
Vivado Design Suite User
Guide: Logic Simulation

UG900 (v2021.1) June 16, 2021

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG900

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/16/2021 Version 2021.1

Supported Simulators Updated Supported Simulators table.

Using Versal CIPS VIP Added new section.

Chapter 3: Simulating with Third-Party Simulators
Updated Supported Third-Party Simulators table.

Updated Environment Variable Setting for Third-Party
Simulators table.

xelab Updated xelab command syntax options.

xelab, xvhdl, and xvlog xsim Command Options Updated.

Functional Coverage Report Generator

Updated xcrg command options and description.

Updated xcrg example syntax.

Updated export_simulation section.

Xcelium Simulator Compilation Options Updated xcelium compilation options.

Vivado Simulator Elaboration Options Updated Vivado simulator elaboration options.

xsc Compiler Updated XSC compiler switches.

Revision History

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..7
Navigating Content by Design Process.. 7
Logic Simulation Overview...7
Supported Simulators...8
Simulation Flow .. 8
Language and Encryption Support .. 11

Chapter 2: Preparing for Simulation..12
Using Test Benches and Stimulus Files.. 12
Pointing to the Simulator Install Location... 13
Compiling Simulation Libraries... 14
Using Xilinx Simulation Libraries...19
Using Simulation Settings.. 28
Adding or Creating Simulation Source Files.. 33
Generating a Netlist..35

Chapter 3: Simulating with Third-Party Simulators................................. 38
Running Simulation Using Third Party Simulators with Vivado IDE................................... 40
Dumping SAIF for Power Analysis...43
Dumping VCD.. 44
Simulating IP..45
Using a Custom DO File During an Integrated Simulation Run.. 46
Running Third-Party Simulators in Batch Mode..48

Chapter 4: Simulating with Vivado Simulator.. 49
Running the Vivado Simulator...49
Running Functional and Timing Simulation...66
Saving Simulation Results.. 69
Distinguishing Between Multiple Simulation Runs...69
Closing a Simulation... 70
Adding a Simulation Start-up Script File...70

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=3

Viewing Simulation Messages... 71
Using the launch_simulation Command.. 73
Re-running the Simulation After Design Changes (relaunch)...74
Using the Saved Simulator User Interface Settings..75

Chapter 5: Analyzing Simulation Waveforms with Vivado
Simulator.. 77
Using Wave Configurations and Windows...77
Opening a Previously Saved Simulation Run...78
Understanding HDL Objects in Waveform Configurations ...79
Customizing the Waveform... 82
Controlling the Waveform Display ... 88
Organizing Waveforms...92
Analyzing Waveforms... 94
Analyzing AXI Interface Transactions... 99

Chapter 6: Debugging a Design with Vivado Simulator....................... 114
Debugging at the Source Level... 114
Forcing Objects to Specific Values...118
Power Analysis Using Vivado Simulator... 126
Using the report_drivers Tcl Command..128
Using the Value Change Dump Feature... 128
Using the log_wave Tcl Command.. 129
Cross Probing Signals in the Object, Wave, and Text Editor Windows............................. 131

Chapter 7: Simulating in Batch or Scripted Mode in Vivado
Simulator...137
Exporting Simulation Files and Scripts... 137
Running the Vivado Simulator in Batch Mode...143
Elaborating and Generating a Design Snapshot, xelab..145
Simulating the Design Snapshot, xsim...156
Example of Running Vivado Simulator in Standalone Mode... 160
Project File (.prj) Syntax..161
Predefined Macros.. 162
Library Mapping File (xsim.ini).. 162
Running Simulation Modes..163
Using Tcl Commands and Scripts ...166
export_simulation ...167

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=4

export_ip_user_files...170

Appendix A: Compilation, Elaboration, Simulation, Netlist, and
Advanced Options..173
Compilation Options...173
Elaboration Options.. 176
Simulation Options... 177
Netlist Options...180
Advanced Simulation Options... 181

Appendix B: SystemVerilog Support in Vivado Simulator................... 182
Targeting SystemVerilog for a Specific File..182
Testbench Feature...189

Appendix C: Universal Verification Methodology Support................. 198

Appendix D: VHDL 2008 Support in Vivado Simulator............................ 199
Introduction .. 199
Compiling and Simulating..199
Supported Features.. 201

Appendix E: Direct Programming Interface (DPI) in Vivado
Simulator...204
Introduction... 204
Compiling C Code..204
xsc Compiler.. 205
Binding Compiled C Code to SystemVerilog Using xelab.. 207
Data Types Allowed on the Boundary of C and SystemVerilog... 207
Mapping for User-Defined Types.. 208
Support for svdpi.h Functions... 210
DPI Examples Shipped with the Vivado Design Suite...218

Appendix F: SystemC Support in Vivado IDE... 219
Selecting Simulation Model Type.. 219
Protected Models.. 223
Unprotected Models... 224
SystemC Simulation Using Vivado.. 225
Running SystemC Simulation Using Vivado Simulator...227

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=5

Appendix G: Handling Special Cases.. 228
Using Global Reset and 3-State... 228
Delta Cycles and Race Conditions... 230
Using the ASYNC_REG Constraint..231
Simulating Configuration Interfaces.. 233
Disabling Block RAM Collision Checks for Simulation.. 236
Dumping the Switching Activity Interchange Format File for Power Analysis................ 237
Skipping Compilation or Simulation... 237

Appendix H: Value Rules in Vivado Simulator Tcl Commands...........239
String Value Interpretation.. 239
Vivado Design Suite Simulation Logic.. 239

Appendix I: Vivado Simulator Mixed Language Support and
Language Exceptions... 241
Using Mixed Language Simulation... 241
VHDL Language Support Exceptions.. 247
Verilog Language Support Exceptions .. 248

Appendix J: Vivado Simulator Quick Reference Guide...........................251

Appendix K: Using Xilinx Simulator Interface..254
Preparing the XSI Functions for Dynamic Linking.. 254
Writing the Test Bench Code... 256
Compiling Your C/C++ Program.. 257
Preparing the Design Shared Library... 257
XSI Function Reference...258
Vivado Simulator VHDL Data Format..263
Vivado Simulator Verilog Data Format... 266

Appendix L: Additional Resources and Legal Notices............................269
Xilinx Resources...269
Documentation Navigator and Design Hubs.. 269
References..269
Links to Additional Information on Third-Party Simulators...270
Training Resources..271
Please Read: Important Legal Notices... 271

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=6

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Chapter 3: Simulating with Third-Party Simulators

• Chapter 4: Simulating with Vivado Simulator

• Appendix F: SystemC Support in Vivado IDE

Logic Simulation Overview
Simulation is a process of emulating real design behavior in a software environment. Simulation
helps verify the functionality of a design by injecting stimulus and observing the design outputs.

This chapter provides an overview of the simulation process, and the simulation options in the
Vivado® Design Suite.

The process of simulation includes:

• Creating test benches, setting up libraries and specifying the simulation settings for Simulation

• Generating a Netlist (if performing post-synthesis or post-implementation simulation)

• Running a Simulation using Vivado simulator or third party simulators. See Supported
Simulators for more information on supported simulators.

Chapter 1: Overview

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 7Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=7

Supported Simulators
Following are the supported simulators in the Vivado Design Suite:

Table 1: Supported Simulators

Simulator Version Integrated with Vivado
Integrated Design Environment

Vivado® Simulator 2021.1 Integrated with the Vivado integrated
design environment, where each
simulation launch appears as a
framework of windows within the
Vivado IDE.

Siemens EDA Questa Advanced
Simulator

2020.4 Yes

Siemens EDA ModelSim Simulator 2020.4 Yes

Cadence Incisive Enterprise Simulator
(IES)

15.20.083 Yes

Synopsys Verilog Compiler Simulator
(VCS)

R-2020.12 Yes

Aldec Rivera-PRO Simulator 2020.10 Yes

Aldec Active-HDL 12.0 No

Cadence Xcelium Parallel Simulator 20.09.006 Yes

See the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for the
supported versions of third-party simulators.

For more information about the Vivado IDE and the Vivado Design Suite flow, see:

• Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

• Vivado Design Suite User Guide: Design Flows Overview (UG892)

Note: Vivado IDE will not support IES from the next release.

Simulation Flow
Simulation can be applied at several points in the design flow. It is one of the first steps after
design entry and one of the last steps after implementation as part of verifying the end
functionality and performance of the design.

Simulation is an iterative process and is typically repeated until both the design functionality and
timing requirements are satisfied.

The following figure illustrates the simulation flow for a typical design:

Chapter 1: Overview

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 8Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=8

Figure 1: Simulation Flow

Behavioral Simulation
(Verify Design Behaves as

Intended)

Synthesize

RTL Design

Post Synthesis Simulation

Implement (Place and
Route)

Post Implementation
Simulation

(Close to Emulating HW)

Debug the Design

X23703-021320

Behavioral Simulation at the Register Transfer Level
Register Transfer Level (RTL) behavioral simulation can include:

• RTL Code

• Instantiated UNISIM library components

• Instantiated UNIMACRO components

• UNISIM gate-level model (for the Vivado logic analyzer)

• SECUREIP Library

RTL-level simulation lets you simulate and verify your design prior to any translation made by
synthesis or implementation tools. You can verify your designs as a module or an entity, a block,
a device, or a system.

Chapter 1: Overview

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=9

RTL simulation is typically performed to verify code syntax, and to confirm that the code is
functioning as intended. In this step, the design is primarily described in RTL and consequently,
no timing information is required.

RTL simulation is not architecture-specific unless the design contains an instantiated device
library component. To support instantiation, Xilinx® provides the UNISIM library.

When you verify your design at the behavioral RTL you can fix design issues earlier and save
design cycles.

Keeping the initial design creation limited to behavioral code allows for:

• More readable code

• Faster and simpler simulation

• Code portability (the ability to migrate to different device families)

• Code reuse (the ability to use the same code in future designs)

Post-Synthesis Simulation
You can simulate a synthesized netlist to verify that the synthesized design meets the functional
requirements and behaves as expected. Although it is not typical, you can perform timing
simulation with estimated timing numbers at this simulation point.

The functional simulation netlist is a hierarchical, folded netlist expanded to the primitive module
and entity level; the lowest level of hierarchy consists of primitives and macro primitives.

These primitives are contained in the UNISIMS_VER library for Verilog, and the UNISIM library
for VHDL.

Related Information

UNISIM Library

Post-Implementation Simulation
You can perform functional or timing simulation after implementation. Timing simulation is the
closest emulation to actually downloading a design to a device. It allows you to ensure that the
implemented design meets functional and timing requirements and has the expected behavior in
the device.

IMPORTANT! Performing a thorough timing simulation ensures that the completed design is free of
defects that could otherwise be missed, such as:

Chapter 1: Overview

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=10

• Post-synthesis and post-implementation functionality changes that are caused by:

○ Synthesis properties or constraints that create mismatches (such as full_case and
parallel_case)

○ UNISIM properties applied in the Xilinx Design Constraints (XDC) file

○ The interpretation of language during simulation by different simulators

• Dual port RAM collisions

• Missing, or improperly applied timing constraints

• Operation of asynchronous paths

○ Functional issues due to optimization techniques

Language and Encryption Support
The Vivado simulator supports:

• VHDL, see IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)

• Verilog, see IEEE Standard Verilog Hardware Description Language (IEEE-STD-1364-2001)

• SystemVerilog, see IEEE Standard for SystemVerilog--Unified Hardware Design, Specification,
and Verification Language (IEEE-STD-1800-2009)

• IEEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735)

Chapter 1: Overview

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 11Send Feedback

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392561
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://standards.ieee.org/develop/project/1735.html
http://standards.ieee.org/develop/project/1735.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=11

Chapter 2

Preparing for Simulation
This chapter describes the components that you need when you simulate a Xilinx® device in the
Vivado® Integrated Design Environment (IDE).

Set up the following before performing the simulation:

• Create a test bench that reflects the simulation actions you want to run.

• Set up an install location in Vivado IDE (if not using the Vivado simulator).

• Compile your libraries (if not using the Vivado simulator).

• Select and declare the libraries you need to use.

• Specify the simulation settings such as target simulator, the simulation top module name, top
module (design under test), display the simulation set, and define the compilation, elaboration,
simulation, netlist, and advanced options.

• Generate a Netlist (if performing post-synthesis or post-implementation simulation).

Using Test Benches and Stimulus Files
A test bench is Hardware Description Language (HDL) code written for the simulator that:

• Instantiates and initializes the design.

• Generates and applies stimulus to the design.

• Monitors the design output result and checks for functional correctness (optional).

You can also set up the test bench to display the simulation output to a file, a waveform, or to a
display screen. A test bench can be simple in structure and can sequentially apply stimulus to
specific inputs.

A test bench can also be complex, and can include:

• Subroutine calls

• Stimulus that is read in from external files

• Conditional stimulus

• Other more complex structures

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=12

The advantages of a test bench over interactive simulation are that it:

• Allows repeatable simulation throughout the design process

• Provides documentation of the test conditions

The following bullets are recommendations for creating an effective test bench.

• Always specify the `timescale in Verilog test bench files. For example:

'timescale 1ns/1ps

• Initialize all inputs to the design within the test bench at simulation time zero to properly
begin simulation with known values.

• Apply stimulus data after 100 ns to account for the default Global Set/Reset (GSR) pulse used
in functional and timing-based simulation.

• Begin the clock source before the Global Set/Reset (GSR) is released.

For more information about test benches, see Writing Efficient Test Benches (XAPP199).

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the post-
synthesis and post-implementation timing simulation. This holds all registers in reset for the first 100 ns of
the simulation.

Related Information

Using Global Reset and 3-State

Pointing to the Simulator Install Location
To define the installation path:

1. Select Tools → Settings → Tool Settings → 3rd Party Simulators.

2. In Third-Party simulators tab of the Settings dialog box, select the simulator under the Install
Paths as shown in the following figure, and browse to the installation path.

3. Select the appropriate simulator under Default Compiled Library Paths and browse to the
relevant compiled library paths. You can set the library paths at a later point of time. See
Compiling Simulation Libraries for more information on how to compile libraries for your
simulator.

Note: Installing Vivado simulator is part of Vivado IDE Installation. Hence, you do not need to setup an
install location for Vivado simulator.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=13

Compiling Simulation Libraries
IMPORTANT! With Vivado simulator, there is no need to compile the simulation libraries. However, you
must compile the libraries when using a third-party simulator.

The Vivado Design Suite provides simulation models as a set of files and libraries. Your simulation
tool must compile these files prior to design simulation. The simulation libraries contain the
device and IP behavioral and timing models. The compiled libraries can be used by multiple
design projects.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=14

During the compilation process, Vivado creates a default initialization file that the simulator uses
to reference the compiled libraries. The compile_simlib command creates the file in the
library output directory specified during library compilation. The default initialization file contains
control variables that specify reference library paths, optimization, compiler, and simulator
settings. If the correct initialization file is not found in the path, you cannot run simulation on
designs that include Xilinx primitives.

The name of the initialization file varies depending on the simulator you are using, as follows:

• Questa Advanced Simulator/ModelSim: modelsim.ini

• IES and Xcelium: cds.lib

• VCS: synopsys_sim.setup

• Riviera/Active-HDL: library.cfg

For more information on the simulator-specific compiled library file, see the third-party
simulation tool documentation.

IMPORTANT! Compilation of the libraries is typically a one-time operation, as long as you are using the
same version of tools. However, any change to the Vivado tools or the simulator versions requires that
libraries be recompiled.

You can compile libraries using the Vivado IDE or using Tcl commands, as described in the
following sections.

Compiling Simulation Libraries Using Vivado IDE
Select Tools → Compile Simulation Libraries to open the dialog box shown in the following figure.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=15

Figure 2: Compile Simulation Libraries Dialog Box

Set the following options:

• Simulator: From the simulator drop-down menu, select a simulator.

• Language: Compiles libraries for the specified language. If this option is not specified, then the
language is set to correspond with the selected simulator (above). For multi-language
simulators, both Verilog and VHDL libraries are compiled.

• Library: Specifies the simulation library to compile. By default, the compile_simlib
command compiles all simulation libraries.

• Family: Compiles selected libraries to the specified device family. All device families are
generated by default.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=16

• Compiled library location: Specifies the directory path for saving the compiled library results.
By default, the libraries are saved in the current working directory in Non-Project mode, and
the libraries are saved in the <project>/<project>.cache/compile_simlib directory
in Project mode. See the Vivado Design Suite User Guide: Design Flows Overview (UG892) for
more information on Project and Non-Project modes.

TIP: Because the Vivado simulator has pre-compiled libraries, it is not necessary to identify the library
location.

• Simulator executable path: Specifies the directory to locate the simulator executable. This
option is required if the target simulator is not specified in the $PATH or %PATH% environment
variable, or to override the path from the $PATH or %PATH% environment variable.

• GCC executable path: Specifies the directory to locate GCC installation. This option is
required if GCC path settings are not done as mentioned in GCC Path Settings. Ignore if you
are not using SystemC IP.

• Miscellaneous Options: Specify additional options for the compile_simlib Tcl command.

• Compile Xilinx IP: Enable or disable compiling simulation libraries for Xilinx IP.

• Overwrite current pre-compiled libraries: Overwrites the current pre-compiled libraries.

• Compile 32-bit libraries: Performs simulator compilation in 32-bit mode instead of the default
64-bit compilation.

• Verbose: Temporarily overrides any message limits and return all messages from this
command.

• Command: Shows the Tcl command equivalent for the options you enter in the dialog box.

TIP: You can use the value of the Command field to generate a simulation library in Tcl/non-project
mode.

Compiling Simulation Libraries Using Tcl Commands
Alternatively, you can compile simulation libraries using the compile_simlib Tcl command.
For details, see compile_simlib in the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type compile_simlib -help.

Following are example commands for each third-party simulator:

• Questa Advanced Simulator: Generating a simulation library for Questa for all languages and
for all libraries and all families in the current directory.

compile_simlib -language all -simulator questa -library all -family all

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=17

• ModelSim: Generating simulation library for ModelSim at /a/b/c, where the ModelSim
executable path is <simulator_installation_path>.

compile_simlib -language all -dir {/a/b/c} -simulator modelsim -
simulator_exec_path
{<simulator_installation_path>} -library all -family all

• IES: Generating a simulation library for IES for the Verilog language, for the UNISIM library
at /a/b/c.

compile_simlib -language verilog -dir {/a/b/c} -simulator ies -library
unisim
-family all

• VCS: Generating a simulation library for VCS for the Verilog language, for the UNISIM library
at /a/b/c.

compile_simlib -language verilog -dir {/a/b/c} -simulator vcs_mx -library
unisim
-family all

• Xcelium: Generating a simulation library for Xcelium for the Verilog language, for the UNISIM
library at /a/b/c.

compile_simlib -language verilog -dir {/a/b/c} -simulator xcelium -
library unisim
-family all

Changing compile_simlib Defaults
The config_compile_simlib Tcl command lets you configure third-party simulator options
for use by the compile_simlib command.

