
Vivado Design Suite
User Guide

Synthesis

UG901 (v2021.1) July 14, 2021

See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG901

Synthesis 2
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
07/14/2021 Version 2021.1

Running Synthesis Added a note.
Setting Up Incremental Synthesis in Project Mode Updated options for incremental synthesis.
Running Incremental Synthesis in Non-Project Mode Updated synth_design.
Running Synthesis with Tcl Added a new command.
Supported Attributes Updated EXTRACT_ENABLE, EXTRACT_RESET, IOB,

MARK_DEBUG, ROM_STYLE, and USE_DSP
Using Synthesis Attributes in XDC files Added a note.
VHDL Predefined Packages Updated VHDL IEEE Packages
VHDL Constructs Support Status Updated Table 5-10
Verilog System Tasks and Functions Table 7-5
SystemVerilog Constructs Table 8-1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=2

Table of Contents
Chapter 1: Vivado Synthesis

Introduction . 7
Synthesis Methodology . 8
Using Synthesis . 8
Running Synthesis . 19
Setting a Bottom-Up Out-of-Context Flow. 23
Incremental Synthesis . 28
Using Third-Party Synthesis Tools with Vivado IP . 32
Moving Processes to the Background. 32
Monitoring the Synthesis Run. 33
Following Synthesis . 33
Analyzing Synthesis Results . 34
Using the Synthesized Design Environment. 35
Exploring the Logic . 36
Running Timing Analysis . 38
Running Synthesis with Tcl . 38
Multi-Threading in RTL Synthesis . 41
Vivado Preconfigured Strategies. 43

Chapter 2: Synthesis Attributes
Introduction . 44
Supported Attributes. 44
Custom Attribute Support in Vivado . 67
Using Synthesis Attributes in XDC files. 68
Synthesis Attribute Propagation Rules. 69

Chapter 3: Using Block Synthesis Strategies
Overview . 71
Setting a Block-Level Flow. 73
Block-Level Flow Options . 74

Chapter 4: HDL Coding Techniques
Introduction . 76
Advantages of VHDL . 76
Synthesis 3
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=3

Advantages of Verilog . 76
Advantages of SystemVerilog . 77
Flip-Flops, Registers, and Latches . 77
Latches . 81
Tristates . 82
Shift Registers. 84
Dynamic Shift Registers . 88
Multipliers . 91
Complex Multiplier Examples . 94
Pre-Adders in the DSP Block . 98
Using the Squarer in the UltraScale DSP Block . 100
FIR Filters . 102
Convergent Rounding (LSB Correction Technique) . 107
RAM HDL Coding Techniques . 111
Inferring UltraRAM in Vivado Synthesis. 114
RAM HDL Coding Guidelines . 119
Initializing RAM Contents . 153
3D RAM Inference . 159
Black Boxes. 170
FSM Components . 172
ROM HDL Coding Techniques . 176

Chapter 5: VHDL Support
Introduction . 179
Supported and Unsupported VHDL Data Types. 179
VHDL Objects . 183
VHDL Entity and Architecture Descriptions . 185
VHDL Combinatorial Circuits . 193
Generate Statements. 194
Combinatorial Processes . 196
VHDL Sequential Logic . 200
VHDL Initial Values and Operational Set/Reset. 203
VHDL Functions and Procedures . 204
VHDL Predefined Packages . 207
Defining Your Own VHDL Packages . 210
VHDL Constructs Support Status. 211
VHDL RESERVED Words . 214

Chapter 6: VHDL-2008 Language Support
Introduction . 215
Setting up Vivado to use VHDL-2008 . 215
Synthesis 4
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=4

Supported VHDL-2008 Features . 216

Chapter 7: Verilog Language Support
Introduction . 225
Verilog Design . 225
Verilog Functionality . 226
Verilog Constructs . 236
Verilog System Tasks and Functions. 238
Using Conversion Functions . 240
Verilog Primitives. 241
Verilog Reserved Keywords. 241
Behavioral Verilog . 242
Modules . 251
Procedural Assignments . 253
Tasks and Functions. 260

Chapter 8: SystemVerilog Support
Introduction . 270
Targeting SystemVerilog for a Specific File . 270
Data Types . 271
Processes . 275
Procedural Programming Assignments . 277
Tasks and Functions. 279
Modules and Hierarchy . 280
Interfaces . 281
Packages . 284
SystemVerilog Constructs . 284

Chapter 9: Mixed Language Support
Introduction . 290
Mixing VHDL and Verilog. 290
Instantiation . 291
VHDL and Verilog Libraries . 293
VHDL and Verilog Boundary Rules . 293
Binding . 294
Generics Support . 294
Port Mapping . 294

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 296
Solution Centers. 296
Synthesis 5
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=5

Documentation Navigator and Design Hubs . 296
References . 297
Please Read: Important Legal Notices . 298
Synthesis 6
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=6

Chapter 1

Vivado Synthesis

Introduction
Synthesis is the process of transforming an RTL-specified design into a gate-level
representation. Vivado® synthesis is timing-driven and optimized for memory usage and
performance. Vivado synthesis supports a synthesizeable subset of:

• SystemVerilog: IEEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification Language (IEEE Std 1800-2012)

• Verilog: IEEE Standard for Verilog Hardware Description Language (IEEE Std 1364-2005)
• VHDL: IEEE Standard for VHDL Language (IEEE Std 1076-2002)
• VHDL 2008
• Mixed languages: Vivado supports a mix of VHDL, Verilog, and SystemVerilog.

In most instances, the Vivado tools also support Xilinx® design constraints (XDC), which is
based on the industry-standard Synopsys design constraints (SDC).

IMPORTANT: Vivado synthesis does not support UCF constraints. Migrate UCF constraints to XDC
constraints. For more information, see this link in the ISE to Vivado Design Suite Migration Guide
(UG911) [Ref 18].

There are two ways to setup and run synthesis:

• Use Project Mode, selecting options from the Vivado Integrated Design Environment
(IDE).

• Use Non-Project Mode, applying Tool Command Language (Tcl) commands or scripts,
and controlling your own design files.

See the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 5] for more
information about operation modes. This chapter covers both modes in separate
subsections.
Synthesis 7
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug911-vivado-migration.pdf;a=xMigratingUCFConstraintsToXDC
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=7

Chapter 1: Vivado Synthesis
Synthesis Methodology
The Vivado IDE includes a synthesis and implementation environment that facilitates a push
button flow with synthesis and implementation runs. The tool manages the run data
automatically, allowing repeated run attempts with varying Register Transfer Level (RTL)
source versions, target devices, synthesis or implementation options, and physical or timing
constraints.

Within the Vivado IDE, you can do the following:

• Create and save a strategy. A strategy is a configuration of command options that you
can apply to design runs for synthesis or implementation. See Creating Run Strategies.

• Queue the synthesis and implementation runs to launch sequentially or simultaneously
with multi-processor machines. See Running Synthesis.

• Monitor synthesis or implementation progress, view log reports, and cancel runs. See
Monitoring the Synthesis Run.

Using Synthesis
This section describes using the Vivado Integrated Design Environment (IDE) to set up and
run Vivado synthesis. The corresponding Tcl Console commands follow most Vivado IDE
procedures, and most Tcl commands link directly to the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 4]. Additionally, there is more information regarding Tcl
commands, and using Tcl in the Vivado Design Suite User Guide: Using Tcl Scripting (UG894)
[Ref 7].

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Synthesis
Options and Vivado Design Suite QuickTake Video: Synthesizing the Design.

Using Synthesis Settings
1. From the Flow Navigator click Settings, then select Synthesis, or select Flow >

Settings > Synthesis Settings.

The Settings dialog box opens, as shown in the following figure.
Synthesis 8
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/synthesizing-the-design.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/synthesis-options.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/synthesis-options.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=8

Chapter 1: Vivado Synthesis
2. Under the Constraints section of the Settings dialog box, select the Default Constraint
Set as the active constraint set; a set of files containing design constraints captured in
Xilinx design constraints (XDC) files that you can apply to your design. The two types of
design constraints are:

° Physical constraints: These constraints define pin placement, and absolute, or
relative, placement of cells such as block RAMs, LUTs, Flip-Flops, and device
configuration settings.

° Timing constraints: These constraints define the frequency requirements for the
design. Without timing constraints, the Vivado Design Suite optimizes the design
solely for wire length and placement congestion.

See this link to the Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 12]
for more information about organizing constraints.

New runs use the selected constraint set, and the Vivado synthesis targets this
constraint set for design changes.

X-Ref Target - Figure 1-1

Figure 1-1: Settings Dialog Box
Synthesis 9
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf;a=xOrganizingYourConstraints
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=9

Chapter 1: Vivado Synthesis
3. From the Options area: Select a Strategy from the drop-down menu where you can
view and select a predefined synthesis strategy to use for the synthesis run. There are
different preconfigured strategies, as shown in the following figure.

You can also define your own strategy. When you select a synthesis strategy, available
Vivado strategy displays in the dialog box. You can override synthesis strategy settings
by changing the option values as described in Creating Run Strategies.

For a list of all the strategies and their respective settings, see the -directive option in
the following list, and see Table 1-2 to see a matrix of strategy default settings.

4. Select from the displayed options:

° -flatten_hierarchy: Determines how Vivado synthesis controls hierarchy.
- none: Instructs the synthesis tool to never flatten the hierarchy. The output of

synthesis has the same hierarchy as the original RTL.
- full: Instructs the tool to fully flatten the hierarchy leaving only the top level.
- rebuilt: When set, rebuilt allows the synthesis tool to flatten the hierarchy,

perform synthesis, and then rebuild the hierarchy based on the original RTL. This
value allows the QoR benefit of cross-boundary optimizations, with a final
hierarchy that is similar to the RTL for ease of analysis.

° -gated_clock_conversion: Turns on and off the ability of the synthesis tool to
convert the clocked logic with enables.

The use of gated clock conversion also requires the use of an RTL attribute to work.
See GATED_CLOCK, for more information.

° -bufg: Controls how many BUFGs the tool infers in the design. The Vivado design
tools use this option when other BUFGs in the design netlists are not visible to the
synthesis process.

X-Ref Target - Figure 1-2

Figure 1-2: Options - Strategies
Synthesis 10
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=10

Chapter 1: Vivado Synthesis
The tool infers up to the amount specified, and tracks how many BUFGs are
instantiated in the RTL. For example, if the -bufg option is set to 12 and there are
three BUFGs instantiated in the RTL, the Vivado synthesis tool infers up to nine more
BUFGs.

° -directive: Replaces the -effort_level option. When specified, this option runs
Vivado synthesis with different optimizations. See Table 1-2 for a list of all
strategies and settings. Values are:
- Default: Default settings. See Table 1-2.
- RuntimeOptimized: Performs fewer timing optimizations and eliminates some

RTL optimizations to reduce synthesis run time.
- AreaOptimized_high: Performs general area optimizations including forcing

ternary adder implementation, applying new thresholds for use of carry chain in
comparators, and implementing area-optimized multiplexers.

- AreaOptimized_medium: Performs general area optimizations including
changing the threshold for control set optimizations, forcing ternary adder
implementation, lowering multiplier threshold of inference into DSP blocks,
moving shift register into BRAM, applying lower thresholds for use of carry
chain in comparators, and also area optimized MUX operations.

- AlternateRoutability: Set of algorithms to improve route-ability (less use of
MUXFs and CARRYs)

- AreaMapLargeShiftRegToBRAM: Detects large shift registers and implements
them using dedicated block RAM.

- AreaMultThresholdDSP: Lower threshold for dedicated DSP block inference.
- FewerCarryChains: Higher operand size threshold to use LUTs instead of the

carry chain.
- LogicCompaction: Arranges CARRY chains and LUTs in such a way that it makes

the logic more compact using fewer SLICES. This could have a negative effect on
timing QoR.

° -retiming: This boolean option <on|off> provides an option improve circuit
performance for intra-clock sequential paths by automatically moving registers
(register balancing) across combinatorial gates or LUTs. It maintains the original
behavior and latency of the circuit and does not require changes to the RTL sources.
The default is off.
Note: When retiming in OOC mode, registers that are driven-by or that are driving ports are
not retimed.

° -fsm_extraction: Controls how synthesis extracts and maps finite state machines.
FSM_ENCODING describes the options in more detail.

° -keep_equivalent_registers: Prevents merging of registers with the same input
logic.
Synthesis 11
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=11

Chapter 1: Vivado Synthesis
° -resource_sharing: Sets the sharing of arithmetic operators between different
signals. The values are auto, on and off. The auto value sets performing resource
sharing to depend on the timing of the design.

° -control_set_opt_threshold: Sets the threshold for clock enable optimization to
the lower number of control sets. The default is auto which means the tool will
choose a value based on the device being targeted. Any positive integer value is
supported.

The given value is the number of fanouts necessary for the tool to move the control
sets into the D logic of a register. If the fanout is higher than the value, the tool
attempts to have that signal drive the control_set_pin on that register.

° -no_lc: When checked, this option turns off LUT combining.

° -no_srlextract: When checked, this option turns off SRL extracation for the full
design so that they are implemented as simple registers.

° -shreg_min_size: Is the threshold for inference of SRLs. The default setting is 3. This
sets the number of sequential elements that would result in the inference of an SRL
for fixed delay chains (static SRL). Strategies define this setting as 5 and 10 also. See
Table 1-2 for a list of all strategies and settings.

° -max_bram: Describes the maximum number of block RAM allowed in the design.
Often this is used when there are black boxes or third-party netlists in the design
and allow the designer to save room for these netlists.
Note: The default setting of -1 indicates that the tool chooses the maximum number
allowed for the specified part.

° -max_uram: Sets the maximum number of UltraRAM (UltraScale+™ device block
RAMs) blocks allowed in design. The default setting of -1 indicates that the tool
chooses the maximum number allowed for the specified part.

° -max_dsp: Describes the maximum number of block DSP allowed in the design.
Often this is used when there are black boxes or third-party netlists in the design,
and allows room for these netlists. The default setting of -1 indicates that the tool
chooses the maximum number allowed for the specified part.

° -max_bram_cascade_height: Controls the maximum number of BRAM that can be
cascaded by the tool. The default setting of -1 indicates that the tool chooses the
maximum number allowed for the specified part.

° -max_uram_cascade_height: Controls the maximum number of UltraScale+ device
UltraRAM blocks that can be cascaded by the tool. The default setting of -1
indicates that the tool chooses the maximum number allowed for the specified part.

° -cascade_dsp: Controls how adders in sum DSP block outputs are implemented. By
default, the sum of the DSP outputs is computed using the block built-in adder
chain. The value tree forces the sum to be implemented in the fabric. The values
are: auto, tree, and force. The default is auto.
Synthesis 12
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=12

Chapter 1: Vivado Synthesis
° -no_timing_driven: (Optional) Disables the default timing driven synthesis
algorithm. This results in a reduced synthesis runtime, but ignores the effect of
timing on synthesis.

° -sfcu: Run synthesis in single-file compilation unit mode.

° -assert: Enable VHDL assert statements to be evaluated. A severity level of failure or
error stops the synthesis flow and produces an error. A severity level of warning
generates a warning.

° -debug_log: Prints out extra information in the synthesis log file for debugging
purposes. The -debug_log should be added to the More Options field.

° The tcl.pre and tcl.post options are hooks for Tcl files that run immediately before
and after synthesis.
Note: Paths in the tcl.pre and tcl.post scripts are relative to the associated run
directory of the current project: <project>/<project.runs>/<run_name>.

See this link to Vivado Design Suite User Guide: Using Tcl Scripting (UG894) [Ref 7] for
more information about Tcl scripting.

Use the DIRECTORY property of the current project or current run to define the
relative paths in your scripts.

5. Click Finish.

Tcl Commands to Get Property

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

Creating Run Strategies
A strategy is a set of switches to the tools, which are defined in a pre-configured set of
options for the synthesis application or the various utilities and programs that run during
implementation. Each major release has version-specific strategy options.

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Creating and
Managing Runs.

Select Settings from the Flow Navigator then select Synthesis, and select a strategy from
the Strategy drop-down list, shown in Figure 1-2, and click OK.
Synthesis 13
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug894-vivado-tcl-scripting.pdf;a=xDefiningTclHookScripts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-and-managing-runs.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-and-managing-runs.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=13

Chapter 1: Vivado Synthesis
Saving a User Defined Strategy

You can define your own synthesis strategy, as follows:

1. In the Settings dialog box > Synthesis, select an existing run strategy and modify
options, and the Save Strategy As button . The Save Strategy As dialog box opens,
as shown in Figure 1-3.

2. Specify a User defined strategy name and Description, and click OK.

The Strategy drop-down displays any user defined strategies, as shown in the following
figure.

Setting Synthesis Inputs
Vivado synthesis allows two input types: RTL source code and timing constraints. To add RTL
or constraint files to the run:

X-Ref Target - Figure 1-3

Figure 1-3: Save Strategy As Dialog Box
Synthesis 14
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=14

Chapter 1: Vivado Synthesis
1. From the File menu or the Flow Navigator, select the Add Sources command to open
the Add Sources wizard, shown in the following figure.

2. Select an option corresponding to the files to add, and click Next.

The following figure shows the Add or Create Design Sources page that is displayed if
Add or create design sources is selected.

X-Ref Target - Figure 1-4

Figure 1-4: Add Sources Wizard
Synthesis 15
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=15

Chapter 1: Vivado Synthesis
3. Add constraint, RTL, or other project files, then click Finish.

See this link to the Vivado Design Suite User Guide: System-Level Design Entry (UG895)
[Ref 8] for more information about creating RTL source projects.

The Vivado synthesis tool reads the subset of files that can be synthesized in VHDL, Verilog,
SystemVerilog, or mixed language options supported in the Xilinx tools.

The following chapters provide details on supported HDL constructs.

• Chapter 4, HDL Coding Techniques
• Chapter 5, VHDL Support
• Chapter 6, VHDL-2008 Language Support
• Chapter 7, Verilog Language Support
• Chapter 8, SystemVerilog Support
• Chapter 9, Mixed Language Support

Vivado synthesis also supports several RTL attributes that control synthesis behavior.
Chapter 2, Synthesis Attributes, describes these attributes. For timing constraints, Vivado
synthesis uses the XDC file.

X-Ref Target - Figure 1-5

Figure 1-5: Add or Create Sources Dialog Box
Synthesis 16
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf;a=xCreatingAnRTLProject
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=16

Chapter 1: Vivado Synthesis
Chapter 3, Using Block Synthesis Strategies describes the available Block Synthesis
Strategies.

IMPORTANT: Vivado Design Suite does not support the UCF format. See this link in the ISE to Vivado
Design Suite Migration Guide (UG911) [Ref 18] for the UCF to XDC conversion procedure.

Controlling File Compilation Order
A specific compile order is necessary when one file has a declaration and another file
depends upon that declaration. The Vivado IDE controls RTL source files compilation from
the top of the graphical hierarchy shown in the Sources window Compile Order window to
the bottom.

The Vivado tools automatically identify and set the best top-module candidate, and
automatically manage the compile order. The top-module file and all sources that are under
the active hierarchy are passed to synthesis and simulation in the correct order.

In the Sources window, a popup menu provides the Hierarchy Update command. The
provided options specify to the Vivado IDE how to handle changes to the top-module and
to the source files in the design.

The default setting, Automatic Update and Compile Order, specifies that the tool
manages the compilation order as shown in the Compilation Order window, and shows
which modules are used and where they are in the hierarchy tree in the Hierarchy window.

The compilation order updates automatically as you change source files.

To modify the compile order before synthesis, select a file, and right-click Hierarchy
Update > Automatic Update, Manual Compile Order so that the Vivado IDE can
automatically determine the best top module for the design and allows for manual
specification of the compilation order.

Manual Compile is off by default. If you select a file and move it in the Compile Order
window, a popup menu asks if you want Manual Compile turned on, as shown in the
Figure 1-6.
X-Ref Target - Figure 1-6

Figure 1-6: Move Sources Option
Synthesis 17
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug911-vivado-migration.pdf;a=xMigratingUCFConstraintsToXDC
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=17

Chapter 1: Vivado Synthesis
From the Sources window Compile order tab, drag and drop files to arrange the
compilation order, or use the menu Move Up or Move Down commands.

Other options are available from the Hierarchy Update context menu, as shown in the
following figure.

See this link to the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 5]
for information about design flows.

Defining Global Include Files
The Vivado IDE supports designating one of more Verilog or Verilog Header source files as
global ‘include files and processes those files before any other sources. Designs that use
common header files might require multiple `include statements to be repeated across
multiple Verilog sources used in the design.

To designate a Verilog or Verilog header file as a global `include file:

1. In the Sources window, select the file.
2. Check the Global include check box in the Source File Properties window, as shown in

Figure 1-8.

TIP: In Verilog, reference header files that are specifically applied to a single Verilog source (for
example; a particular ̀ define macro), with an `include statement instead of marking it as a global
`include file.

X-Ref Target - Figure 1-7

Figure 1-7: Hierarchy Update Options

X-Ref Target - Figure 1-8

Figure 1-8: Source File Properties Window with Global Include
Synthesis 18
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf;a=xUnderstandingUseModels
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=18

Chapter 1: Vivado Synthesis
See this link to the Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 6], for
information about the Sources window.

Running Synthesis
A run defines and configures aspects of the design that are used during synthesis. A
synthesis run defines the following:

° Xilinx device to target during synthesis

° Constraint set to apply

° Options to launch single or multiple synthesis runs

° Options to control the results of the synthesis engine

To define a run of the RTL source files and the constraints:

1. Select Flow > Create Runs, or in Design Runs, click the Create Runs button to open
the Create New Runs wizard. The Create New Runs dialog box opens, as shown in
Figure 1-9.

2. Select Synthesis, and click Next.

X-Ref Target - Figure 1-9

Figure 1-9: Create New Runs Wizard
Synthesis 19
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf;a=xUsingTheSourcesWindow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=19

Chapter 1: Vivado Synthesis
The Configure Synthesis Runs opens, as shown in the following figure.

3. Click the Add button and configure the synthesis run with the Name, Constraints Set,
Part, Strategy, and check Make Active, if you want this run to be the active run.

The Vivado IDE contains a default strategy. You can set a specific name for the strategy
run or accept the default name(s), which are numbered as synth_1, synth_2, and so
forth. To create your own run strategy, see Creating Run Strategies.

See the following links to Vivado Design Suite User Guide: Using Constraints (UG903)
[Ref 12]:

° For detailed information on constraints, see this link.

° For detailed information about constraint processing order, see this link.

After some constraints are processed for a project, those constraint attributes can
become design properties. For more information about design properties, see the
Vivado Design Suite Properties Reference Guide (UG912) [Ref 19].

X-Ref Target - Figure 1-10

Figure 1-10: Create New Runs Wizard: Configure Synthesis Runs Page
Synthesis 20
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf;a=xAboutXDCConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf;a=xConstraintFilesOrderWithIPCores
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=20

Chapter 1: Vivado Synthesis
4. Click Next. The Launch Options page opens.

5. In the Launch Options page, set the options as follows, then click Next.

° In the Launch Directory drop-down option, browse to, and select the directory
from which to launch the run.

° In the Options area, choose one of the following:
- Launch runs on local host: Runs the options from the machine on which you

are working. The Number of jobs drop-down lets you specify how many runs to
launch.
Note: The number of jobs can significantly affect the amount of memory used by the
Vivado tool. Turning this to a very high number could cause the tool to take up large
amounts of memory depending on the sizes of the individual runs or OOC runs in the
design. Using too much memory could lead to crashes in the tool.

- Launch runs on remote hosts (Linux only): Launches the runs on a remote host
and configures that host. See this link to the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 13], for more information about launching runs on
remote hosts in Linux. Use the Configure Hosts button to configure the hosts
from the dialog box.

- Launch runs on cluster: Launches the runs on an external tool such as lsf.
Hitting the settings button allows the configuration of that cluster tool.

- Generate scripts only: Generates scripts to run later. Use runme.bat
(Windows) or runme.sh (Linux) to start the run.

6. After setting the Create New Runs wizard option, click Finish in the Launch Runs
summary.

X-Ref Target - Figure 1-11

Figure 1-11: Launch Runs Dialog Box
Synthesis 21
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug904-vivado-implementation.pdf;a=xUsingRemoteHostsAndLSF
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=21

Chapter 1: Vivado Synthesis
You can see the results in the Design Runs window, as shown in the following figure.

Using the Design Runs Window
The Design Runs window displays the synthesis and implementation runs created in a
project and provides commands to configure, manage, and launch the runs.

If the Design Runs window is not already displayed, select Window > Design Runs to open
the Design Runs window. A synthesis run can have multiple implementation runs. To expand
and collapse synthesis runs, use the tree widgets in the window. The Design Runs window
reports the run status, (when the run is not started, is in progress, is complete, or is
out-of-date). Runs become out-of-date when you modify source files, constraints, or project
settings.

To reset, delete, or change properties on specific runs, right-click the run and select the
appropriate command.

Setting the Active Run
Only one synthesis run and one implementation run can be active in the Vivado IDE at any
time. All the reports and tab views display the information for the active run. The Project
Summary window only displays compilations, resource, and summary information for the
active run.

To make a run active, select the run in the Design Runs window, right-click and select the
Make Active command from the popup menu to set it as the active run.

Launching a Synthesis Run
To launch a synthesis run, do one of the following:

• From the Flow Navigator, click the Run Synthesis command.
• From the main menu, select the Flow > Run Synthesis command.

X-Ref Target - Figure 1-12

Figure 1-12: Design Runs Window
Synthesis 22
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=22

Chapter 1: Vivado Synthesis
• In the Design Runs window, right-click the run, and select Launch Runs.

The first two options start the active synthesis run. The third option opens the Launch
Selected Runs window.

Here, you can select to run on local host, run on a remote host, or generate the scripts to be
run. See this link to the Vivado Design Suite User Guide: Implementation (UG904) [Ref 13],
for more information about using remote hosts.

Setting a Bottom-Up Out-of-Context Flow
You can set a bottom-up flow by selecting any HDL object to run as a separate
out-of-context (OOC) flow. For an overview of the OOC flow, see this link to the Vivado
Design Suite User Guide: Design Flows Overview (UG892) [Ref 5].

The OOC flow behaves as follows:

• Lower OOC modules are run separately from the top-level, and have their own
constraint sets.

• OOC modules can be run as needed.
• After you have run synthesis on an OOC module, it does not need to be run again,

unless you change the RTL or constraints for that run.
• When the top level is run, the lower level OOC runs will be treated as black boxes.

If any IP is synthesized in OOC mode, the top level synthesis run infers a black box for these
IP. Hence, users will not be able to reference objects such as pins, nets, and cells, that are
internal to the IP as part of the top level synthesis constraints. During implementation, the
netlists from the IP DCPs are linked with the netlist produced when synthesizing the
top-level design files, and the Vivado Design Suite resolves the IP black boxes. The IP XDC
output products that were generated for use during implementation are applied along with
any user constraints. If there are any constraints that reference items inside the IP, there will
be warnings during synthesis about this, but they will be resolved during implementation.

This can result in a large runtime improvement for the top-level because synthesis no
longer needs to be run on the full design.

To set up a module for an OOC run, find that module in the hierarchy view, and right-click
the Set As Out-Of-Context for Synthesis option, shown in Figure 1-13, and click OK.
Synthesis 23
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug904-vivado-implementation.pdf;a=xUsingRemoteHostsAndLSF
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf;a=xOutOfContextDesignFlow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=23

Chapter 1: Vivado Synthesis
The Set as Out-of-Context for Synthesis dialog box displays the following information
and options:

° Source Node: Module to which you are applying the OOC.

° New Fileset: Lists the New Fileset name, which you can edit.

° Generate Stub: A checkbox that you can check to have the tool create a stub file.

° Clock Constraint File: Choose to have the tool create a new XDC template for you,
or you can use the drop-down menu to copy an existing XDC file over to this
Fileset. This XDC file should have clock definitions for all your clock pins on the
OOC module.

RECOMMENDED: Leave the stub file option on. If you turn it off, you must create your own stub files
and set them in the project.

The tool sets up the OOC run automatically. You can see it as a new run in the Design Runs
window, and also see it as a block source in the Compile Order tab, as shown in the
following figure.

X-Ref Target - Figure 1-13

Figure 1-13: Set as Out-of-Context Synthesis Dialog Box
Synthesis 24
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=24

Chapter 1: Vivado Synthesis
When you set a flow to Out-of-Context, a new run is set up in the tool.

To run the option, right-click and select Launch Runs, as described in Launching a Synthesis
Run. This action sets the lower-level as a top module and runs synthesis on that module
without creating I/O buffers.

The run saves the netlist from synthesis and creates a stub file (if you selected that option)
for later use. The stub file is the lower-level with inputs and outputs and the black-box
attribute set.

When you run the top-level module again, the bottom-up synthesis inserts the stub file into
the flow and compiles the lower-level as a black box. The implementation run inserts the
lower-level netlist, thus completing the design.

CAUTION! Do not use the Bottom-Up OOC flow when there are Xilinx IP in OOC mode in the
lower-levels of the OOC module. To have Xilinx IP in an OOC module, turn off the IP OOC mode. Do not
use this flow when there are parameters on the OOC module, or the ports of the OOC module are
user-defined types. Those circumstances cause errors later in the flow.

X-Ref Target - Figure 1-14

Figure 1-14: Compile Order Tab
Synthesis 25
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=25

Chapter 1: Vivado Synthesis
Manually Setting a Bottom-Up Flow and Importing Netlists
To manually run a bottom-up flow, instantiate a lower-level netlist or third-party netlist as
a black box, and the Vivado tools will fit that black box into the full design after synthesis
completes. The following sections describe the process.

IMPORTANT: Vivado synthesis does not synthesize or optimize encrypted or non-encrypted synthesized
netlists; consequently, XDC constraints or synthesis attributes do not have an effect on synthesis with
an imported core netlist. Also, Vivado synthesis does not read the core netlist and modify the
instantiated components by default; however, Vivado synthesis does synthesize secure IP and RTL.
Constraints do affect synthesis results.

Creating a Lower-Level Netlist
To create a lower-level netlist, set up a project with that netlist as the top-level module.
Before you run synthesis, set the out-of-context (OOC) mode as shown Figure 1-15.
X-Ref Target - Figure 1-15

Figure 1-15: Settings Dialog Box
Synthesis 26
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=26

Chapter 1: Vivado Synthesis
In the More Options section, you can type -mode out_of_context to have the tool not
insert any I/O buffers in this level.

After you run synthesis, open the synthesized design, and in the Tcl Console, type the
write_edif Tcl command in the Tcl Console. The syntax is as follows:

write_edif <design_name>.edf

Instantiating the Lower-Level Netlist in a Design
To run the top-level design with the lower-level netlist or third-party netlist, instantiate the
lower-level as a black box by providing a description of the port in a lower-level to the
Vivado tool. In the Setting a Bottom-Up Out-of-Context Flow, this is referred to as a stub
file.

IMPORTANT: The port names provided to the Vivado tool and the port names in the netlist must match.

In VHDL, describe the ports with a component statement, as shown in the following code
snippet:

component <name>
port (in1, in2 : in std_logic;
out1 : out std_logic);

end component;

Because Verilog does not have an equivalent of a component, use a wrapper file to
communicate the ports to the Vivado tool. The wrapper file looks like a typical Verilog file,
but contains only the ports list, as shown in the following code snippet:

module <name> (in1, in2, out1);
input in1, in2;
output out1;

endmodule

Putting Together the Manual Bottom-Up Components
After you create the lower-level netlist and instantiate the top-level netlists correctly, you
can either add the lower-level netlists to the Vivado project in Project mode, or you can use
the read_edif or read_verilog command in Non-Project mode.

In both modes, the Vivado tool merges the netlist after synthesis.

Note: If a design is from third-party netlists only, and no other RTL files are meant to be part of the
project, you can either create a project with just those netlists, or you can use the read_edif and
read_verilog Tcl commands along with the link_design Tcl command in Non-Project Mode.
Synthesis 27
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_edif
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xread_edif
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xread_verilog
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xlink_design
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=27

Chapter 1: Vivado Synthesis
Incremental Synthesis
Vivado Synthesis can be run incrementally. In this flow, the tool will have a reference run
that will be referred to in later runs. It will be able to detect when the design has changed
and then only re-run synthesis on sections of the design that have changed. The key
advantage of this flow is that for designs with small changes, the runtime will be greatly
reduced. In addition, the QoR of the design will fluctuate less when small changes are
inserted into the RTL.

There are two ways to run incremental Synthesis: project mode and non-project mode.

Setting Up Incremental Synthesis in Project Mode
You can set up Incremental Synthesis with a project in the Synthesis page of the Settings
dialog box.

Note the following important settings:

• Write Incremental Synthesis check box: When you select this option, Vivado Synthesis
writes incremental synthesis information to the post-synthesis checkpoint. This is a
pre-requisite for running incremental synthesis.

• Incremental Synthesis selection box: Use the Browse button to select which describes
how Synthesis will run when it is used after already writing out results with incremental
information in results. There are three options for this setting, demonstrated in the
following figure.

X-Ref Target - Figure 1-16

Figure 1-16: Synthesis Page of Settings Dialog Box
Synthesis 28
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=28

Chapter 1: Vivado Synthesis
The following options are available for incremental synthesis in project mode:

• Specify design checkpoint: There are two options under this.

° New design checkpoint: This option allows you to specify a specific DCP
checkpoint that has previously been created with synthesis as a guide point for
incremental synthesis.

° Automatically use the checkpoint from the previous run: This option uses the
checkpoint from the previous run as the guide point for incremental synthesis.

• Disable incremental compile: This option tells the tool not to use any incremental
information if it was generated before. The entire design will be synthesized.

X-Ref Target - Figure 1-17

Figure 1-17: Options for Incremental Synthesis
Synthesis 29
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=29

Chapter 1: Vivado Synthesis
Running Incremental Synthesis in Non-Project Mode
When using non-project mode, incremental synthesis information is added to the
checkpoint using the -incremental_synth switch. For example:

write_checkpoint -incremental_synth <name>.dcp

After running synth_design, this does the same thing as the Write Incremental Synthesis
option does for project mode. It can be added after any stage of the flow, but
synth_design must be run in the same session.

Then, in the incremental runs, use the following command:

read_checkpoint -incremental <name>.dcp

Do this before running the synth_design command. The .dcp file referenced here
should be the .dcp file that was written out with the -incremental_synth option.

In addition, the synth_design command should run with the -incremental option as
well in both the reference run and in the incremental run.

For example: synth_design -incremental

Running Design and Interpreting Log File
When the reference run is performed, the tool will partition out the design as it is
performing synthesis. Then, when the incremental run is started, it compares elaborated
design with the reference run and identifies the changed modules. The partitioning from
the reference run is initialized in incremental run. The partitions that contain the changed
modules and the partitions that are affected by them are marked. Based on this, the tool will
perform synthesis on the partitions that have been marked. The information on how much
of the design and what parts of the design were re-synthesized can be found in the log file
after the incremental run.

This information will be in the “Incremental Synthesis Report Summary”. The following is an
example of the report.
Synthesis 30
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=30

Chapter 1: Vivado Synthesis
This section will have information on which sections of the design changed and needed to
be re-synthesized. In addition, it will also have information on how much of the design
changed from reference run to incremental run.

Re-Synthesizing the Full Design
There are some cases or types of designs that will cause the flow to trigger a full
re-synthesis of the design. These instances occur under the following conditions:

1. when changes to the top level of hierarchy are made
2. when the Synthesis settings change
3. when small designs contain few partitions
4. when more than 50% of the partitions have a change

In addition, unusually large XDC files can also trigger a re-synthesis of the full design. This
will be improved in future releases.

Note: Even though it is a Synthesis setting, -mode out_of_context will not trigger a full
re-synthesis.

X-Ref Target - Figure 1-18

Figure 1-18: Incremental Synthesis Report Summary
Synthesis 31
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=31

Chapter 1: Vivado Synthesis
Using Third-Party Synthesis Tools with Vivado IP
Xilinx IP that is available in the Vivado IP Catalog is designed, constrained, and validated
with the Vivado Design Suite synthesis.

Note: Even though this is a synthesis setting, -modeout_of_context will not trigger a full
resynthesis.

Most Xilinx-delivered IP has HDL that is encrypted with IEEE P1735, and no support is
available for third-party synthesis tools for Xilinx IP.

To instantiate Xilinx IP that is delivered with the Vivado IDE inside of a third-party synthesis
tool, the following flow is recommended:

1. Create the IP customization in a managed IP project.
2. Generate the output products for the IP including the synthesis design checkpoint

(DCP).

The Vivado IDE creates a stub HDL file, which is used in third-party synthesis tools to
infer a black box for the IP (_stub.v|_stub.vhd). The stub file contains directives to
prevent I/O buffers from being inferred; you might need to modify these files to support
other synthesis tool directives.

3. Synthesize the design with the stub files for the Xilinx IP.
4. Use the netlist produced by the third-party synthesis tool, and the DCP files for the

Xilinx IP, then run Vivado implementation. For more information, see this link to the
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 9].

Moving Processes to the Background
As the Vivado IDE initiates the process to run synthesis or implementation, an option in the
dialog box lets you put the process into the background. When you put the run in the
background, it releases the Vivado IDE to perform other functions, such as viewing reports.
Synthesis 32
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xUsingXilinxIPWithThirdPartySynthesisTools
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=32

Chapter 1: Vivado Synthesis
Monitoring the Synthesis Run
Monitor the status of a synthesis run from the Log window, shown in the following figure.
The messages that show in this window during synthesis are also the messages included in
the synthesis log file.

Following Synthesis
After the run is complete, the Synthesis Completed dialog box opens, as shown in the
following figure.

X-Ref Target - Figure 1-19

Figure 1-19: Log Window

X-Ref Target - Figure 1-20

Figure 1-20: Synthesis Completed Dialog Box
Synthesis 33
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=33

Chapter 1: Vivado Synthesis
Select one of the options:

• Run Implementation: Launches implementation with the current Implementation
Project Settings.

• Open Synthesized Design: Opens the synthesized netlist, the active constraint set, and
the target device into Synthesized Design environment, so you can perform I/O pin
planning, design analysis, and floorplanning.

• View Reports: Opens the Reports window so you can view reports.
• Use the Don’t show this dialog again checkbox to stop this dialog box display.

TIP: You can revert to having the dialog box present by selecting Tools> Settings >Window Behavior.

Analyzing Synthesis Results
After synthesis completes, you can view the reports, and open, analyze, and use the
synthesized design. The Reports window contains a list of reports provided by various
synthesis and implementation tools in the Vivado IDE.

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Advanced
Synthesis using Vivado.

Open the Reports view, shown in the following figure, and select a report for a specific run.
X-Ref Target - Figure 1-21

Figure 1-21: Synthesis Reports View
Synthesis 34
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/advanced-synthesis-using-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/advanced-synthesis-using-vivado.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=34

Chapter 1: Vivado Synthesis
Using the Synthesized Design Environment
The Vivado IDE provides an environment to analyze the design from several different
perspectives. When you open a synthesized design, the software loads the synthesized
netlist, the active constraint set, and the target device.

To open a synthesized design, select Open Synthesized Design from the Flow Navigator
or the Flow menu.

With a synthesized design open, the Vivado IDE opens a Device window, as shown in the
following figure.

From this perspective, you can examine the design logic and hierarchy, view the resource
utilization and timing estimates, or run design rule checks (DRCs). For more information,
see the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 15].

X-Ref Target - Figure 1-22

Figure 1-22: Device Window
Synthesis 35
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=35

Chapter 1: Vivado Synthesis
Exploring the Logic
The Vivado IDE provides several logic exploration perspectives: All windows cross-probe to
present the most useful information:

• The Netlist and Hierarchy windows contain a navigable hierarchical tree-style view.
• The Schematic window allows selective logic expansion and hierarchical display.
• The Device window provides a graphical view of the device, placed logic objects, and

connectivity.

Exploring the Logic Hierarchy
The Netlist window displays the logic hierarchy of the synthesized design. You can expand
and select any logic instance or net within the netlist.

As you select logic objects in other windows, the Netlist window expands automatically to
display the selected logic objects, and the information about instances or nets displays in
the Instance or Net Properties windows.

The Synthesized Design window displays a graphical representation of the RTL logic
hierarchy. Each module is sized in relative proportion to the others, so you can determine
the size and location of any selected module.

To open the Hierarchy window, in the Netlist window, right-click to bring up the context
menu. Select Show Hierarchy, as shown in the following figure. Also, you can press F6 to
open the Hierarchy window.
X-Ref Target - Figure 1-23

Figure 1-23: Show Hierarchy Option
Synthesis 36
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=36

Chapter 1: Vivado Synthesis
Exploring the Logical Schematic
The Schematic window allows selective expansion and exploration of the logical design. You
must select at least one logic object to open and display the Schematic window.

In the Schematic window, view and select any logic. You can display groups of timing paths
to show all of the instances on the paths. This aids floorplanning because it helps you
visualize where the timing critical modules are in the design.

To open the Schematic window, select one or more instances, nets, or timing paths, and
select Schematic from the window toolbar or the right-click menu, or press the F4 key.

The window opens with the selected logic displayed, as shown in Figure 1-24.

You can then select and expand the logic for any pin, instance, or hierarchical module.

X-Ref Target - Figure 1-24

Figure 1-24: Schematic Window
Synthesis 37
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=37

Chapter 1: Vivado Synthesis
Running Timing Analysis
Timing analysis of the synthesized design is useful to ensure that paths have the necessary
constraints for effective implementation. The Vivado synthesis is timing-driven and adjusts
the outputs based on provided constraints.

As more physical constraints, such as Pblocks and LOC constraints, are assigned in the
design, the results of the timing analysis become more accurate, although these results still
contain some estimation of path delay. The synthesized design uses an estimate of routing
delay to perform analysis.

You can run timing analysis at this level to ensure that the correct paths are covered and for
a more general idea of timing paths.

IMPORTANT: Only timing analysis after implementation (place and route) includes the actual delays
for routing. Running timing analysis on the synthesized design is not as accurate as running timing
analysis on an implemented design.

Running Synthesis with Tcl
The Tcl command to run synthesis is synth_design. Typically, this command is run with
multiple options, for example:

synth_design -part xc7k30tfbg484-2 -top my_top

In this example, synth_design is run with the -part option and the -top option.

In the Tcl Console, you can set synthesis options and run synthesis using Tcl command
options. To retrieve a list of options, type synth_design -help in the Tcl Console. The
following snippet is an example of the -help output: synth_design -help.

Description:
Synthesize a design using Vivado Synthesis and open that design
Syntax:
synth_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]
 [-include_dirs <args>] [-generic <args>] [-verilog_define <args>]
 [-flatten_hierarchy <arg>] [-gated_clock_conversion <arg>]
 [-directive <arg>] [-rtl] [-bufg <arg>] [-no_lc]
 [-shreg_min_size <arg>] [-mode <arg>]
 [-fsm_extraction <arg>] [-rtl_skip_ip] [-rtl_skip_constraints]
 [-keep_equivalent_registers] [-resource_sharing <arg>]
 [-cascade_dsp <arg>] [-control_set_opt_threshold <arg>]

[-max_bram <arg>] [-max_uram <arg>]
 [-max_dsp <arg>] [-max_bram_cascade_height <arg>]
 [-max_uram_cascade_height <arg>] [-retiming] [-no_srlextract]
 [-assert] [-no_timing_driven] [-sfcu] [-debug_log] [-quiet] [-verbose]
Synthesis 38
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=38

Chapter 1: Vivado Synthesis
Returns:
design object
Usage:
Name Description

 [-name] Design name
 [-part] Target part
 [-constrset] Constraint fileset to use
 [-top] Specify the top module name
 [-include_dirs] Specify verilog search directories
 [-generic] Specify generic parameters. Syntax: -generic
 <name>=<value> -generic <name>=<value> ...
 [-verilog_define] Specify verilog defines. Syntax:
 -verilog_define <macro_name>[=<macro_text>]
 -verilog_define <macro_name>[=<macro_text>]
 [-flatten_hierarchy] Flatten hierarchy during LUT mapping. Values:
 full, none, rebuilt
 Default: rebuilt
 [-gated_clock_conversion] Convert clock gating logic to flop enable.
 Values: off, on, auto
 Default: off
 [-directive] Synthesis directive. Values: default,
 RuntimeOptimized, AreaOptimized_high,
 AreaOptimized_medium, AlternateRoutability,
 AreaMapLargeShiftRegToBRAM,
 AreaMultThresholdDSP, FewerCarryChains
 Default: default
 [-rtl] Elaborate and open an rtl design
 [-bufg] Max number of global clock buffers used by
 synthesis
 Default: 12
 [-no_lc] Disable LUT combining. Do not allow combining
 [-shreg_min_size] Minimum length for chain of registers to be
 mapped onto SRL
 Default: 3
 [-mode] The design mode. Values: default,
 out_of_context
 Default: default
 [-fsm_extraction] FSM Extraction Encoding. Values: off,
 one_hot, sequential, johnson, gray,
 user_encoding, auto
 Default: auto
 [-rtl_skip_mlo] Skip mandatory logic optimization for RTL

elaboration of the design; requires -rtl option.
 [-rtl_skip_ip] Exclude subdesign checkpoints in the RTL
 elaboration of the design; requires -rtl
 option.
 [-rtl_skip_constraints] Do not load and validate constraints against
 elaborated design; requires -rtl option.
 [-srl_style] Static SRL Implementation Style. Values: register,
 srl, srl_reg, reg_srl, reg_srl_reg
 [-keep_equivalent_registers] Prevents registers sourced by the same logic

 from being merged. (Note that the merging can
 otherwise be prevented using the synthesis
 KEEP attribute)
Synthesis 39
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=39

Chapter 1: Vivado Synthesis
 [-resource_sharing] Sharing arithmetic operators. Value: auto,
 on, off
 Default: auto
 [-cascade_dsp] Controls how adders summing DSP block outputs
 will be implemented. Value: auto, tree, force
 Default: auto
 [-control_set_opt_threshold] Threshold for synchronous control set
 optimization to lower number of control sets.
 Valid values are 'auto' and non-negative
 integers. The higher the number, the more
 control set optimization will be performed
 and fewer control sets will result. To
 disable control set optimization completely,
 set to 0.
 Default: auto
 [-max_bram] Maximum number of block RAM allowed in
 design. (Note -1 means that the tool will
 choose the max number allowed for the part in
 question)
 Default: -1
 [-max_uram] Maximum number of UltraRAM blocks allowed in
 design. (Note -1 means that the tool will
 choose the max number allowed for the part in
 question)
 Default: -1
 [-max_dsp] Maximum number of block DSP allowed in
 design. (Note -1 means that the tool will
 choose the max number allowed for the part in
 question)
 Default: -1
 [-max_bram_cascade_height] Controls the maximum number of BRAM that can
 be cascaded by the tool. (Note -1 means that
 the tool will choose the max number allowed
 for the part in question)
 Default: -1
 [-max_uram_cascade_height] Controls the maximum number of UtraRAM that can
 be cascaded by the tool. (Note -1 means that
 the tool will choose the max number allowed
 for the part in question)
 Default: -1
 [-retiming] Seeks to improve circuit performance for
 intra-clock sequential paths by automatically
 moving registers (register balancing) across
 combinatorial gates or LUTs. It maintains
 the original behavior and latency of the
 circuit and does not require changes to the
 RTL sources.
 [-no_srlextract] Prevents the extraction of shift registers so
 that they get implemented as simple registers
 [-assert] Enable VHDL assert statements to be
 evaluated. A severity level of failure will
 stop the synthesis flow and produce an error.
 [-no_timing_driven] Do not run in timing driven mode.
 [-sfcu] Run in single-file compilation unit mode.
 [-debug_log] Print detailed log files for debugging
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command
 execution
Synthesis 40
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=40

Chapter 1: Vivado Synthesis
For the -generic option, special handling needs to happen with VHDL boolean and
std_logic_vector type because those type do not exist in other formats. Instead of
TRUE, FALSE, or 0010, for example, Verilog standards should be given.

For boolean, the value for FALSE is, as follows:

-generic my_gen=1‘b0

For std_logic_vector, the value for 0010 is:

-generic my_gen=4‘b0010

IMPORTANT: Overriding string generics or parameters is not supported.

IMPORTANT: If you are using the -mode out_of_context option on the top-level, do not use the
PACKAGE_PIN property unless there is an I/O buffer instantiated in the RTL. The out_of_context option
tells the tool to not infer any I/O buffers including tristate buffers. Without the buffer, you will get
errors in placer.

A verbose version of the help is available in the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 4]. To determine any Tcl equivalent to a Vivado IDE action, run the
command in the Vivado IDE and review the content in the Tcl Console or the log file.

Multi-Threading in RTL Synthesis
On multiprocessor systems, RTL synthesis leverages multiple CPU cores by default (up to 4)
to speed up compile times.

The maximum number of simultaneous threads varies, depending on the number of
processors available on the system, the OS, and the stage of the flow (see this link in the
Vivado Design Suite User Guide: Implementation (UG904) [Ref 13]).

