
MicroBlaze
Processor Reference
Guide

UG984 (v2020.2) November 18, 2020

See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG984

Revision History
The following table shows the revision history for this document.

Date Version Revision
11/18/2020 2020.2 Updated for Vivado 2020.2 release

• Corrected parity bits in a data cache line.
• Added Versal to supported families.
• Clarified atomic stream instruction behavior.
• Provided performance and resource utilization for Versal.

06/03/2020 2020.1 Updated for Vivado 2020.1 release
• Added ELF format description.
• Describe Memory Protection feature in more detail.
• Clarified Peripheral Data AXI write behavior.
• Define FINT and DLONG instruction rounding behavior.

10/30/2019 2019.2 Updated for Vivado 2019.2 release:
• Updated description of 64-bit immediate instructions with added opcodes.
• Clarified reset behavior.
• Replaced SDK with Vitis.
• Added Block-RAM count to resource utilization tables.

24/04/2019 2019.1 Updated for Vivado 2019.1 release:
• Added information about cache reset behavior.
• Included calling convention for variable argument functions.
• Corrected WDC pseudo code.
• Provided link to MicroBlaze pages on the Xilinx Wiki.

11/14/2018 2018.3 Updated for Vivado 2018.3 release:
• Added description of MicroBlaze 64-bit implementation, new in version 11.0.

04/04/2018 2018.1 Updated for Vivado 2018.1 release:
• Included information about instruction pipeline hazards and forwarding.
• Clarified that software break does not set the BIP bit in MSR.
• Explained memory scrubbing behavior.
• Added more detailed description of sleep and pause usage.
• Clarified use of parallel debug clock and reset.

10/04/2017 2017.3 Updated for Vivado 2017.3 release:
• Added automotive UltraScale+ Zynq and Spartan-7 devices.
• Updated description of debug trace, to add event trace, new in version 10.0.
• Added 4PB extended address size.
• Clarified description of cache trace signals.

04/05/2017 2017.1 Updated for Vivado 2017.1 release:
• Added description of MMU Physical Address Extension (PAE), new in version 10.0.
• Extended privileged instruction list, and updated instruction descriptions.
• Updated information on debug program trace.
• Added reference to the Triple Modular Redundancy (TMR) subsystem.
• Corrected description of BSIFI instruction.
• Updated MFSE instruction description with PAE information.
• Added MTSE instruction used with PAE, new in version 10.0.
• Updated WDC instruction for external cache invalidate and flush.
MicroBlaze Processor Reference Guide 2
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=2

10/05/2016 2016.3 Updated for Vivado 2016.3 release:
• Added description of frequency optimized 8-stage pipeline, new in version 10.0.
• Describe bit field instructions, new in version 10.0.
• Include information on parallel debug interface, new in version 10.0.
• Added version 10.0 to MicroBlaze release version code in PVR.
• Included Spartan-7 target architecture in PVR.
• Updated description of MSR reset value.
• Updated Xilinx

04/06/2016 2016.1 Updated for Vivado 2016.1 release:
• Included description of address extension, new in version 9.6.
• Included description of pipeline pause functionality, new in version 9.6
• Included description of non-secure AXI access support, new in version 9.6.
• Included description of hibernate and suspend instructions, new in version 9.6.
• Added version 9.6 to MicroBlaze release version code in PVR.
• Corrected references to Table 2-47 and Table 2-48.
• Replaced references to the deprecated Xilinx Microprocessor Debugger (XMD)

with Xilinx System Debugger (XSDB).
• Removed C code function attributes svc_handler and svc_table_handler.

04/15/2015 2015.1 Updated for Vivado 2015.1 release:
• Included description of 16 word cache line length, new in version 9.5.
• Added version 9.5 to MicroBlaze release version code in PVR.
• Corrected description of supported endianness and parameter C_ENDIANNESS.
• Corrected description of outstanding reads for instruction and data cache.
• Updated FPGA configuration memory protection document reference [Ref 5].
• Corrected Bus Index Range definitions for Lockstep Comparison in Table 3-14.
• Clarified registers altered for IDIV instruction.
• Corrected PVR assembler mnemonics for MFS instruction.
• Updated performance and resource utilization for 2015.1.
• Added references to training resources.

10/01/2014 2014.3 Updated for Vivado 2014.3 release:
• Corrected semantic description for PCMPEQ and PCMPNE in Table 2.1.
• Added version 9.4 to MicroBlaze release version code in PVR.
• Included description of external program trace, new in version 9.4

04/02/2014 2014.1 Updated for Vivado 2014.1 release:
• Added v9.3 to MicroBlaze release version code in PVR.
• Clarified availability and behavior of stack protection registers.
• Corrected description of LMB instruction and data bus exception.
• Included description of extended debug features, new in version 9.3: performance

monitoring, program trace and non-intrusive profiling.
• Included definition of Reset Mode signals, new in version 9.3.
• Clarified how the AXI4-Stream TLAST signal is handled.
• Added UltraScale and updated performance and resource utilization for 2014.1.

12/18/2013 2013.4 Updated for Vivado 2013.4 release.
10/02/2013 2013.3 Updated for Vivado 2013.3 release.
06/19/2013 2013.2 Updated for Vivado 2013.2 release.
03/20/2013 2013.1 Initial Xilinx release. This User Guide is derived from UG081.

Date Version Revision
MicroBlaze Processor Reference Guide 3
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=3

Table of Contents
Chapter 1: Introduction

Guide Contents. 6

Chapter 2: MicroBlaze Architecture
Introduction . 7
Overview . 7
Data Types and Endianness. 11
Instructions. 13
Registers . 28
Pipeline Architecture . 55
Memory Architecture . 61
Privileged Instructions . 62
Virtual-Memory Management . 64
Reset, Interrupts, Exceptions, and Break . 79
Instruction Cache . 89
Data Cache . 93
Floating-Point Unit (FPU). 98
Stream Link Interfaces . 104
Debug and Trace . 105
Fault Tolerance. 128
Lockstep Operation . 136
Coherency. 139
Data and Instruction Address Extension . 142

Chapter 3: MicroBlaze Signal Interface Description
Introduction . 144
Overview . 144
MicroBlaze I/O Overview . 145
AXI4 and ACE Interface Description . 158
Local Memory Bus (LMB) Interface Description . 164
Lockstep Interface Description . 173
Debug Interface Description . 178
Trace Interface Description . 180
MicroBlaze Processor Reference Guide 4
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=4

MicroBlaze Core Configurability . 183

Chapter 4: MicroBlaze Application Binary Interface
Introduction . 195
Data Types . 195
Register Usage Conventions . 196
Stack Convention . 198
Memory Model . 200
Interrupt, Break and Exception Handling . 201
Reset Handling . 203
ELF Format . 204

Chapter 5: MicroBlaze Instruction Set Architecture
Introduction . 208
Notation . 208
Formats. 210
MicroBlaze 32-bit Instructions . 210
MicroBlaze 64-bit Instructions . 319

Appendix A: Performance and Resource Utilization
Performance. 382
Resource Utilization. 383
IP Characterization and fMAX Margin System Methodology. 392

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 393
Solution Centers. 393
Documentation Navigator and Design Hubs . 393
References . 394
Training Resources. 395
Please Read: Important Legal Notices . 395
MicroBlaze Processor Reference Guide 5
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=5

MicroBlaze Processor Reference Guide 6
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Chapter 1

Introduction
The MicroBlaze™ Processor Reference Guide provides information about the 32-bit and 64-
bit soft processor, MicroBlaze, which is included in Vivado. The document is intended as a
guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following chapters:

• Chapter 2, MicroBlaze Architecture contains an overview of MicroBlaze features as well
as information on Big-Endian and Little-Endian bit-reversed format, 32-bit or 64-bit
general purpose registers, cache software support, and AXI4-Stream interfaces.

• Chapter 3, MicroBlaze Signal Interface Description describes the types of signal
interfaces that can be used to connect MicroBlaze.

• Chapter 4, MicroBlaze Application Binary Interface describes the Application Binary
Interface important for developing software in assembly language for the processor.

• Chapter 5, MicroBlaze Instruction Set Architecture provides notation, formats, and
instructions for the Instruction Set Architecture (ISA) of MicroBlaze.

• Appendix A, Performance and Resource Utilization contains maximum frequencies and
resource utilization numbers for different configurations and devices.

• Appendix B, Additional Resources and Legal Notices provides links to documentation
and additional resources.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=6

Chapter 2

MicroBlaze Architecture

Introduction
This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit or
64-bit general purpose registers, virtual-memory management, cache software support,
and AXI4-Stream interfaces.

Overview
The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). The
following figure shows a functional block diagram of the MicroBlaze core.

X-Ref Target - Figure 2-1

Figure 2-1: MicroBlaze Core Block Diagram

Bus
IF

I-C
ache

Instruction
Buffer

Instruction
Buffer

Branch Target
Cache

Program
Counter

M_AXI_IC Memory Management Unit (MMU)

ITLB DTLBUTLB

Bus
IF

D
-C

ache

M_AXI_DC

M_AXI_DP

DLMB

M0_AXIS ..
M15_AXIS

S0_AXIS ..
S15_AXIS

Special
Purpose
Registers

Instruction
Decode

Register File
32 registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Instruction-side
Bus interface

Data-side
Bus interface

Optional MicroBlaze feature

M_AXI_IP

ILMB

M_ACE_DCM_ACE_IC

X19738-100218
MicroBlaze Processor Reference Guide 7
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=7

Chapter 2: MicroBlaze Architecture
Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific
set of features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit or 64-bit general purpose registers
• 32-bit instruction word with three operands and two addressing modes
• Default 32-bit address bus, extensible to 64 bits
• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow
selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze
support a subset of the optional features described in this manual. Only the latest
(preferred) version of MicroBlaze (v11.0) supports all options.

RECOMMENDED: Xilinx recommends that all new designs use the latest preferred version of the
MicroBlaze processor.

The following table provides an overview of the configurable features by MicroBlaze
versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze versions

v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
Version Status deprecated deprecated deprecated deprecated deprecated preferred
Processor pipeline depth 3/5 3/5 3/5 3/5 3/5/8 3/5/8
Local Memory Bus (LMB) data side
interface

option option option option option option

Local Memory Bus (LMB)
instruction side interface

option option option option option option

Hardware barrel shifter option option option option option option
Hardware divider option option option option option option
Hardware debug logic option option option option option option
Stream link interfaces 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI
Machine status set and clear
instructions

option option option option option option

Cache line word length 4, 8 4, 8 4, 8, 16 4, 8, 16 4, 8, 16 4, 8, 16
Hardware exception support option option option option option option
Pattern compare instructions option option option option option option
Floating-point unit (FPU) option option option option option option
MicroBlaze Processor Reference Guide 8
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=8

Chapter 2: MicroBlaze Architecture
Disable hardware multiplier1 option option option option option option
Hardware debug readable ESR and
EAR

Yes Yes Yes Yes Yes Yes

Processor Version Register (PVR) option option option option option option
Area or speed optimized option option option option option option
Hardware multiplier 64-bit result option option option option option option
LUT cache memory option option option option option option
Floating-point conversion and
square root instructions

option option option option option option

Memory Management Unit (MMU) option option option option option option
Extended stream instructions option option option option option option
Use Cache Interface for All I-Cache
Memory Accesses

option option option option option option

Use Cache Interface for All D-Cache
Memory Accesses

option option option option option option

Use Write-back Caching Policy for
D-Cache

option option option option option option

Branch Target Cache (BTC) option option option option option option
Streams for I-Cache option option option option option option
Victim handling for I-Cache option option option option option option
Victim handling for D-Cache option option option option option option
AXI4 (M_AXI_DP) data side interface option option option option option option
AXI4 (M_AXI_IP) instruction side
interface

option option option option option option

AXI4 (M_AXI_DC) protocol for D-
Cache

option option option option option option

AXI4 (M_AXI_IC) protocol for I-
Cache

option option option option option option

AXI4 protocol for stream accesses option option option option option option
Fault tolerant features option option option option option option
Force distributed RAM for cache
tags

option option option option option option

Configurable cache data widths option option option option option option
Count Leading Zeros instruction option option option option option option
Memory Barrier instruction Yes Yes Yes Yes Yes Yes
Stack overflow and underflow
detection

option option option option option option

Allow stream instructions in user
mode

option option option option option option

Table 2-1: Configurable Feature Overview by MicroBlaze Version (Cont’d)

Feature
MicroBlaze versions

v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
MicroBlaze Processor Reference Guide 9
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=9

Chapter 2: MicroBlaze Architecture
Lockstep support option option option option option option
Configurable use of FPGA
primitives

option option option option option option

Low-latency interrupt mode option option option option option option
Swap instructions option option option option option option
Sleep mode and sleep instruction Yes Yes Yes Yes Yes Yes
Relocatable base vectors option option option option option option
ACE (M_ACE_DC) protocol for D-
Cache

option option option option option option

ACE (M_ACE_IC) protocol for I-
Cache

option option option option option option

Extended debug: performance
monitoring, program trace, non-
intrusive profiling

option option option option option option

Reset mode: enter sleep or debug
halt at reset

option option option option option option

Extended debug: external program
trace

option option option option option

Extended data addressing option option option
Pipeline pause functionality Yes Yes Yes
Hibernate and suspend instructions Yes Yes Yes
Non-secure mode Yes Yes Yes
Bit field instructions2 option option
Parallel debug interface option option
MMU Physical Address Extension option option
64-bit mode option

1. Used for saving DSP48E primitives.
2. Bit field instructions are available when C_USE_BARREL = 1.

Table 2-1: Configurable Feature Overview by MicroBlaze Version (Cont’d)

Feature
MicroBlaze versions

v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
MicroBlaze Processor Reference Guide 10
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=10

Chapter 2: MicroBlaze Architecture
Data Types and Endianness
The MicroBlaze processor uses Big-Endian or Little-Endian format to represent data,
depending on the selected endianness. The parameter C_ENDIANNESS is set to 1 (little-
endian) by default.

The hardware supported data types for 32-bit MicroBlaze are word, half word, and byte.
With 64-bit MicroBlaze the data types long and double are also available in hardware.

When using the reversed load and store instructions LHUR, LWR, LLR, SHR, SWR and SLR,
the bytes in the data are reversed, as indicated by the byte-reversed order.

The following tables show the bit and byte organization for each type.

Table 2-2: Long Data Type (only 64-bit MicroBlaze)
Big-Endian Byte Address n n+1 n+2 n+3 n+4 n+5 n+6 n+7
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 n+3 n+4 n+5 n+6 n+7
Big-Endian Byte-Reversed Order n+7 n+6 n+5 n+4 n+3 n+2 n+1 n
Little-Endian Byte Address n+7 n+6 n+5 n+4 n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+7 n+6 n+5 n+4 n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order n n+1 n+2 n+3 n+4 n+5 n+6 n+7
Bit Label 0 63
Bit Significance MSBit LSBit

Table 2-3: Word Data Type
Big-Endian Byte Address n n+1 n+2 n+3
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 n+3
Big-Endian Byte-Reversed Order n+3 n+2 n+1 n
Little-Endian Byte Address n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order n n+1 n+2 n+3
Bit Label 0 31
Bit Significance MSBit LSBit
MicroBlaze Processor Reference Guide 11
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=11

Chapter 2: MicroBlaze Architecture
Table 2-4: Half Word Data Type
Big-Endian Byte Address n n+1
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1
Big-Endian Byte-Reversed Order n+1 n
Little-Endian Byte Address n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+1 n
Little-Endian Byte-Reversed Order n n+1
Bit Label 0 15
Bit Significance MSBit LSBit

Table 2-5: Byte Data Type
Byte Address n
Bit Label 0 7
Bit Significance MSBit LSBit
MicroBlaze Processor Reference Guide 12
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=12

Chapter 2: MicroBlaze Architecture
Instructions
Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an imm instruction).

Type B instructions have a single destination register operand. Instructions are provided in
the following functional categories: arithmetic, logical, branch, load/store, and special. The
following table describes the instruction set nomenclature used in the semantics of each
instruction. Table 2-6 lists the MicroBlaze instruction set. See Chapter 5, MicroBlaze
Instruction Set Architecture, for more information on these instructions.

Table 2-6: Instruction Set Nomenclature
Symbol Description

Ra R0 - R31, General Purpose Register, source operand a
• With 32-bit MicroBlaze represents the entire 32-bit register
• With 64-bit MicroBlaze and L = 0, represents the 32 least significant bits
• With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in Table 2-7.

Rb R0 - R31, General Purpose Register, source operand b
• With 32-bit MicroBlaze represents the entire 32-bit register
• With 64-bit MicroBlaze and L = 0, represents the 32 least significant bits
• With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in Table 2-7.

Rd R0 - R31, General Purpose Register, destination operand
• With 32-bit MicroBlaze the entire 32-bit register is assigned the result
• With 64-bit MicroBlaze and L = 0, the 32 least significant bits are assigned the result
• With 64-bit MicroBlaze and L = 1, the entire 64-bit register is assigned the result
The instruction bit L is defined in Table 2-7.

SPR[x] Special Purpose Register number x
MSR Machine Status Register = SPR[1]
ESR Exception Status Register = SPR[5]
EAR Exception Address Register = SPR[3]
FSR Floating-point Unit Status Register = SPR[7]
PVRx Processor Version Register, where x is the register number = SPR[8192 + x]
BTR Branch Target Register = SPR[11]
PC Execute stage Program Counter = SPR[0]
x[y] Bit y of register x
MicroBlaze Processor Reference Guide 13
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=13

Chapter 2: MicroBlaze Architecture
x[y:z] Bit range y to z of register x
x Bit inverted value of register x
Imm 16 bit immediate value
Immx x bit immediate value
FSLx 4 bit AXI4-Stream port designator, where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
s(x) Sign extend argument x to 32-bit or 64-bit value
*Addr Memory contents at location Addr (data-size aligned)
:= Assignment operator
= Equality comparison
!= Inequality comparison
> Greater than comparison
>= Greater than or equal comparison
< Less than comparison
<= Less than or equal comparison
+ Arithmetic add
* Arithmetic multiply
/ Arithmetic divide
>> x Bit shift right x bits
<< x Bit shift left x bits
and Logic AND
or Logic OR
xor Logic exclusive OR
op1 if cond else op2 Perform op1 if condition cond is true, else perform op2
& Concatenate. For example “0000100 & Imm7” is the concatenation of the fixed field

“0000100” and a 7 bit immediate value.
signed Operation performed on signed integer data type. All arithmetic operations are

performed on signed word operands, unless otherwise specified
unsigned Operation performed on unsigned integer data type
float Operation performed on floating-point data type
clz(r) Count leading zeros

Table 2-6: Instruction Set Nomenclature (Cont’d)

Symbol Description
MicroBlaze Processor Reference Guide 14
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=14

Chapter 2: MicroBlaze Architecture
Table 2-7: MicroBlaze Instruction Set Summary
Type A 0-5 6-10 11-15 16-20 21-31

Semantics
Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00L00000000 Rd := Rb + Ra
RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00L00000000 Rd := Rb + Ra + 1
ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C
RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C
ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00L00000000 Rd := Rb + Ra
RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00L00000000 Rd := Rb + Ra + 1
CMP Rd,Ra,Rb 000101 Rd Ra Rb 00L00000001 Rd := Rb + Ra + 1

Rd[0] := 0 if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00L00000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned)
else
Rd[0] := 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C
ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra
RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1
ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C
ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra
RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1
ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C
MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb
MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)
MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)
MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb, unsigned) >>

32 (signed)
BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00L00000000 Rd := 0 & (Ra >> Rb)
BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01L00000000 Rd := s(Ra >> Rb)
BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10L00000000 Rd := (Ra << Rb) & 0
IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra
MicroBlaze Processor Reference Guide 15
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=15

Chapter 2: MicroBlaze Architecture
IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned
TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE

00000
Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1

TNAPUTD Ra,Rb 010011 00000 Ra Rb 0N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control read)
MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 0N1TA0
00000

FSL Rb[28:31] := Ra (control write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra = NaN,
float1) else
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else
Rd := 0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else
Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 16
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=16

Chapter 2: MicroBlaze Architecture
DADD Rd,Ra,Rb2 010110 Rd Ra Rb 10000000000 Rd := Rb+Ra, double1

DRSUB Rd,Ra,Rb2 010110 Rd Ra Rb 10010000000 Rd := Rb-Ra, double1

DMUL Rd,Ra,Rb2 010110 Rd Ra Rb 10100000000 Rd := Rb*Ra, double1

DDIV Rd,Ra,Rb2 010110 Rd Ra Rb 10110000000 Rd := Rb/Ra, double1

DCMP.UN Rd,Ra,Rb2 010110 Rd Ra Rb 11000000000 Rd := 1 if (Rb = NaN or Ra = NaN,
double1) else Rd := 0

DCMP.LT Rd,Ra,Rb2 010110 Rd Ra Rb 11000010000 Rd := 1 if (Rb < Ra, double1) else
Rd := 0

DCMP.EQ Rd,Ra,Rb2 010110 Rd Ra Rb 11000100000 Rd := 1 if (Rb = Ra, double1) else
Rd := 0

DCMP.LE Rd,Ra,Rb2 010110 Rd Ra Rb 11000110000 Rd := 1 if (Rb <= Ra, double1) else
Rd := 0

DCMP.GT Rd,Ra,Rb2 010110 Rd Ra Rb 11001000000 Rd := 1 if (Rb > Ra, double1) else
Rd := 0

DCMP.NE Rd,Ra,Rb2 010110 Rd Ra Rb 11001010000 Rd := 1 if (Rb != Ra, double1) else
Rd := 0

DCMP.GE Rd,Ra,Rb2 010110 Rd Ra Rb 11001100000 Rd := 1 if (Rb >= Ra, double1) else
Rd := 0

DBL Rd,Ra2 010110 Rd Ra 0 11010000000 Rd := double (Ra)1

DLONG Rd,Ra2 010110 Rd Ra 0 11100000000 Rd := long (Ra)1

DSQRT Rd,Ra2 010110 Rd Ra 0 11110000000 Rd := dsqrt (Ra)1

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)
BSRLI Rd,Ra,Imm 011001 Rd Ra 00L00000000 &

Imm5
Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00L00010000 &
Imm5

Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00L00100000 &
Imm5

Rd := (Ra << Imm5) & 0

BSEFI Rd,Ra,
ImmW,ImmS

011001 Rd Ra 01L00 &
ImmW & 0 & ImmS

Rd[0:31-ImmW] := 0
Rd[32-ImmW:31] := (Ra >> ImmS)

BSIFI Rd,Ra,
Width,ImmS

011001 Rd Ra 10L00 &
ImmW & 0 & ImmS

M := (0xffffffff << (ImmW + 1)) xor
(0xffffffff << ImmS)
Rd := ((Ra << ImmS) and M) xor
(Rd and M)
ImmW := ImmS + Width - 1

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 17
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=17

Chapter 2: MicroBlaze Architecture
ADDLI Rd,Imm2 011010 Rd 00000 Imm Rd[0:63] := s(Imm) + Rd[0:63]
RSUBLI Rd,Imm2 011010 Rd 00001 Imm Rd[0:63] := s(Imm) + Rd[0:63]
ADDLIC Rd,Imm2 011010 Rd 00010 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
RSUBLIC Rd,Imm2 011010 Rd 00011 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
ADDLIK Rd,Imm2 011010 Rd 00100 Imm Rd[0:63] := s(Imm) + Rd[0:63]
RSUBLIK Rd,Imm2 011010 Rd 00101 Imm Rd[0:63] := s(Imm) + Rd[0:63]
ADDLIKC Rd,Imm2 011010 Rd 00110 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
RSUBLIKC Rd,Imm2 011010 Rd 00111 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
ORLI Rd,Imm2 011010 Rd 10000 Imm Rd[0:63] := s(Imm) or Rd[0:63]
ANDLI Rd,Imm2 011010 Rd 10001 Imm Rd[0:63] := s(Imm) and Rd[0:63]
XORLI Rd,Imm2 011010 Rd 10010 Imm Rd[0:63] := s(Imm) xor Rd[0:63]
ANDNLI Rd,Imm2 011010 Rd 10011 Imm Rd[0:63] := s(Imm) and Rd[0:63]
TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 &

FSLx
Rd := FSLx (data read, blocking if
N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 &
FSLx

FSLx := Ra (data write, block if N = 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 &
FSLx

Rd := FSLx (control read, block if N =
0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 &
FSLx

FSLx := Ra (control write, block if N =
0)
MSR[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb
PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else

Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd := 0

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb
XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 18
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=18

Chapter 2: MicroBlaze Architecture
PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rb = Ra) else
Rd := 0

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb
PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rb != Ra) else

Rd := 0
SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)

C := Ra[31]
SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)

C := Ra[31]
SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1)

C := Ra[31]
SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])
SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])
SEXTL32 Rd,Ra2 100100 Rd Ra 0000000001100010 Rd := s(Ra[32:63])
CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)
SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]
SWAPH Rd, Ra 100100 Rd Ra 0000000111100010 Rd = (Ra)[16:31, 0:15]
WIC Ra,Rb 100100 00000 Ra Rb 00001101000 ICache_Line[Ra >> 4].Tag := 0 if

(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)
ICache_Line[Ra >> 6].Tag := 0 if
(C_ICACHE_LINE_LEN = 16)

WDC Ra,Rb 100100 00000 Ra Rb 00001100100 Cache line is cleared, discarding
stored data.
DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)
DCache_Line[Ra >> 6].Tag := 0 if
(C_DCACHE_LINE_LEN = 16)

WDC.FLUSH Ra,Rb 100100 00000 Ra Rb 00001110100 Cache line is flushed, writing stored
data to memory, and then cleared.
Used when
C_DCACHE_USE_WRITEBACK = 1.

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 19
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=19

Chapter 2: MicroBlaze Architecture
WDC.CLEAR Ra,Rb 100100 00000 Ra Rb 00001100110 Cache line with matching address is
cleared, discarding stored data. Used
when
C_DCACHE_USE_WRITEBACK = 1.

WDC.CLEAR.EA
Ra,Rb

100100 00000 Ra Rb 00011100110 Cache line with matching extended
address Ra & Rb is cleared. Used
when
C_DCACHE_USE_WRITEBACK = 1.

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:
· SPR[0x0001] is MSR
· SPR[0x0007] is FSR
· SPR[0x0800] is SLR
· SPR[0x0802] is SHR
· SPR[0x1000] is PID
· SPR[0x1001] is ZPR
· SPR[0x1002] is TLBX
· SPR[0x1003] is TLBLO[LSH]
· SPR[0x1004] is TLBHI
· SPR[0x1005] is TLBSX

MTSE Sd,Ra 100101 01000 Ra 11 & Sd SPR[Sd} := Ra, where:
· SPR[0x1003] is TLBLO[MSH]

MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:
· SPR[0x0000] is PC
· SPR[0x0001] is MSR
· SPR[0x0003] is EAR[LSH]
· SPR[0x0005] is ESR
· SPR[0x0007] is FSR
· SPR[0x000B] is BTR
· SPR[0x000D] is EDR
· SPR[0x0800] is SLR
· SPR[0x0802] is SHR
· SPR[0x1000] is PID
· SPR[0x1001] is ZPR
· SPR[0x1002] is TLBX
· SPR[0x1003] is TLBLO[LSH]
· SPR[0x1004] is TLBHI
· SPR[0x2000-200B] is PVR[0-

12][LSH]

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 20
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=20

Chapter 2: MicroBlaze Architecture
MFSE Rd,Sa 100101 Rd 01000 10 & Sa Rd := SPR[Sa][MSH], where:
· SPR[0x0003] is EAR[MSH]
· SPR[0x1003] is TLBLO[MSH]
· SPR[0x2006-2009] is PVR[6-

9][MSH]
MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR

MSR := MSR and Imm14
MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR

MSR := MSR or Imm14
BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb
BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb
BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb

Rd := PC
BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb
BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb
BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb

Rd := PC
BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb

Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 0L000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0
BNE Ra,Rb 100111 0L001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0
BLT Ra,Rb 100111 0L010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0
BLE Ra,Rb 100111 0L011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0
BGT Ra,Rb 100111 0L100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0
BGE Ra,Rb 100111 0L101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0
BEQD Ra,Rb 100111 1L000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0
BNED Ra,Rb 100111 1L001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0
BLTD Ra,Rb 100111 1L010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0
BLED Ra,Rb 100111 1L011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0
BGTD Ra,Rb 100111 1L100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0
BGED Ra,Rb 100111 1L101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0
ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 21
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=21

Chapter 2: MicroBlaze Architecture
ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm
IMML Imm242 101100 10 Imm24 Imm[24:47] := Imm24
RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)
RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)

MSR[IE] := 1
RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)

MSR[BIP] := 0
RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)

MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)
MBAR Imm 101110 Imm 00010 0000000000000100 PC := PC + 4; Wait for memory

accesses.
BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)
BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)

Rd := PC
BRAI Imm 101110 00000 01000 Imm PC := s(Imm)
BRAID Imm 101110 00000 11000 Imm PC := s(Imm)
BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)

Rd := PC
BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)

Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 0L000 Ra Imm PC := PC + s(Imm) if Ra = 0
BNEI Ra,Imm 101111 0L001 Ra Imm PC := PC + s(Imm) if Ra != 0
BLTI Ra,Imm 101111 0L010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEI Ra,Imm 101111 0L011 Ra Imm PC := PC + s(Imm) if Ra <= 0
BGTI Ra,Imm 101111 0L100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEI Ra,Imm 101111 0L101 Ra Imm PC := PC + s(Imm) if Ra >= 0

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 22
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=22

Chapter 2: MicroBlaze Architecture
BEQID Ra,Imm 101111 1L000 Ra Imm PC := PC + s(Imm) if Ra = 0
BNEID Ra,Imm 101111 1L001 Ra Imm PC := PC + s(Imm) if Ra != 0
BLTID Ra,Imm 101111 1L010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEID Ra,Imm 101111 1L011 Ra Imm PC := PC + s(Imm) if Ra <= 0
BGTID Ra,Imm 101111 1L100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEID Ra,Imm 101111 1L101 Ra Imm PC := PC + s(Imm) if Ra >= 0
LBU Rd,Ra,Rb
LBUR Rd,Ra,Rb

110000 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LBUEA Rd,Ra,Rb 110000 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb
LHUR Rd,Ra,Rb

110001 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LHUEA Rd,Ra,Rb 110001 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb
LWR Rd,Ra,Rb

110010 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd := *Addr

LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 Addr := Ra + Rb
Rd := *Addr
Reservation := 1

LWEA Rd,Ra,Rb 110010 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd := *Addr

LL Rd,Ra,Rb2

LLR Rd,Ra,Rb2
110010 Rd Ra Rb 00100000000

01100000000
Addr := Ra[0:63] + Rb[0:63]
Rd[0:63] := *Addr[0:63]

SB Rd,Ra,Rb
SBR Rd,Ra,Rb

110100 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

SBEA Rd,Ra,Rb 110100 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr[0:8] := Rd[24:31]

SH Rd,Ra,Rb
SHR Rd,Ra,Rb

110101 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 23
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=23

Chapter 2: MicroBlaze Architecture
SHEA Rd,Ra,Rb 110101 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb
SWR Rd,Ra,Rb

110110 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr := Rd

SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0

SWEA Rd,Ra,Rb 110110 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr := Rd

SL Rd,Ra,Rb2

SLR Rd,Ra,Rb2
110110 Rd Ra Rb 00100000000

01100000000
Addr := Ra[0:63] + Rb[0:63]
*Addr[0:63] := Rd[0:63]

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

LLI Rd,Ra,Imm2 111011 Rd Ra Imm Addr := Ra[0:63] + s(Imm)
Rd[0:63] := *Addr[0:63]

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

SLI Rd,Ra,Imm2 111111 Rd Ra Imm Addr := Ra[0:63] + s(Imm)
*Addr[0:63] := Rd[0:63]

1. Due to the many different corner cases involved in floating-point arithmetic, only the normal behavior is described. A full
description of the behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

2. Only available with 64-bit MicroBlaze.

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide 24
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=24

Chapter 2: MicroBlaze Architecture
Semaphore Synchronization
The LWX and SWX instructions are used to implement common semaphore operations,
including test and set, compare and swap, exchange memory, and fetch and add. They are
also used to implement spinlocks.

These instructions are typically used by system programs and are called by application
programs as needed.

Generally, a program uses LWX to load a semaphore from memory, causing the reservation
to be set (the processor maintains the reservation internally). The program can compute a
result based on the semaphore value and conditionally store the result back to the same
memory location using the SWX instruction. The conditional store is performed based on
the existence of the reservation established by the preceding LWX instruction. If the
reservation exists when the store is executed, the store is performed and MSR[C] is cleared
to 0. If the reservation does not exist when the store is executed, the target memory
location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the
semaphore store appear to be executed atomically—no other device modified the
semaphore location between the read and the update. Other devices can read from the
semaphore location during the operation.

For a semaphore operation to work properly, the LWX instruction must be paired with an
SWX instruction, and both must specify identical addresses.

The reservation granularity in MicroBlaze is a word. For both instructions, the address must
be word aligned. No unaligned exceptions are generated for these instructions.

The conditional store is always attempted when a reservation exists, even if the store
address does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the
reservation can be changed by executing a subsequent LWX instruction.

The conditional store is performed based upon the reservation established by the last LWX
instruction executed. Executing an SWX instruction always clears a reservation held by the
processor, whether the address matches that established by the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear
the reservation.

The following provides general guidelines for using the LWX and SWX instructions:

• The LWX and SWX instructions should be paired and use the same address.
• An unpaired SWX instruction to an arbitrary address can be used to clear any

reservation held by the processor.
MicroBlaze Processor Reference Guide 25
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=25

Chapter 2: MicroBlaze Architecture
• A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to
the LWX for a repeated attempt.

• An LWX instruction can be left unpaired when executing certain synchronization
primitives if the value loaded by the LWX is not zero. An implementation of Test and Set
exemplifies this:
loop: lwx r5,r3,r0 ; load and reserve

bnei r5,next ; branch if not equal to zero

addik r5,r5,1 ; increment value

swx r5,r3,r0 ; try to store non-zero value

addic r5,r0,0 ; check reservation

bnei r5,loop ; loop if reservation lost

next:

• Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load
instruction to do the initial value check. An implementation of a spinlock exemplifies
this:
loop: lw r5,r3,r0 ; load the word

bnei r5,loop ; loop back if word not equal to 0

lwx r5,r3,r0 ; try reserving again

bnei r5,loop ; likely that no branch is needed
addik r5,r5,1 ; increment value

swx r5,r3,r0 ; try to store non-zero value

addic r5,r0,0 ; check reservation

bnei r5,loop ; loop if reservation lost

• Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that
forward progress is made. The old value should be tested before attempting the store.
If the order is reversed (store before load), more SWX instructions are executed and
reservations are more likely to be lost between the LWX and SWX instructions.

Self-modifying Code
When using self-modifying code software must ensure that the modified instructions have
been written to memory prior to fetching them for execution. There are several aspects to
consider:
MicroBlaze Processor Reference Guide 26
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=26

Chapter 2: MicroBlaze Architecture
• The instructions to be modified could already have been fetched prior to modification:

- Into the instruction prefetch buffer

- Into the instruction cache, if it is enabled

- Into a stream buffer, if instruction cache stream buffers are used

- Into the instruction cache, and then saved in a victim buffer, if victim buffers are
used.

To ensure that the modified code is always executed instead of the old unmodified
code, software must handle all these cases.

• If one or more of the instructions to be modified is a branch, and the branch target
cache is used, the branch target address might have been cached.

To avoid using the cached branch target address, software must ensure that the branch
target cache is cleared prior to executing the modified code.

• The modified instructions might not have been written to memory prior to execution:

- They might be en-route to memory, in temporary storage in the interconnect or the
memory controller.

- They might be stored in the data cache, if write-back cache is used.

- They might be saved in a victim buffer, if write-back cache and victim buffers are
used.

Software must ensure that the modified instructions have been written to memory before
being fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code
assumes that both instruction cache and write-back data cache is used. If not, the
corresponding instructions can be omitted.

The following code exemplifies storing a modified instruction:
swi r5,r6,0 ; r5 = new instruction

; r6 = physical instruction address

wdc.flush r6,r0 ; flush write-back data cache line

mbar 1 ; ensure new instruction is written to memory

wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address

mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If
the MMU is enabled, the code sequences must be executed in real mode, because WIC and
WDC are privileged instructions. The first instruction after the code sequences above must
not be modified, because it might have been prefetched.
MicroBlaze Processor Reference Guide 27
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=27

Chapter 2: MicroBlaze Architecture
Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit or 64-bit
general purpose registers and up to sixteen special purpose registers, depending on
configured options. The most significant bit of all registers is denoted as bit 0.

General Purpose Registers
The thirty-two 32-bit or 64-bit General Purpose Registers are numbered R0 through R31.
The register file is reset on bit stream download (reset value is 0x00000000). The following
figure is a representation of a General Purpose Register and Table 2-8 provides a
description of each register and the register reset value (if existing).

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the General Purpose Registers have
64 bits, otherwise they have 32 bits.

Note: The register file is not reset by the external reset inputs: Reset and Debug_Rst.

See Table 4-2 for software conventions on general purpose register usage.

X-Ref Target - Figure 2-2

Figure 2-2: R0-R31

R0 – R31

0 C_DATA_SIZE - 1

X19739-111417

Table 2-8: General Purpose Registers (R0-R31)
Bits1

1. 64 bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise

Name Description Reset Value
0:31
0:63

R0 Always has a value of zero. Anything written to R0 is
discarded

0x0

R1 through R13 General purpose registers -
R14 Register used to store return addresses for interrupts. -
R15 General purpose register. Recommended for storing return

addresses for user vectors.
-

R16 Register used to store return addresses for breaks. -
R17 If MicroBlaze is configured to support hardware

exceptions, this register is loaded with the address of the
instruction following the instruction causing the HW
exception, except for exceptions in delay slots that use BTR
instead (see Branch Target Register (BTR)); if not, it is a
general purpose register.

-

R18 through R31 General purpose registers. -
MicroBlaze Processor Reference Guide 28
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=28

Chapter 2: MicroBlaze Architecture
Special Purpose Registers

Program Counter (PC)

The program counter (PC) is the address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. The following figure
illustrates the PC and Table 2-9 provides a description and reset value.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Program Counter has up to 64
bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, the carry bit is replicated in the carry
copy bit. MSR can be written using either an MTS instruction or the dedicated MSRSET and
MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately
and the remaining bits take effect one clock cycle later. When writing using MTS, all bits
take effect one clock cycle later. Any value written to the carry copy bit is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
The following table illustrates the MSR register and Table 2-10 provides the bit description
and reset values.

X-Ref Target - Figure 2-3

Figure 2-3: PC

C_ADDR_SIZE - 1 or 31

PC

0

X19740-111417

Table 2-9: Program Counter (PC)
Bits1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

PC Program Counter
Address of executing instruction, that is, “mfs r2 0”
stores the address of the mfs instruction itself in R2.

C_BASE_VECTORS
MicroBlaze Processor Reference Guide 29
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=29

Chapter 2: MicroBlaze Architecture
X-Ref Target - Figure 2-4

Figure 2-4: MSR

63

RESReservedCC

32 6261605958575655545352515049

IECBIPFSLICEDZODCEEEEIPPVRUMUMSVMVMS

310 3029282726252423222120191817

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19741-111517

Table 2-10: Machine Status Register (MSR)
Bits1 Name Description Reset Value

0, 32 CC Arithmetic Carry Copy
Copy of the Arithmetic Carry. CC is always the same as bit C.

0

1:16
2:48

Reserved

17, 49 VMS Virtual Protected Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

18, 50 VM Virtual Protected Mode
0 = MMU address translation and access protection disabled, with
C_USE_MMU = 3 (Virtual). Access protection disabled with
C_USE_MMU = 2 (Protection)
1 = MMU address translation and access protection enabled, with
C_USE_MMU = 3 (Virtual). Access protection enabled, with
C_USE_MMU = 2 (Protection).
Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

19, 51 UMS User Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

20, 52 UM User Mode
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

MicroBlaze Processor Reference Guide 30
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=30

Chapter 2: MicroBlaze Architecture
21, 53 PVR Processor Version Register exists
0 = No Processor Version Register
1 = Processor Version Register exists
Read only

Based on
parameter

C_PVR

22, 54 EIP Exception In Progress
0 = No hardware exception in progress
1 = Hardware exception in progress
Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)
Read/Write

0

23, 55 EE Exception Enable
0 = Hardware exceptions disabled2
1 = Hardware exceptions enabled

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

24, 56 DCE Data Cache Enable
0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

0

25, 57 DZO Division by Zero or Division Overflow3

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(C_USE_DIV = 1)

Read/Write

0

26, 58 ICE Instruction Cache Enable
0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_ICACHE = 1)

Read/Write

0

Table 2-10: Machine Status Register (MSR) (Cont’d)

Bits1 Name Description Reset Value
MicroBlaze Processor Reference Guide 31
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=31

Chapter 2: MicroBlaze Architecture
Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception
for the following:

• An unaligned access exception that specifies the unaligned access data address
• An M_AXI_DP exception that specifies the failing AXI4 data access address
• A data storage exception that specifies the (virtual) effective address accessed
• An instruction storage exception that specifies the (virtual) effective address read
• A data TLB miss exception that specifies the (virtual) effective address accessed
• An instruction TLB miss exception that specifies the (virtual) effective address read

27, 59 FSL AXI4-Stream Error
0 = get or getd had no error
1 = get or getd control type mismatch
This bit is sticky, that is it is set by a get or getd instruction when a
control bit mismatch occurs. To clear it an MTS or MSRCLR instruction
must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

0

28, 60 BIP Break in Progress
0 = No Break in Progress
1 = Break in Progress
Break Sources can be software break instruction or hardware break
from Ext_Brk or Ext_NM_Brk pin.
Read/Write

0

29, 61 C Arithmetic Carry
0 = No Carry (Borrow)
1 = Carry (No Borrow)
Read/Write

0

30, 62 IE Interrupt Enable
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write

0

31, 63 - Reserved 0
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.
2. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, Instruction

TLB Miss Exception) cannot be disabled, and are not affected by this bit.
3. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent in

the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is configured
with exception handling or not.

Table 2-10: Machine Status Register (MSR) (Cont’d)

Bits1 Name Description Reset Value
MicroBlaze Processor Reference Guide 32
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=32

Chapter 2: MicroBlaze Architecture
The contents of this register are undefined for all other exceptions. When read with the MFS
or MFSE instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is
illustrated in the following figure and Table 2-11 provides bit descriptions and reset values.

With 32-bit MicroBlaze (parameter C_DATA_SIZE = 32) and extended data addressing is
enabled (parameter C_ADDR_SIZE > 32), the 32 least significant bits of the register are read
with the MFS instruction, and the most significant bits with the MFSE instruction.

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire register can be read with
the MFS instruction.

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the
MFS instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated
in the following figure, Table 2-12 provides bit descriptions and reset values, and Table 2-13
provides the Exception Specific Status (ESS).

X-Ref Target - Figure 2-5

Figure 2-5: EAR

C_ADDR_SIZE - 1

EAR

0

X19742-111517

Table 2-11: Exception Address Register (EAR)
Bits Name Description Reset Value

0:C_ADDR_SIZE-1 EAR Exception Address Register 0

X-Ref Target - Figure 2-6

Figure 2-6: ESR

63

EC

51

Reserved

595852

ESSDS

3119 272620

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

50

ESS

X19743-111517
MicroBlaze Processor Reference Guide 33
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=33

Chapter 2: MicroBlaze Architecture
Table 2-12: Exception Status Register (ESR)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Reset Value
0:17
0:49

Reserved

-, 50 ESS Exception Specific Status, only available with 64-bit
MicroBlaze (C_DATA_SIZE = 64), otherwise reserved.
For details refer to Table 2-13.
Read-only

See Table 2-13

19, 51 DS Delay Slot Exception.
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only

0

20:26
52:58

ESS Exception Specific Status
For details refer to Table 2-13.
Read-only

See Table 2-13

27:31
59:63

EC Exception Cause
00000 = Stream exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception
Read-only

0

Table 2-13: Exception Specific Status (ESS)
Exception

Cause Bits1 Name Description Reset Value

Unaligned
Data Access

-, 50 L Long Access Exception
0 = unaligned word or halfword access
1 = unaligned long access

0

20, 52 W Word Access Exception
0 = unaligned halfword access
1 = unaligned word access

0

21, 53 S Store Access Exception
0 = unaligned load access
1 = unaligned store access

0

22:26
54:58

Rx Source/Destination Register
General purpose register used as source (Store) or
destination (Load) in unaligned access

0

MicroBlaze Processor Reference Guide 34
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=34

Chapter 2: MicroBlaze Architecture
Illegal
Instruction

20:26
52:58

Reserved 0

Instruction
bus error

20, 52 ECC Exception caused by ILMB correctable or
uncorrectable error

0

21:26
53:58

Reserved 0

Data bus
error

20, 52 ECC Exception caused by DLMB correctable or
uncorrectable error

0

21:26
53:58

Reserved 0

Divide 20, 52 DEC Divide - Division exception cause
0 = Divide-By-Zero
1 = Division Overflow

0

21:26
53:58

Reserved 0

Floating
point unit

20:26
52:58

Reserved 0

Privileged
instruction

20:26
52:58

Reserved 0

Stack
protection
violation

20:26
52:58

Reserved 0

Stream 20:22
52:54

Reserved 0

23:26
55:58

FSL AXI4-Stream index that caused the exception 0

Data
storage

20, 52 DIZ Data storage - Zone protection
0 = Did not occur
1 = Occurred

0

21, 53 S Data storage - Store instruction
0 = Did not occur
1 = Occurred

0

22:26
54:58

Reserved 0

Instruction
storage

20, 52 DIZ Instruction storage - Zone protection
0 = Did not occur
1 = Occurred

0

21:26
53:58

Reserved 0

Table 2-13: Exception Specific Status (ESS) (Cont’d)
Exception

Cause Bits1 Name Description Reset Value
MicroBlaze Processor Reference Guide 35
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=35

Chapter 2: MicroBlaze Architecture
Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch
instructions executed while MSR[EIP] = 0. If an exception is caused by an instruction in a
delay slot (that is, ESR[DS]=1), the exception handler should return execution to the address
stored in BTR instead of the normal exception return address stored in R17. When read with
the MFS instruction, the BTR is specified by setting Sa = 0x000B. The BTR register is
illustrated in the following figure and Table 2-14 provides bit descriptions and reset values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Branch Target Register has up
to 64 bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Floating-Point Status Register (FSR)

The Floating-Point Status Register contains status bits for the floating-point unit. It can be
read with an MFS, and written with an MTS instruction. When read or written, the register is
specified by setting Sa = 0x0007. The bits in this register are sticky − floating-point

Data TLB
miss

20, 52 Reserved 0
21, 53 S Data TLB miss - Store instruction

0 = Did not occur
1 = Occurred

0

22:26
54:58

Reserved 0

Instruction
TLB miss

20:26
52:58

Reserved 0

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-13: Exception Specific Status (ESS) (Cont’d)
Exception

Cause Bits1 Name Description Reset Value

X-Ref Target - Figure 2-7

Figure 2-7: BTR

C_ADDR_SIZE - 1

BTR

0

X19744-111517

Table 2-14: Branch Target Register (BTR)
Bits1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

BTR Branch target address used by handler when returning
from an exception caused by an instruction in a delay slot.
Read-only

0x0
MicroBlaze Processor Reference Guide 36
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=36

Chapter 2: MicroBlaze Architecture
instructions can only set bits in the register, and the only way to clear the register is by
using the MTS instruction. The following figure illustrates the FSR register and Table 2-15
provides bit descriptions and reset values.

Exception Data Register (EDR)

The Exception Data Register stores data read on an AXI4-Stream link that caused a stream
exception.

The contents of this register are undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. The following figure illustrates the
EDR register and Table 2-16 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION
is set to 1.

X-Ref Target - Figure 2-8

Figure 2-8: FSR

31302927 280

63

DOReserved

626159

UFOFDZIO

600

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19745-111517

Table 2-15: Floating Point Status Register (FSR)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Reset Value
0:26
0:58

Reserved undefined

27, 59 IO Invalid operation 0
28, 60 DZ Divide-by-zero 0
29, 61 OF Overflow 0
30, 62 UF Underflow 0
31, 63 DO Denormalized operand error 0

X-Ref Target - Figure 2-9

Figure 2-9: EDR

EDR

310

X19746-111517
MicroBlaze Processor Reference Guide 37
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=37

Chapter 2: MicroBlaze Architecture
Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is less than
the Stack Low Register, a stack overflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800.
Figure 2-10 illustrates the SLR register and Table 2-17 provides bit descriptions and reset
values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Stack Low Register has up to 64
bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.
Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is greater
than the Stack High Register, a stack underflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

Table 2-16: Exception Data Register (EDR)
Bits Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000

X-Ref Target - Figure 2-10

Figure 2-10: SLR

SLR

C_ADDR_SIZE - 10

X19747-111517

Table 2-17: Stack Low Register (SLR)
Bits1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

SLR Stack Low Register 0x0
MicroBlaze Processor Reference Guide 38
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=38

Chapter 2: MicroBlaze Architecture
When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. The
following figure illustrates the SHR register and Table 2-18 provides bit descriptions and
reset values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Stack High Register has up to
64 bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.
Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU
address translation. It is controlled by the C_USE_MMU configuration option on MicroBlaze.
The register is only implemented if C_USE_MMU is greater than 1 (User Mode) and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

When accessed with the MFS and MTS instructions, the PID is specified by setting Sa =
0x1000. The register is accessible according to the memory management special registers
parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in
the TID field of the TLB entry

• When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The following figure illustrates the PID register and Table 2-19 provides bit descriptions and
reset values.

X-Ref Target - Figure 2-11

Figure 2-11: SHR

SHR

C_ADDR_SIZE - 10

X19748-111517

Table 2-18: Stack High Register (SHR)
Bits1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

SHR Stack High Register All bits set to 1
MicroBlaze Processor Reference Guide 39
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=39

Chapter 2: MicroBlaze Architecture
Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB
entries. It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register
is only implemented if C_USE_MMU is greater than 1 (User Mode), C_AREA_OPTIMIZED is set
to 0 (Performance) or 2 (Frequency), and if the number of specified memory protection
zones is greater than zero (C_MMU_ZONES > 0). The implemented register bits depend on the
number of specified memory protection zones (C_MMU_ZONES). When accessed with the
MFS and MTS instructions, the ZPR is specified by setting Sa = 0x1001. The register is
accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

The following figure illustrates the ZPR register and Table 2-20 provides bit descriptions
and reset values.

X-Ref Target - Figure 2-12

Figure 2-12: PID

31240

6356

PIDRESERVED

0

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19749-111517

Table 2-19: Process Identifier Register (PID)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Reset Value
0:23
0:55

Reserved

24:31
56:63

PID Used to uniquely identify a software process during MMU
address translation.
Read/Write

0x00

X-Ref Target - Figure 2-13

Figure 2-13: ZPR

302826242220181614121086420

62

ZP15

60

ZP14

58

ZP13

56

ZP12

54

ZP11

52

ZP10

50

ZP9

48

ZP8

46

ZP7

44

ZP6

42

ZP5

40

ZP4

38

ZP3

36

ZP2

34

ZP1

32

ZP0

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19750-111517
MicroBlaze Processor Reference Guide 40
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=40

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode),
and C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency). When accessed with the
MFS and MTS instructions, the TLBLO is specified by setting Sa = 0x1003.

When reading or writing TLBLO, the UTLB entry indexed by the TLBX register is accessed.
The register is readable according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

When the MMU Physical Address Extension (PAE) is enabled (parameters C_DATA_SIZE = 32,
C_USE_MMU = 3 and C_ADDR_SIZE > 32), the 32 least significant bits of TLBLO are accessed
with the MFS and MTS instructions, and the most significant bits with the MFSE and MTSE
instruction. When writing the register with PAE enabled, the most significant bits must be
written first.

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire register can be read with
the MFS instruction.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst. This means that
the entire UTLB must be initialized after reset, to avoid any stale data.

The following figure illustrates the TLBLO register and Table 2-21 provides bit descriptions
and reset values. When PAE is enabled the RPN field of the register is extended according

Table 2-20: Zone Protection Register (ZPR)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Reset Value
0:1
2:3
...
30:31

ZP0
ZP1
...
ZP15

Zone Protect
User mode (MSR[UM] = 1):
00 = Override V in TLB entry. No access to the page is allowed
01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page as writable
and executable
Privileged mode (MSR[UM] = 0):
00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page as writable
and executable
11 = Override WR and EX in TLB entry. Access the page as writable
and executable
Read/Write

0x0

32:33
34:35
...
62:63

ZP0
ZP1
...
ZP15
MicroBlaze Processor Reference Guide 41
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=41

Chapter 2: MicroBlaze Architecture
to the C_ADDR_SIZE parameter up to 54 bits to be able to hold up to a 64-bit physical
address.

X-Ref Target - Figure 2-14

Figure 2-14: TLBLO

0

0

22

n-10 n-9 n-8

28 29 30 31

n-4 n-3 n-2 n-1

32-bit MicroBlaze: (C_ADDR_SIZE = 32 or C_USE_MMU 3) and (C_DATA_SIZE = 32):

PAE or 64-bit MicroBlaze: (C_ADDR_SIZE > 32 and C_USE_MMU = 3) or (C_DATA_SIZE = 64) (n = C_ADDR_SIZE):

RPN EX WWR ZSEL I M G

23 24

X19751-111517

Table 2-21: Translation Look-Aside Buffer Low Register (TLBLO)
Bits1 Name Description Reset Value

0:21
0:n-11

RPN Real Page Number or Physical Page Number
When a TLB hit occurs, this field is read from the TLB entry and is
used to form the physical address. Depending on the value of the
SIZE field, some of the RPN bits are not used in the physical address.
Software must clear unused bits in this field to zero.
Only defined when C_USE_MMU=3 (Virtual).
Read/Write

0x000000

22
n-10

EX Executable
When bit is set to 1, the page contains executable code, and
instructions can be fetched from the page. When bit is cleared to 0,
instructions cannot be fetched from the page. Attempts to fetch
instructions from a page with a clear EX bit cause an instruction-
storage exception.
Read/Write

0

23
n-9

WR Writable
When bit is set to 1, the page is writable and store instructions can
be used to store data at addresses within the page.
When bit is cleared to 0, the page is read-only (not writable).
Attempts to store data into a page with a clear WR bit cause a data
storage exception.
Read/Write

0

24:27
n-8:n-5

ZSEL Zone Select
This field selects one of 16 zone fields (Z0-Z15) from the zone-
protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The selected ZPR
field is used to modify the access protection specified by the TLB
entry EX and WR fields. It is also used to prevent access to a page by
overriding the TLB V (valid) field.
Read/Write

0x0
MicroBlaze Processor Reference Guide 42
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=42

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User Mode),
and C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency). When accessed with the
MFS and MTS instructions, the TLBHI is specified by setting Sa = 0x1004. When reading or
writing TLBHI, the UTLB entry indexed by the TLBX register is accessed.