Tcl Command

config_compile_simlib [-cfgopt <arg>] [-simulator <arg>] [-reset] [-quiet]
[-verbose]

Where:

• -cfgopt <arg>: Configuration option in form of
<simulator>:<language>:<library>:<options>.

• -simulator: The name of the simulator whose configuration you want

• -reset: Lets you reset all previous configurations for the specified simulator

• -quiet: Executes the command without any display to the Tcl Console.

• -verbose: Executes the command with all command output to the Tcl Console.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=18

For example, to change the option used to compile the UNISIM VHDL library, type:

config_compile_simlib {cxl.modelsim.vhdl.unisim:-source -93 -novopt}

IMPORTANT! The compile_simlib  command compiles Xilinx primitives and Simulation models of
Xilinx Vivado IP. Xilinx Vivado IP cores are delivered as an output product when the IP is generated;
consequently they are included in the pre-compiled libraries created using compile_simlib.

Compiling Patched IP Repository in a New Output Directory Using MYVIVADO

Assume that the patched IP repository is at the following location:

'/test/patched_ip_repo/data/ip/xilinx'

To compile the default installed IP repository and the repository that is pointed to by MYVIVADO
in a new output directory, set the MYVIVADO environment (env) variable to point to this patched
IP repository and run compile_simlib. compile_simlib will process the IP library sources
from the default installed repository and the one set by MYVIVADO.

% setenv MYVIVADO /test/patched_ip_repo
% compile_simlib -simulator <simulator> -directory <new_clibs_dir>

Compiling Patched IP Repository in an Existing Output Directory Using MYVIVADO

Assume that the patched IP repository is at the following location:

'/test/patched_ip_repo/data/ip/xilinx'

To compile the repository pointed to by MYVIVADO in an existing output directory where the
library was already compiled for the default installed IP repository, set the MYVIVADO env
variable to point to this patched IP repository and run compile_simlib. compile_simlib
will process the IP library sources from the repository set by MYVIVADO in the existing output
directory.

% setenv MYVIVADO /test/patched_ip_repo
% compile_simlib -simulator <simulator> -directory <existing_clibs_dir>

Using Xilinx Simulation Libraries
You can use Xilinx simulation libraries with any simulator that supports the VHDL-93 and
Verilog-2001 language standards. Certain delay and modeling information is built into the
libraries; this is required to simulate the Xilinx hardware devices correctly.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=19

Use non-blocking assignments for blocks within clocking edges. Otherwise, write code using
blocking assignments in Verilog. Similarly, use variable assignments for local computations within
a process, and use signal assignments when you want data-flow across processes.

If the data changes at the same time as a clock, it is possible that the simulator will schedule the
data input to occur after the clock edge. The data does not go through until the next clock edge,
although it is possible that the intent was to have the data clocked in before the first clock edge.

RECOMMENDED: To avoid such unintended simulation results, do not switch data signals and clock
signals simultaneously.

When you instantiate a component in your design, the simulator must reference a library that
describes the functionality of the component to ensure proper simulation. The Xilinx libraries are
divided into categories based on the function of the model.

The following table lists the Xilinx-provided simulation libraries:

Table 2: Simulation Libraries

Library Name Description VHDL Library
Name

Verilog Library
Name

UNISIM Functional simulation of Xilinx primitives. UNISIM UNISIMS_VER

UNIMACRO Functional simulation of Xilinx macros. UNIMACRO UNIMACRO_VER

UNIFAST Fast simulation library. UNIFAST UNIFAST_VER

SIMPRIM Timing simulation of Xilinx primitives. N/A SIMPRIMS_VER 1

SECUREIP Simulation library for both functional and timing
simulation of Xilinx device features, such as the PCIe
IP, Gigabit Transceiver etc.,
You can find the list of IP's under SECUREIP at the
following location:
<Vivado_Install_Dir>/data/secureip

SECUREIP SECUREIP

XPM Functional simulation of Xilinx primitives XPM XPM 2

Notes:
1. The SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM physical library is mapped.
2. XPM is supported as a pre-compiled IP. Hence, you need not add the source file to the project. For third party

simulators, the Vivado tools will map to pre-compiled IP generated with compile_simlib.

IMPORTANT! You must specify different simulation libraries according to the simulation points. There are
different gate-level cells in pre- and post-implementation netlists.

The following table lists the required simulation libraries at each simulation point.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=20

Table 3: Simulation Points and Relevant Libraries

Simulation Point UNISIM UNIFAST UNIMACRO SECUREIP
SIMPRIM
(Verilog

Only)
SDF

1. Register Transfer
Level (RTL)
(Behavioral)

Yes Yes Yes Yes N/A No

2. Post-Synthesis
Simulation (Functional)

Yes Yes N/A Yes N/A N/A

3. Post-Synthesis
Simulation (Timing)

N/A N/A N/A Yes Yes Yes

4. Post-
Implementation
Simulation (Functional)

Yes Yes N/A Yes N/A N/A

5. Post-
Implementation
Simulation (Timing)

N/A N/A N/A Yes Yes Yes

IMPORTANT! The Vivado simulator uses precompiled simulation device libraries. When updates to
libraries are installed the precompiled libraries are automatically updated.

Note: Verilog SIMPRIMS_VER uses the same source as UNISIM with the addition of specify blocks for
timing annotation. SIMPRIMS_VER is the logical library name to which the Verilog physical SIMPRIM is
mapped.

The following table lists the library locations.

Table 4: Simulation Library Locations

Library HDL Type Location
UNISIM Verilog <Vivado_Install_Dir>/data/verilog/src/unisims

VHDL <Vivado_Install_Dir>/data/vhdl/src/unisims

UNIFAST Verilog <Vivado_Install_Dir>/data/verilog/src/unifast

VHDL <Vivado_Install_Dir>/data/vhdl/src/unifast

UNIMACRO Verilog <Vivado_Install_Dir>/data/verilog/src/unimacro

VHDL <Vivado_Install_Dir>/data/vhdl/src/unimacro

SECUREIP Verilog <Vivado_Install_Dir>/data/secureip/

The following subsections describe the libraries in more detail.

UNISIM Library
Functional simulation uses the UNISIM library and contains descriptions for device primitives or
lowest-level building blocks.

IMPORTANT! By default, the compile_simlib  command compiles the static simulation files for all
the IP's in the IP Catalog.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=21

Encrypted Component Files

The following table lists the UNISIM library component files that let you call precompiled,
encrypted library files when you include IP in a design. Include the path you require in your
library search path.

Table 5: Component Files

Component File Description
<Vivado_Install_Dir>/data/verilog/src/unisim_retarget_comp.vp Encrypted Verilog file
<Vivado_Install_Dir>/data/vhdl/src/unisims/unisim_retarget_VCOMP.vhdp Encrypted VHDL file

IMPORTANT! Verilog module names and file names are uppercase. For example, module BUFG is
BUFG.v, and module IBUF is IBUF.v. Ensure that UNISIM primitive instantiations adhere to an
uppercase naming convention.

VHDL UNISIM Library

The VHDL UNISIM library is divided into the following files, which specify the primitives for the
Xilinx device families:

• The component declarations (unisim_VCOMP.vhd)

• Package files (unisim_VPKG.vhd)

To use these primitives, place the following two lines at the beginning of each file:

library UNISIM;
use UNISIM.VCOMPONENTS.all;

IMPORTANT! You must also compile the library and map the library to the simulator. The method
depends on the simulator.

Note: For Vivado simulator, the library compilation and mapping is an integrated feature with no further
user compilation or mapping required.

Note: Starting in Versal™ ACAP, Xilinx is delivering Verilog/SystemVerilog models only for the new
primitives. This does mean that a mixed-language environment is needed for VHDL-only designs, like what
has been needed in the past for IPs and XPMs. For more information, see AR76496.

Verilog UNISIM Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the -y
library specification switch to search the specified directory for all components and automatically
expand the library.

The Verilog UNISIM library cannot be specified in the HDL file prior to using the module. To use
the library module, specify the module name using all uppercase letters.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 22Send Feedback

https://www.xilinx.com/support/answers/76496.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=22

The following example shows the instantiated module name as well as the file name associated
with that module:

• Module BUFG is BUFG.v

• Module IBUF is IBUF.v

Verilog is case-sensitive, ensure that UNISIM primitive instantiations adhere to an uppercase
naming convention.

If you use precompiled libraries, use the correct simulator command-line switch to point to the
precompiled libraries. The following is an example for the Vivado simulator:

-L unisims_ver

Where:

-L is the library specification option.

UNIMACRO Library
The UNIMACRO library is used during functional simulation and contains macro descriptions for
selected device primitives.

IMPORTANT! You must specify the UNIMACRO library anytime you include a device macro listed in the
Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953).

VHDL UNIMACRO Library

To use these primitives, place the following two lines at the beginning of each file:

library UNIMACRO;
use UNIMACRO.Vcomponents.all;

Verilog UNIMACRO Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the -y
library specification switch to search the specified directory for all components and automatically
expand the library.

The Verilog UNIMACRO library does not need to be specified in the HDL file prior to using the
modules as is required in VHDL. To use the library module, specify the module name using all
uppercase letters. You must also compile and map the library; the method you use depends on
the simulator you choose.

IMPORTANT! Verilog module names and file names are uppercase. For example, module BUFG is
BUFG.v. Ensure that UNIMACRO primitive instantiations adhere to an uppercase naming convention.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 23Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=23

SIMPRIM Library
Use the SIMPRIM library for simulating timing simulation netlists produced after synthesis or
implementation.

IMPORTANT! Timing simulation is supported in Verilog only; there is no VHDL version of the SIMPRIM
library.

TIP: If you are a VHDL user, you can run post synthesis and post implementation functional simulation (in
which case no standard default format (SDF) annotation is required and the simulation netlist uses the
UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage information, refer
to the Vivado Design Suite Tcl Command Reference Guide (UG835).

Following is an example for specifying the library for Vivado simulator:

-L SIMPRIMS_VER

Where:

• -L is the library specification option.

• SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM has been mapped.

SECUREIP Simulation Library
Use the SECUREIP library for functional and timing simulation of complex device components,
such as GT.

Note: Secure IP Blocks are fully supported in the Vivado simulator without additional setup.

Xilinx leverages the encryption methodology as specified in the IEEE standard Recommended
Practice for Encryption and Management of Electronic Design Intellectual Property (IP) (IEEE-STD-
P1735). The library compilation process automatically handles encryption.

Note: See the simulator documentation for the command line switch to use with your simulator to specify
libraries.

The following table lists special considerations that must be arranged with your simulator vendor
for using these libraries.

Table 6: Special Considerations for Using SECUREIP Libraries

Simulator Name Vendor Requirements
Siemens EDA ModelSim SE Siemens If design entry is in VHDL, a mixed language license or a SECUREIP

OP is required. Contact the vendor for more information.
Siemens EDA Questa Advanced
Simulator

VCS Synopsys

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=24

Table 6: Special Considerations for Using SECUREIP Libraries (cont'd)

Simulator Name Vendor Requirements
Active-HDL Aldec If design entry is VHDL only, a SECUREIP language-neutral license

is required. Contact the vendor for more information.Riviera-PRO*

IMPORTANT! See Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for
the supported version of third-party simulators.

VHDL SECUREIP Library

The UNISIM library contains the wrappers for VHDL SECUREIP. Place the following two lines at
the beginning of each file so that the simulator can bind to the entity:

Library UNISIM;
UNISIM.VCOMPONENTS.all;

Verilog SECUREIP Library

When running a simulation using Verilog code, you must reference the SECUREIP library for
most simulators.

If you use the precompiled libraries, use the correct directive to point to the precompiled
libraries. The following is an example for the Vivado simulator:

-L SECUREIP

IMPORTANT! You can use the Verilog SECUREIP library at compile time by using -f  switch. The file list is
available in the following path: <Vivado_Install_Dir>/data/secureip/
secureip_cell.list.f.

UNIFAST Library
The UNIFAST library is an optional library that you can use during RTL behavioral simulation to
speed up simulation runtime.

IMPORTANT! The UNIFAST library is an optional library that you can use during functional simulation to
speed up simulation runtime. UNIFAST libraries are supported for 7 series devices only. UltraScale and
later device architectures do not support UNIFAST libraries, as all the optimizations are incorporated in the
UNISIM libraries by default. UNIFAST libraries cannot be used for sign-off simulations because the library
components do not have all the checks/features that are available in a full model.

RECOMMENDED: Use the UNIFAST library for initial verification of the design and then run a complete
verification using the UNISIM library.

The simulation run time improvement is achieved by supporting a subset of the primitive
features in the simulation mode.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=25

Note: The simulation models check for unsupported attribute values only.

MMCME2

To reduce the simulation runtimes, the fast MMCME2 simulation model has the following
changes from the full model:

1. The fast simulation model provides only basic clock generation functions. Other functions,
such as DRP, fine phase shifting, clock stopped, and clock cascade are not supported.

2. It assumes that input clock is stable without frequency and phase change. The input clock
frequency sampling stops after LOCKED signal is asserted HIGH.

3. The output clock frequency, phase, duty cycle, and other features are directly calculated from
input clock frequency and parameter settings.

Note: The output clock frequency is not generated from input-to-VCO clock.

4. The standard and the fast MMCME2 simulation model LOCKED signal assertion times differ.

• Standard Model LOCKED assertion time depends on the M and D setting. For large M and
D values, the lock time is relatively long for a standard MMCME2 simulation model.

• In the fast simulation model, the LOCKED assertion time is shortened.

DSP48E1

To reduce the simulation runtimes, the fast DSP48E1 simulation model has the following features
removed from the full model.

• Pattern Detection

• OverFlow/UnderFlow

• DRP interface support

GTHE2_CHANNEL/GTHE2_COMMON

To reduce the simulation runtimes, the fast GTHE2 simulation model has the following feature
differences:

• GTH links must be synchronous with no Parts Per Million (PPM) rate differences between the
near and far end link partners.

• Latency through the GTH is not cycle accurate with the hardware operation.

• You cannot simulate the DRP production reset sequence. Bypass it when using the UNIFAST
model.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=26

Using Verilog UNIFAST Library
To reduce the simulation runtimes, the fast GTXE2 simulation model has the following feature
differences:

• GTX links must be of synchronous with no Parts Per Million (PPM) rate differences between
the near and far end link partners.

• Latency through the GTX is not cycle accurate with the hardware operation.

Method 1: Using the complete Verilog UNIFAST library (Recommended)

Method 1 is the recommended method whereby you simulate with all the UNIFAST models.

Use the following Tcl command in Tcl console to enable UNIFAST support (fast simulation
models) in a Vivado project environment for the Vivado simulator, ModelSim, IES, or VCS:

set_property unifast true [current_fileset –simset]

See the UNISIM Library for more information regarding component files.

For more information, see the appropriate third-party simulation user guide.

Method 2: Using specific UNIFAST modules

Recommended for more advanced users who want to specify which modules to simulate with
the UNIFAST models.

To specify individual library components, Verilog configuration statements are used. Specify the
following in the config.v file:

• The name of the top-level module or configuration (for example: config cfg_xilinx;)

• The name to which the design configuration applies (for example: design test bench;)

• The library search order for cells or instances that are not explicitly called out (for example:
default liblist unisims_ver unifast_ver;)

• The map for a particular CELL or INSTANCE to a particular library (For example: instance
testbench.inst.O1 use unifast_ver.MMCME2;)

Note: For ModelSim (vsim) only -genblk is added to hierarchy name (for example: instance
testbench.genblk1.inst.genblk1.O1 use unifast_ver.MMCME2; - VSIM).

Example config.v

config cfg_xilinx;
design testbench;
default liblist unisims_ver unifast_ver;
//Use fast MMCM for all MMCM blocks in design
cell MMCME2 use unifast_ver.MMCME2;

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=27

//use fast dSO48E1for only this specific instance in the design
instance testbench.inst.O1 use unifast_ver.DSP48E1;
//If using ModelSim or Questa, add in the genblk to the name
(instance testbench.genblk1.inst.genblk1.O1 use unifast_ver.DSP48E1)
endconfig

Using VHDL UNIFAST Library
The VHDL UNIFAST library has the same basic structure as Verilog and can be used with
architectures or libraries. You can include the library in the test bench file.

The following example uses a drill-down hierarchy with a for call:

library unisim;
library unifast;
configuration cfg_xilinx of testbench
is for xilinx
.. for inst:netlist
. . . use entity work.netlist(inst);
.......for inst
.........for all:MMCME2
..........use entity unifast.MMCME2;
.........end for;
.......for O1 inst:DSP48E1;
.........use entity unifast.DSP48E1;
.......end for;
...end for;
..end for;
end for;
end cfg_xilinx;

Note: If you want to use a VHDL UNIFAST model, you have to use a configuration to bind the UNIFAST
library during elaboration.

Using Simulation Settings
You can use the simulation settings to specify the target simulator, display the simulation set, the
simulation top module name, top module (design under test), tabbed listing of compilation,
elaboration, simulation, netlist, and advanced options. From the Vivado IDE Flow Navigator,
right-click Simulation and select Simulation Settings to open the Simulation Settings in the
Settings dialog box, as shown in the following figure.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=28

Figure 3: Settings Dialog Box

The Settings dialog box includes the following simulation settings:

• Target simulator: From the simulator drop-down menu, select a simulator. Vivado® simulator
is the default simulator. However, many third-party simulators are also supported.

• Simulator language: Select the simulator language mode. The simulation model used for
various IPs in your design varies depending on what language the IP supports.

• Simulation set: Select the simulation set that the simulation commands use by default.

IMPORTANT! The compilation and simulation settings for a previously defined simulation set are not
applied to a newly-defined simulation set.

• Simulation top module name: Enter an alternate top module to use during simulation.

• Generate simulation scripts only: Generates scripts if selected. Simulation is not invoked.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=29

• Compiled library location: This option is displayed when you select a third party simulator.
This is a directory path for saving the compiled library results. By default, the libraries are
saved in the current working directory in Non-Project mode. The libraries are saved in the
<project>/<project>.cache/compile_simlib directory in project mode.

