialog box varies, depending on the
specific IP you select, and can include one or more tabs in which to enter values.

When you select OK to close the Customize IP dialog box, and confirm the settings you have
specified, the IP source files, including the HDL definition of the IP module, are added to your
design project and displayed in the IP Sources tab of the Sources window.

With the IP added to your design, you must generate any files required to support the IP in
your design, such as the instantiation template, XDC constraints, and simulation sources.
These files are referred to collectively as output products. See Generating Output Products
for IP Cores for more information.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 57Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf;a=UsingTheIPCatalog
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=57

Adding Existing IP Files
As an alternative to adding and customizing IP from the Xilinx IP catalog, you can directly add
XCI or XCIX files into your project or design. This process is different from customizing IP from
the catalog in the following ways:

• The XCI or XCIX file may be an earlier version, or fully customized version of the same or
similar IP found in the Xilinx IP Catalog.

• The XCI or XCIX file may include the necessary files, or output products, to support the IP in
the design flow. This can include the instantiation template, simulation files, and netlists or
design checkpoints (DCPs) needed to support the IP through implementation. The Vivado
Design Suite adds these files when the XCI or XCIX file is added to the design.

• If the IP is an earlier version of an IP found in the catalog, you can upgrade it to the latest
version from the IP catalog.

• If the IP is an earlier version and includes the needed output products to support the IP in the
design, it can be used in its current form, and the IP will be locked to prevent further
customization.

To add existing XCI or XCIX files directly into your design or project, select File → Add Sources.
See Adding Design Sources for detailed information.

Note: Alternatively, select Add Sources from the right-click menu, or from the Flow Navigator.

The added IP cores display separately in the IP Sources tab of the Sources window, as well as
with other source files in the Hierarchy, Libraries, and Compile Order views. You can select these
core files in the Sources window to see the files that make up the core, and to view the
properties in the Source File Properties window.

If the XCI or XCIX file included any needed support files, referred to collectively as output
products, those files are added when the design source is added to the design. If the XCI or XCIX
file does not include these associated files, you must generate the output products required to
support the IP in your design, such as the instantiation template, XDC constraints, and simulation
sources. See Generating Output Products for IP Cores for more information.

You can run Reports → Report IP Status and review the state of the newly added IP. The IP may
be in a locked state if they were generated with an older version of the Vivado Design Suite, of if
they were configured to a different part.

Tcl Command for Reporting IP Status

Following is the associated Tcl command:

• Tcl Command: report_ip_status

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 58Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=58

Generating Output Products for IP Cores
The IP core includes, or requires, specific files to support the IP in the overall design flow. These
include files such as a Verilog or VHDL instantiation template to facilitate integrating the IP
module into your design, design constraints files (XDC) that are included to provide timing or
physical constraints for the IP core, and synthesized netlists or design checkpoints to support the
IP in the design hierarchy. Collectively these files are referred to as output products. Some of
these files are included with the packaged IP in the Xilinx IP Catalog, and some are generated for
the customized IP in the current design.

When an IP is customized from the IP Catalog, the Generate Output Products dialog box is
opened. However, you can also open this dialog box at any time by right-clicking the IP in the
Sources window and selecting the Generate Output Products command.

Figure 28: Generate IP Output Products

By default, synthesized design checkpoint (DCP) files are generated automatically for IP that
supports the out-of-context flow. However, you can disable DCP file generation when creating
output products by changing to Synthesis Options to Global synthesis. For more information, on
the using the Out-of-Context flow see this link in the Vivado Design Suite User Guide: Designing
with IP (UG896).

With the output products required by the IP core added to your design project, you must now
instantiate the IP into your design hierarchy. This involves integrating the IP module or entity into
the design as described in Instantiating IP Into the Design.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 59Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf;a=xSettingABottomUpOutOfContextFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=59

Instantiating IP Into the Design
An instantiation template is created when you customize and IP and add it to your design or
project, regardless of whether you generated output products. The instantiation template
provides a Verilog or VHDL instance declaration (.veo or.vho) that you can copy and paste into
your RTL design hierarchy.

Figure 29: Editing the Instantiation Template

1. Open the instantiation template in the Vivado IDE Text Editor.

2. Select the instance declaration in the template file, and copy and paste it into the appropriate
source file.

3. Edit the signal names on the port definitions to connect to the appropriate signal names in
your design.

4. You can repeat this process to create multiple instances of the IP core in your design.

For more information see Instantiating an IP in the Vivado Design Suite User Guide: Designing with
IP (UG896).

After you instantiate the IP in your design, the IP core shows in the Hierarchy tab of the Sources
window as integrated into the design. The IP can now be synthesized or simulated as part of the
overall design, or separately in the out-of-context flow.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 60Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf;a=InstantiatingAnIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=60

Working with IP Integrator Sources
In the Vivado Design Suite, you can add and manage IP subsystem block designs (.bd) in an RTL
project or design. Using the Vivado IP integrator, you can create an IP subsystem block design.
The IP integrator enables you to create complex system designs by instantiating and
interconnecting multiple IP cores from the Vivado IP catalog. You can create designs interactively
through the IP integrator canvas in the Vivado IDE or programmatically with Tcl commands. For
information on using the IP integrator, see the Vivado Design Suite User Guide: Designing IP
Subsystems Using IP Integrator (UG994).

IMPORTANT! The Vivado® IP integrator is the replacement for Xilinx Platform Studio (XPS) for new
embedded processor designs, including designs targeting Zynq®-7000 devices and MicroBlaze™
processors. To move existing XPS designs into the Vivado IP integrator see Migrating from XPS to IP
Integrator in the ISE to Vivado Design Suite Migration Guide (UG911).

Creating a New Block Design
You can create a block design in the context of an open RTL project. To create a new block design
source, and automatically add it to the current project, use the following steps:

1. In the Flow Navigator, expand IP Integrator.

2. Select Create Block Design.

This opens the Vivado IP integrator design canvas, letting you add and connect IP in the block
design. Refer to this link in Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) for details of creating a new block design.

3. When you save the new block design, it is automatically added to the current project.

You can also create the block design outside of the current project, to create a repository of
block designs that can be reused and added to many different projects. For more information
on creating a block design outside the current project, refer to this link in Vivado Design Suite
User Guide: Designing IP Subsystems Using IP Integrator (UG994).

Note: For information on creating embedded processor block designs, using either MicroBlaze™ processors
or targeting Zynq-7000 devices, see the Vivado Design Suite User Guide: Embedded Processor Hardware
Design (UG898).

Adding Existing Block Design Sources
To add a block design source that was created outside of the project, and may reside in a
repository of block designs, you can use the Add Sources command as you would for any other
source. See Adding Design Sources for detailed information.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 61Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf;a=xMigratingFromXPStoIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf;a=xMigratingFromXPStoIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=CreatingABlockDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=CreatingABlockDesignOutsideOfTheProject
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=61

When an existing block design is added to the current project, the project might target a different
Xilinx part than the part originally targeted by the block design. This will result in all of the IP
used in the block design being locked, and needing to be updated. Run Tools -
report_ip_status to determine the state of the IP imported with the Creating a New Block
Design .

Tcl Command for Adding Existing Block Design Sources

Following is the associated Tcl command:

• Tcl Command: report_ip_status

• Tcl Command Example: report_ip_status -name ip_status

Figure 30: Report IP Status

IMPORTANT! Locked IP are reported with the following critical warning message when you try to
generate the output products for the block design: [BD 41-1336] One or more IPs are locked in this
block design. Run report_ip_status for more details and recommendations on how to fix this issue.

1. To unlock the IP and the block design, right-click the block design in the IP Sources tab of
the Sources window and select the Report IP Status command.

The IP Status report will show the IP part changes needed to unlock the block design.

2. In the IP Status report window, select the Upgrade Selected command to upgrade the IP
used in the block design to target the new part used in the current project.

With the block design added to the current project, you must generate the output
products required by the Vivado Design Suite to support the block design throughout the
design flow.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 62Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=62

Generating Output Products for Block Designs
Once the block design is complete and the design is validated, output products must be
generated to support the block design throughout the design flow. These output products
include files such as a Verilog or VHDL instantiation template, or HDL wrapper files, to facilitate
integrating the block design into the current project, design constraints files (XDC) that are
included to provide timing or physical constraints for the block design, and synthesized netlists or
design checkpoints to support the block design.

The output products for a block design are generated in the target language of the current
project. If the source files for a particular IP used in the block design cannot be generated in the
target language, a message is returned to the Tcl Console, and the output products will be
generated in the available or supported language.

To generate output products, right-click on the block design and select the Generate Output
Products command, or select Generate Block Design from the Flow Navigator.

The Generate Output Products dialog box is displayed as shown below.

Figure 31: Generate Output Products—Block Design

Generating the output products also generates the top level netlist of the block design. The
netlist is generated in either VHDL or Verilog depending on the target language settings for the
current project.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 63Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=63

By default, synthesized design checkpoint (DCP) files are created for each IP inside the Block
Design to speed up synthesis times. You can change the synthesis mode by selecting the Out of
context per Block Design radio button on the Generate Output Products dialog box. For more
information, on the using the Out-of-Context flow see this link in the Vivado Design Suite User
Guide: Designing IP Subsystems using IP Integrator (UG994).

Once the Block Design is created and generated you need to then instantiate it into your design
by selecting either the Block Design, RMB → Create Wrapper or by instantiating the Block
Design in your own RTL. During creation the dialog box will appear.

Figure 32: Create HDL Wrapper

If you want to modify the wrapper, select the Copy Generated Wrapper to allow user edits,
otherwise select Let Vivado Manage Wrapper to auto-update.

Instantiating Block Designs into the Current Project
An IP integrator block design can be instantiated into the hierarchy of an HDL design, or it can be
defined as the top-level of the design hierarchy.

To integrate the block design into an existing design hierarchy, open the HDL wrapper for the
block design. The HDL wrapper, or instantiation template for the block design is created when
you generate the output products. The HDL wrapper provides a Verilog module declaration, or
VHDL entity declaration for the block design, and creates an instance of the block design module
in the wrapper. You can edit the instance definition in the HDL wrapper and cut and paste it into
the design hierarchy as needed.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 64Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=SettingTheBlockDesignAsOutOfContext
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=64

Figure 33: Editing the Block Design Wrapper

The HDL wrapper can also be used to define the block design as the top-level of the design. For
more information see this link in the Vivado Design Suite User Guide: Designing IP Subsystems using
IP Integrator (UG994).

Working with Vivado HLS Sources
The Vivado High-Level Synthesis (HLS) tool transforms a C specification into a register transfer
level (RTL) implementation that you can synthesize into a Xilinx device. You can write C
specifications in C, C++, or SystemC, and the Xilinx device provides a massively parallel
architecture with benefits in performance, cost, and power over traditional processors.

The outputs from Vivado HLS include RTL implementation files in hardware description language
(HDL) formats that can be synthesized in Vivado synthesis or packaged as an IP block for use
from the IP catalog. For more information, see Vivado Design Suite User Guide: High-Level Synthesis
(UG902).

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 65Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=IntegratingTheBlockDesignIntoTheTopLevelDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=65

Working with Model Composer Sources
Model Composer is a model-based design tool that enables rapid design exploration and
accelerates the path to production for Xilinx devices through automatic code generation. Model
Composer is built as a Xilinxtoolbox that fits into the MathWorks Simulink® software, which is an
add-on product to the MATLAB® software that provides an interactive, graphical environment
for modeling, simulating, analyzing and verifying system-level designs.

You can express your algorithms in Model Composer using blocks from the Model Composer
library as well as user-imported custom blocks. Model Composer transforms your algorithmic
specifications to packaged IP blocks using automatic optimizations and leveraging the high-level
synthesis technology of Vivado HLS. Add these packaged IP into designs using the Vivado
Design Suite or using IP integrator to integrate the IP into a platform (for example, a platform
with a Zynq® device, DDR3 DRAM, and a software stack running on the Arm® processor). For
more information, see Model Composer User Guide (UG1262).

Working with System Generator Sources
Xilinx System Generator for DSP is a design tool that combines RTL source files, Simulink and
MATLAB software models, and C/C++ components of a DSP system into a single simulation and
implementation environment. For more information on working with System Generator refer to
the System Generator for DSP User Guide (UG634).

A System Generator design is often a sub-design that is incorporated into a larger HDL design.
The recommended flow is to package the DSP module as an IP core in the Vivado Design Suite,
to be added to the Xilinx IP catalog and integrated into any level of the design hierarchy as a sub-
module as described in Working with IP Sources,or imported into the top-level of the design. This
lets the Vivado IDE manage the project for the FPGA design, while handling the DSP module as
an IP source that is developed and managed within System Generator. For more information see
IP Catalog Compilation in the Vivado Design Suite User Guide: Model-Based DSP Design Using
System Generator (UG897)

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 66Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sysgen_user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug897-vivado-sysgen-user.pdf;a=xIPCatalogCompilation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug897-vivado-sysgen-user.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=66

Editing Source Files
The Vivado IDE provides a Text Editor in which to create or modify RTL, XDC, Tcl and other text
sources. The Text Editor is context-sensitive when editing Verilog, VHDL, XDC, and Tcl files, and
uses color-coding to distinguish keywords and constructs. It is a configurable, integrated text
editor that supports syntax highlighting and on-the-fly checking, assistance with errors and
warnings, code folding, code completion, and file comparison. See Using the Text Editor in the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893) for information on specific
commands in the text editor.