The register is readable according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing TLBHI the value of PID is stored in the TID field of the TLB entry
• When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

28
n-4

W Write Through
When the parameter C_DCACHE_USE_WRITEBACK is set to 1, this
bit controls caching policy. A write-through policy is selected when
set to 1, and a write-back policy is selected otherwise.
This bit is fixed to 1, and write-through is always used, when
C_DCACHE_USE_WRITEBACK is cleared to 0.
Read/Write

0/1

29
n-3

I Inhibit Caching
When bit is set to 1, accesses to the page are not cached (caching is
inhibited).
When cleared to 0, accesses to the page are cacheable.
Read/Write

0

30
n-2

M Memory Coherent
This bit is fixed to 0, because memory coherence is not implemented
on MicroBlaze.
Read Only

0

31
n-1

G Guarded
When bit is set to 1, speculative page accesses are not allowed
(memory is guarded).
When cleared to 0, speculative page accesses are allowed.
The G attribute can be used to protect memory-mapped I/O devices
from inappropriate instruction accesses.
Read/Write

0

1. The bit index n = C_ADDR_SIZE applies when PAE or 64-bit MicroBlaze is enabled.

Table 2-21: Translation Look-Aside Buffer Low Register (TLBLO) (Cont’d)

Bits1 Name Description Reset Value
MicroBlaze Processor Reference Guide 43
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=43

Chapter 2: MicroBlaze Architecture
When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), TLBHI has up to 64 bits, according
to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

The following figure illustrates the TLBHI register and Table 2-22 provides bit descriptions
and reset values.

X-Ref Target - Figure 2-15

Figure 2-15: TLBHI

TAG

n-100 n-1n-4n-5n-6n-7

SIZE V E U0 Reserved

32-bit MicroBlaze: C_DATA_SIZE = 32:

64-bit MicroBlaze: C_DATA_SIZE = 64 (n = C_ADDR_SIZE):

220 3128272625

X19752-020618

Table 2-22: Translation Look-Aside Buffer High Register (TLBHI)
Bits1 Name Description Reset Value

0:21
0:n-11

TAG TLB-entry tag
Is compared with the page number portion of the virtual memory
address under the control of the SIZE field.
Read/Write

0x0

22:24
n-10:n-8

SIZE Size
Specifies the page size. The SIZE field controls the bit range used
in comparing the TAG field with the page number portion of the
virtual memory address. The page sizes defined by this field are
listed in Table 2-39.
Read/Write

000

25
n-7

V Valid
When this bit is set to 1, the TLB entry is valid and contains a
page-translation entry.
When cleared to 0, the TLB entry is invalid.
Read/Write

0

26
n-6

E Endian
When this bit is set to 1, the page is accessed as a big endian
page.
When cleared to 0, the page is accessed as a little endian page.
The E bit only affects data read or data write accesses. Instruction
accesses are not affected.
The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is fixed to 0.
Read/Write

0

MicroBlaze Processor Reference Guide 44
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=44

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is
controlled by the C_USE_MMU configuration option on MicroBlaze. The register is only
implemented if C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to
0 (Performance) or 2 (Frequency). When accessed with the MFS and MTS instructions, the
TLBX is specified by setting Sa = 0x1002.

The following figure illustrates the TLBX register and Table 2-23 provides bit descriptions
and reset values.

27
n-5

U0 User Defined
This bit is fixed to 0, since there are no user defined storage
attributes on MicroBlaze.
Read Only

0

28:31
n-4:n-1

Reserved

1. The bit index n = C_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Table 2-22: Translation Look-Aside Buffer High Register (TLBHI) (Cont’d) (Cont’d)

Bits1 Name Description Reset Value

X-Ref Target - Figure 2-16

Figure 2-16: TLBX

31260

6358

INDEXReservedMISS

32

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19753-111517

Table 2-23: Translation Look-Aside Buffer Index Register (TLBX)
Bits1 Name Description Reset Value
0, 32 MISS TLB Miss

This bit is cleared to 0 when the TLBSX register is written with a
virtual address, and the virtual address is found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It is also cleared
when the TLBX register itself is written.
Read Only
Can be read if the memory management special registers
parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

0

MicroBlaze Processor Reference Guide 45
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=45

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register (TLBSX) is used to search for a
virtual page number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by
the C_USE_MMU configuration option on the MicroBlaze processor.

The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

When written with the MTS instruction, the TLBSX is specified by setting Sa = 0x1005. The
following figure illustrates the TLBSX register and Table 2-24 provides bit descriptions and
reset values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), TLBSX has up to 64 bits, according
to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

1:25
33:57

Reserved

26:31
58:63

INDEX TLB Index
This field is used to index the Translation Look-Aside Buffer entry
accessed by the TLBLO and TLBHI registers. The field is updated
with a TLB index when the TLBSX register is written with a virtual
address, and the virtual address is found in the corresponding TLB
entry.
Read/Write
Can be read and written if the memory management special
registers parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

000000

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-23: Translation Look-Aside Buffer Index Register (TLBX) (Cont’d)

Bits1 Name Description Reset Value

X-Ref Target - Figure 2-17

Figure 2-17: TLBSX

C_ADDR_SIZE-1C_ADDR_SZE-10

ReservedVPN

0

X19754-111517
MicroBlaze Processor Reference Guide 46
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=46

Chapter 2: MicroBlaze Architecture
Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze.

• When C_PVR is set to 0 (None) the processor does not implement any PVR and
MSR[PVR]=0.

• When C_PVR is set to 1 (Basic), MicroBlaze implements only the first register: PVR0, and
if set to 2 (Full), all 13 PVR registers (PVR0 to PVR12) are implemented.

When read with the MFS or MFSE instruction the PVR is specified by setting Sa = 0x200x,
with x being the register number between 0x0 and 0xB.

With extended data addressing is enabled (parameter C_DATA_SIZE = 32 and C_ADDR_SIZE
> 32), the 32 least significant bits of PVR8 and PVR9 are read with the MFS instruction, and
the most significant bits with the MFSE instruction.

When physical address extension (PAE) is enabled (parameters C_DATA_SIZE = 32,
C_USE_MMU = 3 and C_ADDR_SIZE > 32), the 32 least significant bits of PVR6 and PVR7 are
read with the MFS instruction, and the most significant bits with the MFSE instruction.

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire contents of the PVR6 -
PVR9 and PVR12 registers can be read with the MFS instruction.

Table 2-25 through Table 2-37 provide bit descriptions and values.

Table 2-24: Translation Look-Aside Buffer Index Search Register (TLBSX)
Bits1

1. The bit index n = C_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Name Description Reset Value
0:21
0:n-9

VPN Virtual Page Number
This field represents the page number portion of the virtual
memory address. It is compared with the page number portion of
the virtual memory address under the control of the SIZE field, in
each of the Translation Look-Aside Buffer entries that have the V
bit set to 1.
If the virtual page number is found, the TLBX register is written
with the index of the TLB entry and the MISS bit in TLBX is cleared
to 0. If the virtual page number is not found in any of the TLB
entries, the MISS bit in the TLBX register is set to 1.
Write Only

22:31
n-10:n-1

Reserved
MicroBlaze Processor Reference Guide 47
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=47

Chapter 2: MicroBlaze Architecture
Table 2-25: Processor Version Register 0 (PVR0)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0, 32 CFG PVR implementation:

0 = Basic, 1 = Full
Based on C_PVR

1, 33 BS Use barrel shifter C_USE_BARREL

2, 34 DIV Use divider C_USE_DIV

3, 35 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
4, 36 FPU Use FPU C_USE_FPU > 0 (None)
5, 37 EXC Use any type of exceptions Based on C_*_EXCEPTION

Also set if C_USE_MMU > 0 (None)
6, 38 ICU Use instruction cache C_USE_ICACHE

7, 39 DCU Use data cache C_USE_DCACHE

8, 40 MMU Use MMU C_USE_MMU > 0 (None)
9, 41 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE

10, 42 ENDI Selected endianness:
Always 1 = Little endian

C_ENDIANNESS

11, 43 FT Implement fault tolerant features C_FAULT_TOLERANT

12, 44 SPROT Use stack protection C_USE_STACK_PROTECTION

13, 45 REORD Implement reorder instructions C_USE_REORDER_INSTR

14, 46 64BIT 64-bit MicroBlaze C_DATA_SIZE = 64

15, 47 Reserved 0

16:23 MBV MicroBlaze release version code Release Specific
48:55 0x19 = v8.40.b

0x1B = v9.0
0x1D = v9.1
0x1F = v9.2
0x20 = v9.3

0x21 = v9.4
0x22 = v9.5
0x23 = v9.6
0x24 = v10.0
0x25 = v11.0

24:31
56:63

USR1 User configured value 1 C_PVR_USER1

Table 2-26: Processor Version Register 1 (PVR1)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0:31
32:63

USR2 User configured value 2 C_PVR_USER2
MicroBlaze Processor Reference Guide 48
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=48

Chapter 2: MicroBlaze Architecture
Table 2-27: Processor Version Register 2 (PVR2)
Bits1 Name Description Value
0, 32 DAXI Data side AXI4 or ACE in use C_D_AXI

1, 33 DLMB Data side LMB in use C_D_LMB

2, 34 IAXI Instruction side AXI4 or ACE in use C_I_AXI

3, 35 ILMB Instruction side LMB in use C_I_LMB

4, 36 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5, 37 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6, 38 CEEXC Generate bus exceptions for ECC
correctable errors in LMB memory

C_ECC_USE_CE_EXCEPTION

7, 39 FREQ Select implementation to optimize
processor frequency

C_AREA_OPTIMIZED=2 (Frequency)

8, 40 Reserved 0

9, 41 Reserved 1

10, 42 ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)

11, 43 AXI4DP Data Peripheral AXI interface uses AXI4
protocol, with support for exclusive access

C_M_AXI_DP_EXCLUSIVE_ACCESS

12, 44 FSL Use extended AXI4-Stream instructions C_USE_EXTENDED_FSL_INSTR

13, 45 FSLEXC Generate exception for AXI4-Stream
control bit mismatch

C_FSL_EXCEPTION

14, 46 MSR Use msrset and msrclr instructions C_USE_MSR_INSTR

15, 47 PCMP Use pattern compare and CLZ instructions C_USE_PCMP_INSTR

16, 48 AREA Select implementation to optimize area
with lower instruction throughput

C_AREA_OPTIMIZED = 1 (Area)

17, 49 BS Use barrel shifter C_USE_BARREL

18, 50 DIV Use divider C_USE_DIV

19, 51 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
20, 52 FPU Use FPU C_USE_FPU > 0 (None)
21, 53 MUL64 Use 64-bit hardware multiplier C_USE_HW_MUL = 2 (Mul64)
22, 54 FPU2 Use floating point conversion and square

root instructions
C_USE_FPU = 2 (Extended)

23, 55 IMPEXC Allow imprecise exceptions for ECC errors
in LMB memory

C_IMPRECISE_EXCEPTIONS

24, 56 Reserved 0

25, 57 OP0EXC Generate exception for 0x0 illegal opcode C_OPCODE_0x0_ILLEGAL

26, 58 UNEXC Generate exception for unaligned data
access

C_UNALIGNED_EXCEPTIONS

27, 59 OPEXC Generate exception for any illegal opcode C_ILL_OPCODE_EXCEPTION

28, 60 AXIDEXC Generate exception for M_AXI_D error C_M_AXI_D_BUS_EXCEPTION
MicroBlaze Processor Reference Guide 49
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=49

Chapter 2: MicroBlaze Architecture
29, 61 AXIIEXC Generate exception for M_AXI_I error C_M_AXI_I_BUS_EXCEPTION

30, 62 DIVEXC Generate exception for division by zero or
division overflow

C_DIV_ZERO_EXCEPTION

31, 63 FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-28: Processor Version Register 3 (PVR3)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0, 32 DEBUG Use debug logic C_DEBUG_ENABLED > 0
1, 33 EXT_DEBUG Use extended debug logic C_DEBUG_ENABLED = 2 (Extended)
2, 34 Reserved
3:6
35:38

PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9
39:41

Reserved

10:12
42:44

RDADDR Number of read address breakpoints C_NUMBER_OF_RD_ADDR_BRK

13:15
45:47

Reserved

16:18
48:50

WRADDR Number of write address breakpoints C_NUMBER_OF_WR_ADDR_BRK

19, 51 Reserved 0

20:24
52:56

FSL Number of AXI4-Stream links C_FSL_LINKS

25:28
57:60

Reserved

29:31
61:63

BTC_SIZE Branch Target Cache size C_BRANCH_TARGET_CACHE_SIZE

Table 2-27: Processor Version Register 2 (PVR2) (Cont’d)

Bits1 Name Description Value
MicroBlaze Processor Reference Guide 50
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=50

Chapter 2: MicroBlaze Architecture
Table 2-29: Processor Version Register 4 (PVR4)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0, 32 ICU Use instruction cache C_USE_ICACHE

1:5
33:37

ICTS Instruction cache tag size C_ADDR_TAG_BITS

6, 38 Reserved 1
7, 39 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10
40:42

ICLL The base two logarithm of the instruction
cache line length

log2(C_ICACHE_LINE_LEN)

11:15
43:47

ICBS The base two logarithm of the instruction
cache byte size

log2(C_CACHE_BYTE_SIZE)

16, 48 IAU The instruction cache is used for all memory
accesses within the cacheable range

C_ICACHE_ALWAYS_USED

17:18
49:50

Reserved 0

19:21
51:53

ICV Instruction cache victims 0-3: C_ICACHE_VICTIMS = 0,2,4,8

22:23
54:55

ICS Instruction cache streams C_ICACHE_STREAMS

24, 56 IFTL Instruction cache tag uses distributed RAM C_ICACHE_FORCE_TAG_LUTRAM

25, 57 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0

26:31
58:63

Reserved 0

Table 2-30: Processor Version Register 5 (PVR5)
Bits1 Name Description Value
0, 32 DCU Use data cache C_USE_DCACHE

1:5
33:37

DCTS Data cache tag size C_DCACHE_ADDR_TAG

6, 38 Reserved 1
7, 39 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10
40:42

DCLL The base two logarithm of the data cache
line length

log2(C_DCACHE_LINE_LEN)

11:15
43:47

DCBS The base two logarithm of the data cache
byte size

log2(C_DCACHE_BYTE_SIZE)

16, 48 DAU The data cache is used for all memory
accesses within the cacheable range

C_DCACHE_ALWAYS_USED

17, 49 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK

18, 50 Reserved 0
MicroBlaze Processor Reference Guide 51
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=51

Chapter 2: MicroBlaze Architecture
19:21
51:53

DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8

22:23
54:55

Reserved 0

24, 56 DFTL Data cache tag uses distributed RAM C_DCACHE_FORCE_TAG_LUTRAM

25, 57 DCDW Data cache data width C_DCACHE_DATA_WIDTH > 0

26, 58 AXI4DC Data Cache AXI interface uses AXI4 protocol,
with support for exclusive access

C_M_AXI_DC_EXCLUSIVE_ACCESS

27:31
59:63

Reserved 0

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-31: Processor Version Register 6 (PVR6)
Bits Name Description Value

0:C_ADDR_SIZE-1 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 2-32: Processor Version Register 7 (PVR7)
Bits Name Description Value

0:C_ADDR_SIZE-1 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 2-33: Processor Version Register 8 (PVR8)
Bits Name Description Value

0:C_ADDR_SIZE-1 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 2-34: Processor Version Register 9 (PVR9)
Bits Name Description Value

0:C_ADDR_SIZE-1 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Table 2-30: Processor Version Register 5 (PVR5) (Cont’d)

Bits1 Name Description Value
MicroBlaze Processor Reference Guide 52
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=52

Chapter 2: MicroBlaze Architecture
Table 2-35: Processor Version Register 10 (PVR10)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0:7 ARCH Target architecture: Defined by parameter C_FAMILY
32:39 0xF

0x10
0x11

0x12

0x13
0x14
0x15
0x16
0x17
0x18
0x19

=
=
=

=

=
=
=
=
=
=
=

Virtex®-7, Defense Grade Virtex-7 Q
Kintex®-7, Defense Grade Kintex-7 Q
Artix®-7, Automotive Artix-7,
Defense Grade Artix-7 Q
Zynq®-7000, Automotive Zynq-7000,
Defense Grade Zynq-7000 Q
UltraScale™ Virtex
UltraScale Kintex
UltraScale+™ Zynq
UltraScale+ Virtex
UltraScale+ Kintex
Spartan®-7
Versal®

8:13
40:45

ASIZE Number of extended address bits C_ADDR_SIZE - 32

14:31
46:63

Reserved 0

Table 2-36: Processor Version Register 11 (PVR11)
Bits1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description Value
0:1
32:33

MMU Use MMU: C_USE_MMU

0 = None
1 = User Mode

2 = Protection
3 = Virtual

2:4
34:36

ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7
37:39

DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9
40:41

TLBACC TLB register access: C_MMU_TLB_ACCESS

0 = Minimal
1 = Read

2 = Write
3 = Full

10:14
42:46

ZONES Number of memory protection zones C_MMU_ZONES

15, 47 PRIVINS Privileged instructions:
0 = Full protection
1 = Allow stream instructions

C_MMU_PRIVILEGED_INSTR

16, 48 Reserved Reserved for future use 0

17:31
49:63

RSTMSR Reset value for MSR C_RESET_MSR_IE << 2 |
C_RESET_MSR_BIP << 4 |
C_RESET_MSR_ICE << 6 |
C_RESET_MSR_DCE << 8 |
C_RESET_MSR_EE << 9 |
C_RESET_MSR_EIP << 10
MicroBlaze Processor Reference Guide 53
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=53

Chapter 2: MicroBlaze Architecture
Table 2-37: Processor Version Register 12 (PVR12)
Bits1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Name Description Value
0:31
0:C_ADDR_SIZE-1

VECTORS Location of MicroBlaze vectors C_BASE_VECTORS
MicroBlaze Processor Reference Guide 54
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=54

Chapter 2: MicroBlaze Architecture
Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one
clock cycle to complete. Consequently, the number of clock cycles necessary for a specific
instruction to complete is equal to the number of pipeline stages, and one instruction is
completed on every cycle in the absence of data, control or structural hazards.

A data hazard occurs when the result of an instruction is needed by a subsequent
instruction. This can result in stalling the pipeline, unless the result can be forwarded to the
subsequent instruction. The MicroBlaze GNU Compiler attempts to avoid data hazards by
reordering instructions during optimization.

A control hazard occurs when a branch is taken, and the next instruction is not immediately
available. This results in stalling the pipeline. MicroBlaze provides delay slot branches and
the optional branch target cache to reduce the number of stall cycles.

A structural hazard occurs for a few instructions that require multiple clock cycles in the
execute stage or a later stage to complete. This is achieved by stalling the pipeline.

Load and store instructions accessing slower memory might take multiple cycles. The
pipeline is stalled until the access completes. MicroBlaze provides the optional data cache
to improve the average latency of slower memory.

When executing from slower memory, instruction fetches might take multiple cycles. This
additional latency directly affects the efficiency of the pipeline. MicroBlaze implements an
instruction prefetch buffer that reduces the impact of such multi-cycle instruction memory
latency. While the pipeline is stalled for any other reason, the prefetch buffer continues to
load sequential instructions speculatively. When the pipeline resumes execution, the fetch
stage can load new instructions directly from the prefetch buffer instead of waiting for the
instruction memory access to complete.

If instructions are modified during execution (for example with self-modifying code), the
prefetch buffer should be emptied before executing the modified instructions, to ensure
that it does not contain the old unmodified instructions.

RECOMMENDED: The recommended way to do this is using an MBAR instruction, although it is also
possible to use a synchronizing branch instruction, for example BRI 4.

MicroBlaze also provides the optional instruction cache to improve the average instruction
fetch latency of slower memory.

All hazards are independent, and can potentially occur simultaneously. In such cases, the
number of cycles the pipeline is stalled is defined by the hazard with the longest stall
duration.
MicroBlaze Processor Reference Guide 55
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=55

Chapter 2: MicroBlaze Architecture
Three Stage Pipeline
With C_AREA_OPTIMIZED set to 1 (Area), the pipeline is divided into three stages to
minimize hardware cost: Fetch, Decode, and Execute.

The three stage pipeline does not have any data hazards. Pipeline stalls are caused by
control hazards, structural hazards due to multi-cycle instructions, memory accesses using
slower memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are barrel shift, multiply, divide and floating-point
instructions.

Five Stage Pipeline
With C_AREA_OPTIMIZED set to 0 (Performance), the pipeline is divided into five stages to
maximize performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and
Writeback (WB).

The five stage pipeline has two kinds of data hazard:

• An instruction in OF needs the result from an instruction in EX as a source operand. In
this case, the EX instruction categories are load, store, barrel shift, multiply, divide, and
floating-point instructions. This results in a 1-2 cycle stall.

• An instruction in OF uses the result from an instruction in MEM as a source operand. In
this case, the MEM instruction categories are load, multiply, and floating-point
instructions. This results in a 1 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards due to multi-
cycle instructions, memory accesses using slower memory, instruction fetch from slower
memory, or stream accesses.

The multi-cycle instruction categories are divide and floating-point instructions.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7
instruction 1 Fetch Decode Execute
instruction 2 Fetch Decode Execute Execute Execute
instruction 3 Fetch Decode Stall Stall Execute

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9
instruction 1 IF OF EX MEM WB
instruction 2 IF OF EX MEM MEM MEM WB
instruction 3 IF OF EX Stall Stall MEM WB
MicroBlaze Processor Reference Guide 56
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=56

Chapter 2: MicroBlaze Architecture
Eight Stage Pipeline
With C_AREA_OPTIMIZED set to 2 (Frequency), the pipeline is divided into eight stages to
maximize possible frequency: Fetch (IF), Decode (OF), Execute (EX), Access Memory 0 (M0),
Access Memory 1 (M1), Access Memory 2 (M2), Access Memory 3 (M3) and Writeback (WB).

The eight stage pipeline has four kinds of data hazard:

• An instruction in OF needs the result from an instruction in EX as a source operand. In
this case, the EX instruction categories are load, store, barrel shift, multiply, divide, and
floating-point instructions. This results in a 1-5 cycle stall.

• An instruction in OF uses the result from an instruction in M0 as a source operand. In
this case, the M0 instruction categories are load, multiply, divide, and floating-point
instructions. This results in a 1-4 cycle stall.

• An instruction in OF uses the result from an instruction in M1 or M2 as a source
operand. In this case, the M1 or M2 instruction categories are load, divide, and
floating-point instructions. This results in a 1-3 or 1-2 cycle stall respectively.

• An instruction in OF uses the result from an instruction in M3 as a source operand. In
this case, M3 instruction categories are load and floating-point instructions. This results
in a 1 cycle stall.

In addition to multi-cycle instructions, there are three other kinds of structural hazards:

• An instruction in OF is a stream instruction, and the instruction in EX is a stream, load,
store, divide, or floating-point instruction with corresponding exception implemented.
This results in a 1 cycle stall.

• An instruction in OF is a stream instruction, and the instruction in M0, M1, M2 or M3 is
a load, store, divide, or floating-point instruction with corresponding exception
implemented. This results in a 1 cycle stall.

• An instruction in M0 is a load or store instruction, and the instruction in M1, M2 or M3
is a load, store, divide, or floating-point instruction with corresponding exception
implemented. This results in a 1 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards, memory
accesses using slower memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are divide instructions and floating-point instructions
FDIV, FINT, FSQRT, DDIV, DLONG, and DSQRT.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9 cycle10 cycle11
instruction 1 IF OF EX M0 M1 M2 M3 WB
instruction 2 IF OF EX M0 M0 M1 M2 M3 WB
instruction 3 IF OF EX Stall M0 M1 M2 M3 WB
MicroBlaze Processor Reference Guide 57
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=57

Chapter 2: MicroBlaze Architecture
Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a new
instruction from the calculated branch address. A taken branch in MicroBlaze takes three
clock cycles to execute, two of which are required for refilling the pipeline. To reduce this
latency overhead, MicroBlaze supports branches with delay slots and the optional branch
target cache.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For example,
the BNE instruction does not execute the subsequent instruction (does not have a delay
slot), whereas BNED executes the next instruction before control is transferred to the
branch location.

A delay slot must not contain the following instructions: IMM, IMML, branch, or break.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed. Instructions that could cause recoverable exceptions (for example
unaligned word or halfword load and store) are allowed in the delay slot.

If an exception is caused in a delay slot the ESR[DS] bit is set, and the exception handler is
responsible for returning the execution to the branch target (stored in the special purpose
register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it contains the
address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a branch target cache (BTC) coupled
with a branch prediction scheme. With the BTC enabled, a correctly predicted immediate
branch or return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return
instruction the first time the instruction is encountered. The next time it is encountered, it
is usually found in the Branch Target Cache, and the Instruction Fetch Program Counter is
then simply changed to the saved target address, in case the branch should be taken.
Unconditional branches and return instructions are always taken, whereas conditional
branches use branch prediction, to avoid taking a branch that should not have been taken
and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is
executed. This also occurs when the memory barrier or synchronizing branch follows
immediately after a branch instruction, even if that branch is taken. To avoid inadvertently
MicroBlaze Processor Reference Guide 58
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=58

Chapter 2: MicroBlaze Architecture
clearing the BTC, the memory barrier or synchronizing branch should not be placed
immediately after a branch instruction.

There are three cases where the branch prediction can cause a mispredict, namely:

• A conditional branch that should not have been taken, is actually taken,
• A conditional branch that should actually have been taken, is not taken,
• The target address of a return instruction is incorrect, which might occur when

returning from a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches
the execute stage, and the branch prediction bits or target address are updated in the BTC,
to reflect the actual instruction behavior. This correction incurs a penalty of 2 clock cycles
for the 5-stage pipeline and 7-9 clock cycles for the 8-stage pipeline.

The size of the BTC can be selected with C_BRANCH_TARGET_CACHE_SIZE. The default
recommended setting uses one block RAM with 32-bit address (C_ADDR_SIZE = 32) and
provides 512 entries. When selecting 64 entries or below, distributed RAM is used to
implement the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs are
protected by parity. In case of a parity error, the branch is not predicted. To avoid
accumulating errors in this case, the BTC should be cleared periodically by a synchronizing
branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_CACHE is set to 1 and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

Pipeline Hazard Example
The effect of a data hazard is illustrated in Table 2-38, using the five stage pipeline.

The example shows a data hazard for a multiplication instruction, where the subsequent
add instruction needs the result in register r3 to proceed. This means that the add
instruction is stalled in OF during cycle 3 and 4 until the multiplication is complete.

Table 2-38: Multiplication Data Hazard Example
Cycle IF OF EX MEM WB

1 mul r3, r4, r5
2 add r6, r3, r4 mul r3, r4, r5
3 add r6, r3, r4 mul r3, r4, r5
4 add r6, r3, r4 - mul r3, r4, r5
5 add r6, r3, r4 - - mul r3, r4, r5
6 add r6, r3, r4 - -
MicroBlaze Processor Reference Guide 59
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=59

Chapter 2: MicroBlaze Architecture
Avoiding Data Hazards
In some cases, the MicroBlaze GNU Compiler is not able to optimize code to completely
avoid data hazards. However, it is often possible to change the source code in order to
achieve this, mainly by better utilization of the general purpose registers.

Two C code examples are shown here:

• Multiplication of a static array in memory
static int a[4], b[4], c[4];

register int a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3;

a0 = a[0]; a1 = a[1]; a2 = a[2]; a3 = a[3];

b0 = b[0]; b1 = b[1]; b2 = b[2]; b3 = b[3];

c0 = a0 * b0; c1 = a1 * b1; c2 = a2 * b2; c3 = a3 * b3;

c[3] = c3; c2 = c[2]; c1 = c[1]; c0 = c[0];

This code ensures that load instructions are first executed to load operands into
separate registers, which are then multiplied and finally stored. The code can be
extended up to 8 multiplications without running out of general purpose registers.

• Fetching a data packet from an AXI4-Stream interface.
#include <mb_interface.h>

static int a[4];

register int a0, a1, a2, a3;

getfsl(a0, 0); getfsl(a1, 0); getfsl(a2, 0); getfsl(a3, 0);

a[3] = a3; a[1] = a1; a[2] = a2; a[0] = a0;

This code ensures that get instructions using different registers are first executed, and
then data is stored. The code can be extended to up to 16 accesses without running out
of general purpose registers.
MicroBlaze Processor Reference Guide 60
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=60

Chapter 2: MicroBlaze Architecture
Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and data
accesses are done in separate address spaces.

The instruction address space has a 32-bit virtual address range with 32-bit MicroBlaze
(that is, handles up to 4GB of instructions), and can be extended up to a 64-bit physical
address range when using the MMU in virtual mode. With 64-bit MicroBlaze, the instruction
address space has a default 32-bit range, and can be extended up to a 64-bit range (that is,
handles from 4GB to 16EB of instructions).

The data address space has a default 32-bit range, and can be extended up to a 64-bit
range (that is, handles from 4GB to 16EB of data). The instruction and data memory ranges
can be made to overlap by mapping them both to the same physical memory. The latter is
necessary for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big
endian or little endian, bit-reversed format, depending on the selected endianness.
MicroBlaze supports word, halfword, and byte accesses to data memory.

Big endian format is supported when using the MMU in virtual or protected mode
(C_USE_MMU > 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Data accesses must be aligned (word accesses must be on word boundaries, halfword on
halfword boundaries), unless the processor is configured to support unaligned exceptions.
All instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch
buffer and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions
beyond the end of physical memory, which might cause an instruction bus error or a
processor stall, instructions must not be located too close to the end of physical memory.
The instruction prefetch buffer requires 16 bytes margin, and using instruction cache
streams adds two additional cache lines (32, 64 or 128 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory-mapped
I/O). The processor has up to three interfaces for memory accesses:

• Local Memory Bus (LMB)
• Advanced eXtensible Interface (AXI4) for peripheral access
• Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for cache

access

The LMB memory address range must not overlap with AXI4 ranges.

The C_ENDIANNESS parameter is always set to little endian.
MicroBlaze Processor Reference Guide 61
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=61

Chapter 2: MicroBlaze Architecture
MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read
hits, except with C_AREA_OPTIMIZED set to 1 (Area), when data side accesses and data
cache read hits require two clock cycles, and with C_FAULT_TOLERANT set to 1, when byte
writes and halfword writes to LMB normally require two clock cycles.

The data cache write latency depends on C_DCACHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE_USE_WRITEBACK is cleared to 0,
the write latency normally is two cycles (more if the posted-write buffer in the memory
controller is full).

The MicroBlaze instruction and data caches can be configured to use 4, 8 or 16 word cache
lines. When using a longer cache line, more bytes are prefetched, which generally improves
performance for software with sequential access patterns. However, for software with a
more random access pattern the performance can instead decrease for a given cache size.
This is caused by a reduced cache hit rate due to fewer available cache lines.

For details on the different memory interfaces, see Chapter 3, MicroBlaze Signal Interface
Description.

Privileged Instructions
The following MicroBlaze instructions are privileged:

• GET, GETD, PUT, PUTD (except when explicitly allowed)
• WIC, WDC
• MTS, MTSE
• MSRCLR, MSRSET (except when only the C bit is affected)
• BRK

• RTID, RTBD, RTED
• BRKI (except when jumping to physical address C_BASE_VECTORS + 0x8 or

C_BASE_VECTORS + 0x18)
• SLEEP, HIBERNATE, SUSPEND
• LBUEA, LHUEA, LWEA, SBEA, SHEA, SWEA (except when explicitly allowed)

Attempted use of these instructions when running in user mode causes a privileged
instruction exception. When setting the parameter C_MMU_PRIVILEGED_INSTR to 1 or 3, the
instructions GET, GETD, PUT, and PUTD are not considered privileged, and can be executed
when running in user mode.
MicroBlaze Processor Reference Guide 62
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=62

Chapter 2: MicroBlaze Architecture
CAUTION! It is strongly discouraged to do this, unless absolutely necessary for performance reasons,
because it allows application processes to interfere with each other.

When setting the parameter C_MMU_PRIVILEGED_INSTR to 2 or 3, the extended address
instructions LBUEA, LHUEA, LWEA, SBEA, SHEA, and SWEA are not considered privileged, and
will bypass the MMU translation, treating the extended address as a physical address. This
is useful to run software in virtual mode while still having direct access to the full physical
address space, but is discouraged in all cases where protection between application
processes is necessary.

There are six ways to leave user mode and virtual mode:
1. Hardware generated reset (including debug reset)
2. Hardware exception
3. Non-maskable break or hardware break
4. Interrupt
5. Executing "BRALID Re,C_BASE_VECTORS + 0x8” to perform a user vector exception
6. Executing the software break instructions “BRKI” jumping to physical address

C_BASE_VECTORS + 0x8 or C_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode
status is saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged
mode programs) using the BRALID or BRKI instruction, jumping to physical address
C_BASE_VECTORS + 0x8. Executing this instruction causes a system-call exception to occur.
The exception handler determines which system-service routine to call and whether the
calling application has permission to call that service. If permission is granted, the
exception handler performs the actual procedure call to the system-service routine on
behalf of the application program.

The execution environment expected by the system-service routine requires the execution
of prologue instructions to set up that environment. Those instructions usually create the
block of storage that holds procedural information (the activation record), update and
initialize pointers, and save volatile registers (the registers that the system-service routine
uses). Prologue code can be inserted by the linker when creating an executable module, or
it can be included as stub code in either the system-call interrupt handler or the system-
library routines.

Returns from the system-service routine reverse the process described above. Epilogue
code is executed to unwind and deallocate the activation record, restore pointers, and
restore volatile registers. The interrupt handler executes a return from exception instruction
(RTED) to return to the application.
MicroBlaze Processor Reference Guide 63
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=63

Chapter 2: MicroBlaze Architecture
Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space
with 32-bit MicroBlaze, and up to a 16 EB address space with 64-bit MicroBlaze depending
on parameter C_ADDR_SIZE.

The processor can interpret this address space in one of two ways, depending on the
translation mode:

• In real mode, effective addresses are used to directly access physical memory
• In virtual mode, effective addresses are translated into physical addresses by the

virtual-memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data
anywhere in the physical address space. System software can move inactive programs and
data out of physical memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually
implemented by the system. This frees the programmer from working within the limits
imposed by the amount of physical memory present in a system. Programmers do not need
to know which physical-memory addresses are assigned to other software processes and
hardware devices. The addresses visible to programs are translated into the appropriate
physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small
as 1 KB can be individually protected from unauthorized access. Protection and relocation
enable system software to support multitasking. This capability gives the appearance of
simultaneous or near-simultaneous execution of multiple programs.
In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU),
available when C_USE_MMU is set to 3 (Virtual) and C_AREA_OPTIMIZED is set to 0
(Performance) or 2 (Frequency). The MMU controls effective-address to physical-address
mapping and supports memory protection. Using these capabilities, system software can
implement demand-paged virtual memory and other memory management schemes.

The MicroBlaze MMU implementation is based upon the PowerPC™ 405 processor.

The MMU features are summarized as follows:
• Translates effective addresses into physical addresses
• Controls page-level access during address translation
• Provides additional virtual-mode protection control through the use of zones
• Provides independent control over instruction-address and data-address translation

and protection
MicroBlaze Processor Reference Guide 64
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=64

Chapter 2: MicroBlaze Architecture
• Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

• Software controls the page-replacement strategy

Real Mode
The processor references memory when it fetches an instruction and when it accesses data
with a load or store instruction. Programs reference memory locations using a 32-bit
effective address with 32-bit MicroBlaze, and up to a 64-bit effective address with 64-bit
MicroBlaze, calculated by the processor.

When real mode is enabled, the physical address is identical to the effective address and the
processor uses it to access physical memory. After a processor reset, the processor operates
in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the
effective address. Real mode does not provide system software with virtual address
translation, but the full memory access-protection is available, implemented when
C_USE_MMU > 1 (User Mode) and C_AREA_OPTIMIZED = 0 (Performance) or 2 (Frequency).
Implementation of a real-mode memory manager is more straightforward than a virtual-
mode memory manager.

Real mode is often an appropriate solution for memory management in simple embedded
environments, when access-protection is necessary, but virtual address translation is not
required. This can be achieved by configuring memory management to act as a Memory
Protection Unit (MPU) by setting C_USE_MMU to 2 (Protection).

Virtual Mode
In virtual mode, the processor translates an effective address into a physical address using
the process shown in Figure 2-18. With 64-bit MicroBlaze and with the Physical Address
Extension (PAE) the physical address can be extended up to 64 bits. Virtual mode can be
enabled by setting the VM bit in the MSR.
MicroBlaze Processor Reference Guide 65
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=65

Chapter 2: MicroBlaze Architecture
Each address shown in Figure 2-18 contains a page-number field and an offset field. The
page number represents the portion of the address translated by the MMU. The offset
represents the byte offset into a page and is not translated by the MMU. The virtual address
consists of an additional field, called the process ID (PID), which is taken from the PID
register (see Process-ID Register, page 40). The combination of PID and effective page
number (EPN) is referred to as the virtual page number (VPN). The value n is determined by
the page size, as shown in Table 2-39.

System software maintains a page-translation table that contains entries used to translate
each virtual page into a physical page. The page size defined by a page translation entry
determines the size of the page number and offset fields. For example, with 32-bit
MicroBlaze, when a 4 kB page size is used, the page-number field is 20 bits and the offset
field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside
buffer (TLB). When translating a virtual address, the MMU examines the page-translation
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table,
only entries contained in the processor TLB are examined. When a page-translation entry is
found with a matching VPN, the corresponding physical-page number is read from the
entry and combined with the offset to form the physical address. This physical address is
used by the processor to reference memory.

X-Ref Target - Figure 2-18

Figure 2-18: Virtual-Mode Address Translation

3124

Processor ID Register

31n

32-bit Effective Address

0

Effective Page Number Offset

39n+8

40-bit Virtual Address

8

Effective Page Number OffsetPID

0

Translation Look-Aside
Buffer (TLB) Look-Up

31

32-bit Physical Address

0

Real Page Number Offset

32-63

Up to 64-bit Physical Address

0

Physical Address Extension: Real Page Number Offset

or

0

X19755-111617
MicroBlaze Processor Reference Guide 66
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=66

Chapter 2: MicroBlaze Architecture
System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in
effective-address regions that overlap each other. This overlap must be resolved by system
software if multitasking is supported. Assigning a PID to each process enables system
software to resolve the overlap by relocating each process into a unique region of virtual-
address space. The virtual-address space mappings enable independent translation of each
process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure
containing page translations. The requirement for software-managed page translation
represents an architectural trade-off targeted at embedded-system applications.
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory
management to be optimized for each embedded system in the following ways:

• The page-translation table can be organized to maximize page-table search
performance (also called table walking) so that a given page-translation entry is
located quickly. Most general-purpose processors implement either an indexed page
table (simple search method, large page-table size) or a hashed page table (complex
search method, small page-table size). With software table walking, any hybrid
organization can be employed that suits the particular embedded system. Both the
page-table size and access time can be optimized.

• Independent page sizes can be used for application modules, device drivers, system
service routines, and data. Independent page-size selection enables system software to
more efficiently use memory by reducing fragmentation (unused memory). For
example, a large data structure can be allocated to a 16 MB page and a small I/O
device-driver can be allocated to a 1 KB page.

• Page replacement can be tuned to minimize the occurrence of missing page
translations. As described in the following section, the most-frequently used page
translations are stored in the translation look-aside buffer (TLB).

Software is responsible for deciding which translations are stored in the TLB and which
translations are replaced when a new translation is required. The replacement strategy
can be tuned to avoid thrashing, whereby page-translation entries are constantly being
moved in and out of the TLB. The replacement strategy can also be tuned to prevent
replacement of critical-page translations, a process sometimes referred to as page
locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data
page-translation entries accessible by the MMU. Software is responsible for reading entries
from the page-translation table in system memory and storing them in the TLB. The
following section describes the unified TLB in more detail. Internally, the MMU also contains
shadow TLBs for instructions and data, with sizes configurable by C_MMU_ITLB_SIZE and
C_MMU_DTLB_SIZE respectively.
MicroBlaze Processor Reference Guide 67
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=67

Chapter 2: MicroBlaze Architecture
These shadow TLBs are managed entirely by the processor (transparent to software) and are
used to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address
translation when the processor is running in virtual mode, memory protection, and storage
control. Each entry within the TLB contains the information necessary to identify a virtual
page (PID and effective page number), specify its translation into a physical page,
determine the protection characteristics of the page, and specify the storage attributes
associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

• Unified TLB: The UTLB contains 64 entries and is pseudo-associative. Instruction-page
and data-page translation can be stored in any UTLB entry. The initialization and
management of the UTLB is controlled completely by software.

• Instruction Shadow TLB: The ITLB contains instruction page-translation entries and is
fully associative. The page-translation entries stored in the ITLB represent the most-
recently accessed instruction-page translations from the UTLB. The ITLB is used to
minimize contention between instruction translation and UTLB-update operations. The
initialization and management of the ITLB is controlled completely by hardware and is
transparent to software.

• Data Shadow TLB: The DTLB contains data page-translation entries and is fully
associative. The page-translation entries stored in the DTLB represent the most-recently
accessed data-page translations from the UTLB. The DTLB is used to minimize
contention between data translation and UTLB-update operations. The initialization
and management of the DTLB is controlled completely by hardware and is transparent
to software.
MicroBlaze Processor Reference Guide 68
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=68

Chapter 2: MicroBlaze Architecture
The following figure provides the translation flow for TLB.
X-Ref Target - Figure 2-19

Figure 2-19: TLB Address Translation Flow

Perform DTLB
Look-Up

Generate I-side
Effective Address

No Translation Perform ITLB
Look-Up

Translation Disabled
(MSR[VM]=0)

Translation Enabled
(MSR[VM]=1)

Generate D-side
Effective Address

No Translation

Translation Enabled
(MSR[VM]=1)

Translation Disabled
(MSR[VM]=0)

ITLB Hit ITLB Miss DTLB Miss DTLB Hit

Extract Real
Address from ITLB

Perform UTLB
Look-Up

Extract Real
Address from DTLB

Continue I-cache
Access

Continue I-cache
or D-cache

Access

UTLB Hit UTLB Miss

Extract Real
Address from UTLB I-Side TLB Miss or

D-Side TLB Miss
Exception

Route Address
to ITLB

Route Address
to DTLB

X19756-111617
MicroBlaze Processor Reference Guide 69
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=69

Chapter 2: MicroBlaze Architecture
TLB Entry Format

The following figure shows the format of a TLB entry. Each TLB entry ranges from 68 bits up
to 100 bits and is composed of two portions: TLBLO (also referred to as the data entry), and
TLBHI (also referred to as the tag entry).

When 64-bit MicroBlaze or the Physical Address Extension (PAE) is enabled, the TLB entry is
extended with up to 32 additional bits in the TLBLO RPN field to support up to a 64 bit
physical address.

The TLB entry contents are described in more detail in Table 2-21 and Table 2-22, including
the TLBLO format with PAE or 64-bit MicroBlaze enabled.

The fields within a TLB entry are categorized as follows:

• Virtual-page identification (TAG, SIZE, V, TID): These fields identify the page-translation
entry. They are compared with the virtual-page number during the translation process.

• Physical-page identification (RPN, SIZE): These fields identify the translated page in
physical memory.

• Access control (EX, WR, ZSEL): These fields specify the type of access allowed in the
page and are used to protect pages from improper accesses.

• Storage attributes (W, I, M, G, E, U0): These fields specify the storage-control attributes,
such as caching policy for the data cache (write-back or write-through), whether a page
is cacheable, and how bytes are ordered (endianness).

Table 2-39 shows the relationship between the TLB-entry SIZE field and the translated
page size. This table also shows how the page size determines which address bits are
involved in a tag comparison, which address bits are used as a page offset, and which bits
in the physical page number are used in the physical address. With 64-bit MicroBlaze or PAE
enabled, the most significant bits of the physical address are directly taken from the
extended RPN field.

X-Ref Target - Figure 2-20

Figure 2-20: TLB Entry Format (PAE Disabled)

RPN

220 31282423

ZSEL W I G

TAG

220 3528272625

SIZE V E TID

TLBLO:

TLBHI:

29 30

M

U0

EX WR

X19757-111617
MicroBlaze Processor Reference Guide 70
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=70

Chapter 2: MicroBlaze Architecture
TLB Access

When the MMU translates a virtual address (the combination of PID and effective address)
into a physical address, it first examines the appropriate shadow TLB for the page
translation entry. If an entry is found, it is used to access physical memory. If an entry is not
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB must
be accessed due to a shadow TLB miss. The miss latency ranges from 2-32 cycles. The DTLB
has priority over the ITLB if both simultaneously access the UTLB.

Figure 2-21 shows the logical process the MMU follows when examining a page-translation
entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid
• The TAG field in the entry matches the effective address EPN under the control of the

SIZE field in the entry
• The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an
exception, described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID.
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-
independent translation. Pages that are accessed globally by all processes should be
assigned a TID value of 0x00. A PID value of 0x00 does not identify a process that can access
any page. When PID=0x00, a page-translation hit only occurs when TID=0x00. It is possible
for software to load the TLB with multiple entries that match an EA[EPN] and PID

Table 2-39: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
TLBHI
Field

Tag Comparison
Bit Range1

1. The bit index n = C_ADDR_SIZE with 64-bit MicroBlaze, and 32 otherwise.

Page Offset

PAE Disabled PAE or 64-bit Enabled2

2. The bit index n = C_ADDR_SIZE.

Physical
Page

Number

RPN
Bits

Clear to 0

Physical
Page

Number
RPN Bits
Clear to 0

1 KB 000 TAG and Address[0:n-11] Address[22:31] RPN[0:21] - RPN[0:n-11] -
4 KB 001 TAG and Address[0:n-13] Address[20:31] RPN[0:19] 20:21 RPN[0:n-13] n-12:n-11
16 KB 010 TAG and Address[0:n-15] Address[18:31] RPN[0:17] 18:21 RPN[0:n-15] n-14:n-11
64 KB 011 TAG and Address[0:n-17] Address[16:31] RPN[0:15] 16:21 RPN[0:n-17] n-16:n-11
256 KB 100 TAG and Address[0:n-19] Address[14:31] RPN[0:13] 14:21 RPN[0:n-19] n-18:n-11
1 MB 101 TAG and Address[0:n-21] Address[12:31] RPN[0:11] 12:21 RPN[0:n-21] n-20:n-11
4 MB 110 TAG and Address[0:n-23] Address[10:31] RPN[0:9] 10:21 RPN[0:n-23] n-22:n-11
16 MB 111 TAG and Address[0:n-25] Address[8:31] RPN[0:7] 8:21 RPN[0:n-25] n-24:n-11
MicroBlaze Processor Reference Guide 71
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=71

Chapter 2: MicroBlaze Architecture
combination. However, this is considered a programming error and results in undefined
behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some
or all of the bits in this field are used, depending on the value of the SIZE field (see
Table 2-39).

For example, with PAE disabled and 32-bit MicroBlaze, if the SIZE field specifies a 256 kB
page size, RPN[0:13] represents the physical page number and is used to form the physical
address. RPN[14:21] is not used, and software must clear those bits to 0 when initializing the
TLB entry. The remainder of the physical address is taken from the page-offset portion of
the EA. If the page size is 256 kB, the 32-bit physical address is formed by concatenating
RPN[0:13] with bits 14:31 of the effective address.

Instead, with PAE enabled and assuming a physical address size of 40 bits (C_ADDR_SIZE set
to 40), RPN[0:21] represents the physical page number and RPN[22:29] is not used. The 40-
bit physical address is formed by concatenating RPN[0:21] with bits 14:31 of the effective
address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields.
These fields indicate whether the currently executing program is allowed to perform the
requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to
access the page. The storage-attribute fields specify the caching policy for memory
accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the
instruction that caused the failure and transfers control to an interrupt handler to resolve
the failure. A TLB access can fail for two reasons:

• A matching TLB entry was not found, resulting in a TLB miss
• A matching TLB entry was found, but access to the page was prevented by either the

storage attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real
mode, all address translation and memory-protection checks performed by the MMU are
disabled. After system software initializes the UTLB with page-translation entries,
management of the MicroBlaze UTLB is usually performed using interrupt handlers running
in real mode.
MicroBlaze Processor Reference Guide 72
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=72

Chapter 2: MicroBlaze Architecture
The following figure diagrams the general process for examining a TLB entry.

The following sections describe the conditions under which exceptions occur due to TLB
access failures.

X-Ref Target - Figure 2-21

Figure 2-21: General Process for Examining a TLB Entry

Check TLB-Entry
Using Virtual Address

TLB HI[V]=1 TLB Entry MissNo

TLBHI[TID]=0x00

Yes

Compare
TLBHI[TAG] with EA[EPN]

Using TLBHI[SIZE]

Compare
TLBHI[TID] with PID TLB Entry MissNo Match

Check Access Access ViolationNot allowed

Match (TLB Hit)

Allowed

Check for
Guarded Storage Storage ViolationGuarded

Data Reference Instruction Fetch

Read TLBLO[RPN]
Using TLBHI[SIZE]

Extract Offset from EA
using TLBHI[SIZE]

Generate Physical Address from
TLBLO[RPN] and Offset

Yes No

Match

TLB Entry MissNo Match

Not Guarded

X19758-111617
MicroBlaze Processor Reference Guide 73
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=73

Chapter 2: MicroBlaze Architecture
Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access
to a page is not permitted for any of the following reasons:

• From user mode:

- The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
This applies to load and store instructions.

- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 11). This applies to store instructions.

• From privileged mode:

- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when
access to a page is not permitted for any of the following reasons:

• From user mode:

- The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 11).

- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).
• From privileged mode:

- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11).

- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any load or store
instruction can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a
valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction
fetch can cause an instruction TLB-miss exception.
MicroBlaze Processor Reference Guide 74
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=74

Chapter 2: MicroBlaze Architecture
Access Protection
System software uses access protection to protect sensitive memory locations from
improper access. System software can restrict memory accesses for both user-mode and
privileged-mode software. Restrictions can be placed on reads, writes, and instruction
fetches. Access protection is available when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for
a virtual page specifies the type of access allowed to the page.

The TLB entry also specifies a zone-protection field in the zone-protection register that is
used to override the access controls specified by the TLB entry.

TLB Access-Protection Controls

Each TLB entry controls three types of access:

• Process: Processes are protected from unauthorized access by assigning a unique
process ID (PID) to each process. When system software starts a user-mode application,
it loads the PID for that application into the PID register. As the application executes,
memory addresses are translated using only TLB entries with a TID field in Translation
Look-Aside Buffer High (TLBHI) that matches the PID. This enables system software to
restrict accesses for an application to a specific area in virtual memory.
A TLB entry with TID=0x00 represents a process-independent translation. Pages that
are accessed globally by all processes should be assigned a TID value of 0x00.

• Execution: The processor executes instructions only if they are fetched from a virtual
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents execution
of instructions fetched from a page, instead causing an instruction-storage interrupt
(ISI) to occur. The ISI does not occur when the instruction is fetched, but instead occurs
when the instruction is executed. This prevents speculatively fetched instructions that
are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write: Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only
page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs
running in user mode can be prevented from reading a page. Privileged programs always
have read access to a page.
MicroBlaze Processor Reference Guide 75
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=75

Chapter 2: MicroBlaze Architecture
Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are
an arbitrary grouping of virtual pages with common access protection. Zones can contain
any number of pages specifying any combination of page sizes. There is no requirement for
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection
override applied to each of 16 possible zones. The protection override for a zone is encoded
in the ZPR as a 2-bit field.

The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone fields
from the ZPR (Z0–Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone.
Without the ZPR, protection changes require individual alterations to each page translation
entry within the zone.

Unimplemented zones (when C_MMU_ZONES < 16) are treated as if they contained 11.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management
software. System software manages the UTLB to tell the MMU how to translate virtual
addresses into physical addresses. When a problem occurs due to a missing translation or
an access violation, the MMU communicates the problem to system software using the
exception mechanism. System software is responsible for providing interrupt handlers to
correct these problems so that the MMU can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively.
With PAE enabled, the MFSE and MTSE instructions are used to access the most significant
part of the real page number. These instructions use the TLBX register index (numbered 0 to
63) corresponding to one of the 64 entries in the UTLB. The tag and data portions are read
and written separately, so software must execute two MFS or MTS instructions, and also an
additional MFSE or MTSE instruction when PAE is enabled, to completely access an entry.

With 64-bit MicroBlaze, the MFS and MTS instructions can access the entire contents of the
UTLB entry directly.

The UTLB is searched for a specific translation using the TLBSX register. TLBSX locates a
translation using an effective address and loads the corresponding UTLB index into the
TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the
tag portion of a TLB entry (TLBHI[V]).
MicroBlaze Processor Reference Guide 76
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=76

Chapter 2: MicroBlaze Architecture
When C_FAULT_TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of
a parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each
entry in the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more memory than
is physically available. Some of the software and data pages must be stored outside
physical memory, such as on a hard drive, when they are not used. Ideally, the most-
frequently used pages stay in physical memory and infrequently used pages are stored
elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it is
important to know whether the replaced (old) pages were modified.

If they were modified, they must be saved prior to loading the replacement (new) pages.
If the old pages were not modified, the new pages can be loaded without saving the old
pages.

• A limited number of page translations are kept in the UTLB. The remaining translations
must be stored in the page-translation table. When a translation is not found in the
UTLB (due to a miss), system software must decide which UTLB entry to discard so that
the missing translation can be loaded. It is desirable for system software to replace
infrequently used translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses
and page modifications. MicroBlaze does not track page access and page modification in
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage
exception to collect this information. As the information is collected, it can be stored in a
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical
memory and which are replaced when physical-memory space is required. System software
can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This requires
page translations be initialized as not valid (TLBHI[V]=0) to indicate they have not been
accessed. The first attempt to access a page causes a TLB-miss exception, either because
the UTLB entry is marked not valid or because the page translation is not present in the
UTLB. The TLB-miss handler updates the UTLB with a valid translation (TLBHI[V]=1). The set
valid bit serves as a record that the page and its translation have been accessed. The TLB-
miss handler can also record the information in a separate data structure associated with
the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten
with a new page or the old page must first be stored to a hard disk. System software can use
the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This
requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they have
MicroBlaze Processor Reference Guide 77
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=77

Chapter 2: MicroBlaze Architecture
not been modified. The first attempt to write data into a page causes a data-storage
exception, assuming the page has already been accessed and marked valid as described
above. If software has permission to write into the page, the data-storage handler marks the
page as writable (TLBLO[WR]=1) and returns.