The general.maxThreads Tcl parameter, which is common to all threads in Vivado, gives
you control to specify the number of threads to use when running RTL synthesis. For
example:

Vivado% set_param general.maxThreads <new limit>

Where the <new limit> must be an integer from 1 to 8 inclusive. For RTL synthesis, 4 is
the maximum number of threads that can be set effectively.
Synthesis 41
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug904-vivado-implementation.pdf;a=xUsingRemoteHostsAndLSF
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=41

Chapter 1: Vivado Synthesis
Tcl Script Example
The following is an example synth_design Tcl script:

Setup design sources and constraints
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc
Run synthesis
synth_design -top bft -part xc7k70tfbg484-2 -flatten_hierarchy rebuilt
Write design checkpoint
write_checkpoint -force $outputDir/post_synth
Write report utilization and timing estimates
report_utilization -file utilization.txt
report_timing > timing.txt

Setting Constraints
Table 1-1 shows the supported Tcl commands for Vivado timing constraints. The commands
are linked to more information to the full description in the Vivado Design Suite Tcl
Command Reference Guide (UG835) [Ref 4].

For details on these commands, see the following documents:

• Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 4]
• Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 12]
• Vivado Design Suite Tutorial: Using Constraints (UG945) [Ref 20]
• Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

[Ref 15]

Table 1-1: Supported Synthesis Tcl Commands
Command Type Commands

Timing
Constraints

create_clock create_generated_clock set_false_path set_input_delay
set_output_delay set_max_delay set_multicycle_path get_cells
set_clock_latency set_clock_groups set_disable_timing get_ports

Object Access
all_clocks all_inputs all_outputs
get_clocks get_nets get_pins
Synthesis 42
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_clock
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_generated_clock
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_false_path
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_input_delay
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_output_delay
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_max_delay
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_multicycle_path
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xget_cells
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_clock_latency
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_clock_groups
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_disable_timing
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xget_ports
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xall_clocks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xall_inputs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xall_outputs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xget_clocks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xget_nets
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xget_pins
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=42

Chapter 1: Vivado Synthesis

Sy 43
UG

Tab
low_Perf

timized_
high

Flow_Perf
ThreshholdCarry

Flow_Runtime
Optimized

-f rebuilt rebuilt none
-g off off off
-b 12 12 12

-d formance
ptimized

FewerCarry
Chains

RunTime
Optimized

-r checked unchecked unchecked
-f ne_hot auto off
-k checked unchecked unchecked
-r off off auto
-c auto auto auto
-n hecked checked unchecked
-n checked unchecked unchecked
-s 5 3 3
-m -1 -1 -1
-m -1 -1 -1
-m -1 -1 -1
-m -1 -1 -1
-m -1 -1 -1
-c auto auto auto
-a checked unchecked unchecked
nthesis
901 (v2021.1) July 14, 2021 www.xilinx.com

Vivado Preconfigured Strategies
The following table shows the preconfigured strategies and their respective settings.

le 1-2: Vivado Preconfigured Strategies

Options\Strategies Default Flow_Area
Optimized_high

Flow_
AreaOptimized_

medium

Flow_Area
Mult

ThresholdDSP

Flow_
Alternate

Routability

F
Op

latten_hierarchy rebuilt rebuilt rebuilt rebuilt rebuilt
ated_clock_conversion off off off off off
ufg 12 12 12 12 12

irective Default AreaOptimized
_high

AreaOptimized
_medium

AreaMult
ThresholdDSP

Alternate
Routability

Per
O

etiming unchecked unchecked unchecked unchecked unchecked un
sm_extraction auto auto auto auto auto o
eep_equivalent_registers unchecked unchecked unchecked unchecked unchecked un
esource_sharing auto auto auto auto auto
ontrol_set_opt_threshold auto 1 1 auto auto
o_lc unchecked unchecked unchecked unchecked checked c
o_srlextract unchecked unchecked unchecked unchecked unchecked un
hreg_min_size 3 3 3 3 10
ax_bram -1 -1 -1 -1 -1
ax_uram -1 -1 -1 -1 -1
ax_dsp -1 -1 -1 -1 -1
ax_b_cascade_height -1 -1 -1 -1 -1
ax_u_cascade_height -1 -1 -1 -1 -1

ascade_dsp auto auto auto auto auto
ssert unchecked unchecked unchecked unchecked unchecked un

https://www.xilinx.com

Chapter 2

Synthesis Attributes

Introduction
In the Vivado® Design Suite, Vivado synthesis is able to synthesize attributes of several
types. In most cases, these attributes have the same syntax and the same behavior.

• If Vivado synthesis supports the attribute, it uses the attribute, and creates logic that
reflects the used attribute.

• If the specified attribute is not recognized by the tool, the Vivado synthesis passes the
attribute and its value to the generated netlist.

It is assumed that a tool later in the flow can use the attribute. For example, the LOC
constraint is not used by synthesis, but the constraint is used by the Vivado placer, and is
forwarded by Vivado synthesis.

Supported Attributes
ASYNC_REG
The ASYNC_REG is an attribute that affects many processes in the Vivado tools flow. The
purpose of this attribute is to inform the tool that a register is capable of receiving
asynchronous data in the D input pin relative to the source clock, or that the register is a
synchronizing register within a synchronization chain.

The Vivado synthesis, when encountering this attribute treats it as a DONT_TOUCH attribute
and pushes the ASYNC_REG property forward in the netlist. This process ensures that the
object with the ASYNC_REG property is not optimized out, and that tools later in the flow
receive the property to handle it correctly.

For information on how other Vivado tools handle this attribute, see this link to ASYNC_REG
in the Vivado Design Suite Properties Reference Guide (UG912) [Ref 19].
Synthesis 44
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug912-vivado-properties.pdf;a=xASYNC_REG
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=44

Chapter 2: Synthesis Attributes
You can place this attribute on any register; values are FALSE (default) and TRUE. This
attribute can be set in the RTL or the XDC.

IMPORTANT: Care should be taken when putting this attribute on loadless signals. The attribute and
signal might not be preserved.

ASYNC_REG Verilog Example

(* ASYNC_REG = "TRUE" *) reg [2:0] sync_regs;

ASYNC_REG VHDL Examples

attribute ASYNC_REG : string;
attribute ASYNC_REG of sync_regs : signal is "TRUE";
attribute ASYNC_REG : boolean;
attribute ASYNC_REG of sync_regs : signal is TRUE;

BLACK_BOX
The BLACK_BOX attribute is a useful debugging attribute directs synthesis to create a black
box for that module or entity. When the attribute is found, even if there is valid logic for a
module or entity, Vivado synthesis creates a black box for that level. This attribute can be
placed on a module, entity, or component. Because this attribute affects the synthesis
compiler, it can only be set in the RTL.

BLACK_BOX Verilog Example

(* black_box *) module test(in1, in2, clk, out1);

IMPORTANT: In the Verilog example, no value is needed. The presence of the attribute creates the black
box.

BLACK_BOX VHDL Example

attribute black_box : string;
attribute black_box of beh : architecture is "yes";

For more information regarding coding style for Black Boxes, see Black Boxes in Chapter 4.

CASCADE_HEIGHT
The CASCADE_HEIGHT attribute is an integer used to describe the length of the cascade
chains of large RAMS that are put into block RAMs. When a RAM that is larger than a single
block RAM is described, the Vivado synthesis tool determines how it must be configured.
Synthesis 45
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=45

Chapter 2: Synthesis Attributes
Often, the tool chooses to cascade the block RAMs that it creates. This attribute can be used
to shorten the length of the chain. Place the attribute on the RAM in question, and you can
place the attribute in the RTL files. A value of 0 or 1 for this attribute effectively turns off any
cascading of block RAMs.

Note: This attribute is only applicable to UltraScale™ architecture BRAMS (block RAMs) and URAMs
(UltraRAMs).

More information on CASCADE_HEIGHT attributes for UltraRAM is available in
CASCADE_HEIGHT in Chapter 4.

CASCADE_HEIGHT Verilog example

(* cascade_height = 4 *) reg [31:0] ram [(2**15) - 1:0];

CASCADE_HEIGHT VHDL example

attribute cascade_height : integer;
attribute cascade_height of ram : signal is 4;

CLOCK_BUFFER_TYPE
Apply CLOCK_BUFFER_TYPE on an input clock to describe what type of clock buffer to use.

By default, Vivado synthesis uses BUFGs for clock buffers. Supported values are "BUFG",
"BUFH", "BUFIO", "BUFMR", "BUFR" or "none". The CLOCK_BUFFER_TYPE attribute can be
placed on any top-level clock port. It can be set in the RTL and XDC.

CLOCK_BUFFER_TYPE Verilog Example

(* clock_buffer_type = "none" *) input clk1;

CLOCK_BUFFER_TYPE VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
out1 : std_logic_vector(8 downto 0));
attribute clock_buffer_type : string;
attribute clock_buffer_type of clk: signal is "BUFR";

end test;

CLOCK_BUFFER_TYPE XDC Example

set_property CLOCK_BUFFER_TYPE BUFG [get_ports clk]
Synthesis 46
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=46

Chapter 2: Synthesis Attributes
DIRECT_ENABLE
Apply DIRECT_ENABLE on an input port or other signal to have it go directly to the enable
line of a flop when there is more than one possible enable, or when you want to force the
synthesis tool to use the enable lines of the flop.

The DIRECT_ENABLE attribute can be placed on any port or signal.

DIRECT_ENABLE Verilog Example

(* direct_enable = "yes" *) input ena3;

DIRECT_ENABLE VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
ena1, ena2, ena3 : in std_logic
out1 : std_logic_vector(8 downto 0));
attribute direct_enable : string;
attribute direct_enable of ena3: signal is "yes";

end test;

DIRECT_ENABLE XDC Example

set_property direct_enable yes [get_nets -of [get_ports ena3]]

Note: For XDC usage, this attribute only works on type net, so you must use the get_nets
command for the object.

DIRECT_RESET
Apply DIRECT_RESET on an input port or other signal to have it go directly to the reset line
of a flop when there is more than one possible reset or when you want to force the synthesis
tool to use the reset lines of the flop.

The DIRECT_RESET attribute can be placed on any port or signal.

DIRECT_RESET Verilog Example

(* direct_reset = "yes" *) input rst3;

DIRECT_RESET VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
rst1, rst2, rst3 : in std_logic
out1 : std_logic_vector(8 downto 0));
attribute direct_reset : string;
Synthesis 47
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=47

Chapter 2: Synthesis Attributes
attribute direct_reset of rst3: signal is "yes";

end test;

DIRECT_RESET XDC Example

set_property direct_reset yes [get_nets -of [get_ports rst3]]

Note: For XDC usage, this attribute only works on type net, so you need to use the get_nets
command for the object.

DONT_TOUCH
Use the DONT_TOUCH attribute in place of KEEP or KEEP_HIERARCHY. The DONT_TOUCH
works in the same way as KEEP or KEEP_HIERARCHY attributes however, unlike KEEP and
KEEP_HIERARCHY, DONT_TOUCH is forward-annotated to place and route to prevent logic
optimization.

\ CAUTION! Like KEEP and KEEP_HIERARCHY, be careful when using DONT_TOUCH. In cases where
other attributes are in conflict with DONT_TOUCH, the DONT_TOUCH attribute takes precedence.

The values for DONT_TOUCH are TRUE/FALSE or yes/no. You can place this attribute on any
signal, module, entity, or component.

Note: The DONT_TOUCH attribute is not supported on the port of a module or entity. If specific
ports are needed to be kept, either use the -flatten_hierarchy none setting, or put a
DONT_TOUCH on the module/entity itself.

In general, the DONT_TOUCH attribute should be set in RTL only. Signals that need to be
kept can often be optimized before the XDC file is read. Therefore, setting this attribute in
the RTL ensures that it is used. There is one use case where it is recommended that
DONT_TOUCH is set in the XDC file. This would be when DONT_TOUCH is set to yes in the
RTL, and it is desired to be taken out without having to change the RTL. In this case, setting
DONT_TOUCH to no in XDC when that same signal has DONT_TOUCH set to yes in RTL will
effectively remove that attribute without having to change the RTL.

Note: When using the XDC to remove a DONT_TOUCH that is set in RTL, you may end up getting
warnings after synthesis when the implementation flow reads the same XDC but the signal in
question has been optimized out. These warnings can be ignored. However, you can also bypass
them by putting the DONT_TOUCH attributes in an XDC file that is marked as for synthesis only.
Synthesis 48
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=48

Chapter 2: Synthesis Attributes
DONT_TOUCH Verilog Examples

Verilog Wire Example

(* dont_touch = "yes" *) wire sig1;
assign sig1 = in1 & in2;
assign out1 = sig1 & in2;

Verilog Module Example

(* DONT_TOUCH = "yes" *)
module example_dt_ver
(clk,
In1,
In2,
out1);

Verilog Instance Example

(* DONT_TOUCH = "yes" *) example_dt_ver U0
(.clk(clk),
.in1(a),
.in2(b),
out1(c));

DONT_TOUCH VHDL Examples

VHDL Signal Example

signal sig1 : std_logic;
attribute dont_touch : string;
attribute dont_touch of sig1 : signal is "true";
....
....
sig1 <= in1 and in2;
out1 <= sig1 and in3;

VHDL Entity Example

entity example_dt_vhd is
port (
clk : in std_logic;
In1 : in std_logic;
In2 : in std_logic;
out1 : out std_logic

);
attribute dont_touch : string;
attribute dont_touch of example_dt_vhd : entity is "true|yes";

end example_dt_vhd;

VHDL Component Example

entity rtl of test is
attribute dont_touch : string;
component my_comp
port (
Synthesis 49
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=49

Chapter 2: Synthesis Attributes
in1 : in std_logic;
out1 : out std_logic);

end component;
attribute dont_touch of my_comp : component is "yes";

VHDL Example on Architecture

architecture rtl of test is
attribute dont_touch : string;
attribute dont_touch of rtl : architecture is "yes";

DSP_FOLDING
The DSP_FOLDING attribute controls whether the Vivado synthesis folds two MAC
structures connected with an adder into one DSP primitive.

The values for DSP_FOLDING are:

• "yes": The tool will convert MAC structures.
• "no": The tool will not convert MAC structures.

DSP_FOLDING is supported in RTL only. It should be placed on the
module/entity/architecture of the logic that will contain the MAC structures.

VHDL Example

attribute dsp_folding : string;
attribute dsp_folding of my_entity : entity is "yes";

Verilog Example

(* dsp_folding = "yes" *) module top

DSP_FOLDING_FASTCLOCK
The DSP_FOLDING_FASTCLOCK attribute tells the tool which port should become the new
faster clock when using DSP folding.

The values for DSP_FOLDING_FASTCLOCK are:

• "yes": The tool will use this port as the one that is connects for the new clock.
• "no": The tool will not use this port.

DSP_FOLDING_FASTCLOCK is supported in RTL only. Place this attribute only on a port or
a pin.
Synthesis 50
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=50

Chapter 2: Synthesis Attributes
VHDL Example

attribute dsp_folding_fastclock : string;

attribute dsp_folding_fastclock of clk_fast : signal is "yes";

Verilog Example

(* dsp_folding_fastclock = "yes" *) input clk_fast;

EXTRACT_ENABLE
EXTRACT_ENABLE controls whether registers infer enables. Typically, the Vivado tools
extract or not extract enables based on heuristics that typically benefit the most amount of
designs. In cases where Vivado is not behaving in a desired way, this attribute overrides the
default behavior of the tool.

If there is an undesired enable going to the CE pin of the flip-flop, this attribute can force
it to the D input logic. Conversely, if the tool is not inferring an enable that is specified in
the RTL, this attribute can tell the tool to move that enable to the CE pin of the flip-flop.

EXTRACT_ENABLE is placed on the registers and is supported in RTL and XDC. It can take
boolean values of: "yes" and "no".

EXTRACT_ENABLE Example (Verilog)

(* extract_enable = "yes" *) reg my_reg;

EXTRACT_ENABLE Example (VHDL)

signal my_reg : std_logic;
attribute extract_enable : string;
attribute extract_enable of my_reg: signal is "no";

EXTRACT_ENABLE Example (XDC)

set_property EXTRACT_ENABLE yes [get_cells my_reg]

EXTRACT_RESET
EXTRACT_RESET controls if registers infer resets. Typically, the Vivado tools extract or not
extract resets based on heuristics that typically benefit the most amount of designs. In
cases where Vivado is not behaving in a desired way, this attribute overrides the default
behavior of the tool. If there is an undesired synchronous reset going to the flip-flop, this
attribute can force it to the D input logic. Conversely, if the tool is not inferring a reset that
is specified in the RTL, this attribute can tell the tool to move that reset to the dedicated
Synthesis 51
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=51

Chapter 2: Synthesis Attributes
reset of the flop. This attribute can only be used with synchronous resets; asynchronous
resets are not supported with this attribute.

EXTRACT_RESET is placed on the registers, and supported in the RTL and XDC. It can take
the boolean values: "yes" or "no". A value of "no" means that the reset will not go to the
R pin of the register and instead will be routed through logic to the D pin of the register. A
value of "yes" means that the reset will go directly to the R pin of the register.

EXTRACT_RESET Example (Verilog)

(* extract_reset = "yes" *) reg my_reg;

EXTRACT_RESET Example (XDC)

set_property EXTRACT_RESET yes [get_cells my_reg]

EXTRACT_RESET Example (VHDL)

signal my_reg : std_logic;
attribute extract_reset : string;
attribute extract_reset of my_reg: signal is "no";

FSM_ENCODING
FSM_ENCODING controls encoding on the state machine. Typically, the Vivado tools choose
an encoding protocol for state machines based on heuristics that do the best for the most
designs. Certain design types work better with a specific encoding protocol.

FSM_ENCODING can be placed on the statemachine registers. The legal values for this are
"one_hot", "sequential","johnson","gray","user_encoding" and "none".
The "auto" value is the default, and allows the tool to determine best encoding. The
"user_encoding" value tells the tool to still infer a statemachine, but to use the encoding
given in the RTL by the user.

The FSM_ENCODING attribute can be set in the RTL or the XDC.

FSM_ENCODING Example (Verilog)

(* fsm_encoding = "one_hot" *) reg [7:0] my_state;

FSM_ENCODING Example (VHDL)

type count_state is (zero, one, two, three, four, five, six, seven);
signal my_state : count_state;
attribute fsm_encoding : string;
attribute fsm_encoding of my_state : signal is "sequential";
Synthesis 52
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=52

Chapter 2: Synthesis Attributes
FSM_SAFE_STATE
FSM_SAFE_STATE instructs Vivado synthesis to insert logic into the state machine that
detects there is an illegal state, then puts it into a known, good state on the next clock cycle.

For example, if there were a state machine with a "one_hot" encode, and that is in a
"0101" state (which is an illegal for "one_hot"), the state machine would be able to
recover. Place the FSM_SAFE_STATE attribute on the state machine registers. You can set
this attribute in either the RTL or in the XDC.

The legal values for FSM_SAFE_STATE are:

• "auto_safe_state": Uses Hamming-3 encoding for auto-correction for one bit/flip.
• "reset_state": Forces the state machine into the reset state using Hamming-2

encoding detection for one bit/flip.
• "power_on_state": Forces the state machine into the power-on state using

Hamming-2 encoding detection for one bit/flip.
• "default_state": Forces the state machine into the default state specified in RTL:

the state that is specified in default branch of the case statement in Verilog or the
state specified in the others branch of the case statement in VHDL. For this to work, a
default or others state must be in the RTL.

FSM_SAFE_STATE Example (Verilog)

(* fsm_safe_state = "reset_state" *) reg [7:0] my_state;

FSM_SAFE_STATE Example (VHDL)

type count_state is (zero, one, two, three, four, five, six, seven);
signal my_state : count_state;
attribute fsm_safe_state : string;
attribute fsm_safe_state of my_state : signal is "power_on_state";

FULL_CASE (Verilog Only)
FULL_CASE indicates that all possible case values are specified in a case, casex, or casez
statement. If case values are specified, extra logic for case values is not created by Vivado
synthesis. This attribute is placed on the case statement.

IMPORTANT: Because this attribute affects the compiler and can change the logical behavior of the
design, it can be set in the RTL only.

FULL_CASE Example (Verilog)

(* full_case *)
case select
Synthesis 53
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=53

Chapter 2: Synthesis Attributes
3’b100 : sig = val1;
3’b010 : sig = val2;
3’b001 : sig = val3;

endcase

GATED_CLOCK
Vivado synthesis allows the conversion of gated clocks. To perform this conversion, use:

• A switch in the Vivado GUI that instructs the tool to attempt the conversion.
• The RTL attribute that instructs the tool about which signal in the gated logic is the

clock.

Place this attribute on the signal or port that is the clock. To control the switch:

1. Select Tools > Settings > Project Settings > Synthesis.
2. In the Options area, set the -gated_clock_conversion option to one of the following

values:

° off: Disables the gated clock conversion.

° on: Gated clock conversion occurs if the gated_clock attribute is set in the RTL
code. This option gives you more control of the outcome.

° auto: Gated clock conversion occurs if either of the following events are true:
- the gated_clock attribute is set to TRUE.
- the Vivado synthesis can detect the gate and there is a valid clock constraint set.

This option lets the tool make decisions.

CAUTION! Care should be taken when using attributes like KEEP_HIERARCHY, DONT_TOUCH and
MARK_DEBUG. These attributes can interfere with gated clock conversion if placed on hierarchies or
instances that need to change in order to support the conversion.

GATED_CLOCK Example (Verilog)

(* gated_clock = "true" *) input clk;

GATED_CLOCK Example (VHDL)

entity test is port (
in1, in2 : in std_logic_vector(9 downto 0);
en : in std_logic;
clk : in std_logic;
out1 : out std_logic_vector(9 downto 0));
attribute gated_clock : string;
attribute gated_clock of clk : signal is "true";

end test;
Synthesis 54
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=54

Chapter 2: Synthesis Attributes
IOB
The IOB attribute controls if a register should go into the I/O buffer. The values are TRUE or
FALSE. Place this attribute on the register that you want in the I/O buffer. This attribute can
be set only in the RTL.

IOB Example (Verilog)

(* IOB = "true" *) reg sig1;

IOB Example (VHDL)

signal sig1:std_logic;
attribute IOB: string;
attribute IOB of sig1 : signal is "true";

IOB Example (XDC)

set_property IOB true [get_cells sig1]

IO_BUFFER_TYPE
Apply the IO_BUFFER_TYPE attribute on any top-level port to instruct the tool to use
buffers. Add the property with a value of "NONE" to disable the automatic inference of
buffers on the input or output buffers, which is the default behavior of Vivado synthesis.
This attribute is only supported, and can only be set, in the RTL.

IO_BUFFER_TYPE Example (Verilog)

(* io_buffer_type = "none" *) input in1;

IO_BUFFER_TYPE Example (VHDL)

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
out1 : std_logic_vector(8 downto 0));
attribute io_buffer_type : string;
attribute io_buffer_type of out1: signal is "none";

end test;

KEEP
Use the KEEP attribute to prevent optimizations where signals are either optimized or
absorbed into logic blocks. This attribute instructs the synthesis tool to keep the signal it
was placed on, and that signal is placed in the netlist.
Synthesis 55
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=55

Chapter 2: Synthesis Attributes
For example, if a signal is an output of a 2 bit AND gate, and it drives another AND gate, the
KEEP attribute can be used to prevent that signal from being merged into a larger LUT that
encompasses both AND gates.

CAUTION! Be careful when using KEEP with other attributes. In cases where other attributes are in
conflict with KEEP, the KEEP attribute usually takes precedence.

KEEP is also commonly used in conjunction with timing constraints. If there is a timing
constraint on a signal that would normally be optimized, KEEP prevents that and allows the
correct timing rules to be used.

Note: The KEEP attribute is not supported on the port of a module or entity. If you need to keep
specific ports, either use the -flatten_hierarchy none setting, or put a DONT_TOUCH on the
module or entity itself.

CAUTION! Take care when using KEEP attribute on loadless signals. Synthesis will keep those signals
resulting in issues later in the flow.

Examples are:

• When you have a MAX_FANOUT attribute on one signal and a KEEP attribute on a
second signal that is driven by the first; the KEEP attribute on the second signal would
not allow fanout replication.

• With a RAM_STYLE="block", when there is a KEEP on the register that would need to
become part of the RAM, the KEEP attribute prevents the block RAM from being
inferred.

The supported KEEP values are:

• TRUE: Keeps the signal.
• FALSE: Allows Vivado synthesis to optimize. The FALSE value does not force the tool to

remove the signal. The default value is FALSE.

You can place this attribute on any signal, register, or wire.

RECOMMENDED: Set this attribute in the RTL only. Because signals that need to be kept are often
optimized before the XDC file is read, setting this attribute in the RTL ensures that the attribute is used.

Note: The KEEP attribute does not force the place and route to keep the signal. Instead, this is
accomplished using the DONT_TOUCH attribute.

KEEP Example (Verilog)

(* keep = "true" *) wire sig1;
assign sig1 = in1 & in2;
assign out1 = sig1 & in2;
Synthesis 56
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=56

Chapter 2: Synthesis Attributes
KEEP Example (VHDL)

signal sig1 : std_logic;
attribute keep : string;
attribute keep of sig1 : signal is "true";
....
....
sig1 <= in1 and in2;
out1 <= sig1 and in3;

KEEP_HIERARCHY
KEEP_HIERARCHY is used to prevent optimizations along the hierarchy boundaries. The
Vivado synthesis tool attempts to keep the same general hierarchy specified in the RTL, but
for better Quality of Results (QoR) reasons it can flatten or modify them.

If KEEP_HIERARCHY is placed on the instance, the synthesis tool keeps the boundary on
that level static.

This can affect QoR and also should not be used on modules that describe the control logic
of 3-state outputs and I/O buffers. The KEEP_HIERARCHY can be placed in the module or
architecture level or the instance. This attribute can be set in the RTL and in XDC. If it is used
in the XDC, it can only be put on the instance.

KEEP_HIERARCHY Example (Verilog)

On Module:
(* keep_hierarchy = "yes" *) module bottom (in1, in2, in3, in4, out1, out2);

On Instance:
(* keep_hierarchy = "yes" *)bottom u0 (.in1(in1), .in2(in2), .out1(temp1));

KEEP_HIERARCHY Example (VHDL)

On Architecture:
attribute keep_hierarchy : string;
attribute keep_hierarchy of beh : entity is "yes";

KEEP_HIERARCHY Example (XDC)

On Instance:
set_property keep_hierarchy yes [get_cells u0]
Synthesis 57
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=57

Chapter 2: Synthesis Attributes
MARK_DEBUG
This attribute is applicable to net objects. Some nets can have dedicated connectivity or
other aspects that prohibit visibility for debug purposes.

The MARK_DEBUG values are: "TRUE" or "FALSE".

Syntax

Syntax (Verilog)

To set this attribute, place the proper Verilog attribute syntax on the signal in question:

(* MARK_DEBUG = "{TRUE|FALSE}" *)

Syntax Example (Verilog)

// Marks an internal wire for debug
(* MARK_DEBUG = "TRUE" *) wire debug_wire,

Syntax (VHDL)

To set this attribute, place the proper VHDL attribute syntax on the signal in question.

Declare the VHDL attribute as follows:

attribute MARK_DEBUG : string;

Specify the VHDL attribute as follows:

attribute MARK_DEBUG of signal_name : signal is "{TRUE|FALSE}";

Where signal_name is an internal signal.

Syntax Example (VHDL)

signal debug_wire : std_logic;
attribute MARK_DEBUG : string;
-- Marks an internal wire for debug
attribute MARK_DEBUG of debug_wire : signal is "TRUE";

Syntax (XDC)

set_property MARK_DEBUG value [get_nets <net_name>]

Where <net_name> is a signal name.

Syntax Example (XDC)

Marks an internal wire for debug
set_property MARK_DEBUG TRUE [get_nets debug_wire]
Synthesis 58
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=58

Chapter 2: Synthesis Attributes
Often, the use of MARK_DEBUG is on pins of hierarchies, and can be used on any elaborated
sequential element, such as RTL_REG. MARK_DEBUG attributes are intended go on nets. It is
recommended that you use both the get_nets and the get_pins command as shown,
such as: set_property MARK_DEBUG true [get_nets -of [get_pins\
hier1/hier2/<flop_name>/Q]]. This recommended use ensures that the
MARK_DEBUG goes onto the net connected to that pin, regardless of its name.

Note: If a MARK_DEBUG is applied on a bit of a signal that was declared as a bit_vector, the whole
bus will get the MARK_DEBUG attribute. In addition, if a MARK_DEBUG is placed on a pin of a
hierarchy, the full hierarchy will be kept.

MAX_FANOUT
MAX_FANOUT instructs Vivado synthesis on the fanout limits for registers and signals. You
can specify this either in RTL or as an input to the project. The value is an integer.

This attribute only works on registers and combinatorial signals. To achieve the fanout, it
replicates the register or the driver that drives the combinatorial signal. This attribute can
be set only in the RTL.

Note: Inputs, black boxes, EDIF (EDF), and Native Generic Circuit (NGC) files are not supported.

IMPORTANT: NGC format files are not supported in the Vivado Design Suite for UltraScale devices. It
is recommended that you regenerate the IP using the Vivado Design Suite IP customization tools with
native output products. Alternatively, you can use the NGC2EDIF command to migrate the NGC file to
EDIF format for importing. However, Xilinx recommends using native Vivado IP rather than
XST-generated NGC format files going forward.

RECOMMENDED: Using MAX_FANOUT attributes on global high fanout signals leads to sub-optimal
replication in synthesis. For this reason, Xilinx recommends only using MAX_FANOUT inside the
hierarchies on local signals with medium to low fanout.

MAX_FANOUT Example (Verilog)

On Signal:
(* max_fanout = 50 *) reg sig1;

MAX_FANOUT Example (VHDL)

signal sig1 : std_logic;
attribute max_fanout : integer;
attribute max_fanout of sig1 : signal is 50;

Note: In VHDL, max_fanout is an integer.
Synthesis 59
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=59

Chapter 2: Synthesis Attributes
PARALLEL_CASE (Verilog Only)
PARALLEL_CASE specifies that the case statement must be built as a parallel structure.
Logic is not created for an if -elsif structure. Because this attribute affects the compiler
and the logical behavior of the design, it can be set in the RTL only.

(* parallel_case *) case select
3’b100 : sig = val1;
3’b010 : sig = val2;
3’b001 : sig = val3;

endcase

IMPORTANT: This attribute can only be controlled through the Verilog RTL.

RAM_DECOMP
The RAM_DECOMP attribute instructs the tool to infer RTL RAMs that are too large to fit in a
single block RAM primitive to use a more power friendly configuration.

For example, a RAM specified as 2K x 36 would often be configured as two 2K x 18 BRAMs
arranged side by side. This is the configuration that yields the fastest design. By setting
RAM_DECOMP, the RAM would instead be configured as 2 1K x 36 BRAMs. This is more
power- friendly because during a read or write, only the one RAM with the address being
used is active. It comes at the cost of timing, because Vivado synthesis must then use
address decoding. The RAM_DECOMP would force the second configuration of that RAM.

The value accepted for RAM_DECOMP is "power".

This attribute can be set in either RTL or XDC. Place the attribute on the RAM instance itself.

RAM_DECOMP Example (Verilog)

(* ram_decomp = "power" *) reg [data_size-1:0] myram [2**addr_size-1:0];

RAM_DECOMP Example (VHDL)

attribute ram_decomp : string;
attribute ram_decomp of myram : signal is "power";

RAM_DECOMP Example (XDC)

set_property ram_decomp power [get_cells myram]

RAM_STYLE
RAM_STYLE instructs the Vivado synthesis tool on how to infer memory. Accepted values
are:
Synthesis 60
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=60

Chapter 2: Synthesis Attributes
• block: Instructs the tool to infer RAMB type components.
• distributed: Instructs the tool to infer the LUT RAMs.
• registers: Instructs the tool to infer registers instead of RAMs.
• ultra: Instructs the tool to use the UltraScale+™ URAM primitives.
• mixed: Instructs the tool to infer a combination of RAM types designed to minimize the

amount of space that is unused.

By default, the tool selects which RAM to infer based upon heuristics that give the best
results for most designs. Place this attribute on the array that is declared for the RAM or a
level of hierarchy.

• If set on a signal, the attribute will affect that specific signal.
• If set on a level of hierarchy, this is affects all the RAMs in that level of hierarchy.

Sub-levels of hierarchy are not affected.

This can be set in the RTL or the XDC.

RAM_STYLE Example (Verilog)

(* ram_style = "distributed" *) reg [data_size-1:0] myram [2**addr_size-1:0];

RAM_STYLE Example (VHDL)

attribute ram_style : string;
attribute ram_style of myram : signal is "distributed";

For more information about RAM coding styles, see RAM HDL Coding Techniques in
Chapter 4.

RETIMING_BACKWARD
The RETIMING_BACKWARD attribute instructs the tool to move a register backwards
through logic closer to the driving sequential elements. Unlike the retiming global setting,
this attribute is not timing driven and will work regardless of whether the retiming global
setting is active or if there are even timing constraints. If the global retiming setting is
active, the RETIMING_BACKWARD step will happen first, and then the global retiming can
enhance that register to move further back the chain, but it will not interfere with the
attribute and move the register back to the original location.

Note: Cells with DONT_TOUCH/MARK_DEBUG attributes, cells with timing exceptions (false_path,
multicycle_path), and user-instantiated cells will block this attribute.

The RETIMING_BACKWARD attribute takes in an integer of 0 (off) or 1 (on). It works in both
RTL and in XDC formats.
Synthesis 61
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=61

Chapter 2: Synthesis Attributes
RETIMING_BACKWARD Example (Verilog)

(*retiming_backward = 1 *) reg my_sig;

RETIMING_BACKWARD Example (VHDL)

attribute retiming_backward : integer;
attribute retiming_backward of my_sig : signal is 1;

RETIMING_BACKWARD Example (XDC)

set_property retiming_backward 1 [get_cells my_sig];

RETIMING_FORWARD
The RETIMING_FORWARD attribute instructs the tool to move a register forward through
logic closer to the driven sequential elements. Unlike the retiming global setting, this
attribute is not timing driven and will work regardless of whether the retiming global
setting is active or if there are even timing constraints. If the global retiming setting is
active, the RETIMING_FORWARD step will happen first, and then the global retiming can
enhance that register to move further up the chain, but it will not interfere with the
attribute and move the register back to the original location.

Note: Cells with DONT_TOUCH/MARK_DEBUG attributes, cells with timing exceptions (false_path,
multicycle_path), and user instantiated cells will block this attribute.

The RETIMING_FORWARD attribute takes in an integer of 0 (off) or 1 (on). It will work in
both RTL and in XDC formats.

RETIMING_FORWARD Example (Verilog)

(* retiming_forward = 1 *) reg my_sig;

RETIMING_FORWARD Example (VHDL)

attribute retiming_forward : integer;
attribute retiming_forward of my_sig : signal is 1;

RETIMING_FORWARD Example (XDC)

set_property retiming_forward 1 [get_cells my_sig];

ROM_STYLE
ROM_STYLE instructs the synthesis tool on how to infer constant arrays into memory
structures like Block RAMs. Accepted values are:

• block: Instructs the tool to infer RAMB type components
Synthesis 62
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=62

Chapter 2: Synthesis Attributes
• distributed: Instructs the tool to infer the LUT ROMs. Instructs the tool to infer
constant arrays into distributed RAM (LUTRAM) resources. By default, the tool selects
which ROM to infer based on heuristics that give the best results for the most designs.

• ultra: Instructs synthesis to use URAM primitives. (Versal parts only).

This can be set in the RTL and the XDC.

ROM_STYLE Example (Verilog)

(* rom_style = "distributed" *) reg [data_size-1:0] myrom [2**addr_size-1:0];

ROM_STYLE Example (VHDL)

attribute rom_style : string;
attribute rom_style of myrom : signal is "distributed";

For information about coding for ROM, see ROM HDL Coding Techniques in Chapter 4.

RW_ADDR_COLLISION
The RW_ADDR_COLLISION attribute is for specific types of RAMs. When a RAM is a simple
dual port and the read address is registered, Vivado synthesis will infer a block RAM and set
the write mode to WRITE_FIRST for best timing. Also, if a design writes to the same
address that it is reading from, the output of the RAM is unpredictable.
RW_ADDR_COLLISION overrides this behavior.

The values for RW_ADDR_COLLISION are:

• "auto": Default behavior as described above.
• "yes": This inserts bypass logic so that when an address is read from the same time it

is written to, the value of the input will be seen on the output making the whole array
behave as WRITE_FIRST.

• "no": This is when the user does not care about timing or the collision possibility. In
this case the write mode will be set to NO_CHANGE resulting in a power savings.

RW_ADDR_COLLISION is supported in RTL only.

VHDL Example:

attribute rw_addr_collision : string;
attribute rw_addr_collision of my_ram : signal is "yes";

Verilog Example:

(*rw_addr_collision = "yes" *) reg [3:0] my_ram [1023:0];
Synthesis 63
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=63

Chapter 2: Synthesis Attributes
SHREG_EXTRACT
SHREG_EXTRACT instructs the synthesis tool on whether to infer SRL structures. Accepted
values are:

• YES: The tool infers SRL structures.
• NO: The does not infer SRLs and instead creates registers.

Place SHREG_EXTRACT on the signal declared for SRL or the module/entity with the SRL. It
can be set in the RTL or the XDC.

SHREG_EXTRACT Example (Verilog)

(* shreg_extract = "no" *) reg [16:0] my_srl;

SHREG_EXTRACT Example (VHDL)

attribute shreg_extract : string;
attribute shreg_extract of my_srl : signal is "no";

SRL_STYLE
SRL_STYLE instructs the synthesis tool on how to infer SRLs that are found in the design.
Accepted values are:

• register: The tool does not infer an SRL, but instead only uses registers.
• srl: The tool infers an SRL without any registers before or after.
• srl_reg: The tool infers an SRL and leaves one register after the SRL.
• reg_srl: The tool infers an SRL and leaves one register before the SRL.
• reg_srl_reg: The tool infers an SRL and leaves one register before and one register

after the SRL.
• block: The tool infers the SRL inside a block RAM.

Place SRL_STYLE on the signal declared for SRL. This attribute can be set in RTL and in XDC.
The attribute can only be used on static SRLs. The indexing logic for dynamic SRLs is located
within the SRL component itself. Therefore, the logic cannot be created around the SRL
component to look up addresses outside of the component.

CAUTION! Use care when using combinations of SRL_STYLE, SHREG_EXTRACT, and
-shreg_min_size. The SHREG_EXTRACT attribute always take precedence over the others. If
SHREG_EXTRACT is set to "no" and SRL_STYLE is set to "srl", registers are used. The
-shreg_min_size, being the global variable, always has the least amount of precedence. If an SRL
of length 10 is set and SRL_STYLE is set to "srl" and -shreg_min_size is set to 20, the SRL is still
inferred.
Synthesis 64
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=64

Chapter 2: Synthesis Attributes
Note: In the examples below, the SRLs are all created with buses where the SRL is shifting from one
bit to the next. If the code that is to use SRL_STYLE has many differently named signals driving each
other, then place SRL_STYLE attribute on the last signal in the chain. This includes if the last register
in the chain is in a different level of hierarchy than the other registers. The attribute always goes on
the last register in the chain.

SRL_STYLE Examples (Verilog)

(* srl_style = "register" *) reg [16:0] my_srl;

SRL_STYLE Examples (VHDL)

attribute srl_style : string;
attribute srl_style of my_srl : signal is "reg_srl_reg";

SRL_STYLE Examples (XDC)

set_property srl_style register [get_cells my_shifter_reg*]

TRANSLATE_OFF/TRANSLATE_ON
TRANSLATE_OFF and TRANSLATE_ON instruct the Synthesis tool to ignore blocks of code.
These attributes are given within a comment in RTL. The comment should start with one of
the following keywords:

• synthesis

• synopsys
• pragma
• xilinx

TRANSLATE_OFF starts the ignore, and it ends with TRANSLATE_ON. These commands
cannot be nested.

This attribute can only be set in the RTL.

TRANSLATE_OFF/TRANSLATE_ON Example (Verilog)

// synthesis translate_off
Code....
// synthesis translate_on

TRANSLATE_OFF/TRANSLATE_ON Example (VHDL)

-- synthesis translate_off
Code...
-- synthesis translate_on
Synthesis 65
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=65

Chapter 2: Synthesis Attributes
CAUTION! Be careful with the types of code that are included between the translate statements. If it is
code that affects the behavior of the design, a simulator could use that code, and create a simulation
mismatch.

USE_DSP
Note: This attribute is renamed from USE_DSP48 to recognize that some of the newer DSP blocks
are different sizes. Using the attribute USE_DSP48 still works even with the DSPs of different sizes.

RECOMMENDED: Xilinx recommends that you change any USE_DSP48 to the new attribute name,
USE_DSP.

USE_DSP instructs the synthesis tool how to deal with synthesis arithmetic structures.
By default, unless there are timing concerns or threshold limits, synthesis attempts to infer
mults, mult-add, mult-sub, and mult-accumulate type structures into DSP blocks.

Adders, subtracters, and accumulators can go into these blocks also, but by default are
implemented with the logic instead of with DSP blocks. The USE_DSP attribute overrides the
default behavior and force these structures into DSP blocks.

Accepted values are: "logic", "simd", "yes", and "no":

• The "logic" value is used specifically for XOR structures to go into the DSP
primitives. For "logic", this attribute can be placed on the module/architecture level
only.

• The "simd" is used to instruct the tool to put SIMD structures
(Single-instruction-multiple-data) into DSPs. Please see the templates for examples.

• The "yes" and "no" values instruct the tool to either put the logic into a DSP or not.
These values can be placed in the RTL on signals, architecture, components, entities,
and modules. The priority is: 1. Signals. 2. Architectures and components. 3. Modules
and entities.

If the attribute is not specified, the default behavior is for Vivado synthesis to determine the
correct behavior. This attribute can be set in the RTL or the XDC.

USE_DSP Example (Verilog)

(* use_dsp = "yes" *) module test(clk, in1, in2, out1);

USE_DSP Example (VHDL)

attribute use_dsp : string;
attribute use_dsp of P_reg : signal is "no"
Synthesis 66
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=66

Chapter 2: Synthesis Attributes
Custom Attribute Support in Vivado
Vivado synthesis supports the use of custom attributes in RTL. A custom attribute is an
attribute who’s behavior synthesis is not already aware. Often, custom attributes are
intended for use in other tools downstream from the synthesis process.

CAUTION! When Vivado synthesis encounters unknown attributes, it attempts to forward those
attributes to the synthesis output netlist, but you need to understand the risk. A custom attribute does
not stop synthesis optimizations from occurring, which means that if synthesis can optimize an item
with a custom attribute, it does so, and the attribute is lost.

If you need custom attributes go through synthesis, you must use the DONT_TOUCH or
KEEP_HIERARCHY attributes to prevent synthesis from optimizing the objects that need the
attributes.

There are two types of objects that can have custom attributes: hierarchies and signals.

When using custom attributes on hierarchies, the -flatten_hierarchy switch must be
set to none or a KEEP_HIERARCHY placed on that level, because synthesis by default
flattens the design, optimizes the design, and then rebuilds the design.

After a design if first flattened, the custom attribute on the hierarchy is lost.

Example with Custom Attribute on Hierarchy (Verilog)
(* my_att = "my_value", DONT_TOUCH = "yes" *) module test(....

Example with Custom Attribute on Hierarchy (VHDL)
attribute my_att : string;
attribute my_att of beh : architecture is "my_value"
attribute DONT_TOUCH : string;
attribute DONT_TOUCH of beh : architecture is "yes";

Care should be taken when using custom attributes on signals as well. When a custom
attribute is seen on a signal, the synthesis tool attempts to put that attribute on the item;
however, this item could be translated to a register or a net depending on how the tool
evaluates the RTL code. Also, as with hierarchies, just because a signal has a custom
attribute, the tool can perform optimizations on that signal, and the attribute will be lost. To
retain custom attribute on signals with custom attributes you must place the DONT_TOUCH
or the KEEP attribute on those signals.

Finally, because a signal in RTL could describe both a register and the net coming out of the
register, the synthesis tool checks any items with both custom attributes and the
DONT_TOUCH attribute. If the net in question is driven by a register, synthesis copies that
custom attribute to the register and the net, because there are multiple ways of using
Synthesis 67
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=67

Chapter 2: Synthesis Attributes
custom attributes, and sometimes the attribute is wanted on the register and sometimes
the net.

Example with Custom Attribute on a Signal (Verilog)
(* my_att = "my_value", DONT_TOUCH = "yes" *) reg my_signal;

Example with Custom Attribute on a Signal (VHDL)
attribute my_att : string;
attribute my_att of my_signal : signal is "my_value";
attribute DONT_TOUCH : string;
attribute DONT_TOUCH of my_signal : signal is "yes";

Using Synthesis Attributes in XDC files
Some synthesis attributes can also be set from an XDC file as well as the original RTL file. In
general, attributes that are used in the end stages of synthesis and describe how synthesis-
created logic is allowed in the XDC file. Attributes that are used towards the beginning of
synthesis and affect the compiler are not allowed in the XDC.

For example, the KEEP and DONT_TOUCH attributes are not allowed in the XDC.

This is because, at the time the attribute is read from the XDC file, components that have
the KEEP or DONT_TOUCH attribute might have already been optimized and would therefore
not exist at the time the attribute is read. For that reason, those attributes must always be
set in the RTL code. For more information on where to set specific attributes, see the
individual attribute descriptions in this chapter.

To specify synthesis attributes in XDC, type the following in the Tcl Console:

set_property <attribute> <value> <target>

For example:

set_property MAX_FANOUT 15 [get_cells in1_int_reg]

In addition, you can set these attributes in the elaborated design, as follows:

1. Open the elaborated design, shown in the following figure, and select the item on which
to place an attribute, using either of the following methods:

° Click the item in the schematic.

° Select the item in the RTL Netlist view, as shown in Figure 2-1.
Synthesis 68
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=68

Chapter 2: Synthesis Attributes
2. In the Cell Properties window, click the Properties tab, and do one of the following:

° Modify the property.

° If the property does not exist, right-click, select Add Properties, and select the
property from the window that appears, or click the + sign.

This saves the attributes to your current constraint file or creates a new constraint file if
one does not exist.

Note: If the same attribute is put on the same object in both the XDC and in RTL, but the values of
the attributes are different, then the XDC attribute will be accepted, and the RTL attribute will be
ignored.

Synthesis Attribute Propagation Rules
Read each individual attribute for the rules on whether it should be placed on
hierarchies or signals.

In general, when an attribute is placed on a hierarchy, it affects only that boundary, and
not the items inside that hierarchy. For example, placing a DONT_TOUCH on a specific
level affects that level only, and not the signals inside that level.

X-Ref Target - Figure 2-1

Figure 2-1: Adding an XDC Property from the Elaborated Design View
Synthesis 69
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=69

Chapter 2: Synthesis Attributes
There are some exceptions to this rule. These are DSP_FOLDING , RAM_STYLE,
ROM_STYLE, SHREG_EXTRACT, and USE_DSP. When these attributes are placed on a
hierarchy, they also affect the signals inside that hierarchy.
Synthesis 70
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=70

Chapter 3

Using Block Synthesis Strategies

Overview
Vivado® synthesis comes with many strategies and global settings that you can use to
customize how your design is synthesized. Figure 1-2 shows the available, pre-defined
strategies in the Synthesis Settings, and Table 1-2 provides a side-by-side comparison of
the strategy settings.

You can override certain settings, such as -retiming, using attributes or XDC files in the
RTL or XDC files for specific hierarchies or signals; however, in general, options affect the
whole design.

As designs become more complex, the application of such settings can limit your design
from reaching its’ full potential. Certain hierarchies in a design might work better with
different options than others. Figure 3-1 shows a medium-sized design that has many
different types of hierarchy.
Synthesis 71
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=71

Chapter 3: Using Block Synthesis Strategies
One option is to synthesize such hierarchies in out of context (OOC) mode; this is effective,
but complicates the design flow. The OOC flow separates the hierarchies that are assigned
to be synthesized in OOC mode, and runs them separately from the other parts of the
design. This means that synthesis runs more than one time per design. Also, the OOC
constraints must be separated from the constraints of the rest of the design, adding even
more complexity.

The Block-Level Synthesis flow (BLOCK_SYNTH) uses a property that lets you use certain
global settings and strategies on specific levels of hierarchy in a top-down flow that is
differs from the top level of the full design.

X-Ref Target - Figure 3-1

Figure 3-1: Multiple Hierarchies within a Design
Synthesis 72
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=72

Chapter 3: Using Block Synthesis Strategies
Setting a Block-Level Flow
To set a Block-Level Synthesis flow (using the BLOCK_SYNTH property), you enter a Tcl
property in the XDC file only. The command syntax is, as follows:

set_property BLOCK_SYNTH.<option name> <value> [get_cells <instance_name>]

Where:

° <option_name> is the option that you want to set.

° <value> is the value that you assign to that option.

° <instance_name> is the hierarchical instance on which to set the option.

For example:

set_property BLOCK_SYNTH.MAX_LUT_INPUT 4 [get_cells fftEngine]

Set the property to an instance name, and not on an entity or module name. By using
instance names, the Vivado synthesis tool is able to have more flexibility when there are
modules/entities that are instantiated multiple times. In the provided example, the
fftEngine instance is being set so that there are no LUT5 or LUT6 primitives.

Note: By setting a BLOCK_SYNTH on an instance, you will be affecting that instance and everything
below that instance. For example, if fftEngine had has other modules instantiated within it, those
modules would also not have any LUT5s or LUT6s primitives.

CAUTION! In addition to affecting this instance, the BLOCK_SYNTH property also causes the hierarchy
of this instance to be hardened. Care should be taken with this, especially if this hierarchy contains I/O
buffers or is inferring input/output buffers.