You can open multiple files simultaneously, and click the tab for each open file to switch between
files. In the tab for the open file, the Vivado IDE appends an asterisk (*) to the file name for
modified files that need to be saved. To save the file, use one of the following methods:

• Select File > Text Editor > Save File.

• In the Vivado IDE Text Editor, select Save File from the right-click menu.

• In the Vivado IDE Text Editor, use the Save File toolbar button.

Note: If you attempt to close a file with unsaved changes, the Vivado IDE prompts you to save the
changes.

TIP: Use the Save As command to save the source file to a new location.

Using the Find/Replace in Files Commands
When editing design source files, you may need to find specific objects or instances of objects.
You can use Find or Find in Files to search for any given text string in an open source file or a
selected set of source files, or Replace in Files to find and replace text strings. You can perform
the following actions:

• Enter any text string, including wildcards (*, ?, #, +), or regular expression as search criteria.

• Use the filtering options to search source files, constraint files, and report files.

Using HDL Language Templates
The Vivado IDE provides templates for many Verilog, VHDL, and XDC structures, including Xilinx
Parameterized Macros (XPMs) and library primitives. To view the templates:

1. In the Vivado IDE Text Editor, select the Language Templates toolbar button.

2. Select Tools → Language Templates.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 67Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=UsingTheTextEditor
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=67

The Language Templates window appears with folders for Verilog, VHDL, SystemVerilog,
XDC, and Debug.

Figure 34: Language Templates Window

When a template is selected, you can use the Insert Template command from the popup menu in
the Text Editor. Selecting this command copies the currently selected template text into the file
being edited, at the current location of the cursor. Alternatively, you can highlight, and then copy
and paste the desired text from the Language Templates window. For supported commands, see
this link in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Using Xilinx Parameterized Macros

XPMs are simple customizable solutions for common use cases in an HDL flow, such as RAM or
ROM, clock domain crossings, and FIFOs. XPMs are SystemVerilog HDL code delivered with the
Vivado Design Suite, and can be found in the ./data/ip/xpm folder of the software
installation. They can be thought of as parameterized IP, with default values for parameters that
can be changed to meet design requirements.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 68Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=xUsingTheLanguageTemplatesWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=68

The types of XPMs include:

• XPM_MEMORY with various RAM and ROM memory structures

• XPM_CDC with various safe Clock Domain Crossing (CDC) logic implementations

• XPM_FIFO for synchronous and asynchronous FIFO structures

Enabling Xilinx Parameterized Macros

When using the Project Mode, the Vivado tool will parse the files added to the project and will
automatically recognize the XPMs. However, when using XPMs in the Non-Project mode you
must issue the auto_detect_xpm command prior to reading or importing source files.

Using XPMs

You can use any XPM language templates in your design. The parameters available for a specific
XPM are explained in the instantiation template displayed in the Language Templates window.

Select and copy the contents of the instantiation template and paste it into your own source file,
or use the Insert Template command from the popup menu in the Text Editor. You do not need to
copy the comments for the instantiation template into your design source file.

You can change the instance name and wire ports as needed to fit the XPM instance into your
design, and modify parameters/generics according to the documentation provided as comments
in the language template.

IMPORTANT! Be sure to read and comply with all code comments in the XPM language template to
properly use the XPM.

The following figure shows an example of an XPM_CDC instance.

Figure 35: XPM_CDC Example

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 69Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=69

Some XPMs deliver constraints that are defined in Tcl files located in the ./data/ip/xpm/
<xpm>/tcl folder of a specific XPM. The constraints are applied during synthesis and appear in
the synthesis log file along with other constraints that are processed. The constraints can have
dependencies on a clock object present on the net that connects to the XPM. This is because
some XPMs query the period property of the clock for setting a constraint. If the clock object is
not present, a critical warning is generated.

IMPORTANT! When using the report_compile_order command, the Tcl constraint files for the XPMs in the
design are not shown unless you have opened the elaborated, synthesized, or implemented design.

For details on the various XPMs and their parameterization options, see this link in the UltraScale
Architecture Libraries Guide (UG974), or the Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC
Libraries Guide (UG953).

Cross Probing to Source Files
The Vivado IDE provides cross probing to RTL source files from the following windows:

• Schematic window (RTL elaborated, synthesis, or implementation)

• Netlist window (after synthesis or implementation)

• Device window (for an implemented design)

To cross probe, select a cell from any of these windows, and select the Go To Definition or Go To
Source right-click command. The RTL source opens, and the line with the instance is highlighted.

Figure 36: Cross Probing the Elaborated Netlist to an RTL Source

Tcl Commands for Cross Probing to Source Files

You can use the FILE_NAME and LINE_NUMBER properties on a cell to get information about
where the cell is located in the RTL source. You can then open the RTL source in a text editor and
navigate to the appropriate line number. Following is the associated Tcl command:

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 70Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug974-vivado-ultrascale-libraries.pdf;a=xXPMacros
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=70

• Tcl Command: get_cells

Note: By default, get_cells truncates the returned results in the Tcl Console and log file after the first
500 results. For more information, including how to change the default setting, see this link in the
Vivado Design Suite Tcl Command Reference Guide (UG835).

• Tcl Command Example: The following example shows how to use the get_cells Tcl
command in an open design to get a specific instance of a cell, query the properties of that
cell object, and report the file and line of interest:

set cellName dac_spi_i0
set fileName [get_property FILE_NAME [get_cells $cellName]]
set lineNum [get_property LINE_NUMBER [get_cells $cellName]]
puts "Cell: $cellName is instanced in file: $fileName \
at line number $lineNum"

Using Alternate Text Editors
In the Vivado IDE, you can select an alternative text editor as follows:

1. Select Tools → Settings.

2. In the Settings dialog box Text Editor page, select an alternate editor from the Current Editor
drop-down list.

When you select an editor from the list, an executable name appears in the settings. The path
to the executable needs to be in your path. See the appropriate Windows or Linux
documentation for help on how to add a path to your environment.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 71Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf;a=HandlingListsOfObjects
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=71

Figure 37: Settings Dialog Box—Text Editor Page

If your editor is not listed, select Custom Editor. In the Custom Editor Definition dialog box,
enter the name or location of the executable and the command line syntax used to run the
editor.

TIP: When using an alternative text editor, cross probing works differently. The file opens in the
external editor but does not go to the line number automatically.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 72Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=72

Working with Simulation Sources
In the Vivado IDE, you can add simulation sources to the project for behavioral simulation of an
RTL Project. Simulation source files include hardware description language (HDL)-based test
bench files to use as a stimulus for simulation. Simulation sources are used for behavioral
simulation in the Vivado simulator.

The Vivado IDE stores simulation source files in simulation sets that display in folders in the
Sources window, and are remotely referenced or stored in the local project directory. Simulation
sets enables you to define different sources for different simulation configurations. For example,
one simulation source can provide stimulus for behavioral simulation using one test bench while
another can contain a different test bench. When adding simulation sources to the project, you
can specify which simulation set into which to add files.

Note: For more information, see Adding or Creating Simulation Source Files in the Vivado Design Suite User
Guide: Logic Simulation (UG900).

Adding and Creating Simulation Source Files
1. Select File → Add Sources.

Note: Alternatively, select Add Sources from the right-click menu or from the Flow Navigator.

2. In the Add Sources wizard select Add or Create Simulation Sources, and click Next. In the
Add or Create Simulation Sources dialog box, set the following options, and click Finish.

Figure 38: Add Sources Wizard—Add or Create Simulation Sources Page

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 73Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug900-vivado-logic-simulation.pdf;a=AddingOrCreatingSimulationSourceFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=73

• Specify Simulation Set: Enters the name of the simulation set to put test bench files and
directories. Select the Create Simulation Set option from the drop-down menu to define a
new simulation set.

• Add Files: Click the '+' sign and select Add Files from the drop-down menu to open a file
browser so you can select simulation source files to add to the project.

• Add Directories: Opens a directory browser to add all simulation source files from the
selected directories. Files in the specified directory with valid source file extensions are
added to the project.

• Create File: Opens the Create Source File dialog box in which you can create new
simulation source files.

• Remove: Removes the selected source files from the list of files to be added.

• Move Up/Move Down: Moves the file up/down in the list order.

• Library: This column specifies the library for an added file or directory by selecting one
from the currently defined library names, or specify a new library name by typing in the
Library text field.

Note: This option applies to VHDL files only. By default, HDL sources are added to the
xil_defaultlib library. You can create or reference additional user VHDL libraries as needed.
For Verilog and SystemVerilog files, leave the library set to xil_defaultlib.

• Scan and Add RTL Include Files into Project: Scans the added RTL files and adds any
referenced include files.

• Copy Sources into Project: Copies the original source files into the project and uses the
local copied version of the file in the project.

Note: If you add directories of source files using the Add Directories command, the directory
structure is maintained when the files are copied locally into the project. For more information, see
Using Remote Sources or Copying Sources into Project.

• Add Sources from Subdirectories: Adds source files from the subdirectories of directories
specified in the Add Directories option.

• Include all design sources for simulation: Copy all design source files from the
sources_1 fileset into the simulation fileset.

Working with Constraints
The Vivado IDE supports the Xilinx design constraint (XDC) and Synopsys design constraint
(SDC) file formats. The SDC format is for timing constraints while the XDC format is for both
timing and physical constraints. Constraints can include placement, timing, and I/O restrictions.
You can create constraints during various steps in the design flow, including RTL analysis,
synthesis, and implementation. For more information on constraint files, constraint sets, and the
various types of constraints, refer to Vivado Design Suite User Guide: Using Constraints (UG903).

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 74Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=74

The Vivado Design Suite provides flexibility in defining and using constraints in a project. You can
use a single XDC file to add and maintain the design constraints, or you can use multiple XDC
files to organize the constraints into separate files. You can create multiple constraint sets to
experiment with various types of constraints, or store multiple versions of constraints. Each
constraint set can contain one or more constraint files.

The Vivado Design Suite also lets you define constraints in Tcl scripts which can either be
sourced in the Tcl shell or Tcl console, or added to a constraint set in your design. Defining
constraints in Tcl scripts allows you to use standard Tcl commands as part of the constraint scope
and definition. However, defining constraints in Tcl scripts also has certain limitations, such as not
being able to save changes to design constraints back to the source Tcl script.

Note: For more information on working with Tcl scripts, see this link in the Vivado Design Suite User Guide:
Using Constraints (UG903).

You can open multiple designs referencing a single constraint set. However, you must be careful
to manage changes made to multiple designs that reference the same constraint set. If the
Vivado IDE detects unsaved changes in multiple open designs, it prompts you to select which
design to save to the referenced constraint file.

CAUTION! When saving constraints files, be careful not to overwrite any unsaved constraint definitions in
an unsaved design.

An implemented design saves a snapshot of the constraints used during the implementation run
along with a reference to the original constraint file lines. When opening an implemented design,
the constraints loaded from the implementation run might be older than the implementation
constraints from the constraints set in the project. This can cause the loss of newer constraints in
the project constraint files when you save the design from an implemented run after adding or
editing the constraints in memory. Generally, the Vivado IDE manages these revision issues and
prompts you to take the appropriate action as needed. However, you should be aware of the
potential conflict between the constraints in memory and the constraints files in the constraints
set associated with the implementation run.

In the Vivado IDE, the following windows enable you to create and work with constraints:

• Timing Constraints Window: Shows all XDC file timing constraints for the project in a table
format. You can an interactively edit existing constraints, which are saved back to the source
file, or create new constraints.

• Device Constraints Window: Enables you to set various SelectIO interface constraints on
displayed banks.

• Physical Constraints Window: Enables you to create and manage Pblocks.

TIP: Select Tools → Timing → Constraints Wizard on a synthesized design to create a top-level XDC file
based on design methodologies recommended by Xilinx. The wizard guides you through specifying clocks,
setting up input and output constraints, and properly constraining cross-clock domain clock groups.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 75Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf;a=xAboutXDCConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=75

VIDEO: See the Vivado Design Suite QuickTake Video: Using the Vivado Timing Constraint Wizard for an
introduction to using the Timing Constraints Wizard.

Adding and Creating Constraint Files
1. Select File → Add Sources.

Note: Alternatively, you can click Add Sources in the Flow Navigator, or select Add Sources from the
right-click menu in the Sources window.

2. In the Add Sources wizard select Add or Create Constraints, and click Next.

3. In the Add or Create Constraints page, set the following options, and click Finish.

Figure 39: Add Sources Wizard—Add or Create Constraints Page

• Specify Constraint Set: Defines the constraint set into which the constraint files are
placed. By default, the currently active constraint set is selected, but you can specify a
different constraint set or define a new constraint set using the drop-down menu.