The set write-protection bit serves as a record that a page has been modified. The data-
storage handler can also record this information in a separate data structure associated
with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new
process is started.
MicroBlaze Processor Reference Guide 78
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=78

Chapter 2: MicroBlaze Architecture
Reset, Interrupts, Exceptions, and Break
MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset
2. Hardware Exception
3. Non-maskable Break
4. Break
5. Interrupt
6. User Vector (Exception)

Table 2-40 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates two
addresses to allow full address range branching (requires an IMM followed by a BRAI
instruction). Normally the vectors start at address 0, but the parameter C_BASE_VECTORS
can be used to locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support by Xilinx. Allocating
these addresses for user applications is likely to conflict with future releases of support
software.

All of these events will clear the reservation bit, used together with the LWX and SWX
instructions to implement mutual exclusion, such as semaphores and spinlocks.

Table 2-40: Vectors and Return Address Register File Location

Event Vector Address Register File
Return Address

Reset C_BASE_VECTORS + 0x0 -
C_BASE_VECTORS + 0x4 -

User Vector (Exception) C_BASE_VECTORS + 0x8 -
C_BASE_VECTORS + 0xC Rx

Interrupt1

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

C_BASE_VECTORS + 0x10 -
C_BASE_VECTORS + 0x14 R14

Break: Non-maskable
hardware C_BASE_VECTORS + 0x18 -

C_BASE_VECTORS + 0x1C R16Break: Hardware
Break: Software
Hardware Exception C_BASE_VECTORS + 0x20 -

C_BASE_VECTORS + 0x24 R17 or BTR

Reserved by Xilinx for future
use

C_BASE_VECTORS + 0x28 -
C_BASE_VECTORS + 0x4F -
MicroBlaze Processor Reference Guide 79
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=79

Chapter 2: MicroBlaze Architecture
Reset
When a Reset or Debug_Rst (1) occurs, MicroBlaze flushes the pipeline and immediately
starts fetching instructions from the reset vector (address C_BASE_VECTORS + 0x0). Both
external reset signals are active high, and it is recommended to assert the signals for at
least 16 cycles.

See MicroBlaze Core Configurability in Chapter 3 for more information on the MSR reset
value parameters, which are used to define the initial value of the Machine Status Register.

Reset does not clear the general purpose registers (r1 - r31) or the instruction and data
caches. To ensure that stale data is not used, software should not assume that the general
purpose registers are zero, and the program should invalidate instruction and data caches
before they are enabled. See Chapter 4, Reset Handling for a C code example of cache
invalidation.

MicroBlaze does not wait for outstanding AXI or LMB transactions to complete before it
begins fetching instructions from the reset vector. When only resetting the processor, all
external accesses must be completed before asserting Reset. This can be achieved with an
MBAR instruction to enter sleep mode or the Pause signal. See Sleep and Pause Functionality
in Chapter 3 for details.

Equivalent Pseudocode

PC ← C_BASE_VECTORS + 0x0
MSR ← C_RESET_MSR_IE << 2 | C_RESET_MSR_BIP << 4 | C_RESET_MSR_ICE << 6 |

C_RESET_MSR_DCE << 8 | C_RESET_MSR_EE << 9 | C_RESET_MSR_EIP << 10
EAR ← 0; ESR ← 0; FSR ← 0
PID ← 0; ZPR ← 0; TLBX ← 0
Reservation ← 0

Hardware Exceptions
MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide exception can
only be enabled if the processor is configured with a hardware divider (C_USE_DIV=1).

When configured with a hardware floating-point unit (C_USE_FPU>0), it can also trap the
following floating-point specific exceptions: underflow, overflow, float division-by-zero,
invalid operation, and denormalized operand error.

When configured with a hardware memory management unit (MMU), it can also trap the
following memory management specific exceptions: Illegal Instruction Exception, Data
Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, and Instruction
TLB Miss Exception.

1. Reset input controlled by the debugger using MDM.
MicroBlaze Processor Reference Guide 80
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=80

Chapter 2: MicroBlaze Architecture
A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware
exception vector (address C_BASE_VECTORS + 0x20). The execution stage instruction in the
exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

• For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data
TLB Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception
upon return. The value is adjusted to return to a preceding IMM instruction, if any. If the
exception is caused by an instruction in a branch delay slot, the value is adjusted to
return to the branch instruction, including adjustment for a preceding IMM instruction,
if any.

• For all other exceptions the register R17 is loaded with the program counter value of
the subsequent instruction, unless the exception is caused by an instruction in a branch
delay slot. If the exception is caused by an instruction in a branch delay slot, the
ESR[DS] bit is set. In this case the exception handler should resume execution from the
branch target address stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.
The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing
the RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following
order, from the highest priority to the lowest:

• Instruction Bus Exception
• Instruction TLB Miss Exception
• Instruction Storage Exception
• Illegal Opcode Exception
• Privileged Instruction Exception or Stack Protection Violation Exception
• Data TLB Miss Exception
• Data Storage Exception
• Unaligned Exception
• Data Bus Exception
• Divide Exception
• FPU Exception
• Stream Exception
MicroBlaze Processor Reference Guide 81
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=81

Chapter 2: MicroBlaze Architecture
Exception Causes

• Stream Exception: The AXI4-Stream exception is caused by executing a get or getd
instruction with the ‘e’ bit set to ‘1’ when there is a control bit mismatch.

• Instruction Bus Exception: The instruction bus exception is caused by errors when
reading data from memory.

- The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an error
response on M_AXI_IP_RRESP.

- The instruction cache AXI4 interface (M_AXI_IC) exception is caused by an error
response on M_AXI_IC_RRESP. The exception can only occur when the parameter
C_ICACHE_ALWAYS_USED is set to 1 and the cache is turned off, or if the MMU
Inhibit Caching bit is set for the address. In all other cases the response is ignored.

- The instructions side local memory (ILMB) can only cause instruction bus exception
when either an uncorrectable error occurs in the LMB memory, as indicated by the
IUE signal, or C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs
in the LMB memory, as indicated by the ICE signal.

• Illegal Opcode Exception: The illegal opcode exception is caused by an instruction
with an invalid major opcode (bits 0 through 5 of instruction). Bits 6 through 31 of the
instruction are not checked. Optional processor instructions are detected as illegal if
not enabled. If the optional feature C_OPCODE_0x0_ILLEGAL is enabled, an illegal
opcode exception is also caused if the instruction is equal to 0x00000000.

• Data Bus Exception: The data bus exception is caused by errors when reading data
from memory or writing data to memory.

- The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error
response on M_AXI_DP_RRESP or M_AXI_DP_BRESP.

- The data cache AXI4 interface (M_AXI_DC) exception is caused by:
- An error response on M_AXI_DC_RRESP or M_AXI_DC_BRESP,
- OKAY response on M_AXI_DC_RRESP in case of an exclusive access using LWX.

The exception can only occur when C_DCACHE_ALWAYS_USED is set to 1 and the
cache is turned off, when an exclusive access using LWX or SWX is performed, or if the
MMU Inhibit Caching bit is set for the address. In all other cases the response is
ignored.

- The data side local memory (DLMB) can only cause instruction bus exception when
either an uncorrectable error occurs in the LMB memory, as indicated by the DUE
signal, or C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the
MicroBlaze Processor Reference Guide 82
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=82

Chapter 2: MicroBlaze Architecture
LMB memory, as indicated by the DCE signal. An error can occur for all read
accesses, and for byte and halfword write accesses.

• Unaligned Exception: For 32-bit MicroBlaze the unaligned exception is caused by a
word access where the address to the data bus has any of the two least significant bits
set, or a half-word access with the least significant bit set.

For 64-bit MicroBlaze the unaligned exception is caused by a long access where the
address to the data bus has any of the three least significant bits set, a word access with
any of the two least significant bits set, or a half-word access with the least significant
bit set.

• Divide Exception: The divide exception is caused by an integer division (idiv or
idivu) where the divisor is zero, or by a signed integer division (idiv) where overflow
occurs (-2147483648 / -1).

• FPU Exception: An FPU exception is caused by an underflow, overflow, divide-by-zero,
illegal operation, or denormalized operand occurring with a floating-point instruction.

- Underflow occurs when the result is denormalized.

- Overflow occurs when the result is not-a-number (NaN).

- The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero
when rB is not infinite.

- Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

• Privileged Instruction Exception: The Privileged Instruction exception is caused by an
attempt to execute a privileged instruction in User Mode.

• Stack Protection Violation Exception: A Stack Protection Violation exception is
caused by executing a load or store instruction using the stack pointer (register R1) as
rA with an address outside the stack boundaries defined by the special Stack Low and
Stack High registers, causing a stack overflow or a stack underflow.

• Data Storage Exception: The Data Storage exception is caused by an attempt to
access data in memory that results in a memory-protection violation.

• Instruction Storage Exception: The Instruction Storage exception is caused by an
attempt to access instructions in memory that results in a memory-protection violation.

• Data TLB Miss Exception: The Data TLB Miss exception is caused by an attempt to
access data in memory, when a valid Translation Look-Aside Buffer entry is not present,
and virtual protected mode is enabled.
MicroBlaze Processor Reference Guide 83
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=83

Chapter 2: MicroBlaze Architecture
• Instruction TLB Miss Exception: The Instruction TLB Miss exception is caused by an
attempt to access instructions in memory, when a valid Translation Look-Aside Buffer
entry is not present, and virtual protected mode is enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception, or Data Bus Exception occur
when C_FAULT_TOLERANT is set to 1, and an exception is in progress (that is MSR[EIP] set
and MSR[EE] cleared), the pipeline is halted, and the external signal MB_Error is set.

Imprecise Exceptions

Normally all exceptions in MicroBlaze are precise, meaning that any instructions in the
pipeline after the instruction causing an exception are invalidated, and have no effect.

When C_IMPRECISE_EXCEPTIONS is set to 1 (ECC) an Instruction Bus Exception or Data Bus
Exception caused by ECC errors in LMB memory is not precise, meaning that a subsequent
memory access instruction in the pipeline might be executed. If this behavior is acceptable,
the maximum frequency can be improved by setting this parameter to 1.

Equivalent Pseudocode

ESR[DS] ← exception in delay slot
if ESR[DS] then

BTR ← branch target PC
if MMU exception then

if branch preceded by IMM then
r17 ← PC - 8

else

r17 ← PC - 4
else

r17 ← invalid value
else if MMU exception then

if instruction preceded by IMM then
r17 ← PC - 4

else

r17 ← PC
else

r17 ← PC + 4
PC ← C_BASE_VECTORS + 0x20
MSR[EE] ← 0, MSR[EIP]← 1

MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0

ESR[EC] ← exception specific value
ESR[ESS]← exception specific value
EAR ← exception specific value
FSR ← exception specific value
Reservation ← 0

Breaks
There are two kinds of breaks:

• Hardware (external) breaks
MicroBlaze Processor Reference Guide 84
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=84

Chapter 2: MicroBlaze Architecture
• Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext_BRK
and Ext_NM_BRK input ports). On a break, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the break vector
(address C_BASE_VECTORS + 0x18).

The break return address (the PC associated with the instruction in the decode stage at the
time of the break) is automatically loaded into general purpose register R16. MicroBlaze
also sets the Break In Progress (BIP) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext_BRK input port) is only handled when MSR[BIP]
and MSR[EIP] are set to 0 (that is, there is no break or exception in progress). The Break In
Progress flag disables interrupts. A non-maskable break (that is, the Ext_NM_BRK input
port) is always handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

The Ext_BRK signal must be kept asserted until the break has occurred, and deasserted
before the RTBD instruction is executed. The Ext_NM_BRK signal must only be asserted one
clock cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5,
MicroBlaze Instruction Set Architecture for detailed information on software breaks.

As a special case, when C_DEBUG_ENABLED is greater than zero, and “brki rD,0x18” is
executed, a software breakpoint is signaled to the debugger; for example, the Xilinx System
Debugger (XSDB) tool, irrespective of the value of C_BASE_VECTORS. In this case the BIP bit
in the MSR is not set.

Latency

The time it takes the MicroBlaze processor to enter a break service routine from the time
the break occurs depends on the instruction currently in the execution stage and the
latency to the memory storing the break vector.

Equivalent Pseudocode

r16 ← PC

PC ← C_BASE_VECTORS + 0x18
MSR[BIP] ← 1
MicroBlaze Processor Reference Guide 85
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=85

Chapter 2: MicroBlaze Architecture
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

Interrupt
MicroBlaze supports one external interrupt source (connected to the Interrupt input
port). The processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine
Status Register (MSR) is set to 1. On an interrupt, the instruction in the execution stage
completes while the instruction in the decode stage is replaced by a branch to the interrupt
vector. This is either address C_BASE_VECTORS + 0x10, or with low-latency interrupt mode,
the address supplied by the Interrupt Controller.

The interrupt return address (the PC associated with the instruction in the decode stage at
the time of the interrupt) is automatically loaded into general purpose register R14. In
addition, the processor also disables future interrupts by clearing the IE bit in the MSR. The
IE bit is automatically set again when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or exception
in progress (EIP) bits in the MSR are set to 1.

By using the parameter C_INTERRUPT_IS_EDGE, the external interrupt can either be set to
level-sensitive or edge-triggered:

• When using level-sensitive interrupts, the Interrupt input must remain set until
MicroBlaze has taken the interrupt, and jumped to the interrupt vector. Software must
acknowledge the interrupt at the source to clear it before returning from the interrupt
handler. If not, the interrupt is taken again, as soon as interrupts are enabled when
returning from the interrupt handler.

• When using edge-triggered interrupts, MicroBlaze detects and latches the Interrupt
input edge, which means that the input only needs to be asserted one clock cycle. The
interrupt input can remain asserted, but must be deasserted at least one clock cycle
before a new interrupt can be detected. The latching of an edge-triggered interrupt is
independent of the IE bit in MSR. Should an interrupt occur while the IE bit is 0, it will
immediately be serviced when the IE bit is set to 1.

With periodic interrupt sources, such as the FIT Timer IP core, that do not have a method to
clear the interrupt from software, it is recommended to use edge-triggered interrupts.

Low-latency Vectored Interrupt Mode

A low-latency vectored interrupt mode is available, which allows the Interrupt Controller to
directly supply the interrupt vector for each individual interrupt (using the input port
Interrupt_Address). The address of each fast interrupt handler must be passed to the
MicroBlaze Processor Reference Guide 86
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=86

Chapter 2: MicroBlaze Architecture
Interrupt Controller when initializing the interrupt system. When a particular interrupt
occurs, this address is supplied by the Interrupt Controller, which allows MicroBlaze to
directly jump to the handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt acknowledge to
the Interrupt Controller (using the Interrupt_Ack output port), although it is still the
responsibility of the Interrupt Service Routine to acknowledge level sensitive interrupts at
the source.

This information allows the Interrupt Controller to acknowledge interrupts appropriately,
both for level-sensitive and edge-triggered interrupt.

To inform the Interrupt Controller of the interrupt handling events, Interrupt_Ack is set
to:

• 01: When MicroBlaze jumps to the interrupt handler code,
• 10: When the RTID instruction is executed to return from interrupt,
• 11: When MSR[IE] is changed from 0 to 1, which enables interrupts again.

The Interrupt_Ack output port is active during one clock cycle, and is then reset to 00.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an
interrupt occurs, depends on the configuration of the processor and the latency of the
memory controller storing the interrupt vectors. If MicroBlaze is configured to have a
hardware divider, the largest latency happens when an interrupt occurs during the
execution of a division instruction.

With low-latency vectored interrupt mode, the time to enter the ISR is significantly reduced,
since the interrupt vector for each individual interrupt is directly supplied by the Interrupt
Controller. With compiler support for fast interrupts, there is no need for a common ISR at
all. Instead, the ISR for each individual interrupt will be directly called, and the compiler
takes care of saving and restoring registers used by the ISR.

Equivalent Pseudocode
r14 ← PC
if C_USE_INTERRUPT = 2

PC ← Interrupt_Address
Interrupt_Ack ← 01

else

PC ← C_BASE_VECTORS + 0x10
MSR[IE] ← 0
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0
MicroBlaze Processor Reference Guide 87
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=87

Chapter 2: MicroBlaze Architecture
User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is caused by inserting
a ‘BRALID Rx,0x8’ instruction in the software flow. Although Rx could be any general
purpose register, Xilinx recommends using R15 for storing the user exception return
address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx ← PC
PC ← C_BASE_VECTORS + 0x8
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0
MicroBlaze Processor Reference Guide 88
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=88

Chapter 2: MicroBlaze Architecture
Instruction Cache
Overview
MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

• Direct mapped (1-way associative)
• User selectable cacheable memory address range
• Configurable cache and tag size
• Caching over AXI4 interface (M_AXI_IC)
• Option to use 4, 8 or 16 word cache-line
• Cache on and off controlled using a bit in the MSR
• Optional WIC instruction to invalidate instruction cache lines
• Optional stream buffers to improve performance by speculatively prefetching

instructions
• Optional victim cache to improve performance by saving evicted cache lines
• Optional parity protection that invalidates cache lines if a Block RAM bit error is

detected
• Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality
When the instruction cache is used, the memory address space is split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters: C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All addresses within
this range correspond to the cacheable address segment. All other addresses are non-
cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_ICACHE_BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag
address. The MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This
corresponds to a cache address of between 6 and 16 bits. The tag address together with the
cache address should match the full address of cacheable memory.
MicroBlaze Processor Reference Guide 89
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=89

Chapter 2: MicroBlaze Architecture
When selecting cache sizes below 2 kB, distributed RAM is used to implement the Tag RAM
and Instruction RAM. Distributed RAM is always used to implement the Tag RAM, when
setting the parameter C_ICACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available
with cache size 8 kB and less for 4 word cache-lines, with 16 kB and less for 8 word cache-
lines, and with 32 kB and less for 16 word cache-lines.

For example: in a 32-bit MicroBlaze configured with C_ICACHE_BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_CACHE_BYTE_SIZE=4096, C_ICACHE_LINE_LEN=8,
and C_ICACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 64 kB uses 16 bits of byte
address, and the 4 kB cache uses 12 bits of byte address, thus the required address tag
width is: 16-12=4 bits. The total number of block RAM primitives required in this
configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total
3 RAMB16 primitives.

The following figure shows the organization of Instruction Cache.

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache controller
ignores the instruction and lets the M_AXI_IP or LMB complete the request. If the address
is cacheable, a lookup is performed on the tag memory to check if the requested address is
currently cached. The lookup is successful if: the word and line valid bits are set, and the tag
address matches the instruction address tag segment. On a cache miss, the cache controller
requests the new instruction over the instruction AXI4 interface (M_AXI_IC), and waits for
the memory controller to return the associated cache line.

C_ICACHE_DATA_WIDTH determines the bus data width, either 32 bits, an entire cache line
(128, 256 or 512 bits), or 512 bits.

X-Ref Target - Figure 2-22

Figure 2-22: Instruction Cache Organization

Tag Address Cache Address

Instruction Address Bits

- -

=Tag
RAM

Line Addr Tag

Valid (word and line)
Cache_Hit

Instruction
RAM

Word Addr
Cache_instruction_data

30 310

X19759-111617
MicroBlaze Processor Reference Guide 90
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=90

Chapter 2: MicroBlaze Architecture
When C_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in
a tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data width is
used, otherwise single accesses are used.

Stream Buffers

When stream buffers are enabled, by setting the parameter C_ICACHE_STREAMS to 1, the
cache will speculatively fetch cache lines in advance in sequence following the last
requested address, until the stream buffer is full.

The stream buffer can hold up to two cache lines. Should the processor subsequently
request instructions from a cache line prefetched by the stream buffer, which occurs in
linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend
less time waiting for instructions to be fetched from memory.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from the stream buffer
each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Victim Cache

The victim cache is enabled by setting the parameter C_ICACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines
they can be fetched much faster, should the processor request them, thereby improving
performance. If the victim cache is not used, all evicted cache lines must be read from
memory again when they are needed.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from/to the victim
cache each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can
invalidate cache lines using the WIC instruction or using the hardware debug logic of
MicroBlaze.
MicroBlaze Processor Reference Guide 91
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=91

Chapter 2: MicroBlaze Architecture
WIC Instruction

The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate cache lines in
the instruction cache from an application. For a detailed description, see Chapter 5,
MicroBlaze Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.
MicroBlaze Processor Reference Guide 92
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=92

Chapter 2: MicroBlaze Architecture
Data Cache
Overview
The MicroBlaze processor can be used with an optional data cache for improved
performance. The cached memory range must not include addresses in the LMB address
range. The data cache has the following features:

• Direct mapped (1-way associative)
• Write-through or Write-back
• User selectable cacheable memory address range
• Configurable cache size and tag size
• Caching over AXI4 interface (M_AXI_DC)
• Option to use 4, 8 or 16 word cache-lines
• Cache on and off controlled using a bit in the MSR
• Optional WDC instruction to invalidate or flush data cache lines
• Optional victim cache with write-back to improve performance by saving evicted cache

lines
• Optional parity protection for write-through cache that invalidates cache lines if a Block

RAM bit error is detected
• Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Data Cache Functionality
When the data cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable area is determined by
two parameters: C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses within this
range correspond to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_DCACHE_BASEADDR must be
zero.
MicroBlaze Processor Reference Guide 93
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=93

Chapter 2: MicroBlaze Architecture
The following figure shows the Data Cache organization.

The cacheable data address consists of two parts: the cache address, and the tag address.
The MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to
a cache address of between 6 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory. When selecting cache sizes below 2 kB,
distributed RAM is used to implement the Tag RAM and Data RAM, except that block RAM
is always used for the Data RAM when C_AREA_OPTIMIZED is set to 1 (Area) and
C_DCACHE_USE_WRITEBACK is not set. Distributed RAM is always used to implement the
Tag RAM, when setting the parameter C_DCACHE_FORCE_TAG_LUTRAM to 1. This
parameter is only available with cache size 8 kB and less for 4 word cache-lines, with 16 kB
and less for 8 word cache-lines, and with 32 kB and less for 16 word cache-lines.

For example, in a 32-bit MicroBlaze configured with C_DCACHE_BASEADDR=0x00400000,
C_DCACHE_HIGHADDR=0x00403fff, C_DCACHE_BYTE_SIZE=2048, C_DCACHE_LINE_LEN=4,
and C_DCACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 16 kB uses 14 bits of byte
address, and the 2 kB cache uses 11 bits of byte address, thus the required address tag
width is 14-11=3 bits. The total number of block RAM primitives required in this
configuration is 1 RAMB16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Data Cache Operation
The caching policy used by the MicroBlaze data cache, write-back or write-through, is
determined by the parameter C_DCACHE_USE_WRITEBACK. When this parameter is set, a
write-back protocol is implemented; otherwise write-through is implemented.

However, when configured with an MMU (C_USE_MMU > 1, C_AREA_OPTIMIZED = 0
(Performance) or 2 (Frequency), C_DCACHE_USE_WRITEBACK = 1), the caching policy in
virtual mode is determined by the W storage attribute in the TLB entry, whereas write-back
is used in real mode.

X-Ref Target - Figure 2-23

Figure 2-23: Data Cache Organization

Tag Address Cache Word Address

Data Address Bits

- -

=Tag
RAM

Addr Tag

Valid
Cache_Hit

Data
RAM

Addr Cache_data

Load_Instruction

0 30 31

X19760-111617
MicroBlaze Processor Reference Guide 94
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=94

Chapter 2: MicroBlaze Architecture
With the write-back protocol, a store to an address within the cacheable range always
updates the cached data. If the target address word is not in the cache (that is, the access
is a cache miss), and the location in the cache contains data that has not yet been written
to memory (the cache location is dirty), the old data is written over the data AXI4 interface
(M_AXI_DC) to external memory before updating the cache with the new data. If only a
single word needs to be written, a single word write is used, otherwise a burst write is used.
For byte or halfword stores, in case of a cache miss, the address is first requested over the
data AXI4 interface, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range
generates an equivalent byte, halfword, or word write over the data AXI4 interface to
external memory. The write also updates the cached data if the target address word is in the
cache (that is, the write is a cache hit). A write cache-miss does not load the associated
cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range
triggers a check to determine if the requested data is currently cached. If it is (that is, on a
cache hit) the requested data is retrieved from the cache. If not (that is, on a cache miss) the
address is requested over the data AXI4 interface using a burst read, and the processor
pipeline stalls until the cache line associated to the requested address is returned from the
external memory controller.

The parameter C_DCACHE_DATA_WIDTH determines the bus data width, either 32 bits, an
entire cache line (128, 256 or 512 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data block RAM.
MicroBlaze Processor Reference Guide 95
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=95

Chapter 2: MicroBlaze Architecture
The following table summarizes all types of accesses issued by the data cache AXI4
interface.

Victim Cache

The victim cache is enabled by setting the parameter C_DCACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a
complete cache line is evicted from the cache, it is saved in the victim cache. By saving the
most recent lines they can be fetched much faster, should the processor request them,
thereby improving performance. If the victim cache is not used, all evicted cache lines must
be read from memory again when they are needed.

With the AXI4 interface, C_DCACHE_DATA_WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, write-back must be enabled and area optimization must
not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling
caches the user must ensure that all the prior writes within the cacheable range have been
completed in external memory before reading back over M_AXI_DP. This can be done by
writing to a semaphore immediately before turning off caches, and then in a loop poll until
it has been written. The contents of the cache are preserved when the cache is disabled.

Table 2-41: Data Cache Interface Accesses
Policy State Direction Access Type

Write-
through

Cache
Enabled

Read Burst for 32-bit interface non-exclusive access and exclusive
access with ACE enabled, single access otherwise

Write Single access
Cache

Disabled
Read Burst for 32-bit interface exclusive access with ACE enabled,

single access otherwise
Write Single access

Write-back Cache
Enabled

Read Burst for 32-bit interface, single access otherwise
Write Burst for 32-bit interface cache lines with more than one valid

word, a single access otherwise
Cache

Disabled
Read Burst for 32-bit interface non-exclusive access, discarding all but

the desired data, a single access otherwise
Write Single access
MicroBlaze Processor Reference Guide 96
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=96

Chapter 2: MicroBlaze Architecture
WDC Instruction

The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to
Chapter 5, MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

With an external L2 cache, such as the System Cache, connected to MicroBlaze using the
ACE interface, external cache invalidate or flush can be performed with WDC. See the
System Cache LogiCORE IP Product Guide (PG118) [Ref 6] for more information on the
System Cache.
MicroBlaze Processor Reference Guide 97
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=97

Chapter 2: MicroBlaze Architecture
Floating-Point Unit (FPU)
Overview
The MicroBlaze floating-point unit is based on the IEEE 754-1985 standard [Ref 18]:

• Uses IEEE 754 single precision floating-point format, and double precision format with
64-bit MicroBlaze, including definitions for infinity, not-a-number (NaN), and zero

• Supports addition, subtraction, multiplication, division, comparison, conversion and
square root instructions

• Implements round-to-nearest mode
• Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid

operation
For improved performance, the following non-standard simplifications are made:
• Denormalized (1) operands are not supported. A hardware floating-point operation on a

denormalized number returns a quiet NaN and sets the sticky denormalized operand
error bit in FSR; see Floating-Point Status Register (FSR).

• A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This
method is commonly referred to as Flush-to-Zero (FTZ)

• An operation on a quiet NaN returns the fixed NaN: 0xFFC00000 for single precision or
0xFFF8000000000000 for double precision, rather than one of the NaN operands

• Overflow as a result of a floating-point operation always returns signed ∞

Format

Single Precision

An IEEE 754 single precision floating-point number is composed of the following three
fields:
1. 1-bit sign
2. 8-bit biased exponent
3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in the following figure:

1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number n that falls in the
following ranges for single precision: (1.17549*10-38 > n > 0), or (0 > n > -1.17549 * 10-38), and the following ranges for
double precision: (5.562684646268*10-309 > n > 0), or (0 > n > -5.562684646268 * 10-309)
MicroBlaze Processor Reference Guide 98
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=98

Chapter 2: MicroBlaze Architecture
The value of a floating-point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v = NaN, regardless of the sign bit
2. If exponent = 255 and fraction = 0, then v = (-1)sign * ∞
3. If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1.fraction)
4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0.fraction)
5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 32 bit format.

Double Precision

An IEEE 754 double precision floating point number is composed of the following three
fields:
1. 1-bit sign
2. 11-bit biased exponent
3. 52-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 64 bit long as defined in the following figure:

The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 2047 and fraction <> 0, then v = NaN, regardless of the sign bit
2. If exponent = 2047 and fraction = 0, then v = (-1)sign * ∞
3. If 0 < exponent < 2047, then v = (-1)sign * 2(exponent-1023) * (1.fraction)
4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-1022 * (0.fraction)
5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 64 bit format.

X-Ref Target - Figure 2-24

Figure 2-24: IEEE 754 Single Precision Format

319

fractionexponent

10

sign
X19761-111617

X-Ref Target - Figure 2-25

Figure 2-25: IEEE 754 Double Precision Format

6312

fractionexponent

10

sign
MicroBlaze Processor Reference Guide 99
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=99

Chapter 2: MicroBlaze Architecture
Rounding
The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”,
specified in IEEE 754. By definition, the result of any floating-point operation should return
the nearest single precision value to the infinitely precise result. If the two nearest
representable values are equally near, then the one with its least significant bit zero is
returned.

Operations
All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating-point register file, see General Purpose Registers.

Arithmetic

The FPU implements the following floating point operations, where the double operations
are available with 64-bit MicroBlaze:

• addition, fadd and dadd
• subtraction, frsub and drsub
• multiplication, fmul and dmul
• division, fdiv and ddiv
• square root, fsqrt and dsqrt (available if C_USE_FPU = 2, EXTENDED)

Comparison

The FPU implements the following floating point comparisons, where the double operations
are available with 64-bit MicroBlaze:

• compare less-than, fcmp.lt and dcmp.lt
• compare equal, fcmp.eq and dcmp.eq
• compare less-or-equal, fcmp.le and dcmp.le
• compare greater-than, fcmp.gt and dcmp.gt
• compare not-equal, fcmp.ne and dcmp.ne
• compare greater-or-equal, fcmp.ge and dcmp.ge
• compare unordered, fcmp.un and dcmp.un (used for NaN)

Conversion

The FPU implements the following conversions (available if C_USE_FPU = 2, EXTENDED),
where the double operations are available with 64-bit MicroBlaze:
MicroBlaze Processor Reference Guide 100
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=100

Chapter 2: MicroBlaze Architecture
• convert from signed integer to single floating point, flt
• convert from single floating point to signed integer, fint
• convert from signed long to floating point, dbl
• convert from double floating point to signed long, dlong

Exceptions
The floating-point unit uses the regular hardware exception mechanism in MicroBlaze.
When enabled, exceptions are thrown for all the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operation, as well as for the MicroBlaze specific
exception: denormalized operand error.

A floating-point exception inhibits the write to the destination register (Rd). This allows a
floating-point exception handler to operate on the uncorrupted register file.

Software Support
The Vitis™ compiler system, based on GCC, provides support for the floating-point Unit
compliant with the MicroBlaze API. Compiler flags are automatically added to the GCC
command line based on the type of FPU present in the system, when using Vitis.

All double-precision operations are emulated in software with 32-bit MicroBlaze. Be aware
that the xil_printf() function does not support floating-point output. The standard C
library printf() and related functions do support floating-point output, but will increase
the program code size.

Libraries and Binary Compatibility

The Vitis compiler system only includes software floating-point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate
compiler switches.

For all cases where separate compilation is used, it is very important that you ensure the
consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5,
“MicroBlaze Instruction Set Architecture.” The FPU instructions are not pipelined, so only
one operation can be ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language
programming, it is important to consider how the C compiler will interpret your source
MicroBlaze Processor Reference Guide 101
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=101

Chapter 2: MicroBlaze Architecture
code. Very often the same algorithm can be expressed in many different ways, and some are
more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-
precision FPU, careless coding could result in double-precision software emulation routines
being used instead of the native single-precision instructions. To avoid this, explicitly
specify (by cast or suffix) that immediate constants in your arithmetic expressions are
single-precision values.

For example:

float x = 0.0;

...

x += (float)1.0; /* float addition */

x += 1.0F; /* alternative to above */

x += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as
single-precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-
precision-constants.

Avoiding Unnecessary Casting

While conversions between floating-point and integer formats are supported in hardware
by the FPU, when C_USE_FPU is set to 2 (Extended), it is still best to avoid them when
possible.

The following not-recommended example calculates the sum of squares of the integers
from 1 to 10 using floating-point representation:

float sum, t;

int i;

sum = 0.0f;

for (i = 1; i <= 10; i++) {

t = (float)i;

sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be
rewritten as:

float sum, t;

int i;

t = sum = 0.0f;

for(i = 1; i <= 10; i++) {

t += 1.0f;

sum += t * t;

}

Note: The compiler is not at liberty to perform this optimization in general, as the two code
fragments above might give different results in some cases (for example, very large t).
MicroBlaze Processor Reference Guide 102
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=102

Chapter 2: MicroBlaze Architecture
Using Square Root Runtime Library Function

The standard C runtime math library functions operate using double-precision arithmetic.
When using a single-precision FPU, calls to the square root functions (sqrt()) result in
inefficient emulation routines being used instead of FPU instructions:

#include <math.h>

...

float x=-1.0F;

...

x = sqrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library
call is made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single
precision and can be carried out using the FPU. For example:

#include <math.h>

...

float x=-1.0F;

...

x = sqrtf(x); /* uses single precision */

Note: When compiling this code, the compiler flag -fno-math-errno (in addition to
-mhard-float and -mxl-float-sqrt) must be used, to ensure that the compiler does not
generate unnecessary code to handle error conditions by updating the errno variable.
MicroBlaze Processor Reference Guide 103
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=103

Chapter 2: MicroBlaze Architecture
Stream Link Interfaces
MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each consisting of one
input and one output port. The channels are dedicated uni-directional point-to-point data
streaming interfaces.

For detailed information on the AXI4-Stream interface, please refer to the AMBA 4 AXI4-
Stream Protocol Specification, Version 1.0 (Arm IHI 0051A) [Ref 14] document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is
used to transfer information from a port to a general purpose register. The put instruction
is used to transfer data in the opposite direction. Both instructions come in 4 flavors:
blocking data, non-blocking data, blocking control, and non-blocking control. For a
detailed description of the get and put instructions, see Chapter 5, MicroBlaze Instruction
Set Architecture.

Hardware Acceleration
Each link provides a low latency dedicated interface to the processor pipeline. Thus they are
ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in the following figure. The code uses RFSLx to indicate the
used link.

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of the processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

X-Ref Target - Figure 2-26

Figure 2-26: Stream Link Used with HW Accelerated Function fx

MicroBlaze

Link x

// Configure fx

cput Rc, RFSLx

// Store operands

put Ra, RFSLx // op 1

put Rb, RFSLx // op 2

// Load result

Register
File

Custom HW Accelerator

Op 1 Reg Op 2 Reg

ConfigReg

fx

Result Reg
Link x

X19783-111617
MicroBlaze Processor Reference Guide 104
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=104

Chapter 2: MicroBlaze Architecture
Debug and Trace
Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx System
Debugger (XSDB) tool. The debug interface is designed to be connected to the Xilinx
Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of Xilinx
FPGAs. Multiple MicroBlaze instances can be interfaced with a single MDM to enable
multiprocessor debugging.

To be able to download programs, set software breakpoints and disassemble code, the
instruction and data memory ranges must overlap, and use the same physical memory.

Debug registers are accessed using the debug interface, and are not directly visible to
software running on the processor, unless the MDM is configured to enable software access
to user-accessible debug registers. The debug interface can either use JTAG serial access or
AXI4-Lite parallel access, controlled by the parameter C_DEBUG_INTERFACE.

See the MicroBlaze Debug Module (MDM) Product Guide (PG115) [Ref 4] for a detailed
description of the MDM features.

The basic debugging features enabled by setting C_DEBUG_ENABLED to 1 (Basic) include:

• Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

• External processor control enables debug tools to stop, reset, and single step
MicroBlaze

• Read from and write to: memory, general purpose registers, and special purpose
register, except EAR, EDR, ESR, BTR and PVR0 - PVR12, which can only be read

• Support for multiple processors

The extended debugging features enabled by setting C_DEBUG_ENABLED to 2 (Extended)
include:

• Configurable number of performance monitoring event and latency counters
• Program Trace:

- Embedded program trace with configurable trace buffer size

- External program trace for multiple processors, provided by the MDM
• Non-intrusive profiling support with configurable profiling buffer size
• Cross trigger support between multiple processors, and external cross trigger inputs

and outputs, provided by the MDM
MicroBlaze Processor Reference Guide 105
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=105

Chapter 2: MicroBlaze Architecture
Performance Monitoring
With extended debugging, MicroBlaze provides performance monitoring counters to count
various events and to measure latency during program execution. The number of event
counters and latency counters can be configured with C_DEBUG_EVENT_COUNTERS and
C_DEBUG_LATENCY_COUNTERS respectively, and the counter width can be set to 32, 48 or 64
bits with C_DEBUG_COUNTER_WIDTH. With the default configuration, the counter width is set
to 32 bits and there are five event counters and one latency counter.

An event counter simply counts the number of times a certain event has occurred, whereas
a latency counter provides the following information:

• Number of times the event has occurred (N)
• The sum of each event latency measured by counting clock cycles from the event starts

until it finishes (ΣL), used to calculate the mean latency
• The sum of each event latency squared (ΣL2), used to calculate the latency standard

deviation
• The minimum, shortest, measured latency for all events (Lmin)
• The maximum, longest, measured latency for all events (Lmax)

The mean latency (μ) is calculated by the formula:

The standard deviation (σ) of the latency is calculated by the formula:

Counting can be started or stopped using the Performance Counter Command Register or
by cross trigger events (see Table 2-63).

When configuring, reading or writing counters, they are accessed sequentially through the
performance counter registers. After every access the selected counter item is incremented.

All counters are sampled simultaneously for reading using the Performance Counter
Command Register. This can be done while counting, or after counting has been stopped.

When an event counter reaches its maximum value, the overflow status bit is set, and the
external interrupt signal Dbg_Intr is set to one. The interrupt signal is reset to zero by
clearing the counters using the Performance Counter Command Register.

By using one of the event counters to count number of clock cycles, and initializing this
counter to overflow after a predetermined sampling interval, the external interrupt can be
used to periodically sample the performance counters.

The available events are described in Table 2-42, listed in numerical order.

μ ΣL
N-------=

σ NΣL2 ΣL()2–
N---=
MicroBlaze Processor Reference Guide 106
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=106

Chapter 2: MicroBlaze Architecture
A typical procedure to follow when initializing and using the performance monitoring
counters is delineated in the steps below.

1. Initialize the events to be monitored:

- Use the Performance Command Register (Table 2-45) to reset the selected counter
to the first counter, by setting the Reset bit.

- Write the desired event numbers for all counters in order, using the Performance
Control Register (Table 2-44). With the default configuration this means writing the
register five times for the event counters and then once for the latency counter.

2. Clear all counters and start monitoring using the Performance Command Register, by
setting the Clear and Start bits.

3. Run the program or function to be monitored.
4. Sample counters and stop monitoring using the Performance Command Register, by

setting the Sample and Stop bits.
5. Read the results from all counters:

- Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

- Read the status for all counters in order, using the Performance Counter Status
Register (Table 2-46). With the default configuration this means reading the register
five times for the event counters and then once for the latency counter. Ensure that
the result is valid by checking that the overflow and full bits are not set.

- Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

- Read the counter items for all counters in order, using the Performance Counter
Data Read Register (Table 2-47). With the default configuration this means reading
the register five times for the event counters and then four times for the latency
counter as described in Table 2-48.

6. Calculate the final results, depending on the measured events, for example:

- Use the formulas above to determine the mean latency and standard deviation for
any measured latency.

- The clock cycles per instruction (CPI) can be calculated by E30 / E0.

- The instruction and data cache hit rates can be calculated by E11 / E10 and E47 / E46.

- The instruction cache miss latency is determined by (E60(ΣL) - E60(N)) / (E10 - E11),
and equivalent formulas can be used to determine the data cache read and write
miss latencies.

- The ratio of floating-point instructions in a program is E29/E0.
MicroBlaze Processor Reference Guide 107
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=107

Chapter 2: MicroBlaze Architecture
Table 2-42: MicroBlaze Performance Monitoring Events
Event Description Event Description

Event Counter Events
0 Any valid instruction executed 29 Floating-point (fadd, ..., fsqrt)
1 Load word (lw, lwi, lwx) executed 30 Number of clock cycles
2 Load halfword (lhu, lhui) executed 31 Immediate (imm) executed
3 Load byte (lbu, lbui) executed 32 Pattern compare (pcmpbf, pcmpeq, pcmpne)
4 Store word (sw, swi, swx) executed 33 Sign extend instructions (sext8, sext16) executed
5 Store halfword (sh, shi) executed 34 Instruction cache invalidate (wic) executed
6 Store byte (sb, sbi) executed 35 Data cache invalidate or flush (wdc) executed
7 Unconditional branch (br, bri, brk, brki) executed 36 Machine status instructions (msrset, msrclr)
8 Taken conditional branch (beq, ..., bnei) executed 37 Unconditional branch with delay slot executed
9 Not taken conditional branch (beq,..., bnei)

executed
38 Taken conditional branch with delay slot executed

10 Data request from instruction cache 39 Not taken conditional branch with delay slot
11 Hit in instruction cache 40 Delay slot with no operation instruction executed
12 Read data requested from data cache 41 Load instruction (lbu, ..., lwx) executed
13 Read data hit in data cache 42 Store instruction (sb, ..., swx) executed
14 Write data request to data cache 43 MMU data access request
15 Write data hit in data cache 44 Conditional branch (beq, ..., bnei) executed
16 Load (lbu, ..., lwx) with r1 as operand executed 45 Branch (br, bri, brk, brki, beq, ..., bnei) executed
17 Store (sb, ..., swx) with r1 as operand executed 46 Read or write data request from/to data cache
18 Logical operation (and, andn, or, xor) executed 47 Read or write data cache hit
19 Arithmetic operation (add, idiv, mul, rsub)

executed
48 MMU exception taken

20 Multiply operation (mul, mulh, mulhu, mulhsu,
muli)

49 MMU instruction side exception taken

21 Barrel shifter operation (bsrl, bsra, bsll)
executed

50 MMU data side exception taken

22 Shift operation (sra, src, srl) executed 51 Pipeline stalled
23 Exception taken 52 Branch target cache hit for a branch or return
24 Interrupt occurred 53 MMU instruction side access request
25 Pipeline stalled due to operand fetch stage (OF) 54 MMU instruction TLB (ITLB) hit
26 Pipeline stalled due to execute stage (EX) 55 MMU data TLB (DTLB) hit
27 Pipeline stalled due to memory stage (MEM) 56 MMU unified TLB (UTLB) hit
28 Integer divide (idiv, idivu) executed

Latency and Event Counter events
57 Interrupt latency from input to interrupt vector 61 MMU address lookup latency
58 Data cache latency for memory read 62 Peripheral AXI interface data read latency
MicroBlaze Processor Reference Guide 108
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=108

Chapter 2: MicroBlaze Architecture
The debug registers used to configure and control performance monitoring, and to read or
write the event and latency counters, are listed in Table 2-43. All of these registers except
the Performance Counter Command register are accessed repeatedly to read or write
information, first for all of the event counters followed by all of the latency counters.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Performance Counter Control Register

The Performance Counter Control Register (PCCTRLR) is used to define the events that are
counted by the configured performance counters. To define the events for all configured
counters, the register should be written repeatedly for each of the counters. This register is
a write-only register. Issuing a read request has no effect, and undefined data is read.

Every time the register is written, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again. See the following figure and table.

59 Data cache latency for memory write 63 Peripheral AXI interface data write latency
60 Instruction cache latency for memory read

Table 2-42: MicroBlaze Performance Monitoring Events (Cont’d)
Event Description Event Description

Table 2-43: MicroBlaze Performance Monitoring Debug Registers

Register Name Size (bits) MDM
Command

DBG_CTRL
Value R/W Description

Performance
Counter Control 8 0101 0001 4A207 W Select event for each configured

counter, according to Table 2-42
Performance
Counter Command 5 0101 0010 4A404 W Command to clear counters, start or

stop counting, or sample counters
Performance
Counter Status 2 0101 0011 4A601 R Read the sampled status for each

configured performance counter
Performance
Counter Data Read 32 0101 0110 4AC1F R Read the sampled values for each

configured performance counter
Performance
Counter Data Write 32 0101 0111 4AE1F W Write initial values for each

configured performance counter

X-Ref Target - Figure 2-27

Figure 2-27: Performance Counter Control Register

07

EventReserved

31 8

X19762-111617
MicroBlaze Processor Reference Guide 109
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=109

Chapter 2: MicroBlaze Architecture
Performance Counter Command Register

The Performance Counter Command Register (PCCMDR) is used to issue commands to
clear, start, stop, or sample all counters. This register is a write-only register. Issuing a read
request has no effect, and undefined data is read.

Performance Counter Status Register

The Performance Counter Status Register (PCSR) reads the sampled status of the counters.
To read the status for all configured counters, the register should be read repeatedly for
each of the counters. This register is a read-only register. Issuing a write request to the
register does nothing.

Every time the register is read, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again. See Figure 2-29 and Table 2-46.

Table 2-44: Performance Counter Control Register (PCCTRLR)
Bits Name Description Reset Value

7:0 Event Performance counter event, according to Table 2-42. 0

X-Ref Target - Figure 2-28

Figure 2-28: Performance Counter Command Register

04

RESReserved

31 5 3 2 1

SAMSTOPSTACLR
X19763-111617

Table 2-45: Performance Counter Command Register (PCCMDR)
Bits Name Description Reset Value

4 Clear Clear all counters to zero 0
3 Start Start counting configured events for all counters simultaneously 0
2 Stop Stop counting all counters simultaneously 0
1 Sample Sample status and values in all counters simultaneously for reading 0
0 Reset Reset accessed counter to the first event counter for access using the

Performance Counter Control, Status, Read Data and Write Data
0

X-Ref Target - Figure 2-29

Figure 2-29: Performance Counter Status Register

0

FULLReserved

31 2 1

OF
X19764-111617
MicroBlaze Processor Reference Guide 110
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=110

Chapter 2: MicroBlaze Architecture
Performance Counter Data Read Register

The Performance Counter Data Read Register (PCDRR) reads the sampled values of the
counters. To read the values of all configured counters, the register should be read
repeatedly. This register is a read-only register. Issuing a write request to the register does
nothing.

See the following figure and table.

Because a counter can have more than 32 bits, depending on the configuration, the register
might need to be read repeatedly to retrieve all information for a particular counter. This is
detailed in Table 2-48.

Table 2-46: Performance Counter Status Register (PCSR)
Bits Name Description Reset Value

1 Overflow This bit is set when the counter has counted past its maximum value 0
0 Full This bit is set when a new latency counter event is started before the

previous event has finished. This indicates that the accuracy of the
measured values is reduced.

0

X-Ref Target - Figure 2-30

Figure 2-30: Performance Counter Data Read Register

0

Item

31

X19765-111617

Table 2-47: Performance Counter Data Read Register (PCDRR)
Bits Name Description Reset Value
31:0 Item Sampled counter value item 0

Table 2-48: Performance Counter Data Items
Counter Type Item Description

C_DEBUG_COUNTER_WIDTH = 32
Event Counter 1 The number of times the event occurred
Latency Counter 1 The number of times the event occurred

2 The sum of each event latency
3 The sum of each event latency squared
4 31:16

15:0
Minimum measured latency, 16 bits
Maximum measured latency, 16 bits
MicroBlaze Processor Reference Guide 111
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=111

Chapter 2: MicroBlaze Architecture
C_DEBUG_COUNTER_WIDTH = 48
Event Counter 1 31:16

15:0
0x0000
The number of times the event occurred, 16 most significant bits

2 The number of times the event occurred, 32 least significant bits
Latency Counter 1 The number of times the event occurred

2 31:16
15:0

0x0000
The sum of each event latency, 16 most significant bits

3 The sum of each event latency, 32 least significant bits
4 31:16

15:0
0x0000
The sum of each event latency squared, 16 most significant bits

5 The sum of each event latency squared, 32 least significant bits
6 Minimum measured latency, 32 bits
7 Maximum measured latency, 32 bits

C_DEBUG_COUNTER_WIDTH = 64
Event Counter 1 The number of times the event occurred, 32 most significant bits

2 The number of times the event occurred, 32 least significant bits
Latency Counter 1 The number of times the event occurred, 32 bits

2 The sum of each event latency, 32 most significant bits
3 The sum of each event latency, 32 least significant bits
4 The sum of each event latency squared, 32 most significant bits
5 The sum of each event latency squared, 32 least significant bits
6 Minimum measured latency, 32 bits
7 Maximum measured latency, 32 bits

Table 2-48: Performance Counter Data Items (Cont’d)

Counter Type Item Description
MicroBlaze Processor Reference Guide 112
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=112

Chapter 2: MicroBlaze Architecture
Performance Counter Data Write Register

The Performance Counter Data Write Register (PCDWR) writes initial values to the counters.
To write all configured counters, the register should be written repeatedly. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

Since a counter can have more than 32 bits, depending on the configuration, the register
might need to be written repeatedly to update all information for a particular counter, as
described in Table 2-48.

X-Ref Target - Figure 2-31

Figure 2-31: Performance Counter Data Write Register

0

Item

31

X19766-111617

Table 2-49: Performance Counter Data Write Register (PCDWR)
Bits Name Description Reset Value
31:0 Item Counter value item to write into a counter 0
MicroBlaze Processor Reference Guide 113
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=113

Chapter 2: MicroBlaze Architecture
Program and Event Trace
With extended debugging, MicroBlaze provides program and event trace, either storing
information in the Embedded Trace Buffer or transmitting it to the MDM, to enable program
execution tracing. The MDM is used when the parameter C_DEBUG_EXTERNAL_TRACE is set,
allowing output of program trace from multiple processors using external interfaces.

The size of the Embedded Trace Buffer can be configured from 8KB to 128KB using the
parameter C_DEBUG_TRACE_SIZE. The default buffer size with external trace is 8KB, but it
can also be configured from 32B to 256B to use distributed RAM. It is recommended to
always keep the default 8KB size, unless block RAM resources are very scarce. By setting
C_DEBUG_TRACE_SIZE to 0 (None), program trace is disabled.

Program trace uses compression to reduce the amount of trace data, while still allowing
reconstruction of the program execution flow or the entire processor software state. There
are three main compression levels:

• Complete trace: Stores complete trace information including cycle count for each
executed instruction using 144 bits, ranging from 512 to 8192 items depending on the
configured Embedded Trace Buffer size. Complete trace is not available when
C_DEBUG_EXTERNAL_TRACE is set or with 64-bit MicroBlaze (C_DATA_SIZE = 64).

• Program flow: Stores program flow changes, that is the sequence of branches taken or
not taken, and the new program counter for indirect branches, interrupts, exceptions
and hardware breaks.

The program counter can also optionally be stored for return instructions to simplify
program flow reconstruction, or for all taken branches to handle self-modifying code.

Data read from memory or fetched from AXI4-Stream interfaces might optionally be
stored to allow reconstructing the entire processor software state, enabling reverse
single step functionality. When the data access instruction is in a delay slot of a dynamic
branch or return, the data is stored first followed by the branch target program counter.
For data access instructions in delay slots of static branches, the program flow change is
first saved followed by the data.

Events representing all program exceptions, interrupts, and breaks, as well as all cross-
trigger events defined in Table 2-63 are also stored, to allow unambiguous decoding of
program flow changes. Each event is preceded by a stored program counter.

Software can inject an event by using an “xori r0, rN, IMM” instruction. Typically this is
used to trace operating system events like context switches and system calls, but it can
be used by any program to trace significant events.

• Program flow and cycle count: Stores the cycle count between instructions along with
the same information as program flow alone, to also allow reconstruction of the
program execution time.
MicroBlaze Processor Reference Guide 114
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=114

Chapter 2: MicroBlaze Architecture
• Event trace: Stores event trace information including cycle count events. Events include
all program exceptions, interrupts, and breaks, as well as all cross-trigger events
defined in Table 2-63. Each event is optionally preceded by a stored program counter.

The program counter can also optionally be stored for call instructions to trace function
calls in the program, and for return instructions to trace function call returns.

Software can inject an event by using an “xori r0, rA, IMM” instruction. Typically this is
used to trace operating system events like context switches and system calls, but it can
be used by any program to trace significant events.

Tracing can be started using the Trace Command Register, by hitting a program breakpoint
or watchpoint configured as a tracepoint in the Trace Control Register, or by a cross trigger
event (see Table 2-63).

Tracing is automatically stopped when the trace buffer becomes full, and can be stopped
using the Trace Command Register or by a cross trigger event (see Table 2-63).

The cycle count can measure up to 32768 clock cycles when using complete trace, and up
to 8192 cycles between instructions when using program flow and cycle count. If the cycle
count exceeds this value, the Trace Status Register overflow bit is set to one.

It is possible to configure trace to halt the processor when the trace buffer becomes full or
when the cycle count overflows. This allows continuous trace of the entire program flow,
albeit not in real time due to the time required to read the trace buffer.

The debug registers used to configure and control tracing, and to read the Embedded Trace
Buffer, are listed in the following table.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-50: MicroBlaze Program Trace Debug Registers

Register Name Size (bits) MDM
Command

DBG_CTRL
Value R/W Description

Trace Control 22 0110 0001 4C215 W Set tracepoints, trace compression level
and optionally stored trace information

Trace Command 4 0110 0010 4C403 W
Command to clear trace buffer, start or
stop trace, and sample number of
current buffer items

Trace Status 18 0110 0011 4C611 R Read the sampled trace buffer status

Trace Data Read1

1. This register is not available when C_DEBUG_EXTERNAL_TRACE is set

18 0110 0110 4CC11 R Read the oldest item from the
Embedded Trace Buffer
MicroBlaze Processor Reference Guide 115
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=115

Chapter 2: MicroBlaze Architecture
Trace Control Register

The Trace Control Register (TCTRLR) is used to define the trace behavior. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read. See the
following figure and table.

Trace Command Register

The Trace Command Register (TCMDR) is used to issue commands to clear, start, or stop
trace, as well as sample the number of trace items. This register is a write-only register.
Issuing a read request has no effect, and undefined data is read. See the following figure
and table.