When you put a BLOCK_SYNTH property on an instance, the instance will get that value for
that specific option; all other options use the default values.

Multiple BLOCK_SYNTH properties can be set on the same instance to try out different
combinations. For example, the following keeps equivalent registers, disables the FSM
inference and uses the AlternateRoutability strategy:

set_property BLOCK_SYNTH.STRATEGY {ALTERNATE_ROUTABILITY} [get_cells mod_inst]
set_property BLOCK_SYNTH.KEEP_EQUIVALENT_REGISTER 1 [get_cells mod_inst]
set_property BLOCK_SYNTH.FSM_EXTRACTION {OFF} [get_cells mod_inst]

To prevent impacting instances under the instance that require a different property setting,
you can nest BLOCK_SYNTH properties on multiple levels. If you only want this on one
particular level, you can set it on that level, and then on the subsequent levels, you can set
the default values back, using the command as follows:

set_property BLOCK_SYNTH.MAX_LUT_INPUT 6 [get_cells fftEngine/newlevel]
Synthesis 73
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=73

Chapter 3: Using Block Synthesis Strategies
If newlevel is the only hierarchy under fftEngine, this command will ensure that only
fftEngine gets the MAX_LUT_INPUT = 4 property. You can also put an entirely different
set of options on this level as well; and not go back to the default.

Note: When performing the block level flow, the tool keeps this design in a top-down mode
meaning that the full design goes though synthesis. For the instance in question, Vivado synthesis
will preserve the hierarchy to ensure that the logic of that level does not blur and will stay within that
level. This could have a potential effect on QoR. For this reason, be careful when setting
BLOCK_LEVEL properties. Only set them on instances you know need them.

Block-Level Flow Options
The block-level flow supports some of the predefined strategies that are in the tool as well.
The strategies that are allowed are: DEFAULT, AREA_OPTIMIZED,
ALTERNATE_ROUTABILITY, and PERFORMANCE_OPTIMIZED. The XDC constraint syntax is
as follows:

set_property BLOCK_SYNTH.STRATEGY {<value>} [get_cells <inst_name>]

The following table lists the supported Vivado Block synthesis settings.

Table 3-1: BLOCK_SYNTH Supported Settings
Option Type Values Description

RETIMING INTEGER 0/1 • 0 – Disable Retiming
• 1 – Enable Retiming

ADDER_THRESHOLD

INTEGER 4-128

Changes the threshold for the size of an adder for
synthesis to infer in a CARRY chain.
• Higher numbers mean more LUTs.
• Lower numbers mean more CARRY chains.
The threshold is calculated by adding the sizes of
the adder operands. The specified value should be
>= sum of the input widths.

COMPARATOR_THRESHOLD

INTEGER 4-128

Changes the threshold for the size of a comparator
for synthesis to infer in a CARRY chain.
• Higher numbers mean more LUTs.
• Lower numbers mean more CARRY chains.

SHREG_MIN_SIZE

INTEGER 3-32

Changes the threshold for the size of a register
chain before synthesis will infer SRL primitives.
• Higher numbers mean more registers.
• Lower numbers mean more SRLs.
Synthesis 74
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=74

Chapter 3: Using Block Synthesis Strategies
FSM_EXTRACTION

STRING

OFF
ONE_HOT

SEQUENTIAL
GRAY

JOHNSON
AUTO

Sets the encodings of state machines that the
synthesis tool infers.

LUT_COMBINING INTEGER 0/1 • 0 – Disable LUT combining
• 1 – Enable LUT combining

CONTROL_SET_THRESHOLD

INTEGER 0-128

Controls the fanout needed on control signals
before synthesis infers registers with control
signals.
• Higher numbers mean less logic on control

signals and more on D input of flop.
• Lower numbers mean more control signals and

less logic on D input.
MAX_LUT_INPUT

INTEGER 4-6
• 4 – No LUT5 or LUT6 primitives will be inferred
• 5 – No LUT6 primitives will be inferred
• 6 – All LUTs can be inferred.

MUXF_MAPPING INTEGER 0/1 • 0 – Disable MUXF7/F8/F9 inference
• 1 – Enable MUXF7/F8/F9 inference

KEEP_EQUIVALENT_REGISTER INTEGER 0/1 • 0 – Merges equivalent registers
• 1 – Retains equivalent registers

PRESERVE_BOUNDARY

INTEGER Any number

This option can be used with incremental synthesis.
It is used to mark hierarchies that are known to
change. Using this option can make the hierarchy
static and allow the incremental flow to work. The
value given does not matter because just having
this option set is sufficient.

LOGIC_COMPACTION
INTEGER 1

Arranges CARRY chains and LUTs in such a
way that it makes the logic more compact
using fewer SLICES.

SRL_STYLE

STRING

REGISTER
SRL

SRL_REG
REG_SRL

REG_SRL_REG

Sets the default implementation for inferred SRLs.

Table 3-1: BLOCK_SYNTH Supported Settings
Option Type Values Description
Synthesis 75
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=75

Chapter 4

HDL Coding Techniques

Introduction
Hardware Description Language (HDL) coding techniques let you:

• Describe the most common functionality found in digital logic circuits.
• Take advantage of the architectural features of Xilinx® devices.
• Templates are available from the Vivado® Design Suite Integrated Design Environment

(IDE). To access the templates, in the Window Menu, select Language Templates.

Coding examples are included in this chapter. Download the coding example files from
Coding Examples.

Advantages of VHDL
• Enforces stricter rules, in particular strongly typed, less permissive and error-prone
• Initialization of RAM components in the HDL source code is easier (Verilog initial blocks

are less convenient)
• Package support
• Custom types
• Enumerated types
• No reg versus wire confusion

Advantages of Verilog
• C-like syntax
• More compact code
• Block commenting
• No heavy component instantiation as in VHDL
Synthesis 76
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=76

Chapter 4: HDL Coding Techniques
Advantages of SystemVerilog
• More compact code compared to Verilog
• Structures and enumerated types for better scalability
• Interfaces for higher level of abstraction
• Supported in Vivado synthesis

Flip-Flops, Registers, and Latches
Vivado synthesis recognizes Flip-Flops, Registers with the following control signals:

• Rising or falling-edge clocks
• Asynchronous Set/Reset
• Synchronous Set/Reset
• Clock Enable

Flip-Flops, Registers and Latches are described with:

• sequential process (VHDL)
• always block (Verilog)
• always_ff for flip-flops, always_latch for Latches (SystemVerilog)

The process or always block sensitivity list should list:

• The clock signal
• All asynchronous control signals

Flip-Flops and Registers Control Signals
Flip-Flops and Registers control signals include:

• Clocks
• Asynchronous and synchronous set and reset signals
• Clock enable
Synthesis 77
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=77

Chapter 4: HDL Coding Techniques
Coding Guidelines
• Do not asynchronously set or reset registers.

° Control set remapping becomes impossible.

° Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

° If you use asynchronously set or reset registers, you cannot leverage device
resources, or those resources are configured sub-optimally.

• Do not describe flip-flops with both a set and a reset.

° No Flip-flop primitives feature both a set and a reset, whether synchronous or
asynchronous.

° Flip-flop primitives featuring both a set and a reset may adversely affect area and
performance.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial content.

• Always describe the clock enable, set, and reset control inputs of flip-flop primitives as
active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Inference
Vivado synthesis infers four types of register primitives depending on how the HDL code is
written:

• FDCE: D flip-flop with Clock Enable and Asynchronous Clear
• FDPE: D flip-flop with Clock Enable and Asynchronous Preset
• FDSE: D flip-flop with Clock Enable and Synchronous Set
• FDRE: D flip-flop with Clock Enable and Synchronous Reset

Flip-Flops and Registers Initialization
To initialize the content of a Register at circuit power-up, specify a default value for the
signal during declaration.

Flip-Flops and Registers Reporting
• Registers are inferred and reported during HDL synthesis.
• The number of Registers inferred during HDL synthesis might not precisely equal the

number of Flip-Flop primitives in the Design Summary section.
Synthesis 78
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=78

Chapter 4: HDL Coding Techniques
• The number of Flip-Flop primitives depends on the following processes:

° Absorption of Registers into DSP blocks or block RAM components

° Register duplication

° Removal of constant or equivalent Flip-Flops

Flip-Flops and Registers Reporting Example

RTL Component Statistics

Detailed RTL Component Info :

+---Registers :

8 Bit Registers := 1

Report Cell Usage:

-----+----+-----

 |Cell|Count

-----+----+-----

3 |FDCE| 8

-----+----+-----

Flip-Flops and Registers Coding Examples
The following subsections provide VHDL and Verilog examples of coding for Flip-Flops and
registers. Download the coding example files from Coding Examples.

Register with Rising-Edge Coding Example (Verilog)

Filename: registers_1.v

// 8-bit Register with
// Rising-edge Clock
// Active-high Synchronous Clear
// Active-high Clock Enable
// File: registers_1.v

module registers_1(d_in,ce,clk,clr,dout);
input [7:0] d_in;
input ce;
input clk;
input clr;
output [7:0] dout;
reg [7:0] d_reg;

always @ (posedge clk)
begin
 if(clr)
Synthesis 79
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=79

Chapter 4: HDL Coding Techniques
 d_reg <= 8'b0;
 else if(ce)
 d_reg <= d_in;
end

assign dout = d_reg;
endmodule

Flip-Flop Registers with Rising-Edge Clock Coding Example (VHDL)

Filename: registers_1.vhd

-- Flip-Flop with
-- Rising-edge Clock
-- Active-high Synchronous Clear
-- Active-high Clock Enable
-- File: registers_1.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity registers_1 is
 port(
 clr, ce, clk : in std_logic;
 d_in : in std_logic_vector(7 downto 0);
 dout : out std_logic_vector(7 downto 0)
);
end entity registers_1;
architecture rtl of registers_1 is
begin
 process(clk) is
 begin
 if rising_edge(clk) then
 if clr = '1' then
 dout <= "00000000";
 elsif ce = '1' then
 dout <= d_in;
 end if;
 end if;
 end process;
end architecture rtl;
Synthesis 80
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=80

Chapter 4: HDL Coding Techniques
Latches
The Vivado log file reports the type and size of recognized Latches.

Inferred Latches are often the result of HDL coding mistakes, such as incomplete if or case
statements.

Vivado synthesis issues a warning for the instance shown in the following reporting
example. This warning lets you verify that the inferred Latch functionality was intended.

Latches Reporting Example

===

* Vivado.log *

===

WARNING: [Synth 8-327] inferring latch for variable 'Q_reg'

=== Report
Cell Usage:

-----+----+-----

 |Cell|Count

-----+----+-----

2 |LD | 1

-----+----+-----

===

Latch With Positive Gate and Asynchronous Reset Coding Example (Verilog)

Filename: latches.v

// Latch with Positive Gate and Asynchronous Reset
// File: latches.v
module latches (
 input G,
 input D,
 input CLR,
 output reg Q
);
always @ *
begin
 if(CLR)
 Q = 0;
 else if(G)
 Q = D;
end

endmodule
Synthesis 81
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=81

Chapter 4: HDL Coding Techniques
Latch With Positive Gate and Asynchronous Reset Coding Example (VHDL)

Filename: latches.vhd

-- Latch with Positive Gate and Asynchronous Reset
-- File: latches.vhd
library ieee;
use ieee.std_logic_1164.all;

entity latches is
 port(
 G, D, CLR : in std_logic;
 Q : out std_logic
);
end latches;

architecture archi of latches is
begin
 process(CLR, D, G)
 begin
 if (CLR = '1') then
 Q <= '0';
 elsif (G = '1') then
 Q <= D;
 end if;
 end process;
end archi;

Tristates
• Tristate buffers are usually modeled by a signal or an if-else construct.
• This applies whether the buffer drives an internal bus or an external bus on the board

on which the device resides.
• The signal is assigned a high impedance value in one branch of the if-else.

Download the coding example files from Coding Examples.

Tristate Implementation
Inferred Tristate buffers are implemented with different device primitives when driving the
following:

• An external pin of the circuit (OBUFT)
• An Internal bus (BUFT):
Synthesis 82
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=82

Chapter 4: HDL Coding Techniques
° An inferred BUFT is converted automatically to logic realized in LUTs by Vivado
synthesis.

° When an internal bus inferring a BUFT is driving an output of the top module, the
Vivado synthesis infers an OBUF.

Tristate Reporting Example

Tristate buffers are inferred and reported during synthesis.

===

* Vivado log file *

===

Report Cell Usage:

-----+-----+-----

 |Cell |Count

-----+-----+-----

1 |OBUFT| 1

-----+-----+-----

===

Tristate Description Using Concurrent Assignment Coding Example (Verilog)

Filename: tristates_2.v

// Tristate Description Using Concurrent Assignment
// File: tristates_2.v
//
module tristates_2 (T, I, O);
input T, I;
output O;

assign O = (~T) ? I: 1'bZ;

endmodule

Tristate Description Using Combinatorial Process Implemented with OBUFT
Coding Example (VHDL)

Filename: tristates_1.vhd

-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUFT (IO buffer)
-- File: tristates_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity tristates_1 is
Synthesis 83
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=83

Chapter 4: HDL Coding Techniques
 port(
 T : in std_logic;
 I : in std_logic;
 O : out std_logic
);
end tristates_1;

architecture archi of tristates_1 is
begin
 process(I, T)
 begin
 if (T = '0') then
 O <= I;
 else
 O <= 'Z';
 end if;
 end process;

end archi;

Tristate Description Using Combinatorial Always Block Coding Example
(Verilog)

Filename: tristates_1.v

// Tristate Description Using Combinatorial Always Block
// File: tristates_1.v
//
module tristates_1 (T, I, O);
input T, I;
output O;
reg O;

always @(T or I)
begin
 if (~T)
 O = I;
 else
 O = 1'bZ;
end

endmodule

Shift Registers
A Shift Register is a chain of Flip-Flops allowing propagation of data across a fixed (static)
number of latency stages. In contrast, in Dynamic Shift Registers, the length of the
propagation chain varies dynamically during circuit operation.

Download the coding example files from Coding Examples.
Synthesis 84
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=84

Chapter 4: HDL Coding Techniques
Static Shift Register Elements
A static Shift Register usually involves:
• A clock
• An optional clock enable
• A serial data input
• A serial data output

Shift Registers SRL-Based Implementation
Vivado synthesis implements inferred Shift Registers on SRL-type resources such as:

• SRL16E

• SRLC32E

Depending on the length of the Shift Register, Vivado synthesis does one of the following:

• Implements it on a single SRL-type primitive
• Takes advantage of the cascading capability of SRLC-type primitives
• Attempts to take advantage of this cascading capability if the rest of the design uses

some intermediate positions of the Shift Register

Shift Registers Coding Examples

The following sections provide VHDL and Verilog coding examples for shift registers.

32-Bit Shift Register Coding Example One (VHDL)

This coding example uses the concatenation coding style.

Filename: shift_registers_0.vhd

-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- Concatenation-based template
-- File: shift_registers_0.vhd

library ieee;
use ieee.std_logic_1164.all;
entity shift_registers_0 is
 generic(
 DEPTH : integer := 32
);
 port(
 clk : in std_logic;
 clken : in std_logic;
 SI : in std_logic;
Synthesis 85
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=85

Chapter 4: HDL Coding Techniques
 SO : out std_logic
);

end shift_registers_0;

architecture archi of shift_registers_0 is
 signal shreg : std_logic_vector(DEPTH - 1 downto 0);
begin
 process(clk)
 begin
 if rising_edge(clk) then
 if clken = '1' then
 shreg <= shreg(DEPTH - 2 downto 0) & SI;
 end if;
 end if;
 end process;
 SO <= shreg(DEPTH - 1);
end archi;

32-Bit Shift Register Coding Example Two (VHDL)

The same functionality can also be described as follows:

Filename: shift_registers_1.vhd

-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- foor loop-based template
-- File: shift_registers_1.vhd

library ieee;
use ieee.std_logic_1164.all;
entity shift_registers_1 is
 generic(
 DEPTH : integer := 32
);
 port(
 clk : in std_logic;
 clken : in std_logic;
 SI : in std_logic;
 SO : out std_logic
);

end shift_registers_1;

architecture archi of shift_registers_1 is
 signal shreg : std_logic_vector(DEPTH - 1 downto 0);
begin
 process(clk)
 begin
 if rising_edge(clk) then
 if clken = ‘1’ then
 for i in 0 to DEPTH - 2 loop
 shreg(i + 1) <= shreg(i);
 end loop;
 shreg(0) <= SI;
 end if;
Synthesis 86
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=86

Chapter 4: HDL Coding Techniques
 end if;
 end process;
 SO <= shreg(DEPTH - 1);
end archi;

8-Bit Shift Register Coding Example One (Verilog)

This coding example uses a concatenation to describe the Register chain.

Filename: shift_registers_0.v

// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// Concatenation-based template
// File: shift_registers_0.v

module shift_registers_0 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;

reg [WIDTH-1:0] shreg;

always @(posedge clk)
 begin
 if (clken)
 shreg = {shreg[WIDTH-2:0], SI};
 end

assign SO = shreg[WIDTH-1];

endmodule

32-Bit Shift Register Coding Example Two (Verilog)

Filename: shift_registers_1.v

// 32-bit Shift Register
// Rising edge clock
// Active high clock enable
// For-loop based template
// File: shift_registers_1.v

module shift_registers_1 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

integer i;
always @(posedge clk)
begin
 if (clken)
 begin
 for (i = 0; i < WIDTH-1; i = i+1)
Synthesis 87
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=87

Chapter 4: HDL Coding Techniques
 shreg[i+1] <= shreg[i];
 shreg[0] <= SI;
 end
end
assign SO = shreg[WIDTH-1];
endmodule

SRL Based Shift Registers Reporting

Report Cell Usage:
-----+-------+-----
 |Cell |Count
-----+-------+-----
1 |SRLC32E| 1

Dynamic Shift Registers
A Dynamic Shift register is a Shift register the length of which can vary dynamically during
circuit operation.

A Dynamic Shift register can be seen as:

• A chain of Flip-Flops of the maximum length that it can accept during circuit operation.
• A Multiplexer that selects, in a given clock cycle, the stage at which data is to be

extracted from the propagation chain.

The Vivado synthesis tool can infer Dynamic Shift registers of any maximal length.

Vivado synthesis tool can implement Dynamic Shift registers optimally using the SRL-type
primitives available in the device family. The following figure illustrates the functionality of
the Dynamic Shift register.
Synthesis 88
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=88

Chapter 4: HDL Coding Techniques
Dynamic Shift Registers Coding Examples
Download the coding example files from Coding Examples.

32-Bit Dynamic Shift Registers Coding Example (Verilog)

Filename: dynamic_shift_registers_1.v
// 32-bit dynamic shift register.
// Download:
// File: dynamic_shift_registers_1.v

module dynamic_shift_register_1 (CLK, CE, SEL, SI, DO);
parameter SELWIDTH = 5;
input CLK, CE, SI;
input [SELWIDTH-1:0] SEL;
output DO;

localparam DATAWIDTH = 2**SELWIDTH;
reg [DATAWIDTH-1:0] data;

assign DO = data[SEL];

always @(posedge CLK)
 begin
 if (CE == 1'b1)
 data <= {data[DATAWIDTH-2:0], SI};
 end
endmodule

X-Ref Target - Figure 4-1

Figure 4-1: Dynamic Shift Registers Diagram
Synthesis 89
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=89

Chapter 4: HDL Coding Techniques
32-Bit Dynamic Shift Registers Coding Example (VHDL)

Filename: dynamic_shift_registers_1.vhd

-- 32-bit dynamic shift register.
-- File:dynamic_shift_registers_1.vhd
-- 32-bit dynamic shift register.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity dynamic_shift_register_1 is
 generic(
 DEPTH : integer := 32;
 SEL_WIDTH : integer := 5
);
 port(
 CLK : in std_logic;
 SI : in std_logic;
 CE : in std_logic;
 A : in std_logic_vector(SEL_WIDTH - 1 downto 0);
 DO : out std_logic
);

end dynamic_shift_register_1;

architecture rtl of dynamic_shift_register_1 is
 type SRL_ARRAY is array (DEPTH - 1 downto 0) of std_logic;

 signal SRL_SIG : SRL_ARRAY;

begin
 process(CLK)
 begin
 if rising_edge(CLK) then
 if CE = '1' then
 SRL_SIG <= SRL_SIG(DEPTH - 2 downto 0) & SI;
 end if;
 end if;
 end process;

 DO <= SRL_SIG(conv_integer(A));

end rtl;
Synthesis 90
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=90

Chapter 4: HDL Coding Techniques
Multipliers
Vivado synthesis infers Multiplier macros from multiplication operators in the source code.
The resulting signal width equals the sum of the two operand sizes. For example,
multiplying a 16-bit signal by an 8-bit signal produces a result of 24 bits.

RECOMMENDED: If you do not intend to use all most significant bits of a device, Xilinx recommends
that you reduce the size of operands to the minimum needed, especially if the Multiplier macro is
implemented on slice logic.

Multipliers Implementation
Multiplier macros can be implemented on:

• Slice logic
• DSP blocks

The implementation choice is:

• Driven by the size of operands
• Aimed at maximizing performance

To force implementation of a Multiplier to slice logic or DSP block, set the USE_DSP
attribute on the appropriate signal, entity, or module to either:

• no (slice logic)
• yes (DSP block)

DSP Block Implementation

When implementing a Multiplier in a single DSP block, Vivado synthesis tries to take
advantage of the pipelining capabilities of DSP blocks. Vivado synthesis pulls up to two
levels of registers present: On the multiplication operands, and after the multiplication.

When a Multiplier does not fit on a single DSP block, Vivado synthesis decomposes the
macro to implement it. In that case, Vivado synthesis uses either of the following:

• Several DSP blocks
• A hybrid solution involving both DSP blocks and slice logic

Use the KEEP attribute to restrict absorption of Registers into DSP blocks. For example, if a
Register is present on an operand of the multiplier, place KEEP on the output of the
Register to prevent the Register from being absorbed into the DSP block.
Synthesis 91
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=91

Chapter 4: HDL Coding Techniques
Multipliers Coding Examples

Unsigned 16x24-Bit Multiplier Coding Example (Verilog)

Filename: mult_unsigned.v
// Unsigned 16x24-bit Multiplier
// 1 latency stage on operands
// 3 latency stage after the multiplication
// File: multipliers2.v
//
module mult_unsigned (clk, A, B, RES);

parameter WIDTHA = 16;
parameter WIDTHB = 24;
input clk;
input [WIDTHA-1:0] A;
input [WIDTHB-1:0] B;
output [WIDTHA+WIDTHB-1:0] RES;

reg [WIDTHA-1:0] rA;
reg [WIDTHB-1:0] rB;
reg [WIDTHA+WIDTHB-1:0] M [3:0];

integer i;
always @(posedge clk)
 begin
 rA <= A;
 rB <= B;
 M[0] <= rA * rB;
 for (i = 0; i < 3; i = i+1)
 M[i+1] <= M[i];
 end

assign RES = M[3];

endmodule

Unsigned 16x16-Bit Multiplier Coding Example (VHDL)

Filename: mult_unsigned.vhd

-- Unsigned 16x16-bit Multiplier
-- File: mult_unsigned.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mult_unsigned is
 generic(
 WIDTHA : integer := 16;
 WIDTHB : integer := 16
);
 port(
Synthesis 92
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=92

Chapter 4: HDL Coding Techniques
 A : in std_logic_vector(WIDTHA - 1 downto 0);
 B : in std_logic_vector(WIDTHB - 1 downto 0);
 RES : out std_logic_vector(WIDTHA + WIDTHB - 1 downto 0)
);
end mult_unsigned;

architecture beh of mult_unsigned is
begin
 RES <= A * B;
end beh;

Multiply-Add and Multiply-Accumulate

The following macros are inferred:

• Multiply-Add
• Multiply-Sub
• Multiply-Add/Sub
• Multiply-Accumulate

The macros are inferred by aggregation of:

• A Multiplier
• An Adder/Subtractor
• Registers

Multiply-Add and Multiply-Accumulate Implementation

During Multiply-Add and Multiply-Accumulate implementation:

• Vivado synthesis can implement an inferred Multiply-Add or Multiply-Accumulate
macro on DSP block resources.

• Vivado synthesis attempts to take advantage of the pipelining capabilities of DSP
blocks.

• Vivado synthesis pulls up to:

° Two register stages present on the multiplication operands.

° One register stage present after the multiplication.

° One register stage found after the Adder, Subtractor, or Adder/Subtractor.

° One register stage on the add/sub selection signal.

° One register stage on the Adder optional carry input.
• Vivado synthesis can implement a Multiply Accumulate in a DSP block if its

implementation requires only a single DSP resource.
Synthesis 93
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=93

Chapter 4: HDL Coding Techniques
• If the macro exceeds the limits of a single DSP then Vivado synthesis does the
following:

° Processes it as two separate Multiplier and Accumulate macros.

° Makes independent decisions on each macro.

Macro Implementation on DSP Block Resources

Macro implementation on DSP block resources is inferred by default in Vivado synthesis.

• In default mode, Vivado synthesis:

° Implements Multiply-Add and Multiply-Accumulate macros.

° Takes into account DSP block resources availability in the targeted device.

° Uses all available DSP resources.

° Attempts to maximize circuit performance by leveraging all the pipelining
capabilities of DSP blocks.

° Scans for opportunities to absorb registers into a Multiply-Add or
Multiply-Accumulate macro.

Use the KEEP attribute to restrict absorption of Registers into DSP blocks. For example, to
exclude a register present on an operand of the Multiplier from absorption into the DSP
block, apply KEEP on the output of the register. For more information about the KEEP
attribute, see KEEP.

Download the coding example files from Coding Examples.

Complex Multiplier Examples
The following examples show complex multiplier examples in VHDL and Verilog. Note that
the coding example files also include a complex multiplier with accumulation example that
uses three DSP blocks for the UltraScale™ architecture.

Complex Multiplier Example (Verilog)
Fully pipelined complex multiplier using three DSP blocks.

Filename: cmult.v

//
// Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
// file: cmult.v

module cmult # (parameter AWIDTH = 16, BWIDTH = 18)
Synthesis 94
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=94

Chapter 4: HDL Coding Techniques
 (
 input clk,
 input signed [AWIDTH-1:0] ar, ai,
 input signed [BWIDTH-1:0] br, bi,
 output signed [AWIDTH+BWIDTH:0] pr, pi
);

reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd ;
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd ;
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd ;
reg signed [AWIDTH:0] addcommon ;
reg signed [BWIDTH:0] addr, addi ;
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi, pr_int, pi_int ;
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2 ;

always @(posedge clk)
 begin
 ar_d <= ar;
 ar_dd <= ar_d;
 ai_d <= ai;
 ai_dd <= ai_d;
 br_d <= br;
 br_dd <= br_d;
 br_ddd <= br_dd;
 bi_d <= bi;
 bi_dd <= bi_d;
 bi_ddd <= bi_dd;
 end

// Common factor (ar ai) x bi, shared for the calculations of the real and imaginary
final products
//
always @(posedge clk)
 begin
 addcommon <= ar_d - ai_d;
 mult0 <= addcommon * bi_dd;
 common <= mult0;
 end

// Real product
//
always @(posedge clk)
 begin
 ar_ddd <= ar_dd;
 ar_dddd <= ar_ddd;
 addr <= br_ddd - bi_ddd;
 multr <= addr * ar_dddd;
 commonr1 <= common;
 pr_int <= multr + commonr1;
 end

// Imaginary product
//
always @(posedge clk)
 begin
 ai_ddd <= ai_dd;
 ai_dddd <= ai_ddd;
 addi <= br_ddd + bi_ddd;
 multi <= addi * ai_dddd;
Synthesis 95
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=95

Chapter 4: HDL Coding Techniques
 commonr2 <= common;
 pi_int <= multi + commonr2;
 end

assign pr = pr_int;
assign pi = pi_int;

endmodule // cmult

Complex Multiplier Examples (VHDL)
Fully pipelined complex multiplier using three DSP blocks.

Filename: cmult.vhd

-- Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
--
--
-- cumult.vhd
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cmult is
 generic(AWIDTH : natural := 16;
 BWIDTH : natural := 16);
 port(clk : in std_logic;
 ar, ai : in std_logic_vector(AWIDTH - 1 downto 0);
 br, bi : in std_logic_vector(BWIDTH - 1 downto 0);
 pr, pi : out std_logic_vector(AWIDTH + BWIDTH downto 0));
end cmult;

architecture rtl of cmult is
 signal ai_d, ai_dd, ai_ddd, ai_dddd : signed(AWIDTH - 1 downto 0);
 signal ar_d, ar_dd, ar_ddd, ar_dddd : signed(AWIDTH - 1 downto 0);
 signal bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd : signed(BWIDTH - 1 downto 0);
 signal addcommon : signed(AWIDTH downto 0);
 signal addr, addi : signed(BWIDTH downto 0);
 signal mult0, multr, multi, pr_int, pi_int : signed(AWIDTH + BWIDTH downto 0);
 signal common, commonr1, commonr2 : signed(AWIDTH + BWIDTH downto 0);

begin
 process(clk)
 begin
 if rising_edge(clk) then
 ar_d <= signed(ar);
 ar_dd <= signed(ar_d);
 ai_d <= signed(ai);
 ai_dd <= signed(ai_d);
 br_d <= signed(br);
 br_dd <= signed(br_d);
 br_ddd <= signed(br_dd);
 bi_d <= signed(bi);
 bi_dd <= signed(bi_d);
Synthesis 96
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=96

Chapter 4: HDL Coding Techniques
 bi_ddd <= signed(bi_dd);
 end if;
 end process;

 -- Common factor (ar - ai) x bi, shared for the calculations
 -- of the real and imaginary final products.
 --
 process(clk)
 begin
 if rising_edge(clk) then
 addcommon <= resize(ar_d, AWIDTH + 1) - resize(ai_d, AWIDTH + 1);
 mult0 <= addcommon * bi_dd;
 common <= mult0;
 end if;
 end process;

 -- Real product
 --
 process(clk)
 begin
 if rising_edge(clk) then
 ar_ddd <= ar_dd;
 ar_dddd <= ar_ddd;
 addr <= resize(br_ddd, BWIDTH + 1) - resize(bi_ddd, BWIDTH + 1);
 multr <= addr * ar_dddd;
 commonr1 <= common;
 pr_int <= multr + commonr1;
 end if;
 end process;

 -- Imaginary product
 --
 process(clk)
 begin
 if rising_edge(clk) then
 ai_ddd <= ai_dd;
 ai_dddd <= ai_ddd;
 addi <= resize(br_ddd, BWIDTH + 1) + resize(bi_ddd, BWIDTH + 1);
 multi <= addi * ai_dddd;
 commonr2 <= common;
 pi_int <= multi + commonr2;
 end if;
 end process;

 --
 -- VHDL type conversion for output
 --
 pr <= std_logic_vector(pr_int);
 pi <= std_logic_vector(pi_int);

end rtl;
Synthesis 97
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=97

Chapter 4: HDL Coding Techniques
Pre-Adders in the DSP Block
When coding for inference and targeting the DSP block, it is recommended to use signed
arithmetic and it is a requirement to have one extra bit of width for the pre-adder result so
that it can be packed into the DSP block.

Pre-Adder Dynamically Configured Followed by Multiplier and
Post-Adder (Verilog)
Filename: dynpreaddmultadd.v

// Pre-add/subtract select with Dynamic control
// dynpreaddmultadd.v
module dynpreaddmultadd # (parameter SIZEIN = 16)
 (
 input clk, ce, rst, subadd,
 input signed [SIZEIN-1:0] a, b, c, d,
 output signed [2*SIZEIN:0] dynpreaddmultadd_out
);

// Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg, c_reg;
reg signed [SIZEIN:0] add_reg;
reg signed [2*SIZEIN:0] d_reg, m_reg, p_reg;

always @(posedge clk)
begin
 if (rst)
 begin
 a_reg <= 0;
 b_reg <= 0;
 c_reg <= 0;
 d_reg <= 0;
 add_reg <= 0;
 m_reg <= 0;
 p_reg <= 0;
 end
 else if (ce)
 begin
 a_reg <= a;
 b_reg <= b;
 c_reg <= c;
 d_reg <= d;
 if (subadd)
 add_reg <= a_reg - b_reg;
 else
 add_reg <= a_reg + b_reg;
 m_reg <= add_reg * c_reg;
 p_reg <= m_reg + d_reg;
 end
end

// Output accumulation result
Synthesis 98
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=98

Chapter 4: HDL Coding Techniques
assign dynpreaddmultadd_out = p_reg;

endmodule // dynpreaddmultadd

Pre-Adder Dynamically Configured Followed by Multiplier and
Post-Adder (VHDL)
Filename: dynpreaddmultadd.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dynpreaddmultadd is
 generic(
 AWIDTH : natural := 12;
 BWIDTH : natural := 16;
 CWIDTH : natural := 17
);
 port(
 clk : in std_logic;
 subadd : in std_logic;
 ain : in std_logic_vector(AWIDTH - 1 downto 0);
 bin : in std_logic_vector(BWIDTH - 1 downto 0);
 cin : in std_logic_vector(CWIDTH - 1 downto 0);
 din : in std_logic_vector(BWIDTH + CWIDTH downto 0);
 pout : out std_logic_vector(BWIDTH + CWIDTH downto 0)
);
end dynpreaddmultadd;

architecture rtl of dynpreaddmultadd is
 signal a : signed(AWIDTH - 1 downto 0);
 signal b : signed(BWIDTH - 1 downto 0);
 signal c : signed(CWIDTH - 1 downto 0);
 signal add : signed(BWIDTH downto 0);
 signal d, mult, p : signed(BWIDTH + CWIDTH downto 0);

begin
 process(clk)
 begin
 if rising_edge(clk) then
 a <= signed(ain);
 b <= signed(bin);
 c <= signed(cin);
 d <= signed(din);
 if subadd = '1' then
 add <= resize(a, BWIDTH + 1) - resize(b, BWIDTH + 1);
 else
 add <= resize(a, BWIDTH + 1) + resize(b, BWIDTH + 1);
 end if;
 mult <= add * c;
 p <= mult + d;
 end if;
 end process;

 --
Synthesis 99
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=99

Chapter 4: HDL Coding Techniques
 -- Type conversion for output
 --
 pout <= std_logic_vector(p);

end rtl;

Using the Squarer in the UltraScale DSP Block
The UltraScale DSP block (DSP48E2) primitive can compute the square of an input or of the
output of the pre-adder.

Download the coding example files from Coding Examples.

The following are examples of the square of a difference; this can be used to efficiently
replace calculations on absolute values of differences.

It fits into a single DSP block and runs at full speed. The coding example files mentioned
above also include an accumulator of square of differences which also fits into a single DSP
block for the UltraScale architecture.

Square of a Difference (Verilog)
Filename: squarediffmult.v

// Squarer support for DSP block (DSP48E2) with
// pre-adder configured
// as subtractor
// File: squarediffmult.v

module squarediffmult # (parameter SIZEIN = 16)
 (
 input clk, ce, rst,
 input signed [SIZEIN-1:0] a, b,
 output signed [2*SIZEIN+1:0] square_out
);

 // Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg;
reg signed [SIZEIN:0] diff_reg;
reg signed [2*SIZEIN+1:0] m_reg, p_reg;

always @(posedge clk)
begin
 if (rst)
 begin
 a_reg <= 0;
 b_reg <= 0;
 diff_reg <= 0;
 m_reg <= 0;
 p_reg <= 0;
 end
 else
 if (ce)
Synthesis 100
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=100

Chapter 4: HDL Coding Techniques
 begin
 a_reg <= a;
 b_reg <= b;
 diff_reg <= a_reg - b_reg;
 m_reg <= diff_reg * diff_reg;
 p_reg <= m_reg;
 end
end

// Output result
assign square_out = p_reg;

endmodule // squarediffmult

Square of a Difference (VHDL)
Filename: squarediffmult.vhd

-- Squarer support for DSP block (DSP48E2) with pre-adder
-- configured
-- as subtractor
-- File: squarediffmult.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity squarediffmult is
 generic(
 SIZEIN : natural := 16
);
 port(
 clk, ce, rst : in std_logic;
 ain, bin : in std_logic_vector(SIZEIN - 1 downto 0);
 square_out : out std_logic_vector(2 * SIZEIN + 1 downto 0)
);
end squarediffmult;

architecture rtl of squarediffmult is

 -- Declare intermediate values
 signal a_reg, b_reg : signed(SIZEIN - 1 downto 0);
 signal diff_reg : signed(SIZEIN downto 0);
 signal m_reg, p_reg : signed(2 * SIZEIN + 1 downto 0);

begin
 process(clk)
 begin
 if rising_edge(clk) then
 if rst = '1' then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 diff_reg <= (others => '0');
 m_reg <= (others => '0');
 p_reg <= (others => '0');
 else
Synthesis 101
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=101

Chapter 4: HDL Coding Techniques
 a_reg <= signed(ain);
 b_reg <= signed(bin);
 diff_reg <= resize(a_reg, SIZEIN + 1) - resize(b_reg, SIZEIN + 1);
 m_reg <= diff_reg * diff_reg;
 p_reg <= m_reg;
 end if;
 end if;
 end process;

 --
 -- Type conversion for output
 --
 square_out <= std_logic_vector(p_reg);

end rtl;

FIR Filters
Vivado synthesis infers cascades of multiply-add to compose FIR filters directly from RTL.

There are several possible implementations of such filters; one example is the systolic filter
described in the 7 Series DSP48E1 Slice User Guide (UG479) [Ref 2] and shown in the "8-Tap
Even Symmetric Systolic FIR" (Figure 3-6).

Download the coding example files from Coding Examples.

8-Tap Even Symmetric Systolic FIR (Verilog)
Filename: sfir_even_symetric_systolic_top.v

// sfir_even_symmetric_systolic_top.v
// FIR Symmetric Systolic Filter, Top module is sfir_even_symmetric_systolic_top

// sfir_shifter - sub module which is used in top level
(* dont_touch = "yes" *)
module sfir_shifter #(parameter dsize = 16, nbtap = 4)
 (input clk, [dsize-1:0] datain, output [dsize-1:0] dataout);

 (* srl_style = "srl_register" *) reg [dsize-1:0] tmp [0:2*nbtap-1];
 integer i;

 always @(posedge clk)
 begin
 tmp[0] <= datain;
 for (i=0; i<=2*nbtap-2; i=i+1)
 tmp[i+1] <= tmp[i];
 end

 assign dataout = tmp[2*nbtap-1];

endmodule
Synthesis 102
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=102

Chapter 4: HDL Coding Techniques
// sfir_even_symmetric_systolic_element - sub module which is used in top
module sfir_even_symmetric_systolic_element #(parameter dsize = 16)
 (input clk, input signed [dsize-1:0] coeffin, datain, datazin, input signed
[2*dsize-1:0] cascin,
 output signed [dsize-1:0] cascdata, output reg signed [2*dsize-1:0] cascout);

 reg signed [dsize-1:0] coeff;
 reg signed [dsize-1:0] data;
 reg signed [dsize-1:0] dataz;
 reg signed [dsize-1:0] datatwo;
 reg signed [dsize:0] preadd;
 reg signed [2*dsize-1:0] product;

 assign cascdata = datatwo;

 always @(posedge clk)
 begin
 coeff <= coeffin;
 data <= datain;
 datatwo <= data;
 dataz <= datazin;
 preadd <= datatwo + dataz;
 product <= preadd * coeff;
 cascout <= product + cascin;
 end

endmodule

module sfir_even_symmetric_systolic_top #(parameter nbtap = 4, dsize = 16, psize =
2*dsize)
 (input clk, input signed [dsize-1:0] datain, output signed [2*dsize-1:0]
firout);

 wire signed [dsize-1:0] h [nbtap-1:0];
 wire signed [dsize-1:0] arraydata [nbtap-1:0];
 wire signed [psize-1:0] arrayprod [nbtap-1:0];

 wire signed [dsize-1:0] shifterout;
 reg signed [dsize-1:0] dataz [nbtap-1:0];

 assign h[0] = 7;
 assign h[1] = 14;
 assign h[2] = -138;
 assign h[3] = 129;

 assign firout = arrayprod[nbtap-1]; // Connect last product to output

 sfir_shifter #(dsize, nbtap) shifter_inst0 (clk, datain, shifterout);

 generate
 genvar I;
 for (I=0; I<nbtap; I=I+1)
 if (I==0)
 sfir_even_symmetric_systolic_element #(dsize) fte_inst0 (clk, h[I],
datain, shifterout, {32{1'b0}}, arraydata[I], arrayprod[I]);
 else
Synthesis 103
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=103

Chapter 4: HDL Coding Techniques
 sfir_even_symmetric_systolic_element #(dsize) fte_inst (clk, h[I],
arraydata[I-1], shifterout, arrayprod[I-1], arraydata[I], arrayprod[I]);
 endgenerate

endmodule // sfir_even_symmetric_systolic_top

8-Tap Even Symmetric Systolic FIR (VHDL)
Filename: sfir_even_symetric_systolic_top.vhd

--
-- FIR filter top
-- File: sfir_even_symmetric_systolic_top.vhd

-- FIR filter shifter
-- submodule used in top (sfir_even_symmetric_systolic_top)
library ieee;
use ieee.std_logic_1164.all;

entity sfir_shifter is
 generic(
 DSIZE : natural := 16;
 NBTAP : natural := 4
);
 port(
 clk : in std_logic;
 datain : in std_logic_vector(DSIZE - 1 downto 0);
 dataout : out std_logic_vector(DSIZE - 1 downto 0)
);
end sfir_shifter;

architecture rtl of sfir_shifter is

 -- Declare signals
 --
 type CHAIN is array (0 to 2 * NBTAP - 1) of std_logic_vector(DSIZE - 1 downto 0);
 signal tmp : CHAIN;

begin
 process(clk)
 begin
 if rising_edge(clk) then
 tmp(0) <= datain;
 looptmp : for i in 0 to 2 * NBTAP - 2 loop
 tmp(i + 1) <= tmp(i);
 end loop;
 end if;
 end process;

 dataout <= tmp(2 * NBTAP - 1);

end rtl;

--
-- FIR filter engine (multiply with pre-add and post-add)
Synthesis 104
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=104

Chapter 4: HDL Coding Techniques
-- submodule used in top (sfir_even_symmetric_systolic_top)
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sfir_even_symmetric_systolic_element is
 generic(DSIZE : natural := 16);
 port(clk : in std_logic;
 coeffin, datain, datazin : in std_logic_vector(DSIZE - 1 downto 0);
 cascin : in std_logic_vector(2 * DSIZE downto 0);
 cascdata : out std_logic_vector(DSIZE - 1 downto 0);
 cascout : out std_logic_vector(2 * DSIZE downto 0));
end sfir_even_symmetric_systolic_element;

architecture rtl of sfir_even_symmetric_systolic_element is

 -- Declare signals
 --
 signal coeff, data, dataz, datatwo : signed(DSIZE - 1 downto 0);
 signal preadd : signed(DSIZE downto 0);
 signal product, cascouttmp : signed(2 * DSIZE downto 0);

begin
 process(clk)
 begin
 if rising_edge(clk) then
 coeff <= signed(coeffin);
 data <= signed(datain);
 datatwo <= data;
 dataz <= signed(datazin);
 preadd <= resize(datatwo, DSIZE + 1) + resize(dataz, DSIZE + 1);
 product <= preadd * coeff;
 cascouttmp <= product + signed(cascin);
 end if;
 end process;

 -- Type conversion for output
 --
 cascout <= std_logic_vector(cascouttmp);
 cascdata <= std_logic_vector(datatwo);

end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sfir_even_symmetric_systolic_top is
 generic(NBTAP : natural := 4;
 DSIZE : natural := 16;
 PSIZE : natural := 33);
 port(clk : in std_logic;
 datain : in std_logic_vector(DSIZE - 1 downto 0);
 firout : out std_logic_vector(PSIZE - 1 downto 0));
end sfir_even_symmetric_systolic_top;

architecture rtl of sfir_even_symmetric_systolic_top is

 -- Declare signals
Synthesis 105
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=105

Chapter 4: HDL Coding Techniques
 --
 type DTAB is array (0 to NBTAP - 1) of std_logic_vector(DSIZE - 1 downto 0);
 type HTAB is array (0 to NBTAP - 1) of std_logic_vector(0 to DSIZE - 1);
 type PTAB is array (0 to NBTAP - 1) of std_logic_vector(PSIZE - 1 downto 0);

 signal arraydata, dataz : DTAB;
 signal arrayprod : PTAB;
 signal shifterout : std_logic_vector(DSIZE - 1 downto 0);

 -- Initialize coefficients and a "zero" for the first filter element
 --
 constant h : HTAB := ((std_logic_vector(TO_SIGNED(63, DSIZE))),
 (std_logic_vector(TO_SIGNED(18, DSIZE))),
 (std_logic_vector(TO_SIGNED(-100, DSIZE))),
 (std_logic_vector(TO_SIGNED(1, DSIZE))));
 constant zero_psize : std_logic_vector(PSIZE - 1 downto 0) := (others => '0');

begin

 -- Connect last product to output
 --
 firout <= arrayprod(nbtap - 1);

 -- Shifter
 --
 shift_u0 : entity work.sfir_shifter
 generic map(DSIZE, NBTAP)
 port map(clk, datain, shifterout);

 -- Connect the arithmetic building blocks of the FIR
 --
 gen : for I in 0 to NBTAP - 1 generate
 begin
 g0 : if I = 0 generate
 element_u0 : entity work.sfir_even_symmetric_systolic_element
 generic map(DSIZE)
 port map(clk, h(I), datain, shifterout, zero_psize, arraydata(I), arrayprod(I));
 end generate g0;
 gi : if I /= 0 generate
 element_ui : entity work.sfir_even_symmetric_systolic_element
 generic map(DSIZE)
 port map(clk, h(I), arraydata(I - 1), shifterout, arrayprod(I - 1), arraydata(I),
arrayprod(I));
 end generate gi;
 end generate gen;

end rtl;
Synthesis 106
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=106

Chapter 4: HDL Coding Techniques
Convergent Rounding (LSB Correction Technique)
The DSP block primitive leverages a pattern detect circuitry to compute convergent
rounding (either to even, or to odd).

The following are examples of the convergent rounding inference, which infers at the block
full performance, and also infers a 2-input AND gate (1 LUT) to implement the LSB
correction.