• Add Files: Specifies the XDC, SDC, or Tcl script files to add to the project.

• Create File: Creates a new top-level XDC for the project.

• Remove: Removes the selected file from the Constraint File list.

• Move Up / Move Down: Moves a constraint file up or down in the listed order of files.
XDC, SDC, or Tcl script files consist of commands that set timing and physical constraints
and are order-dependent. Multiple files in a constraint set are read in the order they
appear; the first file in the list is the first file processed.

IMPORTANT! Constraints are read in the order they appear in a constraint set. If the same
constraint is defined more than once in a constraint file, or in more than one constraint file, the last
definition of the constraint overwrites earlier constraints.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 76Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/using-vivado-timing-constraint-wizard.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=76

• Copy Constraints into Project: Copies constraint files into the local project directory
instead of referencing the original files.

Setting the Target XDC File
When editing a design, modified constraints are written back to the XDC file that are defined in.
Newly created constraints are written to the XDC file identified as the target XDC file when you
save the constraints. By default, in a new constraint set, there is no target XDC file. When you
create new constraints, you must set a target XDC file when you save the constraints.

TIP: Existing constraints that are modified are written back to the XDC file from which they originated, not
the target XDC.

To indicate that constraints need to be saved, the Save Constraints toolbar button is enabled .
When you click the Save Constraints toolbar button, the Save Constraints File dialog box lets you
choose an existing XDC file in the active constraint set, or create a new file to add to the active
constraint set.

Figure 40: Save Constraints File Dialog Box

If an XDC file is set as a target, the word "(target)" appears next to the file name in the Sources
window. You can change the target XDC file at any time using the Set as Target Constraint File
right-click menu command in the Sources window.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 77Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=77

Figure 41: Target XDC File in the Sources Window

Referencing Original XDC Files or Copying Files
As with other source files, you can reference XDC files from a remote location or copy the files
locally into the project directory. If your project references remote files, the Vivado IDE
automatically detects changes to the referenced source file and prompts you to Reload the
design with the latest files.

To copy constraints into the project, do one of the following:

• When you add constraints to the project using the Add Sources command, you can copy the
constraints to the local project directory by selecting the Copy Constraints into Project
option.

• If you initially add the constraints as remote sources but later wish to copy them into the
project directory, use Copy File into Project or Copy All Files into Project in the right-click
menu in the Sources window to copy some or all individual remote source files into the project
directory.

Note: For more information, see Using Remote Sources or Copying Sources into Project.

Using Constraint Sets
A constraint set is one or more constraint files that are maintained independently and
concatenated into the in-memory design for analysis and implementation. A constraint set
defines the constraint files to be used at specific moments, or under specific conditions, in the
design process. By defining multiple constraints sets, you can, for example, specify different
active constraints to resolve floorplanning and timing problems.

The XDC files can be used during synthesis, implementation, or both. By default all XDC files are
set to be used in both synthesis and implementation, as defined by the USED_IN property on the
constraint file. To change the USED_IN property, select the XDC file in the Sources window, and
check or uncheck the appropriate box in the General view of the Source File Properties window.
Refer to the USED_IN property in Vivado Design Suite Properties Reference Guide (UG912) for
more information.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 78Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf;a=UsedIn
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=78

Figure 42: USED_IN Property of an XDC File

Creating and Editing Constraint Sets

1. In the Sources window, select Edit Constraint Sets from the right-click menu.

2. In the Edit Constraint Set dialog box, do one of the following:

• To edit a constraint set, click the drop-down menu next to the Specify Constraint Set field,
and select a constraint set.

• To create a constraint set, click the drop-down menu next to the Specify Constraint Set
field, and select Create Constraint Set. In the Create Constraint Set Name dialog box,
enter a name for the constraint set, and click OK.

Figure 43: Create Constraint Set Name Dialog Box

3. In the Edit Constraint Set dialog box, set the following options, and click OK:

• Add Files: Specifies XDC or SDC files to add to the constraint set.

• Create File: Specifies a name and location for a new XDC file to add to the constraint set.

• Remove: Removes the selected file from the Constraint File list.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 79Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=79

Note: You can only remove files that have not yet been added to the constraint set using the OK
button. To remove a file that was already added to the constraint set, select the file in the Sources
window, and select Remove File from Project from the right-click menu.

• Up / Down: Moves a constraint file up or down in the listed order of XDC and SDC files.
XDC and SDC files consist of commands that set timing and physical constraints and are
order-dependent. If there are multiple files in a constraint set, the order in which they
appear in the Sources window corresponds to the order that the VivadoIDE processes the
files. The first file in the list is the first file processed. If the same constraint appears in
more than one constraint file, the last file read has precedence in defining the constraint.

• Copy Constraints into Project: Copies constraint files into the local project directory
instead of referencing the original files.

Defining the Active Constraint Set

If more than one constraint set exists, you must designate the active constraint set. The Vivado
IDE uses the active constraint set by default when you launch the synthesis or implementation
runs or when you open an elaborated, synthesized or implemented design.

To set the active constraint set, select the constraint set in the Sources window, and click Make
active from the right-click menu. In the Sources window, the active constraint set appears in bold
with the word "(active)" next to it.

Figure 44: Active Constraint Set

Creating Constraints Sets Using the Save Constraints As Command

At any time in the design flow you can also create a copy of the active constraint set using the
Save Constraints As command. With multiple places to make changes to constraint files, or to
model the affect of different constraints, it is useful to save changes to a new constraint set to
manage changes or support "what-if" analysis.

Select File → Constraints → Save As to open the Save Constraints As dialog box, and enter a new
constraint set name in which to save all constraints.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 80Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=80

Figure 45: Save Constraints As Dialog Box

The Save Constraints As dialog box does the following:

• Creates a new constraint set.

• Copies the active constraint files into the new constraint set in the local project directory.

• Writes any modifications to the constraints to the copied constraint files, leaving the original
XDC files unchanged.

• Provides an option to make the new constraint set active in the project.

Exporting Constraints
In some cases, you might want to use the Vivado IDE to write a constraints file for use in scripted
design flows. To export all the constraints applied to the in-memory design to a single constraints
file, select File → Export → Export Constraints.

In addition, you can export the I/O standard constraints for I/O ports and banks (both user-
specified values and default values assigned by the Vivado IDE) to an XDC file. To export I/O
constraints, select File → Export → Export I/O Ports, and generate an XDC file.

Enabling or Disabling Constraint Files
When you add or create constraint files, the files are enabled in the Sources window by default.
You can disable constraint files to prevent them from being used during elaboration, synthesis, or
in implementation.

• To disable constraint files, select the files in the Sources window, and select the Disable File
right-click command.

• To enable disabled files, select the files in the Sources window, and select the Enable File
right-click command.

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 81Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=81

Changing the Constraint Evaluation Order
You can reorder user constraints within the associated constraint set. In the Sources window,
drag and drop the XDC files to rearrange the order.

To get an ordered list of all XDC files that the Vivado IDE processes, use the following command
in the Tcl Console: report_compile_order -constraints. This lists all the constraints in
the design, including user constraints and IP.

Note: For more information on how to change the order of constraints, see the Vivado Design Suite User
Guide: Using Constraints (UG903).

Working with Sources in Non-Project Mode
Unlike Project Mode in which source files are managed for you, source files are under your
control in Non-Project Mode. Using Tcl commands, you specify the files to process and output
files to generate, including netlist, bitstream, and report files. Table 1: Project Mode and Non-
Project Mode Commands shows commonly used Project Mode commands and corresponding
Non-Project Mode commands. For more information on Project Mode and Non-Project Mode,
see this link in the Vivado Design Suite User Guide: Design Flows Overview (UG892). For more
information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide (UG835).

Note: In Non-Project Mode, files are compiled in the order the read_* commands are listed in the Tcl
script.

Note: To Select a new part in the current installation, close the current project and upgrade the current
installation to add additional part.

Table 1: Project Mode and Non-Project Mode Commands

Action Project Mode Command Non-Project Mode Command
Reading design sources add_files

import_files

read_<file_type>

(for example: read_verilog, read_vhdl,
read_xdc, read_edif, and read_ip)
You can import an NGC file in Non-Project
Mode using the read_edif command.

Running synthesis launch_runs synth_1 synth_design

Running implementation launch_runs impl_1 opt_design

place_design

phys_opt_design

route_design

launch_runs impl_1 -to_step
write_bitstream

write_bitstream <file_name>

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 82Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf;a=UnderstandingProjectModeAndNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=82

Table 1: Project Mode and Non-Project Mode Commands (cont'd)

Action Project Mode Command Non-Project Mode Command
Generating reports report_timing

report_timing_summary

report_drc

report_methodology
report_clock_interaction

report_utlization

report_route_status

In Project Mode, many reports are
automatically generated. For a list of all
reports, enter: help report_*.

Same as Project Mode

Running simulation launch_xsim xsim

This command launches Vivado simulation
outside of the Vivado IDE.

Writing design checkpoints write_checkpoint <file_name>.dcp

In Project Mode, DCP files are
automatically created for each stage of
implementation.

Same as Project Mode

Following is an example of a Non-Project Mode script, which reads in various source files:

create_bft_batch.tcl
bft sample design
A Vivado script that demonstrates a very simple RTL-to-bitstream batch
flow
#
NOTE: typical usage would be "vivado -mode tcl -source
create_bft_batch.tcl"
#
STEP#0: define output directory area.
#
set outputDir ./Tutorial_Created_Data/bft_output
file mkdir $outputDir
#
STEP#1: setup design sources and constraints
#
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc
#
STEP#2: run synthesis, report utilization and timing estimates, write
checkpoint
design
#
synth_design -top bft -part xc7k70tfbg484-2 -flatten rebuilt
write_checkpoint -force $outputDir/post_synth
report_timing_summary -file $outputDir/post_synth_timing_summary.rpt
report_power -file $outputDir/post_synth_power.rpt
#
STEP#3: run placement and logic optimzation, check against the UltraFast
methodology checks, report utilization and timing estimates, write
checkpoint design
#
opt_design
report_methodology -file $outputDir/post_opt_methodology.rpt

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 83Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=83

place_design
phys_opt_design
write_checkpoint -force $outputDir/post_place
report_timing_summary -file $outputDir/post_place_timing_summary.rpt
#
STEP#4: run router, report actual utilization and timing, write
checkpoint design,
run drc, write verilog and xdc out
#
route_design
write_checkpoint -force $outputDir/post_route
report_timing_summary -file $outputDir/post_route_timing_summary.rpt
report_timing -sort_by group -max_paths 100 -path_type summary -file
$outputDir/post_route_timing.rpt
report_clock_utilization -file $outputDir/clock_util.rpt
report_utilization -file $outputDir/post_route_util.rpt
report_power -file $outputDir/post_route_power.rpt
report_drc -file $outputDir/post_imp_drc.rpt
write_verilog -force $outputDir/bft_impl_netlist.v
write_xdc -no_fixed_only -force $outputDir/bft_impl.xdc
#
STEP#5: generate a bitstream

write_bitstream -force $outputDir/bft.bit

Chapter 3: Working with Source Files

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 84Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=84

Chapter 4

Elaborating the RTL Design

Overview
The Vivado® Design Suite has three views of the design represented by the source files and
design constraints added to the project, or read into memory in Non-Project Mode: the
elaborated RTL design, the synthesized design, and the placed and routed design.

RTL elaboration of the top-level design runs RTL linting checks, performs high-level
optimizations, infers logic from the RTL and builds design data structures, and optionally applies
design constraints. In the default Out-of-Context design flow, you can also have the Vivado
Design Suite include synthesized design checkpoints (DCPs) of IP cores, block designs, DSP
modules, or hierarchical blocks into the elaborated design.

TIP: Including the out-of-context modules into the elaborated design can add time to the elaboration
process as the Vivado tool will synthesize any modules that are not up-to-date in the design. This feature
can be enabled or disabled under the Elaboration tab of the Settings dialog box. See Elaboration Settings
for more information.

The Vivado Design Suite offers many analysis capabilities for an RTL design. For example, you
can:

• Visualize design details with Schematic and Hierarchy windows

• Cross probe between windows

• Run design rule checks (DRCs)

• Check messaging

• Search the RTL netlist produced with the Find command

• Create and apply constraints at the RTL level

Note: You cannot run timing analysis at this stage.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 85Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=85

Elaborating the Design in Project Mode
Enabled RTL source files in the project are elaborated automatically during synthesis. You can
also elaborate source files manually for constraint development and RTL netlist exploration. The
Messages window shows the messages from elaboration and compilation. You can select the
HDL language options used during elaboration in the Vivado IDE Project Settings. For
information, see General Settings.

Elaboration results are not saved with the design. Every time you open the elaborated design, it is
re-elaborated. However, you can save any constraints that were created in the elaborated design.

After design source files are imported into the project, use either of the following methods to
elaborate and open the design:

• Select Flow → Open Elaborated Design.