X-Ref Target - Figure 2-32

Figure 2-32: Trace Control Register

04

Reserved

31 3 2 1

SRSLSPCFH

22 521 6

Tracepoint Level
X19767-111617

Table 2-51: Trace Control Register (TCTRLR)
Bits Name Description Reset Value
21:6 Tracepoint Change corresponding breakpoint or watchpoint to a tracepoint 0
5:4 Level Trace compression level:

00 = Complete trace, not available with C_DEBUG_EXTERNAL_TRACE
01 = Program flow
10 = Event
11 = Program flow and cycle count

00

3 Full Halt Debug Halt on full trace buffer or cycle count overflow 0
2 Save PC Level 01 and 11: Save new program counter for all taken branches

Level 10: Save new program counter for all function calls
0

1 Save Load Save load and get instruction new data value 0
0 Save Return Save new program counter for return instructions 0

X-Ref Target - Figure 2-33

Figure 2-33: Trace Command Register

04

Reserved

31 3 2 1

SAMSTOPSTACLR

X19768-111617
MicroBlaze Processor Reference Guide 116
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=116

Chapter 2: MicroBlaze Architecture
Trace Status Register

The Trace Status Register (TSR) can be used to determine if trace has been started or not, to
check for cycle count overflow and to read the sampled number of items in the Embedded
Trace Buffer. This register is a read-only register. Issuing a write request to the register does
nothing. See the following figure and table.

Trace Data Read Register

The Trace Data Read Register (TDRR) contains the oldest item read from the Embedded
Trace Buffer. When the register has been read, the next item is read from the trace buffer. It
is an error to read more items than are available in the trace buffer, as indicated by the item
count in the Trace Status Register. This register is a read-only register. Issuing a write
request to the register does nothing. See the following figure and table.

Table 2-52: Trace Command Register (TCMDR)
Bits Name Description Reset Value

3 Clear Clear trace status and empty the trace buffer 0
2 Start Start trace immediately 0
1 Stop Stop trace immediately 0
0 Sample Sample the number of current items in the trace buffer 0

X-Ref Target - Figure 2-34

Figure 2-34: Trace Status Register

0

Reserved

31 18

Item Count

17

STA

16

OF

15

X19769-111617

Table 2-53: Trace Status Register (TSR)
Bits Name Description Reset Value
17 Started Trace started, set to one when trace is started and cleared to zero

when it is stopped
0

16 Overflow Cycle count overflow, set to one when the cycle count overflows, and
cleared to zero by the Clear command

0

15:0 Item Count Sampled trace buffer item count 0x0000

X-Ref Target - Figure 2-35

Figure 2-35: Trace Data Read Register

0

Reserved

31 18

Buffer Value

17

X19770-111617
MicroBlaze Processor Reference Guide 117
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=117

Chapter 2: MicroBlaze Architecture
Because a trace data entity can consist of more than 18 bits, depending on the compression
level and stored data, the register might need to be read repeatedly to retrieve all
information for a particular data entity. This is detailed in Table 2-55.

Table 2-54: Trace Data Read Register (TDRR)
Bits Name Description Reset Value
17:0 Buffer Value Embedded Trace Buffer item 0x00000

Table 2-55: Trace Counter Data Entities
Entity Item Bits Description

Complete Trace 1 17:3
2:0

Cycle count for the executed instruction
Machine Status Register [17:19]

2 17:6
5:1
0

Machine Status Register [20:31]
Destination register address (r0 - r31), valid if written
Destination register written if set to one

3 17:13
12
11
10
9:6
5:0

Exception Kind, valid if exception taken
Exception taken if set to one
Load instruction reading data if set to one
Store instruction writing data if set to one
Byte enable, valid for store instruction
Write data [0:5] for store instructions, or Destination
register data [0:5] for other instructions

4 17:0 Write data [6:23] or Destination register data [6:23]
5 17:10

9:0
Write data [24:31] or Destination register data [24:31]
Data address [0:9] for load and store instructions, or
Executed instruction [0:9] for other instruction

6 17:0 Data address [10:27] or Executed instruction [10:27]
7 17:14

13:0
Data address [28:31] or Executed instruction [28:31]
Program Counter [0:13]

8 17:0 Program Counter [14:31]
Program Flow: Branches 1 17:16

15:12
11:0

00 - The item contains program flow branches
Number of branches (N) counted in the item (0 - 12)
The N leftmost bits represent branches in the
program flow. If the bit is set to one the branch is
taken, otherwise it is not taken.
An item with 0 branches can be ignored, and may
occur when flushing external trace, in order to
complete a trace packet.

Program Flow: Program Counter 1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:15]

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [16:31]
MicroBlaze Processor Reference Guide 118
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=118

Chapter 2: MicroBlaze Architecture
Program Flow: Program Counter
C_ADDR_SIZE = 32 - 48

1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:C_ADDR_SIZE-33] zero extended

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [C_ADDR_SIZE-32:C_ADDR_SIZE-17]

3 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [C_ADDR_SIZE-16:C_ADDR_SIZE-1]

Program Flow: Program Counter
C_ADDR_SIZE = 49 - 64

1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:C_ADDR_SIZE-49] zero extended

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [C_ADDR_SIZE-48:C_ADDR_SIZE-33]

3 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [C_ADDR_SIZE-32:C_ADDR_SIZE-17]

4 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [C_ADDR_SIZE-16:C_ADDR_SIZE-1]

Program Flow: Read Data
C_DATA_SIZE = 32 or 64

1 17:16
15:0

10 - The item contains read data
Data read by load and get instructions [0:15]

2 17:16
15:0

10 - The item contains read data
Data read by load and get instructions [15:31]

Program Flow: Read Data
C_DATA_SIZE = 64

1 17:16
15:0

10 - The item contains read data
Data read by long load instructions [0:15]

2 17:16
15:0

10 - The item contains read data
Data read by long load instructions [15:31]

3 17:16
15:0

10 - The item contains read data
Data read by long load instructions [32:47]

4 17:16
15:0

10 - The item contains read data
Data read by long load instructions [48:63]

Program Flow, Event: Event
Instruction event

1 17:16
15:14
13:0

11 – The item contains an event
00 – Instruction event
Software generated trace event: result of instruction
“xori r0, rA, IMM”.

Program Flow, Event: Event
Cross-trigger event

1 17:16
15:1
13:8
7:0

11 – The item contains an event
10 – Cross-trigger event
Reserved
Events according to “MicroBlaze Cross Trigger
Events” defined in Table 2-64. Each event is
represented by setting the corresponding bit in the
bit field.

Table 2-55: Trace Counter Data Entities (Cont’d)

Entity Item Bits Description
MicroBlaze Processor Reference Guide 119
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=119

Chapter 2: MicroBlaze Architecture
Program Flow, Event: Event
Exception event

1 17:16
15:14
13:5
4:0

11 – The item contains an event
11 – Exception event:
Reserved
Exception cause, according to “ESR Exception Cause”,
defined in Table 2-12, and:
01001 – Debug exception: Breakpoint, Stop
01010 – Interrupt
01011 – Non-maskable break
01100 – Break

Event: Event Time Stamp 1 17:16
15:14
13:0

11 – The item contains an event
01 – Time stamp
Cycle count since last time stamp

Program Flow with Cycle Count:
Branches and short cycle count

1 17:16
15:14
13:8
7
6:1
0

00 - The item contains program flow branches
01, 10 - Number of branches (N) counted (1 - 2)
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not taken
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not taken

Program Flow with Cycle Count:
Branch and long cycle count

1 17:16
15:14
13:1
0

00 - The item contains program flow branches
11 - The item contains branch and long cycle count
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not taken

Table 2-55: Trace Counter Data Entities (Cont’d)

Entity Item Bits Description
MicroBlaze Processor Reference Guide 120
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=120

Chapter 2: MicroBlaze Architecture
Non-Intrusive Profiling
With extended debugging, non-intrusive profiling is provided, which uses a Profiling Buffer
to store program execution statistics. The size of the profiling buffer can be configured
from 4KB to 128KB using the parameter C_DEBUG_PROFILE_SIZE. By setting
C_DEBUG_PROFILE_SIZE to 0 (None), non-intrusive profiling is disabled.

The Profiling Buffer is divided into a number of bins, each counting the number of executed
instructions or clock cycles within a certain address range. Each bin counts up to 236 - 1 =
68719476735 instructions or cycles.

The address range of each bin is determined by the buffer size and the profiled address
range defined using the Profiling Low Address Register and Profiling High Address Register.

Profiling can be started or stopped using the Profiling Control Register or by cross trigger
events (see Table 2-63).

The debug registers used to configure and control profiling, and to read or write the
Profiling Buffer, are listed in Table 2-56.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.
Table 2-56: MicroBlaze Profiling Debug Registers

Register Name Size (bits) MDM
Command

DBG_CTRL
Value R/W Description

Profiling Control 8 0111 0001 4E207 W
Enable or disable profiling,
configure counting method and
bin usage

Profiling Low
Address C_ADDR_SIZE - 2 0111 0010 4E41D W Defines the low address of the

profiled address range
Profiling High
Address C_ADDR_SIZE - 2 0111 0011 4E61D W Defines the high address of the

profiled address range

Profiling Buffer
Address 9 - 14 0111 0100

 9: 4E808
10: 4E809

...
14: 4E80D

W Sets the address (bin) in the
Profiling Buffer to read or write

Profiling Data
Read 36 0111 0110 4EC23 R Read data from the Profiling

Buffer
Profiling Data
Write 32 0111 0111 4EE1F W Write data to the Profiling Buffer
MicroBlaze Processor Reference Guide 121
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=121

Chapter 2: MicroBlaze Architecture
Profiling Control Register

The Profiling Control Register (PCTRLR) is used to enable (start) profiling and disable (stop)
profiling. It is also used to configure whether to count the number of executed instructions
or the number of executed clock cycles, as well as define the Profiling Buffer bin usage.

This register is a write-only register. Issuing a read request has no effect, and undefined
data is read. See the following figure and table.

The Bin Control value (B) can be calculated by the formula:

where:

- L is the Profiling Low Register

- H is the Profiling High Register

- S is the parameter C_DEBUG_PROFILE_SIZE.

Profiling Low Address Register

The Profiling Low Address Register (PLAR) is used to define the low word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read. See the following figure and Table 2-58.

B log2
H L– S 4⋅+

S 4⋅
--------------------------------=

X-Ref Target - Figure 2-36

Figure 2-36: Profiling Control Register

08

Reserved

31 7 6 5

Bin ControlCCDISENA

4

X19771-111617

Table 2-57: Profiling Control Register (PCTRLR)
Bits Name Description Reset Value

7 Enable Enable and start profiling 0
6 Disable Disable and stop profiling 0
5 Enable

Cycle Count
Enable cycle count to count clock cycles of executed instruction:
0 = Disabled, number of executed instructions counted
1 = Enabled, clock cycles of executed instructions counted

0

4:0 Bin Control The number of addresses counted by each bin in the Profiling Buffer 00000
MicroBlaze Processor Reference Guide 122
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=122

Chapter 2: MicroBlaze Architecture
Profiling High Address Register

The Profiling High Address Register (PHAR) is used to define the high word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read. See the following figure and table.

Profiling Buffer Address Register

The Profiling Buffer Address Register (PBAR) is used to define the bin in the Profiling Buffer
to be read or written. This register has variable number of bits, depending on the parameter
C_DEBUG_PROFILE_SIZE.

This register is a write-only register. Issuing a read request has no effect, and undefined
data is read. See the following figure and table.

X-Ref Target - Figure 2-37

Figure 2-37: Profiling Low Address Register

0

Low word address

C_ADDR_SIZE - 3

Reserved
X19772-112317

Table 2-58: Profiling Low Address Register (PLAR)
Bits Name Description Reset Value

C_ADDR_SIZE-3:0 Low word Low word address of the profiled area 0

X-Ref Target - Figure 2-38

Figure 2-38: Profiling High Address Register

0

High word address

C_ADDR_SIZE - 3

Reserved
X19773-112317

Table 2-59: Profiling High Address Register (PHAR)
Bits Name Description Reset Value

C_ADDR_SIZE-3:0 High word High word address of the profiled area 0

X-Ref Target - Figure 2-39

Figure 2-39: Profiling Buffer Address Register

0

Buffer Address

31 n

Reserved

n-1

X19774-111617
MicroBlaze Processor Reference Guide 123
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=123

Chapter 2: MicroBlaze Architecture
Profiling Data Read Register

The Profiling Data Read Register (PDRR) reads the bin value indicated by the Profiling Buffer
Address Register and increments the Profiling Buffer Address Register. This register is a
read-only register. Issuing a write request to the register does nothing. See the following
figure and table.

When reading this register with MDM software access to debug registers, data is read with
two consecutive accesses.

Profiling Data Write Register

The Profiling Data Write Register (PDWR) writes a new value to the bin indicated by the
Profiling Buffer Address Register and increments the Profiling Buffer Address Register. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

This register can be used to clear the Profiling Buffer before enabling profiling.

The 4 most significant bits in the Profiling Buffer bin are set to zero when writing the new
value. See the following figure and table.

Table 2-60: Profiling Buffer Address Register (PBAR)
Bits Name Description Reset Value
n-1:0 Buffer

Address
Bin in the Profiling Buffer to read or write. The number of bits (n) is 10
for a 4KB buffer, 11 for a 8KB buffer, …, 15 for a 128KB buffer.

0

X-Ref Target - Figure 2-40

Figure 2-40: Profiling Data Read Register

0

Read Data

35

X19775-111617

Table 2-61: Profiling Data Read Register (PDRR)
Bits Name Description Reset Value
35:0 Read Data Number of executed instructions or executed clock cycles in the bin 0

X-Ref Target - Figure 2-41

Figure 2-41: Profiling Data Write Register

0

Write Data

31

X19776-111617
MicroBlaze Processor Reference Guide 124
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=124

Chapter 2: MicroBlaze Architecture
Cross Trigger Support
With basic debugging, cross trigger support is provided by two signals, DBG_STOP and
MB_Halted.

• When the DBG_STOP input is set to 1, MicroBlaze will halt after a few instructions. XSDB
will detect that MicroBlaze has halted, and indicate where the halt occurred. The signal
can be used to halt MicroBlaze at any external event, for example when a Vivado®
Integrated Logic Analyzer (ILA) is triggered.

• Whenever MicroBlaze is halted, the MB_Halted output signal is set to 1; for example
after a breakpoint or watchpoint is hit, after a stop XSDB command, or when the
DBG_STOP input is set. The output is cleared when MicroBlaze execution is resumed by
an XSDB command.

The MB_Halted signal can be used to trigger a Vivado integrated logic analyzer, or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs.

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) Product Guide (PG115) [Ref 4].

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected using the Debug bus. The
effect of each of the cross trigger actions is listed in Table 2-63.

MicroBlaze can generate up to eight cross trigger events. Cross trigger events affect the
corresponding MDM cross trigger inputs, connected using the Debug bus. The cross trigger
events are described in Table 2-64.

Table 2-62: Profiling Data Write Register (PDWR)
Bits Name Description Reset Value
31:0 Write Data Data to write to a bin. 0
MicroBlaze Processor Reference Guide 125
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=125

Chapter 2: MicroBlaze Architecture
Table 2-63: MicroBlaze Cross Trigger Actions
Number Action Description

0 Debug stop Stop MicroBlaze if the processor is executing, and set the MB_Halted
output. The same effect is achieved by setting the Dbg_Stop input.

1 Continue execution Continue execution if the processor is stopped, and clear the
MB_Halted output.

2 Stop program trace Stop program trace if tracing is in progress.
3 Start program trace Start program trace if trace is stopped.
4 Stop performance

monitoring
Stop performance monitoring if it is in progress.

5 Start performance
monitoring

Start performance monitoring if it is stopped.

6 Disable profiling Disable profiling if it is in progress.
7 Enable profiling Enable profiling if it is disabled.

Table 2-64: MicroBlaze Cross Trigger Events
Number Event Description

0 MicroBlaze halted Generate an event when MicroBlaze is halted. The same event is signaled
when the MB_Halted output is set.

1 Execution resumed Generate an event when the processor resumes execution from debug
halt. The same event is signaled when the MB_Halted output is cleared.

2 Program trace
stopped

Generate an event when program trace is stopped by writing a command
to the Program Trace Command Register, when the trace buffer is full, or
by a cross trigger action.

3 Program trace
started

Generate an event when program trace is started by writing a command
to the Program Trace Command Register, by hitting a tracepoint, or by a
cross trigger action.

4 Performance
monitoring stopped

Generate an event when performance monitoring is stopped by writing
a command to the Performance Counter Command Register or by a cross
trigger action.

5 Performance
monitoring started

Generate an event when performance monitoring is started by writing a
command to the Performance Counter Command Register, or by a cross
trigger action.

6 Profiling disabled Generate an event when profiling is enabled by writing a command to
the Profiling Control Register or by a cross trigger action.

7 Profiling enabled Generate an event when profiling is disabled by writing a command to
the Profiling Control Register or by a cross trigger action.
MicroBlaze Processor Reference Guide 126
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=126

Chapter 2: MicroBlaze Architecture
Trace Interface Overview
The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis.

RECOMMENDED: Xilinx recommends that users only use the trace interface through Xilinx developed
analysis cores.

This interface is not guaranteed to be backward compatible in future releases of MicroBlaze.
See Table 3-16 in Chapter 3, MicroBlaze Signal Interface Description for a list of exported
signals.
MicroBlaze Processor Reference Guide 127
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=127

Chapter 2: MicroBlaze Architecture
Fault Tolerance
The fault tolerance features included in MicroBlaze, enabled with C_FAULT_TOLERANT,
provide Error Detection for internal block RAMs (in the Instruction Cache, Data Cache,
Branch Target Cache, and MMU), and support for Error Detection and Correction (ECC) in
LMB block RAMs. When fault tolerance is enabled, all soft errors in block RAMs are detected
and corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs
to be protected. A detailed explanation of this topic, and further references, can be found in
the two documents Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036)
[Ref 2] and UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product
Guide (PG187) [Ref 16].

To further increase fault tolerance, a complete triple modular redundancy (TMR) solution is
provided for MicroBlaze, using additional cores to handle majority voting and fault
detection. See the Triple Modular Redundancy (TMR) Subsystem Product Guide (PG268)
[Ref 7] for a complete description and implementation details.

Configuration

Using MicroBlaze Configuration

You can enable Fault tolerance on the General page of the MicroBlaze configuration dialog
box.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected
LMB BRAM Interface Controllers by the tools, when the system is generated. This means
that nothing else needs to be configured to enable fault tolerance and minimal ECC
support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB
BRAM unprotected, by disabling C_ECC in the configuration dialogs of all connected LMB
BRAM Interface Controllers.

In this case, the internal MicroBlaze block RAM protection is still enabled, since fault
tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers.
MicroBlaze Processor Reference Guide 128
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=128

Chapter 2: MicroBlaze Architecture
In this case, fault tolerance is automatically enabled in MicroBlaze by the tools, when the
system is generated. This means that nothing else needs to be configured to enable ECC
support and MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly
disabling C_FAULT_TOLERANT in the MicroBlaze configuration dialog. This is not
recommended, unless no block RAM is used in MicroBlaze, and there is no need to handle
bus exceptions from uncorrectable ECC errors.

Features
An overview of all MicroBlaze fault tolerance features is given here. Further details on each
feature can be found in the following sections:

• Instruction Cache
• Data Cache
• UTLB Management
• Branch Target Cache
• Exception Causes

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the LMB BRAM Interface
Controller LogiCORE IP Product Guide (PG112) [Ref 3].

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity
error is detected, the corresponding cache line is invalidated. This forces the cache to reload
the correct value from external memory. Parity is checked whenever a cache hit occurs.

Note: This scheme only works for write-through, and thus write-back data cache is not available
when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and
written. One parity bit is used for the tag, one parity bit for the instruction cache data, and
one parity bit for each byte in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache
block RAMs, since spare bits can be used for the parity. Any increase in resource utilization,
in particular number of block RAMs, can easily be seen in the MicroBlaze configuration
dialog, when enabling fault tolerance.
MicroBlaze Processor Reference Guide 129
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=129

Chapter 2: MicroBlaze Architecture
Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity
is used. When a parity error is detected during an address translation, a TLB miss exception
occurs, forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated.
One parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When
a parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is
available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is
detected when looking up a branch target address, the address is ignored, forcing a normal
branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One
parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a
spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in the MicroBlaze processor by setting the EE bit in the Machine
Status Register, the uncorrectable error signal either generates an instruction bus exception
or a data bus exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and
the external error signal MB_Error is set. This behavior ensures that it is impossible to
execute an instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically
scrubbed.
MicroBlaze Processor Reference Guide 130
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=130

Chapter 2: MicroBlaze Architecture
The standalone BSP provides the function microblaze_scrub() to perform scrubbing of
the entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular
configuration. This function is intended to be called periodically from a timer interrupt
routine. One location of each block RAM is scrubbed every time it is called, using persistent
data to track the current locations.

The following example code illustrates how this can be done.

#include "xparameters.h"

#include "xtmrctr.h"

#include "xintc.h"

#include "mb_interface.h"

#define SCRUB_PERIOD ...

XIntc InterruptController; /* The Interrupt Controller instance */

XTmrCtr TimerCounterInst;/* The Timer Counter instance */

void MicroBlazeScrubHandler(void *CallBackRef, u8 TmrCtrNumber)

{

/* Perform other timer interrupt processing here */

microblaze_scrub();

}

int main (void)

{

int Status;

/*

 * Initialize the timer counter so that it's ready to use,

 * specify the device ID that is generated in xparameters.h

 */

Status = XTmrCtr_Initialize(&TimerCounterInst, TMRCTR_DEVICE_ID);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

 * Connect the timer counter to the interrupt subsystem such that

 * interrupts can occur.

 */

Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

 * Connect a device driver handler that will be called when an

 * interrupt for the device occurs, the device driver handler performs

 * the specific interrupt processing for the device

 */

Status = XIntc_Connect(&InterruptController, TMRCTR_DEVICE_ID,

(XInterruptHandler)XTmrCtr_InterruptHandler,

(void *) &TimerCounterInst);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

MicroBlaze Processor Reference Guide 131
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=131

Chapter 2: MicroBlaze Architecture
/*

 * Start the interrupt controller such that interrupts are enabled for

 * all devices that cause interrupts, specifying real mode so that the

 * timer counter can cause interrupts thru the interrupt controller.

 */

Status = XIntc_Start(&InterruptController, XIN_REAL_MODE);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

 * Setup the handler for the timer counter that will be called from the

 * interrupt context when the timer expires, specify a pointer to the

 * timer counter driver instance as the callback reference so the

 * handler is able to access the instance data

 */

XTmrCtr_SetHandler(&TimerCounterInst, MicroBlazeScrubHandler,

 &TimerCounterInst);

/*

 * Enable the interrupt of the timer counter so interrupts will occur

 * and use auto reload mode such that the timer counter will reload

 * itself automatically and continue repeatedly, without this option

 * it would expire once only

 */

XTmrCtr_SetOptions(&TimerCounterInst, TIMER_CNTR_0,

XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

/*

 * Set a reset value for the timer counter such that it will expire

 * earlier than letting it roll over from 0, the reset value is loaded

 * into the timer counter when it is started

 */

XTmrCtr_SetResetValue(TmrCtrInstancePtr,TmrCtrNumber,SCRUB_PERIOD);

/*

 * Start the timer counter such that it's incrementing by default,

 * then wait for it to timeout a number of times

 */

XTmrCtr_Start(&TimerCounterInst, TIMER_CNTR_0);

...

}

See the section Scrubbing for further details on how scrubbing is implemented, including
how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM
Interface Controller, and also provides a comprehensive self test.

By implementing the Vitis Xilinx C Project "Peripheral Tests", a self-test example including
the BRAM self test for each LMB BRAM Interface Controller in the system is generated.
Depending on the ECC features enabled in the LMB BRAM Interface Controller, this code will
MicroBlaze Processor Reference Guide 132
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=132

Chapter 2: MicroBlaze Architecture
perform all possible tests of the ECC function. See the Vitis Unified Software Platform
Documentation [Ref 9] for more information.

The self-test example can be found in the standalone BSP BRAM driver source code,
typically in the subdirectory microblaze_0/libsrc/bram_v3_03_a/src/xbram_selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

• Instruction and data caches: All lines in the caches are cyclically invalidated using the
WIC and WDC instructions respectively. This forces the cache to reload the cache line
from external memory.

• Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

• Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.
• LMB block RAM: All addresses in the memory are cyclically read and written, thus

correcting any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most
cases it only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers.

To be able to generate an interrupt C_ECC_STATUS_REGISTERS must be set to 1 in the
connected LMB BRAM Interface Controllers, and to read the failing address
C_CE_FAILING_REGISTERS must be set to 1.

Calculating Scrubbing Rate

The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our case
given by

where PW is the probability of an uncorrectable error in a memory word, BER is the soft error
rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in the Device
Reliability Report User Guide (UG116) [Ref 5].

PW 760
2BER

SR2

≈

MicroBlaze Processor Reference Guide 133
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=133

Chapter 2: MicroBlaze Architecture
Use Cases
Several common use cases are described here. These use cases are derived from the
Processor LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112) [Ref 3].

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any
other configuration.

The system is suitable when area constraints are high, and there is no need for testing of the
ECC function, or analysis of error frequency and location. No ECC registers are
implemented. Single bit errors are corrected by the ECC logic before being passed to
MicroBlaze. Uncorrectable errors set an error signal, which generates an exception in
MicroBlaze.

Small

This system should be used when it is necessary to monitor error frequency, but there is no
need for testing of the ECC function. It is a minimal system with Correctable Error Counter
Register added to monitor single bit error rates. If the error rate is too high, the scrubbing
rate should be increased to minimize the risk of a single bit error becoming an
uncorrectable double bit error. Parameters set are C_ECC = 1 and C_CE_COUNTER_WIDTH =
10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as
well as generating an interrupt to immediately correct a single bit error through software. It
does not provide support for testing of the ECC function.

It is a small system with Correctable Error First Failing registers and Status register added. A
single bit error will latch the address for the access into the Correctable Error First Failing
Address Register and set the CE_STATUS bit in the ECC Status Register. An interrupt will be
generated triggering MicroBlaze to read the failing address and then perform a read
followed by a write on the failing address. This will remove the single bit error from the
BRAM, thus reducing the risk of the single bit error becoming a uncorrectable double bit
error. Parameters set are:

- C_ECC = 1

- C_CE_COUNTER_WIDTH = 10

- C_ECC_STATUS_REGISTER = 1

- C_CE_FAILING_REGISTERS = 1
MicroBlaze Processor Reference Guide 134
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=134

Chapter 2: MicroBlaze Architecture
Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to
enable full error injection capability, as well as error monitoring and interrupt generation. It
is a typical system with Uncorrectable Error First Failing registers and Fault Injection
registers added. All features are switched on for full control of ECC functionality for system
debug or systems with high fault tolerance requirements. Parameters set are:

- C_ECC = 1

- C_CE_COUNTER_WIDTH = 10

- C_ECC_STATUS_REGISTER = 1

- C_CE_FAILING_REGISTERS = 1

- C_UE_FAILING_REGISTERS = 1

- C_FAULT_INJECT = 1
MicroBlaze Processor Reference Guide 135
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=135

Chapter 2: MicroBlaze Architecture
Lockstep Operation
MicroBlaze is able to operate in a lockstep configuration, where two or more identical
MicroBlaze cores execute the same program. By comparing the outputs of the cores, any
tampering attempts, transient faults or permanent hardware faults can be detected.

System Configuration
The parameter C_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and
handles the debug functionality. The port Lockstep_Master_Out on the master is
connected to the port Lockstep_Slave_In on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This must be
ensured by only connecting signals to the input ports of the slaves. For buses this means
that each individual input port must be explicitly connected.

The port Lockstep_Out on the master and slave cores provide all output signals for
comparison. Unless an error occurs, individual signals from each of the cores are identical
every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be
synchronous. Input signals that could require external synchronization are Interrupt,
Reset, Ext_Brk, and Ext_Nm_Brk.

Use Cases
Two common use cases are described here. In addition, lockstep operation provides the
basis for implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system
is tamper-proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local
memory and redundant comparators, each in a protected area. The outputs from each
processor feed two comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely
independent of each other, without any connecting signals. The only exception is debug
logic and associated signals, because it is assumed that debugging is disabled before any
productization and certification of the system.
MicroBlaze Processor Reference Guide 136
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=136

Chapter 2: MicroBlaze Architecture
The outputs from the master MicroBlaze core drive the peripherals in the system. All data
leaving the protected area pass through inhibitors. Each inhibitor is controlled from its
associated comparator.

Each protected area of the design must be implemented in its own partition, using a
hierarchical single chip cryptography (SCC) flow. A detailed explanation of this flow, and
further references, can be found in the document Hierarchical Design Methodology Guide
(UG748) [Ref 8].

A block diagram of the system is shown in the following figure.

Error Detection

The error detection use case requires that all transient and permanent faults are detected.
This is essential in fail safe and fault tolerant applications, where redundancy is utilized to
improve system availability.

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used
to signal an error when a mis-match is detected on the outputs of the two processors. Any
error immediately causes both processors to halt, preventing further error propagation.

X-Ref Target - Figure 2-42

Figure 2-42: Lockstep Tamper Protection Application

MicroBlaze Partition

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze Partition

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze
Master

DebugMicroBlaze
Debug Module

MicroBlaze
Slave

Debug

Comparator

I/O Interfaces

External
Memory

Interfaces

Comparator Partition

Inputs

Comparator

Comparator Partition

Inhibit

Peripheral
Partition

Inputs

Debug interface – Removed for Production

InhibitOutputs

C_LOCKSTEP_SLAVE=0

C_LOCKSTEP_SLAVE=1

Lockstep_Master_Out

Lockstep_Slave_In

Lockstep_Out

Lockstep_Out

X19777-111617
MicroBlaze Processor Reference Guide 137
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=137

Chapter 2: MicroBlaze Architecture
The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the
system. The slave MicroBlaze core only has inputs connected; all outputs are left open.

The system contains the basic building block for designing a complete fault tolerant
application, where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in the following figure.
X-Ref Target - Figure 2-43

Figure 2-43: Lockstep Error Detection Application

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze
Master

DebugMicroBlaze
Debug Module

MicroBlaze
Slave

Debug

Comparator

I/O Interfaces

External
Memory

Interfaces

Error Reset

Inputs

C_LOCKSTEP_SLAVE=0

C_LOCKSTEP_SLAVE=1

Lockstep_Out

Lockstep_Out

Outputs

Inputs

Inputs

X19778-111617
MicroBlaze Processor Reference Guide 138
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=138

Chapter 2: MicroBlaze Architecture
Coherency
MicroBlaze supports cache coherency, as well as invalidation of caches and translation look-
aside buffers, using the AXI Coherency Extension (ACE) defined in AMBA® AXI and ACE
Protocol Specification (Arm IHI 0022E) [Ref 15]. The coherency support is enabled when the
parameter C_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in the
coherency domain. The peripheral ports (AXI_IP, AXI_DP) and local memory (ILMB, DLMB)
are outside the coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces (more than
32-bit data), instruction cache streams, instruction cache victims or when area optimization
is enabled. In addition both C_ICACHE_ALWAYS_USED and C_DCACHE_ALWAYS_USED must be
set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

• Data Cache invalidation: When a MicroBlaze core in the coherency domain invalidates a
data cache line with an external cache invalidation instruction (WDC.EXT.CLEAR or
WDC.EXT.FLUSH), hardware messages ensure that all other cores in the coherency
domain will do the same. The physical address is always used.

• Instruction Cache invalidation: When a MicroBlaze core in the coherency domain
invalidates an instruction cache line, hardware messages ensure that all other cores in
the coherency domain will do the same. When the MMU is in virtual mode the virtual
address is used, otherwise the physical address is used.

• MMU TLB invalidation: When a MicroBlaze core in the coherency domain invalidates an
entry in the UTLB (that is writes TLBHI with a zero Valid flag), hardware messages
ensure that all other cores in the coherency domain will invalidate all entries in their
unified TLBs having a TAG matching the invalidated virtual address, as well as empty
their shadow TLBs.

The TID is not taken into account when matching the entries, which can result in
invalidation of entries belonging to other processes. Subsequent accesses to these
entries will generate TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that
the hardware invalidation is propagated within the coherency domain. It is not sufficient
to simply invalidate the page in memory, since other processors in the coherency
domain can have this particular entry stored in their TLBs.
MicroBlaze Processor Reference Guide 139
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=139

Chapter 2: MicroBlaze Architecture
After a MicroBlaze core has invalidated one or more entries, it must execute a memory
barrier instruction (MBAR), to ensure that all peer processors have completed their TLB
invalidation.

• Branch Target Cache invalidation: When a MicroBlaze core in the coherency domain
invalidates the Branch Target Cache, either with a memory barrier instruction or with a
synchronizing branch, hardware messages ensure that all other cores in the coherency
domain will do the same.

In particular, this means that self-modifying code can be used transparently within the
coherency domain in a multi-processor system, provided that the guidelines in Self-
modifying Code are followed.

Protocol Compliance
The MicroBlaze instruction cache interface issues the following subset of the possible ACE
transactions:

• ReadClean: Issued when a cache line is allocated.
• ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the

cache line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

• ReadClean: Issued when a cache line is allocated.
• CleanUnique: Issued when an SWX instruction is executed as part of an exclusive access

sequence.
• ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the

cache line.
• WriteUnique: Issued whenever a store instruction performs a write.
• CleanInvalid: Issued when a WDC.EXT.FLUSH instruction is executed.
• MakeInvalid: Issued when a WDC.EXT.CLEAR instruction is executed.
MicroBlaze Processor Reference Guide 140
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=140

Chapter 2: MicroBlaze Architecture
Both interfaces issue the following subset of the possible Distributed Virtual Memory
(DVM) transactions:

• DVM Operation

- TLB Invalidate: Hypervisor TLB Invalidate by VA

- Branch Predictor Invalidate: L Branch Predictor Invalidate all

- Physical Instruction Cache Invalidate: Non-secure Physical Instruction Cache
Invalidate by PA without Virtual Index

- Virtual Instruction Cache Invalidate: Hypervisor Invalidate by VA
• DVM Sync

- Synchronization
• DVM Complete

- In addition to the DVM transactions above, the interfaces only accept the
CleanInvalid and MakeInvalid transactions. These transactions have no effect in
the instruction cache, and invalidate the indicated data cache lines. If any other
transactions are received, the behavior is undefined.

- Only a subset of AXI4 transactions are utilized by the interfaces, as described in
Cache Interfaces.
MicroBlaze Processor Reference Guide 141
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=141

Chapter 2: MicroBlaze Architecture
Data and Instruction Address Extension
MicroBlaze has the ability to address up to 16EB of data controlled by the parameter
C_ADDR_SIZE, and with 32-bit MicroBlaze also supports a physical instruction address up to
16EB when the MMU Physical Address Extension (PAE) is enabled by setting C_USE_MMU = 3
(Virtual).

With 64-bit MicroBlaze both the virtual and physical address are extended according to the
parameter C_ADDR_SIZE. This applies to both instruction and data address spaces, thus
eliminating all limitations imposed by using 32-bit MicroBlaze listed here.

The parameter C_ADDR_SIZE can be set to the following values:

There are a number of software limitations with extended addressing when using 32-bit
MicroBlaze:

• The GNU tools only generate ELF files with 32-bit addresses with 32-bit MicroBlaze,
which means that program instruction and data memory must be located in the first
4GB of the address space. This is also the reason the instruction address space does not
provide an extended address unless PAE is enabled.

With PAE enabled, the majority of the program instruction and data can be located at
any physical address, but all software running in real mode must be located in the first
4GB of the address space. The MMU UTLB must also be initialized to set up the virtual
to physical address translation by software running in real mode, before virtual mode is
activated.

• Because all software drivers use address pointers that are 32-bit unsigned integers, it is
not possible to access physical extended addresses above 4GB without modifying the
driver code, and consequently all AXI peripherals should be located in the first 4GB of
the address space.

With PAE enabled, AXI peripherals can be located at any physical address, provided that
the virtual address remains in the first 4GB of the address space.

° NONE 4 * 10243 bytes 32-bit address, no extended address instructions or PAE
° 64GB 64 * 10243 bytes 36-bit address
° 1TB 10244 bytes 40-bit address
° 16TB 16 * 10244 bytes 44-bit address
° 256TB 256 * 10244 bytes 48-bit address
° 4PB 4 * 10245 bytes 52-bit address
° 16EB 16 * 10246 bytes 64-bit address
MicroBlaze Processor Reference Guide 142
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=142

Chapter 2: MicroBlaze Architecture
• The extended address is only treated as a physical address, and the MMU cannot be
used to translate from an extended virtual address to a physical address.

This also means that without PAE support, Linux can only use the data address extension
through a dedicated driver operating in real mode.

The extended address load and store instructions are privileged when the MMU is
enabled, unless they are allowed by setting the parameter C_MMU_PRIVILEGED_INSTR
appropriately. If allowed, the instructions bypass the MMU translation treating the
extended address as a physical address.

• The GNU compiler does not handle 64-bit address pointers, which means that unless
PAE is enabled the only way to access an extended address is using the specific
extended addressing instructions, available as macros.

The following C code exemplifies how an extended address can be used to access data:
#include “xil_types.h”
#include “mb_interface.h”

int main()

{

u64 Addr = 0x000000FF00000000LL; /* Extended address */

u32 Word;

u8 Byte;

Word = lwea(Addr); /* Load word from extended address */

swea(Addr, Word); /* Store word to extended address */

Byte = lbuea(Addr); /* Load byte from extended address */

sbea(Addr, Byte); /* Store byte to extended address */

}

MicroBlaze Processor Reference Guide 143
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=143

Chapter 3

MicroBlaze Signal Interface Description

Introduction
This chapter describes the types of signal interfaces that can be used to connect a
MicroBlaze™ processor.

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface units
for data and instruction accesses. The following two memory interfaces are supported:
Local Memory Bus (LMB), and the AMBA® AXI4 interface (AXI4) and ACE interface (ACE).

The LMB provides single-cycle access to on-chip dual-port block RAM. The AXI4 interfaces
provide a connection to both on-chip and off-chip peripherals and memory. The ACE
interfaces provide cache coherent connections to memory.

MicroBlaze also supports up to 16 AXI4-Stream interface ports, each with one master and
one slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

• The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI
Coherency Extension (ACE) Interface for cache interfaces (see Arm® AMBA® AXI and
ACE Protocol Specification, Arm IHI 0022E [Ref 15]).

• LMB provides a simple synchronous protocol for efficient block RAM transfers
• AXI4-Stream provides a fast non-arbitrated streaming communication mechanism
• Debug interface for use with the Microprocessor Debug Module (MDM) core
• Trace interface for performance analysis
MicroBlaze Processor Reference Guide 144
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=144

Chapter 3: MicroBlaze Signal Interface Description
MicroBlaze I/O Overview
The core interfaces shown in the following figure and Table 3-1 are defined as follows:

• M_AXI_DP: Peripheral Data Interface, AXI4-Lite or AXI4 interface
• DLMB: Data interface, Local Memory Bus (BRAM only)
• M_AXI_IP: Peripheral Instruction interface, AXI4-Lite interface
• ILMB: Instruction interface, Local Memory Bus (BRAM only)
• M0_AXIS..M15_AXIS: AXI4-Stream interface master direct connection interfaces
• S0_AXIS..S15_AXIS: AXI4-Stream interface slave direct connection interfaces
• M_AXI_DC: Data-side cache AXI4 interface
• M_ACE_DC: Data-side cache AXI Coherency Extension (ACE) interface
• M_AXI_IC: Instruction-side cache AXI4 interface
• M_ACE_IC: Instruction-side cache AXI Coherency Extension (ACE) interface
• Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace

X-Ref Target - Figure 3-1

Figure 3-1: MicroBlaze Core Block Diagram

Bus
IF

I-C
ache

Instruction
Buffer

Instruction
Buffer

Branch Target
Cache

Program
Counter

M_AXI_IC Memory Management Unit (MMU)

ITLB DTLBUTLB

Bus
IF

D
-C

ache

M_AXI_DC

M_AXI_DP

DLMB

M0_AXIS ..
M15_AXIS

S0_AXIS ..
S15_AXIS

Special
Purpose
Registers

Instruction
Decode

Register File
32 registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Instruction-side
Bus interface

Data-side
Bus interface

Optional MicroBlaze feature

M_AXI_IP

ILMB

M_ACE_DCM_ACE_IC

X19738-100218
MicroBlaze Processor Reference Guide 145
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=145

Chapter 3: MicroBlaze Signal Interface Description
Table 3-1: Summary of MicroBlaze Core I/O
Signal Interface I/O Description

M_AXI_DP_AWID M_AXI_DP O Master Write address ID
M_AXI_DP_AWADDR M_AXI_DP O Master Write address
M_AXI_DP_AWLEN M_AXI_DP O Master Burst length
M_AXI_DP_AWSIZE M_AXI_DP O Master Burst size
M_AXI_DP_AWBURST M_AXI_DP O Master Burst type
M_AXI_DP_AWLOCK M_AXI_DP O Master Lock type
M_AXI_DP_AWCACHE M_AXI_DP O Master Cache type
M_AXI_DP_AWPROT M_AXI_DP O Master Protection type
M_AXI_DP_AWQOS M_AXI_DP O Master Quality of Service
M_AXI_DP_AWVALID M_AXI_DP O Master Write address valid
M_AXI_DP_AWREADY M_AXI_DP I Slave Write address ready
M_AXI_DP_WDATA M_AXI_DP O Master Write data
M_AXI_DP_WSTRB M_AXI_DP O Master Write strobes
M_AXI_DP_WLAST M_AXI_DP O Master Write last
M_AXI_DP_WVALID M_AXI_DP O Master Write valid
M_AXI_DP_WREADY M_AXI_DP I Slave Write ready
M_AXI_DP_BID M_AXI_DP I Slave Response ID
M_AXI_DP_BRESP M_AXI_DP I Slave Write response
M_AXI_DP_BVALID M_AXI_DP I Slave Write response valid
M_AXI_DP_BREADY M_AXI_DP O Master Response ready
M_AXI_DP_ARID M_AXI_DP O Master Read address ID
M_AXI_DP_ARADDR M_AXI_DP O Master Read address
M_AXI_DP_ARLEN M_AXI_DP O Master Burst length
M_AXI_DP_ARSIZE M_AXI_DP O Master Burst size
M_AXI_DP_ARBURST M_AXI_DP O Master Burst type
M_AXI_DP_ARLOCK M_AXI_DP O Master Lock type
M_AXI_DP_ARCACHE M_AXI_DP O Master Cache type
M_AXI_DP_ARPROT M_AXI_DP O Master Protection type
M_AXI_DP_ARQOS M_AXI_DP O Master Quality of Service
M_AXI_DP_ARVALID M_AXI_DP O Master Read address valid
M_AXI_DP_ARREADY M_AXI_DP I Slave Read address ready
M_AXI_DP_RID M_AXI_DP I Slave Read ID tag
M_AXI_DP_RDATA M_AXI_DP I Slave Read data
M_AXI_DP_RRESP M_AXI_DP I Slave Read response
M_AXI_DP_RLAST M_AXI_DP I Slave Read last
MicroBlaze Processor Reference Guide 146
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=146

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DP_RVALID M_AXI_DP I Slave Read valid
M_AXI_DP_RREADY M_AXI_DP O Master Read ready
M_AXI_IP_AWID M_AXI_IP O Master Write address ID
M_AXI_IP_AWADDR M_AXI_IP O Master Write address
M_AXI_IP_AWLEN M_AXI_IP O Master Burst length
M_AXI_IP_AWSIZE M_AXI_IP O Master Burst size
M_AXI_IP_AWBURST M_AXI_IP O Master Burst type
M_AXI_IP_AWLOCK M_AXI_IP O Master Lock type
M_AXI_IP_AWCACHE M_AXI_IP O Master Cache type
M_AXI_IP_AWPROT M_AXI_IP O Master Protection type
M_AXI_IP_AWQOS M_AXI_IP O Master Quality of Service
M_AXI_IP_AWVALID M_AXI_IP O Master Write address valid
M_AXI_IP_AWREADY M_AXI_IP I Slave Write address ready
M_AXI_IP_WDATA M_AXI_IP O Master Write data
M_AXI_IP_WSTRB M_AXI_IP O Master Write strobes
M_AXI_IP_WLAST M_AXI_IP O Master Write last
M_AXI_IP_WVALID M_AXI_IP O Master Write valid
M_AXI_IP_WREADY M_AXI_IP I Slave Write ready
M_AXI_IP_BID M_AXI_IP I Slave Response ID
M_AXI_IP_BRESP M_AXI_IP I Slave Write response
M_AXI_IP_BVALID M_AXI_IP I Slave Write response valid
M_AXI_IP_BREADY M_AXI_IP O Master Response ready
M_AXI_IP_ARID M_AXI_IP O Master Read address ID
M_AXI_IP_ARADDR M_AXI_IP O Master Read address
M_AXI_IP_ARLEN M_AXI_IP O Master Burst length
M_AXI_IP_ARSIZE M_AXI_IP O Master Burst size
M_AXI_IP_ARBURST M_AXI_IP O Master Burst type
M_AXI_IP_ARLOCK M_AXI_IP O Master Lock type
M_AXI_IP_ARCACHE M_AXI_IP O Master Cache type
M_AXI_IP_ARPROT M_AXI_IP O Master Protection type
M_AXI_IP_ARQOS M_AXI_IP O Master Quality of Service
M_AXI_IP_ARVALID M_AXI_IP O Master Read address valid
M_AXI_IP_ARREADY M_AXI_IP I Slave Read address ready
M_AXI_IP_RID M_AXI_IP I Slave Read ID tag
M_AXI_IP_RDATA M_AXI_IP I Slave Read data

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 147
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=147

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IP_RRESP M_AXI_IP I Slave Read response
M_AXI_IP_RLAST M_AXI_IP I Slave Read last
M_AXI_IP_RVALID M_AXI_IP I Slave Read valid
M_AXI_IP_RREADY M_AXI_IP O Master Read ready
M_AXI_DC_AWADDR M_AXI_DC O Master Write address
M_AXI_DC_AWLEN M_AXI_DC O Master Burst length
M_AXI_DC_AWSIZE M_AXI_DC O Master Burst size
M_AXI_DC_AWBURST M_AXI_DC O Master Burst type
M_AXI_DC_AWLOCK M_AXI_DC O Master Lock type
M_AXI_DC_AWCACHE M_AXI_DC O Master Cache type
M_AXI_DC_AWPROT M_AXI_DC O Master Protection type
M_AXI_DC_AWQOS M_AXI_DC O Master Quality of Service
M_AXI_DC_AWVALID M_AXI_DC O Master Write address valid
M_AXI_DC_AWREADY M_AXI_DC I Slave Write address ready
M_AXI_DC_AWUSER M_AXI_DC O Master Write address user signals
M_AXI_DC_AWDOMAIN M_ACE_DC O Master Write address domain
M_AXI_DC_AWSNOOP M_ACE_DC O Master Write address snoop
M_AXI_DC_AWBAR M_ACE_DC O Master Write address barrier
M_AXI_DC_WDATA M_AXI_DC O Master Write data
M_AXI_DC_WSTRB M_AXI_DC O Master Write strobes
M_AXI_DC_WLAST M_AXI_DC O Master Write last
M_AXI_DC_WVALID M_AXI_DC O Master Write valid
M_AXI_DC_WREADY M_AXI_DC I Slave Write ready
M_AXI_DC_WUSER M_AXI_DC O Master Write user signals
M_AXI_DC_BRESP M_AXI_DC I Slave Write response
M_AXI_DC_BID M_AXI_DC I Slave Response ID
M_AXI_DC_BVALID M_AXI_DC I Slave Write response valid
M_AXI_DC_BREADY M_AXI_DC O Master Response ready
M_AXI_DC_BUSER M_AXI_DC I Slave Write response user signals
M_AXI_DC_WACK M_ACE_DC O Slave Write acknowledge
M_AXI_DC_ARID M_AXI_DC O Master Read address ID
M_AXI_DC_ARADDR M_AXI_DC O Master Read address
M_AXI_DC_ARLEN M_AXI_DC O Master Burst length
M_AXI_DC_ARSIZE M_AXI_DC O Master Burst size
M_AXI_DC_ARBURST M_AXI_DC O Master Burst type

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 148
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=148

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC_ARLOCK M_AXI_DC O Master Lock type
M_AXI_DC_ARCACHE M_AXI_DC O Master Cache type
M_AXI_DC_ARPROT M_AXI_DC O Master Protection type
M_AXI_DC_ARQOS M_AXI_DC O Master Quality of Service
M_AXI_DC_ARVALID M_AXI_DC O Master Read address valid
M_AXI_DC_ARREADY M_AXI_DC I Slave Read address ready
M_AXI_DC_ARUSER M_AXI_DC O Master Read address user signals
M_AXI_DC_ARDOMAIN M_ACE_DC O Master Read address domain
M_AXI_DC_ARSNOOP M_ACE_DC O Master Read address snoop
M_AXI_DC_ARBAR M_ACE_DC O Master Read address barrier
M_AXI_DC_RID M_AXI_DC I Slave Read ID tag
M_AXI_DC_RDATA M_AXI_DC I Slave Read data
M_AXI_DC_RRESP M_AXI_DC I Slave Read response
M_AXI_DC_RLAST M_AXI_DC I Slave Read last
M_AXI_DC_RVALID M_AXI_DC I Slave Read valid
M_AXI_DC_RREADY M_AXI_DC O Master Read ready
M_AXI_DC_RUSER M_AXI_DC I Slave Read user signals
M_AXI_DC_RACK M_ACE_DC O Master Read acknowledge
M_AXI_DC_ACVALID M_ACE_DC I Slave Snoop address valid
M_AXI_DC_ACADDR M_ACE_DC I Slave Snoop address
M_AXI_DC_ACSNOOP M_ACE_DC I Slave Snoop address snoop
M_AXI_DC_ACPROT M_ACE_DC I Slave Snoop address protection type
M_AXI_DC_ACREADY M_ACE_DC O Master Snoop ready
M_AXI_DC_CRREADY M_ACE_DC I Slave Snoop response ready
M_AXI_DC_CRVALID M_ACE_DC O Master Snoop response valid
M_AXI_DC_CRRESP M_ACE_DC O Master Snoop response
M_AXI_DC_CDVALID M_ACE_DC O Master Snoop data valid
M_AXI_DC_CDREADY M_ACE_DC I Slave Snoop data ready
M_AXI_DC_CDDATA M_ACE_DC O Master Snoop data
M_AXI_DC_CDLAST M_ACE_DC O Master Snoop data last
M_AXI_IC_AWID M_AXI_IC O Master Write address ID
M_AXI_IC_AWADDR M_AXI_IC O Master Write address
M_AXI_IC_AWLEN M_AXI_IC O Master Burst length
M_AXI_IC_AWSIZE M_AXI_IC O Master Burst size
M_AXI_IC_AWBURST M_AXI_IC O Master Burst type

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 149
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=149

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IC_AWLOCK M_AXI_IC O Master Lock type
M_AXI_IC_AWCACHE M_AXI_IC O Master Cache type
M_AXI_IC_AWPROT M_AXI_IC O Master Protection type
M_AXI_IC_AWQOS M_AXI_IC O Master Quality of Service
M_AXI_IC_AWVALID M_AXI_IC O Master Write address valid
M_AXI_IC_AWREADY M_AXI_IC I Slave Write address ready
M_AXI_IC_AWUSER M_AXI_IC O Master Write address user signals
M_AXI_IC_AWDOMAIN M_ACE_IC O Master Write address domain
M_AXI_IC_AWSNOOP M_ACE_IC O Master Write address snoop
M_AXI_IC_AWBAR M_ACE_IC O Master Write address barrier
M_AXI_IC_WDATA M_AXI_IC O Master Write data
M_AXI_IC_WSTRB M_AXI_IC O Master Write strobes
M_AXI_IC_WLAST M_AXI_IC O Master Write last
M_AXI_IC_WVALID M_AXI_IC O Master Write valid
M_AXI_IC_WREADY M_AXI_IC I Slave Write ready
M_AXI_IC_WUSER M_AXI_IC O Master Write user signals
M_AXI_IC_BID M_AXI_IC I Slave Response ID
M_AXI_IC_BRESP M_AXI_IC I Slave Write response
M_AXI_IC_BVALID M_AXI_IC I Slave Write response valid
M_AXI_IC_BREADY M_AXI_IC O Master Response ready
M_AXI_IC_BUSER M_AXI_IC I Slave Write response user signals
M_AXI_IC_WACK M_ACE_IC O Slave Write acknowledge
M_AXI_IC_ARID M_AXI_IC O Master Read address ID
M_AXI_IC_ARADDR M_AXI_IC O Master Read address
M_AXI_IC_ARLEN M_AXI_IC O Master Burst length
M_AXI_IC_ARSIZE M_AXI_IC O Master Burst size
M_AXI_IC_ARBURST M_AXI_IC O Master Burst type
M_AXI_IC_ARLOCK M_AXI_IC O Master Lock type
M_AXI_IC_ARCACHE M_AXI_IC O Master Cache type
M_AXI_IC_ARPROT M_AXI_IC O Master Protection type
M_AXI_IC_ARQOS M_AXI_IC O Master Quality of Service
M_AXI_IC_ARVALID M_AXI_IC O Master Read address valid
M_AXI_IC_ARREADY M_AXI_IC I Slave Read address ready
M_AXI_IC_ARUSER M_AXI_IC O Master Read address user signals
M_AXI_IC_ARDOMAIN M_ACE_IC O Master Read address domain

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 150
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=150

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IC_ARSNOOP M_ACE_IC O Master Read address snoop
M_AXI_IC_ARBAR M_ACE_IC O Master Read address barrier
M_AXI_IC_RID M_AXI_IC I Slave Read ID tag
M_AXI_IC_RDATA M_AXI_IC I Slave Read data
M_AXI_IC_RRESP M_AXI_IC I Slave Read response
M_AXI_IC_RLAST M_AXI_IC I Slave Read last
M_AXI_IC_RVALID M_AXI_IC I Slave Read valid
M_AXI_IC_RREADY M_AXI_IC O Master Read ready
M_AXI_IC_RUSER M_AXI_IC I Slave Read user signals
M_AXI_IC_RACK M_ACE_IC O Master Read acknowledge
M_AXI_IC_ACVALID M_ACE_IC I Slave Snoop address valid
M_AXI_IC_ACADDR M_ACE_IC I Slave Snoop address
M_AXI_IC_ACSNOOP M_ACE_IC I Slave Snoop address snoop
M_AXI_IC_ACPROT M_ACE_IC I Slave Snoop address protection type
M_AXI_IC_ACREADY M_ACE_IC O Master Snoop ready
M_AXI_IC_CRREADY M_ACE_IC I Slave Snoop response ready
M_AXI_IC_CRVALID M_ACE_IC O Master Snoop response valid
M_AXI_IC_CRRESP M_ACE_IC O Master Snoop response
M_AXI_IC_CDVALID M_ACE_IC O Master Snoop data valid
M_AXI_IC_CDREADY M_ACE_IC I Slave Snoop data ready
M_AXI_IC_CDDATA M_ACE_IC O Master Snoop data
M_AXI_IC_CDLAST M_ACE_IC O Master Snoop data last
Data_Addr[0:N-1] DLMB O Data interface LMB address bus, N = 32 - 64
Byte_Enable[0:3] DLMB O Data interface LMB byte enables
Data_Write[0:31] DLMB O Data interface LMB write data bus
D_AS DLMB O Data interface LMB address strobe
Read_Strobe DLMB O Data interface LMB read strobe
Write_Strobe DLMB O Data interface LMB write strobe
Data_Read[0:31] DLMB I Data interface LMB read data bus
DReady DLMB I Data interface LMB data ready
DWait DLMB I Data interface LMB data wait
DCE DLMB I Data interface LMB correctable error
DUE DLMB I Data interface LMB uncorrectable error
Instr_Addr[0:N-1] ILMB O Instruction interface LMB address bus, N = 32 - 64
I_AS ILMB O Instruction interface LMB address strobe

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 151
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=151

Chapter 3: MicroBlaze Signal Interface Description
IFetch ILMB O Instruction interface LMB instruction fetch
Instr[0:31] ILMB I Instruction interface LMB read data bus
IReady ILMB I Instruction interface LMB data ready
IWait ILMB I Instruction interface LMB data wait
ICE ILMB I Instruction interface LMB correctable error
IUE ILMB I Instruction interface LMB uncorrectable error
Mn_AXIS_TLAST M0_AXIS..