• Compilation tab: This tab defines and manages compiler directives, which are stored as
properties on the simulation fileset and used by the xvlog and xvhdl utilities to compile Verilog
and VHDL source files for simulation.

Note: xvlog and xvhdl are Vivado simulator specific commands. The applicable utilities will change
based on the target simulator.

• Elaboration tab: This tab defines and manages elaboration directives, which are stored as
properties on the simulation fileset and used by the xelab utility for elaborating and
generating a simulation snapshot. Select a property in the table to display a description of the
property and edit the value.

Note: xelab is a Vivado simulator specific command. The applicable utilities will change based on the
target simulator.

• Simulation tab: This tab defines and manages simulation directives, which are stored as
properties on the simulation fileset and used by the xsim application for simulating the current
project. Select a property in the table to display a description of the property and edit the
value.

• Netlist tab: This tab provides access to netlist configuration options related to SDF annotation
of the Verilog netlist and the process corner captured by SDF delays. These options are stored
as properties on the simulation fileset and are used while writing the netlist for simulation.

• Advanced tab: This tab contains two options:

• Enable incremental compilation: This option enables the incremental compilation and
preserves the simulation files during successive run.

• Include all design sources for simulation: By default, this option is enabled. Selecting this
option ensures that all the files from design sources along with the files from the current
simulation set will be used for simulation. Even if you change the design sources, the same
changes will be updated when you launch behavioral simulation.

CAUTION! Changing the settings in the Advanced tab should be done only if necessary. The Include
all design sources for simulation check box is selected by default. Deselecting the box could produce
unexpected results. As long as the check box is selected, the simulation set includes Out-of-Context
(OOC) IP, IP Integrator files, and DCP.

Note: For detailed information on the properties in the Compilation, Elaboration, Simulation, Netlist,
and Advanced tabs, see Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced
Options.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=30

Understanding the Simulator Language Option
Most Xilinx IP deliver behavioral simulation models for a single language only, effectively
disabling simulation for language-locked simulators if you are not licensed for the appropriate
language. The simulator_language property ensures that an IP delivers a simulation model
for any given language. For example, if you are using a single language simulator, you set the
simulator_language property to match the language of the simulator.

The Vivado Design Suite ensures the availability of a simulation model by using the available
synthesis files of an IP to generate a language-specific structural simulation model on demand.
For cases in which a behavioral model is missing or does not match the licensed simulation
language, the Vivado tools automatically generate a structural simulation model to enable
simulation. Otherwise, the existing behavioral simulation model for the IP is used. If no synthesis
or simulation files exist, simulation is not supported.

Note: The simulator_language property cannot deliver a language-specific simulation netlist file if the
generated Synthesized checkpoint (.dcp) is disabled.

1. In the Flow Navigator, click IP Catalog to open the IP Catalog.

2. Right-click the appropriate IP and select Customize IP from the popup menu.

3. In the Customize IP dialog box, click OK.

The Generate Output Products dialog box (shown in the following figure) opens.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=31

Figure 4: Generate Output Products Dialog Box

The following table illustrates the function of the simulator_language property.

Table 7: Function of simulator_language Property

IP Delivered Simulation Model simulator_language Value Simulation Model Used
IP delivers VHDL and Verilog behavioral
models

Mixed Behavioral model (target_language)

Verilog Verilog behavioral model

VHDL VHDL behavioral model

IP delivers Verilog behavioral model
only

Mixed Verilog behavioral model

Verilog Verilog behavioral model

VHDL VHDL simulation netlist generated from DCP

IP delivers VHDL behavioral model only Mixed VHDL behavioral model

Verilog Verilog simulation netlist generated from
DCP

VHDL VHDL behavioral model

IP delivers no behavioral models Mixed, Verilog, VHDL Netlist generated from DCP
(target_language)

Notes:
1. Where available, behavioral simulation models always take precedence over structural simulation models. The Vivado

tools select behavioral or structural models automatically, based on model availability. It is not possible to override
the automated selection.

2. Use the target_language property when either language can be used for simulation Tcl: set_property
target_language VHDL [current_project]

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=32

Setting the Simulation Runtime Resolution
Set the simulation run-time resolution using `timescale in test bench. There is no simulator
performance gain achieved through use of coarser resolution with the Xilinx simulation models.
(In Xilinx simulation models, most simulation time is spent in delta cycles, and delta cycles are not
affected by simulator resolution.)

IMPORTANT! Run simulations using a time resolution of 1 fs. Some Xilinx primitive components, such as
GT, require a 1 fs resolution to work properly in either functional or timing simulation.

See Simulation Options for detailed information on Simulation Options in Settings dialog box.

IMPORTANT! Picoseconds are used as the minimum resolution because testing equipment can measure
timing only to the nearest picosecond resolution.

Adding or Creating Simulation Source Files
To add simulation sources to a Vivado Design Suite project:

1. Select File → Add Sources, or click Add Sources in the Flow Navigator.

The Add Sources wizard opens.

2. Select Add or Create Simulation Sources, and click Next.

The Add or Create Simulation Sources dialog box opens. The options are:

• Add Files: Invokes a file browser so you can select simulation source files to add to the
project.

• Add Directories: Invokes directory browser to add all simulation source files from the
selected directories. Files in the specified directory with valid source file extensions are
added to the project.

• Create File: Invokes the Create Source File dialog box where you can create new
simulation source files. See this link in the Vivado Design Suite User Guide: System-Level
Design Entry (UG895) for more information about project source files.

• Buttons on the side of the dialog box let you do the following:

○ Remove : Removes the selected source files from the list of files to be added.

○ Move Up : Moves the file up in the list order.

○ Move Down : Moves the file down in the list order.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug895-vivado-system-level-design-entry.pdf;a=xWorkingWithSourceFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=33

• Check boxes in the wizard provide the following options:
○ - Scan and add RTL include files into project: Scans the added RTL file and adds any

referenced include files.

- Copy sources into project: Copies the original source files into the project and uses
the local copied version of the file in the project.

If you elected to add directories of source files using the Add Directories command, the
directory structure is maintained when the files are copied locally into the project.

- Add sources from subdirectories: Adds source files from the subdirectories of
directories specified in the Add Directories option.

- Include all design sources for simulation: Includes all the design sources for
simulation.

VIDEO: For a demonstration of this feature, see the Vivado Design Suite QuickTake Video: Logic
Simulation.

Working with Simulation Sets
The Vivado IDE stores simulation source files in simulation sets that display in folders in the
Sources window, and are either remotely referenced or stored in the local project directory.

The simulation set lets you define different sources for different stages of the design. For
example, there can be one test bench source to provide stimulus for behavioral simulation of the
elaborated design or a module of the design, and a different test bench to provide stimulus for
timing simulation of the implemented design.

When adding simulation sources to the project, you can specify which simulation source set to
use.

To edit a simulation set:

1. In the Sources window popup menu, right click Simulation Sources and click Edit Simulation
Sets, as shown in the following figure.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=34

The Add or Create Simulation Sources wizard opens.

2. From the Add or Create Simulation Sources wizard, select Add Sources.

This adds the sources associated with the project to the newly-created simulation set.

3. Add additional files as needed.

The selected simulation set is used for the active design run.

Generating a Netlist
To run simulation of a synthesized or implemented design run the netlist generation process. The
netlist generation Tcl commands can take a synthesized or implemented design database and
write out a single netlist for the entire design.

The Vivado Design Suite generates a netlist automatically when you launch the simulator using
the IDE or the launch_simulation command.

Netlist generation Tcl commands can write SDF and the design netlist. The Vivado Design Suite
provides the following Tcl commands:

• write_verilog: Verilog netlist

• write_vhdl: VHDL netlist

• write_sdf: SDF generation

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=35

TIP: The SDF values are only estimates early in the design process (for example, during synthesis). As the
design process progresses, the accuracy of the timing numbers also progress when there is more
information available in the database.

Generating a Functional Netlist
The Vivado Design Suite supports writing out a Verilog or VHDL structural netlist for functional
simulation. The purpose of this netlist is to run simulation (without timing) to check that the
behavior of the structural netlist matches the expected behavioral model (RTL) simulation.

The functional simulation netlist is a hierarchical, folded netlist that is expanded to the primitive
module or entity level; the lowest level of hierarchy consists of primitives and macro primitives.

These primitives are contained in the following libraries:

• UNISIMS_VER simulation library for Verilog simulation

• UNISIMS simulation library for VHDL simulation

In many cases, you can use the same test bench that you used for behavioral simulation to
perform a more accurate simulation.

The following Tcl commands generate Verilog and VHDL functional simulation netlist,
respectively:

write_verilog -mode funcsim <Verilog_Netlist_Name.v>
write_vhdl -mode funcsim <VHDL_Netlist_Name.vhd>

Generating a Timing Netlist
You can use a Verilog timing simulation to verify circuit operation after the Vivado tools have
calculated the worst-case placed and routed delays.

In many cases, you can use the same test bench that you used for functional simulation to
perform a more accurate simulation.

Compare the results from the two simulations to verify that your design is performing as initially
specified.

There are two steps to generating a timing simulation netlist:

1. Generate a simulation netlist file for the design.

2. Generate an SDF delay file with all the timing delays annotated.

IMPORTANT! Vivado IDE supports Verilog timing simulation only.

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=36

TIP: If you are a VHDL user, you can run post-synthesis and post-implementation functional
simulation (in which case no standard default format (SDF) annotation is required and the simulation
netlist uses the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For
usage information, see the Vivado Design Suite Tcl Command Reference Guide (UG835).

The following is the Tcl syntax for generating a timing simulation netlist:

write_verilog -mode timesim -sdf_anno true <Verilog_Netlist_Name>

Using Versal CIPS VIP

The Versal™ ACAP Control, Interfaces, and Processing System (CIPS) Verification Intellectual
Property (VIP) supports the functional simulation of Versal ACAP applications. It is targeted to
enable the functional verification of the programmable logic (PL) by mimicking the processor
system (PS)-PL interfaces and OCM memories of the PS logic. This VIP is delivered as a package
of System Verilog modules. The VIP operation is controlled by using a sequence of System
Verilog tasks. This is supported in the latest version of Vivado. For more information, see Versal
ACAP CIPS Verification IP Data Sheet (DS996).

Chapter 2: Preparing for Simulation

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 37Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips_ps_vip;v=latest;d=ds996-versal-acap-cips-vip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=37

Chapter 3

Simulating with Third-Party
Simulators

The Vivado® Design Suite supports simulation using third-party tools. Simulation with third-party
tools can be performed directly from within the Vivado Integrated Design Environment (IDE) or
using a custom external simulation environment.

Table 8: Supported Third-Party Simulators

Third-party Simulators Red Hat 64-bit Linux Windows 10 64-bit
Siemens EDA ModelSim SE Yes Yes

Siemens EDA Questa Advanced Simulator Yes Yes

Cadence Incisive Enterprise Simulator Yes NA

Cadence Xcelium Parallel Simulator Yes NA

Synopsys VCS Yes NA

Aldec Active HDL NA Yes

Aldec Riviera PRO Yes Yes

The Vivado Design Suite User Guide: Using the Vivado IDE (UG893) describes the use of the Vivado
IDE.

Please set the following environment variables before running simulation in Vivado IDE.

Table 9: Environment Variable Setting for Third-Party Simulators

Simulator Linux Windows
Modelsim

setenv MODEL_TECH <tool installation path>
setenv LM_LICENSE_FILE <license file>
setenv PATH ${MODEL_TECH}/bin:$PATH

set MODEL_TECH=<tool
installation path>
set LM_LICENSE_FILE=<license
file>
set Path=%MODEL_TECH%
\win32;%Path%

Questa
setenv MODEL_TECH <tool installation path>
setenv LM_LICENSE_FILE <license file>
setenv PATH ${MODEL_TECH}/bin:$PATH

set MODEL_TECH=<tool
installation path>
set LM_LICENSE_FILE=<license
file>
set Path=%MODEL_TECH%
\win32;%Path%

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 38Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=38

Table 9: Environment Variable Setting for Third-Party Simulators (cont'd)

Simulator Linux Windows
Riviera

setenv ALDEC_PATH <tool installation path>
setenv VSIMSACFG <tool installation path>
setenv PATH ${ALDEC_PATH}:${ALDEC_PATH}/bin/
Linux64:${ALDEC_PATH}/PATH
setenv LD_LIBRARY_PATH ${ALDEC_PATH}/bin/
Linux64:$LD_LIBRARY_PATH
set LM_LICENSE_FILE <license file>

set RIVIERA_BIN=<tool
installation path>
set Path=%<Riviera install
dir>%\bin;%Path%
set LM_LICENSE_FILE=<license
file>

Active-HDL NA
set ACTIVE_BIN=<tool
installation path>
set Path=%<Active_hdl install
dir>%\BIN;%Path%
set LM_LICENSE_FILE=<license
file>

Xcelium
setenv CDS_INST_DIR <xcelium_install_dir>
setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/
xcelium/lib:$LD_LIBRARY_PATH
setenv PATH $CDS_INST_DIR/tools/xcelium/
bin:$CDS_INST_DIR/tools/bin:$PATH
setenv CDS_LICENSE_DIR <tool_license>

NA

VCS
setenv VCS_HOME <tool_install_path>
setenv LM_LICENSE_FILE <license_file_path>
setenv PATH ${VCS_HOME}/bin:${PATH}

NA

IES
setenv IES_VER 15.20.083
setenv CDS_INST_DIR <tool_install_path>
setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/
lib:$LD_LIBRARY_PATH
set path = ($CDS_INST_DIR/tools/bin $path)
set path = ($CDS_INST_DIR/tools/verilog/bin
$CDS_INST_DIR/bin $path)
setenv CDS_LICENSE_DIR <license_file_dir>
setenv LM_LICENSE_FILE <tool_license>

NA

Notes:
1. Tool installation path should be added to environment variable PATH (irrespective of OS). To simulate SystemC based

designs for the supported simulator, provide the required g++ version installation path as mentioned in Appendix F:
SystemC Support in Vivado IDE. The LD_LIBRARY_PATH should also include simulator library path.

For links to more information on your third party simulator, see Links to Additional Information
on Third-Party Simulators.

IMPORTANT! Use only supported versions of third-party simulators. For more information on supported
Simulators and Operating Systems, see the Compatible Third-Party Tools table in the Vivado Design Suite
User Guide: Release Notes, Installation, and Licensing (UG973).

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=39

Running Simulation Using Third Party
Simulators with Vivado IDE

IMPORTANT! Confirm the compiled library location (the path at which compile_simlib  was invoked
or the one you specified with the -directory  option) before running a third-party simulation.

From the Vivado IDE, you can compile, elaborate, and simulate the design based on the
simulation settings and launch the simulator in a separate window.

When you run simulation prior to synthesizing the design, the simulator runs a behavioral
simulation. Following each successful design step (synthesis and implementation), the option to
run a functional or timing simulation becomes available. You can initiate a simulation run from
the Flow Navigator or by typing in a Tcl command.

From the Flow Navigator, click Run Simulation, and select the type of simulation you want to run,
as shown in the following figure:

Figure 5: Types of Simulation

To use the corresponding Tcl command, type: launch_simulation

TIP: This command provides a -scripts_only  option that can be used to write a DO or SH file,
depending on the target simulator. Use the DO or SH file to run simulations outside the IDE.

Note: If you are running VCS simulator outside of Vivado, make sure to use -full64 switch. Otherwise,
the simulator will not run if the design contains Xilinx IP.

IMPORTANT! Use the following command to run the 32-bit Simulator: set_property 32bit 1
[current_fileset -simset]

Note: Xilinx Verification IP (VIP) uses SystemVerilog construct. If you are using any IP which instantiates
VIP, make sure that your simulator supports SystemVerilog.

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=40

Running Timing Simulation Using Third-Party Tools
TIP: Post-Synthesis timing simulation uses the estimated timing delay from the synthesized netlist. Post-
Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation, the simulators include:

• Gate-level netlist containing SIMPRIMS library components

• SECUREIP

• Standard Delay Format (SDF) files

You define the overall design functionality in the beginning. When the design is implemented,
accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

• Calls the netlist writer, write_verilog with the -mode timesim switch and write_sdf
(SDF annotator)

• Sends the generated netlist to the target simulator

You control these options using Simulation Settings as described in Using Simulation Settings.

IMPORTANT! Post-Synthesis and Post-Implementation timing simulations are supported for Verilog only.
There is no support for VHDL timing simulation. If you are a VHDL user, you can run post-synthesis and
post-implementation functional simulation (in which case no SDF annotation is required and the
simulation netlist uses the UNISIM library). You can create the netlist using the write_vhdl  Tcl
command. For usage information, refer to the Vivado Design Suite Tcl Command Reference Guide
(UG835).

Post-Synthesis Timing Simulation

When synthesis runs successfully, the Run Simulation → Post-Synthesis Timing Simulation
option becomes available.

After you select a post-synthesis timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF file is
picked up.

Post-Implementation Timing Simulations

When post-implementation is successful, the Run Simulation → Post-Implementation Timing
Simulation option becomes available.

After you select a post-implementation timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF file is
picked up.

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=41

Annotating the SDF File for Timing Simulation

When you specified simulation settings, you specified whether or not to create an SDF file and
whether the process corner would be set to fast or slow.

TIP: To find the SDF file options settings, in the Vivado IDE Flow Navigator, right-click Simulation and
select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist tab.

Based on the specified process corner, the SDF file contains different min and max numbers.

RECOMMENDED: To run a setup check, create an SDF file with -process_corner slow, and use the max
column from the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min column
from the SDF file. The method for specifying which SDF delay field to use is dependent on the
simulation tool you are using. Refer to the specific simulation tool documentation for information
on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

1. Slow corner: SDFMIN and SDFMAX

2. Fast corner: SDFMIN and SDFMAX

Running Standalone Timing Simulation

If you are running timing simulation from Vivado IDE, it will add the timing simulation related
switches to simulator. If you run standalone timing simulation, make sure to pass the following
switch to simulators during elaboration:

For IUS:

-PULSE_R/0 -PULSE_E/0

During elaboration (with ncelab)

For VCS:

+pulse_e/<number> and +pulse_r/<number> +transport_int_delays

During elaboration (with VCS)

For ModelSim/Questa Advanced Simulator:

+transport_int_delays +pulse_int_e/0 +pulse_int_r/0

During elaboration (with vsim)

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=42

IMPORTANT! The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport_int_delays -pulse_r 0 -
pulse_int_r 0 . Table 15: xelab, xvhd, and xvlog Command Options provides descriptions for the these
commands.