• In the RTL Analysis section of the Flow Navigator, select Open Elaborated Design to load the
elaborated netlist, the active constraint set, and the target device into memory.

To specify the design name to elaborate, use either of the following methods:

• Select Flow → Open Elaborated Design.

• In the Flow Navigator, select New Elaborated Design from the RTL Analysis right-click menu.

If there are out-of-context design modules, IP cores, block designs, DSP modules, in your design
sources, the message appears when you open an elaborated design. The message indicates that
the Link IP from OOC runs and Load constraints options from the Elaboration Settings dialog box
may impact the performance of opening the elaborated design. You can disable these settings to
speed elaboration. Refer to Elaboration Settings for more information.

Figure 46: Elaborate Design Message

When you open an elaborated design, the Vivado Design Suite automatically checks and
compiles the RTL source files, generates the top schematic view, and displays the design in the
default view layout.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 86Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=86

Figure 47: Elaborated Design in the RTL Schematic Window

The Vivado IDE automatically identifies the top module for the design in most cases. In some
cases, where there might be multiple candidates, the tool prompts you to choose the top module
for the design. You can also manually define the top module by selecting Set as Top from the
right-click menu in the Sources window.

Note: In the Hierarchy view of the Sources window, the top module icon identifies the current top
module.

Tcl Command for Elaborating the Design in Project
Mode
Following is the associated Tcl command:

• Tcl Command: synth_design -rtl -name <project_name>

• Tcl Command Example: synth_design -rtl -name rtl_1

Viewing Elaboration Messages
The Messages window displays the results of the compilation and flags irregularities in the RTL
source files under the Elaborated Design section.

You can filter the Messages window to display errors or warnings or informational messages from
the results of RTL elaboration. To enable or disable the display of Errors, Critical Warnings,
Warnings, or Informational messages, select a check box in the banner of the Messages window.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 87Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=87

You can select any of the warning or error messages in the Messages window to load the
corresponding RTL source file with the selected source code highlighted in the Vivado IDE Text
Editor.

Figure 48: Elaborated Design Messages

Analyzing the RTL Logic Hierarchy

The Vivado IDE provides the following views into the logical design hierarchy:

• Netlist View: Shows an expandable logic tree of the RTL hierarchy and primitives.

• Hierarchy View: Shows a graphical representation of the logic hierarchy.

• Schematic View: Shows the logic and hierarchy in an explorable schematic representation.

By default, when you elaborate a design by running Open Elaborated Design in the Flow
Navigator, the RTL Schematic displays for the entire design. All views cross-select offering a
unique set of capabilities to explore and analyze the logical design. For more information, see the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Exploring the Elaborated Design Schematic

You can select any level of logic hierarchy in the RTL Netlist window and display it in the RTL
Schematic window. To invoke the RTL Schematic window for any selected logic, do one of the
following:

• Select Tools → Schematic.

• In the Netlist window, select Schematic from the right-click menu.

For more information on traversing, expanding, and exploring the RTL Schematic, see Using the
Schematic Window in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 88Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=UsingTheSchematicWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=UsingTheSchematicWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=88

You can also use the Find command to search for logic objects in the elaborated design using a
range of filtering techniques. See Finding Design or Device Objects in the Vivado Design Suite
User Guide: Using the Vivado IDE (UG893) for more information.

Using the Hierarchy Window

The Vivado IDE includes an Hierarchy window, which is useful for viewing the hierarchy of a
design. To invoke the Hierarchy view for any selected logic, do one of the following:

• Select Tools → Show Hierarchy.

• In the Netlist or Schematic window, select Show Hierarchy from the right-click menu.

These windows have full cross probing support. Logic selected in the Netlist or Schematic
window is highlighted in the Hierarchy window.

Exploring the RTL Source Files

You can select any logic element in the Netlist view or Schematic and open the instantiation of
that object in the RTL source file it is instantiated in. You can also open the definition of the logic
in the RTL file it is defined in.

To open the instantiation or definition of any selected logic in the RTL source file, select the
object and select Go To Source or Go to Definition from the right-click menu. The Vivado IDE
opens the appropriate source file with the specific instance highlighted.

Running Methodology Checks
The Vivado Design Suite provides automated methodology checks based on the UltraFast Design
Methodology Guide for Xilinx FPGAs and SoCs (UG949) using the Report Methodology command.

You can generate a methodology report on an opened, elaborated, synthesized, or implemented
design. For an elaborated design, the methodology report checks the XDC and RTL files. For
information on running the methodology report using Tcl commands, see this link command in
the Vivado Design Suite Tcl Command Reference Guide (UG835).

RECOMMENDED: Running the methodology report allows you to find design issues early during the
elaboration stage prior to synthesis, which saves time in the design process. It is highly recommended that
you run these checks on your design and address any issues identified.

Running Report Methodology

1. From the Flow Navigator under RTL Analysis, select Open Elaborated Design.

2. Once the design has been elaborated, select Report Methodology from the Flow Navigator
under RTL Analysis. Alternatively, select Reports → Report Methodology.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 89Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf;a=FindingDesignOrDeviceObjects
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_methodology
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=89

Note: Alternatively, you can enter this command in the Tcl Console: report_methodology -name
<results_name>.

3. In the Report Methodology dialog box, set these options, and click OK:

• Results name: Specify the name for the results, which appear in a tab in the Methodology
window. Entering a unique name makes it easier to identify the results for a particular run
during debugging.

• Output file: Optionally, to write the report to a file, check the Export to file box and enter
a file name. To select a path other than the default, use the browse button.

• Interactive report file: Save the report to a file.

• Rules: Allows you to explore and specify which rules to run.

• New tab: By default a new tab is created for the report. To disable this option, uncheck
the Open in a new tab box.

Figure 49: Report Methodology Dialog Box

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 90Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=90

Analyzing the Methodology Report

If violations are found, the Methodology window opens. The window displays the violations,
grouped under the various rule categories.

Figure 50: Report Methodology Window with Violations in the Elaborated Design

Reporting DRCs
The following sections describe selecting DRCs rules and analyzing DRC violations in the Vivado
IDE. For information on running DRCs using Tcl commands, see this link in the Vivado Design Suite
Tcl Command Reference Guide (UG835). For information on creating custom DRCs, see the Vivado
Design Suite User Guide: Using Tcl Scripting (UG894).

RECOMMENDED: Running RTL DRCs enables you to find design issues early, during the elaboration
stage prior to synthesis, which saves time over the course of your design.

Selecting DRC Rules

1. From the Flow Navigator under RTL Analysis, select Open Elaborated Design.

2. Once the design has been elaborated, select Report DRC from the Flow Navigator under RTL
Analysis. Alternatively, select Reports → Report DRC.

Note: Alternatively, you can enter this command in the Tcl Console: report_drc -name
<results_name>.

3. In the Report DRC dialog box, set the following options, and click OK:

• Results name: Specify the name for the DRC results, which appear in a tab in the DRC
window. Entering a unique name makes it easier to identify the results for a particular run
during debug in the DRC window.

• Output file: Optionally, specify a file name for the DRC results. To select a path other than
the default, use the browse button.

• Interactive Report File: Write the result in the Xilinx RPX format to the specified filename.
The RPX file is an interactive report that contains all the report information and can be
reloaded into memory in the Vivado Design Suite using the open_report command.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 91Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_drc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=91

• Waivers:

• Apply waivers: Use the waivers you created to suppress DRCs that you no longer want
to view. For more information, see this link in the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906)

Note: Use the Display only waived violations to show just the waived violations in the Results
window.

• Ignore all waivers: Ignores the waivers you created.

• Rule Decks: Specify a rule deck to run on the design. A rule deck is a collection of design
rule checks grouped for convenience. During elaboration only the default rule deck is
available. Other rule decks are available at different stages of the FPGA design flow, such
as after synthesis or implementation.

• default: Runs a default set of checks recommended by Xilinx.

• opt_checks: Runs checks associated with logic optimization.

• placer_checks: Runs checks associated with placement.

• router_checks: Runs checks associated with routing.

• bitstream_checks: Runs checks associated with bitstream generation.

• timing_checks: Runs checks associated with timing constraints.

Note: The timing_checks rule deck is not supported for elaborated designs.

• incr_eco_checks: Checks validity of incremental ECO design modifications.

• eco_checks: Checks validity of engineering change order (ECO) design modifications.

Note: For elaborated designs, only the default rule deck is available.

• Rules: After specifying a rule deck, modify the rules to run as needed.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 92Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf;a=xGeneratingAndWaivingDesignChecks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=92

Figure 51: Report DRC Dialog Box

Analyzing DRC Violations

If violations are found, the DRC window opens. The DRC window displays the rule violations
found, grouped under the various rule categories defined in the Run DRC dialog box.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 93Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=93

Figure 52: DRC Window with DRC Violations in the Elaborated Design

The rule violations are categorized by severity and are color coded as follows:

• Advisory: Provides general status and feedback on design processing.

• Warning: Indicates that design results might be sub-optimal, because constraints or
specifications might not be applied as intended.

• Critical warning: : Indicates that certain user input or constraints will not be applied or do not
adhere to best practices. It is highly recommended that you examine these issues and make
changes.

Note: Critical warnings are promoted to errors during bitstream generation.

• Error: Indicates an issue that renders design results unusable and cannot be resolved without
your intervention. The design flow stops.

TIP: To see only one message type, double-click the message type in the banner of the Messages
window. For example, double-click errors to display only error messages.

You can list DRC violations individually or group violations by rule. To change the display, click

the Group By Rule toolbar button . When violations are listed individually, you can click the
header of the Severity column to sort violations by severity. To sort the column:

• Click the column header to sort data in the table in an increasing order.

• Click the column header again to sort the data in the table in a decreasing order.

Note: For more information, see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

When you select a violation message in the DRC window, the objects associated with the
violation are cross-selected in other open windows, such as the Netlist or Schematic windows.
This lets you quickly locate and examine the elements of the design that are associated with a
specific violation.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 94Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=94

In addition, the violation properties are shown in the Violation Properties window by default. In
the DRC window, you can also select Violation Properties from the right-click menu to open the
Violation Properties window. The Violation Properties window shows both a General view of the
DRC rule violation and specific Details of the design elements that violate the rule. The Details
view includes links to specific design objects that violate the DRC. Click the links to view the
design object in the Netlist window, the Device window, the Schematic window, or the source
RTL file.

Figure 53: Violation Properties Window

Tcl Command for Running RTL DRCs

Following is the associated Tcl command:

• Tcl Command: report_drc

• Tcl Command Example: report_drc -name drc_1

Note: By default, a text-based report is produced. You can use the -name option to create an
interactive tab for the report.

Elaborating the Design in Non-Project Mode
In Non-Project Mode, you can perform elaboration of the RTL. You can also cross probe back to
the RTL and run DRCs. Cross probing requires that you load the Vivado IDE using the
start_gui Tcl command. You can perform DRCs with or without the Vivado IDE.

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 95Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=95

Following is a script that sources various files and elaborates the RTL using the synth_design
Tcl command with the -rtl option. The script also loads the Vivado IDE so you can cross probe
back to the RTL source from the schematic or netlist.

Note: When you load Vivado IDE in Non-Project Mode, there is no Flow Navigator. Instead, you must use
the Tools menu and Tcl Console to accomplish tasks.

create_bft_batch.tcl
bft sample design
A Vivado script that demonstrates a very simple RTL-to-bitstream batch
flow
#
NOTE: typical usage would be "vivado -mode tcl -source
create_bft_batch.tcl"
#
STEP#0: define output directory area.
#
set outputDir ./Tutorial_Created_Data/bft_output
file mkdir $outputDir
#
STEP#1: setup design sources and constraints
#
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc
#
STEP #2 Elaborate the RTL and start the GUI for interaction

synth_design -top bft -part xc7k70tfbg484-2 -rtl
start_gui
Use stop_gui to quit the GUI and return back to the Vivado IDE Tcl
command line

Chapter 4: Elaborating the RTL Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 96Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=96

Chapter 5

Debugging the Design

Overview
Debugging an FPGA design is a multi-step, iterative process. Like most complex problems, it is
best to break the FPGA design debugging process down into smaller parts, for example, by
focusing on making a smaller section of the design work rather than trying to make the whole
design work at one time. An example of a proven design and debug methodology is to iterate
through the design flow, adding one module at a time and making it function properly in the
context of the whole design. You can use this design and debug methodology in any combination
of the following design flow stages:

• RTL-level design simulation

• In-system debugging

In addition to using the Set up Debug wizard, you can also use Tcl commands to create, connect,
and insert debug cores into your synthesized design netlist. For more information on debugging,
see the Vivado Design Suite User Guide: Programming and Debugging (UG908).

RTL-Level Design Simulation
You can functionally debug the design during the simulation verification process. Xilinx® provides
a full design simulation feature in the Vivado® simulator. You can use the Vivado simulator to
perform RTL simulation of your design. The benefits of debugging your design in an RTL-level
simulation environment include full visibility of the entire design and the ability to quickly iterate
through the design and debug cycle. For more information on how to configure and launch
simulation, see the Vivado Design Suite User Guide: Logic Simulation (UG900).