Rounding to Even (Verilog)
Filename: convergentRoundingEven.v

// Convergent rounding(Even) Example which makes use of pattern detect
// File: convergentRoundingEven.v
module convergentRoundingEven (
 input clk,
 input [23:0] a,
 input [15:0] b,
 output reg signed [23:0] zlast
);

reg signed [23:0] areg;
reg signed [15:0] breg;
reg signed [39:0] z1;

reg pattern_detect;
wire [15:0] pattern = 16'b0000000000000000;
wire [39:0] c = 40'b0000000000000000000000000111111111111111; // 15 ones

wire signed [39:0] multadd;
wire signed [15:0] zero;
reg signed [39:0] multadd_reg;

// Convergent Rounding: LSB Correction Technique
// ---
// For static convergent rounding, the pattern detector can be used
// to detect the midpoint case. For example, in an 8-bit round, if
// the decimal place is set at 4, the C input should be set to
// 0000.0111. Round to even rounding should use CARRYIN = "1" and
// check for PATTERN "XXXX.0000" and replace the units place with 0
// if the pattern is matched. See UG193 for more details.

assign multadd = z1 + c + 1'b1;

always @(posedge clk)
begin
 areg <= a;
 breg <= b;
 z1 <= areg * breg;
 pattern_detect <= multadd[15:0] == pattern ? 1'b1 : 1'b0;
 multadd_reg <= multadd;
end
Synthesis 107
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=107

Chapter 4: HDL Coding Techniques
// Unit bit replaced with 0 if pattern is detected
always @(posedge clk)
 zlast <= pattern_detect ? {multadd_reg[39:17],1'b0} : multadd_reg[39:16];

endmodule // convergentRoundingEven

Rounding to Even (VHDL)
Filename: convergentRoundingEven.vhd

-- Convergent rounding(Even) Example which makes use of pattern detect
-- File: convergentRoundingEven.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity convergentRoundingEven is
 port (clk : in std_logic;
 a : in std_logic_vector (23 downto 0);
 b : in std_logic_vector (15 downto 0);
 zlast : out std_logic_vector (23 downto 0));
end convergentRoundingEven;

architecture beh of convergentRoundingEven is

 signal ar : signed(a'range);
 signal br : signed(b'range);
 signal z1 : signed(a'length + b'length - 1 downto 0);

 signal multaddr : signed(a'length + b'length - 1 downto 0);
 signal multadd : signed(a'length + b'length - 1 downto 0);
 signal pattern_detect : boolean;

 constant pattern : signed(15 downto 0) := (others => '0');
 constant c : signed := "0000000000000000000000000111111111111111";

 -- Convergent Rounding: LSB Correction Technique
 -- ---
 -- For static convergent rounding, the pattern detector can be used
 -- to detect the midpoint case. For example, in an 8-bit round, if
 -- the decimal place is set at 4, the C input should be set to
 -- 0000.0111. Round to even rounding should use CARRYIN = "1" and
 -- check for PATTERN "XXXX.0000" and replace the units place with 0
 -- if the pattern is matched. See UG193 for more details.

begin

 multadd <= z1 + c + 1;

 process(clk)
 begin
 if rising_edge(clk) then
 ar <= signed(a);
 br <= signed(b);
 z1 <= ar * br;
Synthesis 108
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=108

Chapter 4: HDL Coding Techniques
 multaddr <= multadd;
 if multadd(15 downto 0) = pattern then
 pattern_detect <= true;
 else
 pattern_detect <= false;
 end if;
 end if;
 end process;

 -- Unit bit replaced with 0 if pattern is detected
 process(clk)
 begin
 if rising_edge(clk) then
 if pattern_detect = true then
 zlast <= std_logic_vector(multaddr(39 downto 17)) & "0";
 else
 zlast <= std_logic_vector(multaddr(39 downto 16));
 end if;
 end if;
 end process;

end beh;

Rounding to Odd (Verilog)
Filename: convergentRoundingOdd.v

// Convergent rounding(Odd) Example which makes use of pattern detect
// File: convergentRoundingOdd.v
module convergentRoundingOdd (
 input clk,
 input [23:0] a,
 input [15:0] b,
 output reg signed [23:0] zlast
);

reg signed [23:0] areg;
reg signed [15:0] breg;
reg signed [39:0] z1;

reg pattern_detect;
wire [15:0] pattern = 16'b1111111111111111;
wire [39:0] c = 40'b0000000000000000000000000111111111111111; // 15 ones

wire signed [39:0] multadd;
wire signed [15:0] zero;
reg signed [39:0] multadd_reg;

// Convergent Rounding: LSB Correction Technique
// ---
// For static convergent rounding, the pattern detector can be
// used to detect the midpoint case. For example, in an 8-bit
// round, if the decimal place is set at 4, the C input should
// be set to 0000.0111. Round to odd rounding should use
// CARRYIN = "0" and check for PATTERN "XXXX.1111" and then
// replace the units place bit with 1 if the pattern is
Synthesis 109
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=109

Chapter 4: HDL Coding Techniques
// matched. See UG193 for details

assign multadd = z1 + c;

always @(posedge clk)
begin
 areg <= a;
 breg <= b;
 z1 <= areg * breg;
 pattern_detect <= multadd[15:0] == pattern ? 1'b1 : 1'b0;
 multadd_reg <= multadd;
end

always @(posedge clk)
 zlast <= pattern_detect ? {multadd_reg[39:17],1'b1} : multadd_reg[39:16];

endmodule // convergentRoundingOdd

Rounding to Odd (VHDL)
Filename: convergentRoundingOdd.vhd

-- Convergent rounding(Odd) Example which makes use of pattern detect
-- File: convergentRoundingOdd.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity convergentRoundingOdd is
 port (clk : in std_logic;
 a : in std_logic_vector (23 downto 0);
 b : in std_logic_vector (15 downto 0);
 zlast : out std_logic_vector (23 downto 0));
end convergentRoundingOdd;

architecture beh of convergentRoundingOdd is

 signal ar : signed(a'range);
 signal br : signed(b'range);
 signal z1 : signed(a'length + b'length - 1 downto 0);

 signal multadd, multaddr : signed(a'length + b'length - 1 downto 0);
 signal pattern_detect : boolean;

 constant pattern : signed(15 downto 0) := (others => '1');
 constant c : signed := "0000000000000000000000000111111111111111";

 -- Convergent Rounding: LSB Correction Technique
 -- ---
 -- For static convergent rounding, the pattern detector can be
 -- used to detect the midpoint case. For example, in an 8-bit
 -- round, if the decimal place is set at 4, the C input should
 -- be set to 0000.0111. Round to odd rounding should use
 -- CARRYIN = "0" and check for PATTERN "XXXX.1111" and then
 -- replace the units place bit with 1 if the pattern is
 -- matched. See UG193 for details
Synthesis 110
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=110

Chapter 4: HDL Coding Techniques
begin

 multadd <= z1 + c;

 process(clk)
 begin
 if rising_edge(clk) then
 ar <= signed(a);
 br <= signed(b);
 z1 <= ar * br;
 multaddr <= multadd;
 if multadd(15 downto 0) = pattern then
 pattern_detect <= true;
 else
 pattern_detect <= false;
 end if;
 end if;
 end process;

 process(clk)
 begin
 if rising_edge(clk) then
 if pattern_detect = true then
 zlast <= std_logic_vector(multaddr(39 downto 17)) & "1";
 else
 zlast <= std_logic_vector(multaddr(39 downto 16));
 end if;
 end if;
 end process;

end beh;

RAM HDL Coding Techniques
Vivado synthesis can interpret various RAM coding styles, and maps them into distributed
RAMs or block RAMs. This action does the following:

• Makes it unnecessary to manually instantiate RAM primitives
• Saves time
• Keeps HDL source code portable and scalable

Download the coding example files from Coding Examples.

Choosing Between Distributed RAM and Dedicated Block RAM
Data is written synchronously into the RAM for both types. The primary difference between
distributed RAM and dedicated block RAM lies in the way data is read from the RAM. See
the following table.
Synthesis 111
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=111

Chapter 4: HDL Coding Techniques
Whether to use distributed RAM or dedicated block RAM can depend upon the
characteristics of the RAM described in the HDL source code, the availability of block RAM
resources, and whether you have forced a specific implementation style using RAM_STYLE
attribute.

Memory Inference Capabilities
Memory inference capabilities include the following:

• Support for any size and data width. Vivado synthesis maps the memory description to
one or several RAM primitives

• Single-port, simple-dual port, true dual port
• Up to two write ports
• Multiple read ports

Provided that only one write port is described, Vivado synthesis can identify RAM
descriptions with two or more read ports that access the RAM contents at addresses
different from the write address.

• Write enable
• RAM enable (block RAM)
• Data output reset (block RAM)
• Optional output register (block RAM)
• Byte write enable (block RAM)
• Each RAM port can be controlled by its distinct clock, port enable, write enable, and

data output reset
• Initial contents specification
• Vivado synthesis can use parity bits as regular data bits to accommodate the described

data widths
Note: For more information on parity bits see the user guide for the device you are targeting.

Table 4-1: Distributed RAM versus Dedicated Block RAM
Action Distributed RAM Dedicated Block RAM
Write Synchronous Synchronous
Read Asynchronous Synchronous
Synthesis 112
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=112

Chapter 4: HDL Coding Techniques
UltraRAM Coding Templates
UltraRAM is described in "Chapter 2, UltraRAM Resources" of the UltraScale Architecture
Memory Resources User Guide (UG573) [Ref 3] as follows:

"UltraRAM is a single-clocked, two port, synchronous memory available in UltraScale+™
devices. Because UltraRAM is compatible with the columnar architecture, multiple
UltraRAMs can be instantiated and directly cascaded in an UltraRAM column for the
entire height of the device. A column in a single clock region contains 16 UltraRAM
blocks. Devices with UltraRAM include multiple UltraRAM columns distributed in the
device. Most of the devices in the UltraScale+ family include UltraRAM blocks. For the
available quantity of UltraRAM in specific device families, see the UltraScale Architecture
and Product Overview (DS890) [Ref 1].

The following files are included in the Coding Examples:

• xilinx_ultraram_single_port_no_change.v
• xilinx_ultraram_single_port_no_change.vhd
• xilinx_ultraram_single_port_read_first.v
• xilinx_ultraram_single_port_read_first.vhd
• xilinx_ultraram_single_port_write_first.v

• xilinx_ultraram_single_port_write_first.vhd

The Vivado tool includes templates of UltraRAM VHDL and Verilog code. The following
figure shows the template files.
Synthesis 113
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=113

Chapter 4: HDL Coding Techniques
See the UltraScale Architecture Memory Resources User Guide (UG573) [Ref 3] for more
information.

Inferring UltraRAM in Vivado Synthesis
Overview of the UltraRAM Primitive
UltraRAM is a new dedicated memory primitive available in the UltraScale+ devices from
Xilinx. This is a large memory that is designed to be cascaded for very large RAM blocks. For
more information, see the UltraScale Architecture Memory Resources User Guide (UG573)
[Ref 3].

X-Ref Target - Figure 4-2

Figure 4-2: UltraRAM Coding Templates
Synthesis 114
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=114

Chapter 4: HDL Coding Techniques
Description of the UltraRAM Primitive
The UltraRAM primitive is a dual port memory with a single clock. A single primitive is
configured as 4Kx72. The UltraRAM has 2 ports, both of which can access all 4K of the RAM.
This allows for single port, simple dual port, and true dual port behavior. There are also
multiple pipeline registers for each port of the primitive. For control signals, the UltraRAM
has one clock, a global enable, a output register reset, a write enable and byte write enable
support.

Differences between UltraRAM and Block RAM
There are a few notable differences between UltraRAM and block RAM to consider, as
follows:

° The UltraRAM only has one clock, so while true dual port operation is supported,
both ports are synchronous to each other.

° The aspect ratio of the UltraRAM is not configurable like block RAM, it is always
configured as 4Kx72.

° The resets on the output registers can only be reset to 0.

° The write modes (read_first, write_first, no_change) do not exist in this
primitive. The regular UltraRAM behaves like no_change; however, if you describe
read_first or write_first in RTL, the Vivado synthesis creates the correct
logic.

° Finally, the INIT for RAM does not exist, the UltraRAM powers up in a 0 condition.

Using UltraRAM Inference
There are three ways of getting UltraRAM primitives, as follows:

° Direct instantiation: Provides you the most control but is the hardest to perform.

° XPM flow: Allows you to specify the type of RAM you want along with the behavior,
but gives no access to the RTL.

° Inference RAM: Is in the middle of the two, relatively easy, and gives more control to
the user on how the RAM is created.

Attributes for Controlling UltraRAM
There are two attributes needed to control UltraRAM in Vivado synthesis: RAM_STYLE and
CASCADE_HEIGHT.
Synthesis 115
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=115

Chapter 4: HDL Coding Techniques
RAM_STYLE

The RAM_STYLE attribute has a value called ultra. By default, Vivado synthesis will use a
heuristic to determine what type of RAM to infer, URAM, BRAM or LUTRAM. If you want to
force the RAM into an UltraRAM, you can use the RAM_STYLE attribute to tell Vivado
synthesis to infer the URAM primitives.

More information is available in RAM_STYLE in Chapter 2.

RAM_STYLE Example (Verilog)

(* ram_style = "ultra" *) reg [data_size-1:0] myram [2**addr_size-1:0];

RAM_STYLE Example (VHDL)

attribute ram_style : string;
attribute ram_style of myram : signal is "ultra";

CASCADE_HEIGHT

When cascading multiple UltraRAMs (URAMs) together to create a larger RAM, Vivado
synthesis limits the height of the chain to 8 to provide flexibility to the place and route tool.
To change this limit, you can use the CASCADE_HEIGHT attribute to change the default
behavior.

Note: This option is only applicable to UltraScale architecture BRAMs and URAMs.

CASCADE_HEIGHT Example (Verilog)

(* cascade_height = 16 *) reg [data_size-1:0] myram [2**addr_size-1:0];

CASCADE_HEIGHT Example (VHDL)

attribute cascade_height : integer;
attribute cascade_height of my_ram signal is 16;

In addition to the attributes that only affect the specific RAMs on which they are put, there
is also a global setting which affects all RAMs in the design.

The Synthesis Settings menu has the -max_uram_cascade_height setting. The default
value is -1 which means that the Vivado synthesis tool determines the best course of action,
but this can be overridden by other values. In case of a conflict between the global setting
and a CASCADE_HEIGHT attribute, the attribute is used for that specific RAM.
Synthesis 116
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=116

Chapter 4: HDL Coding Techniques
Inference Capabilities
The Vivado Synthesis tool can do many types of memories using the UltraRAM primitives.

For examples, see the Coding Guidelines.

• In single port memory, the same port that reads the memory also writes to it. All three
of the write modes for the block RAM are supported, but it should be noted that the
UltraRAM itself acts like a NO_CHANGE memory. If WRITE_FIRST or READ_FIRST
behavior is described in the RTL, then the UltraRAM created will be set in simple dual
port mode.

• In a simple dual port memory, one port reads from the RAM while the other port writes
to it. Vivado synthesis can infer these memories into UltraRAM.

TIP: One stipulation is that both ports must have the same clock.

• In True Dual Port mode, both ports can read from and write to the memory. In this
mode, only the NO_CHANGE mode is supported.

CAUTION! Care should also be taken when simulating the true dual port RAM. In the previous versions
of block RAM, there was address collision that was taken care of by the simulation models; with the
UltraRAM it is different. In the UltraRAM, port A will always happen before port B. If Port A has a write
and Port B is a read from that address, the memory is written to and then read from, but if Port A has
the read and port B has the write, the old value is seen during the read.

CAUTION! Be sure to never read and write to the same address during the same clock cycle on a true
dual port memory because the RTL and post-synthesis simulations could be different.

For both the simple dual port memory and the true dual port memory, the clocks have to be
the same for both ports.

In addition to the different styles of RAMs, there are also a few other features of the
UltraRAM that can be inferred. The RAM has a global enable signal that takes precedence
over the write enable. It has the standard write enable and byte write enable support. The
data output also has a reset like the previous block RAM; however, in this case there is no
SRVAL that can be set, only resets of 0 are supported.

Pipelining the RAM
The UltraRAM (URAM) supports pipelining registers into the RAM. This becomes especially
useful when multiple UltraRAMs are used to create a very large RAM. To fully pipeline the
RAM, you must add extra registers to the output of the RAM in RTL. To calculate the number
of pipeline registers to use, add together the number of rows and columns in the RAM
matrix.
Synthesis 117
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=117

Chapter 4: HDL Coding Techniques
Note: The tool does not create the pipeline registers for you; they must be in the RTL code for
Vivado synthesis to make use of them.

The synthesis log file has a section about URAMs and how many rows and columns are used
to create the RAM matrix. You can use this section to add pipeline registers in the RTL.

To calculate the number of rows and columns of the matrix yourself, remember that the
UltraRAM is configured as a 4Kx72.

To calculate the number of rows take your address space of the RAM in RTL and divide by
4K. If this number is higher than the number specified by CASCADE_HEIGHT, then remove
the extra RAMs, and start them on a new column in the log.

Creating Pipeline Example 1: 8K x 72

In this example, 8K divided by 4K is 2, so there are 2 rows. If the CASCADE_HEIGHT is set
higher than 2, it is a 2x1 matrix. There should be three pipeline stages added to the output
of the RAM (2 + 1).

Creating Pipeline Example 2 : 8K x 80

In this example, 8K divided by 4K is 2, so there are 2 rows. The data space does not matter
for this calculation, so the matrix would be 2 rows and 1 column resulting in three pipeline
registers again.

Note: The whole matrix is reproduced to get the extra 8 bits of data space needed to create the
RAM, but that does not matter to the calculation of pipeline registers.

Creating Pipeline Example 3: 16K x 70 CASCADE_HEIGHT Set to 3

In this example, 16K divided by 4K is 4; however, because the CASCADE_HEIGHT is 3, then
this would be a 3x2 matrix. This would result in 5 pipeline registers that can be used.
Synthesis 118
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=118

Chapter 4: HDL Coding Techniques
RAM HDL Coding Guidelines
Download the coding example files from Coding Examples.

Block RAM Read/Write Synchronization Modes
You can configure block RAM resources to provide the following synchronization modes for
a given read/write port:

• Read-first: Old content is read before new content is loaded.
• Write-first: New content is immediately made available for reading Write-first is also

known as read-through.
• No-change: Data output does not change as new content is loaded into RAM.

Vivado synthesis provides inference support for all of these synchronization modes. You can
describe a different synchronization mode for each port of the RAM.

Distributed RAM Examples
The following sections provide VHDL and Verilog coding examples for distributed RAM.

Dual-Port RAM with Asynchronous Read Coding Example (Verilog)

Filename: rams_dist.v

// Dual-Port RAM with Asynchronous Read (Distributed RAM)
// File: rams_dist.v

module rams_dist (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk)
begin
 if (we)
 ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];

endmodule
Synthesis 119
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=119

Chapter 4: HDL Coding Techniques
Single-Port RAM with Asynchronous Read Coding Example (VHDL)

Filename: rams_dist.vhd

-- Single-Port RAM with Asynchronous Read (Distributed RAM)
-- File: rams_dist.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_dist is
 port(
 clk : in std_logic;
 we : in std_logic;
 a : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0)
);
end rams_dist;

architecture syn of rams_dist is
 type ram_type is array (63 downto 0) of std_logic_vector(15 downto 0);
 signal RAM : ram_type;
begin
 process(clk)
 begin
 if (clk'event and clk = '1') then
 if (we = '1') then
 RAM(to_integer(unsigned(a))) <= di;
 end if;
 end if;
 end process;

 do <= RAM(to_integer(unsigned(a)));

end syn;

Single-Port Block RAMs

Single-Port Block RAM with Resettable Data Output (Verilog)

Filename: rams_sp_rf_rst.v
// Block RAM with Resettable Data Output
// File: rams_sp_rf_rst.v

module rams_sp_rf_rst (clk, en, we, rst, addr, di, dout);
input clk;
input en;
input we;
input rst;
input [9:0] addr;
Synthesis 120
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=120

Chapter 4: HDL Coding Techniques
input [15:0] di;
output [15:0] dout;

reg [15:0] ram [1023:0];
reg [15:0] dout;

always @(posedge clk)
begin
 if (en) //optional enable
 begin
 if (we) //write enable
 ram[addr] <= di;
 if (rst) //optional reset
 dout <= 0;
 else
 dout <= ram[addr];
 end
end

endmodule

Single Port Block RAM with Resettable Data Output (VHDL)

Filename: rams_sp_rf_rst.vhd

-- Block RAM with Resettable Data Output
-- File: rams_sp_rf_rst.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rf_rst is
 port(
 clk : in std_logic;
 en : in std_logic;
 we : in std_logic;
 rst : in std_logic;
 addr : in std_logic_vector(9 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0)
);
end rams_sp_rf_rst;

architecture syn of rams_sp_rf_rst is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 signal ram : ram_type;
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then -- optional enable
 if we = '1' then -- write enable
 ram(to_integer(unsigned(addr))) <= di;
 end if;
 if rst = '1' then -- optional reset
 do <= (others => '0');
 else
Synthesis 121
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=121

Chapter 4: HDL Coding Techniques
 do <= ram(to_integer(unsigned(addr)));
 end if;
 end if;
 end if;
 end process;

end syn;

Single-Port Block RAM Write-First Mode (Verilog)

Filename: rams_sp_wf.v

// Single-Port Block RAM Write-First Mode (recommended template)
// File: rams_sp_wf.v
module rams_sp_wf (clk, we, en, addr, di, dout);
input clk;
input we;
input en;
input [9:0] addr;
input [15:0] di;
output [15:0] dout;
reg [15:0] RAM [1023:0];
reg [15:0] dout;

always @(posedge clk)
begin
 if (en)
 begin
 if (we)
 begin
 RAM[addr] <= di;
 dout <= di;
 end
 else
 dout <= RAM[addr];
 end
end
endmodule

Single-Port Block RAM Write-First Mode (VHDL)

Filename: rams_sp_wf.vhd

-- Single-Port Block RAM Write-First Mode (recommended template)
--
-- File: rams_sp_wf.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_wf is
 port(
 clk : in std_logic;
Synthesis 122
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=122

Chapter 4: HDL Coding Techniques
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(9 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0)
);
end rams_sp_wf;

architecture syn of rams_sp_wf is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 signal RAM : ram_type;
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(to_integer(unsigned(addr))) <= di;
 do <= di;
 else
 do <= RAM(to_integer(unsigned(addr)));
 end if;
 end if;
 end if;
 end process;

end syn;

Single-Port RAM with Read First (VHDL)

Filename: rams_sp_rf.vhd

-- Single-Port Block RAM Read-First Mode
-- rams_sp_rf.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rf is
 port(
 clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(9 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0)
);
end rams_sp_rf;

architecture syn of rams_sp_rf is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 signal RAM : ram_type;
begin
 process(clk)
Synthesis 123
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=123

Chapter 4: HDL Coding Techniques
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(to_integer(unsigned(addr))) <= di;
 end if;
 do <= RAM(to_integer(unsigned(addr)));
 end if;
 end if;
 end process;

end syn;

Single-Port Block RAM No-Change Mode (Verilog)

Filename: rams_sp_nc.v

// Single-Port Block RAM No-Change Mode
// File: rams_sp_nc.v

module rams_sp_nc (clk, we, en, addr, di, dout);

input clk;
input we;
input en;
input [9:0] addr;
input [15:0] di;
output [15:0] dout;

reg [15:0] RAM [1023:0];
reg [15:0] dout;

always @(posedge clk)
begin
 if (en)
 begin
 if (we)
 RAM[addr] <= di;
 else
 dout <= RAM[addr];
 end
end
endmodule

Single-Port Block RAM No-Change Mode (VHDL)

Filename: rams_sp_nc.vhd

-- Single-Port Block RAM No-Change Mode
-- File: rams_sp_nc.vhd
--

library ieee;
use ieee.std_logic_1164.all;
Synthesis 124
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=124

Chapter 4: HDL Coding Techniques
use ieee.numeric_std.all;

entity rams_sp_nc is
 port(
 clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(9 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0)
);
end rams_sp_nc;

architecture syn of rams_sp_nc is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 signal RAM : ram_type;
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(to_integer(unsigned(addr))) <= di;
 else
 do <= RAM(to_integer(unsigned(addr)));
 end if;
 end if;
 end if;
 end process;

end syn;

Simple Dual-Port Block RAM Examples

Simple Dual-Port Block RAM with Single Clock (Verilog)

Filename: simple_dual_one_clock.v

// Simple Dual-Port Block RAM with One Clock
// File: simple_dual_one_clock.v

module simple_dual_one_clock (clk,ena,enb,wea,addra,addrb,dia,dob);

input clk,ena,enb,wea;
input [9:0] addra,addrb;
input [15:0] dia;
output [15:0] dob;
reg [15:0] ram [1023:0];
reg [15:0] doa,dob;

always @(posedge clk) begin
 if (ena) begin
 if (wea)
 ram[addra] <= dia;
 end
Synthesis 125
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=125

Chapter 4: HDL Coding Techniques
end

always @(posedge clk) begin
 if (enb)
 dob <= ram[addrb];
end

endmodule

Simple Dual-Port Block RAM with Single Clock (VHDL)

Filename: simple_dual_one_clock.vhd
-- Simple Dual-Port Block RAM with One Clock
-- Correct Modelization with a Shared Variable
-- File:simple_dual_one_clock.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity simple_dual_one_clock is
 port(
 clk : in std_logic;
 ena : in std_logic;
 enb : in std_logic;
 wea : in std_logic;
 addra : in std_logic_vector(9 downto 0);
 addrb : in std_logic_vector(9 downto 0);
 dia : in std_logic_vector(15 downto 0);
 dob : out std_logic_vector(15 downto 0)
);
end simple_dual_one_clock;

architecture syn of simple_dual_one_clock is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 shared variable RAM : ram_type;
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 if ena = '1' then
 if wea = '1' then
 RAM(conv_integer(addra)) := dia;
 end if;
 end if;
 end if;
 end process;

 process(clk)
 begin
 if clk'event and clk = '1' then
 if enb = '1' then
 dob <= RAM(conv_integer(addrb));
 end if;
 end if;
 end process;

end syn;
Synthesis 126
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=126

Chapter 4: HDL Coding Techniques
Simple Dual-Port Block RAM with Dual Clocks (Verilog)

Filename: simple_dual_two_clocks.v

// Simple Dual-Port Block RAM with Two Clocks
// File: simple_dual_two_clocks.v

module simple_dual_two_clocks (clka,clkb,ena,enb,wea,addra,addrb,dia,dob);

input clka,clkb,ena,enb,wea;
input [9:0] addra,addrb;
input [15:0] dia;
output [15:0] dob;
reg [15:0] ram [1023:0];
reg [15:0] dob;

always @(posedge clka)
begin
 if (ena)
 begin
 if (wea)
 ram[addra] <= dia;
 end
end

always @(posedge clkb)
begin
 if (enb)
 begin
 dob <= ram[addrb];
 end
end

endmodule

Simple Dual-Port Block RAM with Dual Clocks (VHDL)

Filename: simple_dual_two_clocks.vhd

-- Simple Dual-Port Block RAM with Two Clocks
-- Correct Modelization with a Shared Variable
-- File: simple_dual_two_clocks.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity simple_dual_two_clocks is
 port(
 clka : in std_logic;
 clkb : in std_logic;
 ena : in std_logic;
 enb : in std_logic;
 wea : in std_logic;
 addra : in std_logic_vector(9 downto 0);
 addrb : in std_logic_vector(9 downto 0);
 dia : in std_logic_vector(15 downto 0);
Synthesis 127
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=127

Chapter 4: HDL Coding Techniques
 dob : out std_logic_vector(15 downto 0)
);
end simple_dual_two_clocks;

architecture syn of simple_dual_two_clocks is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 shared variable RAM : ram_type;
begin
 process(clka)
 begin
 if clka'event and clka = '1' then
 if ena = '1' then
 if wea = '1' then
 RAM(conv_integer(addra)) := dia;
 end if;
 end if;
 end if;
 end process;

 process(clkb)
 begin
 if clkb'event and clkb = '1' then
 if enb = '1' then
 dob <= RAM(conv_integer(addrb));
 end if;
 end if;
 end process;

end syn;

True Dual-Port Block RAM Examples

Dual-Port Block RAM with Two Write Ports in Read First Mode Example
(Verilog)

Filename: ram_tdp_rf_rf.v

// Dual-Port Block RAM with Two Write Ports
// File: rams_tdp_rf_rf.v

module rams_tdp_rf_rf (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [9:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [1023:0];
reg [15:0] doa,dob;

always @(posedge clka)
begin
 if (ena)
 begin
 if (wea)
 ram[addra] <= dia;
 doa <= ram[addra];
Synthesis 128
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=128

Chapter 4: HDL Coding Techniques
 end
end

always @(posedge clkb)
begin
 if (enb)
 begin
 if (web)
 ram[addrb] <= dib;
 dob <= ram[addrb];
 end
end

endmodule

Dual-Port Block RAM with Two Write Ports in Read-First Mode (VHDL)

Filename: ram_tdp_rf_rf.vhd

-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
-- File: rams_tdp_rf_rf.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_tdp_rf_rf is
 port(
 clka : in std_logic;
 clkb : in std_logic;
 ena : in std_logic;
 enb : in std_logic;
 wea : in std_logic;
 web : in std_logic;
 addra : in std_logic_vector(9 downto 0);
 addrb : in std_logic_vector(9 downto 0);
 dia : in std_logic_vector(15 downto 0);
 dib : in std_logic_vector(15 downto 0);
 doa : out std_logic_vector(15 downto 0);
 dob : out std_logic_vector(15 downto 0)
);
end rams_tdp_rf_rf;

architecture syn of rams_tdp_rf_rf is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 shared variable RAM : ram_type;
begin
 process(CLKA)
 begin
 if CLKA’event and CLKA = ‘1’ then
 if ENA = ‘1’ then
 DOA <= RAM(to_integer(unsigned(ADDRA)));
 if WEA = ‘1’ then
 RAM(to_integer(unsigned(ADDRA))) := DIA;
 end if;
Synthesis 129
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=129

Chapter 4: HDL Coding Techniques
 end if;
 end if;
 end process;

 process(CLKB)
 begin
 if CLKB’event and CLKB = ‘1’ then
 if ENB = ‘1’ then
 DOB <= RAM(to_integer(unsigned(ADDRB)));
 if WEB = ‘1’ then
 RAM(to_integer(unsigned(ADDRB))) := DIB;
 end if;
 end if;
 end if;
 end process;

end syn;

Block RAM with Optional Output Registers (Verilog)

Filename: rams_pipeline.v
// Block RAM with Optional Output Registers
// File: rams_pipeline

module rams_pipeline (clk1, clk2, we, en1, en2, addr1, addr2, di, res1, res2);
input clk1;
input clk2;
input we, en1, en2;
input [9:0] addr1;
input [9:0] addr2;
input [15:0] di;
output [15:0] res1;
output [15:0] res2;
reg [15:0] res1;
reg [15:0] res2;
reg [15:0] RAM [1023:0];
reg [15:0] do1;
reg [15:0] do2;

always @(posedge clk1)
begin
 if (we == 1'b1)
 RAM[addr1] <= di;
 do1 <= RAM[addr1];
end

always @(posedge clk2)
begin
 do2 <= RAM[addr2];
end

always @(posedge clk1)
begin
 if (en1 == 1'b1)
 res1 <= do1;
end

always @(posedge clk2)
begin
Synthesis 130
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=130

Chapter 4: HDL Coding Techniques
 if (en2 == 1'b1)
 res2 <= do2;
end
endmodule

Block RAM with Optional Output Registers (VHDL)

Filename: rams_pipeline.vhd

-- Block RAM with Optional Output Registers
-- File: rams_pipeline.vhd
library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity rams_pipeline is
 port(
 clk1, clk2 : in std_logic;
 we, en1, en2 : in std_logic;
 addr1 : in std_logic_vector(9 downto 0);
 addr2 : in std_logic_vector(9 downto 0);
 di : in std_logic_vector(15 downto 0);
 res1 : out std_logic_vector(15 downto 0);
 res2 : out std_logic_vector(15 downto 0)
);
end rams_pipeline;

architecture beh of rams_pipeline is
 type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
 signal ram : ram_type;
 signal do1 : std_logic_vector(15 downto 0);
 signal do2 : std_logic_vector(15 downto 0);
begin
 process(clk1)
 begin
 if rising_edge(clk1) then
 if we = '1' then
 ram(to_integer(unsigned(addr1))) <= di;
 end if;
 do1 <= ram(to_integer(unsigned(addr1)));
 end if;
 end process;

 process(clk2)
 begin
 if rising_edge(clk2) then
 do2 <= ram(to_integer(unsigned(addr2)));
 end if;
 end process;

 process(clk1)
 begin
 if rising_edge(clk1) then
 if en1 = '1' then
 res1 <= do1;
 end if;
Synthesis 131
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=131

Chapter 4: HDL Coding Techniques
 end if;
 end process;

 process(clk2)
 begin
 if rising_edge(clk2) then
 if en2 = '1' then
 res2 <= do2;
 end if;
 end if;
 end process;

end beh;

Byte Write Enable (Block RAM)
Xilinx supports byte write enable in block RAM.

Use byte write enable in block RAM to:

• Exercise advanced control over writing data into RAM
• Separately specify the writeable portions of 8 bits of an addressed memory

From the standpoint of HDL modeling and inference, the concept is best described as a
column-based write:

• The RAM is seen as a collection of equal size columns
• During a write cycle, you separately control writing into each of these columns

Vivado synthesis inference lets you take advantage of the block RAM byte write enable
feature. The described RAM is implemented on block RAM resources, using the byte write
enable capability, provided that the following requirements are met:

• Write columns of equal widths
• Allowed write column widths: 8-bit, 9-bit, 16-bit, 18-bit (multiple of 8-bit or 9-bit)

For other write column widths, such as 5-bit or 12-bit (non multiple of 8-bit or 9-bit),
Vivado synthesis uses separate RAMs for each column:

• Number of write columns: any
• Supported read-write synchronizations: read-first, write-first, no-change
Synthesis 132
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=132

Chapter 4: HDL Coding Techniques
Byte Write Enable—True Dual Port with Byte-Wide Write Enable (Verilog)

Filename: bytewrite_tdp_ram_rf.v

// True-Dual-Port BRAM with Byte-wide Write Enable
// Read-First mode
// bytewrite_tdp_ram_rf.v
//

module bytewrite_tdp_ram_rf
 #(
//--
parameter NUM_COL = 4,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10,
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
 //--
) (
 input clkA,
 input enaA,
 input [NUM_COL-1:0] weA,
 input [ADDR_WIDTH-1:0] addrA,
 input [DATA_WIDTH-1:0] dinA,
 output reg [DATA_WIDTH-1:0] doutA,

 input clkB,
 input enaB,
 input [NUM_COL-1:0] weB,
 input [ADDR_WIDTH-1:0] addrB,
 input [DATA_WIDTH-1:0] dinB,
 output reg [DATA_WIDTH-1:0] doutB
);

 // Core Memory
 reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];

 integer i;
 // Port-A Operation
 always @ (posedge clkA) begin
 if(enaA) begin
 for(i=0;i<NUM_COL;i=i+1) begin
 if(weA[i]) begin
 ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +:
COL_WIDTH];
 end
 end
 doutA <= ram_block[addrA];
 end
 end

 // Port-B Operation:
 always @ (posedge clkB) begin
 if(enaB) begin
 for(i=0;i<NUM_COL;i=i+1) begin
 if(weB[i]) begin
Synthesis 133
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=133

Chapter 4: HDL Coding Techniques
 ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +:
COL_WIDTH];
 end
 end

 doutB <= ram_block[addrB];
 end
 end

endmodule // bytewrite_tdp_ram_rf

Byte Write Enable—True Dual Port READ_FIRST Mode (VHDL)

Filename: bytewrite_tdp_ram_rf.vhd

-- True-Dual-Port BRAM with Byte-wide Write Enable
-- Read First mode
--
-- bytewrite_tdp_ram_rf.vhd
--
-- READ_FIRST ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_rf is
 generic(
 SIZE : integer := 1024;
 ADDR_WIDTH : integer := 10;
 COL_WIDTH : integer := 9;
 NB_COL : integer := 4
);

 port(
 clka : in std_logic;
 ena : in std_logic;
 wea : in std_logic_vector(NB_COL - 1 downto 0);
 addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 clkb : in std_logic;
 enb : in std_logic;
 web : in std_logic_vector(NB_COL - 1 downto 0);
 addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_rf;

architecture byte_wr_ram_rf of bytewrite_tdp_ram_rf is
 type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL * COL_WIDTH - 1
downto 0);
 shared variable RAM : ram_type := (others => (others => '0'));
Synthesis 134
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=134

Chapter 4: HDL Coding Techniques
begin

 ------- Port A -------
 process(clka)
 begin
 if rising_edge(clka) then
 if ena = '1' then
 doa <= RAM(conv_integer(addra));
 for i in 0 to NB_COL - 1 loop
 if wea(i) = '1' then
 RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dia((i
+ 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 end if;
 end if;
 end process;

 ------- Port B -------
 process(clkb)
 begin
 if rising_edge(clkb) then
 if enb = '1' then
 dob <= RAM(conv_integer(addrb));
 for i in 0 to NB_COL - 1 loop
 if web(i) = '1' then
 RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dib((i
+ 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 end if;
 end if;
 end process;
end byte_wr_ram_rf;

Byte Write Enable—WRITE_FIRST Mode (VHDL)

Filename: bytewrite_tdp_ram_wf.vhd

-- True-Dual-Port BRAM with Byte-wide Write Enable
-- Write First mode
--
-- bytewrite_tdp_ram_wf.vhd
-- WRITE_FIRST ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_wf is
 generic(
 SIZE : integer := 1024;
 ADDR_WIDTH : integer := 10;
 COL_WIDTH : integer := 9;
 NB_COL : integer := 4
);
Synthesis 135
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=135

Chapter 4: HDL Coding Techniques
 port(
 clka : in std_logic;
 ena : in std_logic;
 wea : in std_logic_vector(NB_COL - 1 downto 0);
 addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 clkb : in std_logic;
 enb : in std_logic;
 web : in std_logic_vector(NB_COL - 1 downto 0);
 addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_wf;

architecture byte_wr_ram_wf of bytewrite_tdp_ram_wf is
 type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL * COL_WIDTH - 1
downto 0);
 shared variable RAM : ram_type := (others => (others => '0'));

begin

 ------- Port A -------
 process(clka)
 begin
 if rising_edge(clka) then
 if ena = '1' then
 for i in 0 to NB_COL - 1 loop
 if wea(i) = '1' then
 RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dia((i
+ 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 doa <= RAM(conv_integer(addra));
 end if;
 end if;

 end process;

 ------- Port B -------
 process(clkb)
 begin
 if rising_edge(clkb) then
 if enb = '1' then
 for i in 0 to NB_COL - 1 loop
 if web(i) = '1' then
 RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dib((i
+ 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 dob <= RAM(conv_integer(addrb));
 end if;
 end if;
 end process;
end byte_wr_ram_wf;
Synthesis 136
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=136

Chapter 4: HDL Coding Techniques
Byte-Wide Write Enable—NO_CHANGE Mode (Verilog)

bytewrite_tdp_ram_nc.v
//
// True-Dual-Port BRAM with Byte-wide Write Enable
// No-Change mode
//
// bytewrite_tdp_ram_nc.v
//
// ByteWide Write Enable, - NO_CHANGE mode template - Vivado recomended
module bytewrite_tdp_ram_nc
 #(
 //---
 parameter NUM_COL = 4,
 parameter COL_WIDTH = 8,
 parameter ADDR_WIDTH = 10, // Addr Width in bits : 2**ADDR_WIDTH = RAM Depth
 parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
 //---
) (
 input clkA,
 input enaA,
 input [NUM_COL-1:0] weA,
 input [ADDR_WIDTH-1:0] addrA,
 input [DATA_WIDTH-1:0] dinA,
 output reg [DATA_WIDTH-1:0] doutA,

 input clkB,
 input enaB,
 input [NUM_COL-1:0] weB,
 input [ADDR_WIDTH-1:0] addrB,
 input [DATA_WIDTH-1:0] dinB,
 output reg [DATA_WIDTH-1:0] doutB
);

 // Core Memory
 reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];

 // Port-A Operation
 generate
 genvar i;
 for(i=0;i<NUM_COL;i=i+1) begin
 always @ (posedge clkA) begin
 if(enaA) begin
 if(weA[i]) begin
 ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +: COL_WIDTH];
 end
 end
 end
 end
 endgenerate

 always @ (posedge clkA) begin
 if(enaA) begin
 if (~|weA)
 doutA <= ram_block[addrA];
 end
 end

 // Port-B Operation:
 generate
Synthesis 137
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=137

Chapter 4: HDL Coding Techniques
 for(i=0;i<NUM_COL;i=i+1) begin
 always @ (posedge clkB) begin
 if(enaB) begin
 if(weB[i]) begin
 ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +: COL_WIDTH];
 end
 end
 end
 end
 endgenerate

 always @ (posedge clkB) begin
 if(enaB) begin
 if (~|weB)
 doutB <= ram_block[addrB];
 end
 end

endmodule // bytewrite_tdp_ram_nc

Byte-Wide Write Enable—NO_CHANGE Mode (VHDL)

Filename: bytewrite_tdp_ram_nc.vhd
--
-- True-Dual-Port BRAM with Byte-wide Write Enable
-- No change mode
--
-- bytewrite_tdp_ram_nc.vhd
--
-- NO_CHANGE ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_nc is
 generic(
 SIZE : integer := 1024;
 ADDR_WIDTH : integer := 10;
 COL_WIDTH : integer := 9;
 NB_COL : integer := 4
);

 port(
 clka : in std_logic;
 ena : in std_logic;
 wea : in std_logic_vector(NB_COL - 1 downto 0);
 addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 clkb : in std_logic;
 enb : in std_logic;
 web : in std_logic_vector(NB_COL - 1 downto 0);
 addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
 dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_nc;

architecture byte_wr_ram_nc of bytewrite_tdp_ram_nc is
Synthesis 138
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=138

Chapter 4: HDL Coding Techniques
 type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
 shared variable RAM : ram_type := (others => (others => '0'));

begin

 ------- Port A -------
 process(clka)
 begin
 if rising_edge(clka) then
 if ena = '1' then
 if (wea = (wea'range => '0')) then
 doa <= RAM(conv_integer(addra));
 end if;
 for i in 0 to NB_COL - 1 loop
 if wea(i) = '1' then
 RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dia((i + 1) *
COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 end if;
 end if;
 end process;

 ------- Port B -------
 process(clkb)
 begin
 if rising_edge(clkb) then
 if enb = '1' then
 if (web = (web'range => '0')) then
 dob <= RAM(conv_integer(addrb));
 end if;
 for i in 0 to NB_COL - 1 loop
 if web(i) = '1' then
 RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) := dib((i + 1) *
COL_WIDTH - 1 downto i * COL_WIDTH);
 end if;
 end loop;
 end if;
 end if;
 end process;
end byte_wr_ram_nc;

Asymmetric RAMs

Simple Dual-Port Asymmetric RAM When Read is Wider than Write (VHDL)

Filename: asym_ram_sdp_read_wider.vhd
-- Asymmetric port RAM
-- Read Wider than Write
-- asym_ram_sdp_read_wider.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_sdp_read_wider is
 generic(
 WIDTHA : integer := 4;
Synthesis 139
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=139

Chapter 4: HDL Coding Techniques
 SIZEA : integer := 1024;
 ADDRWIDTHA : integer := 10;
 WIDTHB : integer := 16;
 SIZEB : integer := 256;
 ADDRWIDTHB : integer := 8
);

 port(
 clkA : in std_logic;
 clkB : in std_logic;
 enA : in std_logic;
 enB : in std_logic;
 weA : in std_logic;
 addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
 addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
 diA : in std_logic_vector(WIDTHA - 1 downto 0);
 doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_sdp_read_wider;

architecture behavioral of asym_ram_sdp_read_wider is
 function max(L, R : INTEGER) return INTEGER is
 begin
 if L > R then
 return L;
 else
 return R;
 end if;
 end;

 function min(L, R : INTEGER) return INTEGER is
 begin
 if L < R then
 return L;
 else
 return R;
 end if;
 end;

 function log2(val : INTEGER) return natural is
 variable res : natural;
 begin
 for i in 0 to 31 loop
 if (val <= (2 ** i)) then
 res := i;
 exit;
 end if;
 end loop;
 return res;
 end function Log2;

 constant minWIDTH : integer := min(WIDTHA, WIDTHB);
 constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
 constant maxSIZE : integer := max(SIZEA, SIZEB);
 constant RATIO : integer := maxWIDTH / minWIDTH;

 -- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
 -- array of array object. Its aspect ratio corresponds to the port with the
 -- lower data width (larger depth)
 type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1 downto 0);

 signal my_ram : ramType := (others => (others => '0'));

 signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
Synthesis 140
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=140

Chapter 4: HDL Coding Techniques
 signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin

 -- Write process
 process(clkA)
 begin
 if rising_edge(clkA) then
 if enA = '1' then
 if weA = '1' then
 my_ram(conv_integer(addrA)) <= diA;
 end if;
 end if;
 end if;
 end process;

 -- Read process
 process(clkB)
 begin
 if rising_edge(clkB) then
 for i in 0 to RATIO - 1 loop
 if enB = '1' then
 readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <= my_ram(conv_integer(addrB &
conv_std_logic_vector(i, log2(RATIO))));
 end if;
 end loop;
 regB <= readB;
 end if;
 end process;

 doB <= regB;

end behavioral;

Dual-Port Asymmetric RAM When Read is Wider than Write (Verilog)

Filename: asym_ram_sdp_read_wider.v

// Asymmetric port RAM
// Read Wider than Write. Read Statement in loop
//asym_ram_sdp_read_wider.v

module asym_ram_sdp_read_wider (clkA, clkB, enaA, weA, enaB, addrA, addrB, diA, doB);
parameter WIDTHA = 4;
parameter SIZEA = 1024;
parameter ADDRWIDTHA = 10;

parameter WIDTHB = 16;
parameter SIZEB = 256;
parameter ADDRWIDTHB = 8;
input clkA;
input clkB;
input weA;
input enaA, enaB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output [WIDTHB-1:0] doB;
`define max(a,b) {(a) > (b) ? (a) : (b)}
Synthesis 141
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=141

Chapter 4: HDL Coding Techniques
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
 if (value < 2)
 log2 = value;
 else
 begin
 shifted = value-1;
 for (res=0; shifted>0; res=res+1)
 shifted = shifted>>1;
 log2 = res;
 end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHB-1:0] readB;

always @(posedge clkA)
begin
 if (enaA) begin
 if (weA)
 RAM[addrA] <= diA;
 end
end

always @(posedge clkB)
begin : ramread
 integer i;
 reg [log2RATIO-1:0] lsbaddr;
 if (enaB) begin
 for (i = 0; i < RATIO; i = i+1) begin
 lsbaddr = i;
 readB[(i+1)*minWIDTH-1 -: minWIDTH] <= RAM[{addrB, lsbaddr}];
 end
 end
end
assign doB = readB;

endmodule
Synthesis 142
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=142

Chapter 4: HDL Coding Techniques
Simple Dual-Port Asymmetric RAM When Write is Wider than Read (Verilog)

Filename: asym_ram_sdp_write_wider.v

// Asymmetric port RAM
// Write wider than Read. Write Statement in a loop.
// asym_ram_sdp_write_wider.v

module asym_ram_sdp_write_wider (clkA, clkB, weA, enaA, enaB, addrA, addrB, diA,
doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;

parameter WIDTHA = 16;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA;
input enaA, enaB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output [WIDTHB-1:0] doB;
`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
 if (value < 2)
 log2 = value;
 else
 begin
 shifted = value-1;
 for (res=0; shifted>0; res=res+1)
 shifted = shifted>>1;
 log2 = res;
 end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHB-1:0] readB;

always @(posedge clkB) begin
 if (enaB) begin
 readB <= RAM[addrB];
Synthesis 143
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=143

Chapter 4: HDL Coding Techniques
 end
end
assign doB = readB;

always @(posedge clkA)
begin : ramwrite
 integer i;
 reg [log2RATIO-1:0] lsbaddr;
 for (i=0; i< RATIO; i= i+ 1) begin : write1
 lsbaddr = i;
 if (enaA) begin
 if (weA)
 RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
 end
 end
end

endmodule

Simple Dual Port Asymmetric RAM When Write Wider than Read (VHDL)

Filename: asym_ram_sdp_write_wider.vhd
-- Asymmetric port RAM
-- Write Wider than Read
-- asym_ram_sdp_write_wider.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_sdp_write_wider is
 generic(
 WIDTHA : integer := 4;
 SIZEA : integer := 1024;
 ADDRWIDTHA : integer := 10;
 WIDTHB : integer := 16;
 SIZEB : integer := 256;
 ADDRWIDTHB : integer := 8
);

 port(
 clkA : in std_logic;
 clkB : in std_logic;
 enA : in std_logic;
 enB : in std_logic;
 weB : in std_logic;
 addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
 addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
 diB : in std_logic_vector(WIDTHB - 1 downto 0);
 doA : out std_logic_vector(WIDTHA - 1 downto 0)
);

end asym_ram_sdp_write_wider;

architecture behavioral of asym_ram_sdp_write_wider is
 function max(L, R : INTEGER) return INTEGER is
 begin
Synthesis 144
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=144

Chapter 4: HDL Coding Techniques
 if L > R then
 return L;
 else
 return R;
 end if;
 end;

 function min(L, R : INTEGER) return INTEGER is
 begin
 if L < R then
 return L;
 else
 return R;
 end if;
 end;

 function log2(val : INTEGER) return natural is
 variable res : natural;
 begin
 for i in 0 to 31 loop
 if (val <= (2 ** i)) then
 res := i;
 exit;
 end if;
 end loop;
 return res;
 end function Log2;

 constant minWIDTH : integer := min(WIDTHA, WIDTHB);
 constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
 constant maxSIZE : integer := max(SIZEA, SIZEB);
 constant RATIO : integer := maxWIDTH / minWIDTH;

 -- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
 -- array of array object. Its aspect ratio corresponds to the port with the
 -- lower data width (larger depth)
 type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1 downto 0);

 signal my_ram : ramType := (others => (others => '0'));

 signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
 signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin

 -- read process
 process(clkA)
 begin
 if rising_edge(clkA) then
 if enA = '1' then
 readA <= my_ram(conv_integer(addrA));
 end if;
 regA <= readA;
 end if;
 end process;

 -- Write process
 process(clkB)
 begin
 if rising_edge(clkB) then
 for i in 0 to RATIO - 1 loop
 if enB = '1' then
 if weB = '1' then
Synthesis 145
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=145

Chapter 4: HDL Coding Techniques
 my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <= diB((i + 1) *
minWIDTH - 1 downto i * minWIDTH);
 end if;
 end if;
 end loop;
 regB <= readB;
 end if;
 end process;

 doA <= regA;

end behavioral;

True Dual Port Asymmetric RAM Read First (Verilog)

Filename: asym_ram_tdp_read_first.v
// Asymetric RAM - TDP
// READ_FIRST MODE.
// asym_ram_tdp_read_first.v

module asym_ram_tdp_read_first (clkA, clkB, enaA, weA, enaB, weB, addrA, addrB, diA, doA, diB,
doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;
parameter WIDTHA = 16;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA, weB;
input enaA, enaB;

input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
input [WIDTHB-1:0] diB;

output [WIDTHA-1:0] doA;
output [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
 if (value < 2)
 log2 = value;
 else
 begin
 shifted = value-1;
 for (res=0; shifted>0; res=res+1)
 shifted = shifted>>1;
 log2 = res;
 end
end
endfunction
Synthesis 146
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=146

Chapter 4: HDL Coding Techniques
localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHA-1:0] readA;
reg [WIDTHB-1:0] readB;

always @(posedge clkB)
begin
 if (enaB) begin
 readB <= RAM[addrB] ;
 if (weB)
 RAM[addrB] <= diB;
 end
end

always @(posedge clkA)
begin : portA
 integer i;
 reg [log2RATIO-1:0] lsbaddr ;
 for (i=0; i< RATIO; i= i+ 1) begin
 lsbaddr = i;
 if (enaA) begin
 readA[(i+1)*minWIDTH -1 -: minWIDTH] <= RAM[{addrA, lsbaddr}];

 if (weA)
 RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
 end
 end
end

assign doA = readA;
assign doB = readB;

endmodule

True Dual Port Asymmetric RAM Read First (VHDL)