M15_AXIS
O Master interface output AXI4 channels write last

Mn_AXIS_TDATA M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels write data

Mn_AXIS_TVALID M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels write valid

Mn_AXIS_TREADY M0_AXIS..
M15_AXIS

I Master interface input AXI4 channels write ready

Sn_AXIS_TLAST S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write last

Sn_AXIS_TDATA S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write data

Sn_AXIS_TVALID S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write valid

Sn_AXIS_TREADY S0_AXIS..
S15_AXIS

O Slave interface output AXI4 channels write ready

Interrupt Core I Interrupt. The signal is synchronized to Clk if the parameter
C_ASYNC_INTERRUPT is set.

Interrupt_Address1 Core I Interrupt vector address
Interrupt_Ack1 Core O Interrupt acknowledge
Reset Core I Core reset, active high. Must be asserted 1 Clk clock cycle, but it

is recommended to keep it asserted for at least 16 clock cycles.
Reset_Mode[0:1]3 Core I Reset mode. Sampled when Reset is active.

SeeTable 3-2 for details.
Clk Core I Clock2
Ext_BRK3 Core I Break signal from MDM
Ext_NM_BRK3 Core I Non-maskable break signal from MDM
MB_Halted3 Core O Pipeline is halted, either using the Debug Interface, by setting

Dbg_Stop, or by setting Reset_Mode[0:1] to 10.
Dbg_Stop3 Core I Unconditionally force pipeline to halt as soon as possible. Rising-

edge detected pulse that should be held for at least 1 Clk clock
cycle. The signal only has any effect when C_DEBUG_ENABLED
is greater than 0.

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 152
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=152

Chapter 3: MicroBlaze Signal Interface Description
Dbg_Intr3 Core O Debug interrupt output, set when a Performance Monitor counter
overflows, available when C_DEBUG_ENABLED is set to 2
(Extended).

MB_Error3 Core O Pipeline is halted due to a missed exception, when
C_FAULT_TOLERANT is set to 1.

Sleep3 Core O MicroBlaze is in sleep mode after executing a SLEEP instruction
or by setting Reset_Mode[0:1] to 10, all external accesses are
completed, and the pipeline is halted.

Hibernate3 Core O MicroBlaze is in sleep mode after executing a HIBERNATE
instruction, all external accesses are completed, and the pipeline
is halted.

Suspend3 Core O MicroBlaze is in sleep mode after executing a SUSPEND
instruction, all external accesses are completed, and the pipeline
is halted.

Wakeup[0:1]3 Core I Wake MicroBlaze from sleep mode when either or both bits are
set to 1. Ignored if MicroBlaze is not in sleep mode. The signals
are individually synchronized to Clk according to the parameter
C_ASYNC_WAKEUP[0:1].

Dbg_Wakeup3 Core O Debug request that external logic should wake MicroBlaze from
sleep mode with the Wakeup signal, to allow debug access.
Synchronous to Dbg_Update.

Pause3 Core I When this signal is set MicroBlaze pipeline will be paused after
completing all ongoing bus accesses, and the Pause_Ack signal
will be set. When this signal is cleared again MicroBlaze will
continue normal execution where it was paused.

Pause_Ack3 Core O MicroBlaze is in pause mode after the Pause input signal has
been set.

Dbg_Continue3 Core O Debug request that external logic should clear the Pause signal,
to allow debug access.

Non_Secure[0:3]3 Core I Determines whether AXI accesses are non-secure or secure. The
default value is binary 0000, setting all interfaces to be secure.
Bit 0 = M_AXI_DP
Bit 1 = M_AXI_IP
Bit 2 = M_AXI_DC
Bit 3 = M_AXI_IC

Lockstep_... Core IO Lockstep signals for high integrity applications. See Table 3-13
for details.

Dbg_... Core IO Debug signals from MDM. See Table 3-15 for details.
Trace_... Core O Trace signals for real time HW analysis. See Table 3-16 for details.
1. Only used with C_USE_INTERRUPT = 2, for low-latency interrupt support.
2. MicroBlaze is a synchronous design clocked with the Clk signal, except for serial hardware debug logic, which is clocked with

the Dbg_Clk signal. If serial hardware debug logic is not used, there is no minimum frequency limit for Clk. However, if
serial hardware debug logic is used, there are signals transferred between the two clock regions. In this case Clk must have
a higher frequency than Dbg_Clk.

3. Only visible when C_ENABLE_DISCRETE_PORTS = 1.

Table 3-1: Summary of MicroBlaze Core I/O (Cont’d)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide 153
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=153

Chapter 3: MicroBlaze Signal Interface Description
In general, MicroBlaze signals are synchronous to the Clk input signal. However, there are
some exceptions controlled by parameters as described in the following table.

Sleep and Pause Functionality
There are two distinct ways of halting MicroBlaze execution in a controlled manner:

• Software controlled by executing an MBAR instruction to enter sleep mode.
• Hardware controlled by setting the input signal Pause to pause the pipeline.

Software Controlled

When an MBAR instruction is executed to enter sleep mode and MicroBlaze has completed
all external accesses, the pipeline is halted and either the Sleep, Hibernate, or Suspend
output signal is set.

Table 3-2: Effect of Reset Mode Inputs
Reset_Mode[0:1] Description

00 MicroBlaze starts executing at the reset vector, defined by C_BASE_VECTORS. This
is the nominal default behavior.

01 MicroBlaze immediately enters sleep mode without performing any bus access,
just as if a SLEEP instruction had been executed. The Sleep output is set to 1.
When any of the Wakeup[0:1] signals is set, MicroBlaze starts executing at the
reset vector, defined by C_BASE_VECTORS.
This functionality can be useful in a multiprocessor configuration, allowing
secondary processors to be configured without LMB memory.

10 If C_DEBUG_ENABLED is 0, the behavior is the same as if Reset_Mode[0:1] = 00.
If C_DEBUG_ENABLED is greater than 0, MicroBlaze immediately enters debug halt
without performing any bus access, and the MB_Halted output is set to 1. When
execution is continued via the debug interface, MicroBlaze starts executing at the
reset vector, defined by C_BASE_VECTORS.

11 Reserved

Table 3-3: Parameter Controlled Asynchronous Signals
Signal Parameter Default Description

Interrupt C_ASYNC_INTERRUPT Tool controlled Parameter set from connected signal
Reset C_NUM_SYNC_FF_CLK 2 Parameter can be manually set to 0 for

synchronous reset
Wakeup[0:1] C_ASYNC_WAKEUP

C_NUM_SYNC_FF_CLK

Tool controlled
2

Set from connected signals
Can be manually set to 0 to override tool

Dbg_Wakeup C_DEBUG_INTERFACE 0 (serial) 0: Clocked by Dbg_Update
1: Clocked by DEBUG_ACLK, synchronous
to Clk
MicroBlaze Processor Reference Guide 154
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=154

Chapter 3: MicroBlaze Signal Interface Description
This indicates to external hardware that it is safe to perform actions such as stopping the
clock, resetting the processor or other IP cores. Different actions can be performed
depending on which output signal is set. To wake up MicroBlaze when in sleep mode, one
(or both) of the Wakeup input signals must be set to one. In this case MicroBlaze continues
execution after the MBAR instruction.

The Dbg_Wakeup output signal from MicroBlaze indicates that the debugger requests a
wake up. External hardware should handle this signal and wake up the processor, after
performing any other necessary hardware actions such as starting the clock. If debug wake
up is used, the software must be aware that this could be the reason for waking up, and go
to sleep again if no other action is required.

In the simplest case, where no additional actions are needed before waking up the
processor, one of the Wakeup inputs can be connected to the same signal as the MicroBlaze
Interrupt input, and the other to the MicroBlaze Dbg_Wakeup output. This allows
MicroBlaze to wake up when an interrupt occurs, or when the debugger requests it.

To implement a software reset functionality, for example the Suspend output signal can be
connected to a suitable reset input, to either reset the processor or the entire system.

The following table summarizes the MBAR sleep mode instructions.

The block diagram in Figure 3-2 illustrates how to use the sleep functionality to implement
clock control. In this example, the clock is stopped when sleep is executed and any interrupt
or debug command enables the clock and wakes the processor.

Table 3-4: MBAR Sleep Mode Instructions
Instruction Assembler Pseudo Instruction Output Signal
mbar 16 sleep Sleep

mbar 8 hibernate Hibernate

mbar 24 suspend Suspend

X-Ref Target - Figure 3-2

Figure 3-2: Sleep Clock Control Block Diagram

MicroBlaze

C_ENABLE_DISCRETE_PORTS = 1

Utility Vector Logic
Binary Counter

CLK
SCLR
LOAD
L[0:0]

Q[0:0]Utility Vector LogicUtility Vector Logic

Clock Control

Utility Buffer

BUFGCE

Sleep

Clk

Wakeup[0:1] Dbg_Wakeup

Interrupt

Clock

Concat

INTERRUPT
MicroBlaze Processor Reference Guide 155
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=155

Chapter 3: MicroBlaze Signal Interface Description
Instead of implementing the clock control with IP cores, an RTL Module can be used. A
possible VHDL implementation corresponding to Clock Control in the block diagram in
Figure 3-2 is given here. See the Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) [Ref 12] for more information on RTL Modules.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

library UNISIM;
use UNISIM.VComponents.all;

entity clock_control is
 port (
 clkin : in std_logic;
 reset : in std_logic;
 sleep : in std_logic;
 interrupt : in std_logic;
 dbg_wakeup : in std_logic;
 clkout : out std_logic
);
end clock_control;

architecture Behavioral of clock_control is
 attribute X_INTERFACE_INFO : string;
 attribute X_INTERFACE_INFO of clkin : signal is "xilinx.com:signal:clock:1.0 clk CLK";
 attribute X_INTERFACE_INFO of reset : signal is "xilinx.com:signal:reset:1.0 reset RST";
 attribute X_INTERFACE_INFO of interrupt : signal

is "xilinx.com:signal:interrupt:1.0 interrupt INTERRUPT";
 attribute X_INTERFACE_INFO of clkout : signal is "xilinx.com:signal:clock:1.0 clk_out CLK";

 attribute X_INTERFACE_PARAMETER : string;
 attribute X_INTERFACE_PARAMETER of reset : signal is "POLARITY ACTIVE_HIGH";
 attribute X_INTERFACE_PARAMETER of interrupt : signal is "SENSITIVITY LEVEL_HIGH";
 attribute X_INTERFACE_PARAMETER of clkout : signal is "FREQ_HZ 100000000";

 signal clk_enable : std_logic := '1';
begin

 clock_enable_dff : process (clkin) is
 begin
 if clkin'event and clkin = '1' then
 if reset = '1' then
 clk_enable <= '1';
 elsif sleep = '1' and interrupt = '0' and dbg_wakeup = '0' then
 clk_enable <= '0';
 elsif clk_enable = '0' then
 clk_enable <= '1';
 end if;
 end if;
 end process clock_enable_dff;

 clock_enable : component BUFGCE
 port map (
 O => clkout,
 CE => clk_enable,
 I => clkin
);

end Behavioral;
MicroBlaze Processor Reference Guide 156
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=156

Chapter 3: MicroBlaze Signal Interface Description
Hardware Controlled

When the Pause input signal is set to one and MicroBlaze has completed all external
accesses, the pipeline is halted and the Pause_Ack output signal is set. This indicates to
external hardware that it is safe to perform actions such as stopping the clock, resetting the
processor or other IP cores. To continue from pause, the input signal Pause must be cleared
to zero. In this case MicroBlaze continues instruction execution where it was previously
paused.

The Dbg_Continue output signal from MicroBlaze indicates that the debugger requests the
processor to continue from pause. External hardware should handle this signal and clear
pause after performing any other necessary hardware actions such as starting the clock.

After external hardware has set or cleared Pause, it is recommended to wait until
Pause_Ack is set or cleared before Pause is changed again, to avoid any issues due to
incorrectly detected pause acknowledge.

All signals used for hardware control (Pause, Pause_Ack, and Dbg_Continue) are
synchronous to the MicroBlaze clock.

The block diagram in Figure 3-3 illustrates how to use the pause functionality to halt the
processor and how to implement clock control. In this example, Pause is an external
hardware signal that pauses processor execution and stops the clock. When Pause is
cleared to zero, the clock is enabled and execution resumes. This example assumes that the
external logic monitors Dbg_Continue, and clears Pause to allow debugging.

X-Ref Target - Figure 3-3

Figure 3-3: Pause Clock Control Block Diagram

MicroBlaze

C_ENABLE_DISCRETE_PORTS = 1

Utility Vector Logic
Binary Counter

CLK
SCLR
LOAD
L[0:0]

Q[0:0]

Clock Control

Utility Buffer

BUFGCE

Pause_Ack

Clk

Pause

Dbg_Continue

Pause

Clock

Dbg_Continue
MicroBlaze Processor Reference Guide 157
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=157

Chapter 3: MicroBlaze Signal Interface Description
AXI4 and ACE Interface Description
Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXI4 memory mapped peripheral interfaces are implemented as 32-bit
masters. Each of these interfaces only have a single outstanding transaction at any time,
and all transactions are completed in order.

• The instruction peripheral interface (M_AXI_IP) only performs single word read
accesses, and is always set to use the AXI4-Lite subset.

• The data peripheral interface (M_AXI_DP) performs single word accesses, and is set to
use the AXI4-Lite subset as default, but is set to use AXI4 when enabling exclusive
access for LWX and SWX instructions. Halfword and byte writes are performed by
setting the appropriate byte strobes. Each write transaction waits for M_AXI_DP_BVALID
before the store instruction is completed.

The instruction peripheral interface (M_AXI_IP) address width can range from 32 - 64 bits
when the MMU physical address extension (PAE) is enabled, depending on the value of the
parameter C_ADDR_SIZE.

The data peripheral interface (M_AXI_DP) address width can range from 32 - 64 bits,
depending on the value of the parameter C_ADDR_SIZE.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters, whereas
the AXI Coherency Extension (ACE) interfaces are implemented as 32-bit masters.

• With a 32-bit master, the instruction cache interface (M_AXI_IC or M_ACE_IC) performs
4 word, 8 word or 16 word burst read accesses, depending on cache line length. With
128-bit, 256-bit, or 512-bit masters, only single read accesses are performed.

With a 32-bit master, this interface can have multiple outstanding transactions, issuing
up to 2 transactions or up to 5 transactions when stream cache is enabled. The stream
cache can request two cache lines in advance, which means that in some cases 5
outstanding transactions can occur. In this case the number of outstanding reads is set
to 8, since this must be a power of two. With 128-bit, 256-bit, or 512-bit masters, the
interface only has a single outstanding transaction.

How memory locations are accessed depend on parameter C_ICACHE_ALWAYS_USED.
If the parameter is 1, the cached memory range is always accessed using the AXI4 or ACE
MicroBlaze Processor Reference Guide 158
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=158

Chapter 3: MicroBlaze Signal Interface Description
cache interface. If the parameter is 0, the cached memory range is accessed over the
AXI4 peripheral interface when the caches are software disabled (that is, MSR[ICE]=0).

• With a 32-bit master, the data cache interface (M_AXI_DC or M_ACE_DC) performs single
word accesses, as well as 4 word, 8 word or 16 word burst accesses, depending on
cache line length. Burst write accesses are only performed when using write-back cache
with AXI4. With 128-bit, 256-bit, or 512-bit AXI4 masters, only single accesses are
performed.

This interface can have multiple outstanding transactions, either issuing up to 2
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures
that all outstanding writes are completed before a read is issued, since the processor
must maintain an ordered memory model but AXI4 or ACE has separate read/write
channels without any ordering. Using up to 32 outstanding write transactions improves
performance, since it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter
C_DCACHE_ALWAYS_USED. If the parameter is 1, the cached memory range is always
accessed using the AXI4 or ACE cache interface. If the parameter is 0, the cached
memory range is accessed over the AXI4 peripheral interface when the caches are
software disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for
tool-assigned parameters is summarized in the following table.

Table 3-5: AXI Memory Mapped Interface Parameters
Interface Parameter Description

M_AXI_DP C_M_AXI_DP_PROTOCOL AXI4-Lite: Default.
AXI4: Used to allow exclusive access when
C_M_AXI_DP_EXCLUSIVE_ACCESS is 1.

M_AXI_IC

M_ACE_IC

C_M_AXI_IC_DATA_WIDTH 32: Default, single word accesses and burst accesses
with C_ICACHE_LINE_LEN word busts used with AXI4
and ACE.
128: Used when C_ICACHE_DATA_WIDTH is set to 1
and C_ICACHE_LINE_LEN is set to 4 with AXI4. Only
single accesses can occur.
256: Used when C_ICACHE_DATA_WIDTH is set to 1
and C_ICACHE_LINE_LEN is set to 8 with AXI4. Only
single accesses can occur.
512: Used when C_ICACHE_DATA_WIDTH is set to 2, or
when it is set to 1 and C_ICACHE_LINE_LEN is set to
16 with AXI4. Only single accesses can occur.
MicroBlaze Processor Reference Guide 159
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=159

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC

M_ACE_DC

C_M_AXI_DC_DATA_WIDTH 32: Default, single word accesses and burst accesses
with C_DCACHE_LINE_LEN word busts used with AXI4
and ACE.
Write bursts are only used with AXI4 when
C_DCACHE_USE_WRITEBACK is set to 1.
128: Used when C_DCACHE_DATA_WIDTH is set to 1
and C_DCACHE_LINE_LEN is set to 4 with AXI4. Only
single accesses can occur.
256: Used when C_DCACHE_DATA_WIDTH is set to 1
and C_DCACHE_LINE_LEN is set to 8 with AXI4. Only
single accesses can occur.
512: Used when C_DCACHE_DATA_WIDTH is set to 2, or
when it is set to 1 and C_DCACHE_LINE_LEN is set to
16 with AXI4. Only single accesses can occur.

M_AXI_IC

M_ACE_IC

NUM_READ_OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a
single outstanding read.
2: Default for 32-bit masters, 2 simultaneous
outstanding reads.
8: Used for 32-bit masters when C_ICACHE_STREAMS is
set to 1, allowing 8 simultaneous outstanding reads.
Can be set to 1, 2, or 8.

M_AXI_DC

M_ACE_DC

NUM_READ_OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a
single outstanding read.
2: Default for 32-bit masters, 2 simultaneous
outstanding reads.
Can be set to 1 or 2.

M_AXI_DC

M_ACE_DC

NUM_WRITE_OUTSTANDING 32: Default, 32 simultaneous outstanding writes.
Can be set to 1, 2, 4, 8, 16, or 32.

Table 3-5: AXI Memory Mapped Interface Parameters (Cont’d)

Interface Parameter Description
MicroBlaze Processor Reference Guide 160
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=160

Chapter 3: MicroBlaze Signal Interface Description
Values for access permissions, memory types, quality of service and shareability domain are
defined in the following table.
Table 3-6: AXI Interface Signal Definitions

Interface Signal Description
M_AXI_IP C_M_AXI_IP_ARPROT Access Permission:

• Unprivileged, secure instruction access (100) if input signal
Non_Secure[1] = 0

• Unprivileged, non-secure instruction access (110) if input
signal Non_Secure[1] = 1

M_AXI_DP C_M_AXI_DP_ARCACHE

C_M_AXI_DP_AWCACHE

Memory Type, AXI4 protocol:
• Normal Non-cacheable Bufferable (0011)

C_M_AXI_DP_ARPROT

C_M_AXI_DP_AWPROT

Access Permission, AXI4 and AXI4-Lite protocol:
• Unprivileged, secure data access (000) if input signal

Non_Secure[0] = 0
• Unprivileged, non-secure data access (010) if input signal

Non_Secure[0] = 1
C_M_AXI_DP_ARQOS

C_M_AXI_DP_AWQOS

Quality of Service, AXI4 protocol:
• Priority 8 (1000)

M_AXI_IC C_M_AXI_IC_ARCACHE Memory Type:
• Write-back Read and Write-allocate (1111)

M_ACE_IC C_M_AXI_IC_ARCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_IC_ARDOMAIN Shareability Domain:
• Inner shareable (01)

M_AXI_IC

M_ACE_IC

C_M_AXI_IC_ARPROT Access Permission:
• Unprivileged, secure instruction access (100) if input signal

Non_Secure[3] = 0
• Unprivileged, non-secure instruction access (110) if input

signal Non_Secure[3] = 1
C_M_AXI_IC_ARQOS Quality of Service:

• Priority 7 (0111)
M_AXI_DC C_M_AXI_DC_ARCACHE Memory Type, normal access:

• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

M_ACE_DC C_M_AXI_DC_ARCACHE Memory Type, normal and exclusive access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARDOMAIN

C_M_AXI_DC_AWDOMAIN

Shareability Domain:
• Inner shareable (01)
MicroBlaze Processor Reference Guide 161
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=161

Chapter 3: MicroBlaze Signal Interface Description
The instruction cache interface (M_AXI_IC) address width can range from 32 - 64 bits when
the MMU physical address extension (PAE) is enabled, depending on the value of the
parameter C_ADDR_SIZE.

The data cache interface (M_AXI_DC or M_ACE_DC) address width can range from 32 - 64 bits,
depending on the value of the parameter C_ADDR_SIZE.

See the AMBA AXI and ACE Protocol Specification (Arm IHI 0022E) [Ref 15] document for
details.

Stream Interfaces
The MicroBlaze AXI4-Stream interfaces (M0_AXIS, M15_AXIS, S0_AXIS, S15_AXIS) are
implemented as 32-bit masters and slaves. See the AMBA 4 AXI4-Stream Protocol
Specification, Version 1.0 (Arm IHI 0051A) [Ref 14] document for further details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd
instructions. A write operation transfers the register contents to an output AXI4 interface.
The transfer is completed in a single clock cycle for blocking mode writes (put and cput
instructions) as long as the interface is not busy. If the interface is busy, the processor stalls
until it becomes available. The non-blocking instructions (with prefix n), always complete in
a single clock cycle even if the interface is busy. If the interface was busy, the write is
inhibited and the carry bit is set in the MSR.

The control instructions (with prefix c) set the AXI4-Stream TLAST output, to ‘1’, which is
used to indicate the boundary of a packet.

M_AXI_DC

M_ACE_DC

C_M_AXI_DC_AWCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARPROT

C_M_AXI_DC_AWPROT

Access Permission:
• Unprivileged, secure data access (000) if input signal

Non_Secure[2] = 0
• Unprivileged, non-secure data access (010) if input signal

Non_Secure[2] = 1
C_M_AXI_DC_ARQOS Quality of Service, read access:

• Priority 12 ((1100)
C_M_AXI_DC_AWQOS Quality of Service, write access:

• Priority 8 (1000)

Table 3-6: AXI Interface Signal Definitions (Cont’d)

Interface Signal Description
MicroBlaze Processor Reference Guide 162
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=162

Chapter 3: MicroBlaze Signal Interface Description
Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AXI4 interface to a general
purpose register. The transfer is typically completed in 2 clock cycles for blocking mode
reads as long as data is available. If data is not available, the processor stalls at this
instruction until it becomes available. In the non-blocking mode (instructions with prefix n),
the transfer is completed in one or two clock cycles irrespective of whether or not data was
available. In case data was not available, the transfer of data does not take place and the
carry bit is set in the MSR.

The data get instructions (without prefix c) expect the AXI4-Stream TLAST input to be
cleared to ‘0’, otherwise the instructions will set MSR[FSL] to ‘1’. Conversely, the control get
instructions (with prefix c) expect the TLAST input to be set to ‘1’, otherwise the instructions
will set MSR[FSL] to ‘1’. This can be used to check for the boundary of a packet.
MicroBlaze Processor Reference Guide 163
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=163

Chapter 3: MicroBlaze Signal Interface Description
Local Memory Bus (LMB) Interface Description
The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a
minimum number of control signals and a simple protocol to ensure that local block RAM
are accessed in a single clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Addr[0:N-1]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
requiring more than one clock cycle to complete), Addr[0:N-1] is valid only in the first
clock cycle of the transfer.

Table 3-7: LMB Bus Signals

Signal Data Interface Instruction
Interface Type Description

Addr[0:N-1]1

1. N = 32 - 64, set according to C_ADDR_SIZE, added in MicroBlaze v9.6.

Data_Addr[0:N-1]1 Instr_Addr[0:N-1]2

2. N = 32 - 64, set according to C_ADDR_SIZE when using PAE or 64-bit MicroBlaze, added in MicroBlaze v10.0.

O Address bus
Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables
Data_Write[0:31] Data_Write[0:31] not used O Write data bus
AS D_AS I_AS O Address strobe
Read_Strobe Read_Strobe IFetch O Read in progress
Write_Strobe Write_Strobe not used O Write in progress
Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus
Ready DReady IReady I Ready for next transfer

Wait3

3. Added in LMB for MicroBlaze v8.00

DWait IWait I Wait until accepted transfer is
ready

CE3 DCE ICE I Correctable error
UE3 DUE IUE I Uncorrectable error
Clk Clk Clk I Bus clock
MicroBlaze Processor Reference Guide 164
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=164

Chapter 3: MicroBlaze Signal Interface Description
Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte_Enable[0:3]is valid only when AS is high. In multicycle
accesses requiring more than one clock cycle to complete), Byte_Enable[0:3]is valid only
in the first clock cycle of the transfer. Valid values for Byte_Enable[0:3]are shown in the
following table:

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It is valid only when AS is high. Only the byte lanes specified by
Byte_Enable[0:3]contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and can remain high until the
clock cycle after Ready is sampled high. If a new read transfer is directly started in the next
clock cycle, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and can remain high until the
clock cycle after Ready is sampled high. If a new write transfer is directly started in the next
clock cycle, then Write_Strobe remains high.

Table 3-8: Valid Values for Byte_Enable[0:3]

Byte_Enable[0:3]
Byte Lanes Used

Data[0:7] Data[8:15] Data[16:23] Data[24:31]
0001 •
0010 •
0100 •
1000 •
0011 • •
1100 • •
1111 • • • •
MicroBlaze Processor Reference Guide 165
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=165

Chapter 3: MicroBlaze Signal Interface Description
Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory. Data_Read
is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer
and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data_Read[0:31]bus is valid, and for
writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Wait

The Wait signal is an input to the core and indicates that the current transfer has been
accepted, but not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a correctable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal
indicates that an error has been corrected on the Data_Read[0:31] bus, and for byte and
halfword writes it indicates that the corresponding data word in local memory has been
corrected before writing the new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an
uncorrectable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that the value of the Data_Read[0:31]bus is erroneous, and for byte
and halfword writes it indicates that the corresponding data word in local memory was
erroneous before writing the new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.
MicroBlaze Processor Reference Guide 166
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=166

Chapter 3: MicroBlaze Signal Interface Description
LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operations
X-Ref Target - Figure 3-4

Figure 3-4: LMB Generic Write Operation, 0 Wait States

A0

BE0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X-Ref Target - Figure 3-5

Figure 3-5: LMB Generic Write Operation, N Wait States

A0

BE0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE
MicroBlaze Processor Reference Guide 167
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=167

Chapter 3: MicroBlaze Signal Interface Description
Generic Read Operations
X-Ref Target - Figure 3-6

Figure 3-6: LMB Generic Read Operation, 0 Wait States

A0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X-Ref Target - Figure 3-7

Figure 3-7: LMB Generic Read Operation, N Wait States

A0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE
MicroBlaze Processor Reference Guide 168
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=168

Chapter 3: MicroBlaze Signal Interface Description
Back-to-Back Write Operation

Back-to-Back Read Operation

X-Ref Target - Figure 3-8

Figure 3-8: LMB Back-to-Back Write Operation

A0

BE0

D0

A1

BE1

D1

A2

BE2

D2

A3

BE3

D3

A4

BE4

D4

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X-Ref Target - Figure 3-9

Figure 3-9: LMB Back-to-Back Read Operation

A0 A1 A2 A3 A4

D0 D1 D2 D3 D4

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE
MicroBlaze Processor Reference Guide 169
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=169

Chapter 3: MicroBlaze Signal Interface Description
Back-to-Back Mixed Write/Read Operation
X-Ref Target - Figure 3-10

Figure 3-10: Back-to-Back Mixed Write/Read Operation, 0 Wait States

A0 A1 A2

BE0 BE2

D0 D2

D1

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X-Ref Target - Figure 3-11

Figure 3-11: Back-to-Back Mixed Write/Read Operation, N Wait States

A0 A1 A2

BE0 BE2

D0 D2

D1

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE
MicroBlaze Processor Reference Guide 170
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=170

Chapter 3: MicroBlaze Signal Interface Description
Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

• byte, halfword, and word transfers to word devices
• byte and halfword transfers to halfword devices
• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles are shown in Table 3-9 and
Table 3-10, and data steering for write cycles are shown in Table 3-11 and Table 3-12.

Big endian format is only available when using the MMU in virtual or protected mode
(C_USE_MMU > 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Table 3-9: Big Endian Read Data Steering (Load to Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Register rD Data
rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Byte1
00 1000 byte Byte0
10 0011 halfword Byte2 Byte3
00 1100 halfword Byte0 Byte1
00 1111 word Byte0 Byte1 Byte2 Byte3

Table 3-10: Little Endian Read Data Steering (Load to Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Register rD Data
rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 1000 byte Byte0
10 0100 byte Byte1
01 0010 byte Byte2
00 0001 byte Byte3
10 1100 halfword Byte0 Byte1
00 0011 halfword Byte2 Byte3
00 1111 word Byte0 Byte1 Byte2 Byte3
MicroBlaze Processor Reference Guide 171
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=171

Chapter 3: MicroBlaze Signal Interface Description
Note: Other masters could have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword
lane. The MicroBlaze steering logic fully supports this attachment method.

Table 3-11: Big Endian Write Data Steering (Store from Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Write Data Bus Bytes
Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]
10 0010 byte rD[24:31]
01 0100 byte rD[24:31]
00 1000 byte rD[24:31]
10 0011 halfword rD[16:23] rD[24:31]
00 1100 halfword rD[16:23] rD[24:31]
00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Table 3-12: Little Endian Write Data Steering (Store from Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Write Data Bus Bytes
Byte3 Byte2 Byte1 Byte0

11 1000 byte rD[24:31]
10 0100 byte rD[24:31]
01 0010 byte rD[24:31]
00 0001 byte rD[24:31]
10 1100 halfword rD[16:23] rD[24:31]
00 0011 halfword rD[16:23] rD[24:31]
00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]
MicroBlaze Processor Reference Guide 172
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=172

Chapter 3: MicroBlaze Signal Interface Description
Lockstep Interface Description
The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in the following table.

The comparison signals provided by Lockstep_Out are listed in the following table.

Table 3-13: MicroBlaze Lockstep Signals
Signal Name Description VHDL Type Direction

Lockstep_Master_Out Output with signals going from master to
slave MicroBlaze. Not connected on slaves.

std_logic output

Lockstep_Slave_In Input with signals coming from master to
slave MicroBlaze. Not connected on
master.

std_logic input

Lockstep_Out Output with all comparison signals from
both master and slaves.

std_logic output

Table 3-14: MicroBlaze Lockstep Comparison Signals
Signal Name Bus Index Range VHDL Type

MB_Halted 0 std_logic
MB_Error 1 std_logic
IFetch 2 std_logic
I_AS 3 std_logic
Instr_Addr 4 to 67 std_logic_vector
Data_Addr 68 to 131 std_logic_vector
Data_Write 132 to 163 std_logic_vector
D_AS 196 std_logic
Read_Strobe 197 std_logic
Write_Strobe 198 std_logic
Byte_Enable 199 to 202 std_logic_vector
M_AXI_IP_AWID 207 std_logic
M_AXI_IP_AWADDR 208 to 271 std_logic_vector
M_AXI_IP_AWLEN 272 to 279 std_logic_vector
M_AXI_IP_AWSIZE 280 to 282 std_logic_vector
M_AXI_IP_AWBURST 283 to 284 std_logic_vector
M_AXI_IP_AWLOCK 285 std_logic
M_AXI_IP_AWCACHE 286 to 289 std_logic_vector
M_AXI_IP_AWPROT 290 to 292 std_logic_vector
M_AXI_IP_AWQOS 293 to 296 std_logic_vector
M_AXI_IP_AWVALID 297 std_logic
M_AXI_IP_WDATA 298 to 329 std_logic_vector
MicroBlaze Processor Reference Guide 173
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=173

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IP_WSTRB 362 to 365 std_logic_vector
M_AXI_IP_WLAST 370 std_logic
M_AXI_IP_WVALID 371 std_logic
M_AXI_IP_BREADY 372 std_logic
M_AXI_IP_ARID 373 std_logic
M_AXI_IP_ARADDR 374 to 437 std_logic_vector
M_AXI_IP_ARLEN 438 to 445 std_logic_vector
M_AXI_IP_ARSIZE 446 to 448 std_logic_vector
M_AXI_IP_ARBURST 449 to 450 std_logic_vector
M_AXI_IP_ARLOCK 451 std_logic
M_AXI_IP_ARCACHE 452 to 455 std_logic_vector
M_AXI_IP_ARPROT 456 to 458 std_logic_vector
M_AXI_IP_ARQOS 459 to 462 std_logic_vector
M_AXI_IP_ARVALID 463 std_logic
M_AXI_IP_RREADY 464 std_logic
M_AXI_DP_AWID 465 std_logic
M_AXI_DP_AWADDR 466 to 529 std_logic_vector
M_AXI_DP_AWLEN 530 to 537 std_logic_vector
M_AXI_DP_AWSIZE 538 to 540 std_logic_vector
M_AXI_DP_AWBURST 541 to 542 std_logic_vector
M_AXI_DP_AWLOCK 543 std_logic
M_AXI_DP_AWCACHE 544 to 547 std_logic_vector
M_AXI_DP_AWPROT 548 to 550 std_logic_vector
M_AXI_DP_AWQOS 551 to 554 std_logic_vector
M_AXI_DP_AWVALID 555 std_logic
M_AXI_DP_WDATA 556 to 587 std_logic_vector
M_AXI_DP_WSTRB 620 to 623 std_logic_vector
M_AXI_DP_WLAST 628 std_logic
M_AXI_DP_WVALID 629 std_logic
M_AXI_DP_BREADY 630 std_logic
M_AXI_DP_ARID 631 std_logic
M_AXI_DP_ARADDR 632 to 695 std_logic_vector
M_AXI_DP_ARLEN 696 to 703 std_logic_vector
M_AXI_DP_ARSIZE 704 to 706 std_logic_vector
M_AXI_DP_ARBURST 707 to 708 std_logic_vector
M_AXI_DP_ARLOCK 709 std_logic
M_AXI_DP_ARCACHE 710 to 713 std_logic_vector
M_AXI_DP_ARPROT 714 to 716 std_logic_vector
M_AXI_DP_ARQOS 717 to 720 std_logic_vector

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide 174
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=174

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DP_ARVALID 721 std_logic
M_AXI_DP_RREADY 722 std_logic
Mn_AXIS_TLAST 723 + n * 35 std_logic
Mn_AXIS_TDATA 758 + n * 35 to

789 + n * 35
std_logic_vector

Mn_AXIS_TVALID 790 + n * 35 std_logic
Sn_AXIS_TREADY 791 + n * 35 std_logic
M_AXI_IC_AWID 1283 std_logic
M_AXI_IC_AWADDR 1284 to 1347 std_logic_vector
M_AXI_IC_AWLEN 1348 to 1355 std_logic_vector
M_AXI_IC_AWSIZE 1356 to 1358 std_logic_vector
M_AXI_IC_AWBURST 1359 to 1360 std_logic_vector
M_AXI_IC_AWLOCK 1361 std_logic
M_AXI_IC_AWCACHE 1362 to 1365 std_logic_vector
M_AXI_IC_AWPROT 1366 to 1368 std_logic_vector
M_AXI_IC_AWQOS 1369 to 1372 std_logic_vector
M_AXI_IC_AWVALID 1373 std_logic
M_AXI_IC_AWUSER 1374 to 1378 std_logic_vector
M_AXI_IC_AWDOMAIN1 1379 to 1380 std_logic_vector
M_AXI_IC_AWSNOOP1 1381 to 1383 std_logic_vector
M_AXI_IC_AWBAR1 1384 to 1385 std_logic_vector
M_AXI_IC_WDATA 1386 to 1897 std_logic_vector
M_AXI_IC_WSTRB 1898 to 1961 std_logic_vector
M_AXI_IC_WLAST 1962 std_logic
M_AXI_IC_WVALID 1963 std_logic
M_AXI_IC_WUSER 1964 std_logic
M_AXI_IC_BREADY 1965 std_logic
M_AXI_IC_WACK 1966 std_logic
M_AXI_IC_ARID 1967 std_logic_vector
M_AXI_IC_ARADDR 1968 to 2031 std_logic_vector
M_AXI_IC_ARLEN 2032 to 2039 std_logic_vector
M_AXI_IC_ARSIZE 2040 to 2042 std_logic_vector
M_AXI_IC_ARBURST 2043 to 2044 std_logic_vector
M_AXI_IC_ARLOCK 2045 std_logic
M_AXI_IC_ARCACHE 2046 to 2049 std_logic_vector
M_AXI_IC_ARPROT 2050 to 2052 std_logic_vector
M_AXI_IC_ARQOS 2053 to 2056 std_logic_vector
M_AXI_IC_ARVALID 2057 std_logic
M_AXI_IC_ARUSER 2058 to 2062 std_logic_vector
M_AXI_IC_ARDOMAIN1 2063 to 2064 std_logic_vector

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide 175
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=175

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IC_ARSNOOP1 2065 to 2068 std_logic_vector
M_AXI_IC_ARBAR1 2069 to 2070 std_logic_vector
M_AXI_IC_RREADY 2071 std_logic
M_AXI_IC_RACK1 2072 std_logic
M_AXI_IC_ACREADY1 2073 std_logic
M_AXI_IC_CRVALID1 2074 std_logic
M_AXI_IC_CRRESP1 2075 to 2079 std_logic_vector
M_AXI_IC_CDVALID1 2080 std_logic
M_AXI_IC_CDLAST1 2081 std_logic
M_AXI_DC_AWID 2082 std_logic
M_AXI_DC_AWADDR 2083 to 2146 std_logic_vector
M_AXI_DC_AWLEN 2147 to 2154 std_logic_vector
M_AXI_DC_AWSIZE 2155 to 2157 std_logic_vector
M_AXI_DC_AWBURST 2158 to 2159 std_logic_vector
M_AXI_DC_AWLOCK 2160 std_logic
M_AXI_DC_AWCACHE 2161 to 2164 std_logic_vector
M_AXI_DC_AWPROT 2165 to 2167 std_logic_vector
M_AXI_DC_AWQOS 2168 to 2171 std_logic_vector
M_AXI_DC_AWVALID 2172 std_logic
M_AXI_DC_AWUSER 2172 to 2176 std_logic_vector
M_AXI_DC_AWDOMAIN1 2177 to 2178 std_logic_vector
M_AXI_DC_AWSNOOP1 2179 to 2182 std_logic_vector
M_AXI_DC_AWBAR1 2183 to 2184 std_logic_vector
M_AXI_DC_WDATA 2185 to 2696 std_logic_vector
M_AXI_DC_WSTRB 2697 to 2760 std_logic_vector
M_AXI_DC_WLAST 2761 std_logic
M_AXI_DC_WVALID 2762 std_logic
M_AXI_DC_WUSER 2863 std_logic
M_AXI_DC_BREADY 2764 std_logic
M_AXI_DC_WACK1 2765 std_logic
M_AXI_DC_ARID 2766 std_logic
M_AXI_DC_ARADDR 2767 to 2830 std_logic_vector
M_AXI_DC_ARLEN 2831 to 2838 std_logic_vector
M_AXI_DC_ARSIZE 2839 to 2841 std_logic_vector
M_AXI_DC_ARBURST 2842 to 2843 std_logic_vector
M_AXI_DC_ARLOCK 2844 std_logic
M_AXI_DC_ARCACHE 2845 to 2848 std_logic_vector
M_AXI_DC_ARPROT 2849 to 2851 std_logic_vector
M_AXI_DC_ARQOS 2852 to 2855 std_logic_vector

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide 176
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=176

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC_ARVALID 2856 std_logic
M_AXI_DC_ARUSER 2857 to 2861 std_logic_vector
M_AXI_DC_ARDOMAIN1 2862 to 2863 std_logic_vector
M_AXI_DC_ARSNOOP1 2864 to 2867 std_logic_vector
M_AXI_DC_ARBAR1 2868 to 2869 std_logic_vector
M_AXI_DC_RREADY 2870 std_logic
M_AXI_DC_RACK1 2871 std_logic
M_AXI_DC_ACREADY1 2872 std_logic
M_AXI_DC_CRVALID1 2873 std_logic
M_AXI_DC_CRRESP1 2874 to 2878 std_logic_vector
M_AXI_DC_CDVALID1 2879 std_logic
M_AXI_DC_CDLAST1 2880 std_logic
Trace_Instruction 2881 to 2912 std_logic_vector
Trace_Valid_Instr 2913 std_logic
Trace_PC 2914 to 2945 std_logic_vector
Trace_Reg_Write 2978 std_logic
Trace_Reg_Addr 2979 to 2983 std_logic_vector
Trace_MSR_Reg 2984 to 2998 std_logic_vector
Trace_PID_Reg 2999 to 3006 std_logic_vector
Trace_New_Reg_Value 3007 to 3038 std_logic_vector
Trace_Exception_Taken 3071 std_logic
Trace_Exception_Kind 3072 to 3076 std_logic_vector
Trace_Jump_Taken 3077 std_logic
Trace_Delay_Slot 3078 std_logic
Trace_Data_Address 3079 to 3142 std_logic_vector
Trace_Data_Write_Value 3143 to 3174 std_logic_vector
Trace_Data_Byte_Enable 3207 to 3210 std_logic_vector
Trace_Data_Access 3215 std_logic
Trace_Data_Read 3216 std_logic
Trace_Data_Write 3217 std_logic
Trace_DCache_Req 3218 std_logic
Trace_DCache_Hit 3219 std_logic
Trace_DCache_Rdy 3220 std_logic
Trace_DCache_Read 3221 std_logic
Trace_ICache_Req 3222 std_logic
Trace_ICache_Hit 3223 std_logic
Trace_ICache_Rdy 3224 std_logic
Trace_OF_PipeRun 3225 std_logic
Trace_EX_PipeRun 3226 std_logic

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide 177
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=177

Chapter 3: MicroBlaze Signal Interface Description
Debug Interface Description
The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core. The MDM is controlled by the Xilinx System Debugger
(XSDB) through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze
processors at the same time. The debug signals are grouped in the DEBUG bus.

The debug interface can be grouped in the DEBUG bus, using either JTAG serial signals (by
setting C_DEBUG_INTERFACE = 0) or the AXI4-Lite compatible parallel signals (by setting
C_DEBUG_INTERFACE = 1). The MDM configuration must also be set accordingly.

It is also possible to use only AXI4-Lite parallel signals (C_DEBUG_INTERFACE = 2) grouped
in an AXI4 bus, in case the MDM is not used. However, this configuration is not supported
by the tools.

Table 3-15 lists the debug signals on MicroBlaze.

Trace_MEM_PipeRun 3227 std_logic
Trace_MB_Halted 3228 std_logic
Trace_Jump_Hit 3229 std_logic
Reserved 3230 to 4095

1. This signal is only used when C_INTERCONNECT = 3 (ACE).

Table 3-15: MicroBlaze Debug Signals
Signal Name Description VHDL Type Kind

Dbg_Clk JTAG clock from MDM std_logic serial in
Dbg_TDI JTAG TDI from MDM std_logic serial in
Dbg_TDO JTAG TDO to MDM std_logic serial out
Dbg_Reg_En Debug register enable from MDM std_logic_vector serial in
Dbg_Shift1 JTAG BSCAN shift signal from MDM std_logic serial in
Dbg_Capture JTAG BSCAN capture signal from MDM std_logic serial in
Dbg_Update JTAG BSCAN update signal from MDM std_logic serial in
Debug_Rst1 Reset signal from MDM, active high. Should

be held for at least 1 Clk clock cycle.
std_logic input

Dbg_Trig_In2 Cross trigger event input to MDM std_logic_vector output
Dbg_Trig_Ack_In2 Cross trigger event input acknowledge from

MDM
std_logic_vector input

Dbg_Trig_Out2 Cross trigger action output from MDM std_logic_vector input
Dbg_Trig_Ack_Out2 Cross trigger action output acknowledge to

MDM
std_logic_vector output

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide 178
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=178

Chapter 3: MicroBlaze Signal Interface Description
Dbg_Trace_Data3 External Program Trace data output to MDM std_logic_vector output
Dbg_Trace_Valid3 External Program Trace valid to MDM std_logic output
Dbg_Trace_Ready3 External Program Trace ready from MDM std_logic input
Dbg_Trace_Clk3 External Program Trace clock from MDM std_logic input
Dbg_ARADDR4 Read address from MDM std_logic_vector parallel in
Dbg_ARREADY4 Read address ready to MDM std_logic parallel out
Dbg_ARVALID4 Read address valid from MDM std_logic parallel in
Dbg_AWADDR4 Write address from MDM std_logic_vector parallel in
Dbg_AWREADY4 Write address ready to MDM std_logic parallel out
Dbg_AWVALID4 Write address valid from MDM std_logic parallel in
Dbg_BREADY4 Write response ready to MDM std_logic parallel out
Dbg_BRESP4 Write response to MDM std_logic_vector parallel out
Dbg_BVALID4 Write response valid from MDM std_logic parallel in
Dbg_RDATA4 Read data to MDM std_logic_vector parallel out
Dbg_RREADY4 Read data ready to MDM std_logic parallel out
Dbg_RRESP4 Read data response to MDM std_logic_vector parallel out
Dbg_RVALID4 Read data valid from MDM std_logic parallel in
Dbg_WDATA4 Write data from MDM std_logic_vector parallel in
Dbg_WREADY4 Write data ready to MDM std_logic parallel out
Dbg_WVALID4 Write data valid from MDM std_logic parallel in
DEBUG_ACLK4 Debug clock, must be same as Clk std_logic parallel in
DEBUG_ARESET4 Debug reset, must be same as Reset std_logic parallel in

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
2. Updated for MicroBlaze v9.3: Dbg_Trig signals added to DEBUG bus
3. Updated for MicroBlaze v9.4: External Program Trace signal added to DEBUG bus
4. Updated for MicroBlaze v10.0: Parallel debug signals added to DEBUG bus

Table 3-15: MicroBlaze Debug Signals (Cont’d)
Signal Name Description VHDL Type Kind
MicroBlaze Processor Reference Guide 179
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=179

Chapter 3: MicroBlaze Signal Interface Description
Trace Interface Description
The MicroBlaze processor core exports a number of internal signals for trace purposes. This
signal interface is not standardized and new revisions of the processor might not be
backward compatible for signal selection or functionality. It is recommended that you not
design custom logic for these signals, but rather to use them using Xilinx provided analysis
IP. The trace signals are grouped in the TRACE bus. The current set of trace signals were last
updated for MicroBlaze v7.30 and are listed in Table 3-16.

The mapping of the MSR bits is shown in Table 3-17. For a complete description of the
Machine Status Register, see “Special Purpose Registers” in Chapter 2.

The Trace exception types are listed in Table 3-18. All unused Trace exception types are
reserved.

Table 3-16: MicroBlaze Trace Signals
Signal Name Description VHDL Type Direction

Trace_Valid_Instr Valid instruction on trace port. std_logic output
Trace_Instruction1 Instruction code std_logic_vector (0 to 31) output
Trace_PC1 Program counter, where N = 32 - 64,

determined by parameter C_ADDR_SIZE
for 64-bit MicroBlaze, and 32 otherwise

std_logic_vector (0 to 31) output

Trace_Reg_Write1 Instruction writes to the register file std_logic output
Trace_Reg_Addr1 Destination register address std_logic_vector (0 to 4) output
Trace_MSR_Reg1 Machine status register. The mapping of

the register bits is documented below.
std_logic_vector (0 to 14)1 output

Trace_PID_Reg1 Process identifier register std_logic_vector (0 to 7) output
Trace_New_Reg_Value1 Destination register update value, where

N = C_DATA_SIZE
std_logic_vector (0 to N-1) output

Trace_Exception_Taken1,2 Instruction result in taken exception std_logic output
Trace_Exception_Kind1 Exception type. The description for the

exception type is documented below.
std_logic_vector (0 to 4)2 output

Trace_Jump_Taken1 Branch instruction evaluated true, that is
taken

std_logic output

Trace_Jump_Hit1,3 Branch Target Cache hit std_logic output
Trace_Delay_Slot1 Instruction is in delay slot of a taken

branch
std_logic output

Trace_Data_Access1 Valid D-side memory access std_logic output
Trace_Data_Address1 Address for D-side memory access,

where N = 32 - 64, determined by
parameter C_ADDR_SIZE

std_logic_vector (0 to N-1) output
MicroBlaze Processor Reference Guide 180
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=180

Chapter 3: MicroBlaze Signal Interface Description
Trace_Data_Write_Value1 Value for D-side memory write access,
where N = C_DATA_SIZE

std_logic_vector (0 to N-1) output

Trace_Data_Byte_Enable1 Byte enables for D-side memory access,
where N = C_DATA_SIZE / 8

std_logic_vector (0 to N-1) output

Trace_Data_Read1 D-side memory access is a read std_logic output
Trace_Data_Write1 D-side memory access is a write std_logic output
Trace_DCache_Req Data memory address is within D-Cache

range. Set when a memory access
instruction is executed.

std_logic output

Trace_DCache_Hit Data memory address is present in
D-Cache. Set simultaneously with
Trace_DCache_Req when a cache hit
occurs.

std_logic output

Trace_DCache_Rdy Data memory address is within D-Cache
range and the access is completed. Only
set following a request with
Trace_DCache_Req = 1 and
Trace_DCache_Hit = 0.

std_logic output

Trace_DCache_Read The D-Cache request is a read. Valid only
when Trace_DCache_Req = 1.

std_logic output

Trace_ICache_Req Instruction memory address is within
I-Cache range, and the cache is enabled
in the Machine Status Register. Set when
an instruction is read into the instruction
prefetch buffer.

std_logic output

Trace_ICache_Hit Instruction memory address is present in
I-Cache. Set simultaneously with
Trace_ICache_Req when a cache hit
occurs.

std_logic output

Trace_ICache_Rdy • Instruction memory address is present in
I-Cache. Set simultaneously with
Trace_ICache_Req when a cache hit
occurs in this case.

• Instruction memory address is within
I-Cache range and the access is
completed. Set following a request with
Trace_ICache_Req = 1 and
Trace_ICache_Hit = 0 in this case.

std_logic output

Trace_OF_PipeRun Pipeline advance for Decode stage std_logic output
Trace_EX_PipeRun3 Pipeline advance for Execution stage std_logic output
Trace_MEM_PipeRun3 Pipeline advance for Memory stage std_logic output
Trace_MB_Halted Pipeline is halted by debug std_logic output

1. Valid only when Trace_Valid_Instr = 1
2. Valid only when Trace_Exception_Taken = 1
3. Not used with area optimization feature

Table 3-16: MicroBlaze Trace Signals (Cont’d)

Signal Name Description VHDL Type Direction
MicroBlaze Processor Reference Guide 181
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=181

Chapter 3: MicroBlaze Signal Interface Description
Table 3-17: Mapping of Trace MSR
Trace_MSR_Reg Machine Status Register

Bit Bit1

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Name Description
0 17 or 49 VMS Virtual Protected Mode Save
1 18 or 50 VM Virtual Protected Mode
2 19 or 51 UMS User Mode Save
3 20 or 52 UM User Mode
4 21 or 53 PVR Processor Version Register exists
5 22 or 54 EIP Exception In Progress
6 23 or 55 EE Exception Enable
7 24 or 56 DCE Data Cache Enable
8 25 or 57 DZO Division by Zero or Division Overflow
9 26 or 58 ICE Instruction Cache Enable
10 27 or 59 FSL AXI4-Stream Error
11 28 or 60 BIP Break in Progress
12 29 or 61 C Arithmetic Carry
13 30 or 62 IE Interrupt Enable
14 31 or 63 Reserved Reserved

Table 3-18: Type of Trace Exception
Trace_Exception_Kind [0:4] Description

00000 Stream exception
00001 Unaligned exception
00010 Illegal Opcode exception
00011 Instruction Bus exception
00100 Data Bus exception
00101 Divide exception
00110 FPU exception
00111 Privileged instruction exception
01010 Interrupt
01011 External non maskable break
01100 External maskable break
10000 Data storage exception
MicroBlaze Processor Reference Guide 182
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=182

Chapter 3: MicroBlaze Signal Interface Description
MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done using parameters that typically enable, size, or select certain
processor features. For example, the instruction cache is enabled by setting the
C_USE_ICACHE parameter. The size of the instruction cache, and the cacheable memory
range, are all configurable using: C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and
C_ICACHE_HIGHADDR respectively.