Chapter 5: Debugging the Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 97Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=97

In-System Debugging
The Vivado IDE also includes a logic analysis feature that enables you to perform in-system
debugging of the post-implemented design an FPGA device. The benefit of in-system debugging
is that you are able to debug a timing-accurate, post-implemented design in the actual system
environment at system speeds. The limitations of in-system debugging includes somewhat lower
visibility of debug signals compared to using simulation models and potentially longer design,
implementation, and debug iterations, depending on the size and complexity of the design.

The Vivado IDE provides several different ways to debug your design. You can use one or more
of these methods to debug your design, depending on your needs. For more information, see the
Vivado Design Suite User Guide: Programming and Debugging (UG908).

Chapter 5: Debugging the Design

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 98Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=98

Appendix A

Board File

Introduction
The board file uses an XML format to define information about system-level boards that use or
include Xilinx® devices. The information contained in the board file can be used by the Vivado®

Design Suite, and Vivado IP integrator, to facilitate and validate connection of the Xilinx device to
the board. This chapter discusses the different sections of the board file and their usage.

The examples shown in this appendix use the Kintex®-7 KC705 evaluation board to show details
of the board file. This evaluation board can be found at the following location in the Vivado
Design Suite software installation:

<install_dir>/Vivado/<version>/data/boards/board_files/kc705/<board_version>

Where <install_dir> is the directory the Vivado Design Suite was installed into, <version> is the
software version, and <board_version> is the latest version of the board.

TIP: You can edit an existing Vivado Design Suite board file from the installation directory, using an XML
editor or text editor, as an easy way to create a new Board file.

The board file uses standard XML elements to define the board. As such, XML tags are used to
define elements of the board, and must have opening <tags> and closing </tags>.

<board>
</board>

Elements of the Board file can have child elements, or nested elements, to define a hierarchy of
elements as shown:

<board>
 <component>
 <pins>
 </pins>
 </component>
</board>

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 99Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=99

Elements without content, or without nested elements, can be self-closing using an alternate
syntax, and do not require the closing </tag>. These elements use the following syntax:

<net index="17" typical_delay="6" min_delay="4" max_delay="8"/>

The closing tag is implied by the "/>" that finishes the line. You will see this syntax occasionally
used in the examples from the KC705 Board file.

Elements of the board, defined by <tags>, may also have various attributes defined as:

<board name=”XYZ” version=”1.2”>

Attribute values must be in quotation marks (name="KC705").

IMPORTANT! XML is case-sensitive, so <tags> and 'attributes=' must be entered as specified.

For more information regarding XML standards and conventions, refer to http://www.w3.org/
XML/, or another appropriate source.

Understanding the Platform Board Flow
The Vivado Design Suite lets you create projects using Xilinx Target Design Platform (TDP)
boards, or boards defined in the Board file format, that have been added to a board repository.
When you select a specific board, the Vivado design tools enable additional features to provide
designer assistance as part of IP customization, and for creating IP integrator designs. See Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994).

Note: FMC cards are also supported by the board flow and use the same XML syntax as other board files.
For more information, see the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994).

Elements of the Platform Board Flow
The list of files used in the Vivado Design Suite platform board flow include the following:

• Board file: The Board file is the file described in this appendix, and must be named
board.xml. It lists the components used on a system-level board, including the Xilinx device,
defines the different operating modes supported by those components, lists the signal
interfaces implemented by those components, lists the preferred IP to implement those
interfaces in a design project, and maps the logical ports of the interface definition to the
physical ports and component pins of the Xilinx device.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 100Send Feedback
UG895 (v2021.2) October 27, 2021

http://www.w3.org/XML/
http://www.w3.org/XML/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=100

Xilinx standard board definitions can be found at the following location in the Vivado Design
Suite software installation:

<install_dir>/Vivado/<version>/data/boards/board_files

Where <install_dir> is the directory the Vivado Design Suite was installed into, and <version>
is the software version.

You can create user-defined Board files by using the Xilinx standard board definition files as a
starting point for customization. User-defined or third-party Board files, and associated files,
can be added to a board repository for use by the Vivado Design Suite by setting the following
parameter when launching the Vivado tool:

set_param board.repoPaths [list "<path1>" “<path2>” “...”]

Where <path> is the path to a directory containing a single Board file and files referenced by
the board.xml file, such as part0_pins.xml and preset.xml. The <path> can also
specify a directory with multiple subdirectories, each containing a separate Board file. For
example:

set_param board.repoPaths [list "C:/Data/usrBrds" "C:/Data/othrBrds"]

TIP: You should define the board.RepoPaths parameter in your Vivado_init.tcl  file, or soon after
opening the Vivado Design Suite. For more information about the Vivado_init.tcl  file refer to
this link in the Vivado Design Suite Tcl Command Reference Guide (UG835).

• Pins file: Maps the component pin name on the Xilinx device, as found in the <port_map> of
the Board file, to a physical pin location on the device package. This facilitates I/O assignment
of signals coming into the Xilinx device to pins on the packaged part. This file is located in the
board repository, in the same folder or directory as the Board file.

• Preset file: Provides a list of predefined IP configuration options for the different IP used to
implement bus interfaces in a design project. The preset file is used by the Vivado Design
Suite when the IP is customized from the IP catalog and added into the design. This file is
located in the board repository, in the same folder or directory as the Board file.

• Interface file: Defines the logical ports and attributes of the signals that make up the interface
file. A bus interface is a grouping of signals that share a common function. Interface
definitions provide the capability to group functional signals to quickly define connections
between IP in a Vivado Design Suite IP integrator block diagram. For more information refer
to this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994).

Xilinx standard interface definitions can be found at the following location in the Vivado
Design Suite software installation:

<install_dir>/Vivado/<version>/data/ip/interfaces

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 101Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf;a=ScriptingInTcl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=xBusInterfaces
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=101

You can also define custom interfaces using the Vivado IP packager, as described here in the
Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118).

• IP file: The IP definition is stored in an XML file based on the IP-XACT standard,
component.xml, which includes a list of logical ports and bus interfaces found on the IP
core, that can be connected to the interfaces implemented by the system-level board.

Xilinx IP definitions can be found in the Vivado Design Suite software installation:

<install_dir>/Vivado/<version>/data/ip/interfaces

Defining Board Files
Board
The <board> tag is the root of the board file. It includes attributes to identify basic information
about the board.

<board schema_version="2.1" vendor="xilinx.com" name="kc705"
display_name="Kintex-7
KC705 Evaluation Platform" url="www.xilinx.com/kc705"
preset_file="preset.xml"
image="kc705_board.jpeg">
 <file_version>1.2</file_version>
 <description>Kintex-7 KC705 Evaluation Platform</description>

The attributes of the <board> tag, and their usage are:

Table 2: <board> Attributes and Tags

Tag Usage Example (KC705)
schema_version= Identifies the schema version of the board

file. The latest version of the schema is 2.1.
schema_version="2.1"

vendor= Web address of the board provider. vendor="xilinx.com"

name= Short name, which forms part of the key
for selection of the board. This is different
from the board description described later
in the chapter.

name="kc705"

display_name= Name as given in the Display Name
column in the list of boards displayed in
the Select Device dialog box in the Vivado
IDE.

display_name="Kintex-7 KC705 Evaluation
Platform"

url= Web address for board specific
information.

url="www.xilinx.com/kc705"

preset_file= Preset file name, which is used to list all
presets for each interface as applicable.
For more information on how the
preset_file is organized, please refer to
Understanding Preset Files.

preset_file="preset.xml"

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 102Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf;a=xCreatingNewInterfaceDefinitions
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=102

Table 2: <board> Attributes and Tags (cont'd)

Tag Usage Example (KC705)
image= Specifies a JPG file to be used when

displaying the board in the Project
Summary window in the Vivado IDE.

kc705_board.jpeg

<file_version> Specifies the version of the Board file as a
version.revison number. The <file_version>
should be increased for any changes made
to the current board file:
Update the revision for minor changes.
Update the version for significant changes.

1.2

<description> A short description of the board defined by
the file.

Kintex-7 KC705 Evaluation Platform

The following attributes and tags are mandatory when defining the <board>: schema_version,
vendor, name, display_name, <file_version>, and <compatible_board_revisions>.

TIP: The "preset_file=" attribute is optional, but is required to support the generic preset mechanism. See
Understanding Preset Files for more information.

First-Level Tags in the Board File
The following table lists the first-level tags that can be nested under the <board> tag of schema
version 2.1 of Board file:

Table 3: First-level Tags

Tag Usage/Description
<compatible_board_revisions> Lists all revisions of the board to which this board file applies. See Compatible

Board Revisions for details.

<parameters> Parameters define features or properties of the board. See Parameters for
details.

<jumpers> Defines jumpers found on the board. See Jumpers for details.

<components> Defines the various components present on the board. Components include
FPGA devices, DDR, QSPI flash, FMC, etc. For more information, please refer
Components .

<jtag_chains> Boards can have multiple JTAG chains. Each chain can include several
components as detected by Vivado Hardware Tools. The <jtag_chains> tag
identifies the position of each component in a JTAG chain. For more information,
see JTAG Chains.

<connections> Describes connections between components ex: part0(FPGA) and LED. See
Connections for details.

<ip_associated_rules> Limits the choices of available board interfaces for specific IP. See IP Associated
Rules.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 103Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=103

Compatible Board Revisions
This tag lists the compatible revisions of the board that the current board file applies to. Changes
to the physical board may also trigger changes in board file, and therefore a new board
<file_version>. However, revisions to the board file may not require revisions to the physical
board; and revisions to the physical board can include changes that do not necessitate an
updated board file. Therefore it is possible for a board file to support multiple revisions of a
physical board.

TIP: Revisions to the board are possible without triggering revisions to the board file. Therefore a specific
board file can be used to define multiple board revisions.

The <compatible_board_revisions> tag includes one or more <revision> tags that list the
supported board revisions:

<revision id="0”>1.1</revision>

The <revision> tag includes an index "id" for each revision listed in the
<compatible_board_revisions > tag. In the following example, the id is "0", and "1.1” is a
supported revision of the board.

<compatible_board_revisions>
 <revision id="0">1.1</revision>
</compatible_board_revisions>

Parameters
The <parameters> tag is used to list miscellaneous parameters of the board. It includes one or
more nested <parameter> tags that define different features or properties of the board.

Each <parameter> includes multiple attributes as defined in Table 4: <parameter> Attributes.

<parameters>
 <parameter name="heat_sink_type" value="medium" value_type="string"/>
 <parameter name="heat_sink_temperature" value_type="range"
value_min="20.0"
 value_max="30.0"/>
</parameters>

Table 4: <parameter> Attributes

Tag Usage/Description Example (KC705)
name= Name of an interface parameter used to

configure connected IP cores.
name="heat_sink_temperature”

value_type= Type of parameter: string or range value_type=”range”

value= Defines the value of string-type parameter. value="medium”

value_min=/value_max= Min and Max values of range-type
parameter.

value_min="20.0"
value_max="30.0"

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 104Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=104

Jumpers
The <jumpers> section lists all the jumpers present on the board, that can affect the
<components> or <interfaces> on the board. The <jumpers> tag includes multiple nested
<jumper> tags.

TIP: Please note that switches on the board are also defined using the <jumpers> tag.

<jumpers>
 <jumper name="SW13_M0" default_value="false">
 <description>Impacts connection between flash_qspi and flash_bpi.If
 value=true, flash_qspi will be enabled</description>
 </jumper>
 <jumper name="SW13_M1" default_value="true">
 <description>Impacts connection between flash_qspi and flash_bpi.If
 value=true, flash_bpi will be enabled</description>
 </jumper>
</jumpers>

A short description of the attributes and tags of the <jumper> tag are provided below.

Table 5: <jumper> Attributes and Tags

Tag Usage/Description Example (KC705)
name= Name of the jumper or switch on the

board.
name="SW13_M0”

default_value= Default value of the jumper or switch. default_value=”false”

<description> A short note on how this jumper impacts
different connections on board.

<description>Impacts connection between
flash_qspi and flash_bpi. If value=true,
flash_qspi will be enabled. </description>

Components
IMPORTANT! The <component> section forms a very important part of the board file because it defines
the components found on the board, as well as different operating modes of the components, and the
settings needed to enable these modes.

This section gives a list of all the components present on the board, as well as details such as part
name, type of component, and vendor. Some examples of components include Xilinx FPGA,
DDR3, Quad SPI flash, Ethernet Phy, LED, and DIP Switches. The <components> section includes
one or more nested <component> tags.