Filename: asym_ram_tdp_read_first_first.vhd
-- asymmetric port RAM
-- True Dual port read first
-- asym_ram_tdp_read_first_first.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_tdp_read_first is
 generic(
 WIDTHA : integer := 4;
 SIZEA : integer := 1024;
 ADDRWIDTHA : integer := 10;
 WIDTHB : integer := 16;
 SIZEB : integer := 256;
Synthesis 147
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=147

Chapter 4: HDL Coding Techniques
 ADDRWIDTHB : integer := 8
);

 port(
 clkA : in std_logic;
 clkB : in std_logic;
 enA : in std_logic;
 enB : in std_logic;
 weA : in std_logic;
 weB : in std_logic;
 addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
 addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
 diA : in std_logic_vector(WIDTHA - 1 downto 0);
 diB : in std_logic_vector(WIDTHB - 1 downto 0);
 doA : out std_logic_vector(WIDTHA - 1 downto 0);
 doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_tdp_read_first;

architecture behavioral of asym_ram_tdp_read_first is
 function max(L, R : INTEGER) return INTEGER is
 begin
 if L > R then
 return L;
 else
 return R;
 end if;
 end;

 function min(L, R : INTEGER) return INTEGER is
 begin
 if L < R then
 return L;
 else
 return R;
 end if;
 end;

 function log2(val : INTEGER) return natural is
 variable res : natural;
 begin
 for i in 0 to 31 loop
 if (val <= (2 ** i)) then
 res := i;
 exit;
 end if;
 end loop;
 return res;
 end function Log2;

 constant minWIDTH : integer := min(WIDTHA, WIDTHB);
 constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
 constant maxSIZE : integer := max(SIZEA, SIZEB);
 constant RATIO : integer := maxWIDTH / minWIDTH;

 -- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
 -- array of array object. Its aspect ratio corresponds to the port with the
 -- lower data width (larger depth)
 type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1 downto 0);

 signal my_ram : ramType := (others => (others => '0'));

 signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
Synthesis 148
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=148

Chapter 4: HDL Coding Techniques
 signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin
 process(clkA)
 begin
 if rising_edge(clkA) then
 if enA = '1' then
 readA <= my_ram(conv_integer(addrA));
 if weA = '1' then
 my_ram(conv_integer(addrA)) <= diA;
 end if;
 end if;
 regA <= readA;
 end if;
 end process;

 process(clkB)
 begin
 if rising_edge(clkB) then
 for i in 0 to RATIO - 1 loop
 if enB = '1' then
 readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <= my_ram(conv_integer(addrB &
conv_std_logic_vector(i, log2(RATIO))));
 if weB = '1' then
 my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <= diB((i + 1) *
minWIDTH - 1 downto i * minWIDTH);
 end if;
 end if;
 end loop;
 regB <= readB;
 end if;
 end process;

 doA <= regA;
 doB <= regB;

end behavioral;

True Dual Port Asymmetric RAM Write First (Verilog)

Filename: asym_ram_tdp_write_first.v

// Asymmetric port RAM - TDP
// WRITE_FIRST MODE.
// asym_ram_tdp_write_first.v

module asym_ram_tdp_write_first (clkA, clkB, enaA, weA, enaB, weB, addrA, addrB, diA,
doA, diB, doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;
parameter WIDTHA = 16;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA, weB;
input enaA, enaB;
Synthesis 149
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=149

Chapter 4: HDL Coding Techniques
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
input [WIDTHB-1:0] diB;

output [WIDTHA-1:0] doA;
output [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
 if (value < 2)
 log2 = value;
 else
 begin
 shifted = value-1;
 for (res=0; shifted>0; res=res+1)
 shifted = shifted>>1;
 log2 = res;
 end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHA-1:0] readA;
reg [WIDTHB-1:0] readB;

always @(posedge clkB)
begin
 if (enaB) begin
 if (weB)
 RAM[addrB] = diB;
 readB = RAM[addrB] ;
 end
end

always @(posedge clkA)
begin : portA
 integer i;
 reg [log2RATIO-1:0] lsbaddr ;
 for (i=0; i< RATIO; i= i+ 1) begin
 lsbaddr = i;
 if (enaA) begin

 if (weA)
Synthesis 150
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=150

Chapter 4: HDL Coding Techniques
 RAM[{addrA, lsbaddr}] = diA[(i+1)*minWIDTH-1 -: minWIDTH];

 readA[(i+1)*minWIDTH -1 -: minWIDTH] = RAM[{addrA, lsbaddr}];
 end
 end
end

assign doA = readA;
assign doB = readB;

endmodule

True Dual Port Asymmetric RAM Write First (VHDL)

Filename: asym_ram_tdp_write_first.vhd
--Asymmetric RAM
--True Dual Port write first mode.
--asym_ram_tdp_write_first.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_tdp_write_first is
 generic(
 WIDTHA : integer := 4;
 SIZEA : integer := 1024;
 ADDRWIDTHA : integer := 10;
 WIDTHB : integer := 16;
 SIZEB : integer := 256;
 ADDRWIDTHB : integer := 8
);

 port(
 clkA : in std_logic;
 clkB : in std_logic;
 enA : in std_logic;
 enB : in std_logic;
 weA : in std_logic;
 weB : in std_logic;
 addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
 addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
 diA : in std_logic_vector(WIDTHA - 1 downto 0);
 diB : in std_logic_vector(WIDTHB - 1 downto 0);
 doA : out std_logic_vector(WIDTHA - 1 downto 0);
 doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_tdp_write_first;

architecture behavioral of asym_ram_tdp_write_first is
 function max(L, R : INTEGER) return INTEGER is
 begin
 if L > R then
 return L;
 else
 return R;
 end if;
 end;
Synthesis 151
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=151

Chapter 4: HDL Coding Techniques
 function min(L, R : INTEGER) return INTEGER is
 begin
 if L < R then
 return L;
 else
 return R;
 end if;
 end;

 function log2(val : INTEGER) return natural is
 variable res : natural;
 begin
 for i in 0 to 31 loop
 if (val <= (2 ** i)) then
 res := i;
 exit;
 end if;
 end loop;
 return res;
 end function Log2;

 constant minWIDTH : integer := min(WIDTHA, WIDTHB);
 constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
 constant maxSIZE : integer := max(SIZEA, SIZEB);
 constant RATIO : integer := maxWIDTH / minWIDTH;

 -- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
 -- array of array object. Its aspect ratio corresponds to the port with the
 -- lower data width (larger depth)
 type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1 downto 0);

 signal my_ram : ramType := (others => (others => '0'));

 signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
 signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
 signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin
 process(clkA)
 begin
 if rising_edge(clkA) then
 if enA = '1' then
 if weA = '1' then
 my_ram(conv_integer(addrA)) <= diA;
 readA <= diA;
 else
 readA <= my_ram(conv_integer(addrA));
 end if;
 end if;
 regA <= readA;
 end if;
 end process;

 process(clkB)
 begin
 if rising_edge(clkB) then
 for i in 0 to RATIO - 1 loop
 if enB = '1' then
 if weB = '1' then
 my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <= diB((i + 1) *
minWIDTH - 1 downto i * minWIDTH);
 end if;
 -- The read statement below is placed after the write statement -- on purpose
Synthesis 152
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=152

Chapter 4: HDL Coding Techniques
 -- to ensure write-first synchronization through the variable
 -- mechanism
 readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <= my_ram(conv_integer(addrB &
conv_std_logic_vector(i, log2(RATIO))));
 end if;
 end loop;
 regB <= readB;
 end if;
 end process;

 doA <= regA;
 doB <= regB;

end behavioral;

Initializing RAM Contents
RAM can be initialized in following ways:

• Specifying RAM Initial Contents in the HDL Source Code
• Specifying RAM Initial Contents in an External Data File

Specifying RAM Initial Contents in the HDL Source Code
Use the signal default value mechanism to describe initial RAM contents directly in the HDL
source code.

VHDL Coding Examples

type ram_type is array (0 to 31) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(

X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300", X"08602",
X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500", X"04001", X"02500",
X"00340", X"00241", X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021", X"0030D", X"08201"
);

All bit positions are initialized to the same value:
type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => (others => '0'));

Verilog Coding Example

All addressable words are initialized to the same value.

reg [DATA_WIDTH-1:0] ram [DEPTH-1:0];
integer i;
initial for (i=0; i<DEPTH; i=i+1) ram[i] = 0;
end
Synthesis 153
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=153

Chapter 4: HDL Coding Techniques
Specifying RAM Initial Contents in an External Data File
Use the file read function in the HDL source code to load the RAM initial contents from an
external data file.

• The external data file is an ASCII text file with any name.
• Each line in the external data file describes the initial content at an address position in

the RAM.
• There must be as many lines in the external data file as there are rows in the RAM array.

An insufficient number of lines is flagged.
• The addressable position related to a given line is defined by the direction of the

primary range of the signal modeling the RAM.
• You can represent RAM content in either binary or hexadecimal. You cannot mix both.
• The external data file cannot contain any other content, such as comments.

The following external data file initializes an 8 x 32-bit RAM with binary values:

00001110110000011001111011000110
00101011001011010101001000100011
01110100010100011000011100001111
01000001010000100101001110010100
00001001101001111111101000101011
00101101001011111110101010100111
11101111000100111000111101101101
10001111010010011001000011101111
00000001100011100011110010011111
11011111001110101011111001001010
11100111010100111110110011001010
11000100001001101100111100101001
10001011100101011111111111100001
11110101110110010000010110111010
01001011000000111001010110101110
11100001111111001010111010011110
01101111011010010100001101110001
01010100011011111000011000100100
11110000111101101111001100001011
10101101001111010100100100011100
01011100001010111111101110101110
01011101000100100111010010110101
11110111000100000101011101101101
11100111110001111010101100001101
01110100000011101111111000011111
00010011110101111000111001011101
01101110001111100011010101101111
10111100000000010011101011011011
11000001001101001101111100010000
00011111110010110110011111010101
01100100100000011100100101110000
10001000000100111011001010001111
11001000100011101001010001100001
10000000100111010011100111100011
11011111010010100010101010000111
Synthesis 154
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=154

Chapter 4: HDL Coding Techniques
10000000110111101000111110111011
10110011010111101111000110011001
00010111100001001010110111011100
10011100101110101111011010110011
01010011101101010001110110011010
01111011011100010101000101000001
10001000000110010110111001101010
11101000001101010000111001010110
11100011111100000111110101110101
01001010000000001111111101101111
00100011000011001000000010001111
10011000111010110001001011100100
11111111111011110101000101000111
11000011000101000011100110100000
01101101001011111010100011101001
10000111101100101001110011010111
11010110100100101110110010100100
01001111111001101101011111001011
11011001001101110110000100110111
10110110110111100101110011100110
10011100111001000010111111010110
00000000001011011111001010110010
10100110011010000010001000011011
11001010111111001001110001110101
00100001100010000111000101001000
00111100101111110001101101111010
11000010001010000000010100100001
11000001000110001101000101001110
10010011010100010001100100100111

Code Example (Verilog)

reg [31:0] ram [0:63];

initial begin
$readmemb("rams_20c.data", ram, 0, 63);

end

Code Example (VHDL)

Load the data as follows:
type RamType is array(0 to 7) of bit_vector(31 downto 0);
impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;
begin
for I in RamType'range loop
readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));
end loop;
return RAM;
end function;
signal RAM : RamType := InitRamFromFile("rams_20c.data");
Synthesis 155
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=155

Chapter 4: HDL Coding Techniques
Initializing Block RAM (Verilog)

Filename: rams_sp_rom.v

// Initializing Block RAM (Single-Port Block RAM)
// File: rams_sp_rom
module rams_sp_rom (clk, we, addr, di, dout);
input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] dout;

reg [19:0] ram [63:0];
reg [19:0] dout;

initial
begin
 ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
 ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
 ram[57] = 20'h00300; ram[56] = 20'h08602; ram[55] = 20'h02310;
 ram[54] = 20'h0203B; ram[53] = 20'h08300; ram[52] = 20'h04002;
 ram[51] = 20'h08201; ram[50] = 20'h00500; ram[49] = 20'h04001;
 ram[48] = 20'h02500; ram[47] = 20'h00340; ram[46] = 20'h00241;
 ram[45] = 20'h04002; ram[44] = 20'h08300; ram[43] = 20'h08201;
 ram[42] = 20'h00500; ram[41] = 20'h08101; ram[40] = 20'h00602;
 ram[39] = 20'h04003; ram[38] = 20'h0241E; ram[37] = 20'h00301;
 ram[36] = 20'h00102; ram[35] = 20'h02122; ram[34] = 20'h02021;
 ram[33] = 20'h00301; ram[32] = 20'h00102; ram[31] = 20'h02222;
 ram[30] = 20'h04001; ram[29] = 20'h00342; ram[28] = 20'h0232B;
 ram[27] = 20'h00900; ram[26] = 20'h00302; ram[25] = 20'h00102;
 ram[24] = 20'h04002; ram[23] = 20'h00900; ram[22] = 20'h08201;
 ram[21] = 20'h02023; ram[20] = 20'h00303; ram[19] = 20'h02433;
 ram[18] = 20'h00301; ram[17] = 20'h04004; ram[16] = 20'h00301;
 ram[15] = 20'h00102; ram[14] = 20'h02137; ram[13] = 20'h02036;
 ram[12] = 20'h00301; ram[11] = 20'h00102; ram[10] = 20'h02237;
 ram[9] = 20'h04004; ram[8] = 20'h00304; ram[7] = 20'h04040;
 ram[6] = 20'h02500; ram[5] = 20'h02500; ram[4] = 20'h02500;
 ram[3] = 20'h0030D; ram[2] = 20'h02341; ram[1] = 20'h08201;
 ram[0] = 20'h0400D;
end

always @(posedge clk)
begin
 if (we)
 ram[addr] <= di;
 dout <= ram[addr];
end

endmodule
Synthesis 156
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=156

Chapter 4: HDL Coding Techniques
Initializing Block RAM (VHDL)

Filename: rams_sp_rom.vhd
-- Initializing Block RAM (Single-Port Block RAM)
-- File: rams_sp_rom.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rom is
 port(
 clk : in std_logic;
 we : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(19 downto 0);
 do : out std_logic_vector(19 downto 0)
);
end rams_sp_rom;

architecture syn of rams_sp_rom is
 type ram_type is array (63 downto 0) of std_logic_vector(19 downto 0);
 signal RAM : ram_type := (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",
 X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
 X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
 X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
 X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
 X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
 X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
 X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
 X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
 X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
 X"0030D", X"02341", X"08201", X"0400D");

begin
 process(clk)
 begin
 if rising_edge(clk) then
 if we = '1' then
 RAM(to_integer(unsigned(addr))) <= di;
 end if;
 do <= RAM(to_integer(unsigned(addr)));
 end if;
 end process;

end syn;
Synthesis 157
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=157

Chapter 4: HDL Coding Techniques
Initializing Block RAM From an External Data File (Verilog)

Filename: rams_init_file.v

// Initializing Block RAM from external data file
// Binary data
// File: rams_init_file.v

module rams_init_file (clk, we, addr, din, dout);
input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial begin
$readmemb("rams_init_file.data",ram);
end

always @(posedge clk)
begin
 if (we)
 ram[addr] <= din;
 dout <= ram[addr];
end endmodule

Note: The external file that is used to initialize the RAM needs to be in bit vector form. External files
in integer or hex format will not work.

Initializing Block RAM From an External Data File (VHDL)

Filename: rams_init_file.vhd

-- Initializing Block RAM from external data file
-- File: rams_init_file.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use std.textio.all;

entity rams_init_file is
 port(
 clk : in std_logic;
 we : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 din : in std_logic_vector(31 downto 0);
 dout : out std_logic_vector(31 downto 0)
);
end rams_init_file;

architecture syn of rams_init_file is
Synthesis 158
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=158

Chapter 4: HDL Coding Techniques
 type RamType is array (0 to 63) of bit_vector(31 downto 0);

 impure function InitRamFromFile(RamFileName : in string) return RamType is
 FILE RamFile : text is in RamFileName;
 variable RamFileLine : line;
 variable RAM : RamType;
 begin
 for I in RamType'range loop
 readline(RamFile, RamFileLine);
 read(RamFileLine, RAM(I));
 end loop;
 return RAM;
 end function;

 signal RAM : RamType := InitRamFromFile("rams_init_file.data");
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 if we = '1' then
 RAM(to_integer(unsigned(addr))) <= to_bitvector(din);
 end if;
 dout <= to_stdlogicvector(RAM(to_integer(unsigned(addr))));
 end if;
 end process;

end syn;

Note: The external file that is used to initialize the RAM needs to be in bit vector form. External files
in integer or hex format will not work.

3D RAM Inference
RAMs Using 3D Arrays
The following examples show inference of RAMs using 3D arrays.

3D RAM Inference Single Port (Verilog)

filename: rams_sp_3d.sv

// 3-D Ram Inference Example (Single port)
// File:rams_sp_3d.sv
module rams_sp_3d #(
 parameter NUM_RAMS = 2,
 A_WID = 10,
 D_WID = 32
)
 (
 input clk,
 input [NUM_RAMS-1:0] we,
Synthesis 159
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=159

Chapter 4: HDL Coding Techniques
 input [NUM_RAMS-1:0] ena,
 input [A_WID-1:0] addr [NUM_RAMS-1:0],
 input [D_WID-1:0] din [NUM_RAMS-1:0],
 output reg [D_WID-1:0] dout [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
genvar i;

generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:u
 always @ (posedge clk)
 begin
 if (ena[i]) begin
 if(we[i])
 begin
 mem[i][addr[i]] <= din[i];
 end
 dout[i] <= mem[i][addr[i]];
 end
 end
end
endgenerate

endmodule

3D RAM Inference Single Port (VHDL)

Filename: ram_sp_3d.vhd
-- 3-D Ram Inference Example (Single port)
-- Compile this file in VHDL2008 mode
-- File:rams_sp_3d.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
 type myarray_t is array(integer range<>) of std_logic_vector;
 type mem_t is array(integer range<>) of myarray_t;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sp_3d is generic (
 NUM_RAMS : integer := 2;
 A_WID : integer := 10;
 D_WID : integer := 32
);
 port (
 clk : in std_logic;
 we : in std_logic_vector(NUM_RAMS-1 downto 0);
 ena : in std_logic_vector(NUM_RAMS-1 downto 0);
 addr : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
 din : in myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0);
 dout : out myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0)
);
Synthesis 160
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=160

Chapter 4: HDL Coding Techniques
end rams_sp_3d;

architecture arch of rams_sp_3d is
signal mem : mem_t(NUM_RAMS-1 downto 0)(2**A_WID-1 downto 0)(D_WID-1 downto 0);
begin
process(clk)
begin
 if(clk’event and clk=’1’) then
 for i in 0 to NUM_RAMS-1 loop
 if(ena(i) = ‘1’) then
 if(we(i) = ‘1’) then
 mem(i)(to_integer(unsigned(addr(i)))) <= din(i);
 end if;
 dout(i) <= mem(i)(to_integer(unsigned(addr(i))));
 end if;
 end loop;
 end if;
end process;

end arch;

3D RAM Inference Simple Dual Port (Verilog)

Filename: rams_sdp_3d.sv

// 3-D Ram Inference Example (Simple Dual port)
// File:rams_sdp_3d.sv
module rams_sdp_3d #(
 parameter NUM_RAMS = 2,
 A_WID = 10,
 D_WID = 32
)
 (
 input clka,
 input clkb,
 input [NUM_RAMS-1:0] wea,
 input [NUM_RAMS-1:0] ena,
 input [NUM_RAMS-1:0] enb,
 input [A_WID-1:0] addra [NUM_RAMS-1:0],
 input [A_WID-1:0] addrb [NUM_RAMS-1:0],
 input [D_WID-1:0] dina [NUM_RAMS-1:0],
 output reg [D_WID-1:0] doutb [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
// PORT_A
genvar i;
generate
 for(i=0;i<NUM_RAMS;i=i+1)
 begin:port_a_ops
 always @ (posedge clka)
 begin
 if (ena[i]) begin
 if(wea[i])
 begin
 mem[i][addra[i]] <= dina[i];
 end
 end
Synthesis 161
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=161

Chapter 4: HDL Coding Techniques
 end
 end
endgenerate

//PORT_B
generate
 for(i=0;i<NUM_RAMS;i=i+1)
 begin:port_b_ops
 always @ (posedge clkb)
 begin
 if (enb[i])
 doutb[i] <= mem[i][addrb[i]];
 end
 end
endgenerate

endmodule

3D RAM Inference - Simple Dual Port (VHDL)

filename: rams_sdp_3d.vhd
-- 3-D Ram Inference Example (Simple Dual port)
-- Compile this file in VHDL2008 mode
-- File:rams_sdp_3d.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
 type myarray_t is array(integer range<>) of std_logic_vector;
 type mem_t is array(integer range<>) of myarray_t;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sdp_3d is generic (
 NUM_RAMS : integer := 2;
 A_WID : integer := 10;
 D_WID : integer := 32
);
 port (
 clka : in std_logic;
 clkb : in std_logic;
 wea : in std_logic_vector(NUM_RAMS-1 downto 0);
 ena : in std_logic_vector(NUM_RAMS-1 downto 0);
 enb : in std_logic_vector(NUM_RAMS-1 downto 0);
 addra : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
 addrb : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
 dina : in myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0);
 doutb : out myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0)
);
end rams_sdp_3d;

architecture arch of rams_sdp_3d is
signal mem : mem_t(NUM_RAMS-1 downto 0)(2**A_WID-1 downto 0)(D_WID-1 downto 0);
begin
process(clka)
Synthesis 162
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=162

Chapter 4: HDL Coding Techniques
begin
 if(clka'event and clka='1') then
 for i in 0 to NUM_RAMS-1 loop
 if(ena(i) = '1') then
 if(wea(i) = '1') then
 mem(i)(to_integer(unsigned(addra(i)))) <= dina(i);
 end if;
 end if;
 end loop;
 end if;
end process;

process(clkb)
begin
 if(clkb'event and clkb='1') then
 for i in 0 to NUM_RAMS-1 loop
 if(enb(i) = '1') then
 doutb(i) <= mem(i)(to_integer(unsigned(addrb(i))));
 end if;
 end loop;
 end if;
end process;

end arch;

3D RAM Inference True Dual Port (Verilog)

Filename: rams_tdp_3d.sv

// 3-D Ram Inference Example (True Dual port)
// File:rams_tdp_3d.sv
module rams_tdp_3d #(
 parameter NUM_RAMS = 2,
 A_WID = 10,
 D_WID = 32
)
 (
 input clka,
 input clkb,
 input [NUM_RAMS-1:0] wea,
 input [NUM_RAMS-1:0] web,
 input [NUM_RAMS-1:0] ena,
 input [NUM_RAMS-1:0] enb,
 input [A_WID-1:0] addra [NUM_RAMS-1:0],
 input [A_WID-1:0] addrb [NUM_RAMS-1:0],
 input [D_WID-1:0] dina [NUM_RAMS-1:0],
 input [D_WID-1:0] dinb [NUM_RAMS-1:0],
 output reg [D_WID-1:0] douta [NUM_RAMS-1:0],
 output reg [D_WID-1:0] doutb [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
// PORT_A
genvar i;
generate
 for(i=0;i<NUM_RAMS;i=i+1)
Synthesis 163
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=163

Chapter 4: HDL Coding Techniques
 begin:port_a_ops
 always @ (posedge clka)
 begin
 if (ena[i]) begin
 if(wea[i])
 begin
 mem[i][addra[i]] <= dina[i];
 end
 douta[i] <= mem[i][addra[i]];
 end
 end
 end
endgenerate

//PORT_B
generate
 for(i=0;i<NUM_RAMS;i=i+1)
 begin:port_b_ops
 always @ (posedge clkb)
 begin
 if (enb[i]) begin
 if(web[i])
 begin
 mem[i][addrb[i]] <= dinb[i];
 end
 doutb[i] <= mem[i][addrb[i]];
 end
 end
 end
endgenerate

endmodule

RAM Inference Using Structures and Records

RAM Inference Single Port Structure (Verilog)

Filename: rams_sp_struct.sv

// RAM Inference using Struct in SV(Simple Dual port)
// File:rams_sdp_struct.sv
typedef struct packed {
 logic [3:0] addr;
 logic [27:0] data;
 } Packet;

module rams_sdp_struct #(
 parameter A_WID = 10,
 D_WID = 32
)
 (
 input clk,
Synthesis 164
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=164

Chapter 4: HDL Coding Techniques
 input we,
 input ena,
 input [A_WID-1:0] raddr, waddr,
 input Packet din,
 output Packet dout
);

Packet mem [2**A_WID-1:0];

always @ (posedge clk)
begin
 if (ena) begin
 if(we)
 mem[waddr] <= din;
 end
end

always @ (posedge clk)
begin
 if (ena) begin
 dout <= mem[raddr];
 end
end
endmodule

RAM Inference Single Port Structure (VHDL)

Filename: rams_sp_record.vhd

-- Ram Inference Example using Records (Single port)
-- File:rams_sp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
 type Packet is record
 addr : std_logic_vector(3 downto 0);
 data : std_logic_vector(27 downto 0);
 end record Packet;
 type mem_t is array(integer range<>) of Packet;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sp_record is generic (
 A_WID : integer := 10;
 D_WID : integer := 32
);
 port (
 clk : in std_logic;
 we : in std_logic;
 ena : in std_logic;
 addr : in std_logic_vector(A_WID-1 downto 0);
 din : in Packet;
Synthesis 165
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=165

Chapter 4: HDL Coding Techniques
 dout : out Packet
);
end rams_sp_record;

architecture arch of rams_sp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin
process(clk)
begin
 if(clk'event and clk='1') then
 if(ena = '1') then
 if(we = '1') then
 mem(to_integer(unsigned(addr))) <= din;
 end if;
 dout <= mem(to_integer(unsigned(addr)));
 end if;
 end if;
end process;

end arch;

RAM Inference - Simple Dual Port Structure (SystemVerilog)

Filename: rams_sdp_struct.sv

// RAM Inference using Struct in SV(Simple Dual port)
// File:rams_sdp_struct.sv
typedef struct packed {
 logic [3:0] addr;
 logic [27:0] data;
 } Packet;

module rams_sdp_struct #(
 parameter A_WID = 10,
 D_WID = 32
)
 (
 input clk,
 input we,
 input ena,
 input [A_WID-1:0] raddr, waddr,
 input Packet din,
 output Packet dout
);

Packet mem [2**A_WID-1:0];

always @ (posedge clk)
begin
 if (ena) begin
 if(we)
 mem[waddr] <= din;
 end
end
Synthesis 166
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=166

Chapter 4: HDL Coding Techniques
always @ (posedge clk)
begin
 if (ena) begin
 dout <= mem[raddr];
 end
end
endmodule

RAM Inference - Simple Dual Port Record (VHDL)

Filename: rams_sdp_record.vhd

-- Ram Inference Example using Records (Simple Dual port)
-- File:rams_sdp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
 type Packet is record
 addr : std_logic_vector(3 downto 0);
 data : std_logic_vector(27 downto 0);
 end record Packet;
 type mem_t is array(integer range<>) of Packet;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sdp_record is generic (
 A_WID : integer := 10;
 D_WID : integer := 32
);
 port (
 clk : in std_logic;
 we : in std_logic;
 ena : in std_logic;
 raddr : in std_logic_vector(A_WID-1 downto 0);
 waddr : in std_logic_vector(A_WID-1 downto 0);
 din : in Packet;
 dout : out Packet
);
end rams_sdp_record;

architecture arch of rams_sdp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin
process(clk)
begin
 if(clk'event and clk='1') then
 if(ena = '1') then
 if(we = '1') then
 mem(to_integer(unsigned(waddr))) <= din;
 end if;
 end if;
 end if;
Synthesis 167
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=167

Chapter 4: HDL Coding Techniques
end process;

process(clk)
begin
 if(clk'event and clk='1') then
 if(ena = '1') then
 dout <= mem(to_integer(unsigned(raddr)));
 end if;
 end if;
end process;

end arch;

RAM Inference True Dual Port Structure (SystemVerilog)

Filename: rams_tdp_struct.sv

// RAM Inference using Struct in SV(True Dual port)
// File:rams_tdp_struct.sv
typedef struct packed {
 logic [3:0] addr;
 logic [27:0] data;
 } Packet;

module rams_tdp_struct #(
 parameter A_WID = 10,
 D_WID = 32
)
 (
 input clka,
 input clkb,
 input wea,
 input web,
 input ena,
 input enb,
 input [A_WID-1:0] addra,
 input [A_WID-1:0] addrb,
 input Packet dina, dinb,
 output Packet douta, doutb
);

Packet mem [2**A_WID-1:0];

always @ (posedge clka)
begin
 if (ena)
 begin
 douta <= mem[addra];
 if(wea)
 mem[addra] <= dina;
 end
end

always @ (posedge clkb)
begin
 if (enb)
Synthesis 168
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=168

Chapter 4: HDL Coding Techniques
 begin
 doutb <= mem[addrb];
 if(web)
 mem[addrb] <= dinb;
 end
end

endmodule

RAM Inference True Dual Port Record (VHDL)

Filename: rams_tdp_record.vhd

-- Ram Inference Example using Records (True Dual port)
-- File:rams_tdp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
 type Packet is record
 addr : std_logic_vector(3 downto 0);
 data : std_logic_vector(27 downto 0);
 end record Packet;
 type mem_t is array(integer range<>) of Packet;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_tdp_record is generic (
 A_WID : integer := 10;
 D_WID : integer := 32
);
 port (
 clka : in std_logic;
 clkb : in std_logic;
 wea : in std_logic;
 web : in std_logic;
 ena : in std_logic;
 enb : in std_logic;
 addra : in std_logic_vector(A_WID-1 downto 0);
 addrb : in std_logic_vector(A_WID-1 downto 0);
 dina : in Packet;
 dinb : in Packet;
 douta : out Packet;
 doutb : out Packet
);
end rams_tdp_record;

architecture arch of rams_tdp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin

process(clka)
begin
Synthesis 169
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=169

Chapter 4: HDL Coding Techniques
 if(clka'event and clka='1') then
 if(ena = '1') then
 douta <= mem(to_integer(unsigned(addra)));
 if(wea = '1') then
 mem(to_integer(unsigned(addra))) <= dina;
 end if;
 end if;
 end if;
end process;

process(clkb)
begin
 if(clkb'event and clkb='1') then
 if(enb = '1') then
 doutb <= mem(to_integer(unsigned(addrb)));
 if(web = '1') then
 mem(to_integer(unsigned(addrb))) <= dinb;
 end if;
 end if;
 end if;
end process;

end arch;

Black Boxes
A design can contain EDIF files generated by:

• Synthesis tools
• Schematic text editors
• Any other design entry mechanism

These modules must be instantiated to be connected to the rest of the design.

Use BLACK_BOX instantiation in the HDL source code.

Vivado synthesis lets you apply specific constraints to these BLACK_BOX instantiations.

After you make a design a BLACK_BOX, each instance of that design is a BLACK_BOX.

Download the coding example files from Coding Examples.
Synthesis 170
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=170

Chapter 4: HDL Coding Techniques
Black Box Example (Verilog)
Filename: black_box_1.v

// Black Box
// black_box_1.v
//
(* black_box *) module black_box1 (in1, in2, dout);
input in1, in2;
output dout;
endmodule

module black_box_1 (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;

black_box1 U1 (
 .in1(DI_1),
 .in2(DI_2),
 .dout(DOUT)
);

endmodule

Black Box Example (VHDL)
Filename: black_box_1.vhd

-- Black Box
-- black_box_1.vhd
library ieee;
use ieee.std_logic_1164.all;

entity black_box_1 is
 port(DI_1, DI_2 : in std_logic;
 DOUT : out std_logic);
end black_box_1;
architecture rtl of black_box_1 is
 component black_box1
 port(I1 : in std_logic;
 I2 : in std_logic;
 O : out std_logic);
 end component;

 attribute black_box : string;
 attribute black_box of black_box1 : component is "yes";

begin
 U1 : black_box1 port map(I1 => DI_1, I2 => DI_2, O => DOUT);
end rtl;
Synthesis 171
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=171

Chapter 4: HDL Coding Techniques
FSM Components
Vivado Synthesis Features
• Specific inference capabilities for synchronous Finite State Machine (FSM) components.
• Built-in FSM encoding strategies to accommodate your optimization goals.
• FSM extraction is enabled by default.
• Use -fsm_extraction off to disable FSM extraction.

FSM Description
Vivado synthesis supports specification of Finite State Machine (FSM) in both Moore and
Mealy form. An FSM consists of the following:

• A state register
• A next state function
• An outputs function

FSM Diagrams
The following diagram shows an FSM representation that incorporates Mealy and Moore
machines.

The following diagram shows an FSM diagram with three processes.

X-Ref Target - Figure 4-3

Figure 4-3: FSM Representation Incorporating Mealy and Moore Machines Diagram

Synthesis 172
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=172

Chapter 4: HDL Coding Techniques
FSM Registers
• Specify a reset or power-up state for Vivado synthesis to identify a Finite State Machine

(FSM) or set the value of FSM_ENCODING to "none".
• The State Register can be asynchronously or synchronously reset to a particular state.

RECOMMENDED: Use synchronous reset logic over asynchronous reset logic for an FSM.

Auto State Encoding
When FSM_ENCODING is set to "auto", the Vivado synthesis attempts to select the
best-suited encoding method for a given FSM.

One-Hot State Encoding

One-Hot State encoding has the following attributes:

• Is the default encoding scheme for a state machine, up to 32 states.
• Is usually a good choice for optimizing speed or reducing power dissipation.
• Assigns a distinct bit of code to each FSM state.
• Implements the State Register with one flip-flop for each state.
• In a given clock cycle during operation, only one bit of the State Register is asserted.
• Only two bits toggle during a transition between two states.

Gray State Encoding

Gray State encoding has the following attributes:

• Guarantees that only one bit switches between two consecutive states.
• Is appropriate for controllers exhibiting long paths without branching.
• Minimizes hazards and glitches.
• Can be used to minimize power dissipation.

X-Ref Target - Figure 4-4

Figure 4-4: FSM With Three Processes Diagram

Synthesis 173
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=173

Chapter 4: HDL Coding Techniques
Johnson State Encoding

Johnson State encoding is beneficial when using state machines containing long paths with
no branching (as in Gray State Encoding).

Sequential State Encoding

Sequential State encoding has the following attributes:

• Identifies long paths
• Applies successive radix two codes to the states on these paths.
• Minimizes next state equations.

FSM Example (Verilog)

Filename: fsm_1.v

// State Machine with single sequential block
//fsm_1.v
module fsm_1(clk,reset,flag,sm_out);
input clk,reset,flag;
output reg sm_out;

parameter s1 = 3'b000;
parameter s2 = 3'b001;
parameter s3 = 3'b010;
parameter s4 = 3'b011;
parameter s5 = 3'b111;

reg [2:0] state;

always@(posedge clk)
 begin
 if(reset)
 begin
 state <= s1;
 sm_out <= 1'b1;
 end
 else
 begin
 case(state)
 s1: if(flag)
 begin
 state <= s2;
 sm_out <= 1'b1;
 end
 else
 begin
 state <= s3;
 sm_out <= 1'b0;
 end
 s2: begin state <= s4; sm_out <= 1'b0; end
 s3: begin state <= s4; sm_out <= 1'b0; end
Synthesis 174
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=174

Chapter 4: HDL Coding Techniques
 s4: begin state <= s5; sm_out <= 1'b1; end
 s5: begin state <= s1; sm_out <= 1'b1; end
 endcase
 end
 end
endmodule

FSM Example with Single Sequential Block (VHDL)

Filename: fsm_1.vhd

-- State Machine with single sequential block
-- File: fsm_1.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
 port(
 clk, reset, flag : IN std_logic;
 sm_out : OUT std_logic
);
end entity;

architecture behavioral of fsm_1 is
 type state_type is (s1, s2, s3, s4, s5);
 signal state : state_type;
begin
 process(clk)
 begin
 if rising_edge(clk) then
 if (reset = '1') then
 state <= s1;
 sm_out <= '1';

 else
 case state is
 when s1 => if flag = '1' then
 state <= s2;
 sm_out <= '1';

 else
 state <= s3;
 sm_out <= '0';

 end if;
 when s2 => state <= s4;
 sm_out <= '0';
 when s3 => state <= s4;
 sm_out <= '0';
 when s4 => state <= s5;
 sm_out <= '1';
 when s5 => state <= s1;
 sm_out <= '1';
 end case;
 end if;
 end if;
 end process;

end behavioral;
Synthesis 175
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=175

Chapter 4: HDL Coding Techniques
FSM Reporting
The Vivado synthesis flags INFO messages in the log file, giving information about Finite
State Machine (FSM) components and their encoding. The following are example messages:

INFO: [Synth 8-802] inferred FSM for state register 'state_reg' in module 'fsm_test'
INFO: [Synth 8-3354] encoded FSM with state register 'state_reg' using encoding
'sequential' in module 'fsm_test'

ROM HDL Coding Techniques
Read-only memory (ROM) closely resembles random access memory (RAM) with respect to
HDL modeling and implementation. Use the ROM_STYLE attribute to implement a
properly-registered ROM on block RAM resources. See ROM_STYLE for more information.

ROM Using Block RAM Resources (Verilog)
Filename: rams_sp_rom_1.v

// ROMs Using Block RAM Resources.

// File: rams_sp_rom_1.v

//

module rams_sp_rom_1 (clk, en, addr, dout);

input clk;

input en;

input [5:0] addr;

output [19:0] dout;

(*rom_style = "block" *) reg [19:0] data;

always @(posedge clk)

begin

 if (en)

 case(addr)

 6'b000000: data <= 20'h0200A; 6'b100000: data <= 20'h02222;

 6'b000001: data <= 20'h00300; 6'b100001: data <= 20'h04001;

 6'b000010: data <= 20'h08101; 6'b100010: data <= 20'h00342;

 6'b000011: data <= 20'h04000; 6'b100011: data <= 20'h0232B;

 6'b000100: data <= 20'h08601; 6'b100100: data <= 20'h00900;

 6'b000101: data <= 20'h0233A; 6'b100101: data <= 20'h00302;

 6'b000110: data <= 20'h00300; 6'b100110: data <= 20'h00102;

 6'b000111: data <= 20'h08602; 6'b100111: data <= 20'h04002;

 6'b001000: data <= 20'h02310; 6'b101000: data <= 20'h00900;

 6'b001001: data <= 20'h0203B; 6'b101001: data <= 20'h08201;

 6'b001010: data <= 20'h08300; 6'b101010: data <= 20'h02023;

 6'b001011: data <= 20'h04002; 6'b101011: data <= 20'h00303;

 6'b001100: data <= 20'h08201; 6'b101100: data <= 20'h02433;

 6'b001101: data <= 20'h00500; 6'b101101: data <= 20'h00301;

 6'b001110: data <= 20'h04001; 6'b101110: data <= 20'h04004;

 6'b001111: data <= 20'h02500; 6'b101111: data <= 20'h00301;

 6'b010000: data <= 20'h00340; 6'b110000: data <= 20'h00102;

 6'b010001: data <= 20'h00241; 6'b110001: data <= 20'h02137;
Synthesis 176
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=176

Chapter 4: HDL Coding Techniques
 6'b010010: data <= 20'h04002; 6'b110010: data <= 20'h02036;

 6'b010011: data <= 20'h08300; 6'b110011: data <= 20'h00301;

 6'b010100: data <= 20'h08201; 6'b110100: data <= 20'h00102;

 6'b010101: data <= 20'h00500; 6'b110101: data <= 20'h02237;

 6'b010110: data <= 20'h08101; 6'b110110: data <= 20'h04004;

 6'b010111: data <= 20'h00602; 6'b110111: data <= 20'h00304;

 6'b011000: data <= 20'h04003; 6'b111000: data <= 20'h04040;

 6'b011001: data <= 20'h0241E; 6'b111001: data <= 20'h02500;

 6'b011010: data <= 20'h00301; 6'b111010: data <= 20'h02500;

 6'b011011: data <= 20'h00102; 6'b111011: data <= 20'h02500;

 6'b011100: data <= 20'h02122; 6'b111100: data <= 20'h0030D;

 6'b011101: data <= 20'h02021; 6'b111101: data <= 20'h02341;

 6'b011110: data <= 20'h00301; 6'b111110: data <= 20'h08201;

 6'b011111: data <= 20'h00102; 6'b111111: data <= 20'h0400D;

 endcase

end

assign dout = data;

endmodule

ROM Inference on an Array (VHDL)
Filename: roms_1.vhd

-- ROM Inference on array
-- File: roms_1.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_1 is
 port(
 clk : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 data : out std_logic_vector(19 downto 0)
);
end roms_1;

architecture behavioral of roms_1 is
 type rom_type is array (63 downto 0) of std_logic_vector(19 downto 0);
 signal ROM : rom_type := (X"0200A", X"00300", X"08101", X"04000", X"08601",
X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241", X"04002", X"08300",

X"08201", X"00500" X"08101", X"00602", X"04003", X"0241E", X"00301", X"00102",
X"02122", X"02021", X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201", X"02023", X"00303",
X"02433", X"00301", X"04004" X"00301",X"00102", X"02137", X"02036", X"00301",
X"00102", X"02237",X"04004", X"00304", X"04040", X"02500", X"02500",
X"02500",X"0030D", X"02341", X"08201", X"0400D");
 attribute rom_style : string;
 attribute rom_style of ROM : signal is "block";

begin
Synthesis 177
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=177

Chapter 4: HDL Coding Techniques
 process(clk)
 begin
 if rising_edge(clk) then
 if (en = '1') then
 data <= ROM(conv_integer(addr));
 end if;
 end if;
 end process;

end behavioral;
Synthesis 178
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=178

Chapter 5

VHDL Support

Introduction
This chapter describes the supported VHDL language constructs in Vivado® synthesis and
notes any exceptions to support.

VHDL compactly describes complicated logic, and lets you:

• Describe the structure of a system: how the system is decomposed into subsystems,
and how those subsystems are interconnected.

• Specify the function of a system using familiar language forms.
• Simulate a system design before it is implemented and programmed in hardware.
• Produce a detailed, device-dependent version of a design to be synthesized from a

more abstract specification.

For more information, see the IEEE VHDL Language Reference Manual (LRM).

Supported and Unsupported VHDL Data Types
Some VHDL data types are part of predefined packages. For information on where they are
compiled, and how to load them, see VHDL Predefined Packages.

The type is defined in the IEEE std_logic_1164 package.

Unsupported Data Types
VHDL supports the real type defined in the standard package for calculations only, such as
the calculation of generics values.

IMPORTANT: You cannot define a synthesizable object of type real.
Synthesis 179
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=179

Chapter 5: VHDL Support
VHDL Data Types

VHDL Predefined Enumerated Types

Vivado synthesis supports the following predefined VHDL enumerated types.

std_logic Allowed Values

Supported Overloaded Enumerated Types

Table 5-1: VHDL Enumerated Type Summary
Enumerated Type Defined In Allowed Values

bit standard package 0 (logic zero)
1 (logic 1)

boolean standard package false
true

std_logic IEEE std_logic_1164 package See std_logic Allowed
Values.

Table 5-2: std_logic Allowed Values
Value Meaning What Vivado synthesis does
U initialized Not accepted by Vivado synthesis
X unknown Treated as don’t care
0 low Treated as logic zero
1 high Treated as logic one
Z high impedance Treated as high impedance
W weak unknown Not accepted by Vivado synthesis
L weak low Treated identically to 0
H weak high Treated identically to 1
- don’t care Treated as don’t care

Table 5-3: Supported Overloaded Enumerated Types
Type Defined In IEEE Package SubType Of Contains Values

std_ulogic std_logic_1164 N/A Same values as
std_logic

Does not contain
predefined resolution
functions

X01 std_logic_1164 std_ulogic X, 0, 1
X01Z std_logic_1164 std_ulogic X, 0, 1, Z
Synthesis 180
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=180

Chapter 5: VHDL Support
VHDL User-Defined Enumerated Types

You can create your own enumerated types. User-defined enumerated types usually
describe the states of a finite state machine (FSM).

User-Defined Enumerated Types Coding Example (VHDL)

type STATES is (START, IDLE, STATE1, STATE2, STATE3) ;

Supported VHDL Types

VHDL Integer Types

The integer type is a predefined VHDL type. Vivado synthesis implements an integer on 32
bits by default. For a more compact implementation, define the exact range of applicable
values, where type MSB is range 8 to 15.

You can also take advantage of the predefined natural and positive types, overloading the
integer type.

VHDL Multi-Dimensional Array Types

Vivado synthesis supports VHDL multi-dimensional array types.

UX01 std_logic_1164 std_ulogic U, X, 0, 1
UX01Z std_logic_1164 std_ulogic U, X, 0, Z

Table 5-4: Supported VHDL Bit Vector Types
Type Defined In Package Models

bit_vector Standard Vector of bit elements
std_logic_vector IEEE std_logic_1164 Vector of std_logic elements

Table 5-5: Supported VHDL Overloaded Types
Type Defined In IEEE Package

std_ulogic_vector std_logic_1164
unsigned numeric_std
signed numeric_std
unsigned std_logic_arith (Synopsys)
signed std_logic_arith (Synopsys)

Table 5-3: Supported Overloaded Enumerated Types (Cont’d)

Type Defined In IEEE Package SubType Of Contains Values
Synthesis 181
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=181

Chapter 5: VHDL Support
RECOMMENDED: Although there is no restriction on the number of dimensions, describe no more than
three dimensions.

Objects of multi-dimensional array type can be passed to functions and used in component
instantiations. Objects of multi-dimensional array type that you can describe are signals,
constants, and variables.

Fully Constrained Array Type Coding Example

An array type must be fully constrained in all dimensions.

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

Array Declared as a Matrix Coding Example

You can declare an array as a matrix.

subtype TAB13 is array (7 downto 0,4 downto 0) of STD_LOGIC_VECTOR (8 downto 0);

Multi-Dimensional Array Signals and Variables Coding Examples

The following coding examples demonstrate the uses of multi-dimensional array signals
and variables in assignments.

1. Make the following declarations:
subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;
signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),
("00100000","00100001","00101010","10100011","00101100"),
("01000010","01000010","01000100","01000111","01000100"));

2. You can now specify:

° A multi-dimensional array signal or variable:
TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

° An index of one array:
TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

° Indexes of the maximum number of dimensions:
TAB_A (5) (0) <= ’1’; TAB_C (2) (5) (0) <= ’0’

° A slice of the first array
Synthesis 182
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=182

Chapter 5: VHDL Support
TAB_A (4 downto 1) <= TAB_B (3 downto 0);

° An index of a higher level array and a slice of a lower level array:
TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D (0) (4) (2 downto 0)
\\ <= CNST_A (5 downto 3)

3. Add the following declaration:
subtype MATRIX15 is array(4 downto 0, 2 downto 0) of STD_LOGIC_VECTOR (7 downto 0);
signal MATRIX_A : MATRIX15;

4. You can now specify:

° A multi-dimensional array signal or variable:
MATRIXA <= CNST_A

° An index of one row of the array:
MATRIXA (5) <= TAB_A;

° Indexes of the maximum number of dimensions
MATRIXA (5,0) (0) <= ’1’;

Note: Indexes can be variable.

VHDL Record Types Code Example

• A field of a record type can also be of type Record.
• Constants can be record types.
• Record types cannot contain attributes.
• Vivado synthesis supports aggregate assignments to record signals.

The following code snippet is an example:

type mytype is record field1 : std_logic;
field2 : std_logic_vector (3 downto 0);

end record;

VHDL Objects
VHDL objects include: Signals, Variables, Constants and Operators.

Signals
Declare a VHDL signal in:

• An architecture declarative part: Use the VHDL signal anywhere within that architecture.
• A block: Use the VHDL signal within that block.
Synthesis 183
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=183

Chapter 5: VHDL Support
Assign the VHDL signal with the <= signal assignment operator.

signal sig1 : std_logic;
sig1 <= ’1’;

Variables
A VHDL variable is:

• Declared in a process or a subprogram.
• Used within that process or subprogram.
• Assigned with the := assignment operator.

variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

Constants
You can declare a VHDL constant in any declarative region. The constant is used within that
region. You cannot change the constant values after they are declared.

signal sig1 : std_logic_vector(5 downto 0);constant init0 : std_logic_vector (5
downto 0) := "010111";sig1 <= init0;

Operators
Vivado synthesis supports VHDL operators.

Shift Operator Examples

Table 5-6: Shift Operator Examples
Operator Example Logically Equivalent To

SLL (Shift Left Logic) sig1 <= A(4 downto 0) sll 2 sig1 <= A(2 downto 0) & “00";
SRL (Shift Right Logic) sig1 <= A(4 downto 0) srl 2 sig1 <= “00" & A(4 downto 2);
SLA (Shift Left Arithmetic) sig1 <= A(4 downto 0) sla 2 sig1 <= A(2 downto 0) & A(0) & A(0);
SRA (Shift Right Arithmetic) sig1 <= A(4 downto 0) sra 2 sig1 <= <= A(4) & A(4) & A(4 downto 2);
ROL (Rotate Left) sig1 <= A(4 downto 0) rol 2 sig1 <= A(2 downto 0) & A(4 downto 3);
ROR (Rotate Right) A(4 downto 0) ror 2 sig1 <= A(1 downto 0) & A(4 downto 2);
Synthesis 184
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=184

Chapter 5: VHDL Support
VHDL Entity and Architecture Descriptions
VHDL Circuit Descriptions
A VHDL circuit description (design unit) consists of the following:

• Entity declaration: Provides the external view of the circuit. Describes objects visible
from the outside, including the circuit interface, such as the I/O ports and generics.