Dumping SAIF for Power Analysis
The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting and
storing switching activity information generated by simulator tools. This switching activity can be
back-annotated into the Xilinx power analysis and optimization tools for the power
measurements and estimations.

Dumping SAIF in Questa Advanced Simulator/
ModelSim
Questa Advanced Simulator/ModelSim uses explicit power commands to dump an SAIF file, as
follows:

1. Specify the scope or signals to dump, by typing:

power add <hdl_objects>

2. Run simulation for specific time (or run -all).

3. Dump out the power report, by typing:

power report -all filename.saif

For more detailed usage or information about each commands, see the ModelSim
documentation.

Example DO File

power add tb/fpga/*
run 500us
power report -all -bsaif routed.saif
quit

Dumping SAIF in IES
IES provides power commands to generate SAIF with specific requirements.

1. Specify the scope to be dumped and the output SAIF file name, using the following Tcl
command:

dumpsaif -scope hdl_objects -output filename.saif

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=43

2. Run the simulation.

3. End the SAIF dump by typing the following Tcl command:

dumpsaif -end

For more detailed usage or information on IES commands, see the Cadence IES documentation.

Dumping SAIF in VCS
VCS provides power commands to generate SAIF with specific requirements.

1. Specify the scope and signals to be generated, by typing:

power <hdl_objects>

2. Enable SAIF dumping. You can use the command line in the simulator workspace:

power -enable

3. Run simulation for a specific time.

4. Disable power dumping and report the SAIF, by typing:

power -disable
power -report filename.saif

For more detailed usage or information about each command, see the Synopsys VCS
documentation.

See Power Analysis Using Vivado Simulator for more information about Switching Activity
Interchange Format (SAIF).

Dumping VCD
You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl commands
are based on Verilog system tasks related to dumping values.

Dumping VCD in Questa Advanced Simulator/
ModelSim
Questa Advanced Simulator/ModelSim uses explicit VCD commands to dump a VCS file, as
follows:

1. Open the VCD file:

vcd file my_vcdfile.vcd

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 44Send Feedback

http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=44

2. Specify the scope or signals to dump:

vcd add <hdl_objects>

3. Run simulation for a specified period of time (or run -all).

For more detailed usage or information about each commands, see the ModelSim
documentation.

Example DO File:

vcd file my_vcdfile.vcd
vcd add -r tb/fpga/*
run 500us
quit

Dumping VCD in IES
1. The following command opens a VCD database named vcddb. The filename is

verilog.dump. The -timescale option sets the $timescale value in the VCD file to 1
ns. Value changes in the VCD file are scaled to 1 ns.

database -open -vcd vcddb -into verilog.dump -default -timescale ns

2. The following probe command creates a probe on all ports in the scope top.counter.
Data is sent to the default VCD database.

probe -create -vcd top.counter -ports

3. Run the simulation.

Dumping VCD in VCS
In VCS, you can generate a VCD file using the dumpvar command. Specify the file name and
instance name (by default its complete hierarchy).

vcs +vcs+dumpvars+test.vcd

Simulating IP
In the following example, the accum_0.xci file is the IP you generated from the Vivado® IP
catalog. Use the following commands to simulate this IP in VCS:

set_property target_simulator VCS [current_project]
set_property compxlib.vcs_compiled_library_dir
<compiled_library_location>[current_project]
launch_simulation -noclean_dir -of_objects [get_files accum_0.xci]

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 45Send Feedback

http://www.mentor.com/products/fv/modelsim/
http://www.mentor.com/products/fv/modelsim/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=45

Using a Custom DO File During an Integrated
Simulation Run

If you have some specific set of commands (custom DO file) that you want to invoke just before
running the simulation, add those commands in a file and pass that using the appropriate
command, as shown below:

In Questa Advanced Simulator
expanse="page">set_property -name {questa.simulate.tcl.post} -value
{<AbsolutePathOfFileLocation>}
-objects [get_filesets sim_1]

In Modelsim
expanse="page">set_property -name {modelsim.simulate.tcl.post} -value
{<AbsolutePathOfFileLocation>}
-objects [get_filesets sim_1]

In IES
expanse="page">set_property -name {ies.simulate.tcl.post} -value
{<AbsolutePathOfFileLocation>} -objects
[get_filesets sim_1]

In VCS
expanse="page">set_property -name {vcs.simulate.tcl.post} -value
{<AbsolutePathOfFileLocation>} -objects
[get_filesets sim_1]

In Xcelium
expanse="page">set_property -name {xcelium.simulate.tcl.post} -value
{<AbsolutePathOfFileLocation>}
-objects

expanse="page">[get_filesets sim_1]

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=46

Simulation Step Control Constructs for ModelSim
and Questa Advanced Simulator
The following table outlines the constructs used for controlling the step execution based on the
do file format:

• Native do file: This is a default do file format. In this format, the compile and elaborate shell
scripts calls source <tb>_compile/elaborate.do. For example:

source bft_tb_compile.do 2>&1 | tee -a compile.log

The simulate script calls vsim -64 -c -do do {<tb>_simulate.do}. For example:

$bin_path/vsim -64 -c -do do {bft_tb_simulate.do} -l simulate.log

• Classic do file: Classic do file format is different from the native do file in compile and
elaborate shell scripts. There is no change in the simulate script. In compile and elaborate shell
scripts, it calls vsim -c -do do {<tb>_compile/elaborate.do}. For example,

$bin_path/vsim -64 -c -do do {bft_tb_compile.do} -l compile.log

To get this, set project.writeNativeScriptForUnifiedSimulation to 0 by invoking
set_param project.writeNativeScriptForUnifiedSimulation 0 on Tcl console
command.

This file format is useful for a shared project as the path for Questa Advanced Simulator/
ModelSim utility is hard-coded inside the shell scripts.

Table 10: Simulation Step Control Construct Parameters

Parameter Description Default
project.writeNativeScriptForUnifiedSimulatio
n

Write a pure .do file with simulator command
only (no Tcl or Shell constructs).

0 (false)

simulator.quitOnSimulationComplete Quit simulator on simulator completion for
ModelSim/Questa Advanced Simulator
simulation. To disable quit, set this parameter
to false.

1 (true)

simulator.modelsimNoQuitOnError Do not quit on error or break by default for
ModelSim/Questa Advanced Simulator
simulation. To quit simulation on error or
break, set this parameter to false.

1 (true)

Explanation

• simulator.quitOnSimulationComplete: By default, the generated simulate.do has
quit -force. When the simulation is complete in the specified time, the simulator exits. If
you do not want the simulator to exit, set simulator.quitOnSimulationComplete to 0
by invoking set_peram simulator.quitOnSimulationComplete 0.

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=47

• simulator.modelsimNoQuitOnError: By default, on error or break, simulator does not
exit. If you want to exit the simulator, set the following parameter:

set_param simulator.modelsimNoQuitOnError 0

This adds the following two lines in <tb>_simulate.do.

onbreak {quit -f}
onerror {quit -f}

Running Third-Party Simulators in Batch
Mode

The Vivado Design Suite supports batch or scripted simulation for third party verification. With
the design files gathered, and the scripts generated to support your target simulator, you can
inspect the scripts and incorporate them into your verification environment. Xilinx recommends
that you use the export_simulation scripts as a starting point for your simulation flow rather
than building a custom API to generate scripts. See Exporting Simulation Files and Scripts for
more information on exporting simulation scripts.

Make sure that you have the correct environment setup for the simulator before running the
scripts. See Using Simulation Settings for more information on configuring your simulator. See
the User Guide of your specific simulator for the details of running batch or scripted mode.

Chapter 3: Simulating with Third-Party Simulators

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=48

Chapter 4

Simulating with Vivado Simulator
The Vivado simulator is a Hardware Description Language (HDL) event-driven simulator that
supports functional and timing simulations for VHDL, Verilog, SystemVerilog (SV), and mixed
VHDL/Verilog or VHDL/SV designs.

The Vivado simulator supports the following features:

• Source code debugging (step, breakpoint, current value display)

• SDF annotation for timing simulation

• VCD dumping

• SAIF dumping for power analysis and optimization

• Native support for HardIP blocks (such as serial transceivers and PCIe®)

• Multi-threaded compilation

• Mixed language (VHDL, Verilog, or SystemVerilog design constructs)

• Single-click simulation re-compile and re-launch

• One-click compilation and simulation

• Built-in support for Xilinx simulation libraries

• Real-time waveform update

See the Vivado Design Suite Tutorial: Logic Simulation (UG937) for a step-by-step demonstration of
how to run Vivado simulation.

Running the Vivado Simulator
IMPORTANT! If you are using the Vivado simulator, be sure to specify all appropriate project settings for
your design before running simulation. For supported third-party simulators, see Chapter 3: Simulating
with Third-Party Simulators.

From the Flow Navigator, click Run Simulation and select a simulation type to invoke the Vivado
simulator workspace, shown in the figure below.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug937-vivado-design-suite-simulation-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=49

Figure 6: Vivado Simulator Workspace

Main Toolbar
The main toolbar provides one-click access to the most commonly used commands in the Vivado
IDE. When you hover over an option, a tool tip appears that provides more information.

Run Menu
The menus provide the same options as the Vivado IDE with the addition of a Run menu after
you have run a simulation.

The Run menu for simulation is shown in the following figure.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=50

Figure 7: Simulation Run Menu Options

The Vivado simulator Run menu options:

• Restart: Lets you restart an existing simulation from time 0. Tcl Command: restart

• Run All: Lets you run an open simulation to completion. Tcl Command: run -all

• Run For: Lets you specify a time for the simulation to run. Tcl Command: run <time>

TIP: While you can always specify time units in the run command such as run 100 ns , you can also
omit the time unit. If you omit the time unit, the Vivado simulator will assume the time unit of the
TIME_UNIT Tcl property. To view the TIME_UNIT property use the Tcl command get_property
time_unit [current_sim]. To change the TIME_UNIT property use the Tcl command
set_property time_unit <unit> [current_sim], where <unit> is one of the following:
fs, ps, ns, us, ms, and s.

• Step: Runs the simulation up to the next HDL source line.

• Break: Lets you pause a running simulation.

• Delete All Breakpoints: Deletes all breakpoints.

• Relaunch Simulation: Recompiles the simulation files and restarts the simulation.

Related Information

Re-running the Simulation After Design Changes (relaunch)

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=51

Simulation Toolbar
When you run the Vivado simulator, the simulation-specific toolbar (shown in the figure below)
opens to the right of the main toolbar.

Figure 8: Simulation Toolbar

These are the same buttons labeled in Run Menu, above (without the Delete All Breakpoints
option), and they are provided for ease of use.

Simulation Toolbar Button Descriptions

Hover over the toolbar buttons for tool-tip descriptions.

• Restart: resets the simulation time to zero.

• Run all: runs the simulation until it completes all events or until an HDL statement indicates
that the simulation should stop.

• Run For: runs for a specified period of time.

• Step: runs the simulation until the next HDL statement.

• Break: Pauses the current simulation.

• Relaunch: Recompiles the simulation sources and restarts the simulation (after making code
changes, for example).

Related Information

Re-running the Simulation After Design Changes (relaunch)

Sources Window
The Sources window displays the simulation sources in a hierarchical tree, with views that show
Hierarchy, IP Sources, Libraries, and Compile Order, as shown in the following figure.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=52

Figure 9: Sources Window

The Sources buttons are described by tool tips when you hover the mouse over them. The
buttons let you examine, expand, collapse, add to, open, filter and scroll through files.

You can also open or add a source file by right-clicking on the source object and selecting the
Open File or Add Sources options.

Scope Window
A scope is a hierarchical partition of an HDL design. Whenever you instantiate a design unit or
define a process, block, package, or subprogram, you create a scope.

In the Scope window (shown in the figure below), you can see the design hierarchy. When you
select a scope in the Scope window, all HDL objects visible from that scope appear in the Objects
window. You can select HDL objects in the Objects window and add them to the waveform
viewer.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=53

Figure 10: Scope Window

Filtering Scopes

• Click Settings option on the scopes sub-menu to toggle between showing or hiding (check or
uncheck) the corresponding scope type.

TIP: When you hide a scope using Setting option, all scopes inside that scope are also hidden regardless
of type. For example, in the figure above, clicking the Verilog Module button to hide all Verilog module
scopes would hide not only the bft_tb  scope but also uut  (even though uut  is a VHDL entity
scope).

• To limit the display to scopes containing a specified string, click the Search button and
type the string in the text box.

The objects displayed in the Objects window change (or are filtered) based on the current scope.
Select the current scope to change the objects in the Objects window.

When you right-click a scope, a menu (shown in the following figure) appears with the following
options:

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=54

Figure 11: Scope Window Options

• Add to Wave Window: Adds all viewable HDL objects of the selected scope to the waveform
configuration.

TIP: HDL objects of large bit width can slow down the display of the waveform viewer. You can filter
out such objects by setting a display limit on the wave configuration before issuing the Add to Wave
Window command. To set a display limit, use the Tcl command set_property DISPLAY_LIMIT
<maximum bit width> [current_wave_config].

The Add to Wave Window command might add a different set of HDL objects from the set
displayed in the Objects window. When you select a scope in the Scope window, the Objects
window might display HDL objects from enclosing scopes in addition to objects defined
directly in the selected scope. The Add to Wave Window command, on the other hand, adds
objects from the selected scope only.

Alternately, you can drag and drop items in the Objects window into the Name column of the
Wave window.

IMPORTANT! The Wave window displays the value changes of an object over time, starting from the
simulation time at which the object was added.

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
having to restart the simulation because of missing value changes: issue the log_wave -r /  Tcl
command at the start of a simulation run to capture value changes for all display-able HDL objects in
your design. For more information, see Using the log_wave Tcl Command.

Changes to the waveform configuration, including creating the waveform configuration or
adding HDL objects, do not become permanent until you save the WCFG file.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=55

• Go To Source Code: Opens the source code at the definition of the selected scope.

• Go To Instantiation Source Code: For Verilog modules and VHDL entity instances, opens the
source code at the point of instantiation for the selected instance.

• Set Current Scope to Active: Set the current scope to selected scope. The selected scope
becomes the active simulation scope (i.e. get_property active_scope
[current_sim]). Active simulation scope is the HDL process scope, where the simulation is
currently paused. When used by disabling the follow active scope in setting, Vivado simulator
will remember the last current_scope selection even when simulation proceeds. When a
break-point is hit, current_scope will still point to last scope which is set as active scope

• Log to Wave Database: You can log either of the following:

○ The objects of current scope

○ The objects of the current scope and all scope below the current scope.

TIP: By default, the Vivado simulator suppresses the logging of large HDL objects. To change the size
limit of logged objects, use the set_property trace_limit <size> [current_sim]  Tcl
command, where <size>  is the number of scalar elements in the HDL object.

In the source code text editor, you can hover over an identifier in the code get the value, as
shown in Scope Window.

IMPORTANT! For this feature to work, be sure you have the scope associated with the source code
selected in the Scope window.

TIP: Because the top module is not instantiated, the Go to Instantiation Source Code right-click option
(shown in the figure above) is grayed out when the top module is selected.

TIP: Use log_wave  to log the objects of current scope or below. Post simulation, you can add any
objects on waveform and see the plot starting from time 0 till current simulation.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=56

Figure 12: Source Code with Identifier Value Displayed

Additional Scopes and Sources Options

In either the Scope or the Sources window, a search field displays when you select the Show

Search button .

As an equivalent to using the Scope and Objects windows, you can navigate the HDL design by
typing the following in the Tcl Console:

get_scopes
current_scope
report_scopes

id="ai516872">report_values

TIP: To access source files for editing, you can open files from the Scope or Objects window by selecting Go
to Source Code, as shown in Scope Window.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=57

Figure 13: Context Menu in Scope Window

TIP: After you have edited source code and saved the file, you can click the Relaunch button to
recompile and relaunch simulation without having to close and reopen the simulation.

Objects Window
The Objects window displays the HDL simulation objects associated with the scope selected in
the Scope window, as shown in the following figure.

Figure 14: Objects Window

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=58

Icons beside the HDL objects show the type or port mode of each object. This view lists the
Name, Value, and Data Type of the simulation objects.

You can obtain the current value of an object by typing the following in the Tcl Console.

get_value <hdl_object>

TIP: To limit the number of digits to display for vectors, use the set_property
array_display_limit <bits> [current_sim]  command, where <bits> is the number of bits
to display.

The following table briefly describes the options available at the top of the Objects window. Click
Settings to view the selected objects in the Objects window. Use this to filter or limit the
contents of the Objects window.

• Search: You can use the Search option to search for an object name.

• Settings: Settings option allows you to display or hide various HDL objects in the Objects
window.

Objects Context Menu

When you right-click an object in the Objects window, a context menu (shown in Objects
Window) appears. The options in the context menu are described below.

Figure 15: Context Menu in Objects Window

• Add to Wave Window: Add the selected object to the waveform configuration. Alternately,
you can drag and drop the objects from the Objects window to the Name column of the wave
window.

• Log to Wave Database: Logs events of the selected object to the waveform database (WDB)
for later viewing in the wave window.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=59

TIP: By default, the Vivado simulator suppresses the logging of large HDL objects. To change the size
limit of logged objects, use the set_property trace_limit <size> [current_sim]  Tcl
command, where <size>  is the number of scalar elements in the HDL object.

• Show in Wave Window: Highlights the selected object in the wave window.

• Default Radix: Set the default radix for all objects in the Objects window and text editor. The
default radix is Hexadecimal. You can change this option from the context menu.

Tcl command:

set_property radix <new radix> [current_sim]

Where <new radix> is any of the following:

• bin

• unsigned (for unsigned decimal)

• hex

• dec (for signed decimal)

• ascii

• oct

• smag (for signed magnitude)

Note: If you need to change the radix of an individual signal, use radix option from the context menu.

• Radix: Select the numerical format to use when displaying the value of the selected object in
the Objects window and in the source code window.

You can change the radix of an individual object as follows:

1. Right-click an object in the Objects window.

2. From the context menu, select Radix and the format you want to use:

• Default

• Binary

• Hexadecimal

• Octal

• ASCII

• Unsigned Decimal

• Signed Decimal

• Signed Magnitude

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=60

TIP: If you change the radix in the Objects window, it will not be reflected in the wave window.