<components>
 <component name="part0" display_name="Kintex-7 KC705 Evaluation Platform"
 type="fpga" part_name="xc7k325tffg900-2" pin_map_file="part0_pins.xml"
 vendor="xilinx" spec_url="www.xilinx.com/kc705">
 <description>FPGA part on the board</description>
 </component>
 <component name="ddr3_sdram" display_name="DDR3 SDRAM" type="chip"
sub_type="ddr3"
 major_group="External Memory" part_name="MT8JTF12864HZ-1G6G1"

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 105Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=105

vendor="Micron"
 spec_url="www.micron.com/memory">
 <description>1 GB DDR3 memory SODIMM </description>
 </component>
</components>

In the KC705 board file the first declared component is "part0", which is the Xilinx FPGA device.
Xilinx devices on the board, listed as “fpga” type components, should be named sequentially
starting with part0. Additional <component> elements define the other components on the
board, and any interfaces needed to connect from the Xilinx device to the board component.

The different attributes and <tags> of the <component> tag are explained in the following table:

Table 6: <component> Attribute and Tags

Tag Usage/Description Example (KC705)
name= Name of the component. name="part0"

display_name= The name displayed in the Board tab of the
Vivado IP integrator.

display_name="Kintex-7 KC705 Evaluation
Platform"

type= Type of part:
“fpga” - Specifies the Xilinx FPGA parts on
the board.
“chip” - Defines all components which have
a chip on the board, except FPGAs or FMC
connectors. Examples of chips include
ddr3_sdram and linear_flash.
“connector” - Defines FPGA Mezzanine
Card (FMC) connectors.

type="fpga"

sub_type= Subtype of the component sub_type="ethernet"

major_group= Major group that the component is a part
of. The Board tab in the Vivado IP
integrator organizes components of the
board according to the major_group. See
Components .

major_group="ethernet"

part_name= Part identifier.
For type=fpga, the part_name must be a
valid Xilinx supported part, or the board
files will not be loaded into the Vivado
Design Suite.

part_name="xc7k325tffg900-2"

pin_map_file= A file where the constraints for each pin are
provided. Refer to Pin Map for more
information.

pin_map_file="part0_pins.xml"

vendor= Vendor of the part. vendor="xilinx"

spec_url= URL for the device specification or other
information related to the part.

spec_url="www.xilinx.com/kc705"

<description> Short description of the component. <description> FPGA device on the board. </
description>

<parameters> Lists parameter name and value pairs. Refer to Parameters for details and examples.

<pins> List of pins identified for the component. See Pins for details and examples.

<component_modes> Modes specific to the defined
<component>.

See Component Modes for details and
examples.

<interfaces> Defines the interfaces implemented by the
specified component.

See Interfaces for more information and
examples.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 106Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=106

The <components> defined in the Board file are listed in the Board tab of the Vivado IP
Integrator, as shown in Components . The components are grouped according to the
'major_group=' attribute of the <component> element, and the ‘display_name=’ is displayed.

Figure 54: Board Window in Vivado IP Integrator

Double-clicking a component in the Board tab opens the Connect Board Component dialog box
in the Vivado IP integrator. This lets you select the preferred IP to add into the design canvas of
the block diagram, to implement the necessary signal interfaces to connect to the component on
the board.

Parameters

Parameters of a <component> are used to specify added details of the component, like clock
frequency for clock components. The <parameters> section can include one or more
<parameter> tags nested within. Each <parameter> has a "name" and "value" attribute pair.

<parameters>
 <parameter name="frequency" value="200000000" /parameter>
</parameters>

IMPORTANT! The <parameters> for the <board> objects have different attributes from the
<parameters> for <component> objects.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 107Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=107

Pins

The <pins> section lists all the pins on the defined <component>, as well as properties associated
with those pins. The <pins> section can include one or more <pin> tags nested within.

The same properties can be defined with the <component pin_map_file="”> attribute. However,
the property values defined in the <pins> section take precedence over the property values
defined in the "pin_map_file=”.

TIP: You can use the <pins> section to define all the pins of a <component>, and eliminate the need for a
“pin_map_file”.

The <pins> section lets you override the general pin properties defined in the “pin_map_file” with
specific property values for specific circumstances. For instance, when pins with different
properties, like IOSTANDARD, share the same pins of an FPGA (or any other component)
through a switch or a jumper, the pin properties can be defined in the <pins> section to override
the pin properties defined in the “pin_map_file” for the same pin.

<pins>
 <pin index="0" name="rs232_uart_USB_TX" iostandard="LVCMOS25"/>
 <pin index="1" name="rs232_uart_USB_RX" iostandard="LVCMOS25"/>
</pins>

Component Modes

The <component_modes> section describes the different modes in which a component can be
used. The <component_modes> section can include one or more <component_mode> tags
nested within. Each component mode includes details like associated interfaces, preferred IP, and
enabling dependencies.

<component name="phy_onboard" display_name="Onboard PHY" type="chip"
sub_type="ethernet" major_group="Ethernet Configurations"
part_name="M88E1111_BAB1C000" vendor="Marvell" spec_url="www.marvell.com">
 <description>PHY on the board</description>
 <parameters>
 <parameter name="devicetree_vendor" value="marvell"/>
 </parameters>
 <component_modes>
 <component_mode name="mii" display_name="MII mode">
 <description>To enable this mode jumpers need to be {J29_P1_P2 true}
 {J30_P1_P2 true} {J64 false}</description>
 <interfaces>
 <interface name="mii" order="0"/>
 <interface name="mdio_io" order="1" optional="true"/>
 <interface name="phy_reset_out" order="2" optional="true"/>
 </interfaces>
 <preferred_ips>
 <preferred_ip vendor="xilinx.com" library="ip" name="axi_ethernet"
 order="0"/>
 </preferred_ips>
 </component_mode>
 <component_mode name="gmii" display_name="GMII mode">
 <description>To enable this mode jumpers need to be {J29_P1_P2 true}
 {J30_P1_P2 true} {J64 false}</description>

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 108Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=108

 <interfaces>
 <interface name="gmii"/>
 <interface name="mdio_io"/>
 <interface name="phy_reset_out" optional="true"/>
 </interfaces>
 <preferred_ips>
 <preferred_ip vendor="xilinx.com" library="ip" name="axi_ethernet"
 order="0"/>
 </preferred_ips>
 </component_mode>
</component>

When one mode of the component is selected in the Board tab, all the interfaces listed in this
mode are automatically added in IPI. Order for interface in a mode defines the order in which the
interfaces should be connected. If no order is mentioned, interfaces will be added in IPI in the
order mentioned in list.

For <interfaces> listed under a <component_mode>, the 'optional=' attribute helps in the filtering
of IP when you connect the interface in the Board tab of Vivado IP integrator. The default value
is "optional=false", meaning that the IP must have this interface listed for the mode being used. If
“optional=true" the interface is not required for the specified mode. When “optional=true", any IP
which has the required interfaces, but not the optional interfaces, will also be listed for use with
the component mode being used.

<interfaces>
 <interface name="mii" order="0"/>
 <interface name="mdio_io" order="1" optional="true"/>
 <interface name="phy_reset_out" order="2" optional="true"/>
</interfaces>

TIP: Preferred IPs mentioned in <component_modes> have a higher priority than the ones mentioned in
individual <interfaces>.

The <enablement_dependencies> list the jumper settings required to enable a specific
<component_mode>. The information regarding the jumper settings to use on the board, based
on selected component modes, is available in the Vivado Design Suite.

<enablement_dependencies>
 <jumpers>
 <jumper name="J29_P1_P2">true</jumper>
 <jumper name="J30_P1_P2">true</jumper>
 <jumper name="J64">false</jumper>
 </jumpers>
</enablement_dependencies>

Interfaces
IMPORTANT! Interfaces can only be defined inside a <component> of type="fpga”.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 109Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=109

The interfaces section provides a listing of all the physical interfaces available on a <component>.
The <interfaces> section contains one or more <interface> tags nested within. An interface is
defined by multiple ports through use of the <port_map> tag. Interfaces can be defined only
inside a <component> of "type=fpga". For more information refer to Port Map.

The following is a partial example of the dip_switches_4bits interface definition from the KC705
board definition file:

<interfaces>
 <interface mode="master" name="dip_switches_4bits"
 type="xilinx.com:interface:gpio_rtl:1.0" of_component="dip_switches">
 <description>4-position user DIP Switch</description>
 <preferred_ips>
 <preferred_ip vendor="xilinx.com" library="ip" name="axi_gpio"
order="0"/>
 </preferred_ips>
 <port_maps>
 <port_map logical_port="TRI_I" physical_port="dip_switches_tri_i"
dir="in"
 left="3" right="0">
 <pin_maps>
 <pin_map port_index="0" component_pin="GPIO_DIP_SW0"/>
 <pin_map port_index="1" component_pin="GPIO_DIP_SW1"/>
 <pin_map port_index="2" component_pin="GPIO_DIP_SW2"/>
 <pin_map port_index="3" component_pin="GPIO_DIP_SW3"/>
 </pin_maps>
 </port_map>
 </port_maps>
 </interface>
 <interface >
 ...
 ...
 </interface>
</interfaces>

Interface

IMPORTANT! Interface names must be defined using all lower case letters.

The following are attributes and <tags> of the <interface>.

Table 7: <interface> Attributes and Tags

Tag Usage/Description Example (KC705)
mode= Indicates the logical direction of the interface.

Typically, the mode will be set to "master",
but in cases like clocks and reset where the
logical direction is for the signals to be input
to the FPGA, the mode is marked as "slave".

master

name= A unique name to identify the interface
definition in the board file. This name will also
be used to drive connection automation, and
be seen on the connected port in the block
diagram.

dip_switches_4bits

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 110Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=110

Table 7: <interface> Attributes and Tags (cont'd)

Tag Usage/Description Example (KC705)
type= Specifies the type of the interface from a

standard set of interface types supported by
the Vivado Design Suite.
These standard bus interfaces are defined on
Xilinx IP cores, to enable easy it connection of
the IP or block design to the board.
The list of available bus interface types can be
found in the Vivado Design Suite installation:
<install_location>/Vivado/
<version>/data/ip/interfaces

xilinx.com:interface:gpio_rtl:1.0

of_component= Names the associated component from the
<components> section.

dip_switches

<description> A brief description of the interface. 4-position user DIP Switch

<preferred_ip> Lists the preferred IP to connect to, in VLNV
(or VLN) format.
The version of the IP is not required as the
Vivado tool will pick the latest version.

vendor="xilinx.com" library="ip"
name="axi_gpio" order="0"

order= Specifies the priority of the preferred_ip
for the interface. The priority counts down,
with 0 being the highest priority.

0

preset_proc= Specifies predefined configuration options for
IP implementing the specified interface. Refer
to Understanding Preset Files for more
information.

preset_proc="emc_preset"

<port_map> Maps the logical pins of an interface to the
physical ports of the Xilinx device.

See Port Map for details and examples.

Port Map

Each interface is further broken down into individual port maps. These port maps serve as a map
of a logical port, that is defined in the interface, with a physical port, that relates to a physical
package pin on the Xilinx device.

<port_map logical_port="TRI_I" physical_port="dip_switches_tri_i" dir="in"
left="3"
right="0">
 <pin_maps>
 <pin_map port_index="0" component_pin="GPIO_DIP_SW0"/>
 <pin_map port_index="1" component_pin="GPIO_DIP_SW1"/>
 <pin_map port_index="2" component_pin="GPIO_DIP_SW2"/>
 <pin_map port_index="3" component_pin="GPIO_DIP_SW3"/>
 </pin_maps>
 </port_map>

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 111Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=111

Table 8: <port_map> Attributes and Tags

Tag Usage/Description Example (KC705)
logical_port= Logical port names are found on the bus

interface definition. Predefined interfaces
can be found in the Vivado Design Suite
installation. For example, the GPIO
interface definition is found at:
<install_location>\Vivado\ <version>\data
\ip\interfaces\ gpio_v1_0

TRI_I

physical_port= Provides the mapping to port names
defined on the board interface in the
subsequent section.
physical_port can be a std_logic or
std_logic_vector.

dip_switches_tri_i

dir= Each port has a direction. Allowed values
are in, out, and inout.

in

left= The high index on the port. For example, a
4-bit bus port [3:0] will be marked as 3.

3

right= The low index for a port. For example, a 4-
bit bus port [3:0] will be marked as 0.

0

<pin_maps> Maps the physical port of a Xilinx device to
a specific pin of the packaged part.

See Pin Map for details and examples.

Pin Map

In the <pin_map> section, each physical port is broken down into one or more individual pins.
The number of pins in the pin map is determined by the width of the port being mapped. Pins
can be shared across different physical ports of the interfaces they are defined in.

Each <pin_map> has a port_index attribute, that maps to an index of the bus port, and a
component_pin attribute, that maps to a package pin on the Xilinx device. These are defined as
follows:

Table 9: <pin_map> Attributes

Tag Usage/Description Example (KC705)
port_index= Indicates the index of a bus port that is

defined in the <port_map>. This is a
numeric value within the range defined by
the width of port.

3

component_pin= Name of the component pin on the Xilinx
device. The component_pin name maps to
the name= attribute in the
part0_pins.xml file of the FPGA-type
<component>. The part0_pins.xml file is
located in the same folder as the Board
file.