• Architecture: Provides the internal view of the circuit, and describes the circuit behavior
or structure.

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity. Each port has a:

• name
• mode (in, out, inout, buffer)
• type

Constrained and Unconstrained Ports
When defining a port, the port:

• Can be constrained or unconstrained.
• Are usually constrained.
• Can be left unconstrained in the entity declaration.

° If ports are left unconstrained, their width is defined at instantiation when the
connection is made between formal ports and actual signals.

° Unconstrained ports allow you to create different instantiations of the same entity,
defining different port widths.

RECOMMENDED: Do not use unconstrained ports. Define ports that are constrained through generics.
Apply different values of those generics at instantiation. Do not have an unconstrained port on the
top-level entity.

Array types of more than one-dimension are not accepted as ports.

The entity declaration can also declare VHDL generics.
Synthesis 185
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=185

Chapter 5: VHDL Support
Buffer Port Mode
RECOMMENDED: Do not use buffer port mode.

VHDL allows buffer port mode when a signal is used both internally, and as an output port
when there is only one internal driver. Buffer ports are a potential source of errors during
synthesis, and complicate validation of post-synthesis results through simulation.

NOT RECOMMENDED Coding Example WITH Buffer Port Mode

entity alu is
port(
CLK : in STD_LOGIC;
A : inSTD_LOGIC_VECTOR(3 downto 0);
B : inSTD_LOGIC_VECTOR(3 downto 0);
C : buffer STD_LOGIC_VECTOR(3 downto 0));

end alu;

architecture behavioral of alu is
begin
process begin
if rising_edge(CLK) then
C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);

end if;
end process;

end behavioral;

Dropping Buffer Port Mode

RECOMMENDED: Drop buffer port mode.

In the previous coding example, signal C was modeled with a buffer mode, and is used both
internally and as an output port. Every level of hierarchy that can be connected to C must
also be declared as a buffer.

To drop buffer mode:

1. Insert a dummy signal.
2. Declare port C as an output.
Synthesis 186
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=186

Chapter 5: VHDL Support
RECOMMENDED Coding Example WITHOUT Buffer Port Mode

entity alu is
port(
CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : out STD_LOGIC_VECTOR(3 downto 0));

end alu;
architecture behavioral of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);

begin
C <= C_INT;
process begin
if rising_edge(CLK) then
C_INT <= A and B and C_INT;

end if;
end process;

end behavioral;

VHDL Architecture Declarations
You can declare internal signals in the architecture. Each internal signal has a name and a
type.

VHDL Architecture Declaration Coding Example

ibrary IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (
A,B,C : in std_logic;
D,E : out std_logic);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...
end ARCHI;
Synthesis 187
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=187

Chapter 5: VHDL Support
VHDL Component Instantiation
Component instantiation allows you to instantiate one design unit (component) inside
another design unit to create a hierarchically structured design description.

To perform component instantiation:

1. Create the design unit (entity and architecture) modeling the functionality to be
instantiated.

2. Declare the component to be instantiated in the declarative region of the parent design
unit architecture.

3. Instantiate and connect this component in the architecture body of the parent design
unit.

4. Map (connect) formal ports of the component to actual signals and ports of the parent
design unit.

Elements of Component Instantiation Statement

Vivado synthesis supports unconstrained vectors in component declarations.

The main elements of a component instantiation statement are:

• Label: Identifies the instance.
• Association list: Introduced by the reserved port map keyword and ties formal ports

of the component to actual signals or ports of the parent design unit. An optional
association list is introduced by the reserved generic map keyword and provides
actual values to formal generics defined in the component.

Component Instantiation (VHDL)

This coding example shows the structural description of a half-Adder composed of four
nand2 components.

Filename: instantiation_simple.vhd

--
-- A simple component instantiation example
-- Involves a component declaration and the component instantiation itself
--
-- instantiation_simple.vhd
--
entity sub is
 generic(
 WIDTH : integer := 4
);
 port(
 A, B : in BIT_VECTOR(WIDTH - 1 downto 0);
 O : out BIT_VECTOR(2 * WIDTH - 1 downto 0)
Synthesis 188
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=188

Chapter 5: VHDL Support
);
end sub;

architecture archi of sub is
begin
 O <= A & B;
end ARCHI;

entity instantiation_simple is
 generic(
 WIDTH : integer := 2);
 port(
 X, Y : in BIT_VECTOR(WIDTH - 1 downto 0);
 Z : out BIT_VECTOR(2 * WIDTH - 1 downto 0));
end instantiation_simple;

architecture ARCHI of instantiation_simple is
 component sub -- component declaration
 generic(
 WIDTH : integer := 2);
 port(
 A, B : in BIT_VECTOR(WIDTH - 1 downto 0);
 O : out BIT_VECTOR(2 * WIDTH - 1 downto 0));
 end component;

begin
 inst_sub : sub -- component instantiation
 generic map(
 WIDTH => WIDTH
)
 port map(
 A => X,
 B => Y,
 O => Z
);

end ARCHI;
Synthesis 189
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=189

Chapter 5: VHDL Support
Recursive Component Instantiation
Vivado synthesis supports recursive component instantiation.

Recursive Component Instantiation Example (VHDL)

Filename: instantiation_recursive.vhd

--
-- Recursive component instantiation
--
-- instantiation_recursive.vhd
--
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity instantiation_recursive is
 generic(
 sh_st : integer := 4
);
 port(
 CLK : in std_logic;
 DI : in std_logic;
 DO : out std_logic
);
end entity instantiation_recursive;

architecture recursive of instantiation_recursive is
 component instantiation_recursive
 generic(
 sh_st : integer);
 port(
 CLK : in std_logic;
 DI : in std_logic;
 DO : out std_logic);
 end component;
 signal tmp : std_logic;
begin
 GEN_FD_LAST : if sh_st = 1 generate
 inst_fd : FD port map(D => DI, C => CLK, Q => DO);
 end generate;
 GEN_FD_INTERM : if sh_st /= 1 generate
 inst_fd : FD port map(D => DI, C => CLK, Q => tmp);
 inst_sstage : instantiation_recursive
 generic map(sh_st => sh_st - 1)
 port map(DI => tmp, CLK => CLK, DO => DO);
 end generate;
end recursive;
Synthesis 190
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=190

Chapter 5: VHDL Support
VHDL Component Configuration
A component configuration explicitly links a component with the appropriate model.

• A model is an entity and architecture pair.
• Vivado synthesis supports component configuration in the declarative part of the

architecture. The following is an example:
for instantiation_list : component_name use
LibName.entity_Name(Architecture_Name);

The following statement indicates that:

• All NAND2 components use the design unit consisting of entity NAND2 and
architecture ARCHI.

• The design unit is compiled in the work library.
For all : NAND2 use entity work.NAND2(ARCHI);

The value of the top module name (-top) option in the synth_design command is the
configuration name instead of the top-level entity name.

VHDL GENERICS
VHDL GENERICs have the following properties:

• Are equivalent to Verilog parameters.
• Help you create scalable design modelizations.
• Let you write compact, factorized VHDL code.
• Let you parameterize functionality such as bus size, and the number of repetitive

elements in the design unit.

For the same functionality that must be instantiated multiple times, but with different bus
sizes, you need describe only one design unit with generics. See the GENERIC Parameters
Example.

Declaring Generics

You can declare generic parameters in the entity declaration part. Supported generics types
are: integer, boolean, string, and real.
Synthesis 191
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=191

Chapter 5: VHDL Support
GENERIC Parameters Example

Filename: generics_1.vhd

-- VHDL generic parameters example
--
-- generics_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
 generic(
 width : integer := 8
);
 port(
 A, B : in std_logic_vector(width - 1 downto 0);
 Y : out std_logic_vector(width - 1 downto 0)
);
end addern;

architecture bhv of addern is
begin
 Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity generics_1 is
 port(
 X, Y, Z : in std_logic_vector(12 downto 0);
 A, B : in std_logic_vector(4 downto 0);
 S : out std_logic_vector(17 downto 0));
end generics_1;

architecture bhv of generics_1 is
 component addern
 generic(width : integer := 8);
 port(
 A, B : in std_logic_vector(width - 1 downto 0);
 Y : out std_logic_vector(width - 1 downto 0));
 end component;
 for all : addern use entity work.addern(bhv);

 signal C1 : std_logic_vector(12 downto 0);
 signal C2, C3 : std_logic_vector(17 downto 0);
begin
 U1 : addern generic map(width => 13) port map(X, Y, C1);
 C2 <= C1 & A;
 C3 <= Z & B;
 U2 : addern generic map(width => 18) port map(C2, C3, S);
end bhv;
Synthesis 192
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=192

Chapter 5: VHDL Support
Note: When overriding generic values during instantiation, splitting up different array elements is
not supported.

For example, if there is a generic my_gen defined as an array, as follows, it will not work:

my_gen(1) => x,
my_gen(0) => y

Instead, it should be set as follows:

my_gen => (x,y)

VHDL Combinatorial Circuits
Combinatorial logic is described using concurrent signal assignments that you specify in
the body of an architecture. You can describe as many concurrent signal assignments as are
necessary; the order of appearance of the concurrent signal assignments in the architecture
is irrelevant.

VHDL Concurrent Signal Assignments
Concurrent signal assignments are concurrently active and re-evaluated when any signal on
the right side of the assignment changes value. The re-evaluated result is assigned to the
signal on the left-hand side.

Supported types of concurrent signal assignments are: Simple Signal Assignment Example,
and Concurrent Selection Assignment Example (VHDL).

Simple Signal Assignment Example
T <= A and B;

Concurrent Selection Assignment Example (VHDL)
Filename: concurrent_selected_asssignment.vhd

-- Concurrent selection assignment in VHDL
--
-- concurrent_selected_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_selected_assignment is
 generic(
 width : integer := 8);
 port(
 a, b, c, d : in std_logic_vector(width - 1 downto 0);
 sel : in std_logic_vector(1 downto 0);
Synthesis 193
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=193

Chapter 5: VHDL Support
 T : out std_logic_vector(width - 1 downto 0));
end concurrent_selected_assignment;

architecture bhv of concurrent_selected_assignment is
begin
 with sel select T <=
 a when "00",
 b when "01",
 c when "10",
 d when others;
end bhv;

Generate Statements
Generate statements include:

• for-generate statements
• if-generate statements

Using for-generate Statements
The for-generate statements describe repetitive structures.

Example of for-generate Statement (VHDL)

In this coding example, the for-generate statement describes the calculation of the
result and carry out for each bit position of this 8-bit Adder.

Filename: for-generate.vhd

--
-- A for-generate example
--
-- for_generate.vhd
--
entity for_generate is
 port(
 A, B : in BIT_VECTOR(0 to 7);
 CIN : in BIT;
 SUM : out BIT_VECTOR(0 to 7);
 COUT : out BIT
);
end for_generate;

architecture archi of for_generate is
 signal C : BIT_VECTOR(0 to 8);
begin
 C(0) <= CIN;
 COUT <= C(8);
 LOOP_ADD : for I in 0 to 7 generate
Synthesis 194
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=194

Chapter 5: VHDL Support
 SUM(I) <= A(I) xor B(I) xor C(I);
 C(I + 1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
 end generate;
end archi;

Using if-generate Statements
An if-generate statement activates specific parts of the HDL source code based on a test
result, and is supported for static (non-dynamic) conditions.

For example, when a generic indicates which device family is being targeted, the
if-generate statement tests the value of the generic against a specific device family and
activates a section of the HDL source code written specifically for that device family.

Example of for-generate Nested in an if-generate Statement (VHDL)

In this coding example, a generic N-bit Adder with a width ranging between 4 and 32 is
described with an if-generate and a for-generate statement.

Filename: if_for_generate.vhd

-- A for-generate nested in a if-generate
--
-- if_for_generate.vhd
--
entity if_for_generate is
 generic(
 N : INTEGER := 8
);
 port(
 A, B : in BIT_VECTOR(N downto 0);
 CIN : in BIT;
 SUM : out BIT_VECTOR(N downto 0);
 COUT : out BIT
);
end if_for_generate;

architecture archi of if_for_generate is
 signal C : BIT_VECTOR(N + 1 downto 0);
begin
 IF_N : if (N >= 4 and N <= 32) generate
 C(0) <= CIN;
 COUT <= C(N + 1);
 LOOP_ADD : for I in 0 to N generate
 SUM(I) <= A(I) xor B(I) xor C(I);
 C(I + 1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
 end generate;
 end generate;
end archi;
Synthesis 195
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=195

Chapter 5: VHDL Support
Combinatorial Processes
You can model VHDL combinatorial logic with a process, which explicitly assigns signals a
new value every time the process is executed.

IMPORTANT: No signals should implicitly retain its current value, and a process can contain local
variables.

Memory Elements
Hardware inferred from a combinatorial process does not involve any memory elements.

A memory element process is combinatorial when all assigned signals in a process are
always explicitly assigned in all possible paths within a process block.

A signal that is not explicitly assigned in all branches of an if or case statement typically
leads to a Latch inference.

IMPORTANT: If Vivado synthesis infers unexpected Latches, review the HDL source code for a signal
that is not explicitly assigned.

Sensitivity List
A combinatorial process has a sensitivity list. The sensitivity list appears within parentheses
after the PROCESS keyword. A process is activated if an event (value change) appears on
one of the sensitivity list signals. For a combinatorial process, this sensitivity list must
contain:

• All signals in conditions (for example, if and case).
• All signals on the right-hand side of an assignment.

Missing Signals
Signals might be missing from the sensitivity list. If one or more signals is missing from the
sensitivity list:

• The synthesis results can differ from the initial design specification.
• Vivado synthesis issues a warning message.
• Vivado synthesis adds the missing signals to the sensitivity list.

IMPORTANT: To avoid problems during simulation, explicitly add all missing signals in the HDL source
code and re-run synthesis.
Synthesis 196
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=196

Chapter 5: VHDL Support
Variable and Signal Assignments
Vivado synthesis supports VHDL variable and signal assignments. A process can contain
local variables, which are declared and used within a process and generally not visible
outside the process.

Signal Assignment in a Process Example
Filename: signal_in_process.vhd

-- Signal assignment in a process
-- signal_in_process.vhd

entity signal_in_process is
 port(
 A, B : in BIT;
 S : out BIT
);
end signal_in_process;

architecture archi of signal_in_process is
begin
 process(A, B)
 begin
 S <= '0';
 if ((A and B) = '1') then
 S <= '1';
 end if;
 end process;
end archi;

Variable and Signal Assignment in a Process Example (VHDL)
Filename: variable_in_process.vhd

-- Variable and signal assignment in a process
-- variable_in_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity variable_in_process is
 port(
 A, B : in std_logic_vector(3 downto 0);
 ADD_SUB : in std_logic;
 S : out std_logic_vector(3 downto 0)
);
end variable_in_process;

architecture archi of variable_in_process is
begin
 process(A, B, ADD_SUB)
Synthesis 197
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=197

Chapter 5: VHDL Support
 variable AUX : std_logic_vector(3 downto 0);
 begin
 if ADD_SUB = '1' then
 AUX := A + B;
 else
 AUX := A - B;
 end if;
 S <= AUX;
 end process;
end archi;

Using if-else Statements
The if-else and if-elsif-else statements use TRUE and FALSE conditions to execute
statements.

• If the expression evaluates to TRUE, the if branch is executed.
• If the expression evaluates to FALSE, x, or z, the else branch is executed.

° A block of multiple statements is executed in an if or else branch.

° begin and end keywords are required.

° if-else statements can be nested.

Example of if-else Statement (VHDL)

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is begin
process (a, b, c, d, sel1, sel2)
begin
if (sel1 = '1') then
if (sel2 = '1') then
outmux <= a;

else outmux <= b;
else

end if;
if (sel2 = '1') then outmux <= c;
else

outmux <= d;
end if;

end if;
end process;

end behavior;
Synthesis 198
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=198

Chapter 5: VHDL Support
Using case Statements
A case statement:

• Performs a comparison to an expression to evaluate one of several parallel branches.
• Evaluates the branches in the order in which they are written.
• Executes the first branch that evaluates to TRUE.

If none of the branches match, a case statement executes the default branch.

Example of case Statement (VHDL)

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is begin
process (a, b, c, d, sel)
begin

case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement must be complete

end case;
end process;

end behavior;

Using for-loop Statements
Vivado synthesis for-loop statements support:

• Constant bounds
• Stop test condition using the following operators: <, <=, >, and >=.
• Next step computations falling within one of the following specifications:

° var = var + step
° var = var - step
Where:

- var is the loop variable
- step is a constant value

• Next and exit statements
Synthesis 199
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=199

Chapter 5: VHDL Support
Example of for-loop Statement (VHDL)

Filename: for_loop.vhd

--
-- For-loop example
--
-- for_loop.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity for_loop is
 port(
 a : in std_logic_vector(7 downto 0);
 Count : out std_logic_vector(2 downto 0)
);
end for_loop;

architecture behavior of for_loop is
begin
 process(a)
 variable Count_Aux : std_logic_vector(2 downto 0);
 begin
 Count_Aux := "000";
 for i in a'range loop
 if (a(i) = '0') then
 Count_Aux := Count_Aux + 1;
 end if;
 end loop;
 Count <= Count_Aux;
 end process;
end behavior;

VHDL Sequential Logic
A VHDL process is sequential (as opposed to combinatorial) when some assigned signals
are not explicitly assigned in all paths within the process. The generated hardware has an
internal state or memory (Flip-Flops or Latches).

RECOMMENDED: Use a sensitivity-list based description style to describe sequential logic.

Describing sequential logic using a process with a sensitivity list includes:

• The clock signal
• Any optional signal controlling the sequential element asynchronously (asynchronous

set/reset)
• An if statement that models the clock event.
Synthesis 200
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=200

Chapter 5: VHDL Support
Sequential Process With a Sensitivity List Syntax
process (<sensitivity list>)
begin
<asynchronous part>
<clock event>
<synchronous part>

end;

Asynchronous Control Logic Modelization
Modelization of any asynchronous control logic (asynchronous set/reset) is done before the
clock event statement.

Modelization of the synchronous logic (data, optional synchronous set/reset, optional clock
enable) is done in the if branch of the clock event.

Clock Event Statements
Describe the clock event statement as:

• Rising edge clock:
if rising_edge (clk) then

• Falling edge clock:
if falling_edge (clk) then

Missing Signals
If any signals are missing from the sensitivity list, the synthesis results can differ from the
initial design specification. In this case, Vivado synthesis issues a warning message and
adds the missing signals to the sensitivity list.

IMPORTANT: To avoid problems during simulation, explicitly add all missing signals in the HDL source
code and re-run synthesis.

Table 5-7: Asynchronous Control Logic Modelization Summary
Modelization Type Contains Performed

Asynchronous control logic Asynchronous set/reset Before the clock event statement
Synchronous logic Data

Optional synchronous set/reset
Optional clock enable

In the clock event if branch.
Synthesis 201
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=201

Chapter 5: VHDL Support
VHDL Sequential Processes Without a Sensitivity List
Vivado synthesis allows the description of a sequential process using a wait statement. The
sequential process is described without a sensitivity list.

The wait statement is the first statement and the condition in the wait statement describes
the sequential logic clock.

IMPORTANT: The same sequential process cannot have both a sensitivity list and a wait statement,
and only one wait statement is allowed.

Sequential Process Using a Wait Statement Coding Example (VHDL)

process begin
wait until rising_edge(clk);
q <= d;

end process;

Describing a Clock Enable in the wait Statement Example (VHDL)

You can describe a clock enable (clken) in the wait statement together with the clock.

process begin
wait until rising_edge(clk) and clken = '1';
q <= d;

end process;

Describing a Clock Enable After the Wait Statement Example (VHDL)

You can describe the clock enable separately, as follows:

process begin
wait until rising_edge(clk);
if clken = '1' then
q <= d;

end if;
end process;

Describing Synchronous Control Logic

You can use the same coding method as was shown to describe a clock enable to describe
synchronous control logic, such as a synchronous reset or set.

IMPORTANT: You cannot describe a sequential element with asynchronous control logic using a process
without a sensitivity list. Only a process with a sensitivity list allows such functionality. Vivado synthesis
does not allow the description of a Latch based on a wait statement. For greater flexibility, describe
synchronous logic using a process with a sensitivity list.
Synthesis 202
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=202

Chapter 5: VHDL Support
VHDL Initial Values and Operational Set/Reset
You can initialize registers when you declare them. The initialization value is a constant and
can be generated from a function call.

Initializing Registers Example One (VHDL)
This coding example specifies a power-up value in which the sequential element is
initialized when the circuit goes live and the circuit global reset is applied.

signal arb_onebit : std_logic := '0';
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

Initializing Registers Example Two (VHDL)
This coding example combines power-up initialization and operational reset.

Filename: initial_1.vhd

--
-- Register initialization
-- Specifying initial contents at circuit powes-up
-- Specifying an operational set/reset
--
-- File: VHDL_Language_Support/initial/initial_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity initial_1 is
 Port(
 clk, rst : in std_logic;
 din : in std_logic;
 dout : out std_logic
);
end initial_1;

architecture behavioral of initial_1 is
 signal arb_onebit : std_logic := '1'; -- power-up to vcc
begin
 process(clk)
 begin
 if (rising_edge(clk)) then
 if rst = '1' then -- local synchronous reset
 arb_onebit <= '0';
 else
 arb_onebit <= din;
 end if;
 end if;
 end process;

 dout <= arb_onebit;

end behavioral;
Synthesis 203
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=203

Chapter 5: VHDL Support
VHDL Functions and Procedures
Use VHDL functions and procedures for blocks that are used multiple times in a design. The
content is similar to combinatorial process content

Declare functions and procedures in:

• The declarative part of an entity
• An architecture
• A package

A function or procedure consists of a declarative part and a body.

The declarative part specifies:

• input parameters, which can be unconstrained to a given bound.
• output and inout parameters (procedures only)

IMPORTANT: Resolution functions are not supported except the function defined in the IEEE
std_logic_1164 package.

Function Declared Within a Package Example (VHDL)
Download the coding example files from Coding Examples.

This coding example declares an ADD function within a package. The ADD function is a
single-bit Adder and is called four times to create a 4-bit Adder. The following example uses
a function:

Filename: function_package_1.vhd

-- Declaration of a function in a package
--
-- function_package_1.vhd
--
package PKG is
 function ADD(A, B, CIN : BIT) return BIT_VECTOR;
end PKG;

package body PKG is
 function ADD(A, B, CIN : BIT) return BIT_VECTOR is
 variable S, COUT : BIT;
 variable RESULT : BIT_VECTOR(1 downto 0);
 begin
 S := A xor B xor CIN;
Synthesis 204
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=204

Chapter 5: VHDL Support
 COUT := (A and B) or (A and CIN) or (B and CIN);
 RESULT := COUT & S;
 return RESULT;
 end ADD;
end PKG;

use work.PKG.all;

entity function_package_1 is
 port(
 A, B : in BIT_VECTOR(3 downto 0);
 CIN : in BIT;
 S : out BIT_VECTOR(3 downto 0);
 COUT : out BIT
);
end function_package_1;

architecture ARCHI of function_package_1 is
 signal S0, S1, S2, S3 : BIT_VECTOR(1 downto 0);
begin
 S0 <= ADD(A(0), B(0), CIN);
 S1 <= ADD(A(1), B(1), S0(1));
 S2 <= ADD(A(2), B(2), S1(1));
 S3 <= ADD(A(3), B(3), S2(1));
 S <= S3(0) & S2(0) & S1(0) & S0(0);
 COUT <= S3(1);
end ARCHI;

Procedure Declared Within a Package Example (VHDL)
The following example uses a procedure within a package:

Filename: procedure_package_1.vhd

-- Declaration of a procedure in a package
--
-- Download: procedure_package_1.vhd
--
package PKG is
 procedure ADD(
 A, B, CIN : in BIT;
 C : out BIT_VECTOR(1 downto 0));
end PKG;

package body PKG is
 procedure ADD(
 A, B, CIN : in BIT;
 C : out BIT_VECTOR(1 downto 0)) is
 variable S, COUT : BIT;
 begin
 S := A xor B xor CIN;
 COUT := (A and B) or (A and CIN) or (B and CIN);
 C := COUT & S;
 end ADD;
end PKG;
Synthesis 205
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=205

Chapter 5: VHDL Support
use work.PKG.all;

entity procedure_package_1 is
 port(
 A, B : in BIT_VECTOR(3 downto 0);
 CIN : in BIT;
 S : out BIT_VECTOR(3 downto 0);
 COUT : out BIT
);
end procedure_package_1;

architecture ARCHI of procedure_package_1 is
begin
 process(A, B, CIN)
 variable S0, S1, S2, S3 : BIT_VECTOR(1 downto 0);
 begin
 ADD(A(0), B(0), CIN, S0);
 ADD(A(1), B(1), S0(1), S1);
 ADD(A(2), B(2), S1(1), S2);
 ADD(A(3), B(3), S2(1), S3);
 S <= S3(0) & S2(0) & S1(0) & S0(0);
 COUT <= S3(1);
 end process;
end ARCHI;

Recursive Functions Example (VHDL)
Vivado synthesis supports recursive functions. This coding example models an n! function.

function my_func(x : integer) return integer is begin
 if R > 1 then
 return (R*my_func(R-1));
 else
 return R;
 end if;
end function my_func;

VHDL Assert Statements
Assert statements are supported with the -assert synthesis option.

CAUTION! Care should be taken using asserts. Vivado can only support static asserts that do not
create, or are created by, behavior. For example, performing as assert on a value of a constant or a
operator/generic works; however, as asset on the value of a signal inside an if statement will not work.
Synthesis 206
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=206

Chapter 5: VHDL Support
VHDL Predefined Packages
Vivado synthesis supports the VHDL predefined packages as defined in the STD and IEEE
standard libraries. The libraries are pre-compiled, and need not be user-compiled, and can
be directly included in the HDL source code.

VHDL Predefined Standard Packages
VHDL predefined standard packages that are by default included, define the following basic
VHDL types: bit, bit_vector, integer, natural, real, and boolean.

VHDL IEEE Packages
Vivado synthesis supports the some predefined VHDL IEEE packages, which are
pre-compiled in the IEEE library, and the following IEEE packages:

• numeric_bit

° Unsigned and signed vector types based on bit.

° Overloaded arithmetic operators, conversion functions, and extended functions for
these types.

• std_logic_1164

° std_logic, std_ulogic, std_logic_vector, and std_ulogic_vector
types.

° Conversion functions based on these types.
• numeric_std

° Unsigned and signed vector types based on std_logic.

° Overloaded arithmetic operators, conversion functions, and extended functions for
these types. Equivalent to std_logic_arith.

• fixed_pkg

° For fixed variable and pin types.

° use ieee.fixed_pkg.all;

• float_pkg

° For floating variable and pin types.

° use ieee.float_pkg.all;
Synthesis 207
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=207

Chapter 5: VHDL Support
VHDL Legacy Packages
• std_logic_arith (Synopsys)

° Unsigned and signed vector types based on std_logic.

° Overloaded arithmetic operators, conversion functions, and extended functions for
these types.

• std_logic_unsigned (Synopsys)

° Unsigned arithmetic operators for std_logic and std_logic_vector
Synthesis 208
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=208

Chapter 5: VHDL Support
• std_logic_signed (Synopsys)

° Signed arithmetic operators for std_logic and std_logic_vector
• std_logic_misc (Synopsys)

° Supplemental types, subtypes, constants, and functions for the std_logic_1164
package, such as and_reduce and or_reduce.

VHDL Predefined IEEE Real Type and IEEE Math_Real Packages
VHDL predefined IEEE real type and IEEE math_real packages are supported only for
calculations such as the calculation of generics values, and cannot be used to describe
synthesizable functionality.

VHDL Real Number Constants
The following table describes the VHDL real number constants.

VHDL Real Number Functions
The following table describes VHDL real number functions:

Table 5-8: VHDL Real Number Constants
Constant Value Constant Value

math_e E math_log_of_2 ln2
math_1_over_e 1/e math_log_of_10 ln10
math_pi Π math_log2_of_e log2
math_2_pi 2π math_log10_of_e log10

math_1_over_pi 1/ π math_sqrt_2 √2
math_pi_over_2 π/2 math_1_oversqrt_2 1/√2
math_pi_over_3 π/3 math_sqrt_pi √π
math_pi_over_4 π/4 math_deg_to_rad 2π/360
math_3_pi_over_2 3π/2 math_rad_to_deg 360/2π

Table 5-9: VHDL Real Number Functions
ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)
floor(x) realmin(x,y) log(x) tan(x) tanh(x)
round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)
trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)
sign(x) **(n,y) log(x,y) arctan(y,x) arctanh(x)
mod(x,y) **(x,y) sin(x) sinh(x)
Synthesis 209
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=209

Chapter 5: VHDL Support
Defining Your Own VHDL Packages
You can define your own VHDL packages to specify:

• Types and subtypes
• Constants
• Functions and procedures
• Component declarations

Defining a VHDL package permits access to shared definitions and models from other parts
of your project and requires the following:

• Package declaration: Declares each of the previously listed elements.
• Package body: Describes the functions and procedures declared in the package

declaration.

Package Declaration Syntax
package mypackage is
type mytype is record
first : integer;
second : integer;

end record;
constant myzero : mytype := (first => 0, second => 0);
function getfirst (x : mytype) return integer;

end mypackage;

package body mypackage is
function getfirst (x : mytype) return integer is
begin
return x.first;

end function;
end mypackage;

Accessing VHDL Packages
To access a VHDL package:

1. Use a library clause to include the library in which the package is compiled. For example:
library library_name;

2. Designate the package, or a specific definition contained in the package, with a use
clause. For example: use library_name.package_name.all.

3. Insert these lines immediately before the entity or architecture in which you use the
package definitions.
Synthesis 210
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=210

Chapter 5: VHDL Support
Because the work library is the default library, you can omit the library clause if the
designated package has been compiled into this library.

VHDL Constructs Support Status
Vivado synthesis supports VHDL design entities and configurations except as noted in the
following table.

Table 5-10: VHDL Constructs and Support Status
VHDL Construct Support Status
VHDL Entity Headers
Generics Supported
Ports Supported, including unconstrained ports
Entity Statement Part Unsupported
VHDL Packages Supported
VHDL Physical Types
TIME Supported, but only in functions for constant

calculations.
REAL Supported, but only in functions for constant

calculations.
VHDL Modes
Linkage Unsupported
VHDL Declarations
Type Supported for the following:

• Enumerated types
• Types with positive range having constant

bounds
• Bit vector types
• Multi-dimensional arrays

VHDL Objects
Constant Declaration Supported except for deferred constant
Signal Declaration Supported except for register and bus type signals.
Attribute Declaration Supported for some attributes, otherwise skipped.
VHDL Specifications
HIGHLOW Supported
LEFT Supported
RIGHT Supported
RANGE Supported
Synthesis 211
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=211

Chapter 5: VHDL Support
REVERSE_RANGE Supported
LENGTH Supported
POS Supported
ASCENDING Supported
Configuration Supported only with the all clause for instances

list.
• If no clause is added, Vivado synthesis looks for

the entity or architecture compiled in the default
library.

Disconnection Unsupported
Underscores Object names can contain underscores in general

(DATA_1), but Vivado synthesis does not allow
signal names with leading underscores (_DATA_1).

VHDL Operators
Logical Operators: and, or, nand, nor, xor, xnor, not Supported
Relational Operators: =, /=, <, <=, >, >= Supported
& (concatenation) Supported
Adding Operators: +, - Supported
* Supported
/ Supported if the right operand is a constant power

of 2, or if both operands are constant.
Rem Supported if the right operand is a constant power

of 2.
Mod Supported if the right operand is a constant power

of 2.
Shift Operators: sll, srl, sla, sra, rol, ror Supported

Abs Supported
** Supported if the left operand is 2.

Sign: +, - Supported
VHDL Operands
Abstract Literals Only integer literals are supported.
Physical Literals Ignored
Enumeration Literals Supported
String Literals Supported
Bit String Literals Supported
Record Aggregates Supported

Table 5-10: VHDL Constructs and Support Status (Cont’d)

VHDL Construct Support Status
Synthesis 212
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=212

Chapter 5: VHDL Support
Array Aggregates Supported
Function Call Supported
Qualified Expressions Supported for accepted predefined attributes.
Types Conversions Supported
Allocators Unsupported
Static Expressions Supported
Wait Statement
Wait on sensitivity_list until
boolean_expression.
See VHDL Combinatorial Circuits.

Supported with one signal in the sensitivity list and
in the boolean expression.
• Multiple wait statements are not supported.
• wait statements for Latch descriptions are not

supported.
Wait for time_expression.
See VHDL Combinatorial Circuits.

Unsupported

Assertion Statement Supported for static conditions only.
Signal Assignment Statement Supported.

Delay is ignored.
Variable Assignment Statement Supported

Procedure Call Statement Supported
If Statement Supported
Case Statement Supported

Loop Statements
Next Statements Supported
Exit Statements Supported
Return Statements Supported
Null Statements Supported
Concurrent Statements
Process Statement Supported
Concurrent Procedure Call Supported
Concurrent Assertion Statements Ignored
Concurrent Signal Assignments Supported, except after clause, transport or

guarded options, or waveforms.
UNAFFECTED is supported.

Component Instantiation Statements Supported
for-generate Statement supported for constant bounds only
if-generate Statement supported for static condition only

Table 5-10: VHDL Constructs and Support Status (Cont’d)

VHDL Construct Support Status
Synthesis 213
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=213

Chapter 5: VHDL Support
VHDL RESERVED Words
Table 5-11: VHDL RESERVED Words
abs access after alias
all and architecture array
assert attribute begin block
body buffer bus case
component configuration constant disconnect
downto else elsif end
entity exit file for
function generate generic group
guarded if impure in
inertial inout is label
library linkage literal loop
map mod nand new
next nor not null
of on open or
others out package port
postponed procedure process pure
range record register reject
rem report return rol
ror select severity signal
shared sla sll sra
srl subtype then to
transport type unaffected units
until use variable wait
when while with xnor
xor
Synthesis 214
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=214

Chapter 6

VHDL-2008 Language Support

Introduction
Vivado® synthesis supports a synthesizable subset of the VHDL-2008 standard. The
following section describes the supported subset and the procedures to use it.

Setting up Vivado to use VHDL-2008
There are several ways to run VHDL-2008 files with Vivado. You can go to the Source File
Properties window, and set Type: VHDL 2008 from the drop-down of available file types.
The Vivado tool then sets that the file type to VHDL-2008.

You can also set files to VHDL-2008 with the set_property command in the Tcl Console.
The syntax is as follows:

set_property FILE_TYPE {VHDL 2008} [get_files <file>.vhd]

Finally, in the Non-Project or Tcl flow, the command for reading in VHDL has VHDL-2008 is
as follows:

read_vhdl -vhdl2008 <file>.vhd

If you want to read in more than one file, you can either use multiple read_vhdl
commands or multiple files with one command, as follows:

read_vhdl -vhdl2008 {a.vhd b.vhd c.vhd}
Synthesis 215
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xset_property
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=215

Chapter 6: VHDL-2008 Language Support
Supported VHDL-2008 Features
Vivado supports the following VHDL-2008 features.

Operators

Matching Relational Operators

VHDL-2008 now provides relational operators that return bit or std_logic types. In the
previous VHDL standard, the relational operators (=, <, >=…) returned boolean types. With
the new types, code that needed to be written as:

if x = y then
 out1 <= ‘1’;
else
 out1 <= ‘0’;
end if;

Can now be written as:

out1 <= x ?= y;

The following table lists the relational operators supported in Vivado.

Maximum and Minimum Operators
The new maximum and minimum operators in VHDL-2008 take in two different values and
return the larger or smaller respectively. For example:

out1 <= maximum(const1, const2);

Shift Operators (rol, ror, sll, srl, sla and sra)
The sla and sra operators previously defined only bit and boolean elements. Now, the
VHDL-2008 standard defines them in the signed and unsigned libraries.

Table 6-1: Supported Relational Operators
Operator Usage Description

?= x ?= y x equal to y
?/= x ?/= y x not equal to y
?< x ?< y x less than y
?<= x ?<= y x less than or equal to y
?> x ?> y x greater than y
?>= x ?>= y x greater than or equal to y
Synthesis 216
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=216

Chapter 6: VHDL-2008 Language Support
Unary Logical Reduction Operators
In the previous version of VHDL, operators such as and, nand, or, took two different values
and then returned a bit or boolean value. For VHDL-2008, unary support has been added
for these operators. They return the logical function of the input. For example, the code:

out1 <= and("0101");

would AND the 4 bits together and return 0. The logical functions have unary support are:
and, nand, or, nor, xor, and xnor.

Mixing Array and Scalar Logical Operators
Previously in VHDL, both of the operands of the logical operators needed to be the same
size.

VHDL-2008 supports using logical operators when one of the operands is an array and one
is a scalar. For example, to AND one bit with all the bits of a vector, the following code was
needed:

out1(3) <= in1(3) and in2;
out1(2) <= in1(2) and in2;
out1(1) <= in1(1) and in2;
out1(0) <= in1(0) and in2;

This can now be replaced with the following:

out1<= in1 and in2;

Statements

If-else- If and Case Generate

Previously in VHDL, if-generate statements took the form of the following:

if condition generate
--- statements
end generate;

An issue appears if you want to have different conditions; you would need to write multiple
generates and be very careful with the ordering of the generates. VHDL-2008 supports
if-else-if generate statements.

if condition generate
---statements
elsif condition2 generate
---statements
else generate
---statements
end generate;
Synthesis 217
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=217

Chapter 6: VHDL-2008 Language Support
In addition, VHDL-2008 also offers case-generate statements:

case expressions generate
 when condition =>

statements
 when condition2 =>

statements
end generate;

Sequential Assignments
VHDL-2008 allows sequential signal and variable assignment with conditional signals. For
example, a register with an enable would be written as the following:

process(clk) begin
if clk’event and clk=’1’ then
if enable then
my_reg <= my_input;

end if;
end if;

end process;

With VHDL-2008, this can now be written as the following:

process(clk) begin
 if clk’event and clk=’1’ then
 my_reg <= my_input when enable else my_reg;
 end if;
end process;

Using case? Statements
With VHDL-2008, the case statement has a way to deal with explicit don’t care assignments.
When using case?, the tool now evaluates explicit don’t care terms, as in the following
example:

process(clk) begin
if clk’event and clk=’1’ then
 case? my_reg is
when "01--" => out1 <= in1;
when "000-" => out1 <= in2;
when "1111" => out1 <= in3;
when others => out1 <= in4;

 end case?;
end if;
end process;

Note: For this statement to work, the signal in question must be assigned an explicit don’t care.
Synthesis 218
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=218

Chapter 6: VHDL-2008 Language Support
Using select? Statements
Like the case, the select statement now has a way to deal with explicit don’t care
assignments. When using the select? statement, the tool now evaluates explicit don’t
care terms, for example:

process(clk) begin
if clk’event and clk=’1’ then
with my_reg select?
out1 <= in1 when "11--",
 in2 when "000-",
 in3 when "1111",
 in4 when others;

end if;
end process;

Note: For this statement to work, the signal in question must be assigned an explicit don’t care.

Using Slices in Aggregates
VHDL-2008 allows you to form an array aggregate and then assign it to multiple places all
in one statement.

For example if in1 where defined as a std_logic_vector(3 downto 0):

(my_reg1, my_reg2, enable, reset) <= in1;

This example assigns all four signals to the individual bits of in1:

my_reg1 gets in1(3)

my_reg2 gets in1(2)

enable is in1(1)

reset is in1(0)

In addition, these signals can be assigned out of order, as shown in the following example:

(1=> enable, 0 => reset, 3 => my_reg1, 2 => my_reg2) <= in1;

Types

Unconstrained Element Types

Previously in VHDL, types and subtypes had to be fully constrained in the declaration of the
type. In VHDL-2008, it is allowed to be unconstrained and the constraining happens with
the objects that are of that type; consequently, types and subtypes are more versatile. For
example:

subtype my_type is std_logic_vector;
signal my_reg1 : my_type (3 downto 0);
signal my_reg2 : my_type (4 downto 0);
Synthesis 219
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=219

Chapter 6: VHDL-2008 Language Support
In previous versions of VHDL, the preceding example would have been done with 2
subtypes. Now, in VHDL-2008 this can be accomplished with one type. This can even be
done for arrays, as shown in the following example:

type my_type is array (natural range <>) of std_logic_vector;
signal : mytype(1 downto 0)(9 downto 0);

Using boolean_vector and integer_vector Array Types
VHDL-2008 supports new predefined array types. Vivado supports boolean_vector and
integer_vector. These types are defined as follows:

type boolean_vector is array (natural range <>) of boolean
type integer_vector is array (natural range <>) of integer

Miscellaneous

Reading Output Ports

In previous versions of VHDL, it was illegal to use signals declared as out for anything other
than an output.

So if you wanted to assign a value to an output, and also use that same signal for other
logic, you would either have to declare a new signal and have that drive the output and the
other logic, or switch from an out to a buffer type.

VHDL-2008 lets you use output values, as shown in the following example:

entity test is port(
in1 : in std_logic;
clk : in std_logic;
out1, out2 : out std_logic);
end test;

And then later in the architecture:

process(clk) begin
if clk’event an clk=’1’ then
out1 <= in1;
my_reg <= out1; -- THIS WOULD HAVE BEEN ILLEGAL in VHDL.
out2 <= my_reg;

end if;
end process;

Expressions in Port Maps

VHDL-2008 allows the use of functions and assignments within the port map of an
instantiation. One useful way this is used is in converting signals from one type to another,
as shown in the following example:

U0 : my_entity port map (clk => clk, in1 => to_integer(my_signal)...
Synthesis 220
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=220

Chapter 6: VHDL-2008 Language Support
In the case above, the entity, my_entity had a port called in1 that was of type integer,
but in the upper-level, the signal, my_signal was of type std_logic_vector.

Previously in VHDL, you would have to create a new signal of type integer and do the
conversion outside of the instantiation, and then assign that new signal to the port map.

In addition to type conversion, you can put logic into the port map, as shown in the
following example:

U0 : my_entity port map (clk => clk, enable => en1 and en2 ...

In this case the lower-level has an enable signal. On the top-level that enable is tied to
the AND of two other signals.

Previously in VHDL, this, like the previous example would have needed a new signal and
assignment, but in VHDL-2008 can be accomplished in the port map of the instantiation.

Using the process (all) Statement

In VHDL, when listing items in the sensitivity list of a process statement for combinational
logic, it was up to the designer to make sure all the items read by the process statement
were listed. If any were missed, there would be Warning messages and possible latches
inferred in the design.

With VHDL-2008, you can use the process(all) statement that looks for all the inputs to
the process and then creates the logic.

process(all) begin
enable <= en1 and en2;
end process;

Referencing Generics in Generic Lists

VHDL-2008 allows generics to reference other generics, as shown in the following example:

entity my_entity is generic (
gen1 : integer;
gen2 : std_logic_vector(gen1 - 1 downto 0));

In previous versions of VHDL, having the length of gen2 be controlled by gen1 was illegal.

Generics in Packages

VHDL-2008 supports putting a generic in a package and then be able to override that
generic when the package is declared. For example:

package my_pack is
 generic(
 length : integer);
Synthesis 221
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=221

Chapter 6: VHDL-2008 Language Support
 subtype my_type is std_logic_vector(length-1 downto 0);
end package my_pack;

This declares a subtype of std_logic_vector, but does not specify the length. The calling
VHDL file will then specify what the length should be when the package is instantiated:

library ieee;
use leee.std_logic_1164.all;

package my_pack1 is new work.my_pack generic map (length => 5);
package my_pack2 is new work.my_pack generic map (length => 3);
use work.my_pack1.all;
use work.my_pack2.all;

library ieee;
use ieee.std_logic_1164.all;

entity test is port (
 clk : in std_logic;
 in1 : in work.my_pack1.my_type;
 in2 : in work.my_pack2.my_type;
 out1 : out work.my_pack1.my_type;
 out2 : out work.my_pack2.my_type);
end test;

This code uses the same package to declare two different subtypes and then be able to use
them.

Generic Types in Entities

VHDL-2008 supports undefined types in the generic statement for an entity. For example:

entity my_entity is
 generic (type my_type);

 port (in1 : in std_logic;
 out1 : out my_type);
end entity my_entity;

This would declare an entity with an undetermined type and then the RTL that instantiates
my_entity would look like:

my_inst1 : entity work.my_entity(beh) generic map (my_type => std_logic) port map ...
my_inst2 : entity work.my_entity(beh) generic map (my_type => std_logic_vector(3
downto 0)) port map ...

The code above instantiates my_entity twice, but in once case out1 will be a bit and in the
other case out1 will be a 4 bit vector.

Functions in Generics

In VHDL-2008, you can declare undefined functions inside of entities. For example

entity bottom is
Synthesis 222
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=222

Chapter 6: VHDL-2008 Language Support
 generic (
 function my_func (a,b : unsigned) return unsigned);
 port ...
......
end entity bottom;

Then later in the architecture of the entity:

process(clk) is
 begin
 if rising_edge(clk) then
 y <= my_func(a,b);
 end if;
end process;

This uses the my_func function, inside of the entity, but it still has not defined what this
function actually accomplishes. That is defined when bottom is instantiated in an upper
level RTL.

inst_bot1 : bottom
 generic map (
 my_func => my_func1)
 port map ...

So this ties the function my_func1 that was declared in a VHDL file or a package file to the
generic function my_func. As long as my_func1 has two inputs called a and b that are both
unsigned, it will be able to work.

Relaxed Return Rules for Function Return Values

In previous versions of VHDL, the return expression of a function needed be same type as
was declared in the functions return type of the function. In VHDL-2008, the rules are
relaxed to allow the return expression to be implicitly converted to the return type. For
example:

subtype my_type1 is std_logic_vector(9 downto 0);
subtype my_type2 is std_logic_vector(4 downto 0);

function my_function (a,b : my_type2) return my_type1 is
begin
return (a&b);
end function;

Because concatenation is not static, this would return an error or warning in VHDL; however,
it is allowed with VHDL-2008.

Extensions to Globally Static and Locally Static Expressions

In VHDL, expressions in many types of places needed to be static. For example, using
concatenation would not have returned a static value and when used with an operator or
function that needed a static value resulting in an error. VHDL-2008 allows for more
expressions, like concatenation to return static values, thereby allowing for more flexibility.
Synthesis 223
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=223

Chapter 6: VHDL-2008 Language Support
Static Ranges and Integer Expressions in Range Bounds

In VHDL, it was possible to declare an object by using the range of another object. For
example:

for I in my_signal’range...

This would require that the range of my_signal be fixed, but if my_signal was declared
as an unconstrained type, this would result in an error. VHDL-2008 now allows this by
getting the range at the time of elaboration.

Block Comments

In VHDL, comments “--“ were required for each line that had a comment. In VHDL-2008,
there is support for blocks of comments using the /* and */ lines.

process(clk) begin
if clk’event and clk=’1’ then
/* this
is
a block
comment */
out1 <= in1;
end if;

end process;
Synthesis 224
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=224

Chapter 7

Verilog Language Support

Introduction
This chapter describes the Vivado® synthesis support for the Verilog Hardware Description
Language.

Coding examples are included in this chapter. Download the coding example files from
Coding Examples.

Verilog Design
Complex circuits are often designed using a top-down methodology.

• Varying specification levels are required at each stage of the design process. For
example, at the architectural level, a specification can correspond to a block diagram or
an Algorithmic State Machine (ASM) chart.

• A block or ASM stage corresponds to a register transfer block in which the connections
are N-bit wires, such as:

° Register

° Adder

° Counter

° Multiplexer

° Interconnect logic

° Finite State Machine (FSM)
• Verilog allows the expression of notations such as ASM charts and circuit diagrams in a

computer language.
Synthesis 225
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=225

Chapter 7: Verilog Language Support
Verilog Functionality
Verilog provides both behavioral and structural language structures. These structures allow
the expression of design objects at high and low levels of abstraction.

• Designing hardware with Verilog allows the use of software concepts such as:

° Parallel processing

° Object-oriented programming
• Verilog has a syntax similar to C and Pascal.
• Vivado synthesis supports Verilog as IEEE 1364.
• Verilog support in Vivado synthesis allows you to describe the global circuit and each

block in the most efficient style.

° Synthesis is performed with the best synthesis flow for each block.

° Synthesis in this context is the compilation of high-level behavioral and structural
Verilog HDL statements into a flattened gate-level netlist. The netlist can then be
used to custom program a programmable logic device such as a Virtex® device.

° Different synthesis methods are used for:
- Arithmetic blocks
- Interconnect logic
- Finite State Machine (FSM) components

For information about basic Verilog concepts, see the IEEE Verilog HDL Reference Manual.

Verilog-2001 Support
Vivado synthesis supports the following Verilog-2001 features.