Parameters valid for the latest version of MicroBlaze are listed in Table 3-19. Not all of these
are recognized by older versions of MicroBlaze; however, the configurability is fully
backward compatible.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

10001 Instruction storage exception
10010 Data TLB miss exception
10011 Instruction TLB miss exception

Table 3-18: Type of Trace Exception (Cont’d)
Trace_Exception_Kind [0:4] Description

Table 3-19: Configuration Parameters

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_FAMILY Target Family Listed in
Table 3-20

virtex7 yes string

C_DATA_SIZE Data Size
32 = 32-bit MicroBlaze
64 = 64-bit MicroBlaze

32, 64 32 integer

C_ADDR_SIZE Address Size 32-64 32 NA integer

C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer

C_SCO Xilinx internal 0 0 NA integer

C_AREA_OPTIMIZED Select implementation
optimization:
0 = Performance
1 = Area
2 = Frequency

0, 1, 2 0 integer

C_OPTIMIZATION Reserved for future use 0 0 NA integer
MicroBlaze Processor Reference Guide 183
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=183

Chapter 3: MicroBlaze Signal Interface Description
C_INTERCONNECT Select interconnect
2 = AXI4 only
3 = AXI4 and ACE

2, 3 2 integer

C_ENDIANNESS Select endianness
1 = Little Endian 1 1 yes integer

C_BASE_VECTORS1 Configurable base
vectors

0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_
vector

C_FAULT_TOLERANT Implement fault
tolerance 0, 1 0 yes integer

C_ECC_USE_CE_EXCEPTION Generate exception for
correctable ECC error 0,1 0 integer

C_LOCKSTEP_SLAVE Lockstep Slave 0, 1 0 integer

C_AVOID_PRIMITIVES Disallow FPGA
primitives
0 = None
1 = SRL
2 = LUTRAM
3 = Both

0, 1, 2, 3 0

integer

C_ENABLE_DISCRETE_PORTS Show discrete ports 0, 1 0 integer

C_PVR Processor version
register mode selection
0 = None
1 = Basic
2 = Full

0, 1, 2 0

integer

C_PVR_USER1 Processor version
register USER1 constant 0x00-0xff 0x00

std_logic_
vector
(0 to 7)

C_PVR_USER2 Processor version
register USER2 constant 0x00000000

-0xffffffff
0x0000
0000

std_logic_
vector
(0 to 31)

C_RESET_MSR_IE
C_RESET_MSR_BIP

C_RESET_MSR_ICE

C_RESET_MSR_DCE

C_RESET_MSR_EE

C_RESET_MSR_EIP

Reset value for MSR
register bits IE, BIP, ICE,
DCE, EE, and EIP

Any
combination

of the
individual

bits

0x0000 std_logic

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 184
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=184

Chapter 3: MicroBlaze Signal Interface Description
C_INSTANCE Instance Name Any
instance

name
micro
blaze

yes string

C_D_AXI Data side AXI interface 0, 1 0 integer

C_D_LMB Data side LMB interface 0, 1 1 integer

C_I_AXI Instruction side AXI
interface 0, 1 0 integer

C_I_LMB Instruction side LMB
interface 0, 1 1 integer

C_USE_BARREL Include barrel shifter 0, 1 0 integer

C_USE_DIV Include hardware
divider 0, 1 0 integer

C_USE_HW_MUL Include hardware
multiplier
0 = None
1 = Mul32
2 = Mul64

0, 1, 2 1

integer

C_USE_FPU Include hardware
floating-point unit
0 = None
1 = Basic
2 = Extended

0, 1, 2 0

integer

C_USE_MSR_INSTR Enable use of
instructions: MSRSET
and MSRCLR

0, 1 1
integer

C_USE_PCMP_INSTR Enable use of
instructions: CLZ,
PCMPBF, PCMPEQ, and
PCMPNE

0, 1 1
integer

C_USE_REORDER_INSTR Enable use of
instructions: Reverse
load, reverse store, and
swap

0, 1 1
integer

C_UNALIGNED_EXCEPTIONS Enable exception
handling for unaligned
data accesses

0, 1 0
integer

C_ILL_OPCODE_EXCEPTION Enable exception
handling for illegal op-
code

0, 1 0
integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 185
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=185

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_I_BUS_EXCEPTION Enable exception
handling for M_AXI_I
bus error

0, 1 0
integer

C_M_AXI_D_BUS_EXCEPTION Enable exception
handling for M_AXI_D
bus error

0, 1 0
integer

C_DIV_ZERO_EXCEPTION Enable exception
handling for division by
zero or division
overflow

0, 1 0
integer

C_FPU_EXCEPTION Enable exception
handling for hardware
floating-point unit
exceptions

0, 1 0
integer

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an
illegal instruction 0,1 0 integer

C_FSL_EXCEPTION Enable exception
handling for Stream
Links

0,1 0
integer

C_ECC_USE_CE_EXCEPTION Generate Bus Error
Exceptions for
correctable errors

0,1 0
integer

C_USE_STACK_PROTECTION Generate exception for
stack overflow or stack
underflow

0,1 0
integer

C_IMPRECISE_EXCEPTIONS Allow imprecise
exceptions for ECC
errors in LMB memory

0,1 0
integer

C_DEBUG_ENABLED MDM Debug interface
0 = None
1 = Basic
2 = Extended

0,1,2 1
integer

C_NUMBER_OF_PC_BRK Number of hardware
breakpoints 0-8 1 integer

C_NUMBER_OF_RD_ADDR_BRK Number of read address
watchpoints 0-4 0 integer

C_NUMBER_OF_WR_ADDR_BRK Number of write
address watchpoints 0-4 0 integer

C_DEBUG_EVENT_COUNTERS Number of Performance
Monitor event counters 0-48 5 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 186
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=186

Chapter 3: MicroBlaze Signal Interface Description
C_DEBUG_LATENCY_COUNTERS Number of Performance
Monitor latency
counters

0-7 1 integer

C_DEBUG_COUNTER_WIDTH Performance Monitor
counter width 32,48,64 32 integer

C_DEBUG_TRACE_SIZE Trace Buffer size
Embedded: 0, ≥ 8192
External: 0, 32 - 8192

0, 32, 64,
128, 256,

8192,
16384,
32768,
65536,
131072

8192 integer

C_DEBUG_PROFILE_SIZE Profile Buffer size 0, 4096,
8192,

16384,
32768,
65536,
131072

0 integer

C_DEBUG_EXTERNAL_TRACE External Program Trace 0,1 0 yes integer

C_DEBUG_INTERFACE Debug Interface:
0 = Debug Serial
1 = Debug Parallel
2 = AXI4-Lite

0,1,2 0 integer

C_ASYNC_INTERRUPT Asynchronous Interrupt 0,1 0 yes integer

C_ASYNC_WAKEUP Asynchronous Wakeup 00,01,10,11 00 yes integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 yes integer

C_EDGE_IS_POSITIVE Negative/Positive Edge
Interrupt 0, 1 1 yes integer

C_FSL_LINKS Number of AXI-Stream
interfaces 0-16 0 integer

C_USE_EXTENDED_FSL_INSTR Enable use of extended
stream instructions 0, 1 0 integer

C_ICACHE_BASEADDR Instruction cache base
address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_
vector

C_ICACHE_HIGHADDR Instruction cache high
address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x3FFFF
FFF

std_logic_
vector

C_USE_ICACHE Instruction cache 0, 1 0 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 187
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=187

Chapter 3: MicroBlaze Signal Interface Description
C_ALLOW_ICACHE_WR Instruction cache write
enable 0, 1 1 integer

C_ICACHE_LINE_LEN Instruction cache line
length 4, 8, 16 4 integer

C_ICACHE_ALWAYS_USED Instruction cache
interface used for all
memory accesses in the
cacheable range

0, 1 1
integer

C_ICACHE_FORCE_TAG_LUTRAM Instruction cache tag
always implemented
with distributed RAM

0, 1 0
integer

C_ICACHE_STREAMS Instruction cache
streams 0, 1 0 integer

C_ICACHE_VICTIMS Instruction cache
victims 0, 2, 4, 8 0 integer

C_ICACHE_DATA_WIDTH Instruction cache data
width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0

integer

C_ADDR_TAG_BITS Instruction cache
address tags 0-25 17 yes integer

C_CACHE_BYTE_SIZE Instruction cache size 64, 128,
256, 512,

1024, 2048,
4096, 8192,

16384,
32768,
655361

8192

integer

C_DCACHE_BASEADDR Data cache base address 0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_
vector

C_DCACHE_HIGHADDR Data cache high address 0x0 -
0xFFFFFFFF
FFFFFFFF

0x3FFFF
FFF

std_logic_
vector

C_USE_DCACHE Data cache 0, 1 0 integer

C_ALLOW_DCACHE_WR Data cache write enable 0, 1 1 integer

C_DCACHE_LINE_LEN Data cache line length 4, 8, 16 4 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 188
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=188

Chapter 3: MicroBlaze Signal Interface Description
C_DCACHE_ALWAYS_USED Data cache interface
used for all accesses in
the cacheable range

0, 1 1
integer

C_DCACHE_FORCE_TAG_LUTRAM Data cache tag always
implemented with
distributed RAM

0, 1 0
integer

C_DCACHE_USE_WRITEBACK Data cache write-back
storage policy used 0, 1 0 integer

C_DCACHE_VICTIMS Data cache victims 0, 2, 4, 8 0 integer

C_DCACHE_DATA_WIDTH Data cache data width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0
integer

C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer

C_DCACHE_BYTE_SIZE Data cache size 64, 128,
256, 512,

1024, 2048,
4096, 8192,

16384,
32768,
655362

8192

integer

C_USE_MMU3 Memory Management:
0 = None
1 = User Mode
2 = Protection
3 = Virtual

0, 1, 2, 3 0 integer

C_MMU_DTLB_SIZE3 Data shadow Translation
Look-Aside Buffer size 1, 2, 4, 8 4 integer

C_MMU_ITLB_SIZE3 Instruction shadow
Translation Look-Aside
Buffer size

1, 2, 4, 8 2 integer

C_MMU_TLB_ACCESS3 Access to memory
management special
registers:
0 = Minimal
1 = Read
2 = Write
3 = Full

0, 1, 2, 3 3 integer

C_MMU_ZONES3 Number of memory
protection zones 0-16 16 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 189
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=189

Chapter 3: MicroBlaze Signal Interface Description
C_MMU_PRIVILEGED_INSTR3 Privileged instructions
0 = Full protection
1 = Allow stream instrs
2 = Allow extended addr
3 = Allow both

0,1,2,3 0 integer

C_USE_INTERRUPT Enable interrupt
handling
0 = No interrupt
1 = Standard interrupt
2 = Low-latency
interrupt

0, 1, 2 1 yes integer

C_USE_EXT_BRK Enable external break
handling 0,1 0 yes integer

C_USE_EXT_NM_BRK Enable external non-
maskable break
handling

0,1 0 yes integer

C_USE_NON_SECURE Use corresponding non-
secure input 0-15 0 yes integer

C_USE_BRANCH_TARGET_CACHE3 Enable Branch Target
Cache 0,1 0 integer

C_BRANCH_TARGET_CACHE_SIZE3 Branch Target Cache
size:
0 = Default
1 = 8 entries
2 = 16 entries
3 = 32 entries
4 = 64 entries
5 = 512 entries
6 = 1024 entries
7 = 2048 entries

0-7 0 integer

C_M_AXI_DP_
THREAD_ID_WIDTH

Data side AXI thread ID
width 1 1 integer

C_M_AXI_DP_DATA_WIDTH Data side AXI data width 32 32 integer

C_M_AXI_DP_ADDR_WIDTH Data side AXI address
width 32-64 32 yes integer

C_M_AXI_DP_
SUPPORTS_THREADS

Data side AXI uses
threads 0 0 integer

C_M_AXI_DP_SUPPORTS_READ Data side AXI support
for read accesses 1 1 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 190
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=190

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_DP_SUPPORTS_WRITE Data side AXI support
for write accesses 1 1 integer

C_M_AXI_DP_SUPPORTS_
NARROW_BURST

Data side AXI narrow
burst support 0 0 integer

C_M_AXI_DP_PROTOCOL Data side AXI protocol AXI4,
AXI4LITE

AXI4
LITE

yes string

C_M_AXI_DP_
EXCLUSIVE_ACCESS

Data side AXI exclusive
access support 0,1 0 integer

C_M_AXI_IP_
THREAD_ID_WIDTH

Instruction side AXI
thread ID width 1 1 integer

C_M_AXI_IP_DATA_WIDTH Instruction side AXI data
width 32 32 integer

C_M_AXI_IP_ADDR_WIDTH Instruction side AXI
address width 32-64 32 yes integer

C_M_AXI_IP_
SUPPORTS_THREADS

Instruction side AXI uses
threads 0 0 integer

C_M_AXI_IP_SUPPORTS_READ Instruction side AXI
support for read
accesses

1 1
integer

C_M_AXI_IP_SUPPORTS_WRITE Instruction side AXI
support for write
accesses

0 0
integer

C_M_AXI_IP_SUPPORTS_
NARROW_BURST

Instruction side AXI
narrow burst support 0 0 integer

C_M_AXI_IP_PROTOCOL Instruction side AXI
protocol AXI4LITE AXI4

LITE
string

C_M_AXI_DC_
THREAD_ID_WIDTH

Data cache AXI ID width 1 1 integer

C_M_AXI_DC_DATA_WIDTH Data cache AXI data
width

32, 64, 128,
256, 512 32 integer

C_M_AXI_DC_ADDR_WIDTH Data cache AXI address
width 32-64 32 yes integer

C_M_AXI_DC_
SUPPORTS_THREADS

Data cache AXI uses
threads 0 0 integer

C_M_AXI_DC_SUPPORTS_READ Data cache AXI support
for read accesses 1 1 integer

C_M_AXI_DC_SUPPORTS_WRITE Data cache AXI support
for write accesses 1 1 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 191
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=191

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_DC_SUPPORTS_
NARROW_BURST

Data cache AXI narrow
burst support 0 0 integer

C_M_AXI_DC_SUPPORTS_
USER_SIGNALS

Data cache AXI user
signal support 1 1 integer

C_M_AXI_DC_PROTOCOL Data cache AXI protocol AXI4 AXI4 string

C_M_AXI_DC_AWUSER_WIDTH Data cache AXI user
width 5 5 integer

C_M_AXI_DC_ARUSER_WIDTH Data cache AXI user
width 5 5 integer

C_M_AXI_DC_WUSER_WIDTH Data cache AXI user
width 1 1 integer

C_M_AXI_DC_RUSER_WIDTH Data cache AXI user
width 1 1 integer

C_M_AXI_DC_BUSER_WIDTH Data cache AXI user
width 1 1 integer

C_M_AXI_DC_
EXCLUSIVE_ACCESS

Data cache AXI exclusive
access support 0,1 0 integer

C_M_AXI_DC_USER_VALUE Data cache AXI user
value 0-31 31 integer

C_M_AXI_IC_
THREAD_ID_WIDTH

Instruction cache AXI ID
width 1 1 integer

C_M_AXI_IC_DATA_WIDTH Instruction cache AXI
data width

32, 64, 128,
256, 512 32 integer

C_M_AXI_IC_ADDR_WIDTH Instruction cache AXI
address width 32-64 32 yes integer

C_M_AXI_IC_
SUPPORTS_THREADS

Instruction cache AXI
uses threads 0 0 integer

C_M_AXI_IC_SUPPORTS_READ Instruction cache AXI
support for read
accesses

1 1
integer

C_M_AXI_IC_SUPPORTS_WRITE Instruction cache AXI
support for write
accesses

0 0
integer

C_M_AXI_IC_SUPPORTS_
NARROW_BURST

Instruction cache AXI
narrow burst support 0 0 integer

C_M_AXI_IC_SUPPORTS_
USER_SIGNALS

Instruction cache AXI
user signal support 1 1 integer

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 192
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=192

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_IC_PROTOCOL Instruction cache AXI
protocol AXI4 AXI4 string

C_M_AXI_IC_AWUSER_WIDTH Instruction cache AXI
user width 5 5 integer

C_M_AXI_IC_ARUSER_WIDTH Instruction cache AXI
user width 5 5 integer

C_M_AXI_IC_WUSER_WIDTH Instruction cache AXI
user width 1 1 integer

C_M_AXI_IC_RUSER_WIDTH Instruction cache AXI
user width 1 1 integer

C_M_AXI_IC_BUSER_WIDTH Instruction cache AXI
user width 1 1 integer

C_M_AXI_IC_USER_VALUE Instruction cache AXI
user value 0-31 31 integer

C_STREAM_INTERCONNECT Select AXI4-Stream
interconnect 0,1 0 integer

C_Mn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Sn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Mn_AXIS_DATA_WIDTH AXI4-Stream master
data width 32 32 NA integer

C_Sn_AXIS_DATA_WIDTH AXI4-Stream slave data
width 32 32 NA integer

C_NUM_SYNC_FF_CLK Reset and Wakeup[0:1]
synchronization stages ≥0 2 integer

C_NUM_SYNC_FF_CLK_IRQ Interrupt input signal
synchronization stages ≥0 1 integer

C_NUM_SYNC_FF_CLK_DEBUG Dbg_ serial signal
synchronization stages ≥0 2 integer

C_NUM_SYNC_FF_DBG_CLK Internal synchronization
stages to Dbg_Clk ≥0 1 integer

C_NUM_SYNC_FF_DBG_TRACE_CLK Internal synchronization
stages to Dbg_Trace_Clk ≥0 1 integer

1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses 0 - 32 RAMB primitives (0 if cache size is less than 2048).
3. Not available when C_AREA_OPTIMIZED is set to 1 (Area).

1.

Table 3-19: Configuration Parameters (Cont’d)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assigned VHDL Type
MicroBlaze Processor Reference Guide 193
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=193

Chapter 3: MicroBlaze Signal Interface Description
Table 3-20: Parameter C_FAMILY Allowable Values
Allowable Values

Artix® aartix7 artix7 artix7l qartix7 qartix7l
Kintex® kintex7 kintex7l qkintex7 qkintex7l kintexu kintexuplus
Spartan® spartan7
Virtex® qvirtex7 virtex7 virtexu virtexuplus virtexuplusHBM
Zynq® azynq zynq qzynq zynquplus zynquplusRFSOC
Versal® versal
MicroBlaze Processor Reference Guide 194
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=194

Chapter 4

MicroBlaze Application Binary Interface

Introduction
This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important
for developing software in assembly language for the soft processor. The MicroBlaze GNU
compiler follows the conventions described in this document. Any code written by assembly
programmers should also follow the same conventions to be compatible with the compiler
generated code. Interrupt and Exception handling is also explained briefly.

Data Types
The data types used by MicroBlaze assembly programs are shown in the following table.
Data types such as data8, data16, data32, and data64 are used in place of the usual byte,
half-word, and word.register.

Table 4-1: Data Types in MicroBlaze Assembly Programs

MicroBlaze data types
(for assembly programs)

Corresponding
ANSI C data types
32-bit MicroBlaze

Corresponding
ANSI C data types
64-bit MicroBlaze

Size (bytes)

data8 char char 1
data16 short short 2
data32 int int 4

long int - 4
float float 4
enum enum 4

data16/data32 pointer1

1. Pointers to small data areas, which can be accessed by global pointers are data16.

- 2/4
data64 - long int 8

long long int long long int 8
- double 8
- pointer 8
MicroBlaze Processor Reference Guide 195
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=195

Chapter 4: MicroBlaze Application Binary Interface
Register Usage Conventions
The register usage convention for MicroBlaze is given in the following table.

Table 4-2: Register Usage Conventions
Register Type Enforcement Purpose

R0 Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries
R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries
R13 Dedicated SW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW/SW Return address for Exceptions

HW, if configured to support hardware exceptions, else SW
R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
R19 Non-volatile SW Must be saved across function calls. Callee-save
R20 Dedicated

or
Non-volatile

SW Reserved for storing a pointer to the global offset table (GOT)
in position independent code (PIC). Non-volatile in non-PIC
code. Must be saved across function calls. Callee-save.

R21-R31 Non-volatile SW Must be saved across function calls. Callee-save.
RPC Special HW Program counter

RMSR Special HW Machine Status Register
REAR Special HW Exception Address Register
RESR Special HW Exception Status Register
RFSR Special HW Floating-Point Status Register
RBTR Special HW Branch Target Register
REDR Special HW Exception Data Register
RPID Special HW Process Identifier Register
RZPR Special HW Zone Protection Register

RTLBLO Special HW Translation Look-Aside Buffer Low Register
RTLBHI Special HW Translation Look-Aside Buffer High Register
RTLBX Special HW Translation Look-Aside Buffer Index Register

RTLBSX Special HW Translation Look-Aside Buffer Search Index
RPVR0-12 Special HW Processor Version Register 0 through 12
MicroBlaze Processor Reference Guide 196
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=196

Chapter 4: MicroBlaze Application Binary Interface
The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers
are classified as volatile, non-volatile, and dedicated.

• The volatile registers (also known as caller-save) are used as temporaries and do not
retain values across the function calls. Registers R3 through R12 are volatile, of which
R3 and R4 are used for returning values to the caller function, if any. Registers R5
through R10 are used for passing parameters between subroutines.

• Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers (a.k.a callee-save). The callee function is expected to
save those non-volatile registers, which are being used. These are typically saved to the
stack during the prologue and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

- Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps, and exceptions in that order. Subroutines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

- Small data area pointers are used for accessing certain memory locations with 16-
bit immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to
access the constants such as literals. The other SDA anchor R13 (Read-Write) is used
for accessing the values in the small data read-write section.

- Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

- Register R18 is used as a temporary register for assembler operations.
• MicroBlaze includes special purpose registers such as:

- program counter (rpc)

- machine status register (rmsr)

- exception status register (resr)

- exception address register (rear)

- floating-point status register (rfsr), branch target register (rbtr)

- exception data register (redr)

- memory management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx)

- processor version registers (0-12)

These registers are not mapped directly to the register file; and hence, the usage of these
registers is different from the general purpose registers. The value of a special purpose
registers can be transferred to or from a general purpose register by using mts and mfs
instructions respectively.
MicroBlaze Processor Reference Guide 197
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=197

Chapter 4: MicroBlaze Application Binary Interface
Stack Convention
The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while
the unshaded area indicates the callee frame function. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values,
and allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These
non-leaf functions have to create a new stack frame area for its own use. When the program
starts executing, the stack pointer has the maximum value. As functions are called, the stack
pointer is decremented by the number of words required by every function for its stack
frame. The stack pointer of a caller function always has a higher value as compared to the
callee function.

Table 4-3: Stack Convention

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-1. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

High Address
Function Parameters for called sub-routine (Arg n .. Arg1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack
Pointer

Link Register (R15)

Callee Saved Register (R31....R19)
(Optional: Only those registers which are used by the current
procedure are saved)
Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)
Functional Parameters (Arg n .. Arg 1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack
Pointer

Link Register

Low Address
MicroBlaze Processor Reference Guide 198
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=198

Chapter 4: MicroBlaze Application Binary Interface
Details of how the stack is maintained are shown in the following figure.

Stack protection is available to ensure that the stack does not grow above the high limit or
shrink below the low limit. The Stack High Register (SHR) and Stack Low Register (SLR) are
used to enforce this, respectively. These registers are automatically initialized to the stack
limits from linker symbols by the crt0.o initialization file.

Enabling stack protection in hardware can be useful to detect erroneous program behavior
due to stack size issues, which can otherwise be very hard to debug.

Calling Convention
The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the stack area of the caller to store
the parameters passed to the callee.

See Table 4-1. The parameters for Func 2 are stored either in the registers R5 through R10
or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in
registers R5 through R10, whereas all subsequent parameters must be passed on the stack
frame allocated for Func 1, starting at offset SP + 28.

Should Func2 be a variable argument function (a variadic function) such as printf(), all
variable arguments are stored on the stack frame allocated by the caller.

X-Ref Target - Figure 4-1

Figure 4-1: Stack Frame

Func 1

High Memory

SP

Func 1

SP

Func 2

Func 1

SP

Func 2

Func 3

Func 1

SP

Func 2

Low Memory
X19785-111717
MicroBlaze Processor Reference Guide 199
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=199

Chapter 4: MicroBlaze Application Binary Interface
Memory Model
The memory model for MicroBlaze classifies the data into four different parts: Small Data
Area, Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area
Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option
to the compiler. Details about this option are discussed in the “GNU Compiler Tools”
chapter of the Embedded System Tools Reference Manual (UG1043) [Ref 13]. 64 kilobytes of
memory is allocated for the small data areas. The small data area is accessed using the read-
write small data area anchor (R13) and a 16-bit offset. Allocating small variables to this area
reduces the requirement of adding IMM instructions to the code for accessing global
variables. Any variable in the small data area can also be accessed using an absolute
address.

Data Area
Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending on
the command line option given to the compiler.

Common Un-Initialized Area
Un-initialized global variables are allocated in the common area and can be accessed either
using the absolute address or using the read-write small data area anchor R13.

Literals or Constants
Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory see the “MicroBlaze Linker Scripts”
section and Appendix B of the Embedded System Tools Reference Manual (UG1043) [Ref 13].

The compiler generates appropriate sections, depending on the command line options. See
the “GNU Compiler Tools” chapter in the Embedded System Tools Reference Manual
(UG1043) [Ref 13] for more information about these options.
MicroBlaze Processor Reference Guide 200
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=200

Chapter 4: MicroBlaze Application Binary Interface
Interrupt, Break and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in the following table. At these locations, code is written to jump to the
appropriate handlers.

The code expected at these locations is as shown below. The crt0.o initialization file is
passed by the mb-gcc compiler to the mb-ld linker for linking. This file sets the
appropriate addresses of the exception handlers.

The following is code for passing control to Exception, Break and Interrupt handlers,
assuming the default C_BASE_VECTORS value of 0x00000000:

0x00: bri _start1

0x04: nop

0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler

0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler

0x18: imm high bits of address (break handler)
0x1c: bri low bits of address (break handler)
0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

With low-latency interrupt mode, control is directly passed to the interrupt handler for each
individual interrupt utilizing this mode. In this case, it is the responsibility of each handler
to save and restore used registers. The MicroBlaze C compiler (mb-gcc) attribute
fast_interrupt is available to allow this task to be performed by the compiler:

void interrupt_handler_name() __attribute__((fast_interrupt));

Table 4-4: Interrupt and Exception Handling
On Hardware jumps to Software Labels

Start / Reset C_BASE_VECTORS + 0x0 _start
User exception C_BASE_VECTORS + 0x8 _exception_handler
Interrupt C_BASE_VECTORS + 0x101

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

_interrupt_handler
Break (HW/SW) C_BASE_VECTORS + 0x18 -
Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler
Reserved by Xilinx C_BASE_VECTORS + 0x28 -

C_BASE_VECTORS + 0x4F -
MicroBlaze Processor Reference Guide 201
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=201

Chapter 4: MicroBlaze Application Binary Interface
MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits.

• The user exception handler code starts with the label _exception_handler
• The hardware exception handler starts with _hw_exception_handler
• The interrupt handler code starts with the label _interrupt_handler for interrupts

that do not use low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt, break and user
exception handling, which you can change. In order to override these routines and link your
own interrupt and exception handlers, you must define the handler code with specific
attributes.

The interrupt handler code must be defined with attribute interrupt_handler to ensure
that the compiler will generate code to save and restore used registers and emit an rtid
instruction to return from the handler:

void function_name() __attribute__((interrupt_handler));

The break handler code must be defined with attribute break_handler to ensure that the
compiler will generate code to save and restore used registers and emit an rtbd instruction
to return from the handler:

void function_name() __attribute__((break_handler));

For more details about the use and syntax of the interrupt handler attribute, please refer to
the GNU Compiler Tools chapter in the Embedded System Tools Reference Manual (UG1043)
[Ref 13].

When software breakpoints are used in the Xilinx System Debugger (XSDB) tool or the
Vitis™ Development Environment, the Break (HW/SW) address location is reserved for
handling the software breakpoint.
MicroBlaze Processor Reference Guide 202
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=202

Chapter 4: MicroBlaze Application Binary Interface
Reset Handling
After programming the FPGA, the MicroBlaze instruction and data caches are invalidated.
However, since hardware reset does not invalidate the instruction and data caches, this has
to be done by software before enabling the caches, in order to avoid using any stale data.
With the Standalone BSP, this can be achieved by the code below.

#include <xil_cache.h>

int main()

{

Xil_ICacheInvalidate();
Xil_ICacheEnable();
Xil_DCacheInvalidate();
Xil_DCacheEnable();

...

}

It is also possible to call these functions from a custom first stage initialization file, if
startup times are critical. See Embedded System Tools Reference Manual (UG1043) [Ref 13]
for a detailed description of MicroBlaze initialization files.
MicroBlaze Processor Reference Guide 203
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=203

Chapter 4: MicroBlaze Application Binary Interface
ELF Format
The executable, object code and shared library format used by MicroBlaze tool chain is the
Executable and Linkable Format (ELF). This section describes the specific use of the ELF
format in the MicroBlaze architecture.

For further details on the format, see the Tool Interface Standard (TIS) Executable and
Linking Format (ELF) Specification [Ref 20].

File Header
The ELF header architecture-specific fields are listed in Table 4-5, showing the values for the
three available formats: 32-bit big-endian, 32-bit little-endian and 64-bit little-endian.

In object file dumps, the formats are denoted elf32-microblaze, elf32-microblazeel, and
elf64-microblazeel respectively.

Sections
The architecture does not define any special section indexes, types or attribute flags.

Sections containing code must be at least 32-bit aligned, and sections containing data must
be at least 32-bit aligned with 32-bit formats or at least 64-bit aligned with 64-bit format.

MicroBlaze special sections are listed in Table 4-6.

Table 4-5: ELF Header

Field
32-bit big endian 32-bit little endian 64-bit little endian
C_DATA_SIZE = 32

C_ENDIANNESS = 0
C_DATA_SIZE = 32

C_ENDIANNESS = 1
C_DATA_SIZE = 64

C_ENDIANNESS = 1
e_ident[EL_CLASS] ELFCLASS32 (0x01) ELFCLASS32 (0x01) ELFCLASS64 (0x02)
e_ident[EL_DATA] ELFDATA2MSB (0x02) ELFDATA2LSB (0x01) ELFDATA2LSB (0x01)
e_machine EM_MICROBLAZE (189 = 0x00bd)
e_entry C_BASE_VECTORS
e_flags 0x00000000

Table 4-6: Special Sections
Name Type Attributes

.vectors.reset SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.sw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.interrupt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.hw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
MicroBlaze Processor Reference Guide 204
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=204

Chapter 4: MicroBlaze Application Binary Interface
Relocations
Relocation information is used by linkers in order to bind symbols and addresses that could
not be determined when the initial object was generated.

Relocation entries describe how to alter the instruction and data relocation fields
Relocations applied to executable or shared object files are similar and accomplish the
same result.

All relocations are listed and described in Table 4-7, including the operation performed to
compute the value of the relocation.

Table 4-7: Relocation Entries
Code Name Description Operation

1 R_MICROBLAZE_NONE This relocation does nothing. none

2 R_MICROBLAZE_32 A standard 32 bit relocation. S+A

3 R_MICROBLAZE_32_PCREL A standard PCREL 32 bit relocation. S+A-P

4 R_MICROBLAZE_64_PCREL A 64 bit PCREL relocation. Table-entry only
used for 64-bit implementation.

(S+A-P)&0xFFFF (#imm)

5 R_MICROBLAZE_32_PCREL_LO The low half of a PCREL 32 bit relocation. (S+A-P)&0xFFFF

6 R_MICROBLAZE_64 A 64 bit relocation. Table entry only used
for 64-bit implementation.

(S+A)&0xFFFF (#imm)

7 R_MICROBLAZE_32_LO The low half of a 32 bit relocation. (S+A)&0xFFFF

8 R_MICROBLAZE_SRO32 Read-only small data section relocation. (S+A -_SDA_BASE_)

9 R_MICROBLAZE_SRW32 Read-write small data area relocation. (S+A-_SDA_BASE_)

10 R_MICROBLAZE_64_NONE This relocation does nothing. Used for
relaxation.

none

11 R_MICROBLAZE_32_SYM_OP_SYM Symbol Op Symbol relocation. none

12 R_MICROBLAZE_GNU_VTINHERIT GNU extension to record C++ vtable
hierarchy.

13 R_MICROBLAZE_GNU_VTENTRY GNU extension to record C++ vtable
member usage.

14 R_MICROBLAZE_GOTPC_64 A 64 bit GOTPC relocation. Table-entry
only used for 64-bit implementation.

G+A–P (#imm)

15 R_MICROBLAZE_GOT_64 A 64 bit GOT relocation. Table-entry only
used for 64-bit implementation.

G+A (#imm)

16 R_MICROBLAZE_PLT_64 A 64 bit PLT relocation. Table-entry only
used for 64-bit implementation.

L+A (#imm)

17 R_MICROBLAZE_REL Table-entry not used. ((B + A)>>16) & 0xFFFF

18 R_MICROBLAZE_JUMP_SLOT Table-entry not used. (S >> 16) & 0xFFFF

19 R_MICROBLAZE_GLOB_DAT Table-entry not used. (S >> 16) & 0xFFFF

20 R_MICROBLAZE_GOTOFF_64 A 64 bit GOT relative relocation. (S+A-GOT)&0xFFFF
MicroBlaze Processor Reference Guide 205
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=205

Chapter 4: MicroBlaze Application Binary Interface
The symbol nomenclature and relocation calculations with thread-local symbols used in the
relocation entries table are explained in Table 4-8.

21 R_MICROBLAZE_GOTOFF_32 A 32 bit GOT relative relocation. (S+A-GOT)&0xFFFF

22 R_MICROBLAZE_COPY COPY relocation. none

23 R_MICROBLAZE_TLS TLS relocations for TLS. none

24 R_MICROBLAZE_TLSGD TLSGD relocations for TLS. @got@tlsgd

25 R_MICROBLAZE_TLSLD TLSLD relocations for TLS. @got@tlsld

26 R_MICROBLAZE_TLSDTPMOD32 Computes the load module. @got@dtpmod

27 R_MICROBLAZE_TLSDTPREL32 Computes a dtv-relative displacement. @got@dtprel

28 R_MICROBLAZE_TLSDTPREL64 Computes a dtv-relative displacement. @got@dtprel

29 R_MICROBLAZE_TLSGOTTPREL32 Computes a tp-relative displacement. @got@prel

30 R_MICROBLAZE_TLSTPREL32 Computes a tp-relative displacement. @got@prel

31 R_MICROBLAZE_32_NONE Standard 32-bit relocation. none

Table 4-8: Symbol Notation
Symbol Meaning

A The addend used to compute the value of the relocatable field.
B The base address at which a shared object has been loaded into memory during

execution. Generally, a shared object file is built with a 0 base virtual address, but
the execution address will be different.

G The offset into the global offset table at which the address of the relocation
entry’s symbol will reside during execution.

GOT The address of the global offset table.
L The place (section offset or address) of the procedure linkage table entry for a

symbol. A procedure linkage table entry redirects a function call to the proper
destination. The link editor builds the initial procedure linkage table, and the
dynamic linker modifies the entries during execution.

P The place (section offset or address) of the storage unit being relocated
(computed using r_offset).

S The value of the symbol whose index resides in the relocation entry.
@dtpmod Computes the load module index of the load module that contain the definition

of a symbol. The addend, if present, is ignored
@dtprel Computes a dtv-relative displacement, the difference between the value of S + A

and the base address of the thread-local storage block that contains the
definition of the symbol, minus 0x8000.

@got@tlsgd Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod
and @dtprel, and computes the offset to the first entry relative to the TOC base.

Table 4-7: Relocation Entries
Code Name Description Operation
MicroBlaze Processor Reference Guide 206
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=206

Chapter 4: MicroBlaze Application Binary Interface
@got@tlsld Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod
and zero, and computes the offset to the first entry relative to the TOC base.

@got@dtpmod Computes the load module index of the load module that contains the definition
of its TLS symbol.

@got@dtprel Computes a dtv-relative displacement, the difference between the value of
symbol + add and the base address of the thread-local storage block that
contains the definition of the symbol, minus 0x8000. Used for initializing GOT.

@got@prel Computes a tp-relative displacement, the difference between the value of symbol
+ add and the value of the thread pointer (r13).

#imm Inserts imm instruction if the immediate value is greater than 16 bits in the
instruction.

Table 4-8: Symbol Notation (Cont’d)

Symbol Meaning
MicroBlaze Processor Reference Guide 207
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=207

Chapter 5

MicroBlaze Instruction Set Architecture

Introduction
This chapter provides a detailed guide to the Instruction Set Architecture of the MicroBlaze™
processor.

Notation
The symbols used throughout this chapter are defined in the following tables.

Table 5-1: Register Name Notation
Register Name Mode Meaning

rD 32-bit Destination register r0 - r31, 32 bits:
Entire register assigned instruction result

64-bit Destination register r0 - r31, 64 bits:
32 least significant bits assigned instruction result
32 most significant bits cleared to 0

rA
rB

32-bit Source register r0 - r31, 32 bits:
Entire register used as instruction operand

64-bit Source register r0 - r31, 64 bits:
32 least significant bits used as instruction operand
32 most significant bits ignored

rDL 64-bit Destination register r0 - r31, 64 bits:
Entire register assigned instruction result

rAL
rBL

64-bit Source register r0 - r31, 64 bits:
Entire register used as instruction operand

rDX 32-bit
64-bit

Destination register r0 - r31:
Entire register assigned instruction result

rAX
rBX

32-bit Source register r0 - r31, 32 bits:
Entire register used as instruction operand

64-bit Source register r0 - r31, 64 bits:
Entire register used as instruction operand
MicroBlaze Processor Reference Guide 208
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=208

Chapter 5: MicroBlaze Instruction Set Architecture
Table 5-2: Symbol Notation
Symbol Meaning

+ Add
- Subtract
× Multiply
/ Divide
∧ Bitwise logical AND
∨ Bitwise logical OR
⊕ Bitwise logical XOR
x Bitwise logical complement of x

← Assignment
>> Right shift
<< Left shift
rx Register x

x[i] Bit i in register x
x[i:j] Bits i through j in register x

= Equal comparison
≠ Not equal comparison
> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison
| Signal choice

sext(x) Sign-extend x
Mem(x) Memory location at address x

FSLx AXI4-Stream interface x
LSW(x) Least Significant Word of x
isDnz(x) Floating-point: true if x is denormalized

isInfinite(x) Floating-point: true if x is +∞ or -∞

isPosInfinite(x) Floating-point: true if x is +∞

isNegInfinite(x) Floating-point: true if x -∞

isNaN(x) Floating-point: true if x is a quiet or signaling NaN
isZero(x) Floating-point: true if x is +0 or -0

isQuietNaN(x) Floating-point: true if x is a quiet NaN
isSigNaN(x) Floating-point: true if x is a signaling NaN
signZero(x) Floating-point: return +0 for x > 0, and -0 if x < 0

signInfinite(x) Floating-point: return +∞ for x > 0, and -∞ if x < 0
MicroBlaze Processor Reference Guide 209
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=209

Chapter 5: MicroBlaze Instruction Set Architecture
Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

MicroBlaze 32-bit Instructions
This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx provides the mnemonic, encoding, a description, pseudocode of its
semantics, and a list of registers that it modifies.

All instructions included in the instruction set for 32-bit MicroBlaze are defined in this
section. These instructions are also available as part of the extended instruction set for 64-
bit MicroBlaze.

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31
MicroBlaze Processor Reference Guide 210
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=210

Chapter 5: MicroBlaze Instruction Set Architecture
add Arithmetic Add

add rD, rA, rB Add
addc rD, rA, rB Add with Carry
addk rD, rA, rB Add and Keep Carry
addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The sum of the contents of registers rA and rB, is placed into register rD.
Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.
When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.
When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then

(rD) ← (rA) + (rB)
else

(rD) ← (rA) + (rB) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]
Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions by
setting the MicroBlaze parameter C_OPCODE_0x0_ILLEGAL=1.
MicroBlaze Processor Reference Guide 211
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=211

Chapter 5: MicroBlaze Instruction Set Architecture
addi Arithmetic Add Immediate

addi rD, rA, IMM Add Immediate
addic rD, rA, IMM Add Immediate with Carry
addik rD, rA, IMM Add Immediate and Keep Carry
addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM
0 6 11 16 31

Description
The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.
When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.
When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then

(rD) ← (rA) + sext(IMM)
else

(rD) ← (rA) + sext(IMM) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]
Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use as
the immediate operand. This behavior can be overridden by preceding the Type B instruction with an
imm instruction. See the instruction “imm,” page 255 for details on using 32-bit immediate values.
MicroBlaze Processor Reference Guide 212
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=212

Chapter 5: MicroBlaze Instruction Set Architecture
and Logical AND

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into register
rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD
Latency
1 cycle
MicroBlaze Processor Reference Guide 213
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=213

Chapter 5: MicroBlaze Instruction Set Architecture
andi Logial AND with Immediate

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM
0 6 11 16 31

Description
The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ sext(IMM)

Registers Altered
• rD
Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
MicroBlaze Processor Reference Guide 214
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=214

Chapter 5: MicroBlaze Instruction Set Architecture
andn Logical AND NOT

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are ANDed with the logical complement of the contents of register rB; the
result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD
Latency
1 cycle
MicroBlaze Processor Reference Guide 215
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=215

Chapter 5: MicroBlaze Instruction Set Architecture
andni Logical AND NOT with Immediate

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM
0 6 11 16 31

Description
The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (sext(IMM))

Registers Altered
• rD
Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
MicroBlaze Processor Reference Guide 216
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=216

Chapter 5: MicroBlaze Instruction Set Architecture
beq Branch if Equal

beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.
The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 217
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=217

Chapter 5: MicroBlaze Instruction Set Architecture
beqi Branch Immediate if Equal

beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM
0 6 11 16 31

Description
Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the branch
will be the instruction at address PC + IMM.
The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 218
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=218

Chapter 5: MicroBlaze Instruction Set Architecture
bge Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.
The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 219
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=219

Chapter 5: MicroBlaze Instruction Set Architecture
bgei Branch Immediate if Greater or Equal

bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM
0 6 11 16 31

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.
The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 220
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=220

Chapter 5: MicroBlaze Instruction Set Architecture
bgt Branch if Greater Than

bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.
The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 221
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=221

Chapter 5: MicroBlaze Instruction Set Architecture
bgti Branch Immediate if Greater Than

bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM
0 6 11 16 31

Description
Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.
The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 222
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=222

Chapter 5: MicroBlaze Instruction Set Architecture
ble Branch if Less or Equal

ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.
The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 223
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=223

Chapter 5: MicroBlaze Instruction Set Architecture
blei Branch Immediate if Less or Equal

blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM
0 6 11 16 31

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.
The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 224
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=224

Chapter 5: MicroBlaze Instruction Set Architecture
blt Branch if Less Than

blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.
The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 225
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=225

Chapter 5: MicroBlaze Instruction Set Architecture
blti Branch Immediate if Less Than

blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM
0 6 11 16 31

Description
Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.
The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 226
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=226

Chapter 5: MicroBlaze Instruction Set Architecture
bne Branch if Not Equal

bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.
The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 227
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=227

Chapter 5: MicroBlaze Instruction Set Architecture
bnei Branch Immediate if Not Equal

bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM
0 6 11 16 31

Description
Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.
The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 228
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=228

Chapter 5: MicroBlaze Instruction Set Architecture
br Unconditional Branch

br rB Branch
bra rB Branch Absolute
brd rB Branch with Delay
brad rB Branch Absolute with Delay
brld rD, rB Branch and Link with Delay
brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch to the instruction located at address determined by rB.
The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.
The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is to
an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target will
be PC + rB.
The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)

if D = 1 then
allow following instruction to complete execution

Registers Altered
• rD
• PC
Latency
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set)
MicroBlaze Processor Reference Guide 229
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=229

Chapter 5: MicroBlaze Instruction Set Architecture
Note
The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.
With 64-bit mode, the absolute branch instructions bra, brad, and brald use the entire 64-bit register
rBL, brald uses the entire 64-bit register rDL, and the instructions can be used for extended address
branches.
MicroBlaze Processor Reference Guide 230
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=230

Chapter 5: MicroBlaze Instruction Set Architecture
bri Unconditional Branch Immediate

bri IMM Branch Immediate
brai IMM Branch Absolute Immediate
brid IMM Branch Immediate with Delay
braid IMM Branch Absolute Immediate with Delay
brlid rD, IMM Branch and Link Immediate with Delay
bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM
0 6 11 16 31

Description
Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.
The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.
The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the target
will be PC + IMM.
The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.
As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and “bralid
rD, C_BASE_VECTORS+0x8“ is used to perform a User Vector Exception, the Machine Status
Register bits User Mode and Virtual Mode are cleared.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← sext(IMM)

else
PC ← PC + sext(IMM)

if D = 1 then
allow following instruction to complete execution

if D = 1 and A = 1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then

MSR[UMS] ← MSR[UM]
MSR[VMS] ← MSR[VM]
MSR[UM] ← 0
MSR[VM] ← 0
MicroBlaze Processor Reference Guide 231
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=231

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• rD
• PC
• MSR[UM], MSR[VM]
Latency
• 1 cycle (if successful branch prediction occurs)
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs with

C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
The instructions brli and brali are not available.
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm” for details on using immediate values.
A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
With 64-bit mode, the absolute branch instructions brai, braid, and bralid may also be preceded by an
imml instruction, bralid uses the entire 64-bit registers rDL, and the instructions can be used for
extended address branches.
MicroBlaze Processor Reference Guide 232
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=232

Chapter 5: MicroBlaze Instruction Set Architecture
brk Break

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch and link to the instruction located at address value in rB. The current value of PC will be stored
in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1
Reservation ← 0

Registers Altered
• rD
• PC
• MSR[BIP]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 3 cycles
Notes
With 64-bit mode, the instruction uses the entire 64-bit registers rBL and rDL, and can be used for
extended address branches.
MicroBlaze Processor Reference Guide 233
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=233

Chapter 5: MicroBlaze Instruction Set Architecture
brki Break Immediate

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM
0 6 11 16 31

Description
Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, except in case of a Software
Break, and the reservation bit will be cleared.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged,
except as a special case when “brki rD, C_BASE_VECTORS+0x8” or “brki rD,
C_BASE_VECTORS+0x18” is used to perform a Software Break. This means that, apart from the
special case, if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.
As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and “brki rD,
C_BASE_VECTORS+0x8” or “brki rD, C_BASE_VECTORS+0x18” is used to perform a Software
Break, the Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode
if MSR[UM] and IMM ≠ C_BASE_VECTORS+0x8 and IMM ≠ C_BASE_VECTORS+0x18 then
ESR[EC] ← 00111

else

(rD) ← PC
PC ← sext(IMM)
if IMM ≠ 0x18 then
MSR[BIP] ← 1

Reservation ← 0
if IMM = C_BASE_VECTORS+0x8 or IMM = C_BASE_VECTORS+0x18 then

MSR[UMS] ← MSR[UM]
MSR[UM] ← 0
MSR[VMS] ← MSR[VM]
MSR[VM] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 3 cycles
MicroBlaze Processor Reference Guide 234
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=234

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm” for details on using immediate values.
As a special case, the imm instruction does not override a Software Break “brki rD, 0x18” when
C_DEBUG_ENABLED. is greater than zero, irrespective of the value of C_BASE_VECTORS, to allow
Software Break after an imm instruction.
With 64-bit mode, the instruction may also be preceded by an imml instruction, uses the entire 64-bit
register rDL, and can be used for extended address branches.
MicroBlaze Processor Reference Guide 235
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=235

Chapter 5: MicroBlaze Instruction Set Architecture
bs Barrel Shift

bsrl rD, rA, rB Barrel Shift Right Logical
bsra rD, rA, rB Barrel Shift Right Arithmetical
bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Shifts the contents of register rA by the amount specified in register rB and puts the result in register
rD.
The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.
The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then

(rD) ← (rA) << (rB)[27:31]
else

if T = 1 then

if ((rB)[27:31]) ≠ 0 then
(rD)[0:(rB)[27:31]-1] ← (rA)[0]

(rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]
else

(rD) ← (rA)
else

(rD) ← (rA) >> (rB)[27:31]

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).
MicroBlaze Processor Reference Guide 236
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=236

Chapter 5: MicroBlaze Instruction Set Architecture
bsi Barrel Shift Immediate

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai rD, rA, IMM Barrel Shift Right Arithmetic Immediate
bslli rD, rA, IMM Barrel Shift Left Logical Immediate
bsefi rD, rA, IMMW, IMMS Barrel Shift Extract Field Immediate
bsifi rD, rA, Width1, IMMS Barrel Shift Insert Field Immediate
1. Width = IMMW - IMMS + 1

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM
0 6 11 16 21 27 31

0 1 1 0 0 1 rD rA I E 0 0 0 IMMW 0 IMMS

0 6 11 16 21 25 27 31

Description
The first three instructions shift the contents of register rA by the amount specified by IMM and put
the result in register rD.
Barrel Shift Extract Field extracts a bit f ield from register rA and puts the result in register rD. The bit
f ield width is specif ied by IMMW and the shift amount is specif ied by IMMS. The bit f ield width must
be in the range 1 - 31, and the condition IMMW + IMMS≤32 must apply.
Barrel Shift Insert Field inserts a bit field from register rA into register rD, modifying the existing value
in register rD. The bit field width is defined by IMMW - IMMS + 1, and the shift amount is specified by
IMMS. The condition IMMW ≥ IMMS must apply.
The mnemonic bslli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrli and bsrai clear the S bit and the shift is done to the right.
The mnemonic bsrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrli and bslli clear the T bit and the shift performed is Logical.
The mnemonic bsefi sets the E bit (Extract bit). In this case the S and T bits are not used.
The mnemonic bsifi sets the I bit (Insert bit). In this case the S and T bits are not used.
MicroBlaze Processor Reference Guide 237
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=237

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if E = 1 then

(rD)[0:31-IMMW] ← 0
(rD)[32-IMMW:31] ← (rA) >> IMMS

else if I = 1 then

mask ← (0xffffffff << (IMMW + 1)) ⊕ (0xffffffff << IMMS)

(rD) ← ((rA) << IMMS) ∧ mask) ∨ ((rD) ∧ mask)
else if S = 1 then

(rD) ← (rA) << IMM
else if T = 1 then

if IMM ≠ 0 then
(rD)[0:IMM-1] ← (rA)[0]

(rD)[IMM:31] ← (rA) >> IMM
else

(rD) ← (rA)
else

(rD) ← (rA) >> IMM

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
These are not Type B Instructions. There is no effect from a preceding imm instruction.
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).
The assembler code “bsifi rD, rA, width, shift” denotes the actual bit field width, not the IMMW field,
which is computed by IMMW = shift + width - 1.
MicroBlaze Processor Reference Guide 238
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=238

Chapter 5: MicroBlaze Instruction Set Architecture
clz Count Leading Zeros

clz rD, rA Count leading zeros in rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 6 11 16 21 31

Description
This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.
The result in rD is 32 when rA is 0, and it is 0 if rA is 0xFFFFFFFF.

Pseudocode
n ← 0
while (rA)[n] = 0

n ← n + 1
(rD) ← n

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 239
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=239

Chapter 5: MicroBlaze Instruction Set Architecture
cmp Integer Compare

cmp rD, rA, rB compare rB with rA (signed)
cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 1
0 6 11 16 21 31

Description
The contents of register rA are subtracted from the contents of register rB and the result is placed into
register rD.
The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and rB is
considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode
(rD) ← (rB) + (rA) + 1
(rD)(MSB) ← (rA) > (rB)

Registers Altered
• rD
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 240
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=240

Chapter 5: MicroBlaze Instruction Set Architecture
fadd Floating-Point Arithmetic Add

fadd rD, rA, rB Add

0 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The floating-point sum of registers rA and rB, is placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isSigNaN(rA) or isSigNaN(rB)or

(isPosInfinite(rA) and isNegInfinite(rB)) or

(isNegInfinite(rA) and isPosInfinite(rB))) then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) ← 0xFFC00000

else if isDnz((rA)+(rB)) then

(rD) ← signZero((rA)+(rB))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rA)+(rB)) then

(rD) ← signInfinite((rA)+(rB))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rD) ← (rA) + (rB)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 241
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=241

Chapter 5: MicroBlaze Instruction Set Architecture
frsub Reverse Floating-Point Arithmetic Subtraction

frsub rD, rA, rB Reverse subtract

0 1 0 1 1 0 rD rA rB 0 0 0 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The floating-point value in rA is subtracted from the floating-point value in rB and the result is placed
into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else if (isSigNaN(rA) or isSigNaN(rB) or

(isPosInfinite(rA) and isPosInfinite(rB)) or

(isNegInfinite(rA) and isNegInfinite(rB))) then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) ← 0xFFC00000

else if isDnz((rB)-(rA)) then

(rD) ← signZero((rB)-(rA))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rB)-(rA)) then

(rD) ← signInfinite((rB)-(rA))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rD) ← (rB) - (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 242
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=242

Chapter 5: MicroBlaze Instruction Set Architecture
fmul Floating-Point Arithmetic Multiplication

fmul rD, rA, rB Multiply

0 1 0 1 1 0 rD rA rB 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The floating-point value in rA is multiplied with the floating-point value in rB and the result is placed
into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else

if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or
(isZero(rB) and isInfinite(rA)) then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) ← 0xFFC00000

else if isDnz((rB)*(rA)) then

(rD) ← signZero((rA)*(rB))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rB)*(rA)) then

(rD) ← signInfinite((rB)*(rA))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rD) ← (rB) * (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 243
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=243

Chapter 5: MicroBlaze Instruction Set Architecture
fdiv Floating-Point Arithmetic Division

fdiv rD, rA, rB Divide

0 1 0 1 1 0 rD rA rB 0 0 1 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The floating-point value in rB is divided by the floating-point value in rA and the result is placed into
register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else

if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(isInfinite(rA) and isInfinite(rB)) then

(rD) ← 0xFFC00000

FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) ← 0xFFC00000

else if isZero(rA) and not isInfinite(rB) then

(rD) ← signInfinite((rB)/(rA))

FSR[DZ] ← 1

ESR[EC] ← 00110

else if isDnz((rB) / (rA)) then

(rD) ← signZero((rB) / (rA))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rB)/(rA)) then

(rD) ← signInfinite((rB) / (rA))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rD) ← (rB) / (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO,DZ]
Latency
• 28 cycles with C_AREA_OPTIMIZED=0
• 30 cycles with C_AREA_OPTIMIZED=1
• 24 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 244
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=244

Chapter 5: MicroBlaze Instruction Set Architecture
fcmp Floating-Point Number Comparison

fcmp.un rD, rA, rB Unordered floating-point comparison
fcmp.lt rD, rA, rB Less-than floating-point comparison
fcmp.eq rD, rA, rB Equal floating-point comparison
fcmp.le rD, rA, rB Less-or-Equal floating-point comparison
fcmp.gt rD, rA, rB Greater-than floating-point comparison
fcmp.ne rD, rA, rB Not-Equal floating-point comparison
fcmp.ge rD, rA, rB Greater-or-Equal floating-point comparison

0 1 0 1 1 0 rD rA rB 0 1 0 0 OpSel 0 0 0 0
0 6 11 16 21 25 28 31

Description
The floating-point value in rB is compared with the floating-point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode
if isDnz(rA) or isDnz(rB) then

(rD) ← 0

FSR[DO] ← 1

ESR[EC] ← 00110

else

{read out behavior from Table 5-3}

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-3 lists the floating-point comparison operations.
MicroBlaze Processor Reference Guide 245
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=245

Chapter 5: MicroBlaze Instruction Set Architecture
Table 5-3: Floating-Point Comparison Operation
Comparison Type Operand Relationship

Description OpSel (rB) > (rA) (rB) < (rA) (rB) = (rA) isSigNaN(rA) or
isSigNaN(rB)

isQuietNaN(rA) or
isQuietNaN(rB)

Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110
MicroBlaze Processor Reference Guide 246
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=246

Chapter 5: MicroBlaze Instruction Set Architecture
flt Floating-Point Convert Integer to Float

flt rD, rA

0 1 0 1 1 0 rD rA 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Converts the signed integer in register rA to floating-point and puts the result in register rD. This is a
32-bit rounding signed conversion that will produce a 32-bit floating-point result.