GPIO_DIP_SW0

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 112Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=112

The Pin Map file, commonly named part0_pins.xml, lists the pin names of the Xilinx device,
or "fpga" type <component>, and defines the IOSTANDARDs and package pin locations for these
component pins. The format of the pins defined in the Pin Map file is as follows:

<part_info part_name="xc7k325tffg900-2">
 <pins>
 <pin index="0" name="GPIO_DIP_SW0" iostandard="LVCMOS25" loc="Y29"/>
 <pin index="1" name="GPIO_DIP_SW1" iostandard="LVCMOS25" loc="W29"/>
 <pin index="2" name="GPIO_DIP_SW2" iostandard="LVCMOS25" loc="AA28"/>
 <pin index="3" name="GPIO_DIP_SW3" iostandard="LVCMOS25" loc="Y28"/>
 </pins>

In the Pin Map file, the following attributes are used to define I/O related constraints for each of
the <pins> found on the Xilinx device:

Table 10: Attributes of the Pin Map File

Tag Usage/Description Example (KC705)
index= An index assigned to the <pin> object in

the Pin Map file.
0

name= The component pin name on the Xilinx
device, used in the Board file.

GPIO_DIP_SW2

iostandard= A valid IOSTANDARD for the Xilinx device
pin, as defined by the board designer.
Valid values include IOSTANDARDs
supported by the Vivado Design Suite for
the specific component pin.

LVCMOS25

loc= The pin location on the Xilinx device
package.

Y29

JTAG Chains
This lists the different JTAG chains available on the defined board. Each chain is listed under
<jtag_chain> along with a name for the chain, and the <position> tag that defines the name and
position of components in the chain:

<jtag_chains>
 <jtag_chain name="chain1">
 <position name="0" component="part0"/>
 </jtag_chain>
</jtag_chains>

The <jtag_chain> tag specifies the name of the chain with the name= attribute.

The <position> tag lists each component in the <jtag_chain>. Details are given in below table:

Table 11: <position> Attributes

Tag Usage/Description Example (KC705)
name= Indicates the sequence of components in

the jtag chain.
0

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 113Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=113

Table 11: <position> Attributes (cont'd)

Tag Usage/Description Example (KC705)
component= Indicates the component on the board. Part0

Connections
The <connections> section defines the connections between different components. The
<connection> tag identifies two components associated with a connection. The
<connection_map> tag describes the bus connection between the two components. The details
of a <connection> are used by the Vivado Design Suite to look up corresponding constraints in
the part0_pins.xml file when one of the components is the FPGA type <component>.

<connections>
 <connection name="part0_dip" component1="part0" component2="dip_switches">
 <connection_map name="part0_dip_1" typical_delay="5" c1_st_index="0"
 c1_end_index="3" c2_st_index="0" c2_end_index="3"/>
 </connection>
</connections>

A <connection> can have the following attributes:

Table 12: <connection> Attributes

Tag Usage/Description Example (KC705)
name= Name given to the connection. part0_dip

component1= The first component in the connection. part0

component2= The second component in the connection. dip_switches

The <connection_map> has the following attributes:

Table 13: <connection_map> Attributes

Tag Usage/Description Example (KC705)
typical_delay= The delay on the connection between

components.
5

c1_st_index= This is the <pin> index of the starting pin in
the connection for component1.
If component1 is an FPGA, this index is
taken from the part0_pins.xml file.

0

c1_end_index= This is the <pin> index of the final pin in
the connection for component1.

3

c2_st_index= This is the <pin> index of the starting pin
for component2.

0

c2_end_index= This is the <pin> index of the final pin in
the connection for component2.

3

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 114Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=114

IP Associated Rules
The <ip_associated_rules> tag is used to define a preferred board interface, or a prioritized list of
board interfaces that can be assigned to the IP interfaces on a specific IP. This tag is new in the
2.1 schema version of the Board file.

The Designer Assistance feature of the Vivado IP integrator tool lists the available board
interfaces for a given IP interface. See the following link in the Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994) for more information on Designer Assistance.
The <ip_associated_rules> lets you define which board interfaces can be applied to a specific IP
interface.

TIP: The <ip_associated_rules> tag can be used to define any IP interface, but is most useful for clocks and
resets which typically have more defined board interfaces.

<ip_associated_rules>
 <ip_associated_rule name="default">
 <ip vendor="xilinx.com" library="ip" name="axi_ethernet" version="*"
ip_interface="mgt_clk">
 <associated_board_interfaces>
 <associated_board_interface name="sgmii_mgt_clk" order="1"/>
 <associated_board_interface name="sma_mgt_clk" order="0"/>
 </associated_board_interfaces>
 </ip>
 <ip vendor="xilinx.com" library="ip" name="axi_ethernet" version="*"
ip_interface="phy_rst_n">
 <associated_board_interfaces>
 <associated_board_interface name="phy_reset_out" order="0"/>
 </associated_board_interfaces>
 </ip>
 <ip vendor="xilinx.com" library="ip" name="gig_ethernet_pcs_pma"
version="*"
ip_interface="gtrefclk_in">
 <associated_board_interfaces>
 <associated_board_interface name="sgmii_mgt_clk" order="1"/>
 <associated_board_interface name="sma_mgt_clk" order="0"/>
 </associated_board_interfaces>
 </ip>
 </ip_associated_rule>
</ip_associated_rules>

IP Associated Rule

The <ip_associated_rule> tag defines the specific rules associated with the specified IP. It
supports the name= tag to define the name of the rule.

IMPORTANT! Currently only one rule named "default" is supported, so there can be only one pair of
<ip_associated_rule name="default”></ip_associated_rule> opening and closing tags defined in the Board
file.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 115Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf;a=xUsingTheDesignerAssistanceFeature
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=115

IP

The <ip> tag defines an IP, and interface, that the associated rules apply to. The <ip> tag
identifies the Vendor, Library, Name, and Version (VLNV) of the IP, and a specific interface on the
IP.

<ip vendor="xilinx.com" library="ip" name="axi_ethernet" version="*"
ip_interface="mgt_clk">
 <associated_board_interfaces>
 <associated_board_interface name="sgmii_mgt_clk" order="1"/>
 <associated_board_interface name="sma_mgt_clk" order="0"/>
 </associated_board_interfaces>
</ip>

TIP: The <ip_associated_rules> can define multiple <ip> tags identifying multiple IP in the Vivado IP
catalog, as well as identifying different interfaces on a single IP.

An <ip> can have the following attributes or tags:

Table 14: <ip> Attributes and Tags

Tag Usage/Description Example (KC705)
vendor= The vendor name associated with the IP. Cores

provided by Xilinx have the "xilinx.com" vendor
identity.

vendor="xilinx.com"

library= Specifies the IP library that the core can be found
in.

library="ip"

name= Specifies the name of the IP core in the catalog. name="axi_ethernet"

version= Specifies the version of the IP that the rules
apply to. “*”can be used to indicate all versions
of the IP.

“*”

ip_interface= Specifies the name of the interface on the IP core
to associate with interfaces defined in the Board
file.

ip_interface="mgt_clk"

<associated_board_interfaces> Specifies the name and priority of the board
interface.

The <associated_board_interface> tag defines a prioritized list of board interfaces that can be
assigned to the associated IP interface.

<associated_board_interfaces>
 <associated_board_interface name="sgmii_mgt_clk" order="1"/>
 <associated_board_interface name="sma_mgt_clk" order="0"/>
</associated_board_interfaces>

The <associated_board_interface> has the following attributes:

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 116Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=116

Table 15: <associated_board_interface> Attributes

Tag Usage/Description Example (KC705)
name= Name of board interface associated with

the IP interface.
name="sgmii_mgt_clk"

order= The order of preference for assigning the
board interface. The Designer Assistance
feature of the Vivado IP integrator will
automatically assign a board interface with
order=0. Other board interfaces will be
listed in the specified order from lowest to
highest.

0

Board File Linter
Board file linter is a feature in Vivado® that enables board file authors to verify the correctness of
the XML files used to define boards that are based on Xilinx® devices. Linter primarily does the
following two checks:

• XML Syntax Checks: Checks for XML tag ordering.

• Business Logic Checks: All other checks that cannot be done by XML DTD files. Checks for IP
vs Board interface definition uniformity and VLNV.

Note: By default, these checks are enabled only for board .xml files that specify schema_version>=2.2.

Steps to Use Board File Linter
Perform the following steps to use board file linter:

1. Board developers are required to add document type declaration (DOCTYPE) in the XML files
when checking validity. Following is an example DOCTYPE declaration:

<!DOCTYPE board SYSTEM "/proj/xbuilds/<2020.2>_daily_latest/installs/lin64/Vivado/2020.2/
data/boards/board_schemas/current/board.dtd">

2. The DOCTYPE declaration must be removed before the XML files are actually published. This
is because the DOCTYPE refers a path (Vivado installation) that is not valid for users.

3. If the board developer fails to include a DOCTYPE, Vivado triggers a warning:

WARNING! [Board 49-117] Board file '/home/mccrohan/tmp/board.xml' did not contain a
DOCTYPE declaration or the DOCTYPE declaration did not reference a valid DTD so XML validation is
ignored for this file.

4. Launch Vivado and run validate_board_files in the Tcl console.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 117Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=117

5. validate_board_files is a new Tcl command to invoke linter. It currently takes one
parameter, which is the name of a directory containing the board XML files (board.xml,
preset.xml, part0_pins.xml).

Description:
Check whether the XML files describing a board in the given directory
are valid.
The XML files must contain an appropriate DOCTYPE declaration to be
fully validated. Examples:
<!DOCTYPE board SYSTEM "board.dtd"> <!-- for board.xml -->
<!DOCTYPE ip_presets SYSTEM "preset.dtd" <!-- for preset.xml -->
<!DOCTYPE part_info SYSTEM "part0_pins.dtd" <!-- for part0_pins.xml -->

Syntax:
validate_board_files [-quiet] [-verbose] [<dir>...]

Returns:
ok if all board files are valid

Usage:
Name Description

[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution
[<dir>] The name of a directory containing the board files (board.xml,
part0_pins.xml, preset.xml) to be checked

Categories:
Object, Project, XPS, Board

Understanding Preset Files
Preset file helps customize an IP core in a particular configuration. The PS7, axi_emc, and
Memory IP for DDR3_SDRAM use the preset_file feature when a linear_flash or ddr3_sdram
interface is selected in the Board tab in the Vivado IP integrator.

Preset Files use the XML format. The preset_file is defined for a specific Board file, and can be
used to apply presets to multiple IP.

<ip_presets schema="1.0">
 <ip_preset preset_proc_name="emc_preset">
 <ip vendor="xilinx.com" library="ip" name="axi_emc" version="3.0">
 <user_parameters>
 <user_parameter name="CONFIG.C_INCLUDE_DATAWIDTH_MATCHING_0"
value="1"/>
 <user_parameter name="CONFIG.C_MAX_MEM_WIDTH" value="16"/>
 <user_parameter name="CONFIG.C_MEM0_TYPE" value="2"/>
 <user_parameter name="CONFIG.C_MEM0_WIDTH" value="16"/>
 <user_parameter name="CONFIG.C_TAVDV_PS_MEM_0" value="130000"/>
 <user_parameter name="CONFIG.C_TCEDV_PS_MEM_0" value="130000"/>
 <user_parameter name="CONFIG.C_TWPH_PS_MEM_0" value="12000"/>
 <user_parameter name="CONFIG.C_TWP_PS_MEM_0" value="70000"/>
 <user_parameter name="CONFIG.C_WR_REC_TIME_MEM_0" value="100000"/>
 </user_parameters>
 </ip>

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 118Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=118

 </ip_preset>
 <ip_preset preset_proc_name="ddr3_sdram_preset">
 <ip vendor="xilinx.com" library="ip" name="mig_7series">
 <user_parameters>
 <user_parameter name="CONFIG.XML_INPUT_FILE" value="mig.prj"
value_type="file"/>
 </user_parameters>
 </ip>
 </ip_preset>
</ip_presets>

IP_Presets
The <ip_presets> is the root of the preset_file, and defines the presets for one or more IP
cores. The <ip_presets> can have one or more <ip_preset> tags nested within it.

<ip_presets schema="1.0">

Table 16: <ip_presets> Attribute

Tag Usage/Description Example (KC705)
schema= Identifies the schema version of the preset

file. The current version of the schema is
1.0.

1.0

IP_Preset
The <ip_preset> section defines the preset configuration to be applied to specific IP cores.

<ip_preset preset_proc_name="emc_preset">

Table 17: <ip_preset> Attribute

Tag Usage/Description Example (KC705)
preset_proc_name= Identifies the preset process being

defined. The preset_proc_name used here
will also be specified in the Board file for
interfaces that implement this preset
process.

emc_preset

IP
Within the <ip_preset> the <ip> section defines the specific IP that the preset values will apply
to.

<ip vendor="xilinx.com" library="ip" name="axi_emc" version="3.0">

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 119Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=119

Table 18: <ip> Attributes

Tag Usage/Description Example (KC705)
vendor= Address of the board provider's company

website.
xilinx.com

library= Library that the core is part of. ip

name= Name of the IP core. axi_emc

version= Version of the IP. 3.0

User Parameters
Within the <ip> section, the <user_parameters> and <user_parameter> tags define the various
configuration presets to apply to the specified IP core.