• Show as Enumeration: Select to display the values of a SystemVerilog enumeration signal or
variable using enumeration labels.

Note: This menu item is enabled only for SystemVerilog enumerations. If unchecked, all values of the
enumeration object display numerically according to the radix set for the object. If checked, those
values for which the enumeration declaration defines a label display the label text, and all other values
display numerically.

• Report Drivers: Display in the Tcl Console a report of the HDL processes that assign values to
the selected object.

• Go To Source Code: Open the source code at the definition of the selected object.

• Force Constant: Forces the selected object to a constant value.

• Force Clock: Forces the selected object to an oscillating value.

• Remove Force: Removes any force on the selected object.

TIP: If you notice that some HDL objects do not appear in the Waveform Viewer, it is because Vivado
simulator does not support waveform tracing of some HDL objects, such as named events in Verilog
and local variables.

Related Information

Using Force Commands

Wave Window
When you invoke the simulator it opens a wave window by default. The wave window displays a
new wave configuration consisting of the traceable HDL objects from the top module of the
simulation, as shown in Wave Window.

TIP: On closing and reopening a project, you must rerun simulation to view the wave window. If, however,
you unintentionally close the default wave window while a simulation is active, you can restore it by
selecting Window → Waveform from the main menu.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=61

Figure 16: Wave Window

To add an individual HDL object or set of objects to the wave window: in the Objects window,
right-click an object or objects and select the Add to Wave Window option from the context
menu (shown in Objects Window).

To add an object using the Tcl command type: add_wave <HDL_objects>.

Using the add_wave command, you can specify full or relative paths to HDL objects.

For example, if the current scope is /bft_tb/uut, the full path to the reset register under uut
is /bft_tb/uut/reset: the relative path is reset.

TIP: The add_wave  command accepts HDL scopes as well as HDL objects. Using add_wave  with a
scope is equivalent to the Add To Wave Window command in the Scope window. HDL objects of large bit
width can slow down the display of the waveform viewer. You can filter out such objects by setting a
display limit on the wave configuration before issuing the Add to Wave Window command. To set a display
limit, use the Tcl command set_property DISPLAY_LIMIT <maximum bit width>
[current_wave_config].

Wave Objects
The Vivado IDE Wave window is common across a number of Vivado Design Suite tools. An
example of the wave objects in a waveform configuration is shown in the following figure.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=62

Figure 17: HDL Objects in Waveform

The Wave window displays HDL objects, their values, and their waveforms, together with items
for organizing the HDL objects, such as: groups, dividers, and virtual buses.

Collectively, the HDL objects and organizational items are called a wave configuration. The
waveform portion of the Wave window displays additional items for time measurement, that
include: cursors, markers, and timescale rulers.

The Vivado IDE traces the value changes of the HDL object in the Wave window during
simulation, and you use the wave configuration to examine the simulation results.

The design hierarchy and the simulation waveforms are not part of the wave configuration, and
are stored in a separate wave database (WDB) file.

Context Menu in Waveform Window

When you right-click an object in the Waveform window, a context menu (shown in the following
figure) appears. See Understanding HDL Objects in Waveform Configurations for more
information on HDL objects in Waveforms. The options in the context menu are described below

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=63

• Go To Source Code: Opens the source code at the definition of the selected design wave
object.

• Show in Object Window: Displays the HDL objects for a design wave object in the Objects
window.

• Report Drivers: Display in the Tcl Console a report of the HDL processes that assign values to
the selected wave object.

• Force Constant: Forces the selected object to a constant value.

• Force Clock: Forces the selected object to an oscillating value.

• Remove Force: Removes any force on the selected object.

• Find: Opens the Find Toolbar in the Waveform window to search for a wave object by name.

• Find Value: Opens the Find Toolbar in the Waveform window to search a waveform for a
value.

• Select All: Selects all the wave objects in the Waveform window.

• Expand: Shows the sub-objects of the selected wave object.

• Collapse: Hides the sub-objects of the selected wave object.

• Ungroup: Unpacks the selected group or virtual bus.

• Rename: Changes the displayed name of the selected wave object.

• Name: Changes the display of the name of the selected wave object to show the full
hierarchical name (long name), the simple signal or bus name (short name), or a custom name.

• Waveform Style: Changes the waveform of the selected design wave object to digital or
analog format.

• Signal Color: Sets the waveform color of the selected design wave object.

• Divider Color: Sets the bar color of the selected divider.

• Radix: Sets the radix in which to display values of the selected design wave objects.

• Show as Enumeration: Shows values of the selected SystemVerilog enumeration wave object
as enumerator labels in place of numbers, whenever possible.

• Reverse Bit Order: Reverses the bit order of values displayed for the selected array wave
object.

• New Group: Packs the selected wave objects into a folder-like group wave object.

• New Divider: Creates a horizontal separator in the list of the Waveform window's wave
objects.

• New Virtual Bus: Creates a new logic vector wave object consisting of the bits of the selected
design wave objects.

• Cut: Allows you to cut a signal in the Waveform window.

• Copy: Allows you to copy a signal in the Waveform window.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=64

• Paste: Allows you to paste a signal in the Waveform window.

• Delete: Allows you to delete a signal in the Waveform window.

Figure 18: Context Menu of Waveform Objects Window

See Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator for more information
about using the Wave window.

Saving a Waveform Configuration

The new wave configuration is not saved to disk automatically. Select File → Simulation
Waveform → Save Configuration As and supply a file name to save a WCFG file.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=65

To save a wave configuration to a WCFG file, type the Tcl command save_wave_config
<filename.wcfg>.

The specified command argument names and saves the WCFG file.

IMPORTANT! Zoom settings are not saved with the wave configuration.

Related Information

Using Analog Waveforms
Changing the Format of SystemVerilog Enumerations
Organizing Waveforms
Waveform Object Naming Styles
Using Force Commands
Searching a Value in Waveform Configuration
Grouping Signals and Objects
Reversing the Bus Bit Order

Creating and Using Multiple Waveform
Configurations
In a simulation session you can create and use multiple wave configurations, each in its own
Wave window. When you have more than one Wave window displayed, the most recently-
created or recently-used window is the active window. The active window, in addition to being
the window currently visible, is the Wave window upon which commands external to the window
apply. For example: HDL Objects → Add to Wave Window.

You can set a different Wave window to be the active window by clicking the title of the window.

Related Information

Distinguishing Between Multiple Simulation Runs
Creating a New Wave Configuration

Running Functional and Timing Simulation
As soon as your project is created in the Vivado Design Suite, you can run behavioral simulation.
You can run functional and timing simulations on your design after successfully running synthesis
and/or implementation. To run simulation: in the Flow Navigator, select Run Simulation and
choose the appropriate option from the popup menu shown in the figure below.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=66

TIP: Availability of popup menu options is dependent on the design development stage. For example, if you
have run synthesis but have not yet run implementation, the implementation options in the popup menu
are grayed out.

Figure 19: Simulation Run Options

Running Functional Simulation
Post-Synthesis Functional Simulation

You can view Run Simulation → Post-Synthesis Functional Simulation option (shown in the
previous figure) after completing a successful synthesis run.

After synthesis, the general logic design has been synthesized into device-specific primitives.
Performing a post-synthesis functional simulation ensures that any synthesis optimizations have
not affected the functionality of the design. After you select a post-synthesis functional
simulation, the functional netlist is generated, and the UNISIM libraries are used for simulation.

Post-Implementation Functional Simulations

The Run Simulation → Post-Implementation Functional Simulation option (shown in the previous
figure) becomes available after completing implementation run.

After implementation, the design has been placed and routed in hardware. A functional
verification at this stage is useful in determining if any physical optimizations during
implementation have affected the functionality of your design.

After you select a post-implementation functional simulation, the functional netlist is generated
and the UNISIM libraries are used for simulation.

Running Timing Simulation
TIP: Post-Synthesis timing simulation uses the estimated timing delay from the device models and does not
include interconnect delay. Post-Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation the simulator tools
include:

• Gate-level netlist containing SIMPRIMS library components

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=67

• SECUREIP

• Standard Delay Format (SDF) files

You defined the overall functionality of the design in the beginning. When the design is
implemented, accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

• Calls the netlist writer, write_verilog with the -mode timesim switch and write_sdf
(SDF annotator)

• Sends the generated netlist to the target simulator

You control these options using Simulation Settings as described in Using Simulation Settings.

IMPORTANT! Post-Synthesis and Post-Implementation timing simulations are supported for Verilog only.
There is no support for VHDL timing simulation. If you are a VHDL user, you can run post synthesis and
post implementation functional simulation (in which case no SDF annotation is required and the simulation
netlist uses the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage
information, refer to the Vivado Design Suite Tcl Command Reference Guide (UG835).

IMPORTANT! The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport_int_delays -pulse_r 0 -
pulse_int_r 0

Post-Synthesis Timing Simulation

The Run Simulation → Post-Synthesis Timing Simulation option (shown in the previous figure)
becomes available after completing a successful synthesis run.

After synthesis, the general logic design has been synthesized into device-specific primitives, and
the estimated routing and component delays are available. Performing a post-synthesis timing
simulation allows you to see potential timing-critical paths prior to investing in implementation.
After you select a post-synthesis timing simulation, the timing netlist and the estimated delays in
the SDF file are generated. The netlist files includes $sdf_annotate command so that the
simulation tool includes the generated SDF file.

Post-Implementation Timing Simulations

The Run Simulation → Post-Implementation Timing Simulation option (shown in the previous
figure) becomes available after completing implementation run.

After implementation, the design has been implemented and routed in hardware. A timing
simulation at this stage helps determine whether or not the design functionally operates at the
specified speed using accurate timing delays. This simulation is useful for detecting
unconstrained paths, or asynchronous path timing errors, for example, on resets. After you select
a post-implementation timing simulation, the timing netlist and the SDF file are generated. The
netlist files includes $sdf_annotate command so that the generated SDF file is picked up.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=68

When you specified simulation settings, you specified whether or not to create an SDF file and
whether the process corner would be set to fast or slow.

TIP: To find the SDF file optional settings, in the Vivado IDE Flow Navigator, right click Simulation and
select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist tab.

Based on the specified process corner, the SDF file contains different min and max numbers.

Run two separate simulations to check for setup and hold violations.

To run a setup check, create an SDF file with -process_corner slow, and use the max column from
the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min column
from the SDF file. The method for specifying which SDF delay field to use is dependent on the
simulation tool you are using. Refer to the specific simulation tool documentation for information
on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

• Slow corner: SDFMIN and SDFMAX

• Fast corner: SDFMIN and SDFMAX

Saving Simulation Results
The Vivado simulator saves the simulation results of the objects (VHDL signals, or Verilog reg or
wire) being traced to the Waveform Database (WDB) file (<filename>.wdb) in the
<project>.sim/<simset> directory.

If you add objects to the Wave window and run the simulation, the design hierarchy for the
complete design and the transitions for the added objects are automatically saved to the WDB
file. You can also add objects to the waveform database that are not displayed in the Wave
window using the log_wave command. For information about the log_wave command, see
Using the log_wave Tcl Command.

Distinguishing Between Multiple Simulation
Runs

When you have run several simulations against a design, the Vivado simulator displays named
tabs at the top of the workspace with the simulation type that is currently in the window
highlighted, as shown in the following figure.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=69

Figure 20: Active Simulation Type

Closing a Simulation
To close a simulation, in the Vivado IDE:

Select File > Exit or click the X at the top-right corner of the project window.

CAUTION! When there are multiple simulations running, clicking the X on the blue title bar closes all
simulations. To close a single simulation, click the X on the small gray or white tab under the blue title bar.

To close a simulation from the Tcl Console, type:

close_sim

The Tcl command first checks for unsaved wave configurations. If any exist, the command issues
an error. Close or save unsaved wave configurations before issuing the close_sim command, or
add the -force option to the Tcl command.

Note: It is always recommended to use close_sim command to completely close the simulation before
using close_project command to close the current project.

Adding a Simulation Start-up Script File
You can add custom Tcl commands in a batch file to the project so that they are run with the
simulation. These commands are run after simulation begins. An example of this process is
described in the steps below.

1. Create a Tcl script with the simulation commands you want to add to the simulation source
files. For example, if you have a simulation that runs for 1,000 ns, and you want it to run
longer, create a file that includes:

run 5us

Or, if you want to monitor signals that are not at the top level (because, by default, only top-
level signals are added to the waveform), you can add them to the post.tcl script. For
example:

add_wave/top/I1/<signalName>

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=70

2. Name the file post.tcl and save it.

3. Use the Add Sources option in Flow Navigator to invoke the Add Sources wizard, and select
Add or Create Simulation Sources.

4. Add the post.tcl file to your Vivado Design Suite project as a simulation source. The
post.tcl file displays in the Simulation Sources folder, as shown in the following figure.

5. From the Simulation toolbar, click the Relaunch button .

Simulation runs again, with the additional time you specified in the post.tcl file added to
the originally specified time. Notice that the Vivado simulator automatically sources the
post.tcl file after invoking all its commands.

Viewing Simulation Messages
The Vivado IDE contains a message area where you can view informational, warning, and error
messages. As shown in the following figure, some messages from the Vivado simulator contain an
issue description and a suggested resolution.

To see the same detail in the Tcl Console, type:

help -message {message_number}

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=71

Figure 21: Simulator Message Description and Resolution Information

An example of such a command is as follows:

help -message {simulator 43-3120}

Managing Message Output
If your HDL design produces a large number of messages (for example, via the $display Verilog
system task or report VHDL statement), you can limit the amount of text output sent to the Tcl
Console and log file. This saves computer memory and disk space. To accomplish this, use the -
maxlogsize command line option:

1. In the Flow Navigator, right-click on SIMULATION and select Simulation Settings.

2. In the Settings dialog box, add -maxlogsize <size> next to
xsim.simulate.xsim.more_options, where <size> is the maximum amount of text
output in megabytes.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=72

Using the launch_simulation Command
The launch_simulation command lets you run any supported simulator in script mode.

The syntax of launch_simulation is as follows:

launch_simulation [-step <arg>] [-simset <arg>] [-mode <arg>] [-type <arg>]
 [-scripts_only] [-of_objects <args>] [-absolute_path]
 [-install_path <arg>] [-noclean_dir] [-quiet] [-
verbose][-gcc_install_path <arg>]

The following table describes the options of launch_simulation.

Table 11: launch_simulation Options

Option Description
[-step] Launch a simulation step. Values: all, compile, elaborate, simulate. Default: all (launch all

steps).
[-simset] Name of the simulation fileset.
[-mode] Simulation mode. Values: behavioral, post-synthesis, post-implementation Default: behavioral.
[-type] Netlist type. Values: functional, timing. This is only applicable when the mode is set to post-

synthesis or post-implementation.
[-scripts_only] Only generate scripts.
[-of_objects] Generate compile order file for this object (applicable with -scripts_only option only)

[-absolute_path] Make all file paths absolute with respect to the reference directory.
[-install_path] Custom installation directory path.
[-noclean_dir] Do not remove simulation run directory files.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.
[-gcc_install_path] Specify GNU compiler installation directory path for g++/gcc executable

Examples
• Running behavioral simulation using Vivado simulator

create_project project_1 project_1 -part xc7vx485tffg1157-1
add_files -norecurse tmp.v
add_files -fileset sim_1 -norecurse testbench.v
import_files -force -norecurse
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
launch_simulation

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=73

• Generating script for behavioral simulation with Questa Advanced Simulator.

create_project project_1 project_1 -part xc7vx485tffg1157-1
add_files -norecurse tmp.v
add_files -fileset sim_1 -norecurse testbench.v
import_files -force -norecurse
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
set_property target_simulator Questa [current_project]
set_property compxlib.questa_compiled_library_dir
<compiled_library_location>
[current_project]
launch_simulation -scripts_only

• Launching post-synthesis functional simulation using Synopsys VCS

set_property target_simulator VCS [current_project]
set_property compxlib.vcs_compiled_library_dir
<compiled_library_location>
[current_project]
launch_simulation -mode post-synthesis -type functional

• Running post-implementation timing simulation using Cadence IES

set_property target_simulator IES [current_project]
set_property compxlib.ies_compiled_library_dir
<compiled_library_location>
[current_project]
launch_simulation -mode post-implementation -type timing

Re-running the Simulation After Design
Changes (relaunch)

While debugging your HDL design with the Vivado simulator, you can determine that your HDL
source code needs correction.

Use the following steps to modify your design and re-run the simulation:

1. Use the Vivado code editor or other text editor to update and save any necessary source
code changes.

2. Use the Relaunch button on the Vivado IDE toolbar to re-compile and re-launch the
simulation as shown in the following figure. You may alternatively use the relaunch_sim
Tcl command to re-compile and re-launch the simulation.

Figure 22: relaunch sim option

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=74

3. If the modified design fails to compile, an error box appears displaying the reason for failure.
The Vivado IDE continues to display the results of the previous run of the simulation in a
disabled state. Return to step 1 to correct the errors and re-launch the simulation again.

After the design successfully re-compiles, the simulation starts again.

IMPORTANT! Relaunching may fail for reasons other than compilation errors, such as in the case of a file
system error. If the Run buttons on the Simulation toolbar are grayed out after a re-launch, indicating that
the simulation is disabled, check the contents of the Tcl Console for possible errors that have prevented the
re-launch from succeeding.

CAUTION! You may also re-launch the simulation using Run Simulation in the Flow Navigator or using
launch_simulation  Tcl command. However, using these options may fully close the simulation,
discarding waveform changes and simulation settings such as radix customization.

Note: The Relaunch Simulation button will be active only after one successful run of Vivado simulator
using launch_simulation. The Relaunch Simulation button would be grayed out if the simulation is run
in a Batch/Scripted mode.

Using the Saved Simulator User Interface
Settings

By default, the Vivado simulator saves your configuration changes to a file under the simulation's
working directory as you work with the user interface controls and Tcl commands of the Vivado
simulator. The settings that are saved include the following:

• The state of the filter buttons and column widths of the Scopes and Objects windows.

• Tcl properties of the simulation, including array display limit, default radix, default time unit for
the run command, and trace limit.

• Radixes and the Show as Enumeration state that you set on HDL objects in the Objects
window.

After you shut down the simulation, the Vivado simulator restores your settings when you
reopen and run the Vivado simulator.

IMPORTANT! Turn off the Clean Up Simulation Files check box in Vivado's Simulation Settings to ensure
that the settings file does not get erased when you relaunch the simulation.