Pseudocode
(rD) ← float ((rA))

Registers Altered
• rD
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 247
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=247

Chapter 5: MicroBlaze Instruction Set Architecture
fint Floating-Point Convert Float to Integer

fint rD, rA

0 1 0 1 1 0 rD rA 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Converts the floating-point number in register rA to a signed integer and puts the result in register rD.
This is a 32-bit truncating signed conversion that will produce a 32-bit integer result.

Pseudocode
if isDnz(rA) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isNaN(rA) then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else

(rD) ← int ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 5 cycles with C_AREA_OPTIMIZED=0
• 7 cycles with C_AREA_OPTIMIZED=1
• 2 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 248
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=248

Chapter 5: MicroBlaze Instruction Set Architecture
fsqrt Floating-Point Arithmetic Square Root

fsqrt rD, rA Square Root

0 1 0 1 1 0 rD rA 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Performs a floating-point square root on the value in rA and puts the result in register rD.

Pseudocode
if isDnz(rA) then

(rD) ← 0xFFC00000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isSigNaN(rA) then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rA) then

(rD) ← 0xFFC00000

else if (rA) < 0 then

(rD) ← 0xFFC00000

FSR[IO] ← 1

ESR[EC] ← 00110

else if (rA) = -0 then

(rD) ← -0

else

(rD) ← sqrt ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 27 cycles with C_AREA_OPTIMIZED=0
• 29 cycles with C_AREA_OPTIMIZED=1
• 23 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 249
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=249

Chapter 5: MicroBlaze Instruction Set Architecture
get get from stream interface

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c t a e 0 0 0 0 0 0 FSLx
0 6 11 16 28 31

Description
MicroBlaze will read from the link x interface and place the result in register rD. If the available number
of links set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.
The get instruction has 32 variants.
The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was valid and to
‘1’ if the data was invalid. In case of an invalid access the destination register contents are undefined.
All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If this is
not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’ bit is ‘1’)
expect the control bit from the interface to be ‘1’. If this is not the case, the instruction will set
MSR[FSL] to ‘1’.
The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit mismatch.
In this case ESR is updated with EC set to the exception cause and ESS set to the link index. The target
register, rD, is not updated when an exception is generated, instead the data is stored in EDR.
The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal to
the link is not asserted.
Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM]=1) a Privileged Instruction exception occurs.
MicroBlaze Processor Reference Guide 250
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=250

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

x ← FSLx
if x >= C_FSL_LINKS then

x ← 0
(rD) ← Sx_AXIS_TDATA
if (n = 1) then

MSR[Carry] ← Sx_AXIS_TVALID
if Sx_AXIS_TLAST ≠ c and Sx_AXIS_TVALID then
MSR[FSL] ← 1
if (e = 1) then

ESR[EC] ← 00000
ESR[ESS]← instruction bits [28:31]
EDR ← Sx_AXIS_TDATA

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL]
• MSR[Carry]
• ESR[EC], in case a stream exception or a privileged instruction exception is generated
• ESR[ESS], in case a stream exception is generated
• EDR, in case a stream exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is set to 1,
and the instruction is not atomic.

Notes
To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.
The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.
For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.
The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.
It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide 251
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=251

Chapter 5: MicroBlaze Instruction Set Architecture
getd get from stream interface dynamic

tneagetd rD, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecagetd rD, rB get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 0 0 1 1 rD 0 0 0 0 0 rB 0 n c t a e 0 0 0 0 0
0 6 11 16 21 31

Description
MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.
The getd instruction has 32 variants.
The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was valid and to
‘1’ if the data was invalid. In case of an invalid access the destination register contents are undefined.
All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If this is
not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’ bit is ‘1’)
expect the control bit from the interface to be ‘1’. If this is not the case, the instruction will set
MSR[FSL] to ‘1’.
The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit mismatch.
In this case ESR is updated with EC set to the exception cause and ESS set to the link index. The target
register, rD, is not updated when an exception is generated, instead the data is stored in EDR.
The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read signal to
the link is not asserted.
Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.
MicroBlaze Processor Reference Guide 252
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=252

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

x ← rB[28:31]
if x >= C_FSL_LINKS then

x ← 0
(rD) ← Sx_AXIS_TDATA
if (n = 1) then

MSR[Carry] ← Sx_AXIS_TVALID
if Sx_AXIS_TLAST ≠ c and Sx_AXIS_TVALID then
MSR[FSL] ← 1
if (e = 1) then

ESR[EC] ← 00000
ESR[ESS]← rB[28:31]
EDR ← Sx_AXIS_TDATA

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL]
• MSR[Carry]
• ESR[EC], in case a stream exception or a privileged instruction exception is generated
• ESR[ESS], in case a stream exception is generated
• EDR, in case a stream exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Notes
The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.
For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0
and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.
It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide 253
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=253

Chapter 5: MicroBlaze Instruction Set Architecture
idiv Integer Divide

idiv rD, rA, rB divide rB by rA (signed)
idivu rD, rA, rB divide rB by rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0
0 6 11 16 21 31

Description
The contents of register rB are divided by the contents of register rA and the result is placed into
register rD.
If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.
If the value of rA is 0 (divide by zero), the DZO bit in MSR will be set and the value in rD will be 0,
unless an exception is generated.
If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648 (divide overflow), the DZO
bit in MSR will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) = 0 then

(rD) <- 0

MSR[DZO] <- 1

ESR[EC] <- 00101
ESR[DEC] <- 0

else if U = 0 and (rA) = -1 and (rB) = -2147483648 then

(rD) <- -2147483648

MSR[DZO] <- 1

ESR[EC] <- 00101
ESR[DEC] <- 1

else

(rD) ← (rB) / (rA)

Registers Altered
• rD, unless a divide exception is generated, in which case the register is unchanged
• MSR[DZO], if divide by zero or divide overflow occurs
• ESR[EC], if divide by zero or divide overflow occurs
Latency
• 1 cycle if (rA) = 0, otherwise 34 cycles with C_AREA_OPTIMIZED=0
• 1 cycle if (rA) = 0, otherwise 35 cycles with C_AREA_OPTIMIZED=1
• 1 cycle if (rA) = 0, otherwise 30 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV = 1).
MicroBlaze Processor Reference Guide 254
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=254

Chapter 5: MicroBlaze Instruction Set Architecture
imm Immediate

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM
0 6 11 16 31

Description
The instruction imm loads the IMM value into a temporary register. It also locks this value so it can be
used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-bit
immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit IMM
field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks the
16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately follows
the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the imm
instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B
instruction follows the imm instruction, the locked value gets unlocked and becomes useless.

Latency
• 1 cycle
Notes
The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts are
allowed between them.

The assembler provided by Xilinx® automatically detects the need for imm instructions. When a 32-
bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-bit
one to assemble the instruction and inserts an imm instruction before it in the executable file.
MicroBlaze Processor Reference Guide 255
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=255

Chapter 5: MicroBlaze Instruction Set Architecture
lbu Load Byte Unsigned

lbu rDx, rAx, rBx
lbur rDx, rAx, rBx
lbuea rD, rA, rB

1 1 0 0 0 0 rDx rAx rBx 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of registers rAX
and rBX. The data is placed in the least significant byte of register rDX and the other bytes in rDX are
cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAx) + (rBx)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr)
(rDx)[0:C_DATA_SIZE-9] ← 0
MicroBlaze Processor Reference Guide 256
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=256

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 257
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=257

Chapter 5: MicroBlaze Instruction Set Architecture
lbui Load Byte Unsigned Immediate

lbui rDx, rAx, IMM

1 1 1 0 0 0 rDX rAX IMM
0 6 11 16 31

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of register rAX
with the sign-extended value in IMM. The data is placed in the least significant byte of register rDX
and the other bytes in rDX are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr ← (rAx) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr)
(rDx)[0:C_DATA_SIZE-9] ← 0

Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 258
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=258

Chapter 5: MicroBlaze Instruction Set Architecture
lhu Load Halfword Unsigned

lhu rDx, rAx, rBx
lhur rDx, rAx, rBx
lhuea rD, rA, rB

1 1 0 0 0 1 rDX rAX rBX 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rAX and rBX. The data is placed in the least significant halfword of register rDX
and the other halfwords in rDX is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.
A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.
MicroBlaze Processor Reference Guide 259
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=259

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAx) + (rBx)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else if (VM = 0 and R = 1) or

 (VM = 1 and R = 1 and E = 1) or

 (VM = 1 and R = 0 and E = 0) then
(rDx)[C_DATA_SIZE-16:C_DATA_SIZE-9] ← Mem(Addr);
(rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr+1);
(rDx)[0:C_DATA_SIZE-17] ← 0

else
(rDx)[C_DATA_SIZE-16:C_DATA_SIZE-9] ← Mem(Addr+1);
(rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr);
(rDx)[0:C_DATA_SIZE-17] ← 0

Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 260
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=260

Chapter 5: MicroBlaze Instruction Set Architecture
lhui Load Halfword Unsigned Immediate

lhui rDx, rAx, IMM

1 1 1 0 0 1 rDX rAX IMM
0 6 11 16 31

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rAX and the sign-extended value in IMM. The data is placed in the least significant
halfword of register rDX and the other halfwords in rDX is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode
Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else
(rDX)[C_DATA_SIZE-16:C_DATA_SIZE-1] ← Mem(Addr)
(rDX)[0:C_DATA_SIZE-17] ← 0

Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 261
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=261

Chapter 5: MicroBlaze Instruction Set Architecture
lw Load Word

lw rDx, rAx, rBx
lwr rDx, rAx, rBx
lwea rD, rA, rB

1 1 0 0 1 0 rDX rAX rBX 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rAX and rBX. The data is placed in least significant word of register rDX and the most
significant word (if any) is cleared.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.
A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rDX[C_DATA_SIZE-32:C_DATA_SIZE-1]) ← Mem(Addr)
(rDX[0:C_DATA_SIZE-33]) ← 0
MicroBlaze Processor Reference Guide 262
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=262

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 263
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=263

Chapter 5: MicroBlaze Instruction Set Architecture
lwi Load Word Immediate

lwi rDX, rAX, IMM

1 1 1 0 1 0 rDX rAX IMM
0 6 11 16 31

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rAX and the sign-extended value IMM. The data is placed in the least significant word of
register rDX and the most significant word (if any) is cleared.
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.
An unaligned data access exception occurs if the two least significant bits in the address are not zero

Pseudocode
Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rDX[C_DATA_SIZE-32:C_DATA_SIZE-1]) ← Mem(Addr); (rDX[0:C_DATA_SIZE-33]) ← 0

Registers Altered
• rDX, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 264
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=264

Chapter 5: MicroBlaze Instruction Set Architecture
lwx Load Word Exclusive

lwx rD, rA, rB

1 1 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AXI4
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY, the
carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the address
are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used, and
the interconnect response is not EXOKAY, which means that an exclusive access cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and
cache interconnect, respectively.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY and MSR[EE] then
ESR[EC] ← 00100;ESR[ECC]← 0;
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD) ← Mem(Addr); Reservation ← 1;
if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY then
MSR[C] ← 1

else

MSR[C] ← 0
MicroBlaze Processor Reference Guide 265
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=265

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• rD and MSR[C], unless an exception is generated, in which case they are unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior). The LWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.
MicroBlaze Processor Reference Guide 266
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=266

Chapter 5: MicroBlaze Instruction Set Architecture
mbar Memory Barrier

mbar IMM Memory Barrier

1 0 1 1 1 0 IMM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 6 11 16 31

Description
This instruction ensures that outstanding memory accesses on memory interfaces are
completed before any subsequent instructions are executed. This is necessary to guarantee
that self-modifying code is handled correctly, and that a DMA transfer can be safely started.
With self-modifying code, it is necessary to first use an MBAR instruction to wait for data
accesses, which can be done by setting IMM to 1, and then use another MBAR instruction to
clear the Branch Target Cache and empty the instruction prefetch buffer, which can be done
by setting IMM to 2.
To ensure that data to be read by a DMA unit has been written to memory, it is only
necessary to wait for data accesses, which can be done by setting IMM to 1.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged when the most significant bit in IMM is set to 1. This means that if the instruction
is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.
When the two most significant bits in IMM are set to 10 (Sleep), 01 (Hibernate), or 11
(Suspend) and no exception occurs, MicroBlaze enters sleep mode after all outstanding
accesses have been completed. and sets the Sleep, Hibernate or Suspend output signal
respectively to indicate this. The pipeline is halted, and MicroBlaze will not continue
execution until a bit in the Wakeup input signal is asserted.
Pseudocode

if (IMM & 1) = 0 then
wait for instruction side memory accesses

if (IMM & 2) = 0 then
wait for data side memory accesses

PC ← PC + 4
if (IMM & 24)!= 0 then

enter sleep mode

Registers Altered
• PC
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 + N cycles when C_INTERCONNECT = 2 (AXI)
• 8 + N cycles when C_INTERCONNECT = 3 (ACE)
N is the number of cycles to wait for memory accesses to complete
MicroBlaze Processor Reference Guide 267
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=267

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
This instruction must not be preceded by an imm instruction, and must not be placed in a delay slot.
The assembler pseudo-instructions sleep, hibernate, and suspend can be used instead of “mbar 16”,
“mbar 8”, and “mbar 24” respectively to enter sleep mode.
MicroBlaze Processor Reference Guide 268
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=268

Chapter 5: MicroBlaze Instruction Set Architecture
mfs Move From Special Purpose Register

mfs rD, rS
mfse rD, rS

1 0 0 1 0 1 rD 0 E 0 0 0 1 0 rS
0 6 11 16 18 31

Description
Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The EAR, PVR[8] and PVR[9}
registers have extended parts when extended addressing is enabled (C_ADDR_SIZE > 32), and the
TLBLO, PVR[6] and PVR[7] registers have extended parts when Physical Address Extension (PAE) is
enabled.

Pseudocode
if E = 1 then

switch (rS):

case 0x0003 : (rD) ← EAR[0:C_ADDR_SIZE-32-1]
case 0x1003 : (rD) ← TLBLO[0:C_ADDR_SIZE-32-1]
case 0x2006 : (rD) ← PVR6[0:C_ADDR_SIZE-32-1]
case 0x2007 : (rD) ← PVR7[0:C_ADDR_SIZE-32-1]
case 0x2008 : (rD) ← PVR8[0:C_ADDR_SIZE-32-1]
case 0x2009 : (rD) ← PVR9[0:C_ADDR_SIZE-32-1]
default : (rD) ← Undefined

else

switch (rS):

case 0x0000 : (rD) ← PC
case 0x0001 : (rD) ← MSR
case 0x0003 : (rD) ← EAR[C_ADDR_SIZE-32:C_ADDR_SIZE-1]
case 0x0005 : (rD) ← ESR
case 0x0007 : (rD) ← FSR
case 0x000B : (rD) ← BTR
case 0x000D : (rD) ← EDR
case 0x0800 : (rD) ← SLR
case 0x0802 : (rD) ← SHR
case 0x1000 : (rD) ← PID
case 0x1001 : (rD) ← ZPR
case 0x1002 : (rD) ← TLBX
case 0x1003 : (rD) ← TLBLO[C_ADDR_SIZE-32:C_ADDR_SIZE-1]
case 0x1004 : (rD) ← TLBHI
case 0x200x : (rD) ← PVRx[C_ADDR_SIZE-32:C_ADDR_SIZE-1] (where x = 0 to 12)
default : (rD) ← Undefined

Registers Altered
• rD
MicroBlaze Processor Reference Guide 269
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=269

Chapter 5: MicroBlaze Instruction Set Architecture
Latency
• 1 cycle
Notes
To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for EAR,
resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rslr for SLR, rshr for SHR, rpid for PID, rzpr for ZPR,
rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvr12 for PVR0 - PVR12.

The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the MFS
instruction to guarantee correct MSR value.

The value read from FSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the MFS
instruction to guarantee correct FSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze C_*_EXCEPTION
parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the parameter
C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter is set to
1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU > 1 (User
Mode) and the parameter C_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the parameter
C_MMU_TLB_ACCESS > 0 (Minimal).

PVR0 is only valid as an operand when C_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are only valid
as operands when C_PVR is set to 2 (Full).

The extended instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).
MicroBlaze Processor Reference Guide 270
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=270

Chapter 5: MicroBlaze Instruction Set Architecture
msrclr Read MSR and clear bits in MSR

msrclr rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 1 0 Imm15
0 6 11 17 31

Description
Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged for
all IMM values except those only affecting C. This means that if the instruction is attempted in User
Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 and IMM ≠ 0x4 then
ESR[EC] ← 00111

else

(rD) ← (MSR)
(MSR) ← (MSR) ∧ (IMM))

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 1 cycle
Notes
MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle after
the instruction has been executed. When clearing the IE bit, it is guaranteed that the processor will not
react to any interrupt for the subsequent instructions.
The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRCLR instruction to guarantee correct MSR value. This applies to both the value copied to register
rD and the changed MSR value itself.
The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than 214
otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MMU >= 1 (User Mode), and.bits
18 to 31 otherwise.
This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.
When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.
MicroBlaze Processor Reference Guide 271
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=271

Chapter 5: MicroBlaze Instruction Set Architecture
msrset Read MSR and set bits in MSR

msrset rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 0 0 Imm15
0 6 11 17 31

Description
Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left untouched.
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged for all
IMM values except those only affecting C. This means that if the instruction is attempted in User Mode
(MSR[UM] = 1) in this case a Privileged Instruction exception occurs.
With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 11
if the MSR{IE] bit is set by executing this instruction.

Pseudocode
if MSR[UM] = 1 and IMM ≠ 0x4 then
ESR[EC] ← 00111

else

(rD) ← (MSR)
(MSR) ← (MSR) ∨ (IMM)
if (IMM) & 2

Interrupt_Ack ← 11

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 1 cycle
Notes
MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle after
the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the processor
will not react to any interrupt or normal hardware break for the subsequent instructions.
The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRSET instruction to guarantee correct MSR value. This applies to both the value copied to register
rD and the changed MSR value itself.
The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than 214
otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MMU >= 1 (User Mode), and.bits 18
to 31 otherwise.
This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.
When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.
MicroBlaze Processor Reference Guide 272
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=272

Chapter 5: MicroBlaze Instruction Set Architecture
mts Move To Special Purpose Register

mts rS, rA
mtse rS, rA

1 0 0 1 0 1 0 E 0 0 0 rA 1 1 rS
0 6 11 16 18 31

Description
Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The TLBLO register has an
extended part when the Physical Address Extension (PAE) is enabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 11
if the MSR{IE] bit is set by executing this instruction.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

if E = 1 then

if (rS) = 0x1003 then

TLBLO[0:C_ADDR_SIZE-32-1] ← (rA)
else

switch (rS)

 case 0x0001 : MSR ← (rA)
 case 0x0007 : FSR ← (rA)

case 0x0800 : SLR ← (rA)
case 0x0802 : SHR ← (rA)
case 0x1000 : PID ← (rA)

 case 0x1001 : ZPR ← (rA)
 case 0x1002 : TLBX ← (rA)
 case 0x1003 : TLBLO[C_ADDR_SIZE-32:C_ADDR_SIZE-1] ← (rA)
 case 0x1004 : TLBHI ← (rA)
 case 0x1005 : TLBSX ← (rA)

if (rS) = 0x0001 and (rA) & 2

Interrupt_Ack ← 11

Registers Altered
• rS
• ESR[EC], in case a privileged instruction exception is generated
MicroBlaze Processor Reference Guide 273
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=273

Chapter 5: MicroBlaze Instruction Set Architecture
Latency
• 1 cycle
Notes
When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed. An
MTS instruction writing MSR should never be followed back-to-back by an instruction that uses the
MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rslr for SLR,
rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rtlbsx for
TLBSX.

The PC, ESR, EAR, BTR, EDR and PVR0 - PVR12 cannot be written by the MTS instruction.

The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1 (User Mode)
and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only valid as
destinations when the parameter C_USE_MMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

After writing to TLBHI in order to invalidate one or more UTLB entries, an MBAR 1 instruction must be
issued to ensure that coherency is preserved in a coherent multi-processor system.

When PAE is enabled, the entire TLBLO register must be written, by first using the extended
instruction to write the most significant bits immediately followed by the least significant bits.

The extended instruction is only valid if MicroBlaze is configured to use the MMU in virtual mode
(C_USE_MMU = 3) and extended address (C_ADDR_SIZE > 32).
MicroBlaze Processor Reference Guide 274
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=274

Chapter 5: MicroBlaze Instruction Set Architecture
mul Multiply

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit multiplication that will produce a 64-bit result. The least significant word of this value is placed in
rD. The most significant word is discarded.

Pseudocode
(rD) ← LSW((rA) × (rB))

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Note
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.
MicroBlaze Processor Reference Guide 275
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=275

Chapter 5: MicroBlaze Instruction Set Architecture
mulh Multiply High

mulh rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 1
0 6 11 16 21 31

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit signed multiplication that will produce a 64-bit result. The most significant word of this value is
placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), signed

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Notes
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the two
instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual values
were not relevant.
MicroBlaze Processor Reference Guide 276
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=276

Chapter 5: MicroBlaze Instruction Set Architecture
mulhu Multiply High Unsigned

mulhu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 1
0 6 11 16 21 31

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant word of
this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), unsigned

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Notes
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.
MicroBlaze Processor Reference Guide 277
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=277

Chapter 5: MicroBlaze Instruction Set Architecture
mulhsu Multiply High Signed Unsigned

mulhsu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 0
0 6 11 16 21 31

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit signed
by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most significant word
of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA), signed × (rB), unsigned), signed

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Notes
This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.
MicroBlaze Processor Reference Guide 278
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=278

Chapter 5: MicroBlaze Instruction Set Architecture
muli Multiply Immediate

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM
0 6 11 16 31

Description
Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the result
in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The least
significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) ← LSW((rA) × sext(IMM))

Registers Altered
• rD
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.
MicroBlaze Processor Reference Guide 279
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=279

Chapter 5: MicroBlaze Instruction Set Architecture
or Logical OR

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are ORed with the contents of register rB; the result is placed into register
rD.

Pseudocode
(rD) ← (rA) ∨ (rB)

Registers Altered
• rD
Latency
• 1 cycle
Note
The assembler pseudo-instruction nop is implemented as “or r0, r0, r0”.
MicroBlaze Processor Reference Guide 280
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=280

Chapter 5: MicroBlaze Instruction Set Architecture
ori Logical OR with Immediate

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM
0 6 11 16 31

Description
The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the result
is placed into register rD.

Pseudocode
(rD) ← (rA) ∨ sext(IMM)

Registers Altered
• rD
Latency
• 1 cycle
Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.
MicroBlaze Processor Reference Guide 281
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=281

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpbf Pattern Compare Byte Find

pcmpbf rD, rA, rB bytewise comparison returning position of first match

1 0 0 0 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are bytewise compared with the contents in register rB.

• rD is loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 4

• If none of the byte pairs match, rD is set to 0
Pseudocode

if rB[0:7] = rA[0:7] then

(rD) ← 1
else

if rB[8:15] = rA[8:15] then

(rD) ← 2
else

if rB[16:23] = rA[16:23] then

(rD) ← 3
else

if rB[24:31] = rA[24:31] then

(rD) ← 4
else

(rD) ← 0

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 282
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=282

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpeq Pattern Compare Equal

pcmpeq rD, rA, rB equality comparison with a positive boolean result

1 0 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are compared with the contents in register rB.

• rD is loaded with 1 if they match, and 0 if not
Pseudocode

if (rB) = (rA) then

(rD) ← 1
else

(rD) ← 0

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 283
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=283

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpne Pattern Compare Not Equal

pcmpne rD, rA, rB equality comparison with a negative boolean result

1 0 0 0 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are compared with the contents in register rB.

• rD is loaded with 0 if they match, and 1 if not
Pseudocode

if (rB) = (rA) then

(rD) ← 0
else

(rD) ← 1

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 284
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=284

Chapter 5: MicroBlaze Instruction Set Architecture
put Put to stream interface

naput rA, FSLx put data to link x
n = non-blocking
a = atomic

tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic

ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic

tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c t a 0 0 0 0 0 0 0 FSLx
0 6 11 16 28 31

Description
MicroBlaze will write the value from register rA to the link x interface. If the available number of links
set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.

The put instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the interface.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was available and
to ‘1’ if no space was available.

All data put instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all control put
instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal to
the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.
MicroBlaze Processor Reference Guide 285
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=285

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

x ← FSLx
if x >= C_FSL_LINKS then

x ← 0
Mx_AXIS_TDATA ← (rA)
if (n = 1) then

MSR[Carry] ← Mx_AXIS_TVALID ∧ Mx_AXIS_TREADY
Mx_AXIS_TLAST ← C

Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, and the instruction is not atomic.
Notes
To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (test and atomic versions) are only available when the MicroBlaze
parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide 286
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=286

Chapter 5: MicroBlaze Instruction Set Architecture
putd Put to stream interface dynamic

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic

tnaputd rB put data to link rB[28:31] test-only
n = non-blocking
a = atomic

ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic

tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic

0 1 0 0 1 1 0 0 0 0 0 rA rB 1 n c t a 0 0 0 0 0 0
0 6 11 16 21 31

Description
MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the interface.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was available and
to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all control
putd instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write signal to
the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.
MicroBlaze Processor Reference Guide 287
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=287

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

x ← rB[28:31]
if x >= C_FSL_LINKS then

x ← 0
Mx_AXIS_TDATA ← (rA)
if (n = 1) then

MSR[Carry] ← Mx_AXIS_TVALID ∧ Mx_AXIS_TREADY
Mx_AXIS_TLAST ← C

Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Notes
The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0
and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.
MicroBlaze Processor Reference Guide 288
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=288

Chapter 5: MicroBlaze Instruction Set Architecture
rsub Arithmetic Reverse Subtract

rsub rD, rA, rB Subtract
rsubc rD, rA, rB Subtract with Carry
rsubk rD, rA, rB Subtract and Keep Carry
rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry flag does
not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then

(rD) ← (rB) + (rA) + 1
else

(rD) ← (rB) + (rA) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]
Latency
• 1 cycle
Note
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.
MicroBlaze Processor Reference Guide 289
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=289

Chapter 5: MicroBlaze Instruction Set Architecture
rsubi Arithmetic Reverse Subtract Immediate

rsubi rD, rA, IMM Subtract Immediate
rsubic rD, rA, IMM Subtract Immediate with Carry
rsubik rD, rA, IMM Subtract Immediate and Keep Carry
rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM
0 6 11 16 31

Description
The contents of register rA are subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then the
carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set to
one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the instruction.
When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the execution of the
instruction (providing a normal subtraction).

Pseudocode
if C = 0 then

(rD) ← sext(IMM) + (rA) + 1
else

(rD) ← sext(IMM) + (rA) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]
Latency
• 1 cycle
Note
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B Instructions
will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate operand. This
behavior can be overridden by preceding the Type B instruction with an imm instruction. See the
instruction “imm” for details on using 32-bit immediate values.
MicroBlaze Processor Reference Guide 290
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=290

Chapter 5: MicroBlaze Instruction Set Architecture
rtbd Return from Break

rtbd rAX, IMM

1 0 1 1 0 1 1 0 0 1 0 rAX IMM
0 6 11 16 31

Description
Return from break will branch to the location specified by the contents of rAX plus the sign-extended
IMM field. It will also enable breaks after execution by clearing the BIP flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed before
the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

PC ← (rAX) + sext(IMM)
allow following instruction to complete execution

MSR[BIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]

Registers Altered
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 2 cycles
Notes
Convention is to use general purpose register r16 as rAX.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 291
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=291

Chapter 5: MicroBlaze Instruction Set Architecture
rtid Return from Interrupt

rtid rAX, IMM

1 0 1 1 0 1 1 0 0 0 1 rAX IMM
0 6 11 16 31

Description
Return from interrupt will branch to the location specified by the contents of rAX plus the sign-
extended IMM field. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed before
the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 10
when this instruction is executed, and subsequently to 11 when the MSR{IE] bit is set.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

PC ← (rAX) + sext(IMM)
Interrupt_Ack ← 10
allow following instruction to complete execution

MSR[IE] ← 1
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]
Interrupt_Ack ← 11

Registers Altered
• PC
• MSR[IE], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 2 cycles
Notes
Convention is to use general purpose register r14 as rAX.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 292
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=292

Chapter 5: MicroBlaze Instruction Set Architecture
rted Return from Exception

rted rAX, IMM

1 0 1 1 0 1 1 0 1 0 0 rAX IMM
0 6 11 16 31

Description
Return from exception will branch to the location specified by the contents of rAX plus the sign-
extended IMM field. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed before
the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

PC ← (rAX) + sext(IMM)
allow following instruction to complete execution

MSR[EE] ← 1
MSR[EIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]
ESR ← 0

Registers Altered
• PC
• MSR[EE], MSR[EIP], MSR[UM], MSR[VM]
• ESR
Latency
• 2 cycles
Notes
Convention is to use general purpose register r17 as rAX. This instruction requires that one or more of
the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that C_USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in the delay
slot would cause an exception, the exception handler would be entered with exceptions enabled.

Code returning from an exception must first check if MSR[DS] is set, and in that case return to the
address in BTR.
MicroBlaze Processor Reference Guide 293
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=293

Chapter 5: MicroBlaze Instruction Set Architecture
rtsd Return from Subroutine

rtsd rAX, IMM

1 0 1 1 0 1 1 0 0 0 0 rAX IMM
0 6 11 16 31

Description
Return from subroutine will branch to the location specified by the contents of rAX plus the sign-
extended IMM field.

This instruction always has a delay slot. The instruction following the RTSD is always executed before
the branch target.

Pseudocode
PC ← (rAX) + sext(IMM)
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if successful branch prediction occurs)
• 2 cycles (with Branch Target Cache disabled)
• 3 cycles (if branch prediction mispredict occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
Notes
Convention is to use general purpose register r15 as rAX.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 294
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=294

Chapter 5: MicroBlaze Instruction Set Architecture
sb Store Byte

sb rD, rAX, rBX
sbr rD, rAX, rBX
sbea rD, rA, rB

1 1 0 1 0 0 rD rAX rBX 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rAX and rBX.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else

Mem(Addr) ← (rD)[C_DATA_SIZE-8:C_DATA_SIZE-1]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
MicroBlaze Processor Reference Guide 295
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=295

Chapter 5: MicroBlaze Instruction Set Architecture
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 296
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=296

Chapter 5: MicroBlaze Instruction Set Architecture
sbi Store Byte Immediate

sbi rD, rAX, IMM

1 1 1 1 0 0 rD rAX IMM
0 6 11 16 31

Description
Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rAX and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else

Mem(Addr) ← (rD)[C_DATA_SIZE-8:C_DATA_SIZE-1]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 297
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=297

Chapter 5: MicroBlaze Instruction Set Architecture
sext16 Sign Extend Halfword

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 6 11 16 31

Description
This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied into
bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode
(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered
• rD
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 298
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=298

Chapter 5: MicroBlaze Instruction Set Architecture
sext8 Sign Extend Byte

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 6 11 16 31

Description
This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into bits
0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode
(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered
• rD
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 299
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=299

Chapter 5: MicroBlaze Instruction Set Architecture
sh Store Halfword

sh rD, rAX, rBX
shr rD, rAX, rBX
shea rD, rA, rB

1 1 0 1 0 1 rD rAX rBX 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rAX and rBX.
If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, storing data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).
If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.
An unaligned data access exception occurs if the least significant bit in the address is not zero.
A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[C_DATA_SIZE-16:C_DATA_SIZE-1]
MicroBlaze Processor Reference Guide 300
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=300

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 301
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=301

Chapter 5: MicroBlaze Instruction Set Architecture
shi Store Halfword Immediate

shi rD, rAX, IMM

1 1 1 1 0 1 rD rAX IMM
0 6 11 16 31

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of register rAX and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if virtual
protected mode is enabled, and access is prevented by no-access-allowed or read-only zone
protection. No-access-allowed can only occur in user mode. An unaligned data access exception
occurs if the least significant bit in the address is not zero.

Pseudocode
Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[C_DATA_SIZE-16:C_DATA_SIZE-1]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 302
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=302

Chapter 5: MicroBlaze Instruction Set Architecture
sra Shift Right Arithmetic

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 6 11 16 31

Description
Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD. The
most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 303
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=303

Chapter 5: MicroBlaze Instruction Set Architecture
src Shift Right with Carry

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 6 11 16 31

Description
Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 304
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=304

Chapter 5: MicroBlaze Instruction Set Architecture
srl Shift Right Logical

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 6 11 16 31

Description
Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 305
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=305

Chapter 5: MicroBlaze Instruction Set Architecture
sw Store Word

sw rD, rAX, rBX
swr rD, rAX, rBX
swea rD, rA, rB

1 1 0 1 1 0 rD rAX rBX 0 R 0 EA 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Stores the contents of register rD, into the word aligned memory location that results from adding the
contents of registers rAX and rBX.
If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).
If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.
An unaligned data access exception occurs if the two least significant bits in the address are not zero.
A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode
if EA = 1 then

Addr ← (rA) & (rB)
else

Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)
MicroBlaze Processor Reference Guide 306
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=306

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).
MicroBlaze Processor Reference Guide 307
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=307

Chapter 5: MicroBlaze Instruction Set Architecture
swapb Swap Bytes

swapb rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 6 11 16 31

Description
Swaps the contents of register rA treated as four bytes, and places the result in rD. This effectively
converts the byte sequence in the register between endianness formats, either from little-endian to
big-endian or vice versa.

Pseudocode
(rD)[24:31] ← (rA)[0:7]
(rD)[16:23] ← (rA)[8:15]
(rD)[8:15] ← (rA)[16:23]
(rD)[0:7] ← (rA)[24:31]

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide 308
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=308

Chapter 5: MicroBlaze Instruction Set Architecture
swaph Swap Halfwords

swaph rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0
0 6 11 16 31

Description
Swaps the contents of register rA treated as two halfwords, and places the result in rD. This effectively
converts the two halfwords in the register between endianness formats, either from little-endian to
big-endian or vice versa.

Pseudocode
(rD)[0:15] ← (rA)[16:31]
(rD)[16:31] ← (rA)[0:15]

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide 309
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=309

Chapter 5: MicroBlaze Instruction Set Architecture
swi Store Word Immediate

swi rD, rAX, IMM

1 1 1 1 1 0 rD rAX IMM
0 6 11 16 31

Description
Stores the contents of register rD, into the word aligned memory location that results from adding the
contents of registers rAX and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.
MicroBlaze Processor Reference Guide 310
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=310

Chapter 5: MicroBlaze Instruction Set Architecture
swx Store Word Exclusive

swx rD, rA, rB

1 1 0 1 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive access enabled
is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is set;
otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the store
does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and
cache interconnect, respectively.

Pseudocode
Addr ← (rA) + (rB)
if Reservation = 0 then

MSR[C] ← 1
else
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else

Reservation ← 0
if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY then
MSR[C] ← 1

else

Mem(Addr) ← (rD)[0:31]
MSR[C] ← 0
MicroBlaze Processor Reference Guide 311
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=311

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• MSR[C], unless an exception is generated
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior). The SWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.
MicroBlaze Processor Reference Guide 312
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=312

Chapter 5: MicroBlaze Instruction Set Architecture
wdc Write to Data Cache

wdc rA,rB
wdc.flush rA,rB
wdc.clear rA,rB
wdc.clear.ea rA,rB
wdc.ext.flush rA,rB
wdc.ext.clear rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB E 0 0 EA 1 1 F 0 1 T 0
0 6 11 16 21 31

Description
Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to set
the F bit, wdc.clear is used to set the T bit, wdc.clear.ea is used to set the T and EA bits, wdc.ext.flush
is used to set the E, F and T bits, and wdc.ext.clear is used to set the E and T bits.

When C_DCACHE_USE_WRITEBACK is set to 1:

• If the F bits is set, the instruction will flush and invalidate the cache line.
• Otherwise, the instruction will only invalidate the cache line and discard any data that has not

been written to memory.
• If the T bit is set, only a cache line with a matching address is invalidated:

° If the EA bit is set register rA concatenated with rB is the extended address of the affected
cache line.

° Otherwise, register rA added with rB is the address of the affected cache line.
° The EA bit is only taken into account when the parameter C_ADDR_SIZE > 32.

• The E bit is not taken into account.
• The F and T bits cannot be used at the same time.

When C_DCACHE_USE_WRITEBACK is cleared to 0:

• If the E bit is not set, the instruction will invalidate the cache line. Register rA contains the
address of the affected cache line, and the register rB value is not used.

• Otherwise, MicroBlaze will request that the matching address in an external cache should be
invalidated or flushed, depending on the value of the F bit, and invalidate the internal affected
cache line. Register rA added with rB is the address in the external cache, and of the affected
cache line.

• The E bit is only taken into account when the parameter C_INTERCONNECT is set to 3 (ACE).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.
MicroBlaze Processor Reference Guide 313
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=313

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

if C_DCACHE_USE_WRITEBACK = 1 then

if T = 1 and EA = 1 then

address ← (rA) & (rB)
else

address ← (rA) + (rB)
else if E = 0 then

address ← (rA)
else

address ← (rA) + (rB)
if C_DCACHE_LINE_LEN = 4 then

cacheline_mask ← (1 << log2(C_DCACHE_BYTE_SIZE) - 4) - 1

cacheline ← (DCache Line)[(address >> 4) ∧ cacheline_mask]
cacheline_addr ← address & 0xfffffff0

if C_DCACHE_LINE_LEN = 8 then

cacheline_mask ← (1 << log2(C_DCACHE_BYTE_SIZE) - 5) - 1

cacheline ← (DCache Line)[(address >> 5) ∧ cacheline_mask]
cacheline_addr ← address & 0xffffffe0

if C_DCACHE_LINE_LEN = 16 then

cacheline_mask ← (1 << log2(C_DCACHE_BYTE_SIZE) - 6) - 1

cacheline ← (DCache Line)[(address >> 6) ∧ cacheline_mask]
cacheline_addr ← address & 0xffffffc0

if E = 0 and F = 1 and cacheline.Dirty then

for i = 0 .. C_DCACHE_LINE_LEN - 1 loop
if cacheline.Valid[i] then

Mem(cacheline_addr + i * 4) ← cacheline.Data[i]
if T = 0 or C_DCACHE_USE_WRITEBACK = 0 then

cacheline.Tag ← 0
else if cacheline.Address = cacheline_addr then

cacheline.Tag ← 0
if E = 1 then
if F = 1 then

request external cache flush with address

else

request external cache invalidate with address

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 2 cycles for wdc.clear
• 2 cycles for wdc with C_AREA_OPTIMIZED=0 or 2
• 3 cycles for wdc with C_AREA_OPTIMIZED=0
• 2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the

cache line to memory when necessary
MicroBlaze Processor Reference Guide 314
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=314

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
The wdc, wdc.flush, wdc.clear and wdc.clear.ea instructions are independent of data cache enable
(MSR[DCE]), and can be used either with the data cache enabled or disabled.

The wdc.clear and wdc.clear.ea instructions are intended to invalidate a specific area in memory, for
example a buffer to be written by a Direct Memory Access device.

Using this instruction ensures that other cache lines are not inadvertently invalidated, erroneously
discarding data that has not yet been written to memory.

The address of the affected cache line is always the physical address, independent of the parameter
C_USE_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using rA as the
cache base address and rB as the loop counter:

addik r5,r0,C_DCACHE_BASEADDR

addik r6,r0,C_DCACHE_BYTE_SIZE-C_DCACHE_LINE_LEN*4

loop: wdc.flush r5,r6

bgtid r6,loop

addik r6,r6,-C_DCACHE_LINE_LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using rA as the memory area base address and rB as the loop counter:

addik r5,r0,memory_area_base_address

addik r6,r0,memory_area_byte_size-C_DCACHE_LINE_LEN*4

loop: wdc.clear r5,r6

bgtid r6,loop

addik r6,r6,-C_DCACHE_LINE_LEN*4
MicroBlaze Processor Reference Guide 315
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=315

Chapter 5: MicroBlaze Instruction Set Architecture
wic Write to Instruction Cache

wic rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 0 1 0 0 0
0 6 11 16 21 31

Description
Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then

ESR[EC] ← 00111
else

if C_ICACHE_LINE_LEN = 4 then

cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 4) - 1

(ICache Line)[((Ra) >> 4) ∧ cacheline_mask].Tag ← 0
if C_ICACHE_LINE_LEN = 8 then

cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 5) - 1

(ICache Line)[((Ra) >> 5) ∧ cacheline_mask].Tag ← 0
if C_ICACHE_LINE_LEN = 16 then

cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 6) - 1

(ICache Line)[((Ra) >> 6) ∧ cacheline_mask].Tag ← 0

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated
Latency
• 2 cycles
Notes
The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is the virtual address when the parameter C_USE_MMU = 3
(VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical address.
MicroBlaze Processor Reference Guide 316
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=316

Chapter 5: MicroBlaze Instruction Set Architecture
xor Logical Exclusive OR

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rA are XORed with the contents of register rB; the result is placed into register
rD.

Pseudocode
(rD) ← (rA) ⊕ (rB)

Registers Altered
• rD
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 317
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=317

Chapter 5: MicroBlaze Instruction Set Architecture
xori Logical Exclusive OR with Immediate

xori rD, rA, IMM

1 0 1 0 1 0 rD rA IMM
0 6 11 16 31

Description
The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ⊕ sext(IMM)

Registers Altered
• rD
Latency
• 1 cycle
Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

When this instruction is used with rD set to r0, a program trace event is emitted with the 14 least
significant bits of the result. Typically this is used to trace operating system events like context
switches and system calls, but it can be used by any program to trace significant events. The
functionality is enabled by setting C_DEBUG_ENABLED = 2 (Extended) and C_DEBUG_TRACE_SIZE > 0.
See “Program and Event Trace” in Chapter 2 for further details.
MicroBlaze Processor Reference Guide 318
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=318

Chapter 5: MicroBlaze Instruction Set Architecture
MicroBlaze 64-bit Instructions
All additional instructions included in the instruction set for 64-bit MicroBlaze are
defined in this section.

These instructions use the full 64-bit register size to provide long arithmetic and logical
operations.

All Type B 64-bit arithmetic and logical instructions must be preceded by an imml
instruction, to indicate that they are 64-bit instructions. See the instruction “imml” for
details on using 64-bit immediate values.

The extended instruction set also defines double precision floating point instructions.
MicroBlaze Processor Reference Guide 319
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=319

Chapter 5: MicroBlaze Instruction Set Architecture
addl Arithmetic Add Long

addl rDL, rAL, rBL Add Long
addlc rDL, rAL, rBL Add Long with Carry
addlk rDL, rAL, rBL Add Long and Keep Carry
addlkc rDL, rAL, rBL Add Long with Carry and Keep Carry

0 0 0 K C 0 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The sum of the contents of registers rAL and rBL, is placed into register rDL.
Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addlk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addlc. Both bits are set to one
for the mnemonic addlkc.
When an add instruction has bit 3 set (addlk, addlkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addl, addlc), then the
carry flag will be affected by the execution of the instruction.
When bit 4 of the instruction is set to one (addlc, addlkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (addl, addlk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then

(rDL) ← (rAL) + (rBL)
else

(rDL) ← (rAL) + (rBL) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut64

Registers Altered
• rDL
• MSR[C]
Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
MicroBlaze Processor Reference Guide 320
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=320

Chapter 5: MicroBlaze Instruction Set Architecture
addli Arithmetic Add Long Immediate

addli rDL, rAL, IMM | rDL, IMM Add Long Immediate
addlic rDL, rAL, IMM | rDL, IMM Add Long Immediate with Carry
addlik rDL, rAL, IMM | rDL, IMM Add Long Immediate and Keep Carry
addlikc rDL, rAL, IMM | rDL, IMM Add Long Immediate with Carry and Keep Carry

0 0 1 K C 0 rDL rAL IMM

0 1 1 0 1 0 rDL 0 0 K C 0 IMM
0 6 11 16 31

Description
The sum of the contents of registers rAL or rDL and the value in the IMM field extended with the
immediate value from the preceding imml instructions, if any, is placed into register rDL. Bit 3 or 13 of
the instruction (labeled as K in the figure) is set to one for the mnemonic addik. Bit 4 or 14 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addlic. Both bits are set to one
for the mnemonic addlikc.
When an addli instruction has bit 3 or 13 set (addlik, addlikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 or 13 is cleared (addli, addlic),
then the carry flag will be affected by the execution of the instruction.
When bit 4 or 14 of the instruction is set to one (addlic, addlikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 or 14 is cleared (addli, addlik), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then

(rDL) ← (rAL|rDL) + sext(IMM)
else

(rDL) ← (rAL|rDL) + sext(IMM) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut64

Registers Altered
• rDL
• MSR[C]
Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
Type B arithmetic long instructions with three operands must be preceded by an imml instruction. See
the instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 321
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=321

Chapter 5: MicroBlaze Instruction Set Architecture
andl Logical AND Long

andl rDL, rAL, rBL

1 0 0 0 0 1 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are ANDed with the contents of register rBL; the result is placed into
register rDL.

Pseudocode
(rDL) ← (rAL) ∧ (rBL)

Registers Altered
• rDL

Latency
1 cycle
MicroBlaze Processor Reference Guide 322
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=322

Chapter 5: MicroBlaze Instruction Set Architecture
andli Logial AND Long with Immediate

andli rDL, rAL, IMM | rDL, IMM

1 0 1 0 0 1 rDL rAL IMM

0 1 1 0 1 0 rDL 1 0 0 0 1 IMM
0 6 11 16 31

Description
The contents of register rAL or rDL are ANDed with the value of the IMM field extended with the
immediate value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode
(rDL) ← (rAL|rDL) ∧ sext(IMM)

Registers Altered
• rDL

Latency
1 cycle

Note
Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 323
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=323

Chapter 5: MicroBlaze Instruction Set Architecture
andnl Logical AND NOT Long

andnl rDL, rAL, rBL

1 0 0 0 1 1 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are ANDed with the logical complement of the contents of register rBL;
the result is placed into register rDL.

Pseudocode
(rDL) ← (rAL) ∧ (rBL)

Registers Altered
• rDL

Latency
1 cycle
MicroBlaze Processor Reference Guide 324
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=324

Chapter 5: MicroBlaze Instruction Set Architecture
andnli Logical AND NOT Long with Immediate

andnli rDL, rAL, IMM | rDL, IMM

1 0 1 0 1 1 rDL rAL IMM

0 1 1 0 1 0 rDL 1 0 0 1 1 IMM
0 6 11 16 31

Description
The IMM field is sign-extended with the immediate value from the preceding imml instructions. The
contents of register rAL or rDL are ANDed with the logical complement of the extended IMM field; the
result is placed into register rDL.