<user_parameters>
 <user_parameter name="CONFIG.C_INCLUDE_DATAWIDTH_MATCHING_0" value="1"/>
 <user_parameter name="CONFIG.C_MAX_MEM_WIDTH" value="16"/>
 <user_parameter name="CONFIG.C_MEM0_TYPE" value="2"/>
</user_parameter>

Table 19: <user_parameter> Attributes

Tag Usage/Description Example (KC705)
name= Name of the pre-configured property of

the IP core.
CONFIG.C_WR_REC_TIME_MEM_0

value= Preset value of the property. 100000

Additional Files and Special Considerations
Memory IP 7 Series Support
Memory IP in Xilinx 7 series devices requires special handling. Board designers should test the
Memory IP configuration on the board before adding the PRJ file into the board support area.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 120Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=120

PS7 Presets
For PS7 IP cores, specifying the preset configuration is the same as any other supported IP in the
catalog. The <user_parameters> must name the various preconfigured properties and their values
in the preset_file.

<ip_preset preset_proc_name="ps7_preset">
 <ip vendor="xilinx.com" library="ip" name="processing_system7"
version="*">
 <user_parameters>
 <user_parameter name="CONFIG.preset" value="ZC702"/>
 <user_parameter name="CONFIG.PCW_CAN0_PERIPHERAL_ENABLE" value="0"/>
 </user_parameters>
 </ip>
</ip_preset>

IP Bus Interfaces with Tri-state Ports
IP bus interface exposes three signals (I, O, and T) for tri-state ports. Based on the IP
configuration, one or all three signals are exposed as single external ports via the tri-state buffer.

In the interface logical to physical port mapping, <port_map>, section only the exposed signal
needs to be defined for GPIO, whereas for IO all three signals need to be mapped to a physical
port.

Example

<interface mode="master" name="dip_switches_4bits"
type="xilinx.com:interface:gpio_rtl:1.0">
 <port_maps>
 <port_map logical_port="TRI_I" physical_port="dip_switches_tri_i"/>
 </port_maps>
</interface>
<interface mode="master" name="iic_main"
type="xilinx.com:interface:iic_rtl:1.0">
 <port_maps>
 <port_map logical_port="SDA_I" physical_port="iic_main_sda_i"/>
 <port_map logical_port="SDA_O" physical_port="iic_main_sda_o"/>
 <port_map logical_port="SDA_T" physical_port="iic_main_sda_t"/>
 <port_map logical_port="SCL_I" physical_port="iic_main_scl_i"/>
 <port_map logical_port="SCL_O" physical_port="iic_main_scl_o"/>
 <port_map logical_port="SCL_T" physical_port="iic_main_scl_t"/>
 </port_maps>
</interface>

Ethernet Clock Handling
To differentiate Ethernet clocks from regular clocks, the interface parameter 'TYPE' is defined in
the schema. This parameter provides additional filtering while searching an appropriate IP for a
board interface. The value of the TYPE parameter should be the same in the board interface and
the IP interface.

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 121Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=121

For example, the sgmii_mgt_clk interface in the KC705 board has the TYPE parameter with
the value defined as ETH_MGT_CLK. Similarly the IP component.xml file has the interface
parameter TYPE =ETH_MGT_CLK.

See <vivado_install_dir>/data/ip/xilinx/gig_ethernet_pcs_pma_v15_0/component.xml as an
example.

GT Location Constraint
For generating a GT location constraint, Ethernet related interfaces have a GT_LOC parameter in
the board interface. For example, the sgmii interface of the KC705 board has GT_LOC=
GTXE2_CHANNEL_X0Y9. Here the Ethernet IP assumes that if this parameter is not present in
the board interface, then it is running in LVDS mode, so the IP customization will generate a pin
location constraint (LOC) instead of the GT location constraint (GT_LOC).

Appendix A: Board File

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 122Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=122

Appendix B

Vivado Naming Conventions

Introduction
The following are the required naming conventions when working with the Vivado® Design Suite.
Failing to follow these naming conventions might introduce potential risk to the design or the
tool, and cause unpredictable behavior in the design flow.

• Source files names must start with a letter (A-Z, a-z) and must contain only alphanumeric
characters (A-Z, a-z, 0-9) and underscores (_).

• Output files names must start with a letter (A-Z, a-z) and must contain only alphanumeric
characters (A-Z, a-z, 0-9) and underscores (_).

• Project names must start with a letter (A-Z, a-z) and must contain only alphanumeric
characters (A-Z, a-z, 0-9) and underscores (_).

• Project directory names must start with a letter (A-Z, a-z) and should contain only
alphanumeric characters (A-Z, a-z, 0-9), tilde (~) and underscores (_).

CAUTION! The Windows operating system has a 260 character limit for path lengths which can affect
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when
creating projects, defining IP or managed IP projects, or creating block designs.

The following characters are not supported for project, file, or directory names:

• ! # $ % ^ & * () ` ; < > ? , [] { } ' " |

• tab (\t)

• return (\r)

• new line (\n)

• / or \ (As part of the directory or file name rather than as a path delimiter)

The following character is not supported for directory names:

• . (dot as terminal character)

The following character is not supported for file or project names:

• @

Appendix B: Vivado Naming Conventions

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 123Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=123

Note: In the Vivado IDE, the @ character is not supported for new file or project names. The Vivado IDE
does allow an existing file on disk that uses the @ character to be added to a project. The Vivado IDE can
open a project that includes the @ character in the project name. Using the Tcl Console, you can create a
project with a name that contains the @ character.

IMPORTANT! Spaces in directory and file names are supported by the Windows operating system.
However, you should avoid using spaces in order to preserve portability of the project or files between the
Windows and Linux operating systems.

The Vivado Design Suite supports the use of forward slashes (/) as path delimiters for both
Windows and Linux platforms. Backslashes (\) are allowed as path delimiters on the Windows
platform only.

Any characters not explicitly mentioned above are not supported for project, file, or directory
names.

Appendix B: Vivado Naming Conventions

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 124Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=124

Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Appendix C: Additional Resources and Legal Notices

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 125Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=125

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

1. Vivado Design Suite User Guide: Design Flows Overview (UG892)

2. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

3. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

4. Vivado Design Suite Tcl Command Reference Guide (UG835)

5. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

6. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

7. Vivado Design Suite User Guide: Using Constraints (UG903)

8. ISE to Vivado Design Suite Migration Guide (UG911)

9. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

10. Vivado Design Suite User Guide: Logic Simulation (UG900)

11. Vivado Design Suite User Guide: Designing with IP (UG896)

12. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

13. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

14. Vivado Design Suite Properties Reference Guide (UG912)

15. Vivado Design Suite User Guide: Synthesis (UG901)

16. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

17. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

18. Model Composer User Guide (UG1262)

19. Vivado Design Suite User Guide: Implementation (UG904)

20. Vivado Design Suite User Guide: Programming and Debugging (UG908)

21. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)

22. Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator (UG897)

23. UltraScale Architecture Libraries Guide (UG974)

24. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953)

Appendix C: Additional Resources and Legal Notices

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 126Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=126

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course

2. Designing FPGAs Using the Vivado Design Suite 2 Training Course

3. Designing FPGAs Using the Vivado Design Suite 3 Training Course

4. Designing FPGAs Using the Vivado Design Suite 4 Training Course

5. Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control

6. Vivado Design Suite QuickTake Video: Using the Vivado Timing Constraint Wizard

7. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Appendix C: Additional Resources and Legal Notices

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 127Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/using-vivado-timing-constraint-wizard.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=127

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license.AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell,
Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.MATLAB and
Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property
of their respective owners.

Appendix C: Additional Resources and Legal Notices

UG895 (v2020.2) February 12, 2021 www.xilinx.com
System-Level Design Entry 128Send Feedback
UG895 (v2021.2) October 27, 2021

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG895&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.2&docPage=128

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Launching the Vivado Design Suite in Project and Non-Project Mode
	Working with Tcl
	Launching the Vivado Design Suite Tcl Shell
	Launching the Vivado Tools Using a Batch Tcl Script

	Working with the Vivado IDE
	Launching the Vivado IDE on Windows
	Launching the Vivado IDE from the Command Line on Windows or Linux
	Launching the Vivado IDE from the Vivado Design Suite Tcl Shell

	Ch. 2: Working with Projects
	Overview
	Project Types
	RTL Projects
	Post-Synthesis Projects
	I/O Planning Projects
	Imported Projects

	Creating a Project
	Creating an RTL Project
	Creating a Post-Synthesis Project
	Creating an I/O Planning Project
	Importing an External Project
	Tcl Commands for Working with Projects
	Tcl Commands for Creating a Project
	Tcl Commands for Importing a Project
	Tcl Commands for Adding Design Sources, Constraints Files, and Simulation Sources
	Tcl Commands for Adding Existing IP Sources
	Tcl Commands for Setting the Project Part

	Using the Vivado Design Suite Platform Board Flow
	Adding User-Boards to a Repository
	Using the IP Catalog with the Platform Board Flow
	Using the Vivado IP Integrator with the Platform Board Flow

	Managing Projects
	Opening a Project
	Tcl Command for Opening a Project

	Opening Multiple Projects
	Saving a Project
	Tcl Command for Saving a Project

	Closing a Project
	Tcl Command for Closing a Project

	Archiving Projects
	Tcl Command for Archiving a Project

	Working with Source Control Systems

	Using the Project Summary
	Configuring Project Settings
	General Settings
	Simulation Settings
	Elaboration Settings
	Synthesis Settings
	Implementation Settings
	Bitstream Settings
	IP Settings
	Tcl Command for Configuring Project Settings

	Creating a Project Using a Tcl Script

	Ch. 3: Working with Source Files
	Overview
	Creating and Adding Design Sources
	Creating New Source Files
	Adding Design Sources
	Specifying the Top Module and Reordering Source Files
	Enabling or Disabling Source Files
	Using Remote Sources or Copying Sources into Project
	Updating Local Source Files

	Working with IP Sources
	Adding IP from the IP Catalog
	Adding Existing IP Files
	Tcl Command for Reporting IP Status

	Generating Output Products for IP Cores
	Instantiating IP Into the Design

	Working with IP Integrator Sources
	Creating a New Block Design
	Adding Existing Block Design Sources
	Tcl Command for Adding Existing Block Design Sources

	Generating Output Products for Block Designs
	Instantiating Block Designs into the Current Project

	Working with Vivado HLS Sources
	Working with Model Composer Sources
	Working with System Generator Sources
	Editing Source Files
	Using the Find/Replace in Files Commands
	Using HDL Language Templates
	Using Xilinx Parameterized Macros
	Enabling Xilinx Parameterized Macros
	Using XPMs

	Cross Probing to Source Files
	Tcl Commands for Cross Probing to Source Files

	Using Alternate Text Editors

	Working with Simulation Sources
	Adding and Creating Simulation Source Files

	Working with Constraints
	Adding and Creating Constraint Files
	Setting the Target XDC File
	Referencing Original XDC Files or Copying Files
	Using Constraint Sets
	Creating and Editing Constraint Sets
	Defining the Active Constraint Set
	Creating Constraints Sets Using the Save Constraints As Command

	Exporting Constraints
	Enabling or Disabling Constraint Files
	Changing the Constraint Evaluation Order

	Working with Sources in Non-Project Mode

	Ch. 4: Elaborating the RTL Design
	Overview
	Elaborating the Design in Project Mode
	Tcl Command for Elaborating the Design in Project Mode
	Viewing Elaboration Messages
	Analyzing the RTL Logic Hierarchy
	Exploring the Elaborated Design Schematic
	Using the Hierarchy Window
	Exploring the RTL Source Files

	Running Methodology Checks
	Running Report Methodology
	Analyzing the Methodology Report

	Reporting DRCs
	Selecting DRC Rules
	Analyzing DRC Violations
	Tcl Command for Running RTL DRCs

	Elaborating the Design in Non-Project Mode

	Ch. 5: Debugging the Design
	Overview
	RTL-Level Design Simulation
	In-System Debugging

	Appx. A: Board File
	Introduction
	Understanding the Platform Board Flow
	Elements of the Platform Board Flow

	Defining Board Files
	Board
	First-Level Tags in the Board File
	Compatible Board Revisions
	Parameters
	Jumpers
	Components
	Parameters
	Pins
	Component Modes

	Interfaces
	Interface
	Port Map
	Pin Map

	JTAG Chains
	Connections
	IP Associated Rules
	IP Associated Rule
	IP

	Board File Linter
	Steps to Use Board File Linter

	Understanding Preset Files
	IP_Presets
	IP_Preset
	IP
	User Parameters

	Additional Files and Special Considerations
	Memory IP 7 Series Support
	PS7 Presets
	IP Bus Interfaces with Tri-state Ports
	Ethernet Clock Handling
	GT Location Constraint

	Appx. B: Vivado Naming Conventions
	Introduction

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