• Generate statements
• Combined port/data type declarations
• ANSI-style port list
• Module operator port lists
• ANSI C style task/function declarations
• Comma-separated sensitivity list
• Combinatorial logic sensitivity
• Default nets with continuous assigns
Synthesis 226
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=226

Chapter 7: Verilog Language Support
• Disable default net declarations
• Indexed vector part selects
• Multi-dimensional arrays
• Arrays of net and real data types
• Array bit and part selects
• Signed reg, net, and port declarations
• Signed-based integer numbers
• Signed arithmetic expressions
• Arithmetic shift operators
• Automatic width extension past 32 bits
• Power operator
• N-sized parameters
• Explicit in-line parameter passing
• Fixed local parameters
• Enhanced conditional compilation
• File and line compiler directives
• Variable part selects
• Recursive Tasks and Functions
• Constant Functions

For more information, see:

• Sutherland, Stuart. Verilog 2001: A Guide to the New Features of the Verilog Hardware
Description Language (2002)

• IEEE Standard Verilog Hardware Description Language Manual (IEEE Standard1364-2001)

Verilog-2001 Variable Part Selects
Verilog-2001 lets you use variables to select a group of bits from a vector.

Instead of being bounded by two explicit values, the variable part select is defined by the
starting point of its range and the width of the vector. The starting point of the part select
can vary. The width of the part select remains constant.

Table 7-1 lists the variable part selects symbols.
Synthesis 227
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=227

Chapter 7: Verilog Language Support
Variable Part Selects Verilog Coding Example

reg [3:0] data;
reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

Structural Verilog
Structural Verilog descriptions assemble several blocks of code and allow the introduction
of hierarchy in a design. The following table lists the concepts of hardware structure and
their descriptions.

The following table lists the Verilog Components, the view, and what the components
describe.

• A component is represented by a design module.
• The connections between components are specified within component instantiation

statements.
• A component instantiation statement:

° Specifies an instance of a component occurring within another component or the
circuit

° Is labeled with an identifier.

° Names a component declared in a local component declaration.

° Contains an association list (the parenthesized list). The list specifies the signals and
ports associated with a given local port.

Table 7-1: Variable Part Selects Symbols
Symbol Meaning

+ (plus) The part select increases from the starting point.
- (minus) The part select decreases from the starting point

Table 7-2: Basic Concepts of Hardware Structure
Concept Description

Component Building or basic block
Port Component I/O connector
Signal Corresponds to a wire between components

Table 7-3: Verilog Components
Item View Describes

Declaration External What is seen from the outside, including the component ports
Body Internal The behavior or the structure of the component
Synthesis 228
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=228

Chapter 7: Verilog Language Support
Built-In Logic Gates

Verilog provides a large set of built-in logic gates, which are instantiated to build larger
logic circuits. The set of logical functions described by the built-in logic gates includes:

° AND

° OR

° XOR

° NAND

° NOR

° NOT

2-Input XOR Function Example

In this coding example, each instance of the built-in modules has a unique instantiation
name such as a_inv, b_inv, and out.

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;

not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);
endmodule

Half-Adder Example

This coding example shows the structural description of a half-Adder composed of four,
2-input nand modules.

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;

nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;
endmodule
Synthesis 229
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=229

Chapter 7: Verilog Language Support
Instantiating Pre-Defined Primitives
The structural features of Verilog allow you to design circuits by instantiating pre-defined
primitives such as: gates, registers, and Xilinx-specific primitives such as CLKDLL and BUFG.

These primitives are additional to those included in Verilog, and are supplied with the
Xilinx® Verilog libraries (unisim_comp.v).

Instantiating an FDC and a BUFG Primitive Example
The unisim_comp.v library file includes the definitions for FDC and BUFG .

module example (sysclk, in, reset, out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;

FDC register (out, sysclk_out, reset, in); //position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk)); //name based referencing

Verilog Parameters
Verilog parameters do the following:

• Allow you to create parameterized code that can be easily reused and scaled.
• Make code more readable, more compact, and easier to maintain.
• Describe such functionality as:

° Bus sizes

° The amount of certain repetitive elements in the modeled design unit
• Are constants. For each instantiation of a parameterized module, default operator

values can be overridden.
• Are the equivalent of VHDL generics. Null string parameters are not supported.

Use the Generics command line option to redefine Verilog parameters defined in the
top-level design block. This allows you to modify the design without modifying the
source code. This feature is useful for IP core generation and flow testing.
Synthesis 230
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=230

Chapter 7: Verilog Language Support
Parameters Example (Verilog)

Download the coding example files from Coding Examples.

Filename: parameter_1.v

// A Verilog parameter allows to control the width of an instantitated
// block describing register logic
//
//
// File:parameter_1.v
//
module myreg (clk, clken, d, q);

 parameter SIZE = 1;

 input clk, clken;
 input [SIZE-1:0] d;
 output reg [SIZE-1:0] q;

 always @(posedge clk)
 begin
 if (clken)
 q <= d;
 end

endmodule

module parameter_1 (clk, clken, di, do);

 parameter SIZE = 8;

 input clk, clken;
 input [SIZE-1:0] di;
 output [SIZE-1:0] do;

 myreg #8 inst_reg (clk, clken, di, do);

endmodule

Parameter and Generate-For Example (Verilog)

The following coding example illustrates how to control the creation of repetitive elements
using parameters and generate-for constructs. For more information, see Generate Loop
Statements.

Filename: parameter_generate_for_1.v

//
// A shift register description that illustrates the use of parameters and
// generate-for constructs in Verilog
//
// File: parameter_generate_for_1.v
//
module parameter_generate_for_1 (clk, si, so);
Synthesis 231
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=231

Chapter 7: Verilog Language Support
parameter SIZE = 8;

input clk;
input si;
output so;

reg [0:SIZE-1] s;

assign so = s[SIZE-1];

always @ (posedge clk)
 s[0] <= si;

genvar i;
generate
 for (i = 1; i < SIZE; i = i+1)
 begin : shreg
 always @ (posedge clk)
 begin
 s[i] <= s[i-1];
 end
 end
endgenerate

endmodule

Verilog Parameter and Attribute Conflicts
Verilog parameter and attribute conflicts can arise because of the following:

• Parameters and attributes can be applied to both instances and modules in the Verilog
code.

• Attributes can also be specified in a constraints file.

Verilog Usage Restrictions
Verilog usage restrictions in Vivado synthesis include the following:

• Case Sensitivity
• Blocking and Non-Blocking Assignments
• Integer Handling
Synthesis 232
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=232

Chapter 7: Verilog Language Support
Case Sensitivity

Vivado synthesis supports Verilog case sensitivity despite the potential of name collision.

• Because Verilog is case-sensitive, the names of modules, instances, and signals can
theoretically be made unique by changing capitalization.

° Vivado synthesis can synthesize a design in which instance and signal names differ
only by capitalization.

° Vivado synthesis errors out when module names differ only by capitalization.
• Do not rely on capitalization alone to make object names unique. Capitalization alone

can cause problems in mixed language projects.

Blocking and Non-Blocking Assignments
Vivado synthesis supports blocking and non-blocking assignments.

• Do not mix blocking and non-blocking assignments.
• Although Vivado synthesis synthesizes the design without error, mixing blocking and

non-blocking assignments can cause errors during simulation.

For more information about the Verilog format for Vivado simulation, see this link to the
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11].

Unacceptable Example One

Do not mix blocking and non-blocking assignments to the same signal.

always @(in1)
begin
if (in2)
out1 = in1;

end else
out1 <= in2;

Unacceptable Example Two

Do not mix blocking and non-blocking assignments for different bits of the same signal.

if (in2)
begin
out1[0] = 1'b0;
out1[1] <= in1;

end else begin
out1[0] = in2;
out1[1] <= 1'b1;

end
Synthesis 233
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=233

Chapter 7: Verilog Language Support
Integer Handling
Vivado synthesis handles integers differently from other synthesis tools in some situations.
In those instances, the integers must be coded in a particular way.

Integer Handling in Verilog Case Statements

Unsized integers in case item expressions can cause unpredictable results.

Integer Handling in Verilog Case Statements Example

In the following coding example, the case item expression 4 is an unsized integer that
causes unpredictable results. To resolve this issue, size the case item expression 4 to 3 bits,
as shown in the following example:

reg [2:0] condition1; always @(condition1) begin
case(condition1)
4 : data_out = 2; // Generates faulty logic
3'd4 : data_out = 2; // Does work
endcase

end

Integer Handling in Concatenations

Unsigned integers in Verilog concatenations can cause unpredictable results. If you use an
expression that results in an unsized integer, it does the following:

• Assign the expression to a temporary signal.
• Use the temporary signal in the concatenation.

reg [31:0] temp;
assign temp = 4'b1111 % 2;
assign dout = {12/3,temp,din};

Verilog-2001 Attributes and Meta Comments

Verilog-2001 Attributes

• Verilog-2001 attributes pass specific information to programs such as synthesis tools.
• Verilog-2001 attributes are generally accepted.
• Specify Verilog-2001 attributes anywhere for operators or signals, within module

declarations and instantiations.
• Although the compiler might support other attribute declarations, Vivado synthesis

ignores them.
Synthesis 234
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=234

Chapter 7: Verilog Language Support
• Use Verilog-2001 attributes to set constraints on:

° Individual objects, such as:
- Module
- Instance
- Net

° Set the following synthesis constraints:
- Full Case
- Parallel Case

Verilog Meta Comments
• Verilog meta comments are understood by the Verilog parser.
• Verilog meta comments set constraints on individual objects, such as:

° Module

° Instance

° Net
• Verilog meta comments set directives on synthesis:

° parallel_case and full_case

° translate_on and translate_off

° All tool specific directives (for example, syn_sharing)

Verilog Meta Comment Support

Vivado synthesis supports:

• C-style and Verilog style meta comments:

° C-style
/* ...*/

• C-style comments can be multiple line:

° Verilog style
// ...
Synthesis 235
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=235

Chapter 7: Verilog Language Support
Verilog style comments end at the end of the line.

• Translate Off and Translate On
// synthesis translate_on
// synthesis translate_off

• Parallel Case
// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

Verilog Meta Comment Syntax
// synthesis attribute [of] ObjectName [is] AttributeValue

Verilog Meta Comment Syntax Examples

// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HUSET u1 MY_SET
// synthesis attribute fsm_extract of State2 is "yes"
// synthesis attribute fsm_encoding of State2 is "gray"

Verilog Constructs
The following table lists the support status of Verilog constructs in Vivado synthesis.

Table 7-4: Verilog Constructs
Verilog Constants Support Status

Constant
Integer Supported
Real Supported
String Unsupported
Verilog Data Types
Net types:
• tri0
• tri1
• trireg

Unsupported

• wand
• wor

Supported

All Drive strengths Ignored
Real and realtime registers Unsupported
Synthesis 236
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=236

Chapter 7: Verilog Language Support
All Named events Unsupported
Delay Ignored
Verilog Procedural Assignments
assign Supported with limitations. See Using assign and deassign Statements.
deassign Supported with limitations. See Using assign and deassign Statements
force Unsupported
release Unsupported
forever statements Unsupported
repeat statements Supported, but repeat value must be constant
for statements Supported, but bounds must be static
delay (#) Ignored
event (@) Unsupported
wait Unsupported
named events Unsupported
parallel blocks Unsupported
specify blocks Ignored
disable Supported except in For and Repeat Loop statements
Verilog Design Hierarchies
module definition Supported
macromodule definition Unsupported
hierarchical names Supported
defparam Supported
array of instances Supported
Verilog Compiler Directives
`celldefine `endcelldefine Ignored
`default_nettype Supported
`define Supported
`ifdef `else `endif Supported
`undef, `ifndef, `elsif Supported
`include Supported
`resetall Ignored
`timescale Ignored
`unconnected_drive
`nounconnected_drive

Ignored

Table 7-4: Verilog Constructs (Cont’d)

Verilog Constants Support Status
Synthesis 237
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=237

Chapter 7: Verilog Language Support
Verilog System Tasks and Functions
Vivado synthesis supports system tasks or function as shown in the following table. Vivado
synthesis ignores unsupported system tasks.

`uselib Unsupported
`file, `line Supported

Table 7-5: System Tasks and Status
System Task or Function Status Comment

$display Limited Supported
$fclose Not Supported
$fdisplay Ignored
$fgets Not Supported
$finish Ignored
$fopen Ignored
$fscanf Ignored Escape sequences are limited to %b and %d
$fwrite Ignored
$monitor Ignored
$random Ignored
$readmemb Supported
$readmemh Supported
$signed Supported
$stop Ignored
$strobe Ignored
$time Ignored
$unsigned Supported
$write Not Supported
$clog2 Supported This is supported with SystemVerilog only.
$floor Limited Support For parameters only.
$ceil Limited Support For parameters only.
$rtoi Supported
$itor Supported
$bits Supported

Table 7-4: Verilog Constructs (Cont’d)

Verilog Constants Support Status
Synthesis 238
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=238

Chapter 7: Verilog Language Support
$bitstoreal Supported
$realtobits Supported
$bitstoshortreal Supported
$shortrealtobits Supported
$unpacked_dimensions Supported
$dimensions Supported
$left Supported
$right Supported
$low Supported
$high Supported
$increment Supported
$size Supported
$countones Supported
$countbits Supported
$onehot Supported
$onehot0 Supported
$isunknown Supported
$asin Supported
$acos Supported
$atan Supported
$atan2 Supported
$sinh Supported
$cosh Supported
$tanh Supported
$sin Supported
$asinh Supported
$cos Supported
$ascosh Supported
$tan Supported
$ln Supported
$atanh Supported
$log10 Supported
$exp Supported
$sqrt Supported
$hypot Supported

Table 7-5: System Tasks and Status (Cont’d)

System Task or Function Status Comment
Synthesis 239
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=239

Chapter 7: Verilog Language Support
Using Conversion Functions
Use the following syntax to call $signed and $unsigned system tasks on any expression.

$signed(expr) or $unsigned(expr)

• The return value from these calls is the same size as the input value.
• The sign of the return value is forced regardless of any previous sign.

Loading Memory Contents With File I/O Tasks
Use the $readmemb and $readmemh system tasks to initialize block memories.

• Use $readmemb for binary representation.
• Use $readmemh for hexadecimal representation.
• Use index parameters to avoid behavioral conflicts between Vivado synthesis and the

simulator.
$readmemb("rams_20c.data",ram, 0, 7);

Supported Escape Sequences
• %h
• %d
• %o
• %b
• %c
• %s

$pow Supported
$fatal Supported
$warning Supported
$error Supported
$info Supported
all others Ignored

Table 7-5: System Tasks and Status (Cont’d)

System Task or Function Status Comment
Synthesis 240
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=240

Chapter 7: Verilog Language Support
Verilog Primitives
Vivado synthesis supports Verilog gate-level primitives except as shown in Table 7-6.

Vivado synthesis does not support Verilog switch-level primitives, such as the following:

cmos, nmos, pmos, rcmos, rnmos, rpmos rtran, rtranif0, rtranif1, tran, tranif0,
tranif1

Gate-Level Primitive Syntax
gate_type instance_name (output, inputs,...);

Gate-Level Primitive Example
and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

Unsupported Verilog Gate Level Primitives
The following table lists the gate-level primitives that are not supported in Vivado
synthesis.

Verilog Reserved Keywords
The following table lists the reserved keywords. Keywords marked with an asterisk (*) are
reserved by Verilog and are not supported by Vivado synthesis.

Table 7-6: Unsupported Primitives
Primitive Status

pulldown and pullup Unsupported
drive strength and delay Ignored
Arrays of primitives Unsupported

Table 7-7: Verilog Reserved Keywords
always and assign automatic
begin buf bufif0 bufif1
case casex casez cell*
cmos config* deassign default
defparam design* disable edge
else end endcase endconfig*
endfunction endgenerate endmodule endprimitive
Synthesis 241
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=241

Chapter 7: Verilog Language Support
Behavioral Verilog
Vivado synthesis supports the behavioral Verilog Hardware Description Language (HDL),
except as otherwise noted.

Variables in Behavioral Verilog
• Variables in behavioral Verilog are declared as an integer.
• These declarations are used in test code only. Verilog provides data types such as reg

and wire for actual hardware description.

endspecify endtable endtask event
for force forever fork
function generate genvar highz0
highz1 if ifnone incdir*
include* initial inout input
instance* integer join larger
liblist* library* localparam macromodule
medium module nand negedge
nmos nor noshow-cancelled* not
notif0 notif1 or output
parameter pmos posedge primitive
pull0 pull1 pullup* pulldown*
pulsestyle_ondetect* pulsestyle_onevent* rcmos real
realtime reg release repeat
rnmos rpmos rtran rtranif0
rtranif1 scalared show-cancelled* signed
small specify specpa strong0
strong1 supply0 supply1 table
task time tran tranif0
tranif1 tri tri0 tri1
triand trior trireg use*
vectored wait wand weak0
weak1 while wire wor
xnor xor

Table 7-7: Verilog Reserved Keywords (Cont’d)
Synthesis 242
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=242

Chapter 7: Verilog Language Support
• The difference between reg and wire depends on whether the variable is given its value
in a procedural block (reg) or in a continuous assignment (wire).

° Both reg and wire have a default width of one bit (scalar).

° To specify an N-bit width (vectors) for a declared reg or wire, the left and right bit
positions are defined in square brackets separated by a colon.

° In Verilog-2001, reg and wire data types can be signed or unsigned.

Variable Declarations Example

reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

Initial Values
Initialize registers in Verilog-2001 when they are declared.

• The initial value:

° Is a constant.

° Cannot depend on earlier initial values.

° Cannot be a function or task call.

° Can be a parameter value propagated to the register.

° Specifies all bits of a vector.
• When you assign a register as an initial value in a declaration, Vivado synthesis sets this

value on the output of the register at global reset or power up.
• When a value is assigned in this manner:

° The value is carried in the Verilog file as an INIT attribute on the register.

° The value is independent of any local reset.

Assigning an Initial Value to a Register

Assign a set/reset (initial) value to a register.

• Assign the value to the register when the register reset line goes to the appropriate
value. See the following coding example.

• When you assign the initial value to a variable:

° The value is implemented as a Flip-Flop, the output of which is controlled by a local
reset.

° The value is carried in the Verilog file as an FDP or FDC Flip-Flop.
Synthesis 243
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=243

Chapter 7: Verilog Language Support
Initial Values Example One

reg arb_onebit = 1'b0;
reg [3:0] arb_priority = 4'b1011;

Initial Values Example Two

always @(posedge clk)
begin
if (rst)
arb_onebit <= 1'b0;

end
Synthesis 244
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=244

Chapter 7: Verilog Language Support
Arrays of Reg and Wire
Verilog allows arrays of reg and wire.

Arrays Example One

This coding example describes an array of 32 elements. Each element is 4-bits wide.

reg [3:0] mem_array [31:0];

Arrays Example Two

This coding example describes an array of 64 8-bit wide elements. These elements can be
assigned only in structural Verilog code.

wire [7:0] mem_array [63:0];

Multi-Dimensional Arrays
Vivado synthesis supports multi-dimensional array types of up to two dimensions.

• Multi-dimensional arrays can be:

° Any net

° Any variable data type
• Code assignments and arithmetic operations with arrays.
• You cannot select more than one element of an array at one time.
• You cannot pass multi-dimensional arrays to:

° System tasks or functions

° Regular tasks or functions

Multi-Dimensional Array Example One

This coding example describes an array of 256 x 16 wire elements of 8-bits each. These
elements can be assigned only in structural Verilog code.

wire [7:0] array2 [0:255][0:15];

Multi-Dimensional Array Example Two

This coding example describes an array of 256 x 8 register elements, each 64 bits wide.
These elements can be assigned in behavioral Verilog code.

reg [63:0] regarray2 [255:0][7:0];
Synthesis 245
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=245

Chapter 7: Verilog Language Support
Data Types
The Verilog representation of the bit data type contains the following values:

• 0 = logic zero
• 1 = logic one
• x =unknown logic value
• z = high impedance

Supported Data Types

• net

° wire

° wand

° wor
• registers

° reg

° integer
• constants

° parameter

° Multi-dimensional arrays (memories)

Net and Registers

Net and Registers can be either:

• Single bit (scalar)
• Multiple bit (vectors)

Behavioral Data Types Example

This coding example shows sample Verilog data types found in the declaration section of a
Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3'b001; // 3 bit constant
parameter component = "TMS380C16"; // string
Synthesis 246
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=246

Chapter 7: Verilog Language Support
Legal Statements
Vivado synthesis supports behavioral Verilog legal statements.

• The following statements (variable and signal assignments) are legal:

° variable = expression

° if (condition) statement

° else statement

° case (expression), for example:
expression: statement
...
default: statement
endcase

° for (variable = expression; condition; variable = variable + expression) statement

° while (condition) statement

° forever statement

° functions and tasks
• All variables are declared as integer or reg.
• A variable cannot be declared as a wire.

Expressions
Behavioral Verilog expressions include:

• Constants
• Variables with the following operators:

° arithmetic

° logical
- bitwise
- logical

° relational

° conditional

Logical Operators
The category (bitwise or logical) into which a logical operator falls depends on whether it is
applied to an expression involving several bits, or a single bit.
Synthesis 247
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=247

Chapter 7: Verilog Language Support
Supported Operators

Supported Expressions

Table 7-8: Supported Operators
Arithmetic Logical Relational Conditional

+ & < ?
- && ==
* | ===
** || <=
/ ^ >=
% ~ >=

~^ !=
^~ !==
<< >
>>

<<<
>>>

Table 7-9: Supported Expressions
Expression Symbol Status

Concatenation {} Supported
Replication {{}} Supported
Arithmetic +, -, *,** Supported
Division / Supported only if the second operand is a power of

2, or both operands are constant.
Modulus % Supported only if second operand is a power of 2.
Addition + Supported
Subtraction - Supported
Multiplication * Supported
Power ** Supported:

• Both operands are constants, with the second
operand being non-negative.

• If the first operand is a 2, then the second operand
can be a variable.

• Vivado synthesis does not support the real data
type. Any combination of operands that results in a
real type causes an error.

• The values X (unknown) and Z (high impedance) are
not allowed.
Synthesis 248
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=248

Chapter 7: Verilog Language Support
Evaluating Expressions
The (===) and (!==) operators in the following table are:

• Special comparison operators.
• Used in simulation to see if a variable is assigned a value of (x) or (z).
• Treated as (==) or (!=) by synthesis.

See this link to the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11] for
more information about Verilog format for Vivado simulation.

Relational >, <, >=, <= Supported
Logical Negation ! Supported
Logical AND && Supported
Logical OR || Supported
Logical Equality == Supported
Logical Inequality != Supported
Case Equality === Supported
Case Inequality !== Supported
Bitwise Negation ~ Supported
Bitwise AND & Supported
Bitwise Inclusive OR | Supported
Bitwise Exclusive OR ^ Supported
Bitwise Equivalence ~^, ^~ Supported
Reduction AND & Supported
Reduction NAND ~& Supported
Reduction OR | Supported
Reduction NOR ~| Supported
Reduction XOR ^ Supported
Reduction XNOR ~^, ^~ Supported
Left Shift << Supported
Right Shift Signed >>> Supported
Left Shift Signed <<< Supported
Right Shift >> Supported
Conditional ?: Supported
Event OR or, ',' Supported

Table 7-9: Supported Expressions (Cont’d)

Expression Symbol Status
Synthesis 249
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=249

Chapter 7: Verilog Language Support
Evaluated Expressions Based On Most Frequently Used Operators

Blocks
Vivado synthesis supports some block statements, as follows:

• Block statements group statements together. They are designated by begin and end
keywords. Block statements execute the statements in the order listed within the block.

• Vivado synthesis supports sequential blocks only.
• Vivado synthesis does not support parallel blocks.
• All procedural statements occur in blocks that are defined inside modules.
• The two kinds of procedural blocks are initial block and always block
• Verilog uses begin and end keywords within each block to enclose the statements.

Because initial blocks are ignored during synthesis, only always blocks are described.
• always blocks usually take the following format. Each statement is a procedural

assignment line terminated by a semicolon.
always
begin
statement
.... end

Table 7-10: Evaluated Expressions Based On Most Frequently Used Operators
a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 1 1 1
0 x x 0 x 1 0 0 x x x
0 z x 0 x 1 0 0 x x x
1 0 0 0 1 1 0 0 1 1 1
1 1 1 1 0 0 1 1 1 1 0
1 x x 0 x 1 x x 1 1 x
1 z x 0 x 1 x x 1 1 x
x 0 x 0 x 1 0 0 x x x
x 1 x 0 x 1 x x 1 1 x
x x x 1 x 0 x x x x x
x z x 0 x 1 x x x x x
z 0 x 0 x 1 0 0 x x x
z 1 x 0 x 1 x x 1 1 x
z x x 0 x 1 x x x x x
z z x 1 x 0 x x x x x
Synthesis 250
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=250

Chapter 7: Verilog Language Support
Modules
A Verilog design component is represented by a module. Modules must be declared and
instantiated.

Module Declaration
• A Behavioral Verilog module declaration consists of:

° The module name

° A list of circuit I/O ports

° The module body in which you define the intended functionality
• End with an endmodule statement.

Circuit I/O Ports

• The circuit I/O ports are listed in the module declaration.
• Each circuit I/O port is characterized by:

° A name

° A mode: Input, Output, Inout

° Range information if the port is of array type.

Behavioral Verilog Module Declaration Example One

module example (A, B, O);
input A, B;
output O;
assign O = A & B;

endmodule

Behavioral Verilog Module Declaration Example Two

module example (input A, inputB, output O
);

assign O = A & B;
endmodule
Synthesis 251
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=251

Chapter 7: Verilog Language Support
Module Instantiation
A behavioral Verilog module instantiation statement does the following:

• Defines an instance name.
• Contains a port association list. The port association list specifies how the instance is

connected in the parent module. Each element of the port association list ties a formal
port of the module declaration to an actual net of the parent module.

• Is instantiated in another module. See the following coding example.

Behavioral Verilog Module Instantiation Example

module top (A, B, C, O); input A, B, C; output O;
wire tmp;

example inst_example (.A(A), .B(B), .O(tmp));

assign O = tmp | C;

endmodule

Continuous Assignments
Vivado synthesis supports both explicit and implicit continuous assignments.

• Continuous assignments model combinatorial logic in a concise way.
• Vivado synthesis ignores delays and strengths given to a continuous assignment.
• Continuous assignments are allowed on wire and tri data types only.

Explicit Continuous Assignments
Explicit continuous assignments start with an assign keyword after the net has been
separately declared.

wire mysignal;
...
assign mysignal = select ? b : a;

Implicit Continuous Assignments
Implicit continuous assignments combine declaration and assignment.

wire misignal = a | b;
Synthesis 252
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=252

Chapter 7: Verilog Language Support
Procedural Assignments
• Behavioral Verilog procedural assignments:

° Assign values to variables declared as reg.

° Are introduced by always blocks, tasks, and functions.

° Model registers and Finite State Machine (FSM) components.
• Vivado synthesis supports:

° Combinatorial functions

° Combinatorial and sequential tasks

° Combinatorial and sequential always blocks

Combinatorial Always Blocks
Combinatorial logic is modeled efficiently by Verilog time control statements:

• Delay time control statement [#]
• Event control time control statement [@]

Delay Time Control Statement
The delay time control statement [# (pound)] is:

• Relevant for simulation only.
• Ignored for synthesis.

For more information on Verilog format for Vivado simulation, see this link to the Vivado
Design Suite User Guide: Logic Simulation (UG900) [Ref 11].
Synthesis 253
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=253

Chapter 7: Verilog Language Support
Event Control Time Control Statement
The following statements describe modeling combinatorial logic with the event control
time control statement [@ (at)].

• A combinatorial always block has a sensitivity list appearing within parentheses after
always@.

• An always block is activated if an event (value change or edge) appears on one of the
sensitivity list signals.

• The sensitivity list can contain:

° Any signal that appears in conditions, such as if or case.

° Any signal appearing on the right-hand side of an assignment.
• By substituting a * (asterisk) in the parentheses for a list of signals, the always block is

activated for an event in any of the always block's signals as described.
• In combinatorial processes, if a signal is not explicitly assigned in all branches of if or

case statements, Vivado synthesis generates a latch to hold the last value.
• The following statements are used in a process:

° variable and signal assignments

° if-else statements

° case statements

° for-while loop statements

° function and task calls

Using if-else Statements
Vivado synthesis supports if-else statements.

• The if-else statements use true and false conditions to execute statements.

° If the expression evaluates to true, the first statement is executed.
° If the expression evaluates to false, x, or z, the else statement is executed.

• A block of multiple statements is executed using begin and end keywords.
• if-else statements can be nested.
Synthesis 254
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=254

Chapter 7: Verilog Language Support
Example of if-else Statement

This coding example uses an if-else statement to describe a Multiplexer.

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
if (sel[1])
if (sel[0])
outmux = d;
else
else
outmux = c;
if (sel[0])
outmux = b;

end endmodule
else
outmux = a;

Case Statements
Vivado synthesis supports case statements.

• A case statement performs a comparison to an expression to evaluate one of several
parallel branches.

° The case statement evaluates the branches in the order they are written.

° The first branch that evaluates to true is executed.

° If none of the branches matches, the default branch is executed.
• Do not use unsized integers in case statements. Always size integers to a specific

number of bits. Otherwise, results can be unpredictable.
• casez treats all z values in any bit position of the branch alternative as a don't care.
• casex treats all x and z values in any bit position of the branch alternative as a don't

care.
• The question mark (?) can be used as a don't care in either the casez or casex case

statements.
Synthesis 255
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=255

Chapter 7: Verilog Language Support
Multiplexer Case Statement Example (Verilog)

Filename: top.v

// Multiplexer using case statement
module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @ *
 begin
 case(sel)
 2'b00 : outmux = a;

 2'b01 : outmux = b;
 2'b10 : outmux = c;
 2'b11 : outmux = d;
 endcase
 end
endmodule

Avoiding Priority Processing

• The case statement in the previous coding example evaluates the values of input sel
in priority order.

• To avoid priority processing:

° Use a parallel-case Verilog attribute to ensure parallel evaluation of the input
sel.

° Replace the case statement with:
(* parallel_case *) case(sel)

For and Repeat Statements
Vivado synthesis supports for and repeat statements. When using always blocks,
repetitive or bit slice structures can also be described using a for statement, or a repeat
statement.
Synthesis 256
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=256

Chapter 7: Verilog Language Support
Using for Statements
The for statement is supported for constant bound, and stop test condition using the
following operators: <, <=, >, >=.

The for statement is supported also for next step computation falling in one of the
following specifications:

• var = var + step
• var = var - step

Where:

° var is the loop variable

° step is a constant value

Repeat Statements
The repeat statement is supported for constant values only.

Using while Loops
When using always blocks, use while loops to execute repetitive procedures.

• A while loop:

° Is not executed if the test expression is initially false.

° Executes other statements until its test expression becomes false.
• The test expression is any valid Verilog expression.
• To prevent endless loops, use the -loop_iteration_limit option.
• A while loop can have disable statements. The disable statement is used inside a

labeled block, as shown in the following code snippet:
disable <blockname>

Example of while Loop

parameter P = 4; always @(ID_complete) begin : UNIDENTIFIED
integer i; reg found; unidentified = 0; i = 0;
found = 0;
while (!found && (i < P))
begin
found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
Synthesis 257
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=257

Chapter 7: Verilog Language Support
Using Sequential always Blocks
Vivado synthesis supports sequential always blocks.

• Describe a sequential circuit with an always block and a sensitivity list that contains
the following edge-triggered (with posedge or negedge) events:

° A mandatory clock event

° Optional set/reset events (modeling asynchronous set/reset control logic)
• If no optional asynchronous signal is described, the always block is structured as

follows:
always @(posedge CLK)
begin
<synchronous_part>
end

• If optional asynchronous control signals are modeled, the always block is structured
as follows:
always @(posedge CLK or posedge ACTRL1 or à)
begin
if (ACTRL1)
<$asynchronous part>

else
<$synchronous_part>

end

Sequential always Block Examples

This coding example describes an 8-bit register with a rising-edge clock. There are no other
control signals.

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK) DO <= DI ;
endmodule
Synthesis 258
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=258

Chapter 7: Verilog Language Support
The following code example adds an active-High asynchronous reset.

module EXAMPLE (DI, CLK, ARST, DO);
input [7:0] DI;
input CLK, ARST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST)
if (ARST == 1'b1)
DO <= 8'b00000000;

else
DO <= DI;

endmodule

The following code example describes an active-High asynchronous reset and an
active-Low asynchronous set:

module EXAMPLE (DI, CLK, ARST, ASET, DO);
input [7:0] DI;
input CLK, ARST, ASET;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST or negedge ASET)
if (ARST == 1'b1)
DO <= 8'b00000000;

elsif (ASET == 1'b1) DO <= 8'b11111111;
else

DO <= DI;
endmodule

The following code example describes a register with no asynchronous set/reset, and a
synchronous reset.

module EXAMPLE (DI, CLK, SRST, DO);
input [7:0] DI;
input CLK, SRST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
if (SRST == 1'b1)
DO <= 8'b00000000;

else
DO <= DI;

endmodule
Synthesis 259
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=259

Chapter 7: Verilog Language Support
Using assign and deassign Statements
Vivado synthesis does not support assign and deassign statements.

Assignment Extension Past 32 Bits

If the expression on the left-hand side of an assignment is wider than the expression on the
right-hand side, the left-hand side is padded to the left according to the following rules:

• If the right-hand expression is signed, the left-hand expression is padded with the sign
bit.

• If the right-hand expression is unsigned, the left-hand expression is padded with 0
(zero).

• For unsized x or z constants only, the following rule applies:

If the value of the right-hand expression's leftmost bit is z (high impedance) or x
(unknown), regardless of whether the right-hand expression is signed or unsigned, the
left-hand expression is padded with that value (z or x, respectively).

Tasks and Functions
• When the same code is used multiple times across a design, using tasks and functions:

° Reduces the amount of code.

° Facilitates maintenance.
• Tasks and functions must be declared and used in a module. The heading contains the

following parameters:

° Input parameters (only) for functions.

° Input/output/inout parameters for tasks.
• The return value of a function is declared either signed or unsigned. The content is

similar to the content of the combinatorial always block.
Synthesis 260
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=260

Chapter 7: Verilog Language Support
Tasks and Functions Examples
Filename: functions_1.v

//
// An example of a function in Verilog
//
// File: functions_1.v
//
module functions_1 (A, B, CIN, S, COUT);
 input [3:0] A, B;
 input CIN;
 output [3:0] S;
 output COUT;
 wire [1:0] S0, S1, S2, S3;

 function signed [1:0] ADD;
 input A, B, CIN;
 reg S, COUT;
 begin
 S = A ^ B ^ CIN;
 COUT = (A&B) | (A&CIN) | (B&CIN);
 ADD = {COUT, S};
 end
 endfunction

 assign S0 = ADD (A[0], B[0], CIN),
 S1 = ADD (A[1], B[1], S0[1]),
 S2 = ADD (A[2], B[2], S1[1]),
 S3 = ADD (A[3], B[3], S2[1]),
 S = {S3[0], S2[0], S1[0], S0[0]},
 COUT = S3[1];

endmodule

In this coding example, the same functionality is described with a task.

Filename: task_1.v

// Verilog tasks
// tasks_1.v
//
module tasks_1 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;
Synthesis 261
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=261

Chapter 7: Verilog Language Support
 begin
 S = A ^ B ^ CIN;
 COUT = (A&B) | (A&CIN) | (B&CIN);
 C = {COUT, S};
 end
endtask

always @(A or B or CIN)
begin
 ADD (A[0], B[0], CIN, S0);
 ADD (A[1], B[1], S0[1], S1);
 ADD (A[2], B[2], S1[1], S2);
 ADD (A[3], B[3], S2[1], S3);
 S = {S3[0], S2[0], S1[0], S0[0]};
 COUT = S3[1];
end

endmodule

Using Recursive Tasks and Functions
Verilog-2001 supports recursive tasks and functions.

• Use recursion with the automatic keyword only.
• The number of recursions is automatically limited to prevent endless recursive calls. The

default is 64.
• Use -recursion_iteration_limit to set the number of allowed recursive calls.

Example of Recursive Tasks and Functions

function automatic [31:0] fac;
input [15:0] n;
if (n == 1)
fac = 1;

else

fac = n * fac(n-1); //recursive function call
endfunction

Using Constant Functions and Expressions
Vivado synthesis supports function calls to calculate constant values.

Constants are assumed to be decimal integers.

• Specify constants in binary, octal, decimal, or hexadecimal.
• To specify constants explicitly, prefix them with the appropriate syntax.
Synthesis 262
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=262

Chapter 7: Verilog Language Support
Example of Constant Functions

Filename: functions_contant.v

// A function that computes and returns a constant value
//
// functions_constant.v
//
module functions_constant (clk, we, a, di, do);
 parameter ADDRWIDTH = 8;
 parameter DATAWIDTH = 4;
 input clk;
 input we;
 input [ADDRWIDTH-1:0] a;
 input [DATAWIDTH-1:0] di;
 output [DATAWIDTH-1:0] do;

 function integer getSize;
 input addrwidth;
 begin
 getSize = 2**addrwidth;
 end
 endfunction

 reg [DATAWIDTH-1:0] ram [getSize(ADDRWIDTH)-1:0];

 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 end
 assign do = ram[a];

endmodule

Example of Constant Expressions

The following constant expressions represent the same value.

• 4'b1010
• 4'o12
• 4'd10
• 4'ha
Synthesis 263
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=263

Chapter 7: Verilog Language Support
Using Blocking and Non-Blocking Procedural Assignments
Blocking and non-blocking procedural assignments have time control built into their
respective assignment statements.

• The pound sign (#) and the at sign (@) are time control statements.
• These statements delay execution of the statement following them until the specified

event is evaluated as true.
• The pound (#) delay is ignored for synthesis.

Blocking Procedural Assignment Syntax Example One

reg a;
a = #10 (b | c);

Blocking Procedural Assignment Syntax Example Two (Alternate)

if (in1) out = 1’b0;
else out = in2;

This assignment blocks the current process from continuing to execute additional
statements at the same time, and is used mainly in simulation.

For more information regarding Verilog format for Vivado simulation, see this link to the
Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11].

Non-Blocking Procedural Assignment Syntax Example One

variable <= @(posedge_or_negedge_bit) expression;

Non-blocking assignments evaluate the expression when the statement executes, and allow
other statements in the same process to execute at the same time. The variable change
occurs only after the specified delay.

Non-Blocking Procedural Assignment Example Two

This coding example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1;
else out <= in2;
Synthesis 264
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=264

Chapter 7: Verilog Language Support
Verilog Macros
Verilog defines macros as follows:

'define TESTEQ1 4'b1101

The defined macro is referenced later, as follows:

if (request == 'TESTEQ1)

The 'ifdef and 'endif constructs do the following:

° Determine whether a macro is defined.

° Define conditional compilation.

If the macro called out by 'ifdef is defined, that code is compiled.

• If the macro has not been defined, the code following the 'else command is
compiled.

• The 'else is not required, but 'endif must complete the conditional statement.

Use the Verilog Macros command line option to define (or redefine) Verilog macros.

• Verilog Macros let you modify the design without modifying the HDL source code.
• Verilog Macros is useful for IP core generation and flow testing.

Macro Example One

'define myzero 0
assign mysig = 'myzero;

Macro Example Two

'ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
'else
module if_MYVAR_is_not_declared;
...
endmodule
'endif

Note: When synthesis runs, Vivado will automatically set the SYNTHESIS macro. So, when using
‘ifdef SYNTHESIS, it will be triggered during the synthesis run.
Synthesis 265
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=265

Chapter 7: Verilog Language Support
Include Files
Verilog allows you to separate HDL source code into more than one file. To reference the
code in another file, use the following syntax in the current file.

`include <path/file-to-be-included>

The above line will take the contents of the file to be included and insert it all into the
current file at the line with the `include.

The path can be a relative or an absolute path. In the case of a relative path, the Verilog
compiler will look in two different places for the file to be included.

° The first is relative to the file with the `include statement. The compiler will look
there, and if it can find the file, it will insert the contents of the file there.

° The second place it will look is relative to the -include_dirs option that is in the
Verilog options section of the General settings.

Multiple `include statements are allowed in the same Verilog file.

Behavioral Verilog Comments
Behavioral Verilog comments are similar to the comments in such languages as C++.

One-Line Comments

One-line comments start with a double forward slash (//).

// This is a one-line comment.

Multiple-Line Block Comments

Multiple-line block comments start with /* and end with */.

/* This is a multiple-line comment.
*/

Generate Statements
Behavioral Verilog generate statements:

• Allow you to create:

° parameterized and scalable code.

° Repetitive or scalable structures.

° Functionality conditional on a particular criterion being met.
• Are resolved during Verilog elaboration.
Synthesis 266
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=266

Chapter 7: Verilog Language Support
• Are conditionally instantiated into your design.
• Are described within a module scope.
• Start with a generate keyword.
• End with an endgenerate keyword.

Structures Created Using Generate Statements
Structures likely to be created using a generate statement include:

• Primitive or module instances
• Initial or always procedural blocks
• Continuous assignments
• Net and variable declarations
• parameter redefinitions
• Task or function definitions

Supported Generate Statements
Vivado synthesis supports all Behavioral Verilog generate statements:

• generate-loop (generate-for)
• generate-conditional (generate-if-else)
• generate-case (generate-case)

Generate Loop Statements
Use a generate-for loop to create one or more instances that can be placed inside a
module.

Use the generate-for loop the same way you use a normal Verilog for loop, with the
following limitations:

• The generate-for loop index has a genvar variable.
• The assignments in the for loop control refers to the genvar variable.
• The contents of the for loop are enclosed by begin and end statements.
• The begin statement is named with a unique qualifier.
Synthesis 267
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=267

Chapter 7: Verilog Language Support
Generate Loop Statement 8-Bit Adder Example

generate genvar i;
for (i=0; i<=7; i=i+1)
begin : for_name
adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i],

c0_or[i+1]);
end

endgenerate

Generate Conditional Statements

A generate-if-else statement conditionally controls which objects are generated.

• Each branch of the if-else statement is enclosed by begin and end statements.
• The begin statement is named with a unique qualifier.

Generate Conditional Statement Coding Example

This coding example instantiates two different implementations of a multiplier based on the
width of data words.

generate
if (IF_WIDTH < 10)
begin : if_name
multiplier_imp1 # (IF_WIDTH) u1 (a, b, sum_if);

end
else
begin : else_name
multiplier_imp2 # (IF_WIDTH) u2 (a, b, sum_if);

end
endgenerate

Generate Case Statements

A generate-case statement conditionally controls which objects are generated under which
conditions.

• Each branch in a generate-case statement is enclosed by begin and end statements.
• The begin statement is named with a unique qualifier.
Synthesis 268
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=268

Chapter 7: Verilog Language Support
Behavioral Verilog Generate Case Statements Coding Example

This coding example instantiates more than two different implementations of an adder
based on the width of data words.

generate
case (WIDTH)
1:
begin : case1_name

adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);
end

2:
begin : case2_name

adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);
 end default:
begin : d_case_name
adder x3 (a, b, ci, sum_case, c0_case);
end
endcase
endgenerate
Synthesis 269
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=269

Chapter 8

SystemVerilog Support

Introduction
Vivado® synthesis supports the subset of SystemVerilog RTL that can be synthesized. The
following sections describe those data types.

Targeting SystemVerilog for a Specific File
By default, the Vivado synthesis tool compiles *.v files with the Verilog 2005 syntax and
*.sv files with the SystemVerilog syntax.

To target SystemVerilog for a specific *.v file in the Vivado IDE, right-click the file, and
select Source Node Properties. In the Source File Properties window, change the File Type
to SystemVerilog, and click OK.

Tcl Command to Set Properties
Alternatively, you can use the following Tcl command in the Tcl Console:

set_property file_type SystemVerilog [get_files <filename>.v]

The following sections describe the supported SystemVerilog types in the Vivado IDE.
Synthesis 270
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=270

Chapter 8: SystemVerilog Support
Data Types
The following data types are supported, as well as the mechanisms to control them.

Declaration
Declare variables in the RTL as follows:

[var] [DataType] name;

Where:

° var is optional and implied if not in the declaration.

° DataType is one of the following:
- integer_vector_type: bit, logic, or reg
- integer_atom_type: byte, shortint, int, longint, integer, or time
- non_integer_type: shortreal, real, or realtime
- struct

- enum

Integer Data Types
SystemVerilog supports the following integer types:

• shortint: 2-state 16-bit signed integer
• int: 2-state 32-bit signed integer
• longint: 2-state 64-bit signed integer
• byte: 2-state 8-bit signed integer
• bit: 2-state, user defined vector size
• logic: 4-state user defined vector size
• reg: 4-state user-defined vector size
• integer: 4-state 32-bit signed integer
• time: 4-state 64-bit unsigned integer
Synthesis 271
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=271

Chapter 8: SystemVerilog Support
4-state and 2-state refer to the values that can be assigned to those types, as follows:

• 2-state allows 0s and 1s.
• 4-state also allows X and Z states.

X and Z states cannot always be synthesized; therefore, items that are 2-state and 4-state
are synthesized in the same way.

CAUTION! Take care when using 4-state variables; RTL versus simulation mismatches could occur.

• The types byte, shortint, int, integer, and longint default to signed values.
• The types bit, reg, and logic default to unsigned values.

See this link to the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11] for
more information about Verilog format for simulation.

Real Numbers
Synthesis supports real numbers; however, they cannot be used to create logic. They can
only be used as parameter values. The SystemVerilog-supported real types are:

• real
• shortreal
• realtime

Void Data Type
The void data type is only supported for functions that have no return value.

User-Defined Types
Vivado synthesis supports user-defined types, which are defined using the typedef
keyword. Use the following syntax:

typedef data_type type_identifier {size};

or

typedef [enum, struct] type_identifier;

Enum Types
Enumerated types can be declared with the following syntax:

enum [type] {enum_name1, enum_name2...enum_namex} identifier
Synthesis 272
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=272

Chapter 8: SystemVerilog Support
If no type is specified, the enum defaults to int. Following is an example:

enum {sun, mon, tues, wed, thurs, fri, sat} day_of_week;

This code generates an enum of int with seven values. The values that are given to these
names start with 0 and increment, so that, sun = 0 and sat = 6.

To override the default values, use code as in the following example:

enum {sun=1, mon, tues, wed, thurs, fri, sat} day_of week;

In this case, sun is 1 and sat is 7.

The following is another example how to override defaults:

enum {sun, mon=3, tues, wed, thurs=10, fri=12, sat} day_of_week;

In this case, sun=0, mon=3, tues=4, wed=5, thurs=10, fri=12, and sat=13.

Enumerated types can also be used with the typedef keyword.

typedef enum {sun,mon,tues,wed,thurs,fri,sat} day_of_week;
day_of_week my_day;

The preceding example defines a signal called my_day that is of type day_of_week. You
can also specify a range of enums. For example, the preceding example can be specified as:

enum {day[7]} day_of_week;

This creates an enumerated type called day_of_week with seven elements as follows:
day0, day1…day6.

Following are other ways to use enumerated types:

enum {day[1:7]} day_of_week; // creates day1,day2...day7
enum {day[7] = 5} day_of_week; //creates day0=5, day1=6... day6=11

Constants
SystemVerilog gives three types of elaboration-time constants:

• parameter: Is the same as the original Verilog standard and can be used in the same
way.

• localparameter: Is similar to parameter but cannot be overridden by upper-level
modules.

• specparam: Is used for specifying delay and timing values; consequently, this value is
not supported in Vivado synthesis.

There is also a run-time constant declaration called const.
Synthesis 273
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=273

Chapter 8: SystemVerilog Support
Type Operator
The type operator allows parameters to be specified as data types, which allows modules to
have different types of parameters for different instances.

Casting
Assigning a value of one data type to a different data type is illegal in SystemVerilog.
However, a workaround is to use the cast operator (’). The cast operator converts the data
type when assigning between different types. The usage is:

casting_type’(expression)

The casting_type is one of the following:

• integer_type

• non_integer_type

• real_type

• constant unsigned number
• user-created signing value type

Aggregate Data Types
In aggregate data types there are structures and unions, which are described in the
following subsections.

Structures

A structure is a collection of data that can be referenced as one value, or the individual
members of the structure. This is similar to the VHDL concept of a record. The format for
specifying a structure is:

struct {struct_member1; struct_member2;...struct_memberx;} structure_name;

Unions

A union is a single section of data that can be referenced in different ways. The format for
specifying a union is:

typedef union packed {union_member1; union_member2...union_memberx;} unions_name;
Synthesis 274
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=274

Chapter 8: SystemVerilog Support
Packed and Unpacked Arrays

Vivado synthesis supports both packed and unpacked arrays:

logic [5:0] sig1; //packed array

logic sig2 [5:0]; //unpacked array

Data types with predetermined widths do not need the packed dimensions declared:

integer sig3; //equivalent to logic signed [31:0] sig3

Processes
Always Procedures
There are four always procedures:

• always
• always_comb

• always_latch

• always_ff

The procedure always_comb describes combinational logic. A sensitivity list is inferred by
the logic driving the always_comb statement.