Pseudocode
(rDL) ← (rAL|rDL) ∧ (sext(IMM))

Registers Altered
• rDL

Latency
1 cycle

Note
Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 325
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=325

Chapter 5: MicroBlaze Instruction Set Architecture
beaeq Branch Extended Address if Equal

beaeq rA, rBL Branch Extended Address if Equal
bealeq rAL, rBL Branch Extended Address if Long Equal
beaeqd rA, rBL Branch Extended Address if Equal with Delay
bealeqd rAL, rBL Branch Extended Address if Long Equal with Delay

1 0 0 1 1 1 D 1 0 0 0 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is equal to 0, to the instruction located in the offset value of rBL. The target of the
branch will be the instruction at address PC + rBL.
The mnemonics bealeq and bealeqd will set the L bit. If the L bit is set, a long comparison using rAL
is performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics beaeqd and bealeqd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL = 0 then
PC ← PC + rBL

else if rA = 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 326
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=326

Chapter 5: MicroBlaze Instruction Set Architecture
beaeqi Branch Extended Address Immediate if Equal

beaeqi rA, IMM Branch Extended Address Immediate if Equal
beaeqid rA, IMM Branch Extended Address Immediate if Equal with Delay

1 0 1 1 1 1 D 1 0 0 0 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is equal to 0, to the instruction located in the offset value of IMM extended with the
immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL = 0 then
PC ← PC + sext(IMM)

else if rA = 0 then

PC ← PC + sext(IMM)
else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 327
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=327

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions bealeqi and bealeqid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 328
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=328

Chapter 5: MicroBlaze Instruction Set Architecture
beage Branch Extended Address if Greater or Equal

beage rA, rBL Branch Extended Address if Greater or Equal
bealge rAL, rBL Branch Extended Address if Long Greater or Equal
beaged rA, rBL Branch Extended Address if Greater or Equal with Delay
bealged rAL, rBL Branch Extended Address if Long Greater or Equal with Delay

1 0 0 1 1 1 D 1 1 0 1 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is greater or equal to 0, to the instruction located in the offset value of rBL. The
target of the branch will be the instruction at address PC + rBL.
The mnemonics bealge and bealged will set the L bit. If the L bit is set, a long comparison using rAL
is performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics beaged and bealged will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL >= 0 then
PC ← PC + rBL

else if rA >= 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 329
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=329

Chapter 5: MicroBlaze Instruction Set Architecture
beagei Branch Extended Address Immediate if Greater or Equal

beagei rA, IMM Branch Extended Address Immediate if Greater or Equal
beageid rA, IMM Branch Extended Address Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 1 1 0 1 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is greater or equal to 0, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of the
branch will be the instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL >= 0 then
PC ← PC + sext(IMM)

else if rA >= 0 then

PC ← PC + sext(IMM)
else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 330
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=330

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions bealgei and bealgeid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 331
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=331

Chapter 5: MicroBlaze Instruction Set Architecture
beagt Branch Extended Address if Greater Than

beagt rA, rBL Branch Extended Address if Greater Than
bealgt rAL, rBL Branch Extended Address if Long Greater Than
beagtd rA, rBL Branch Extended Address if Greater Than with Delay
bealgtd rAL, rBL Branch Extended Address if Long Greater Than with Delay

1 0 0 1 1 1 D 1 1 0 0 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is greater than 0, to the instruction located in the offset value of rBL. The target of
the branch will be the instruction at address PC + rBL.
The mnemonics bealgt and bealgtd will set the L bit. If the L bit is set, a long comparison using rAL is
performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics beagtd and bealgtd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL > 0 then
PC ← PC + rBL

else if rA > 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 332
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=332

Chapter 5: MicroBlaze Instruction Set Architecture
beagti Branch Extended Address Immediate if Greater Than

beagti rA, IMM Branch Extended Address Immediate if Greater Than
beagtid rA, IMM Branch Extended Address Immediate if Greater Than with Delay

1 0 1 1 1 1 D 1 1 0 0 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is greater than 0, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic beagtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL > 0 then
PC ← PC + sext(IMM)

else if rA > 0 then

PC ← PC + sext(IMM)
else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 333
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=333

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions bealgti and bealgtid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 334
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=334

Chapter 5: MicroBlaze Instruction Set Architecture
beale Branch Extended Address if Less or Equal

beale rA, rBL Branch Extended Address if Less or Equal
bealle rAL, rBL Branch Extended Address if Long Less or Equal
bealed rA, rBL Branch Extended Address if Less or Equal with Delay
bealled rAL, rBL Branch Extended Address if Long Less or Equal with Delay

1 0 0 1 1 1 D 1 0 1 1 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is less or equal to 0, to the instruction located in the offset value of rBL. The target
of the branch will be the instruction at address PC + rBL.
The mnemonics bealle and bealled will set the L bit. If the L bit is set, a long comparison using rAL is
performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics bealed and bealled will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL <= 0 then
PC ← PC + rBL

else if rA <= 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 335
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=335

Chapter 5: MicroBlaze Instruction Set Architecture
bealei Branch Extended Address Immediate if Less or Equal

bealei rA, IMM Branch Extended Address Immediate if Less or Equal
bealeid rA, IMM Branch Extended Address Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 1 0 1 1 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is less or equal to 0, to the instruction located in the offset value of IMM extended
with the immediate value from the preceding imm or imml instructions. The target of the branch will
be the instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic bealeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL <= 0 then
PC ← PC + sext(IMM)

else if rA <= 0 then

PC ← PC + sext(IMM)
else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 336
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=336

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions beallei and bealleid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 337
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=337

Chapter 5: MicroBlaze Instruction Set Architecture
bealt Branch Extended Address if Less Than

bealt rA, rBL Branch Extended Address if Less Than
beallt rAL, rBL Branch Extended Address if Long Less Than
bealtd rA, rBL Branch Extended Address if Less Than with Delay
bealltd rAL, rBL Branch Extended Address if Long Less Than with Delay

1 0 0 1 1 1 D 1 0 1 0 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is less than 0, to the instruction located in the offset value of rBL. The target of the
branch will be the instruction at address PC + rBL.
The mnemonics beallt and bealltd will set the L bit. If the L bit is set, a long comparison using rAL is
performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics bealtd and bealltd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL < 0 then
PC ← PC + rBL

else if rA < 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 338
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=338

Chapter 5: MicroBlaze Instruction Set Architecture
bealti Branch Extended Address Immediate if Less Than

bealti rA, IMM Branch Extended Address Immediate if Less Than
bealtid rA, IMM Branch Extended Address Immediate if Less Than with Delay

1 0 1 1 1 1 D 1 0 1 0 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is less than 0, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic bealtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL < 0 then
PC ← PC + sext(IMM)

else if rA < 0 then

PC ← PC + sext(IMM)
else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 339
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=339

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions beallti and bealltid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 340
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=340

Chapter 5: MicroBlaze Instruction Set Architecture
beane Branch Extended Address if Not Equal

beane rA, rBL Branch Extended Address if Not Equal
bealne rAL, rBL Branch Extended Address if Long Not Equal
beaned rA, rBL Branch Extended Address if Not Equal with Delay
bealned rAL, rBL Branch Extended Address if Long Not Equal with Delay

1 0 0 1 1 1 D 1 0 0 1 rAL rBL 0 0 L 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch if rA or rAL is not equal to 0, to the instruction located in the offset value of rBL. The target of
the branch will be the instruction at address PC + rBL.
The mnemonics bealne and bealned will set the L bit. If the L bit is set, a long comparison using rAL is
performed, otherwise a 32-bit comparison using rA is performed.
The mnemonics beaned and bealned will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 and rAL ≠ 0 then
PC ← PC + rBL

else if rA ≠ 0 then
PC ← PC + rBL

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)
Note
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 341
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=341

Chapter 5: MicroBlaze Instruction Set Architecture
beanei Branch Extended Address Immediate if Not Equal

beanei rA, IMM Branch Extended Address Immediate if Not Equal
beaneid rA, IMM Branch Extended Address Immediate if Not Equal with Delay

1 0 1 1 1 1 D 1 0 0 1 rAL IMM
0 6 11 16 31

Description
Branch if rA or rAL is not equal to 0, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.
When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a 32-bit
comparison using rA is performed.
The mnemonic beaneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
If (preceded by imml) and rAL ≠ 0 then
PC ← PC + sext(IMM)

else if rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC
Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict

occurs with C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 342
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=342

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
The assembler pseudo-instructions bealnei and bealneid are used to indicate a long comparison.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 343
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=343

Chapter 5: MicroBlaze Instruction Set Architecture
brea Unconditional Branch Extended Address

brea rBL Branch Extended Address
bread rBL Branch Extended Address with Delay
breald rDL, rBL Branch Extended Address and Link with Delay

1 0 0 1 1 0 rDL D 0 L 0 1 rBL 0 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Branch to the instruction located at address determined by PC + rBL.
The mnemonic breald will set the L bit. If the L bit is set, linking will be performed. The current value
of PC will be stored in rDL.
The mnemonics bread and breald will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rDL) ← PC

PC ← PC + (rBL)
if D = 1 then
allow following instruction to complete execution

Registers Altered
• rDL
• PC
Latency
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set)
Note
The instruction breal is not available.
Absolute extended address branches can be performed with the instructions bra, brad, and brald.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 344
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=344

Chapter 5: MicroBlaze Instruction Set Architecture
breai Unconditional Branch Extended Address Immediate

breai IMM Branch Extended Address Immediate
breaid IMM Branch Extended Address Immediate with Delay
brealid rDL, IMM Branch Extended Address and Link Immediate with Delay

1 0 1 1 1 0 rDL D 0 L 0 1 IMM
0 6 11 16 31

Description
Branch to the instruction located at address determined by PC + IMM, extended with the immediate
value from the preceding IMM or imml instructions.
The mnemonic brealid will set the L bit. If the L bit is set, linking will be performed. The current value
of PC will be stored in rDL.
The mnemonics breaid and brealid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 then
(rDL) ← PC

PC ← PC + sext(IMM)
if D = 1 then
allow following instruction to complete execution

Registers Altered
• rDL
• PC
Latency
• 1 cycle (if successful branch prediction occurs)
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs with

C_AREA_OPTIMIZED=0)
• 7-9 cycles (if a branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)
MicroBlaze Processor Reference Guide 345
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=345

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
The instruction breali is not available.
Absolute extended address branches can be performed with the instructions brai, braid, and bralid.
By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide 346
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=346

Chapter 5: MicroBlaze Instruction Set Architecture
bsl Barrel Shift Long

bslrl rDL, rAL, rB Barrel Shift Long Right Logical
bslra rDL, rAL, rB Barrel Shift Long Right Arithmetical
bslll rDL, rAL, rB Barrel Shift Long Left Logical

0 1 0 0 0 1 rDL rAL rB S T 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Shifts the contents of register rAL by the amount specified in register rB and puts the result in register
rDL.
The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bslrl and bslra clear the S bit and the shift is done to the right.
The mnemonic bslra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrl and bslll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then

(rDL) ← (rAL) << (rB)[26:31]
else

if T = 1 then

if ((rB)[26:31]) ≠ 0 then
(rDL)[0:(rB)[26:31]-1] ← (rAL)[0]

(rDL)[(rB)[26:31]:31] ← (rAL) >> (rB)[26:31]
else

(rDL) ← (rAL)
else

(rDL) ← (rAL) >> (rB)[26:31]

Registers Altered
• rDL

Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Note
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).
MicroBlaze Processor Reference Guide 347
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=347

Chapter 5: MicroBlaze Instruction Set Architecture
bsli Barrel Shift Long Immediate

bslrli rDL, rAL, IMM Barrel Shift Long Right Logical Immediate
bslrai rDL, rAL, IMM Barrel Shift Long Right Arithmetic Immediate
bsllli rDL, rAL, IMM Barrel Shift Long Left Logical Immediate
bslefi rDL, rAL, IMMW, IMMS Barrel Shift Long Extract Field Immediate
bslifi rDL, rAL, Width1, IMMS Barrel Shift Long Insert Field Immediate
1. Width = IMMW - IMMS + 1

0 1 1 0 0 1 rDL rAL 0 0 1 0 0 S T 0 0 0 IMM
0 6 11 16 21 26 31

0 1 1 0 0 1 rDL rAL I E 1 0 IMMW IMMS

0 6 11 16 20 25 26 31

Description
The first three instructions shift the contents of register rAL by the amount specified by IMM and put
the result in register rDL.
Barrel Shift Extract Field extracts a bit f ield from register rAL and puts the result in register rDL. The bit
f ield width is specif ied by IMMW and the shift amount is specif ied by IMMS. The bit f ield width must
be in the range 1 - 63, and the condition IMMW + IMMS ≤ 64 must apply.
Barrel Shift Insert Field inserts a bit field from register rAL into register rDL, modifying the existing
value in register rDL. The bit field width is defined by IMMW - IMMS + 1, and the shift amount is
specified by IMMS. The condition IMMW ≥ IMMS must apply.
The mnemonic bsllli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bslrli and bslrai clear the S bit and the shift is done to the right.
The mnemonic bslrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrli and bsllli clear the T bit and the shift performed is Logical.
The mnemonic bslefi sets the E bit (Extract bit). In this case the S and T bits are not used.
The mnemonic bslifi sets the I bit (Insert bit). In this case the S and T bits are not used.
MicroBlaze Processor Reference Guide 348
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=348

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if E = 1 then

(rDL)[0:63-IMMW] ← 0
(rDL)[64-IMMW:63] ← (rAL) >> IMMS

else if I = 1 then

mask ← (0xffffffffffffffff << (IMMW + 1)) ⊕ (0xffffffffffffffff << IMMS)

(rDL) ← ((rAL) << IMMS) ∧ mask) ∨ ((rDL) ∧ mask)
else if S = 1 then

(rDL) ← (rAL) << IMM
else if T = 1 then

if IMM ≠ 0 then
(rDL)[0:IMM-1] ← (rAL)[0]

(rDL)[IMM:31] ← (rAL) >> IMM
else

(rDL) ← (rAL)
else

(rDL) ← (rAL) >> IMM

Registers Altered
• rDL

Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 2 cycles with C_AREA_OPTIMIZED=1
Notes
These are not Type B Instructions. There is no effect from a preceding imm or imml instruction.
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).
The assembler code “bslifi rD, rA, width, shift” denotes the actual bit field width, not the IMMW field,
which is computed by IMMW = shift + width - 1.
MicroBlaze Processor Reference Guide 349
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=349

Chapter 5: MicroBlaze Instruction Set Architecture
cmpl Integer Compare Long

cmpl rDL, rAL, rBL compare rBL with rAL (signed)
cmplu rDL, rAL, rBL compare rBL with rAL (unsigned)

0 0 0 1 0 1 rDL rAL rBL 0 0 1 0 0 0 0 0 0 U 1
0 6 11 16 21 31

Description
The contents of register rAL are subtracted from the contents of register rBL and the result is placed
into register rDL.
The MSB bit of rDL is adjusted to shown true relation between rAL and rBL. If the U bit is set, rAL and
rBL is considered unsigned values. If the U bit is clear, rAL and rBL is considered signed values.

Pseudocode
(rDL) ← (rBL) + (rAL) + 1
(rDL)(MSB) ← (rAL) > (rBL)

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 350
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=350

Chapter 5: MicroBlaze Instruction Set Architecture
dadd Double Floating-Point Arithmetic Add

dadd rDL, rAL, rBL Add

0 1 0 1 1 0 rDL rAL rBL 1 0 0 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The double precision floating-point sum of registers rAL and rBL, is placed into register rDL.

Pseudocode
if isDnz(rAL) or isDnz(rBL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isSigNaN(rAL) or isSigNaN(rBL)or

(isPosInfinite(rAL) and isNegInfinite(rBL)) or

(isNegInfinite(rAL) and isPosInfinite(rBL))) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rAL) or isQuietNaN(rBL) then

(rDL) ← 0xFFF8000000000000

else if isDnz((rAL)+(rBL)) then

(rDL) ← signZero((rAL)+(rBL))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rAL)+(rBL)) then

(rDL) ← signInfinite((rAL)+(rBL))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rDL) ← (rAL) + (rBL)

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 351
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=351

Chapter 5: MicroBlaze Instruction Set Architecture
drsub Double Reverse Floating-Point Arithmetic Subtraction

drsub rDL, rAL, rBL Reverse subtract

0 1 0 1 1 0 rDL rAL rBL 1 0 0 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The double precision floating-point value in rAL is subtracted from the double floating-point value in
rBL and the result is placed into register rDL.

Pseudocode
if isDnz(rAL) or isDnz(rBL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else if (isSigNaN(rAL) or isSigNaN(rBL) or

(isPosInfinite(rAL) and isPosInfinite(rBL)) or

(isNegInfinite(rAL) and isNegInfinite(rBL))) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rAL) or isQuietNaN(rBL) then

(rDL) ← 0xFFF8000000000000

else if isDnz((rBL)-(rAL)) then

(rDL) ← signZero((rBL)-(rAL))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rBL)-(rAL)) then

(rDL) ← signInfinite((rBL)-(rAL))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rDL) ← (rBL) - (rAL)

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 352
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=352

Chapter 5: MicroBlaze Instruction Set Architecture
dmul Double Floating-Point Arithmetic Multiplication

dmul rDL, rAL, rBL Multiply

0 1 0 1 1 0 rDL rAL rBL 1 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The double precision floating-point value in rAL is multiplied with the double floating-point value in
rBL and the result is placed into register rDL.

Pseudocode
if isDnz(rAL) or isDnz(rBL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else

if isSigNaN(rAL) or isSigNaN(rBL) or (isZero(rAL) and isInfinite(rBL)) or
(isZero(rBL) and isInfinite(rAL)) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rAL) or isQuietNaN(rBL) then

(rDL) ← 0xFFF8000000000000

else if isDnz((rBL)*(rAL)) then

(rDL) ← signZero((rAL)*(rBL))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rBL)*(rAL)) then

(rDL) ← signInfinite((rBL)*(rAL))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rDL) ← (rBL) * (rAL)

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]
Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 353
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=353

Chapter 5: MicroBlaze Instruction Set Architecture
ddiv Double Floating-Point Arithmetic Division

ddiv rDL, rAL, rBL Divide

0 1 0 1 1 0 rDL rAL rBL 1 0 1 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The double precision floating-point value in rBL is divided by the double floating-point value in rAL
and the result is placed into register rDL.

Pseudocode
if isDnz(rAL) or isDnz(rBL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else

if isSigNaN(rAL) or isSigNaN(rBL) or (isZero(rAL) and isZero(rBL)) or
(isInfinite(rAL) and isInfinite(rBL)) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rAL) or isQuietNaN(rBL) then

(rDL) ← 0xFFF8000000000000

else if isZero(rAL) and not isInfinite(rBL) then

(rDL) ← signInfinite((rBL)/(rAL))

FSR[DZ] ← 1

ESR[EC] ← 00110

else if isDnz((rBL) / (rAL)) then

(rDL) ← signZero((rBL) / (rAL))

FSR[UF] ← 1

ESR[EC] ← 00110

else if isNaN((rBL)/(rAL)) then

(rDL) ← signInfinite((rBL) / (rAL))

FSR[OF] ← 1

ESR[EC] ← 00110

else

(rDL) ← (rBL) / (rAL)

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO,DZ]
Latency
• 28 cycles with C_AREA_OPTIMIZED=0
• 30 cycles with C_AREA_OPTIMIZED=1
• 24 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.
MicroBlaze Processor Reference Guide 354
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=354

Chapter 5: MicroBlaze Instruction Set Architecture
dcmp Double Floating-Point Number Comparison

dcmp.un rD, rAL, rBL Unordered double floating-point comparison
dcmp.lt rD, rAL, rBL Less-than double floating-point comparison
dcmp.eq rD, rAL, rBL Equal double floating-point comparison
dcmp.le rD, rAL, rBL Less-or-Equal double floating-point comparison
dcmp.gt rD, rAL, rBL Greater-than double floating-point comparison
dcmp.ne rD, rAL, rBL Not-Equal double floating-point comparison
dcmp.ge rD, rAL, rBL Greater-or-Equal double floating-point comparison

0 1 0 1 1 0 rD rAL rBL 1 1 0 0 OpSel 0 0 0 0
0 6 11 16 21 25 28 31

Description
The double precision floating-point value in rBL is compared with the double precision floating-point
value in rAL and the comparison result is placed into register rD. The OpSel field in the instruction
code determines the type of comparison performed.

Pseudocode
if isDnz(rAL) or isDnz(rBL) then

(rD) ← 0

FSR[DO] ← 1

ESR[EC] ← 00110

else

{read out behavior from Table 5-3}

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 1 cycle with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-3 lists the floating-point comparison operations.
MicroBlaze Processor Reference Guide 355
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=355

Chapter 5: MicroBlaze Instruction Set Architecture
Table 5-4: Double Floating-Point Comparison Operation
Comparison Type Operand Relationship

Description OpSel (rBL) > (rAL) (rBL) < (rAL) (rBL) = (rAL) isSigNaN(rAL) or
isSigNaN(rBL)

isQuietNaN(rAL) or
isQuietNaN(rBL)

Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110
MicroBlaze Processor Reference Guide 356
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=356

Chapter 5: MicroBlaze Instruction Set Architecture
dbl Floating-Point Convert Long to Double

dbl rDL, rAL

0 1 0 1 1 0 rDL rAL 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Converts the signed long value in register rAL to double precision floating-point and puts the result in
register rDL. This is a 64-bit rounding signed conversion that will produce a 64-bit floating-point
result.

Pseudocode
(rDL) ← double ((rAL))

Registers Altered
• rDL

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1
• 1 cycle with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 357
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=357

Chapter 5: MicroBlaze Instruction Set Architecture
dlong Floating-Point Convert Double to Long

dlong rDL, rAL

0 1 0 1 1 0 rDL rAL 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Converts the double precision floating-point number in register rAL to a signed long value and puts
the result in register rDL. This is a 64-bit truncating signed conversion that will produce a 64-bit long
result.

Pseudocode
if isDnz(rAL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isNaN(rAL) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isInf(rAL) or (rAL) < -2
63 or (rAL) > 2

63 - 1 then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else

(rDL) ← long ((rAL))

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 5 cycles with C_AREA_OPTIMIZED=0
• 7 cycles with C_AREA_OPTIMIZED=1
• 2 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 358
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=358

Chapter 5: MicroBlaze Instruction Set Architecture
dsqrt Double Floating-Point Arithmetic Square Root

dsqrt rDL, rAL Square Root

0 1 0 1 1 0 rDL rAL 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Performs a double precision floating-point square root on the value in rAL and puts the result in
register rDL.

Pseudocode
if isDnz(rAL) then

(rDL) ← 0xFFF8000000000000

FSR[DO] ← 1

ESR[EC] ← 00110

else if isSigNaN(rAL) then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if isQuietNaN(rAL) then

(rDL) ← 0xFFF8000000000000

else if (rAL) < 0 then

(rDL) ← 0xFFF8000000000000

FSR[IO] ← 1

ESR[EC] ← 00110

else if (rAL) = -0 then

(rDL) ← -0

else

(rDL) ← sqrt ((rAL))

Registers Altered
• rDL, unless an FP exception is generated, in which case the register is unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]
Latency
• 27 cycles with C_AREA_OPTIMIZED=0
• 29 cycles with C_AREA_OPTIMIZED=1
• 23 cycles with C_AREA_OPTIMIZED=2
Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).
MicroBlaze Processor Reference Guide 359
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=359

Chapter 5: MicroBlaze Instruction Set Architecture
imml Immediate Long

imml IMM24

1 0 1 1 0 0 1 0 IMM24
0 6 8 31

Description
The instruction imml loads the IMM24 value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 40-bit or 64-bit immediate value, and ensures that the
following instruction is treated as a 64-bit Type B instruction.

The instruction imml is used in conjunction with Type B 64-bit instructions.

Up to a 40-bit immediate value can be used for all 64-bit immediate long instructions in MicroBlaze
with a single imml instruction. The imml instruction locks the 24-bit IMM24 value temporarily for the
next instruction. A Type B instruction that immediately follows the imml instruction will then form a
40-bit immediate value from the 24-bit IMM24 value of the imml instruction (upper 24 bits) and its
own 16-bit immediate value field (lower 16 bits). If no Type B instruction follows the imml instruction,
the locked value gets unlocked and becomes useless.

A 64-bit immediate value can be used for all 64-bit immediate long instructions in MicroBlaze with
dual imml instructions. Each imml instruction locks the 24-bit IMM24 value temporarily for the next
instruction. A Type B instruction that immediately follows the two imml instructions will then form a
64-bit immediate value from the two 24-bit IMM24 values of the imml instructions (upper 48 bits) and
its own 16-bit immediate value field (lower 16 bits). If no Type B instruction follows the two imml
instructions, the locked value gets unlocked and becomes useless.

Latency
• 1 cycle
Notes
The imml instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imml instructions.
When a 40-bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to
a 16-bit one to assemble the instruction and inserts an imml instruction before it in the executable
file. If the immediate value exceeds 40 bits, the assembler converts the IMM value to a 16-bit one to
assemble the instruction and inserts two imml instructions before it in the executable file.
MicroBlaze Processor Reference Guide 360
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=360

Chapter 5: MicroBlaze Instruction Set Architecture
ll Load Long

ll rDL, rAL, rBL
llr rDL, rAL, rBL

1 1 0 0 1 0 rDL rAL rBL 0 R 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Loads a long (64 bits) from the long aligned memory location that results from adding the contents
of registers rAL and rBL. The data is placed in register rDL.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode
Addr ← (rAL) + (rBL)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rDL) ← Mem(Addr)

Registers Altered
• rDL, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 2 cycles with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
MicroBlaze Processor Reference Guide 361
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=361

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
The long reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide 362
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=362

Chapter 5: MicroBlaze Instruction Set Architecture
lli Load Long Immediate

lli rDL, rAL, IMM

1 1 1 0 1 1 rDL rAL IMM
0 6 11 16 31

Description
Loads a long (64 bits) from the long aligned memory location that results from adding the contents of
register rAL and the sign-extended IMM value. The data is placed in register rDL.
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.
An unaligned data access exception occurs if the three least significant bits in the address are not zero

Pseudocode
Addr ← (rAL) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rDL) ← Mem(Addr)

Registers Altered
• rDL, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 2 cycles with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B load immediate instructions will take the 16-bit IMM field value and sign extend it
to 64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.
MicroBlaze Processor Reference Guide 363
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=363

Chapter 5: MicroBlaze Instruction Set Architecture
orl Logical OR Long

orl rDL, rAL, rBL

1 0 0 0 0 0 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are ORed with the contents of register rBL; the result is placed into register
rDL.

Pseudocode
(rDL) ← (rAL) ∨ (rBL)

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 364
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=364

Chapter 5: MicroBlaze Instruction Set Architecture
orli Logical OR Long with Immediate

orli rDL, rAL, IMM | rDL, IMM

1 0 1 0 0 0 rDL rAL IMM

0 1 1 0 1 0 rDL 1 0 0 0 0 IMM
0 6 11 16 31

Description
The contents of register rAL or rDL are ORed with the IMM field, sign extended with the immediate
value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode
(rDL) ← (rAL|rDL) ∨ sext(IMM)

Registers Altered
• rDL

Latency
• 1 cycle
Note
Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 365
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=365

Chapter 5: MicroBlaze Instruction Set Architecture
pcmplbf Pattern Compare Long Byte Find

pcmplbf rD, rAL, rBL bytewise comparison returning position of first match

1 0 0 0 0 0 rD rAL rBL 1 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are bytewise compared with the contents in register rBL.

• rD is loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 8

• If none of the byte pairs match, rD is set to 0
Pseudocode

if rBL[0:7] = rAL[0:7] then

(rD) ← 1
else if rBL[8:15] = rAL[8:15] then

(rD) ← 2
else if rBL[16:23] = rAL[16:23] then

(rD) ← 3
else if rBL[24:31] = rAL[24:31] then

(rD) ← 4
else if rBL[32:39] = rAL[32:39] then

(rD) ← 5
else if rBL[40:47] = rAL[40:47] then

(rD) ← 6
else if rBL[48:55] = rAL[48:55] then

(rD) ← 7
else if rBL[56:63] = rAL[56:63] then

(rD) ← 8
else

(rD) ← 0

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 366
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=366

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpleq Pattern Compare Long Equal

pcmpleq rD, rAL, rBL equality comparison with a positive boolean result

1 0 0 0 1 0 rD rAL rBL 1 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are compared with the contents in register rBL.

• rD is loaded with 1 if they match, and 0 if not
Pseudocode

if (rBL) = (rAL) then

(rD) ← 1
else

(rD) ← 0

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 367
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=367

Chapter 5: MicroBlaze Instruction Set Architecture
pcmplne Pattern Compare Long Not Equal

pcmplne rD, rAL, rBL equality comparison with a negative boolean result

1 0 0 0 1 1 rD rAL rBL 1 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are compared with the contents in register rBL.

• rD is loaded with 0 if they match, and 1 if not
Pseudocode

if (rBL) = (rAL) then

(rD) ← 0
else

(rD) ← 1

Registers Altered
• rD
Latency
• 1 cycle
Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.
MicroBlaze Processor Reference Guide 368
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=368

Chapter 5: MicroBlaze Instruction Set Architecture
rsubl Arithmetic Reverse Subtract Long

rsubl rDL, rAL, rBL Subtract Long
rsublc rDL, rAL, rBL Subtract Long with Carry
rsublk rDL, rAL, rBL Subtract Long and Keep Carry
rsublkc rDL, rAL, rBL Subtract Long with Carry and Keep Carry

0 0 0 K C 1 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are subtracted from the contents of register rBL and the result is placed
into register rDL. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic
rsublk. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsublc. Both
bits are set to one for the mnemonic rsublkc.

When an rsubl instruction has bit 3 set (rsublk, rsublkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubl, rsublc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsublc, rsublkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsubl, rsublk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then

(rDL) ← (rBL) + (rAL) + 1
else

(rDL) ← (rBL) + (rAL) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut64

Registers Altered
• rDL
• MSR[C]
Latency
• 1 cycle
Note
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.
MicroBlaze Processor Reference Guide 369
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=369

Chapter 5: MicroBlaze Instruction Set Architecture
rsubli Arithmetic Reverse Subtract Long Immediate

rsubli rDL, rAL, IMM | rDL, IMM Subtract Long Immediate
rsublic rDL, rAL, IMM | rDL, IMM Subtract Long Immediate with Carry
rsublik rDL, rAL, IMM | rDL, IMM Subtract Long Immediate and Keep Carry
rsublikc rDL, rAL, IMM | rDL, IMM Subtract Long Immediate with Carry and Keep Carry

0 0 1 K C 1 rDL rAL IMM

0 1 1 0 1 0 rDL 0 0 K C 1 IMM
0 6 11 16 31

Description
The contents of register rAL or rDL are subtracted from the value of IMM, sign extended with the
immediate value from the preceding imml instructions, and the result is placed into register rDL. Bit 3
or 13 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsublik. Bit 4 or 14
of the instruction (labeled as C in the figure) is set to one for the mnemonic rsublic. Both bits are set
to one for the mnemonic rsublikc.
When an rsubli instruction has bit 3 or 13 set (rsublik, rsublikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 or 13 is cleared (rsubli,
rsublic), then the carry flag will be affected by the execution of the instruction.
When bit 4 or 14 of the instruction is set to one (rsublic, rsublikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 or 14 is cleared (rsubli, rsublik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode
if C = 0 then

(rDL) ← sext(IMM) + (rAL|rDL) + 1
else

(rDL) ← sext(IMM) + (rAL|rDL) + MSR[C]
if K = 0 then

MSR[C] ← CarryOut64

Registers Altered
• rDL
• MSR[C]
Latency
• 1 cycle
Note
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.
Type B arithmetic long instructions with three operands must be preceded by an imml instruction. See
the instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 370
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=370

Chapter 5: MicroBlaze Instruction Set Architecture
sextl16 Sign Extend Long Halfword

sextl16 rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1
0 6 11 16 31

Description
This instruction sign-extends a halfword (16 bits) into a long (64 bits). Bit 48 in rAL will be copied into
bits 0-47 of rDL. Bits 48-63 in rAL will be copied into bits 48-63 of rDL.

Pseudocode
(rDL)[0:47] ← (rAL)[48]
(rDL)[48:63] ← (rAL)[48:63]

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 371
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=371

Chapter 5: MicroBlaze Instruction Set Architecture
sextl32 Sign Extend Long Word

sextl32 rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0
0 6 11 16 31

Description
This instruction sign-extends a word (32 bits) into a long (64 bits). Bit 32 in rAL will be copied into bits
0-31 of rDL. Bits 32-63 in rAL will be copied into bits 32-63 of rDL.

Pseudocode
(rDL)[0:31] ← (rAL)[32]
(rDL)[32:63] ← (rAL)[32:63]

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 372
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=372

Chapter 5: MicroBlaze Instruction Set Architecture
sextl8 Sign Extend Long Byte

sextl8 rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 6 11 16 31

Description
This instruction sign-extends a byte (8 bits) into a long (64 bits). Bit 56 in rAL will be copied into bits
0-55 of rDL. Bits 56-63 in rAL will be copied into bits 56-63 of rDL.

Pseudocode
(rDL)[0:55] ← (rAL)[56]
(rDL)[56:63] ← (rAL)[56:63]

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 373
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=373

Chapter 5: MicroBlaze Instruction Set Architecture
srla Shift Right Long Arithmetic

srla rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 6 11 16 31

Description
Shifts arithmetically the contents of register rAL, one bit to the right, and places the result in rDL. The
most significant bit of rAL (that is, the sign bit) placed in the most significant bit of rDL. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rDL)[0] ← (rAL)[0]
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered
• rDL
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 374
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=374

Chapter 5: MicroBlaze Instruction Set Architecture
srlc Shift Right Long with Carry

srlc rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 6 11 16 31

Description
Shifts the contents of register rAL, one bit to the right, and places the result in rDL. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rDL. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rDL)[0] ← MSR[C]
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered
• rDL
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 375
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=375

Chapter 5: MicroBlaze Instruction Set Architecture
srll Shift Right Long Logical

srll rDL, rAL

1 0 0 1 0 0 rDL rAL 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 6 11 16 31

Description
Shifts logically the contents of register rAL, one bit to the right, and places the result in rDL. A zero is
shifted in the shift chain and placed in the most significant bit of rDL. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rDL)[0] ← 0
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered
• rDL
• MSR[C]
Latency
• 1 cycle
MicroBlaze Processor Reference Guide 376
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=376

Chapter 5: MicroBlaze Instruction Set Architecture
sl Store Long

sl rDL, rAL, rBL
slr rDL, rAL, rBL

1 1 0 1 1 0 rDL rAL rBL 0 R 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
Stores the contents of register rDL, into the long aligned memory location that results from adding
the contents of registers rAL and rBL.
If the R bit is set, the bytes in the stored long are reversed, storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.
An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode
Addr ← (rAL) + (rBL)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rDL)

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 2 cycles with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
MicroBlaze Processor Reference Guide 377
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=377

Chapter 5: MicroBlaze Instruction Set Architecture
Notes
The long reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide 378
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=378

Chapter 5: MicroBlaze Instruction Set Architecture
sli Store Long Immediate

sli rDL, rAL, IMM

1 1 1 1 1 1 rDL rAL IMM
0 6 11 16 31

Description
Stores the contents of register rDL, into the long aligned memory location that results from adding the
contents of registers rAL and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode
Addr ← (rAL) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rDL)

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
• 2 cycles with C_AREA_OPTIMIZED=0 or 2
• 3 cycles with C_AREA_OPTIMIZED=1
Note
By default, Type B store immediate instructions will take the 16-bit IMM field value and sign extend it
to 64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction.
MicroBlaze Processor Reference Guide 379
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=379

Chapter 5: MicroBlaze Instruction Set Architecture
xorl Logical Exclusive OR Long

xorl rDL, rAL, rBL

1 0 0 0 1 0 rDL rAL rBL 0 0 1 0 0 0 0 0 0 0 0
0 6 11 16 21 31

Description
The contents of register rAL are XORed with the contents of register rBL; the result is placed into
register rDL.

Pseudocode
(rDL) ← (rAL) ⊕ (rBL)

Registers Altered
• rDL

Latency
• 1 cycle
MicroBlaze Processor Reference Guide 380
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=380

Chapter 5: MicroBlaze Instruction Set Architecture
xorli Logical Exclusive OR Long with Immediate

xorli rDL, rAL, IMM | rDL, IMM

1 0 1 0 1 0 rDL rAL IMM

0 1 1 0 1 0 rDL 1 0 0 1 0 IMM
0 6 11 16 31

Description
The contents of register rAL or rDL are XOR’ed with the IMM field, sign extended with the immediate
value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode
(rDL) ← (rAL|rDL) ⊕ sext(IMM24 & IMM)

Registers Altered
• rDL

Latency
• 1 cycle
Notes
Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.
MicroBlaze Processor Reference Guide 381
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=381

Appendix A

Performance and Resource Utilization

Performance
Performance characterization of this core has been done using the margin system
methodology. The details of the margin system characterization methodology is described
in “IP Characterization and fMAX Margin System Methodology” below.

For additional details about performance and resource utilization, visit Performance and
Resource Utilization.

Maximum Frequencies
The maximum frequencies for the MicroBlaze™ core are provided in Table A-1. The fastest speed
grade of each family is used to generate the results in this table.
Table A-1: Maximum Frequencies

Family Fmax (MHz)

Virtex®-7 382
Kintex®-7 398

Artix-7 267
Zynq®-7000 265
Spartan®-7 234

Virtex UltraScale™ 460
Kintex UltraScale 463

Virtex UltraScale+™ 682
Kintex UltraScale+ 650
Zynq UltraScale+ 661

Versal® 456
MicroBlaze Processor Reference Guide 382
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=microblaze.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=microblaze.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=382

Appendix A: Performance and Resource Utilization
Resource Utilization
The MicroBlaze core resource utilization for various parameter configurations are measured
for the following devices:

• Virtex-7 (Table A-2)
• Kintex-7 (Table A-3)
• Artix-7 (Table A-4)
• Zynq-7000 (Table A-5)
• Spartan-7 (Table A-6)
• Virtex UltraScale (Table A-7)
• Kintex UltraScale (Table A-8)
• Virtex UltraScale+ (Table A-9)
• Kintex UltraScale+ (Table A-10)
• Zynq UltraScale+ (Table A-11)
• Versal (Table A-12)
The parameter values for each of the measured configurations are shown in Table A-13. The
configurations directly correspond to the predefined presets and templates in the
MicroBlaze Configuration Wizard, defined for the 32-bit processor implementation.

The 32-bit processor implementation data uses the parameters C_DATA_SIZE = 32 and
C_ADDR_SIZE = 32, whereas the 64-bit processor implementation data uses the
parameters C_DATA_SIZE = 64 and C_ADDR_SIZE = 48.
MicroBlaze Processor Reference Guide 383
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=383

Appendix A: Performance and Resource Utilization
Table A-2: Device Utilization - Virtex-7 FPGAs (XC7VX485T ffg1761-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1173 811 0 308 2139 1262 0 286
Real-time Preset 2484 2121 6 245 3793 3150 6 241
Application Preset 4340 3807 19 212 6492 4919 19 165
Minimum Area 629 230 0 382 1133 400 0 329
Maximum Performance 4096 3210 19 218 6813 4778 20 172
Maximum Frequency 915 553 0 382 1815 858 0 329
Linux with MMU 3512 3126 11 213 5084 4496 16 198
Low-end Linux with MMU 2986 2511 7 233 4519 3726 10 207
Typical 2007 1680 6 253 3389 2498 8 251
Frequency Optimized 6011 5791 14 252 9398 8735 15 168

Table A-3: Device Utilization - Kintex-7 FPGAs (XC7K325T ffg900-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1176 811 0 318 2129 1226 0 287
Real-time Preset 2477 2121 6 246 3792 3151 6 220
Application Preset 4368 3779 19 214 6479 4899 19 174
Minimum Area 637 234 0 398 1146 398 0 330
Maximum Performance 4129 3207 19 222 6816 4778 20 171
Maximum Frequency 908 553 0 398 1817 862 0 330
Linux with MMU 3507 3149 11 206 5088 4493 16 205
Low-end Linux with MMU 2986 2537 7 213 4521 3708 10 202
Typical 2017 1679 6 257 3404 2496 8 252
Frequency Optimized 6004 5874 14 263 9425 8765 15 172
MicroBlaze Processor Reference Guide 384
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=384

Appendix A: Performance and Resource Utilization
Table A-4: Device Utilization - Artix-7 FPGAs (XC7A200T fbg676-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1174 811 0 218 2145 1226 0 187
Real-time Preset 2467 2121 6 177 3797 3153 6 178
Application Preset 4326 3747 19 149 6461 4891 19 136
Minimum Area 625 227 0 267 1141 397 0 221
Maximum Performance 4106 3208 19 153 6802 4799 20 142
Maximum Frequency 911 553 0 267 1815 858 0 221
Linux with MMU 3515 3122 11 150 5081 4492 16 139
Low-end Linux with MMU 2987 2506 7 151 4490 3711 10 136
Typical 2014 1682 6 187 3398 2500 8 190
Frequency Optimized 5956 5787 14 166 9366 8725 15 137

Table A-5: Device Utilization - Zynq-7000 FPGAs (XC7Z020 clg484-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1174 811 0 221 2148 1226 0 191
Real-time Preset 2465 2120 6 176 3785 3156 6 178
Application Preset 4345 3744 19 148 6496 4979 19 141
Minimum Area 626 226 0 265 1138 400 0 222
Maximum Performance 4105 3197 19 152 6791 4760 20 138
Maximum Frequency 908 553 0 265 1813 858 0 222
Linux with MMU 3507 3125 11 147 5086 4489 16 135
Low-end Linux with MMU 2988 2506 7 159 4489 3711 10 138
Typical 2021 1680 6 191 3416 2501 8 192
Frequency Optimized 5953 5785 14 176 9381 8724 15 134
MicroBlaze Processor Reference Guide 385
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=385

Appendix A: Performance and Resource Utilization
Table A-6: Device Utilization - Spartan-7 FPGAs (XC7S25 csga225-2)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1175 811 0 188 2134 1226 0 161
Real-time Preset 2461 2125 6 161 3810 3151 6 148
Application Preset 4342 3812 19 130 6465 4872 19 120
Minimum Area 625 225 0 234 1145 406 0 199
Maximum Performance 4085 3197 19 134 6779 4757 20 118
Maximum Frequency 909 553 0 234 1816 858 0 199
Linux with MMU 3505 3128 11 133 5077 4490 16 118
Low-end Linux with MMU 2980 2509 7 144 4466 3709 10 122
Typical 2020 1680 6 168 3406 2492 8 160
Frequency Optimized 5955 5783 14 154 9363 8724 15 119

Table A-7: Device Utilization - Virtex UltraScale FPGAs (XCVU095 ffvd1924-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1105 821 0 413 2090 1226 0 345
Real-time Preset 2520 2121 6 295 3822 3158 6 293
Application Preset 4355 3801 19 262 6617 4826 19 238
Minimum Area 567 231 0 460 991 415 0 374
Maximum Performance 4102 3208 19 286 6936 4776 20 244
Maximum Frequency 913 553 0 460 1817 860 0 374
Linux with MMU 3523 3221 11 258 5149 4511 16 239
Low-end Linux with MMU 3002 2518 7 271 4559 3728 10 234
Typical 2035 1680 6 316 3482 2497 8 307
Frequency Optimized 6150 5806 14 301 9579 8814 15 240
MicroBlaze Processor Reference Guide 386
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=386

Appendix A: Performance and Resource Utilization
Table A-8: Device Utilization - Kintex UltraScale FPGAs (XCKU040 ffva1156-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1106 811 0 417 2046 1261 0 352
Real-time Preset 2507 2119 6 300 3820 3155 6 302
Application Preset 4336 3760 19 255 6621 4961 19 233
Minimum Area 578 240 0 463 988 401 0 391
Maximum Performance 4117 3209 19 285 6943 4784 20 249
Maximum Frequency 913 556 0 463 1832 869 0 391
Linux with MMU 3502 3129 11 247 5142 4492 16 239
Low-end Linux with MMU 2997 2507 7 267 4560 3745 10 233
Typical 2033 1683 6 319 3471 2505 8 313
Frequency Optimized 6172 5837 14 307 9574 8777 15 243

Table A-9: Device Utilization - Virtex UltraScale+ FPGAs (XCVU3P ffvc1517-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1107 823 0 573 2063 1226 0 462
Real-time Preset 2543 2122 6 399 3911 3156 6 389
Application Preset 4403 3745 19 360 6679 4872 19 333
Minimum Area 563 225 0 682 991 397 0 602
Maximum Performance 4207 3208 19 371 7044 4772 20 330
Maximum Frequency 910 553 0 682 1816 858 0 602
Linux with MMU 3553 3129 11 350 5213 4486 16 333
Low-end Linux with MMU 3020 2508 7 374 4595 3705 10 333
Typical 2064 1679 6 433 3492 2496 8 427
Frequency Optimized 6227 5789 14 416 9649 8773 15 344
MicroBlaze Processor Reference Guide 387
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=387

Appendix A: Performance and Resource Utilization
Table A-10: Device Utilization - Kintex UltraScale+ FPGAs (XCKU15P ffva1156-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1105 811 0 573 2049 1226 0 522
Real-time Preset 2449 2122 6 416 3914 3151 6 407
Application Preset 4404 3744 19 349 6693 4873 19 341
Minimum Area 566 225 0 650 996 397 0 602
Maximum Performance 4209 3237 19 371 7045 4778 20 340
Maximum Frequency 915 553 0 650 1814 858 0 602
Linux with MMU 3554 3190 11 351 5216 4491 16 323
Low-end Linux with MMU 3023 2507 7 365 4598 3712 10 344
Typical 2067 1681 6 441 3489 2493 8 421
Frequency Optimized 6223 5787 14 433 9652 8766 15 340

Table A-11: Device Utilization - Zynq UltraScale+ FPGAs (XCZU9EG ffvb1156-3)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1112 822 0 561 2046 1226 0 476
Real-time Preset 2540 2120 6 409 3912 3150 6 388
Application Preset 4415 3743 19 346 6684 4888 19 336
Minimum Area 566 229 0 661 995 407 0 573
Maximum Performance 4212 3207 19 372 7027 4779 20 336
Maximum Frequency 908 553 0 661 1818 858 0 573
Linux with MMU 3552 3121 11 338 5227 4553 16 335
Low-end Linux with MMU 3018 2501 7 369 4597 3703 10 319
Typical 2068 1681 6 430 3490 2493 8 428
Frequency Optimized 6248 5819 14 413 9647 8781 15 348
MicroBlaze Processor Reference Guide 388
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=388

Appendix A: Performance and Resource Utilization
Table A-12: Device Utilization - Versal FPGAs (XCVC1920 vsva2197-3HP)

Configuration

Device Resources

32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)

Microcontroller Preset 1841 1257 0 399 2480 1344 0 365
Real-time Preset 5561 5670 4 340 6951 6709 4 289
Application Preset 7543 7326 18 265 9885 8388 18 264
Minimum Area 650 263 0 456 1325 458 0 379
Maximum Performance 6708 6469 17 227 9711 8066 17 254
Maximum Frequency 971 519 0 456 1818 826 0 383
Linux with MMU 6610 6619 10 279 8512 8091 14 253
Low-end Linux with MMU 6008 6021 6 280 7575 7239 8 254
Typical 4071 4136 4 337 5450 5009 6 266
Frequency Optimized 8001 8387 12 286 11602 11173 12 267
MicroBlaze Processor Reference Guide 389
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=389

Appendix A: Performance and Resource Utilization
Table A-13: Parameter Configurations

Parameter

Configuration Parameter Values

M
icr

oc
on

tro
lle

r
Pr

es
et

Re
al-

tim
e

 P
re

s e
t

Ap
pl

ica
tio

n
Pr

es
et

M
in

im
um

 A
re

a

M
ax

im
um

 P e
rfo

rm
an

ce

M
ax

im
um

Fr

e q
ue

nc
y

Lin
ux

wi

th
 M

M
U

Lo
w-

en
d

Lin
ux

 w
ith

 M
M

U

Ty
pi

ca
l

Fr
eq

ue
nc

y
Op

tim
iz e

d

C_ALLOW_DCACHE_WR 1 1 1 1 1 1 1 1 1 1
C_ALLOW_ICACHE_WR 1 1 1 1 1 1 1 1 1 1
C_AREA_OPTIMIZED 1 0 0 1 0 0 0 0 0 2
C_CACHE_BYTE_SIZE 4096 8192 32768 4096 32768 4096 16384 8192 8192 16384
C_DCACHE_BYTE_SIZE 4096 8192 32768 4096 32768 4096 16384 8192 8192 16384
C_DCACHE_LINE_LEN 4 4 4 4 8 4 4 4 4 4
C_DCACHE_USE_WRITEBACK 0 1 1 0 1 0 0 0 0 1
C_DEBUG_ENABLED 1 1 1 0 1 0 1 1 1 1
C_DIV_ZERO_EXCEPTION 0 1 1 0 0 0 1 0 0 1
C_M_AXI_D_BUS_EXCEPTION 0 1 1 0 0 0 1 1 1 1
C_FPU_EXCEPTION 0 0 1 0 0 0 0 0 0 1
C_FSL_EXCEPTION 0 0 0 0 0 0 0 0 0 0
C_FSL_LINKS 0 0 0 0 0 1 0 0 0 0
C_ICACHE_LINE_LEN 4 4 8 4 8 4 8 4 8 8
C_ILL_OPCODE_EXCEPTION 0 1 1 0 0 0 1 1 0 1
C_M_AXI_I_BUS_EXCEPTION 0 1 1 0 0 0 1 1 0 1
C_MMU_DTLB_SIZE 2 2 4 2 4 2 4 4 4 4
C_MMU_ITLB_SIZE 1 1 2 1 2 1 2 2 2 2
C_MMU_TLB_ACCESS 3 3 3 3 3 3 3 3 3 3
C_MMU_ZONES 2 2 2 2 2 2 2 2 2 2
C_NUMBER_OF_PC_BRK 1 2 2 0 1 1 1 1 2 1
C_NUMBER_OF_RD_ADDR_BRK 0 0 1 0 0 0 0 0 0 0
C_NUMBER_OF_WR_ADDR_BRK 0 0 1 0 0 0 0 0 0 0
C_OPCODE_0x0_ILLEGAL 0 1 1 0 0 0 1 1 0 1
C_PVR 0 0 2 0 0 0 2 0 0 2
C_UNALIGNED_EXCEPTIONS 0 1 1 0 0 0 1 1 0 1
C_USE_BARREL 1 1 1 0 1 0 1 1 1 1
C_USE_DCACHE 0 1 1 0 1 0 1 1 1 1
C_USE_DIV 0 1 1 0 1 0 1 0 0 1
MicroBlaze Processor Reference Guide 390
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=390

Appendix A: Performance and Resource Utilization
C_USE_EXTENDED_FSL_INSTR 0 0 0 0 0 0 0 0 0 0
C_USE_FPU 0 0 1 0 2 0 0 0 0 2
C_USE_HW_MUL 1 1 2 0 2 0 2 1 1 2
C_USE_ICACHE 0 1 1 0 1 0 1 1 1 1
C_USE_MMU 0 0 3 0 0 0 3 3 0 3
C_USE_MSR_INSTR 1 1 1 0 1 0 1 1 1 1
C_USE_PCMP_INSTR 1 1 1 0 1 0 1 1 1 1
C_USE_REORDER_INSTR 0 1 1 0 1 1 1 1 1 1
C_USE_BRANCH_TARGET_CACHE 0 0 0 0 1 0 0 0 0 1
C_BRANCH_TARGET_CACHE_SIZE 0 0 0 0 0 0 0 0 0 0
C_ICACHE_STREAMS 0 0 1 0 1 0 1 0 0 0
C_ICACHE_VICTIMS 0 0 8 0 8 0 8 0 0 0
C_DCACHE_VICTIMS 0 0 0 0 8 0 8 0 0 0
C_ICACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0 0 0 0 0
C_DCACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0 0 0 0 0
C_ICACHE_ALWAYS_USED 1 1 1 1 1 1 1 1 0 1
C_DCACHE_ALWAYS_USED 1 1 1 1 1 1 1 1 0 1
C_D_AXI 1 1 1 0 1 0 1 1 0 1
C_USE_INTERRUPT 1 1 1 0 0 0 1 1 0 1
C_USE_STACK_PROTECTION 0 1 0 0 0 0 0 0 0 0

Table A-13: Parameter Configurations (Cont’d)

Parameter

Configuration Parameter Values

M
icr

oc
on

tro
lle

r
Pr

es
et

Re
al-

tim
e

 P
re

se
t

Ap
pl

ica
tio

n
Pr

es
et

M
in

im
um

 A
re

a

M
ax

im
um

 Pe
rfo

rm
an

ce

M
ax

im
um

Fr

eq
ue

nc
y

Lin
ux

wi

th
 M

M
U

Lo
w-

en
d

Lin
ux

 w
ith

 M
M

U

Ty
pi

ca
l

Fr
eq

ue
nc

y
Op

tim
ize

d

MicroBlaze Processor Reference Guide 391
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=391

Appendix A: Performance and Resource Utilization
IP Characterization and fMAX Margin System Methodology

Introduction
This section describes the methods to determine the maximum frequency (FMAX) of IP
operation within a system design. The method enables realistic performance reporting for
any Xilinx FPGA architecture. The maximum frequency of a design is the maximum
frequency at which the overall system can be implemented without encountering timing
issues.

The FMAX Margin System Methodology
It is important to determine the IP performance in the context of a user system. In the case
of the MicroBlaze characterization, the system includes the following items:

• The IP under test (MicroBlaze Processor)
• Local Memory (LMB)
• One level of Interconnect (AXI4, AXI4-Lite, AXI4-Stream)
• Memory controller (EMC)
• On-chip BRAM controller
• Peripherals (UART, Timer, Interrupt Controller, MDM)

Determining the FMAX of an Embedded IP with these components provides a more realistic
performance target.

The system above has three types of AXI Interconnect. AXI4-Lite used for peripheral
command and control, AXI4 used for memory accesses, and AXI4-Stream used for
MicroBlaze streams.

For FMAX Margin System Analysis, the clock frequency of the system is incremented up to
the maximum frequency where the system breaks with timing violations (worst case
negative slack). The reported frequency is the failing frequency subtracted with this worst
case negative slack.

Tool Options and Other Factors
Xilinx tools offer a number of options and settings that provide a trade-off between design
performance, resource usage, implementation run time, and memory footprint. The settings
that produce the best results for one design might not necessarily work for another design.

For the purpose of the FMAX Margin System Analysis, the IP design is characterized with
default settings without specific constraints (other than the clocking constraint). This
analysis is done with all different FPGA architectures and the maximum speed grade.
MicroBlaze Processor Reference Guide 392
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=392

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
MicroBlaze Processor Reference Guide 393
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=393

Appendix B: Additional Resources and Legal Notices
References
The following documents are available using your Vivado® installation.

Relevant individual documents are linked below.

1. PowerPC Processor Reference Guide (UG011)
2. Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036)
3. LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112)
4. MicroBlaze Debug Module (MDM) Product Guide (PG115)
5. Device Reliability Report User Guide (UG116)
6. System Cache LogiCORE IP Product Guide (PG118)
7. Triple Modular Redundancy (TMR) Subsystem Product Guide (PG268)
8. Hierarchical Design Methodology Guide (UG748)
9. Vitis Unified Software Platform Documentation (UG1416)
10. Vivado Design Suite User Guide: Designing With IP (UG896)
11. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)
12. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
13. Embedded System Tools Reference Manual (UG1043)
14. AMBA 4 AXI4-Stream Protocol Specification, Version 1.0 (Arm IHI 0051A)
15. AMBA AXI and ACE Protocol Specification (Arm IHI 0022E)
16. UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product Guide

(PG187)

The following lists additional resources you can access directly using the provided URLs.

17. The entire set of GNU manuals: https://www.gnu.org/manual
18. IEEE 754-1985 standard https://en.wikipedia.org/wiki/IEEE_754-1985
19. Xilinx Wiki: MicroBlaze, MicroBlaze Tagged Pages
20. ELF: Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
MicroBlaze Processor Reference Guide 394
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sem;v=latest;d=pg036_sem.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=latest;d=pg112-lmb-bram-if-cntlr.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842560/MicroBlaze
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841892/MicroBlaze+Tagged+Pages
http://refspecs.linuxbase.org/elf/elf.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=system_cache;v=latest;d=pg118-system-cache.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=tmr;v=latest;d=pg268-tmr.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=Hierarchical_Design_Methodology_Guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=vitis-doc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=sem_ultra;v=latest;d=pg187-ultrascale-sem.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1043-embedded-system-tools.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.gnu.org/manual
https://en.wikipedia.org/wiki/IEEE_754-1985
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=394

Appendix B: Additional Resources and Legal Notices
Training Resources
Xilinx provides a variety of QuickTake videos and training courses to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

21. Designing FPGAs Using the Vivado Design Suite 1 Training Course
22. Embedded Systems Design Training Course
23. Advanced Features and Techniques of Embedded Systems Design Training Course
24. Embedded Systems Software Design Training Course
25. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

© Copyright 2013-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.
MicroBlaze Processor Reference Guide 395
UG984 (v2020.2) November 18, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/training/courses/embedded-systems-design.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/embedded-systems-software-design.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/training/courses/advanced-embedded-systems-design.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2020.2&docPage=395

	MicroBlaze Processor Reference Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Introduction
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating-Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBSX)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Eight Stage Pipeline
	Branches
	Delay Slots
	Branch Target Cache

	Pipeline Hazard Example
	Avoiding Data Hazards

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Priority
	Exception Causes
	Imprecise Exceptions
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Low-latency Vectored Interrupt Mode
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Stream Buffers
	Victim Cache

	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Victim Cache

	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating-Point Unit (FPU)
	Overview
	Format
	Single Precision
	Double Precision

	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions
	Software Support
	Libraries and Binary Compatibility
	Operator Latencies
	C Language Programming

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Performance Monitoring
	Performance Counter Control Register
	Performance Counter Command Register
	Performance Counter Status Register
	Performance Counter Data Read Register
	Performance Counter Data Write Register

	Program and Event Trace
	Trace Control Register
	Trace Command Register
	Trace Status Register
	Trace Data Read Register

	Non-Intrusive Profiling
	Profiling Control Register
	Profiling Low Address Register
	Profiling High Address Register
	Profiling Buffer Address Register
	Profiling Data Read Register
	Profiling Data Write Register

	Cross Trigger Support
	Trace Interface Overview

	Fault Tolerance
	Configuration
	Using MicroBlaze Configuration
	Using LMB BRAM Interface Controller Configuration

	Features
	Instruction and Data Cache Protection
	Memory Management Unit Protection
	Branch Target Cache Protection
	Exception Handling

	Software Support
	Scrubbing
	BRAM Driver

	Scrubbing
	Scrubbing Methods
	Calculating Scrubbing Rate

	Use Cases
	Minimal
	Small
	Typical
	Full

	Lockstep Operation
	System Configuration
	Use Cases
	Tamper Protection
	Error Detection

	Coherency
	Invalidation
	Protocol Compliance

	Data and Instruction Address Extension

	Ch. 3: MicroBlaze Signal Interface Description
	Introduction
	Overview
	Features

	MicroBlaze I/O Overview
	Sleep and Pause Functionality
	Software Controlled
	Hardware Controlled

	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Peripheral Interfaces
	Cache Interfaces
	Interface Parameters and Signals

	Stream Interfaces
	Write Operation
	Read Operation

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:N-1]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Wait
	CE
	UE
	Clk

	LMB Transactions
	Generic Write Operations
	Generic Read Operations
	Back-to-Back Write Operation
	Back-to-Back Read Operation
	Back-to-Back Mixed Write/Read Operation

	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Introduction
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt, Break and Exception Handling
	Reset Handling
	ELF Format
	File Header
	Sections
	Relocations

	Ch. 5: MicroBlaze Instruction Set Architecture
	Introduction
	Notation
	Formats
	Type A
	Type B

	MicroBlaze 32-bit Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	clz
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	flt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fint
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	getd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwx
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mbar
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulh
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mulhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mulhsu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	putd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sb
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	swapb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swaph
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swx
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	wic
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	MicroBlaze 64-bit Instructions
	addl
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	addli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	andl
	Description
	Pseudocode
	Registers Altered
	Latency

	andli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andnl
	Description
	Pseudocode
	Registers Altered
	Latency

	andnli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beaeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beaeqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beage
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beagei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beagt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beagti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beale
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bealei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bealt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bealti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beane
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beanei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brea
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	breai
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bsl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmpl
	Description
	Pseudocode
	Registers Altered
	Latency

	dadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	drsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ddiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dbl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dlong
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imml
	Description
	Latency
	Notes

	ll
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	orl
	Description
	Pseudocode
	Registers Altered
	Latency

	orli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmplbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpleq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmplne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sextl16
	Description
	Pseudocode
	Registers Altered
	Latency

	sextl32
	Description
	Pseudocode
	Registers Altered
	Latency

	sextl8
	Description
	Pseudocode
	Registers Altered
	Latency

	srla
	Description
	Pseudocode
	Registers Altered
	Latency

	srlc
	Description
	Pseudocode
	Registers Altered
	Latency

	srll
	Description
	Pseudocode
	Registers Altered
	Latency

	sl
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	xorl
	Description
	Pseudocode
	Registers Altered
	Latency

	xorli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	Appx. A: Performance and Resource Utilization
	Performance
	Maximum Frequencies

	Resource Utilization
	IP Characterization and fMAX Margin System Methodology
	Introduction
	The FMAX Margin System Methodology
	Tool Options and Other Factors

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