TIP: To revert the settings to their defaults, delete the settings file. You can find the settings file under the
Vivado project directory at <project>.sim/<simset>/<simtype>/xsim.dir/<snapshot>/
xsimSettings.ini . For example, the settings file for the default behavioral simulation run of the BFT
example design would reside at bft.sim/sim_1/behav/xsim.dir/bft_tb_behav/
xsimSettings.ini . Alternatively, turn on the Clean Up Simulation Files check box in the Simulation
Settings.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=75

Default Settings
A Vivado® project Tcl object supports a few properties that allows you to supply default settings
for cleaned up or newly created simulations. These simulations do not already have a settings
file. The following list shows the default settings properties of the project:

• XSIM.ARRAY_DISPLAY_LIMIT

• XSIM.RADIX

• XSIM.TIME_UNIT

• XSIM.TRACE_LIMIT

You can view the current values of the properties with the report_property
[current_project] Tcl command and set the values of the properties with the
set_property <property name> <property value> [current_project] Tcl
command. For example, to set the array display limit to 16, use the following command.

set_property xsim.array_display_limit 16 [current_project]

When you launch the new or cleaned-up simulation, the simulation Tcl object inherits your
project properties. You can verify it with the following Tcl command:

report_property [current_sim]

IMPORTANT! The project properties apply only to cleaned-up or newly created simulations. After you
have run a simulation of a particular run type and sim set such as sim_1/behav, that simulation retains
a separate copy of the settings for all subsequent launches. The changes to the project properties can no
longer take effect for that simulation. The project properties take effect again only if the simulation is
cleaned up or the settings file is deleted.

Chapter 4: Simulating with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=76

Chapter 5

Analyzing Simulation Waveforms
with Vivado Simulator

In the Vivado® simulator, you can use the waveform to analyze your design and debug your code.
The simulator populates design signal data in other areas of the workspace, such as the Objects
and the Scope windows.

Typically, simulation is set up in a test bench where you define the HDL objects you want to
simulate. For more information about test benches see Writing Efficient Test Benches (XAPP199).

When you launch the Vivado simulator, a wave configuration displays with top-level HDL
objects. The Vivado simulator populates design data in other areas of the workspace, such as the
Scope and Objects windows. You can then add additional HDL objects, or run the simulation. See
Using Wave Configurations and Windows below.

Using Wave Configurations and Windows
Vivado simulator allows customization of the wave display. The current state of the display is
called the wave configuration. This configuration can be saved for future use in a WCFG file.

A wave configuration can have a name or be untitled. The name shows on the title bar of the
wave configuration window. A wave configuration is untitled when it has never been saved to a
file.

Creating a New Wave Configuration
Create a new waveform configuration for displaying waveforms as follows:

1. Select File → Simulation Waveform → New Configuration.

A new Wave window opens and displays a new, untitled waveform configuration. Tcl
command: create_wave_config <waveform_name>.

2. Add HDL objects to the waveform configuration using the steps listed in Understanding HDL
Objects in Waveform Configurations .

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=77

See Chapter 4: Simulating with Vivado Simulator for more information about creating new
waveform configurations. Also see Creating and Using Multiple Waveform Configurations for
information on multiple waveforms.

Opening a WCFG File
Open a WCFG file to use with the simulation as follows:

1. Select File > Simulation Waveform > Open Configuration .

The Open Waveform Configuration dialog box opens.

2. Locate and select a WCFG file.

Note: When you open a WCFG file that contains references to HDL objects that are not present in a
static simulation HDL design hierarchy, the Vivado simulator ignores those HDL objects and omits
them from the loaded waveform configuration.

A Wave window opens, displaying waveform data that the simulator finds for the listed wave
objects of the WCFG file.

Tcl command: open_wave_config <waveform_name>

Saving a Wave Configuration
After editing, to save a wave configuration to a WCFG file, select File → Simulation Waveform → 
Save Configuration As, and type a name for the waveform configuration.

Tcl command: save_wave_config <waveform_name>

Opening a Previously Saved Simulation Run
There are three methods for opening a previously saved simulation using the Vivado Design
Suite: an interactive method and a programmatic method.

Standalone mode

You can open WDB file outside Vivado using the following command:

xsim <name>.wdb -gui

TIP: You can open a WCFG file together with the WDB file by adding -view <WCFG file>  to the
xsim  command.

Interactive Method

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=78

• If a Vivado Design Suite project is loaded, click Flow → Open Static Simulation and select the
WDB file containing the waveform from the previously run simulation.

TIP: A static simulation is a mode of the Vivado simulator in which the simulator displays data from a
WDB file in its windows in place of data from a running simulation.

• Alternatively, in the Tcl Console, run: open_wave_database <name>.wdb.

Programmatic Method

Create a Tcl file (for example, design.tcl) with contents:

current_fileset
open_wave_database <name>.wdb

Then run it as:

vivado -source design.tcl

IMPORTANT! Vivado simulator can open WDB files created on any supported operating system. It can
also open WDB files created in Vivado Design Suite versions 2014.3 and later. Vivado simulator cannot
open WDB files created in versions earlier than 2014.3 of the Vivado Design Suite.

When you run a simulation and display HDL objects in a Wave window, the running simulation
produces a waveform database (WDB) file containing the waveform activity of the displayed
HDL objects. The WDB file also stores information about all the HDL scopes and objects in the
simulated design. In this mode you cannot use commands that control or monitor a simulation,
such as run commands, as there is no underlying 'live' simulation model to control.

However, you can view waveforms and the HDL design hierarchy in a static simulation.

Understanding HDL Objects in Waveform
Configurations

When you add an HDL object to a waveform configuration, the waveform viewer creates a wave
object of the HDL object. The wave object is linked to, but distinct from, the associated HDL
object.

You can create multiple wave objects from the same HDL object, and set the display properties
of each wave object separately.

For example, you can set one wave object for an HDL object named myBus to display values in
hexadecimal and another wave object for myBus to display values in decimal.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=79

There are other kinds of wave objects available for display in a waveform configuration, such as:
dividers, groups, and virtual buses.

Wave objects created from HDL objects are specifically called design wave objects. These objects
display with a corresponding icon. For design wave objects, the icon indicates whether the object
is a scalar or a compound such as a Verilog vector or VHDL record.

TIP: To view the HDL object for a design wave object in the Objects window, right-click the name of the
design wave object and choose Show in Object Window.

The following figure shows an example of HDL objects in the waveform configuration window.
The design objects display Name and Value.

• Name: By default, shows the short name of the HDL object: the name alone, without the
hierarchical path of the object. You can change the Name to display a long name with full
hierarchical path or assign it a custom name.

• Value: Displays the value of the object at the time indicated in the main cursor of the wave
window. You can change the formatting, or radix, of the value independent of the formatting
of other design wave objects linked to the same HDL object and independent of the
formatting of values displayed in the Objects window and source code window.

Figure 23: Waveform HDL Objects

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=80

The Scope window provides the ability to add all viewable HDL objects for a selected scope to
the wave window. For information on using the Scope window, see Scope Window.

About Radixes
Understanding the type of data on your bus is important, and to use the digital and analog
waveform options effectively, you need to recognize the relationship between the radix setting
and the data type.

IMPORTANT! Make a change to the radix setting in the window in which you wish to see the change. A
change to the radix of an item in the Objects window does not apply to values in the Wave window or the
Tcl Console. For example, the item wbOutputData[31:0] can be set to Signed Decimal in the objects
window, but it remains set to Binary in the Wave window.

Changing the Default Radix

The default waveform radix controls the numerical format of values for all wave objects whose
radix you did not explicitly set. The waveform radix defaults to Hexadecimal.

To change the default waveform radix:

1. In the Waveform window, click the Settings button to open the Waveform Settings.

2. On the General page, click the Default Radix drop-down menu.

3. From the drop-down list, select a radix.

Changing the Radix on Individual Objects

To change the radix of a wave object in the Wave window:

1. Right-click the wave object name.

2. Select Radix and the format you want from the drop-down menu:

• Default

• Binary

• Hexadecimal

• Octal

• ASCII

• Unsigned Decimal

• Signed Decimal

• Signed Magnitude

• Real

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=81

Note: For a description of the usage for Real and Real Settings see Using Analog Waveforms

3. From the Tcl Console, to change the numerical format of the displayed values, type the
following Tcl command:

set_property radix <radix> <hdl_object>

Where <radix> is one the following: bin, unsigned, hex, dec, ascii, or oct and where
<wave_object> is an object returned by the add_wave command.

TIP: If you change the radix in the Wave window, it will not be reflected in the Objects window.

Customizing the Waveform
Using Analog Waveforms
Using Radixes and Analog Waveforms

Bus values are interpreted as numeric values, which are determined by the radix setting on the
bus wave object, as follows:

• Binary, octal, hexadecimal, ASCII, and unsigned decimal radixes cause the bus values to be
interpreted as unsigned integers.

• If any bit in the bus is neither 0 nor 1, the entire bus value is interpreted as 0.

• The signed decimal and signed magnitude radixes cause the bus values to be interpreted as
signed integers.

• Real radixes cause bus values to be interpreted as fixed point or floating point real numbers,
based on settings of the Real Settings dialog box.

To set a wave object to the Real radix:

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=82

1. In the waveform configuration window, select an HDL object, and right-click to open the
popup menu.

2. Select Radix → Real Settings to open the Real Settings dialog box, shown in the following
figure.

You can set the radix of a wave to Real to display the values of the object as real numbers. Before
selecting this radix, you must choose settings to instruct the waveform viewer how to interpret
the bits of the values.

The Real Setting dialog box options are:

• Fixed Point: Specifies that the bits of the selected bus wave object(s) is interpreted as a fixed
point, signed, or unsigned real number.

• Binary Point: Specifies how many bits to interpret as being to the right of the binary point. If
Binary Point is larger than the bit width of the wave object, wave object values cannot be
interpreted as fixed point, and when the wave object is shown in Digital waveform style, all
values show as <Bad Radix>. When shown as analog, all values are interpreted as 0.

• Floating Point: Specifies that the bits of the selected bus wave object(s) should be interpreted
as an IEEE floating point real number.

Note: Only single precision and double precision (and custom precision with values set to those of single
and double precision) are supported.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=83

Other values result in <Bad Radix> values as in Fixed Point. Exponent Width and Fraction
Width must add up to the bit width of the wave object, or else <Bad Radix> values result.

TIP: If the row indices separator lines are not visible, you can turn them on in the Using the Waveform
Settings Dialog Box, to make them visible.

Displaying Waveforms as Analog

IMPORTANT! When viewing an HDL bus object as an analog waveform—to produce the expected
waveform, select a radix that matches the nature of the data in the HDL object. For example:

• If the data encoded on the bus is a 2's-compliment signed integer, you must choose a signed
radix.

• If the data is floating point encoded in IEEE format, you must choose a real radix.

Customizing the Appearance of Analog Waveforms

To customize the appearance of an analog waveform, right-click an HDL object in the Name
column of the waveform configuration window and select Waveform Style from the drop-down
menu. A popup menu appears, showing the following options:

• Analog: Sets the waveform to Analog.

• Digital: Sets the waveform object to Digital.

• Analog Settings: Opens the Analog Settings dialog box (shown in the following figure), which
provides options for the analog waveform display.

The Wave window can display analog waveforms only for buses that are 64 bits wide or smaller.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=84

Figure 24: Analog Settings Dialog Box

Analog Settings Dialog Box Option Descriptions

• Row Height: Specifies how tall to make the select wave object(s), in pixels. Changing the row
height does not change how much of a waveform is exposed or hidden vertically, but rather
stretches or contracts the height of the waveform.

When switching between Analog and Digital waveform styles, the row height is set to an
appropriate default for the style (20 for digital, 100 for analog).

TIP: If the row indices separator lines are not visible, enable the checkbox in the Waveform Settings to
turn them on. Using the Waveform Settings Dialog Box for information on how to change the options
settings. You can also change the row height by dragging the row index separator line to the left and
below the waveform name.

• Y Range: Specifies the range of numeric values to be shown in the waveform area.

○ Auto: Specifies that the range should continually expand whenever values in the visible
time range of the window are discovered to lie outside the current range.

○ Fixed: Specifies that the time range is to remain at a constant interval.

○ Min: Specifies the value displays at the bottom of the waveform area.

○ Max: Specifies the value displays at the top.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=85

Both values can be specified as floating point; however, if the wave object radix is integer, the
values are truncated to integers.

• Interpolation Style: Specifies how the line connecting data points is to be drawn.

○ Linear: Specifies a straight line between two data points.

○ Hold: Specifies that of two data points, a horizontal line is drawn from the left point to the
X-coordinate of the right point, then another line is drawn connecting that line to the right
data point, in an L shape.

• Off Scale: Specifies how to draw waveform values that lie outside the Y range of the
waveform area.

○ Hide: Specifies that outlying values are not shown, such that a waveform that reaches the
upper or lower bound of the waveform area disappears until values are again within the
range.

○ Clip: Specifies that outlying values be altered so that they are at the top or bottom of the
waveform area, so a waveform that reaches the upper- or lower-bound of the waveform
area follows the bound as a horizontal line until values are once again within the range.

○ Overlap: Specifies that the waveform be drawn wherever its values are, even if they lie
outside the bounds of the waveform area and overlap other waveforms, up to the limits of
the Wave window itself.

• Horizontal Line: Specifies whether to draw a horizontal rule at the given value. If the check-
box is on, a horizontal grid line is drawn at the vertical position of the specified Y value, if that
value is within the Y range of the waveform.

As with Min and Max, the Y value accepts a floating point number but truncates it to an
integer if the radix of the selected wave objects is an integer.

Waveform Object Naming Styles
There are options for renaming objects, viewing object names, and changing name displays.

Renaming Objects

You can rename any wave object in the waveform configuration, such as design wave objects,
dividers, groups, and virtual buses.

1. Select the object name in the Name column.

2. Right-click and select Rename from the popup menu.

The Rename dialog box opens.

3. Type the new name in the Rename dialog box, and click OK.

Note: Changing the name of a design wave object in the wave configuration does not affect the name
of the underlying HDL object.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=86

Changing the Object Display Name

You can display the full hierarchical name (long name), the simple signal or bus name (short
name), or a custom name for each design wave object. The object name displays in the Name
column of the wave configuration. If the name is hidden:

1. Expand the Name column until you see the entire name.

2. In the Name column, use the scroll bar to view the name.

To change the display name:

1. Select one or more signal or bus names. Use Shift+click or Ctrl+click to select many signal
names.

2. Right-click and select Name from the drop-down menu. A popup menu appears, showing the
following options:

• Long to display the full hierarchical name of the design object.

• Short to display the name of the signal or bus only.

• Custom to display the custom name given to the object when renamed. See Changing the
Object Display Name.

TIP: Renaming a wave object changes the name display mode to Custom. To restore the original name
display mode, change the display mode to Long or Short, as described above. Long and Short names
are meaningful only to design wave objects. Other wave objects (dividers, groups, and virtual buses)
display their Custom names by default and display an ID string for their Long and Short names.

Reversing the Bus Bit Order
You can reverse the bus bit order in the wave configuration to switch between MSB-first (big
endian) and LSB-first (little endian) bit order for the display of bus values.

To reverse the bit order:

1. Select a bus.

2. Right-click and select Reverse Bit Order.

The bus bit order reverses. The Reverse Bit Order command is marked to show that this is the
current behavior.

IMPORTANT! The Reverse Bit Order command operates only on the values displayed on the bus. The
command does not reverse the list of bus elements that appears below the bus when you expand the
bus wave object.

TIP: The index ranges displayed on Long and Short names of buses indicate the bit order in bus
elements. For example, after applying Reverse Bit Order on a bus bus[0:7], the bus displays
bus[7:0].

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=87

Changing the Format of SystemVerilog
Enumerations
A SystemVerilog enumeration is an HDL object with numerical values for which text labels are
defined to represent specific values. For example, an enumeration might define LABEL1 to
represent the value 1 and LABEL2 to represent the value 5. The Show As Enumeration option on
the context menu lets you specify whether to show enumeration values using their given labels
or numerically. In the previous example, if Show As Enumeration is on, a value of 5 appears as
LABEL2. If the option is off, the value 5 appears as in whatever radix is set for the enumeration,
as shown in the Radix menu.

To display enumerations using labels:

1. Select an enumeration

2. Right-click and check Display As Enumeration

To display enumerations numerically:

1. Select an enumeration

2. Right-click and uncheck Display As Enumeration

Note: Enumeration values for which there is no defined label always display numerically, regardless of
the Display As Enumeration setting. The Display As Enumeration option is enabled only for
SystemVerilog enumeration objects.

Controlling the Waveform Display
You can control the waveform display using:

• Resizing handles between the Name, Value, and waveform columns of the wave window

• Scroll combinations with the mouse wheel

• Zoom feature buttons in the Wave window sidebar

• Zoom combinations with the mouse wheel

• Vivado IDE Y-Axis zoom gestures

• Vivado simulation X-Axis zoom gestures. See the Vivado Design Suite User Guide: Using the
Vivado IDE (UG893) for more information about using the mouse to pan and zoom.

Note: In contrast to other Vivado Design Suite graphic windows, zooming in a Wave window applies to
the X (time) axis independent of the Y axis. As a result, the Zoom Range X gesture, which specifies a
range of time to which to zoom the window, replaces the Zoom to Area gesture of other Vivado Design
Suite windows.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 88Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=88

TIP: Saving a WCFG file records wave window settings in addition to wave objects and markers. Wave
window settings include the Name and Value column widths, zoom level, scroll position, expansion state
of groups and buses, and the position of the main cursor.

Using the Column Resizing Handles
To change the width of the Name or Value column, position the mouse over the vertical bar to
the right of the column until the mouse cursor changes shape, then drag the mouse left or right
to narrow or widen the column as desired.

Note: You may need to widen the Value column first to widen the Name column, if the Value column's
width is already at its minimum.

Scrolling with the Mouse Wheel
Click within the wave window to scroll up and down with the mouse wheel. You can also scroll
the waveform left and right with the mouse wheel in combination with the Shift key.

Using the Zoom Feature Buttons
There are zoom functions such as Zoom in, Zoom Out, and Zoom Fit as menu buttons in the
Wave window that let you zoom in and out of a wave configuration as needed.

Zooming with the Mouse Wheel
Click within the waveform area and use the mouse wheel in combination with the Ctrl key to
zoom in and out, emulating the operation of the dials on an oscilloscope.