For always you must provide the sensitivity list. The following examples use a sensitivity
list of in1 and in2:

always@(in1 or in2)
out1 = in1 & in2;
always_comb out1 = in1 & in2;

The procedure always_latch provides a quick way to create a latch. Like always_comb,
a sensitivity list is inferred, but you must specify a control signal for the latch enable, as in
the following example:

always_latch
if(gate_en) q <= d;

The procedure always_ff is a way to create Flip-Flops. Again, you must specify a
sensitivity list:

always_ff@(posedge clk)
out1 <= in1;
Synthesis 275
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=275

Chapter 8: SystemVerilog Support
Block Statements
Block statements provide a mechanism to group sets of statements together. Sequential
blocks have a begin and end around the statement. The block can declare its own
variables, and those variables are specific to that block. The sequential block can also have
a name associated with that block. The format is as follows:

begin [: block name]
[declarations]
[statements]
end [: block name]

begin : my_block
logic temp;
temp = in1 & in2;
out1 = temp;
end : my_block

In the previous example, the block name is also specified after the end statement. This
makes the code more readable, but it is not required.

Note: Parallel blocks (or fork join blocks) are not supported in Vivado synthesis.

Procedural Timing Controls
SystemVerilog has two types of timing controls:

• Delay control: Specifies the amount of time between the statement its execution. This is
not useful for synthesis, and Vivado synthesis ignores the time statement while still
creating logic for the assignment.

• Event control: Makes the assignment occur with a specific event; for example,
always@(posedge clk). This is standard with Verilog, but SystemVerilog includes
extra functions.

The logical or operator is an ability to give any number of events so that any event triggers
the execution of the statement. To do this, use either a specific or, or separate with commas
in the sensitivity list. For example, the following two statements are the same:

always@(a or b or c)
always@(a,b,c)

SystemVerilog also supports the implicit event_expression @*. This helps to eliminate
simulation mismatches caused because of incorrect sensitivity lists.

For example:

Logic always@* begin

See this link to the Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 11] for the
Verilog format for simulation.
Synthesis 276
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf;a=xVivadoSimulatorVerilogDataFormat
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=276

Chapter 8: SystemVerilog Support
Operators
Vivado synthesis supports the following SystemVerilog operators:

• Assignment operators (=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=)
• Unary operators (+, -, !, ~, &, ~&, |, ~|, ^, ~^, ^~)
• Increment/decrement operators (++, --)
• Binary operators (+, -, *, /, %, ==, ~=, ===, ~==, &&, ||, **, <, <=, >, >=, &, |, ^, ^~, ~^,

>>, <<, >>>, <<<)
Note: A**B is supported if A is a power of 2 or B is a constant.

• Conditional operator (? :)
• Concatenation operator ({...})

Signed Expressions
Vivado synthesis supports both signed and unsigned operations. Signals can be declared as
unsigned or signed. For example:

logic [5:0] reg1;

logic signed [5:0] reg2;

Procedural Programming Assignments
Conditional if-else Statement
The syntax for a conditional if-else statement is:

if (expression)
command1;

else
command2;

The else is optional and assumes a latch or flip-flop depending on whether or not there
was a clock statement. Code with multiple if and else entries can also be supported, as
shown in the following example:

If (expression1)
Command1;

elsif (expression2)
command2;

elsif (expression3)
command3;

else
command4;
Synthesis 277
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=277

Chapter 8: SystemVerilog Support
This example is synthesized as a priority if statement.

• If the first expression is found to be TRUE, the others are not evaluated.
• If unique or priority if-else statements are used, Vivado synthesis treats those as

parallel_case and full_case, respectively.

Case Statement
The syntax for a case statement is:

case (expression)
value1: statement1;
value2: statement2;
value3: statement3;
default: statement4;

endcase

The default statement inside a case statement is optional. The values are evaluated in
order, so if both value1 and value3 are true, statement1 is performed.

In addition to case, there are also the casex and casez statements. These let you handle
don’t cares in the values (casex) or tri-state conditions in the values (casez).

If unique or priority case statements are used, Vivado synthesis treats those as
parallel_case and full_case respectively.

Loop Statements
Several types of loops that are supported in Vivado synthesis and SystemVerilog. One of the
most common is the for loop. Following is the syntax:

for (initialization; expression; step)

statement;

A for loop starts with the initialization, then evaluates the expression. If the expression
evaluates to 0, it stops and executes; otherwise, if the expression evaluates to 1 it continues
with the statement. When it is done with the statement, it executes the step function.

• A repeat loop works by performing a function a stated number of times. Following is
the syntax:
repeat (expression)

statement;

This syntax evaluates the expression to a number, then executes the statement the
specified number of times.

• The for-each loop executes a statement for each element in an array.
Synthesis 278
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=278

Chapter 8: SystemVerilog Support
• The while loop takes an expression and a statement and executes the statement until
the expression is false.

• The do-while loop performs the same function as the while loop, but instead it tests
the expression after the statement.

• The forever loop executes all the time. To avoid infinite loops, use it with the break
statement to get out of the loop.

Tasks and Functions
Tasks
The syntax for a task declaration is:

task name (ports);
[optional declarations];
statements;

endtask

Following are the two types of tasks:

• Static task: Declarations retain their previous values the next time the task is called.
• Automatic task: Declarations do not retain previous values.

CAUTION! Be careful when using these tasks; Vivado synthesis treats all tasks as automatic.

Many simulators default to static tasks if the static or automatic is not specified, so there is
a chance of simulation mismatches. The way to specify a task as automatic or static is the
following:

task automatic my_mult... //or
task static my_mult ...

Functions (Automatic and Static)
Functions are similar to tasks, but return a value. The format for a function is:

function data_type function_name(inputs);
declarations;
statements;

endfunction : function_name

The final function_name is optional but does make the code easier to read.
Synthesis 279
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=279

Chapter 8: SystemVerilog Support
Because the function returns a value, it must either have a return statement or specifically
state the function name:

function_name =

Like tasks, functions can also be automatic or static.

CAUTION! Vivado synthesis treats all functions as automatic. However, some simulators might behave
differently. Be careful when using these functions with third-party simulators.

Modules and Hierarchy
Using modules in SystemVerilog is very similar to Verilog, and includes additional features
as described in the following subsections.

Connecting Modules
There are three main ways to instantiate and connect modules:

• The first two are by ordered list and by name, as in Verilog.
• The third is by named ports.

If the names of the ports of a module match the names and types of signals in an
instantiating module, the lower-level module can by hooked up by name. For example:

module lower (

output [4:0] myout;

input clk;

input my_in;

input [1:0] my_in2;

... ...

endmodule

//in the instantiating level.

lower my_inst (.myout, .clk, .my_in, .my_in2);

Connecting Modules with Wildcard Ports
You can use wildcards when connecting modules. For example, from the previous example:

// in the instantiating module

lower my_inst (.*);

This connects the entire instance, as long as the upper-level module has the correct names
and types.
Synthesis 280
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=280

Chapter 8: SystemVerilog Support
In addition, these can be mixed and matched. For example:

lower my_inst (.myout(my_sig), .my_in(din), .*);

This connects the myout port to a signal called my_sig, the my_in port to a signal called
din and clk and my_in2 is hooked up to the clk and my_in2 signals.

Interfaces
Interfaces provide a way to specify communication between blocks. An interface is a group
of nets and variables that are grouped together for the purpose of making connections
between modules easier to write. The syntax for a basic interface is:

interface interface_name;

parameters and ports;

items;

endinterface : interface_name

The interface_name at the end is optional but makes the code easier to read. For an
example, see the following code:

module bottom1 (
input clk,
input [9:0] d1,d2,
input s1,
input [9:0] result,
output logic sel,
output logic [9:0] data1, data2,
output logic equal);

//logic//

endmodule

module bottom2 (
input clk,
input sel,
input [9:0] data1, data2,
output logic [9:0] result);

//logic//

endmodule

module top (
input clk,
input s1,
input [9:0] d1, d2,
output equal);

logic [9:0] data1, data2, result;
logic sel;
Synthesis 281
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=281

Chapter 8: SystemVerilog Support
bottom1 u0 (clk, d1, d2, s1, result, sel, data1, data2, equal);
bottom2 u1 (clk, sel, data1, data2, result);

endmodule

The previous code snippet instantiates two lower-level modules with some signals that are
common to both.

These common signals can all be specified with an interface:

interface my_int
logic sel;
logic [9:0] data1, data2, result;

endinterface : my_int

Then, in the two bottom-level modules, you can change to:

module bottom1 (
my_int int1,
input clk,
input [9:0] d1, d2,
input s1,
output logic equal);

and

module bottom2 (
my_int int1,
input clk);

Inside the modules, you can also change how you access sel, data1, data2, and result.
This is because, according to the module, there are no ports of these names. Instead, there
is a port called my_int. This requires the following change:

if (sel)
result <= data1;
to:
if (int1.sel)
int1.result <= int1.data1;

Finally, in the top-level module, the interface must be instantiated, and the instances
reference the interface:

module top(
input clk,
input s1,
input [9:0] d1, d2,
output equal);
my_int int3(); //instantiation

bottom1 u0 (int3, clk, d1, d2, s1, equal);
bottom2 u1 (int3, clk);

endmodule
Synthesis 282
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=282

Chapter 8: SystemVerilog Support
Modports
In the previous example, the signals inside the interface are no longer expressed as inputs
or outputs. Before the interface was added, the port sel was an output for bottom1 and an
input for bottom2.

After the interface is added, that is no longer clear. In fact, the Vivado synthesis engine does
not issue a warning that these are now considered bidirectional ports, and in the netlist
generated with hierarchy, these are defined as inouts. This is not an issue with the
generated logic, but it can be confusing.

To specify the direction, use the modport keyword, as shown in the following code snippet:

interface my_int;
 logic sel;
 logic [9:0] data1, data2, result;

 modport b1 (input result, output sel, data1, data2);
 modport b2 (input sel, data1, data2, output result);
endinterface : my_int

Then, in the bottom modules, use when declared:

module bottom1 (
my_int.b1 int1,

This correctly associates the inputs and outputs.

Miscellaneous Interface Features
In addition to signals, there can also be tasks and functions inside the interface. This lets
you create tasks specific to that interface. Interfaces can be parameterized. In the previous
example, data1 and data2 were both 10-bit vectors, but you can modify those interfaces
to be any size depending on a parameter that is set.
Synthesis 283
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=283

Chapter 8: SystemVerilog Support
Packages
Packages provide an additional way to share different constructs. They have similar
behavior to VHDL packages. Packages can contain functions, tasks, types, and enums. The
syntax for a package is:

package package_name;
items

endpackage : package_name

The final package_name is not required, but it makes code easier to read. Packages are
then referenced in other modules by the import command. Following is the syntax:

import package_name::item or *;

The import command must include items from the package to import or must specify the
whole package.

SystemVerilog Constructs
The following table lists the SystemVerilog constructs. Constructs that are not supported
are shaded in gray.

Table 8-1: SystemVerilog Constructs
Construct Status

Data type
 Singular and aggregate types Supported
 Nets and variables Supported
 Variable declarations Supported
 Vector declarations Supported
 2-state (two-value) and 4-state

(four-value) data types
Supported

 Signed and unsigned integer types Supported
 User-defined types Supported
 Enumerations Supported
 Defining new data types as

enumerated types
Supported

 Enumerated type ranges Supported
 Type checking Supported
 Enumerated types in numerical

expressions
Supported

 Enumerated type methods Supported
Synthesis 284
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=284

Chapter 8: SystemVerilog Support
 Type parameters Supported
 Type operator Supported
 Cast operator Supported
 Bitstream casting Supported
 Const constants Supported
 $cast dynamic casting Supported
 Real, shortreal, and realtime data

types
Supported

Aggregate data types
 Structures Supported
 Packed/Unpacked structures Supported
 Assigning to structures Supported
 Packed arrays Supported
 Unpacked arrays Supported
 Operations on arrays Supported
 Multidimensional arrays Supported
 Indexing and slicing of arrays Supported
 Array assignments Supported
 Arrays as arguments to subroutines Supported
 Array manipulation methods (those

that do not return queue type)
Not Supported

Array querying functions Not Supported
Unpacked unions Supported
Tagged unions Not Supported(1)

Packed unions Supported
Processes
 Combinational logic always_comb

procedure
Supported

 Implicit always_comb sensitivities Supported
 Latched logic always_latch

procedure
Supported

 Sequential blocks Supported
 Sequential logic always_ff

procedure
Supported

Iff event qualifier Supported
Aliases Supported

 Conditional event controls Not Supported
Parallel blocks Not Supported

Table 8-1: SystemVerilog Constructs (Cont’d)
Construct Status
Synthesis 285
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=285

Chapter 8: SystemVerilog Support
 Procedural timing controls Not Supported
 Sequence events Not Supported
Assignment statement
 The continuous assignment

statement
Supported

 Variable declaration assignment
(variable initialization)

Supported

 Assignment-like contexts Supported
 Array assignment patterns Supported
 Structure assignment patterns Supported
 Unpacked array concatenation Supported
 Net aliasing Not Supported
Operators and expressions

$error, $warning, $info Supported only within initial blocks,
and can only be used to evaluate
constant expressions; for example,
parameters.

 Aggregate expressions Supported
 Arithmetic expressions with

unsigned and signed types
Supported

 Assignment operators Supported
 Assignment within an expression Supported

Concatenation operators Supported
Constant expressions Supported
Increment and decrement operators Supported
Operations on logic (4-state) and bit
(2-state) types

Supported

Wildcard equality operators Supported
Concatenation of
stream_expressions

Supported

Operators with real operands Not Supported
Re-ordering of the generic stream Not Supported
Set membership operator Not Supported
Streaming concatenation as an
assignment target (unpack)

Supported

Streaming dynamically sized data Not Supported
Procedural programming statement
 Case statement violation reports and

multiple processes
Supported

Loop statements Supported

Table 8-1: SystemVerilog Constructs (Cont’d)
Construct Status
Synthesis 286
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=286

Chapter 8: SystemVerilog Support
Unique-if, unique0-if and
priority-if

Supported

Assert Statements Not Supported
If statement violation reports and
multiple processes

Not Supported

Jump statements Not Recommended
Pattern matching conditional
statements

Not Supported

Set membership case statement Not Supported
unique-case, unique0-case, and
priority-case

Not Supported

 Violation reports generated by
unique-if, unique0-if, and
priority-if constructs

Not Supported

Tasks
 Coverage control functions Not Supported

Static and Automatic task Supported
 Tasks memory usage and concurrent

activation
Not Supported

Functions
 Return values and void functions Supported
 Static and Automatic function Supported
 Constant function Supported
 Background process spawned by

function call
Not Supported

Virtual Functions Not Supported
Subroutine calls and argument passing
 Argument binding by name Supported
 Default argument value Supported
 Pass by reference Supported
 Pass by value Supported
 Optional argument list Not Supported
Compiler Directives

Supported
Modules and Hierarchy
 Default port values Supported
 External modules Supported
 Module instantiation syntax Supported
 Member selects Supported

Table 8-1: SystemVerilog Constructs (Cont’d)
Construct Status
Synthesis 287
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=287

Chapter 8: SystemVerilog Support
 Overriding module parameters Supported
 Top-level modules and $root Not Supported
 Binding auxiliary code to scopes or

instances
Not Supported

 Hierarchical names Supported
 Upwards name referencing Not Supported
Interfaces

Interface syntax Supported
 Modport expressions Supported
 Parameterized interfaces Supported
 Ports in interfaces Supported

Array of interface Supported
Clocking blocks and modports Not Supported
Dynamic Arrays Not Supported
Example of exporting tasks and
functions

Not Supported

Example of multiple task exports Not Supported
Interfaces and specify blocks Not Supported
Nested interface Not Supported
Virtual interfaces Not Supported

Packages
 Package declarations Supported
 Referencing data in packages Supported
 Using packages in module headers Supported
 Exporting imported names from

packages
Supported

 The std built-in package Not Supported
Generate constructs

Supported
Class

Instances Supported
Member and method access Supported
Constructors Supported
Static class member and methods Supported
Access using 'this' and 'super' Supported
Object assignment Supported
Inheritance Supported

Table 8-1: SystemVerilog Constructs (Cont’d)
Construct Status
Synthesis 288
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=288

Chapter 8: SystemVerilog Support
Data hiding and encapsulation Supported
Scope and resolution operator (::) Supported
Nested classes Supported
Objects inside structs Supported
Virtual Classes Not Supported
Abstract classes Not Supported
Assignment with base class object Not Supported
Object comparison with NULL Not Supported

Notes:
1. If used, tagged will be ignored and the tool will produce a warning message.

Table 8-1: SystemVerilog Constructs (Cont’d)
Construct Status
Synthesis 289
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=289

Chapter 9

Mixed Language Support

Introduction
Vivado® synthesis supports VHDL and Verilog mixed language projects except as otherwise
noted.

Mixing VHDL and Verilog
The VHDL and Verilog files that make up a project are specified in a unique HDL project file.
The rules for mixing VHDL and Verilog are, as follows:

° Mixing VHDL and Verilog is restricted to design unit (cell) instantiation.

° A Verilog module can be instantiated from VHDL code and a VHDL entity can be
instantiated from Verilog code. No other mixing between VHDL and Verilog is
supported. For example, you cannot embed Verilog source code directly in VHDL
source code.

° In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed
on the boundary to a Verilog module. In a Verilog design, a restricted subset of
Verilog types, parameters, and ports is allowed on the boundary to a VHDL entity or
configuration. See VHDL and Verilog Boundary Rules.

° Vivado synthesis binds VHDL design units to a Verilog module during HDL
elaboration.
Synthesis 290
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=290

Chapter 9: Mixed Language Support
Instantiation
For instantiation, the following rules apply:

° Component instantiation based on default binding is used for binding Verilog
modules to a VHDL design unit.

° For a Verilog module instantiation in VHDL, Vivado synthesis does not support:
- Configuration specification
- Direct instantiation
- Component configurations

Instantiating VHDL in Verilog
To instantiate a VHDL design unit in a Verilog design, do the following:

1. Declare a module name with the same as name as the VHDL entity that you want to
instantiate (optionally followed by an architecture name).

2. Perform a normal Verilog instantiation.

Instantiating Verilog in VHDL
To instantiate a Verilog module in a VHDL design, do the following:

1. Declare a VHDL component with the same name as the Verilog module to be
instantiated. VHDL direct entity instantiation is not supported when instantiating a
Verilog module.

2. Observe case sensitivity.
3. Instantiate the Verilog component as if you were instantiating a VHDL component.

° Binding a component to a specific design unit from a specific library by using a
VHDL configuration declaration is not supported. Only the default Verilog module
binding is supported.

° The only Verilog construct that can be instantiated in a VHDL design is a Verilog
module. No other Verilog constructs are visible to VHDL code.

° During elaboration, Vivado synthesis treats all components subject to default
binding as design units with the same name as the corresponding component
name.
Synthesis 291
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=291

Chapter 9: Mixed Language Support
° During binding, Vivado synthesis treats a component name as a VHDL design unit
name and searches for it in the logical library work.
- If Vivado synthesis finds a VHDL design unit, Vivado synthesis binds it.
- If Vivado synthesis does not find a VHDL design unit, it treats the component

name as a Verilog module name and searches for it using a case sensitive search.
Then Vivado synthesis selects and binds the first Verilog module matching the
name.

° Because libraries are unified, a Verilog cell with the same name as a VHDL design
unit cannot exist in the same logical library.

° A newly-compiled cell or unit overrides a previously-compiled cell or unit.

Instantiation Limitations

VHDL in Verilog

Vivado synthesis has the following limitations when instantiating a VHDL design unit in a
Verilog module:

• The only VHDL construct that can be instantiated in a Verilog design is a VHDL entity.
No other VHDL constructs are visible to Verilog code. Vivado synthesis uses the
entity-architecture pair as the Verilog-VHDL boundary.

• Use explicit port association. Specify formal and effective port names in the port map.
• All parameters are passed at instantiation, even if they are unchanged.
• The override is named and not ordered. The parameter override occurs through

instantiation, not through defpas.

Acceptable Example

ff #(.init(2'b01)) u1 (.sel(sel), .din(din), .dout(dout));

Unacceptable Example

ff u1 (.sel(sel), .din(din), .dout(dout));
defpa u1.init = 2'b01;
Synthesis 292
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=292

Chapter 9: Mixed Language Support
Verilog in VHDL

Vivado synthesis has the following limitations when instantiating a Verilog module in a
VHDL design unit:

• Use explicit port association. Specify formal and effective port names in the port map.
• All parameters are passed at instantiation, even if they are unchanged.
• The parameter override is named and not ordered. The parameter override occurs

through instantiation, and not through defpas.
• Only component instantiation is supported when instantiating a Verilog module in

VHDL. Direct entity instantiation is not supported.

VHDL and Verilog Libraries
For libraries with mixed VHDL and Verilog, libraries are handled as follows:

• VHDL and Verilog libraries are logically unified.
• The default work directory for compilation is available to both VHDL and Verilog.
• Mixed language projects accept a search order for searching unified logical libraries in

design units (cells). Vivado synthesis follows this search order during elaboration to
select and bind a VHDL entity or a Verilog module to the mixed language project.

VHDL and Verilog Boundary Rules
VHDL and Verilog boundary rules are, as follows:

° The boundary between VHDL and Verilog is enforced at the design unit level.

° A VHDL entity or architecture can instantiate a Verilog module. See Instantiating
VHDL in Verilog in the following section.

° A Verilog module can instantiate a VHDL entity. See Instantiating Verilog in VHDL.
Synthesis 293
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=293

Chapter 9: Mixed Language Support
Binding
Vivado synthesis performs binding during elaboration. During binding, the following
actions occur:

1. Vivado synthesis searches for a Verilog module with the same name as the instantiated
module with a user-specified list of unified logical libraries and with a user-specified
order.

2. Vivado synthesis ignores any architecture name specified in the module instantiation.
3. If Vivado synthesis finds the Verilog module, synthesis binds the name.
4. If Vivado synthesis does not find the Verilog module, then it treats the Verilog module

as a VHDL entity, and searches for the first VHDL entity matching the name using a case
sensitive search for a VHDL entity in the user-specified list of unified logical libraries or
the user-specified order. This assumes that a VHDL design unit is stored with an
extended identifier.

Generics Support
Vivado synthesis supports the following VHDL generic types and their Verilog equivalents
for mixed language designs: integer, real, string, boolean.

Port Mapping
Vivado synthesis supports port mapping for VHDL instantiated in Verilog and Verilog
instantiated in VHDL.

Port Mapping for VHDL Instantiated in Verilog
When a VHDL entity is instantiated in a Verilog module, formal ports can have the following
characteristics:

• Allowed directions: in, out, inout
• Unsupported directives: buffer, linkage
• Allowed data types: bit, bit_vector, std_logic, std_ulogic,

std_logic_vector, std_ulogic_vector
Synthesis 294
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=294

Chapter 9: Mixed Language Support
Port Mapping for Verilog Instantiated in VHDL
When a Verilog module is instantiated in a VHDL entity or architecture, formal ports can
have the following characteristics:

• Allowed directions are: input, output, and inout.
• Allowed data types are: wire and reg
• Vivado synthesis does not support:

° Connection to bidirectional pass options in Verilog.

° Unnamed Verilog ports for mixed language boundaries.

Use an equivalent component declaration to connect to a case sensitive port in a Verilog
module. Vivado synthesis assumes Verilog ports are in all lowercase.
Synthesis 295
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=295

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
The Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Synthesis 296
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=296

Appendix A: Additional Resources and Legal Notices
References
Vivado Documentation
1. UltraScale Architecture and Product Overview (DS890)
2. 7 Series DSP48E1 Slice User Guide (UG479)
3. UltraScale Architecture Memory Resources User Guide (UG573)
4. Vivado Design Suite Tcl Command Reference Guide (UG835)
5. Vivado Design Suite User Guide: Design Flows Overview (UG892)
6. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
7. Vivado Design Suite User Guide: Using the Tcl Scripting Capabilities (UG894)
8. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
9. Vivado Design Suite User Guide: Designing with IP (UG896)
10. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)
11. Vivado Design Suite User Guide: Logic Simulation (UG900)
12. Vivado Design Suite User Guide: Using Constraints (UG903)
13. Vivado Design Suite User Guide: Implementation (UG904)
14. Vivado Design Suite User Guide: Hierarchical Design (UG905)
15. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
16. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
17. Vivado Design Suite User Guide: Programming and Debugging (UG908)
18. ISE to Vivado Design Suite Migration Guide (UG911)
19. Vivado Design Suite Properties Reference Guide (UG912)
20. Vivado Design Suite Tutorial: Using Constraints (UG945)
21. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
22. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
23. Vivado Design Suite Tutorial: Creating and Packaging Custom IP (UG1119)
24. Vivado Design Suite Documentation

Synthesis Coding Examples
25. Coding Examples
Synthesis 297
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug945-vivado-using-constraints-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug1119-vivado-creating-packaging-ip-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds890-ultrascale-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=96b4bab0-3d2c-493f-a80a-68d5b380d889;d=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=297

Appendix A: Additional Resources and Legal Notices
Training Resources
26. Vivado Design Suite QuickTake Video: Synthesis Options
27. Vivado Design Suite QuickTake Video: Creating and Managing Runs
28. Vivado Design Suite QuickTake Video: Advanced Synthesis using Vivado
29. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third-party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license. All other trademarks are the property of their respective owners.
Synthesis 298
UG901 (v2021.1) July 14, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/synthesis-options.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/advanced-synthesis-using-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-and-managing-runs.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2021.1&docPage=298

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Vivado Synthesis
	Introduction
	Synthesis Methodology
	Using Synthesis
	Using Synthesis Settings
	Tcl Commands to Get Property

	Creating Run Strategies
	Saving a User Defined Strategy

	Setting Synthesis Inputs
	Controlling File Compilation Order
	Defining Global Include Files

	Running Synthesis
	Using the Design Runs Window
	Setting the Active Run
	Launching a Synthesis Run

	Setting a Bottom-Up Out-of-Context Flow
	Manually Setting a Bottom-Up Flow and Importing Netlists
	Creating a Lower-Level Netlist
	Instantiating the Lower-Level Netlist in a Design
	Putting Together the Manual Bottom-Up Components

	Incremental Synthesis
	Setting Up Incremental Synthesis in Project Mode
	Running Incremental Synthesis in Non-Project Mode
	Running Design and Interpreting Log File
	Re-Synthesizing the Full Design

	Using Third-Party Synthesis Tools with Vivado IP
	Moving Processes to the Background
	Monitoring the Synthesis Run
	Following Synthesis
	Analyzing Synthesis Results
	Using the Synthesized Design Environment
	Exploring the Logic
	Exploring the Logic Hierarchy
	Exploring the Logical Schematic

	Running Timing Analysis
	Running Synthesis with Tcl
	Multi-Threading in RTL Synthesis
	Tcl Script Example
	Setting Constraints

	Vivado Preconfigured Strategies

	Ch. 2: Synthesis Attributes
	Introduction
	Supported Attributes
	ASYNC_REG
	ASYNC_REG Verilog Example
	ASYNC_REG VHDL Examples

	BLACK_BOX
	BLACK_BOX Verilog Example
	BLACK_BOX VHDL Example

	CASCADE_HEIGHT
	CASCADE_HEIGHT Verilog example
	CASCADE_HEIGHT VHDL example

	CLOCK_BUFFER_TYPE
	CLOCK_BUFFER_TYPE Verilog Example
	CLOCK_BUFFER_TYPE VHDL Example
	CLOCK_BUFFER_TYPE XDC Example

	DIRECT_ENABLE
	DIRECT_ENABLE Verilog Example
	DIRECT_ENABLE VHDL Example
	DIRECT_ENABLE XDC Example

	DIRECT_RESET
	DIRECT_RESET Verilog Example
	DIRECT_RESET VHDL Example
	DIRECT_RESET XDC Example

	DONT_TOUCH
	DONT_TOUCH Verilog Examples
	Verilog Wire Example
	Verilog Module Example
	Verilog Instance Example

	DONT_TOUCH VHDL Examples
	VHDL Signal Example
	VHDL Entity Example
	VHDL Component Example
	VHDL Example on Architecture

	DSP_FOLDING
	VHDL Example
	Verilog Example

	DSP_FOLDING_FASTCLOCK
	VHDL Example
	Verilog Example

	EXTRACT_ENABLE
	EXTRACT_ENABLE Example (Verilog)
	EXTRACT_ENABLE Example (VHDL)
	EXTRACT_ENABLE Example (XDC)

	EXTRACT_RESET
	EXTRACT_RESET Example (Verilog)
	EXTRACT_RESET Example (XDC)
	EXTRACT_RESET Example (VHDL)

	FSM_ENCODING
	FSM_ENCODING Example (Verilog)
	FSM_ENCODING Example (VHDL)

	FSM_SAFE_STATE
	FSM_SAFE_STATE Example (Verilog)
	FSM_SAFE_STATE Example (VHDL)

	FULL_CASE (Verilog Only)
	FULL_CASE Example (Verilog)

	GATED_CLOCK
	GATED_CLOCK Example (Verilog)
	GATED_CLOCK Example (VHDL)

	IOB
	IOB Example (Verilog)
	IOB Example (VHDL)
	IOB Example (XDC)

	IO_BUFFER_TYPE
	IO_BUFFER_TYPE Example (Verilog)
	IO_BUFFER_TYPE Example (VHDL)

	KEEP
	KEEP Example (Verilog)
	KEEP Example (VHDL)

	KEEP_HIERARCHY
	KEEP_HIERARCHY Example (Verilog)
	KEEP_HIERARCHY Example (VHDL)
	KEEP_HIERARCHY Example (XDC)

	MARK_DEBUG
	Syntax
	Syntax (Verilog)
	Syntax Example (Verilog)
	Syntax (VHDL)
	Syntax Example (VHDL)
	Syntax (XDC)
	Syntax Example (XDC)

	MAX_FANOUT
	MAX_FANOUT Example (Verilog)
	MAX_FANOUT Example (VHDL)

	PARALLEL_CASE (Verilog Only)
	RAM_DECOMP
	RAM_DECOMP Example (Verilog)
	RAM_DECOMP Example (VHDL)
	RAM_DECOMP Example (XDC)

	RAM_STYLE
	RAM_STYLE Example (Verilog)
	RAM_STYLE Example (VHDL)

	RETIMING_BACKWARD
	RETIMING_BACKWARD Example (Verilog)
	RETIMING_BACKWARD Example (VHDL)
	RETIMING_BACKWARD Example (XDC)

	RETIMING_FORWARD
	RETIMING_FORWARD Example (Verilog)
	RETIMING_FORWARD Example (VHDL)
	RETIMING_FORWARD Example (XDC)

	ROM_STYLE
	ROM_STYLE Example (Verilog)
	ROM_STYLE Example (VHDL)

	RW_ADDR_COLLISION
	VHDL Example:
	Verilog Example:

	SHREG_EXTRACT
	SHREG_EXTRACT Example (Verilog)
	SHREG_EXTRACT Example (VHDL)

	SRL_STYLE
	SRL_STYLE Examples (Verilog)
	SRL_STYLE Examples (VHDL)
	SRL_STYLE Examples (XDC)

	TRANSLATE_OFF/TRANSLATE_ON
	TRANSLATE_OFF/TRANSLATE_ON Example (Verilog)
	TRANSLATE_OFF/TRANSLATE_ON Example (VHDL)

	USE_DSP
	USE_DSP Example (Verilog)
	USE_DSP Example (VHDL)

	Custom Attribute Support in Vivado
	Example with Custom Attribute on Hierarchy (Verilog)
	Example with Custom Attribute on Hierarchy (VHDL)
	Example with Custom Attribute on a Signal (Verilog)
	Example with Custom Attribute on a Signal (VHDL)

	Using Synthesis Attributes in XDC files
	Synthesis Attribute Propagation Rules

	Ch. 3: Using Block Synthesis Strategies
	Overview
	Setting a Block-Level Flow
	Block-Level Flow Options

	Ch. 4: HDL Coding Techniques
	Introduction
	Advantages of VHDL
	Advantages of Verilog
	Advantages of SystemVerilog
	Flip-Flops, Registers, and Latches
	Flip-Flops and Registers Control Signals
	Coding Guidelines
	Flip-Flops and Registers Inference
	Flip-Flops and Registers Initialization
	Flip-Flops and Registers Reporting
	Flip-Flops and Registers Reporting Example
	Flip-Flops and Registers Coding Examples
	Register with Rising-Edge Coding Example (Verilog)
	Flip-Flop Registers with Rising-Edge Clock Coding Example (VHDL)

	Latches
	Latches Reporting Example
	Latch With Positive Gate and Asynchronous Reset Coding Example (Verilog)
	Latch With Positive Gate and Asynchronous Reset Coding Example (VHDL)

	Tristates
	Tristate Implementation
	Tristate Reporting Example
	Tristate Description Using Concurrent Assignment Coding Example (Verilog)
	Tristate Description Using Combinatorial Process Implemented with OBUFT Coding Example (VHDL)
	Tristate Description Using Combinatorial Always Block Coding Example (Verilog)

	Shift Registers
	Static Shift Register Elements
	Shift Registers SRL-Based Implementation
	Shift Registers Coding Examples
	32-Bit Shift Register Coding Example One (VHDL)
	32-Bit Shift Register Coding Example Two (VHDL)
	8-Bit Shift Register Coding Example One (Verilog)
	32-Bit Shift Register Coding Example Two (Verilog)
	SRL Based Shift Registers Reporting

	Dynamic Shift Registers
	Dynamic Shift Registers Coding Examples
	32-Bit Dynamic Shift Registers Coding Example (Verilog)
	32-Bit Dynamic Shift Registers Coding Example (VHDL)

	Multipliers
	Multipliers Implementation
	DSP Block Implementation

	Multipliers Coding Examples
	Unsigned 16x24-Bit Multiplier Coding Example (Verilog)
	Unsigned 16x16-Bit Multiplier Coding Example (VHDL)
	Multiply-Add and Multiply-Accumulate
	Multiply-Add and Multiply-Accumulate Implementation
	Macro Implementation on DSP Block Resources

	Complex Multiplier Examples
	Complex Multiplier Example (Verilog)
	Complex Multiplier Examples (VHDL)

	Pre-Adders in the DSP Block
	Pre-Adder Dynamically Configured Followed by Multiplier and Post-Adder (Verilog)
	Pre-Adder Dynamically Configured Followed by Multiplier and Post-Adder (VHDL)

	Using the Squarer in the UltraScale DSP Block
	Square of a Difference (Verilog)
	Square of a Difference (VHDL)

	FIR Filters
	8-Tap Even Symmetric Systolic FIR (Verilog)
	8-Tap Even Symmetric Systolic FIR (VHDL)

	Convergent Rounding (LSB Correction Technique)
	Rounding to Even (Verilog)
	Rounding to Even (VHDL)
	Rounding to Odd (Verilog)
	Rounding to Odd (VHDL)

	RAM HDL Coding Techniques
	Choosing Between Distributed RAM and Dedicated Block RAM
	Memory Inference Capabilities
	UltraRAM Coding Templates

	Inferring UltraRAM in Vivado Synthesis
	Overview of the UltraRAM Primitive
	Description of the UltraRAM Primitive
	Differences between UltraRAM and Block RAM
	Using UltraRAM Inference
	Attributes for Controlling UltraRAM
	RAM_STYLE
	RAM_STYLE Example (Verilog)
	RAM_STYLE Example (VHDL)

	CASCADE_HEIGHT
	CASCADE_HEIGHT Example (Verilog)
	CASCADE_HEIGHT Example (VHDL)

	Inference Capabilities
	Pipelining the RAM
	Creating Pipeline Example 1: 8K x 72
	Creating Pipeline Example 2 : 8K x 80
	Creating Pipeline Example 3: 16K x 70 CASCADE_HEIGHT Set to 3

	RAM HDL Coding Guidelines
	Block RAM Read/Write Synchronization Modes
	Distributed RAM Examples
	Dual-Port RAM with Asynchronous Read Coding Example (Verilog)
	Single-Port RAM with Asynchronous Read Coding Example (VHDL)

	Single-Port Block RAMs
	Single-Port Block RAM with Resettable Data Output (Verilog)
	Single Port Block RAM with Resettable Data Output (VHDL)
	Single-Port Block RAM Write-First Mode (Verilog)
	Single-Port Block RAM Write-First Mode (VHDL)
	Single-Port RAM with Read First (VHDL)
	Single-Port Block RAM No-Change Mode (Verilog)

	Simple Dual-Port Block RAM Examples
	Simple Dual-Port Block RAM with Single Clock (Verilog)
	Simple Dual-Port Block RAM with Single Clock (VHDL)
	Simple Dual-Port Block RAM with Dual Clocks (Verilog)
	Simple Dual-Port Block RAM with Dual Clocks (VHDL)

	True Dual-Port Block RAM Examples
	Dual-Port Block RAM with Two Write Ports in Read First Mode Example (Verilog)
	Dual-Port Block RAM with Two Write Ports in Read-First Mode (VHDL)
	Block RAM with Optional Output Registers (Verilog)
	Block RAM with Optional Output Registers (VHDL)

	Byte Write Enable (Block RAM)
	Byte Write Enable—True Dual Port with Byte-Wide Write Enable (Verilog)
	Byte Write Enable—True Dual Port READ_FIRST Mode (VHDL)
	Byte Write Enable—WRITE_FIRST Mode (VHDL)
	Byte-Wide Write Enable—NO_CHANGE Mode (Verilog)
	Byte-Wide Write Enable—NO_CHANGE Mode (VHDL)

	Asymmetric RAMs
	Simple Dual-Port Asymmetric RAM When Read is Wider than Write (VHDL)
	Dual-Port Asymmetric RAM When Read is Wider than Write (Verilog)
	Simple Dual-Port Asymmetric RAM When Write is Wider than Read (Verilog)
	Simple Dual Port Asymmetric RAM When Write Wider than Read (VHDL)
	True Dual Port Asymmetric RAM Read First (Verilog)
	True Dual Port Asymmetric RAM Read First (VHDL)
	True Dual Port Asymmetric RAM Write First (Verilog)
	True Dual Port Asymmetric RAM Write First (VHDL)

	Initializing RAM Contents
	Specifying RAM Initial Contents in the HDL Source Code
	VHDL Coding Examples
	Verilog Coding Example

	Specifying RAM Initial Contents in an External Data File
	Code Example (Verilog)
	Code Example (VHDL)
	Initializing Block RAM (Verilog)
	Initializing Block RAM (VHDL)
	Initializing Block RAM From an External Data File (Verilog)
	Initializing Block RAM From an External Data File (VHDL)

	3D RAM Inference
	RAMs Using 3D Arrays
	3D RAM Inference Single Port (Verilog)
	3D RAM Inference Single Port (VHDL)
	3D RAM Inference Simple Dual Port (Verilog)
	3D RAM Inference - Simple Dual Port (VHDL)
	3D RAM Inference True Dual Port (Verilog)

	RAM Inference Using Structures and Records
	RAM Inference Single Port Structure (Verilog)
	RAM Inference Single Port Structure (VHDL)
	RAM Inference - Simple Dual Port Structure (SystemVerilog)
	RAM Inference - Simple Dual Port Record (VHDL)
	RAM Inference True Dual Port Structure (SystemVerilog)
	RAM Inference True Dual Port Record (VHDL)

	Black Boxes
	Black Box Example (Verilog)
	Black Box Example (VHDL)

	FSM Components
	Vivado Synthesis Features
	FSM Description
	FSM Diagrams
	FSM Registers
	Auto State Encoding
	One-Hot State Encoding
	Gray State Encoding
	Johnson State Encoding
	Sequential State Encoding
	FSM Example (Verilog)
	FSM Example with Single Sequential Block (VHDL)

	FSM Reporting

	ROM HDL Coding Techniques
	ROM Using Block RAM Resources (Verilog)
	ROM Inference on an Array (VHDL)

	Ch. 5: VHDL Support
	Introduction
	Supported and Unsupported VHDL Data Types
	Unsupported Data Types
	VHDL Data Types
	VHDL Predefined Enumerated Types
	std_logic Allowed Values

	Supported Overloaded Enumerated Types
	VHDL User-Defined Enumerated Types
	User-Defined Enumerated Types Coding Example (VHDL)

	Supported VHDL Types
	VHDL Integer Types
	VHDL Multi-Dimensional Array Types
	Fully Constrained Array Type Coding Example
	Array Declared as a Matrix Coding Example
	Multi-Dimensional Array Signals and Variables Coding Examples
	VHDL Record Types Code Example

	VHDL Objects
	Signals
	Variables
	Constants
	Operators
	Shift Operator Examples

	VHDL Entity and Architecture Descriptions
	VHDL Circuit Descriptions
	VHDL Entity Declarations
	Constrained and Unconstrained Ports
	Buffer Port Mode
	NOT RECOMMENDED Coding Example WITH Buffer Port Mode
	Dropping Buffer Port Mode
	RECOMMENDED Coding Example WITHOUT Buffer Port Mode

	VHDL Architecture Declarations
	VHDL Architecture Declaration Coding Example

	VHDL Component Instantiation
	Elements of Component Instantiation Statement
	Component Instantiation (VHDL)

	Recursive Component Instantiation
	Recursive Component Instantiation Example (VHDL)

	VHDL Component Configuration
	VHDL GENERICS
	Declaring Generics
	GENERIC Parameters Example

	VHDL Combinatorial Circuits
	VHDL Concurrent Signal Assignments
	Simple Signal Assignment Example
	Concurrent Selection Assignment Example (VHDL)

	Generate Statements
	Using for-generate Statements
	Example of for-generate Statement (VHDL)

	Using if-generate Statements
	Example of for-generate Nested in an if-generate Statement (VHDL)

	Combinatorial Processes
	Memory Elements
	Sensitivity List
	Missing Signals
	Variable and Signal Assignments
	Signal Assignment in a Process Example
	Variable and Signal Assignment in a Process Example (VHDL)
	Using if-else Statements
	Example of if-else Statement (VHDL)

	Using case Statements
	Example of case Statement (VHDL)

	Using for-loop Statements
	Example of for-loop Statement (VHDL)

	VHDL Sequential Logic
	Sequential Process With a Sensitivity List Syntax
	Asynchronous Control Logic Modelization
	Clock Event Statements
	Missing Signals
	VHDL Sequential Processes Without a Sensitivity List
	Sequential Process Using a Wait Statement Coding Example (VHDL)
	Describing a Clock Enable in the wait Statement Example (VHDL)
	Describing a Clock Enable After the Wait Statement Example (VHDL)
	Describing Synchronous Control Logic

	VHDL Initial Values and Operational Set/Reset
	Initializing Registers Example One (VHDL)
	Initializing Registers Example Two (VHDL)

	VHDL Functions and Procedures
	Function Declared Within a Package Example (VHDL)
	Procedure Declared Within a Package Example (VHDL)
	Recursive Functions Example (VHDL)
	VHDL Assert Statements

	VHDL Predefined Packages
	VHDL Predefined Standard Packages
	VHDL IEEE Packages
	VHDL Legacy Packages
	VHDL Predefined IEEE Real Type and IEEE Math_Real Packages
	VHDL Real Number Constants
	VHDL Real Number Functions

	Defining Your Own VHDL Packages
	Package Declaration Syntax
	Accessing VHDL Packages

	VHDL Constructs Support Status
	VHDL RESERVED Words

	Ch. 6: VHDL-2008 Language Support
	Introduction
	Setting up Vivado to use VHDL-2008
	Supported VHDL-2008 Features
	Operators
	Matching Relational Operators

	Maximum and Minimum Operators
	Shift Operators (rol, ror, sll, srl, sla and sra)
	Unary Logical Reduction Operators
	Mixing Array and Scalar Logical Operators
	Statements
	If-else- If and Case Generate

	Sequential Assignments
	Using case? Statements
	Using select? Statements
	Using Slices in Aggregates
	Types
	Unconstrained Element Types

	Using boolean_vector and integer_vector Array Types
	Miscellaneous
	Reading Output Ports
	Expressions in Port Maps
	Using the process (all) Statement
	Referencing Generics in Generic Lists
	Generics in Packages
	Generic Types in Entities
	Functions in Generics
	Relaxed Return Rules for Function Return Values
	Extensions to Globally Static and Locally Static Expressions
	Static Ranges and Integer Expressions in Range Bounds
	Block Comments

	Ch. 7: Verilog Language Support
	Introduction
	Verilog Design
	Verilog Functionality
	Verilog-2001 Support
	Verilog-2001 Variable Part Selects
	Variable Part Selects Verilog Coding Example

	Structural Verilog
	Built-In Logic Gates
	2-Input XOR Function Example
	Half-Adder Example

	Instantiating Pre-Defined Primitives
	Instantiating an FDC and a BUFG Primitive Example
	Verilog Parameters
	Parameters Example (Verilog)
	Parameter and Generate-For Example (Verilog)

	Verilog Parameter and Attribute Conflicts
	Verilog Usage Restrictions
	Case Sensitivity

	Blocking and Non-Blocking Assignments
	Unacceptable Example One
	Unacceptable Example Two

	Integer Handling
	Integer Handling in Verilog Case Statements
	Integer Handling in Verilog Case Statements Example
	Integer Handling in Concatenations

	Verilog-2001 Attributes and Meta Comments
	Verilog-2001 Attributes

	Verilog Meta Comments
	Verilog Meta Comment Support

	Verilog Meta Comment Syntax
	Verilog Meta Comment Syntax Examples

	Verilog Constructs
	Verilog System Tasks and Functions
	Using Conversion Functions
	Loading Memory Contents With File I/O Tasks
	Supported Escape Sequences

	Verilog Primitives
	Gate-Level Primitive Syntax
	Gate-Level Primitive Example
	Unsupported Verilog Gate Level Primitives

	Verilog Reserved Keywords
	Behavioral Verilog
	Variables in Behavioral Verilog
	Variable Declarations Example

	Initial Values
	Assigning an Initial Value to a Register
	Initial Values Example One
	Initial Values Example Two

	Arrays of Reg and Wire
	Arrays Example One
	Arrays Example Two

	Multi-Dimensional Arrays
	Multi-Dimensional Array Example One
	Multi-Dimensional Array Example Two

	Data Types
	Supported Data Types
	Net and Registers
	Behavioral Data Types Example

	Legal Statements
	Expressions
	Logical Operators
	Supported Operators
	Supported Expressions
	Evaluating Expressions
	Evaluated Expressions Based On Most Frequently Used Operators

	Blocks

	Modules
	Module Declaration
	Circuit I/O Ports
	Behavioral Verilog Module Declaration Example One
	Behavioral Verilog Module Declaration Example Two

	Module Instantiation
	Behavioral Verilog Module Instantiation Example

	Continuous Assignments
	Explicit Continuous Assignments
	Implicit Continuous Assignments

	Procedural Assignments
	Combinatorial Always Blocks
	Delay Time Control Statement
	Event Control Time Control Statement
	Using if-else Statements
	Example of if-else Statement

	Case Statements
	Multiplexer Case Statement Example (Verilog)
	Avoiding Priority Processing

	For and Repeat Statements
	Using for Statements
	Repeat Statements
	Using while Loops
	Example of while Loop

	Using Sequential always Blocks
	Sequential always Block Examples

	Using assign and deassign Statements
	Assignment Extension Past 32 Bits

	Tasks and Functions
	Tasks and Functions Examples
	Using Recursive Tasks and Functions
	Example of Recursive Tasks and Functions

	Using Constant Functions and Expressions
	Example of Constant Functions
	Example of Constant Expressions

	Using Blocking and Non-Blocking Procedural Assignments
	Blocking Procedural Assignment Syntax Example One
	Blocking Procedural Assignment Syntax Example Two (Alternate)
	Non-Blocking Procedural Assignment Syntax Example One
	Non-Blocking Procedural Assignment Example Two

	Verilog Macros
	Macro Example One
	Macro Example Two

	Include Files
	Behavioral Verilog Comments
	One-Line Comments
	Multiple-Line Block Comments

	Generate Statements
	Structures Created Using Generate Statements
	Supported Generate Statements
	Generate Loop Statements
	Generate Loop Statement 8-Bit Adder Example
	Generate Conditional Statements
	Generate Conditional Statement Coding Example
	Generate Case Statements
	Behavioral Verilog Generate Case Statements Coding Example

	Ch. 8: SystemVerilog Support
	Introduction
	Targeting SystemVerilog for a Specific File
	Tcl Command to Set Properties

	Data Types
	Declaration
	Integer Data Types
	Real Numbers
	Void Data Type
	User-Defined Types
	Enum Types
	Constants
	Type Operator
	Casting
	Aggregate Data Types
	Structures
	Unions
	Packed and Unpacked Arrays

	Processes
	Always Procedures
	Block Statements
	Procedural Timing Controls
	Operators
	Signed Expressions

	Procedural Programming Assignments
	Conditional if-else Statement
	Case Statement
	Loop Statements

	Tasks and Functions
	Tasks
	Functions (Automatic and Static)

	Modules and Hierarchy
	Connecting Modules
	Connecting Modules with Wildcard Ports

	Interfaces
	Modports
	Miscellaneous Interface Features

	Packages
	SystemVerilog Constructs

	Ch. 9: Mixed Language Support
	Introduction
	Mixing VHDL and Verilog
	Instantiation
	Instantiating VHDL in Verilog
	Instantiating Verilog in VHDL
	Instantiation Limitations
	VHDL in Verilog
	Acceptable Example
	Unacceptable Example

	Verilog in VHDL

	VHDL and Verilog Libraries
	VHDL and Verilog Boundary Rules
	Binding
	Generics Support
	Port Mapping
	Port Mapping for VHDL Instantiated in Verilog
	Port Mapping for Verilog Instantiated in VHDL

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Vivado Documentation
	Synthesis Coding Examples
	Training Resources

	Please Read: Important Legal Notices