Y-Axis Zoom Gestures for Analog Waveforms
In addition to the zoom gestures supported for zooming in the X dimension, when over an analog
waveform, additional zoom gestures are available, as shown in the following figure.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=89

Figure 25: Analog Zoom Options

Zoom
Out
Y

Zoom Y
Range

Zoom
In
X

Zoom
X

Range

Zoom
Fit
X

Reset
Zoom

Y

Zoom
Out
X

Zoom
In
Y

To invoke a zoom gesture, hold down the left mouse button and drag in the direction indicated in
the diagram, where the starting mouse position is the center of the diagram.

The additional zoom gestures are:

• Zoom Out Y: Zooms out in the Y dimension by a power of 2 determined by how far away the
mouse button is released from the starting point. The zoom is performed such that the Y value
of the starting mouse position remains stationary.

• Zoom Y Range: Draws a vertical curtain which specifies the Y range to display when the
mouse is released.

• Zoom In Y: Zooms in toward the Y dimension by a power of 2 determined by how far away
the mouse button is released from the starting point. The zoom is performed such that the Y
value of the starting mouse position remains stationary.

• Reset Zoom Y: Resets the Y range to that of the values currently displayed in the Wave
window and sets the Y Range mode to Auto.

All zoom gestures in the Y dimension set the Y Range analog settings. Reset Zoom Y sets the Y
Range to Auto, whereas the other gestures set Y Range to Fixed.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=90

Using the Waveform Settings Dialog Box

Click the Settings button to open the Waveform Settings as shown in the following figure.

Figure 26: Waveform Settings

From the General tab, you can configure the following Waveform Settings:

• Radix: Sets the numerical format to use for newly-created design wave objects.

• Elide Setting: Controls truncation of signal names that are too long for the Wave window.

○ Left truncates the left end of long names.

○ Right truncates the right end of long names.

○ Middle preserves both the left and right ends, omitting the middle part of long names.

• Draw Waveform Shadow: Creates a shaded representation of the waveform.

• Show signal indices: Displays the row numbers to the left of each wave object name. You can
drag the lines separating the row numbers to change the height of a wave object.

• Show grid lines: Displays the wave window with grid lines.

• Snap to Transition: When selected, causes dragged cursors and markers to gravitate to
waveform transitions near the mouse cursor. See Using Cursors for more information.

• Floating Ruler: Displays the floating ruler whenever the secondary cursor is visible or a marker
is selected. See Using the Floating Ruler for more information.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=91

TIP: If Floating Ruler option appears disabled (unchecked) in the Settings dialog box, use Shift+Click on
the Wave window to make the secondary cursor visible. This action results in enabling the Floating
Ruler option in the Settings dialog box.

• From the Colors tab, you can set colors of items within the waveform.

Changing the Display of the Time Scale
Right-click above the ruler to display the time scale menu. This menu lets you select how you
want to display time values on the time scale.

The following are the options on the timescale menu:

• Auto: The timescale choses time units suitable for the wave window's zoom level.

• Default: Displays the time units corresponding to the precision of the simulation that was
determined when the HDL design was compiled.

• Samples: Displays the time in discrete sample numbers instead of fractions of a second (not
available for HDL simulation).

• User: User-defined time units (not available for HDL simulation).

• fs: Displays time units in femtoseconds.

• ps: Displays time units in picoseconds.

• ns: Displays time units in nanoseconds.

• us: Displays time units in microseconds.

• ms: Displays time units in milliseconds.

• s: Displays time units in seconds

Organizing Waveforms
The following subsections describe the options that let you organize information within a
waveform.

Grouping Signals and Objects
A Group is an expandable and collapsible container for organizing related sets of wave objects.
The Group itself displays no waveform data but can be expanded to show its contents or
collapsed to hide them. You can add, change, and remove groups.

To add a Group:

1. In a Wave window, select one or more wave objects to add to a group.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=92

Note: A group can include dividers, virtual buses, and other groups.

2. Right-click and select New Group from the context menu.

This adds a Group that contains the selected wave object to the wave configuration.

In the Tcl Console, type add_wave_group to add a new group.

A Group is represented with the Group button . You can move other HDL objects to the group
by dragging and dropping the signal or bus name.

The new Group and its nested wave objects saves when you save the waveform configuration
file.

You can move or remove Groups as follows:

• Move Groups to another location in the Name column by dragging and dropping the group
name.

• Remove a Group by highlighting it, right-click and select Ungroup from the popup menu.
Wave objects formerly in the Group are placed at the top-level hierarchy in the wave
configuration.

Groups can be renamed also; see Changing the Object Display Name.

CAUTION! The Delete key removes a selected group and its nested wave objects from the wave
configuration.

Using Dividers
Dividers create a visual separator between HDL objects to make certain signals or objects easier
to see. You can add a divider to your wave configuration to create a visual separator of HDL
objects, as follows:

1. In a Name column of the Wave window, click a signal to add a divider below that signal.

2. Right-click and select New Divider.

The new divider is saved with the wave configuration file when you save the file.

Tcl command: add_wave_divider

You can move or delete Dividers as follows:

• To move a Divider to another location in the waveform, drag and drop the divider name.

• To delete a Divider, highlight the divider, and click the Delete key, or right-click and select
Delete from the context menu.

Dividers can be renamed also; see Changing the Object Display Name.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=93

Defining Virtual Buses
You define a virtual bus to the wave configuration, which is a grouping to which you can add
logic scalars and vectors.

The virtual bus displays a bus waveform, whose values are composed by taking the
corresponding values from the added scalars and arrays in the vertical order that they appear
under the virtual bus and flattening the values to a one-dimensional vector.

To add a virtual bus:

1. In a wave configuration, select one or more wave objects to add to a virtual bus.

2. Right-click and select New Virtual Bus from the popup menu.

The virtual bus is represented with the Virtual Bus button .

Tcl Command: add_wave_virtual_bus

You can move other logical scalars and arrays to the virtual bus by dragging and dropping the
signal or bus name.

The new virtual bus and its nested items save when you save the wave configuration file. You can
also move it to another location in the waveform by dragging and dropping the virtual bus name.

You can rename a virtual bus; see Changing the Object Display Name.

To remove a virtual bus, and ungroup its contents, highlight the virtual bus, right-click, and select
Ungroup from the popup menu.

CAUTION! The Delete key removes the virtual bus and nested HDL objects within the bus from the wave
configuration.

Analyzing Waveforms
The following subsections describe available features that help you analyze the data within the
waveform.

Using Cursors
Cursors are temporary time markers that can be moved frequently for measuring the time
between two waveform edges.

Placing Main and Secondary Cursors

You can place the main cursor with a single left-click in the Wave window.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=94

To place a secondary cursor, Ctrl+Click, hold the waveform, and drag either left or right. You can
see a flag that labels the location at the top of the cursor. Alternatively, you can hold the Shift
key and click a point in the waveform.

If the secondary cursor is not already on, this action sets the secondary cursor to the present
location of the main cursor and places the main cursor at the location of the mouse click.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold the Shift key
while clicking. When placing the secondary cursor by dragging, you must drag a minimum distance before
the secondary cursor appears.

Moving Cursors

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag the
cursor to the new location.

As you drag the cursor in the Wave window, you see a hollow or filled-in circle if the Snap to
Transition waveform setting is selected, which is the default behavior.

• A hollow circle under the mouse indicates that you are between transitions in the waveform
of the selected signal.

• A filled-in circle under the mouse indicates that the cursor is locked in on a transition of
the waveform under the mouse or on a marker.

A secondary cursor can be hidden by clicking anywhere in the Wave window where there is no
cursor, marker, or floating ruler.

Finding the Next or Previous Transition on a Waveform

The Waveform window contains buttons for jumping the main cursor to the next or previous
transition of selected waveform or from the current position of the cursor.

To move the main cursor to the next or previous transition of a waveform:

1. Ensure the wave object in the waveform is active by clicking the name.

This selects the wave object, and the waveform display of the object displays with a thicker
line than usual.

2. Click the Next Transition or Previous Transition buttons in the waveform toolbar (?),
or use the right or left keyboard arrow key to move to the next or previous transition,
respectively.

TIP: You can jump to the nearest transition of a set of waveforms by selecting multiple wave objects
together.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=95

Using Markers
Use a marker when you want to mark a significant event within your waveform in a permanent
fashion. Markers let you measure times relevant to that marked event.

You can add, move, and delete markers as follows:

• You add markers to the wave configuration at the location of the main cursor.

1. Place the main cursor at the time where you want to add the marker by clicking in the
Wave window at the time or on the transition.

2. Right-click Markers → Add Marker .

A marker is placed at the cursor, or slightly offset if a marker already exists at the location
of the cursor. The time of the marker displays at the top of the line.

To create a new wave marker, use the Tcl command:

add_wave_marker <time> <timeunit> -name <name of the marker> -into
<wcfg file>

• You can move the marker to another location in the Wave window using the drag and drop
method. Click the marker label (at the top of the marker or marker line) and drag it to the
location.

○ As you drag the marker in the Wave window, you see a hollow or filled-in circle if the Snap
to Transition option is selected in Waveform Settings window, which is the default
behavior.

○ A filled-in circle indicates that you are hovering over a transition of the waveform for
the selected signal or over another marker.

○ For markers, the filled-in circle is white.

○ A hollow circle indicates that the marker is locked in on a transition of the waveform
under the mouse or on another marker.

Release the mouse key to drop the marker to the new location.

• You can delete one or all markers with one command. Right-click over a marker, and do one of
the following:

○ Select Delete Marker from the popup menu to delete a single marker.

○ Select Delete All Markers from the popup menu to delete all markers.

You can also use the Delete key to delete a selected marker.

See the Vivado Design Suite help or the Vivado Design Suite Tcl Command Reference Guide
(UG835) for command usage.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=96

Using the Floating Ruler
The floating ruler assists with time measurements using a time base other than the absolute
simulation time shown on the standard ruler at the top of the Wave window.

You can display (or hide) the floating ruler and drag it to change the vertical position in the Wave
window. The time base (time 0) of the floating ruler is the secondary cursor, or, if there is no
secondary cursor, the selected marker.

The floating ruler is visible only when the secondary cursor or a marker is present.

1. Do either of the following to display or hide a floating ruler:

• Place the secondary cursor.

• Select a marker.

2. In the Waveform Settings window, enable (check) the Floating Ruler option.

You only need to follow this procedure the first time. The floating ruler displays each time
you place the secondary cursor or select a marker.

Uncheck/disable the Floating Ruler option to hide the floating ruler.

Searching a Value in Waveform Configuration
The Find Toolbar allows you to search one or more waveforms for a specified value. You can
search for either an exact value, such as 23FF, or a pattern that matches a set of values, such as
"any value whose first two digits are 23 and whose fourth digit is F."

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=97

Figure 27: Find Value option and Find Toolbar

IMPORTANT! This search feature supports only scalar and vector (1-D) wave objects of a “logic” type.
Logic types include 2-state and 4-state types of Verilog/SystemVerilog and bit and std_logic of VHDL.

To perform the search:

1. In the Name column, select one or more design wave objects (wave objects that have
waveforms).

2. Right-click one of the selected wave objects in either the Name column or Value column and
choose the Find Value option to activate the Find Toolbar.

3. On the Find Toolbar, choose a radix for your search value from the Radix drop down list. The
search feature supports the following radixes:

• Binary

• Hexadecimal

• Octal

• Unsigned Decimal

• Signed Decimal

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=98

4. In the blank text box on the Find Toolbar, enter a value pattern consisting of a string of digits
valid for the radix you chose. Valid digits include numeric digits, VHDL MVL 9 literals (U, X, 0,
1, Z, W, L, H, -), and Verilog literals (0, 1, x, z).

Note: If you enter an invalid digit, the text box turns red, and an error message appears at the right side
of the toolbar. The set of valid numeric digits depends on the radix. For example, if you chose the
Octal radix, numeric digits are those between 0 and 7. Numeric digits for hexadecimal include 0
through 9 and A through F (or a through f). You may enter the special digit '.' to specify a match with
any digit value. For example, the Octal value pattern “12.4” matches occurrences of 1234, 1204, and
12X4 encountered in the waveform.

5. Choose a match style from the following options in the Match drop down list:

• Exact: Waveform values must contain the same number of digits as in the value pattern to
be considered a match. For example, a value pattern of "1234" matches occurrences of
1234 encountered in the waveform but not 123 or 12345.

TIP: With the Exact match style you may omit leading zeros from the value pattern. For example,
to find the value 0023 in the waveform, you may specify a value pattern of “0023” or simply “23.”

• Beginning: Any waveform value whose beginning digits match the value pattern is
considered a match. For example, a value pattern of “1234” matches occurrences of 1234
and 12345 encountered in the waveform but not 1235 or 123. This option is available
only for radixes binary, octal, and hexadecimal.

• End: Any waveform value whose ending digits match the value pattern is considered a
match. For example, a value pattern of “1234” matches occurrences of 1234 and 91234
encountered in the waveform but not 1235 or 234. This option is available only for radixes
binary, octal, and hexadecimal.

• Click the Next button or press the Enter key to move the main cursor forward to the
nearest match, or click the Previous button to move the main cursor backward to the
nearest match. With multiple wave objects selected, the cursor stops on the nearest
match of any of the selected wave objects.

TIP: If there are no matches in the requested direction, the cursor remains stationary and a “Value
not found” message appears on the right side of the toolbar.

Analyzing AXI Interface Transactions
If you compose your design as a block design using the Vivado IP integrator, when you launch
the Vivado simulator, Vivado automatically imports the AMBA® AXI interfaces from your design
into the Vivado simulator as protocol instances to be viewed in the wave window. Once added to
the wave window, a protocol instance of an AXI interface shows you the data transactions
occurring on that interface during simulation.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=99

Understanding Protocol Instances
An AXI interface consists of a standard set of logic signals as defined by Arm® in the AMBA® AXI
and ACE Protocol Specification and AMBA® 4 AXI4-Stream Protocol Specification. These signals
convey the data transactions encoded as logic events as described by the specification. The
Vivado simulator makes those signals available for viewing directly in the wave viewer, however,
it can be difficult to visualize what transactions are happening from the signals alone.

To make it easier to view the transactions, the Vivado simulator provides a feature that analyzes
the signal activity and produces new signals that summarize the activity at the transaction level.
This process is called as protocol analysis. For each AXI interface the Vivado simulator creates a
new design object called a protocol instance that represents the AXI interface and the inputs and
outputs of protocol analysis. The protocol instance typically resides in the same scope as its input
signals.

Using the IP Integrator to Mark an AXI Interface to View in the
Vivado Simulator

The Vivado IP integrator provides a feature for identifying AXI interfaces to display in the Vivado
simulator's wave viewer directly from the block design window. Perform the following steps to
mark an AXI interface for viewing in the Vivado simulator:

1. Locate the AXI interface you want to view.

2. Right-click the corresponding net connection (orange line as shown in the following figure).

3. Click Mark Simulation.

Note: Mark Simulation option can only be applied on an AXI interface.

4. Repeat steps 1-3 to mark additional interfaces.

5. Click Clear Simulation option to clear a marked AXI interface.

Note: Clear Simulation option is available only when an AXI interface is marked.

6. Launch the Vivado simulator. Save the block design if prompted.

When the Vivado simulator starts, the interfaces you marked appear in the Wave window. If
the Vivado project is customized to open a wave configuration automatically, the marked
interfaces are added to the wave configuration if not already present. If the Vivado project is
not customized to open a wave configuration, the Vivado simulator creates a default wave
configuration containing the marked interfaces in lieu of the usual top-level HDL signal list.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=100

CAUTION! Some AXI interfaces which are internal to an AXI interconnect may not display correctly in
the wave viewer depending on the configuration of the interconnect. It is recommended that you mark
interfaces only on the boundary of an interconnect.

Finding Protocol Instances in the Vivado Simulator
When the Vivado simulator launches, it scans the design and its input files to locate protocol
instances. The results of the scan appear in the Tcl console near the top of the simulator output
as shown in the following figure. You can copy a protocol instance path from the Tcl console and
paste it into a Tcl command.

Figure 28: Protocol Instances Identified in the Tcl Console

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=101

Finding Protocol Instances in the Objects Window
Protocol instance objects appear in the Objects window in the scope containing the
corresponding AXI interface signals. Perform the following steps to find a protocol instance using
the Scope window:

1. In the Scope window, select the scope containing AXI interface signals.

Note: The scope hierarchy roughly matches with your block design.

2. Locate the protocol instance for an AXI interface of a block in your block design. Select the
scope name that matches with the instance name of your block.

Perform the following steps to find a protocol instance using the Objects window:

1. In the Objects window scroll to the bottom of the list.

2. Locate the protocol instance name that matches with the port name of the AXI interface in
your block design. AXI port names usually end with _AXI and are frequently M_AXI or
S_AXI.

TIP: Protocol instances have a port mode of Internal Signal. To facilitate searching for protocol
instances in the Objects window, you can hide all objects except the Internal Signal object. Click the
gear icon, deselect the Select All check box and select the Internal Signal check box. To restore the
Objects window select the Select All check box.

Finding Protocol Instances Using a Tcl Command
Protocol instance objects have a Tcl type field of proto_inst. You can use the get_objects
Tcl command to locate protocol instances in or under a specific scope.

Use the Following Command to Locate All Protocol Instances in the Design:

get_objects /* -r -filter {type==proto_inst}

Use the Following Command to Locate All Protocol Instances in a Scope:

get_objects <Design scope hierarchy>/* -filter {type==proto_inst}

Use the Following Command to Locate All Protocol Instances in or under a Scope:

get_objects /system_tb/base_mb_wrapper/base_mb_i/* -r -filter
{type==proto_inst}

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=102

Protocol Instance in the Objects Window
In the Objects window, a protocol instance appears as an aggregate design object that has the
same name as the port name of the AXI interface seen in the block design. Click the arrow
expand button to view the inputs and outputs of protocol analysis for the protocol instance as
shown in the following figure for a protocol instance named M_AXI_DP.

Figure 29: Protocol Instance in the Objects Window

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=103

Note: To optimize computer resources, the protocol instance does not display its child objects until the
protocol instance is added to the wave window for the first time.

• Protocol Instances Window:

The protocol instances window contains the complete protocol instance list present in a given
design. It has an absolute path to the protocol instance to ensure that an instance with same
name can be differentiated based on the path.

Figure 30: Protocol Instances Window

• Protocol Instance Inputs:

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=104

The protocol instance input signals shown with an orange icon are the aliases of the AXI
signals from the HDL design. Hover over an input to see a tool tip giving full path of the alias
as well as the full path of the actual (aliased) signal. From a protocol instance input you can
also jump the Scope and Objects window to the actual signal. Perform the following steps to
go to the actual signal of a protocol instance input:

1. To view all signal types in the Objects window, click the gear icon and select the Check All
check box.

2. Right click the protocol instance input.

3. Select Go To Actual.

TIP: If you would like to save the protocol instance input signals in a wave configuration (WCFG) file, add
the actual signals of the input signals instead. Because, the protocol instance inputs and outputs are
created only after a WCFG file is loaded, your saved inputs will be missing from the wave configuration.
The protocol instance outputs cannot be saved in a WCFG file.

• Protocol Instance Outputs:

The protocol instance outputs are shown with a green O icon. These are special signals of the
protocol instance that have no counterparts in the HDL design. The output signals produce
events meaningful only to the wave viewer for displaying transactions.

CAUTION! The set of protocol instance output signals and their contents are subject to change from one
Vivado release to the next. It is recommended not to depend on the specific behavior of protocol instance
output signals when scripting using Tcl.

Adding Protocol Instances to the Wave Window

You can add any protocol instance present in the design to the wave window. Adding a protocol
instance to the wave window causes the Vivado simulator to run protocol analysis on the
protocol instance inputs starting from the simulation time 0 regardless of how much simulation
time has already elapsed. As protocol analysis utilizes the waveform database (WDB), inputs of
all protocol instances are always traced in the waveform database even if you have not requested
tracing of the inputs or added the protocol instance to the wave window.

In addition to marking an AXI interface in your IP integrator block design as described in Using
the IP Integrator to Mark an AXI Interface to View in the Vivado Simulator section, you can add a
protocol instance to the wave window using the Objects window or a Tcl command.

IMPORTANT! Protocol instances may use more computer resources, it is recommended that you add just
the protocol instances you currently need. You can always add additional protocol instances at a later time
during the simulation without missing the data.

Perform the following steps to add a protocol instance to the Wave window using the Objects
window:

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=105

1. To locate the protocol instance in the Objects window, see the steps described in the section
Finding Protocol Instances in the Objects Window.

2. Add the protocol instance to the Wave window by the following two ways:

a. Right click the protocol instance and choose Add to Wave.

b. Drag and drop the protocol instance to the Name column of the Wave window.

Perform the following steps to add a protocol instance to the Wave window using a Tcl
command:

1. To locate the protocol instance in the Objects window, see the steps described in the section
Finding Protocol Instances in the Vivado Simulator.

2. Copy the protocol instance path to the clipboard:

a. If you have located the protocol instance in the Objects window, left click the protocol
instance to select it and copy the protocol instance path.

b. If you have located the protocol instance in the Tcl console, use your mouse to select the
protocol instance path and copy it.

c. If you have located the protocol instance using the get_objects Tcl command, use your
mouse to select the text of the protocol instance path in the Tcl console and copy it.
Alternatively, you can get objects together as described in the following section.

3. Type add_wave and paste the protocol instance name.

TIP: If your protocol instance path contains special characters, surround the path with double braces. For
example, add_wave {{path}}.

Using get_objects Programmatically

When you use the get_objects Tcl command as described in Finding Protocol Instances Using
a Tcl Command, the command returns the protocol instances as a Tcl list. You can store the list in
a Tcl variable:

set p [get_objects -r /* -filter {type==proto_inst}]

and use the list with the add_wave Tcl command to add all the protocol instances in the list:

add_wave $p

or a specific protocol instance from the list using the built-in lindex command as shown in the
following example that adds the first protocol instance of the list:

add_wave [lindex $p 0]

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=106

Analyzing Protocol Instances in the Wave Window
This section describes the waveform features common to all interface types. See the following
protocol specific sections for more information about a specific interface type (AXI Memory
Mapped or AXI4 Stream).

Understanding Protocol Instances in the Wave Window

When you add a protocol instance to the wave window, the Vivado simulator creates a hierarchy
of wave objects to represent the protocol instance. You cannot change the structure of the
hierarchy. The type of AXI interface determines the hierarchy.

TIP: You may need to view the protocol instance input signals not included in the wave object hierarchy.
While you cannot add the signals into the hierarchy, you can add them before or after the hierarchy.

Understanding Transaction Waveforms

Transaction waveforms differ from other types of waveforms. A transaction waveform displays
periods of activity and inactivity of some aspect of the simulated design in contrast with
displaying value changes of a signal over time. The following figure shows an example of a
transaction waveform. A thin line indicates periods of inactivity, while the rectangles represent
periods of activity which are generally called transaction bars. The example in the figure shows
three transaction bars.

Figure 31: Transaction Waveform Display

As shown in the following figure, the transaction waveform displays a gray bar with the text
Loading while protocol analysis is performed on the inputs of the protocol instance. As the
protocol analysis progresses, the gray bars shrink to reveal newly processed transaction data.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=107

Figure 32: Transaction Waveforms Showing Incomplete Protocol Analysis

Using Transaction Bars
Selecting Transaction Bars

Place your cursor on a transaction bar and left click to select the transaction bar which is
highlighted with a double border as shown in the following figure:

Figure 33: A Selected Transaction Bar

If the selected transaction bar is a member of a group of related transaction bars, arrows appear
called associations connecting the related transaction bars. The rest of the objects in the wave
window appear dim to highlight the group of transaction bars. The following figure shows a
selected transaction bar and its related transaction bars connected with associations.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=108

Figure 34: Transaction Bars with Associations

Press the Esc key to clear the transaction bar selection.

TIP: To reposition the main cursor within a transaction waveform, hold the Ctrl key and left click at the
desired cursor time.

Navigation Transactions Using Associations

When you click on one end of an association, the selection moves to the transaction bar at the
other end of the association, and the wave window scrolls so that the other end is in view.

Note: The wave window may not scroll if the other end is already in view.

Tool Tips

When you hover over a transaction bar or an association using your mouse, a tool tip displaying
extra information about the transaction bar or association may appear depending on the type of
protocol instance interface.

Analyzing AXI Memory-Mapped (AXI-MM) Interfaces
This section describes the transaction viewing features specific to AXI-MM protocol instances. A
protocol instance of an AXI-MM interface appears in the wave window with a wave object
hierarchy as shown in the following figure.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=109

Figure 35: AXI-MM Interface

Understanding the Top Summary Row

The top of the wave object hierarchy of an AXI-MM protocol instance is the top summary row.
This transaction waveform shows the overall read and write activity of an AXI interface based on
the following rules:

• If one or more AXI read transactions are in progress, the top summary shows a Read
transaction bar in purple color.

• If one or more AXI write transactions are in progress, the top summary shows a Write
transaction bar in pink color.

• If one or more of AXI read and write transactions are in progress, the top summary shows
Read/Write transaction bar in teal color.

An AXI transaction is an abstract concept not to be confused with the graphical transaction bar.
It is a complete data exchange carried out using AXI signaling including the Address, Data, and
optionally Response phases.

TIP: For performance reasons, the wave viewer does not display the transaction bars in different colors
when zoomed out. Instead, it displays all transaction bars in teal color. You need to zoom in to distinguish
between read and write transactions.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=110

Understanding the Outstanding Reads and Outstanding Writes Rows

There are a group of outstanding AXI read transactions and a group of write transactions located
under the top of the wave object hierarchy of an AXI-MM protocol instance. An AXI transaction
is known as outstanding if the interface master has raised A*VALID or WVALID but the last data
phase or optionally response phase has not yet completed. The outstanding reads row shows the
current count of outstanding AXI read transactions or is inactive (shown as a thin line) to indicate
zero outstanding AXI read transactions. Similarly, the outstanding writes row shows the current
count of outstanding AXI write transactions or is inactive to indicate zero outstanding AXI write
transactions.

Understanding the Transaction Summary Rows

There is a set of transaction summary rows under each outstanding read and write row labeled as
Row <n>, where <n> is an integer. A transaction summary is a transaction bar that depicts a
single AXI transaction starting at the first phase and ending at the last phase of an AXI
transaction. The assignment of a transaction summary to a specific numbered row conveys no
special meaning. Instead, it prevents overlapping of multiple outstanding AXI transactions in the
same row.

TIP: The number of transaction summary rows can increase as simulation progresses. For performance
reasons, the wave window updates the rows only when protocol analysis is complete. To see the latest
state of the rows during simulation without waiting for the entire simulation to complete, you can pause
the simulation and allow the Loading bars to disappear.

Each transaction summary is labeled with a sequence number. The first AXI transaction has a
sequence number of 1, the second AXI transaction has a sequence number of 2, and so forth.
The progression of sequence numbers for reads and writes are separate from each other and
from the AXI transactions of all other protocol instances. For example, a particular protocol
instance can have an AXI read transaction with the sequence number 16 and a separate AXI
write transaction with the sequence number 16.

Understanding Channel Rows

The channels wave object group is collapsed by default. When you expand the group, you see
logic signals for the AXI interface clock and reset (if present) and one transaction row for each
AXI channel present in the interface.

Note: Not all five channels are necessarily present in an AXI interface. For read only interfaces, the write
channels are absent. For write only interfaces, the read channels are absent. Some AXI interfaces that
employ the write channels may omit the response channel if the AXI master has no use of the response
information.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=111

Each channel row shows a transaction bar summarizing individual handshakes of that AXI
channel from VALID to READY, except that the multiple contiguous data beats of the same AXI
transaction appear as a single transaction bar. To visually tie all channel transaction bars of an
AXI transaction together, each channel transaction bar is tagged with the same sequence number
as the corresponding transaction summary. You can expand the channel row to show key AXI
signals for that channel.

TIP: You may need to view protocol instance input signals not included in the wave object hierarchy. While
you cannot add the signals into the hierarchy, you can add them before or after the hierarchy.

TIP: You may notice that channel transaction bars appear up to one clock cycle after the corresponding
AXI signal event. The AXI protocol analyzers consider AXI signal events that occur on or after a positive
clock edge to take effect at the following positive clock edge.

When you hover over any channel transaction bar, association, or transaction summary using
your mouse, a tool tip appears showing the values of the informational AXI address channel
signals from the address phase of the AXI transaction.

Note: Optional AXI address channel signals which are absent from the interface are omitted from the tool
tip.

When you select a channel transaction bar, associations appear for all channel transaction bars
participating in the same AXI transaction as the selected transaction bar. You can click the tails of
the association arrows to follow the progress of the AXI transaction from address phase through
response phase. The chain of associations always begins with the address phase transaction even
if the data phase precedes the address phase.

Error Conditions

If there is a handshaking error on the interface, you may see a sequence number on a channel
transaction consisting of a string of all 9s. This sequence number indicates that the data and/or
response phases could not be matched with an address and/or data phase. Common causes are
mismatched read/write ID tags and the protocol analyzer being held in reset (ARESET or
ARESETn signal active) while the AXI phases are in progress.

CAUTION! Because certain configurations of an AXI interconnect are optimized for performance rather
than transaction debugging, AXI interfaces internal to an AXI interconnect may respect a different reset
signal than the one connected to the interface causing transaction errors in the wave viewer. If you observe
transaction errors on the interface, it is recommended that you monitor interfaces on the outside of the
interconnect instead.

Analyzing AXI4-Stream (AXI-S) Interfaces
This section describes the transaction viewing features specific to AXI-Stream protocol instances.
A protocol instance of an AXI-S interface appears in the wave window with a wave object
hierarchy as shown in the following figure.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=112

Figure 36: AXI-Stream (AXI-S) Interface

The wave object hierarchy of an AXI-S interface contains only one transaction row which is at
the top of the hierarchy. Each transaction bar in the row corresponds to one complete AXI
transaction. The text on the transaction consists of the stream identifier from AXI signal TID and
the coarse routing information from AXI signal TDEST.

The transaction bar contains color coded stripes to indicate the status of an AXI transaction as
described in the following table.

Table 12: AXI Transaction Status

Color Status Description
Green Normal Data is streaming normally.

Yellow Starve Slave is waiting for data from the master.

Red Stall Master is producing data faster than slave can consume it.

Under the top transaction row, the wave object hierarchy contains some of the key AXI signals
plus stall and starve status signals to indicate stall and starve conditions. The status signals
provide the same information as the color stripes do in the transaction row.

TIP: You may notice that the channel transaction bars appear up to one clock cycle after the
corresponding AXI signal event. The AXI protocol analyzers consider AXI signal events that occur on or
after a positive clock edge to take effect at the following positive clock edge.

Error Conditions

A handshaking error produces an error transaction with the text containing all Fs.

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=113

Chapter 6

Debugging a Design with Vivado
Simulator

The Vivado® Design Suite simulator provides you with the ability to:

• Examine source code

• Set breakpoints and run simulation until a breakpoint is reached

• Step over sections of code

• Force waveform objects to specific values

This chapter describes debugging methods and includes Tcl commands that are valuable in the
debug process. There is also a flow description on debugging with third-party simulators.

Debugging at the Source Level
You can debug your HDL source code to track down unexpected behavior in the design.
Debugging is accomplished through controlled execution of the source code to determine where
issues might be occurring. Available strategies for debugging are:

• Step through the code line by line: For any design at any point in development, you can use
the step command to debug your HDL source code one line at a time to verify that the
design is working as expected. After each line of code, run the step command again to
continue the analysis. For more information, see Stepping Through a Simulation.

• Set breakpoints on the specific lines of HDL code, and run the simulation until a breakpoint is
reached: In larger designs, it can be cumbersome to stop after each line of HDL source code is
run. Breakpoints can be set at any predetermined points in your HDL source code, and the
simulation is run (either from the beginning of the test bench or from where you currently are
in the design) and stops are made at each breakpoint. You can use the Step, Run All, or Run
For command to advance the simulation after a stop. For more information, see the section,
Using Breakpoints, below.

• Set conditions. The tools evaluate each condition and execute Tcl commands when the
condition is true. Use the Tcl command:

add_condition <condition> <instruction>

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=114

See Adding Conditions for more information.

Stepping Through a Simulation
You can use the step command, which executes your HDL source code one line of source code
at a time, to verify that the design is working as expected.

The line of code is highlighted and an arrow points to the currently executing line of code.

You can also create breakpoints for additional stops while stepping through your simulation. For
more information on debugging strategies in the simulator, seethe section, Using Breakpoints,
below.

1. To step through a simulation:

• From the current running time, select Run > Step, or click the Step button .

The HDL associated with the top design unit opens as a new view in the Wave window.

• From the start (0 ns), restart the simulation. Use the Restart command to reset time to the
beginning of the test bench. See Chapter 4: Simulating with Vivado Simulator.

2. In the waveform configuration window, right-click the waveform or HDL tab and select Tile
Horizontally see the waveform and the HDL code simultaneously.

3. Repeat the Step action until debugging is complete.

As each line is executed, you can see the arrow moving down the code. If the simulator is
executing lines in another file, the new file opens, and the arrow steps through the code. It is
common in most simulations for multiple files to be opened when running the Step command.
The Tcl Console also indicates how far along the HDL code the step command has progressed.

Using Breakpoints
A breakpoint is a user-determined stopping point in the source code that you can use for
debugging the design.

TIP: Breakpoints are particularly helpful when debugging larger designs for which debugging with the Step
command (stopping the simulation for every line of code) might be too cumbersome and time consuming.

You can set breakpoints in executable lines in your HDL file so you can run your code
continuously until the simulator encounters the breakpoint.

Note: You can set breakpoints on lines with executable code only. If you place a breakpoint on a line of
code that is not executable, the breakpoint is not added.

1. Run a simulation.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=115

2. Go to your source file and click the hollow circle to the left of the source line of interest.

A red dot confirms the breakpoint is set correctly.

After the procedure completes, a simulation breakpoint button opens next to the line of code.

Type the Tcl Command: add_bp <file_name> <line_number>

This command adds a breakpoint at <line_number> of <file_name>. See the Vivado
Design Suite help or the Vivado Design Suite Tcl Command Reference Guide (UG835) for
command usage.

Open the HDL source file.

3. Set breakpoints on executable lines in the HDL source file.

4. Repeat steps 1 and 2 until all breakpoints are set.

5. Run the simulation, using a Run option:

• To run from the beginning, use the Run > Restart command.

• Use the Run > Run All or Run > Run For command.

The simulation runs until a breakpoint is reached, then stops.

The HDL source file displays an arrow, indicating the breakpoint stopping point.

6. Repeat Step 4 to advance the simulation, breakpoint by breakpoint, until you are satisfied
with the results.

A controlled simulation runs, stopping at each breakpoint set in your HDL source files.

During design debugging, you can also run the Run > Step command to advance the
simulation line by line to debug the design at a more detailed level.

You can delete a single breakpoint or all breakpoints from your HDL source code.

To delete a single breakpoint, click the Breakpoint button .

To remove all breakpoints, either select Run> Delete All Breakpoints or click the Delete All

Breakpoints button .

To delete all breakpoints:

• Type the Tcl command remove_bps -all.

To get breakpoint information on the specified list of breakpoint objects:

• Type the Tcl command report_bps

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 116Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=116

Adding Conditions
To add breakpoints based on a condition and output a diagnostic message, use the following
commands:

add_condition <condition> <message>

Using the Vivado IDE BFT example design, to stop when the wbClk signal and the reset are
both active-High, issue the following command at start of simulation to print a diagnostic
message and pause simulation when reset goes to 1 and wbClk goes to 1:

add_condition {reset == 1 && wbClk == 1} {puts "Reset went to high"; stop}

In the BFT example, the added condition causes the simulation to pause at 5 ns when the
condition is met and "Reset went to high" is printed to the console. The simulator waits
for the next step or run command to resume simulation.

-notrace Option

Normally, when you execute the add_condition command, the specified Tcl commands also
echo to the console, log file, and journal file. The -notrace switch causes those commands to
execute silently, suppressing the commands (but not their output) from appearing in those three
places.

For Example, If you execute the following example command:

puts 'Hello'

The normal behavior of the above command would be to emit the following output in the
console, log file, and journal file:

puts ‘Hello’
Hello

When you execute -notrace switch, it would produce only the following output:

Hello

Pausing a Simulation
While running a simulation for any length of time, you can pause a simulation using the Break
command, which leaves the simulation session open.

To pause a running simulation, select Simulation > Break or click the Break button .

The simulator stops at the next executable HDL line. The line at which the simulation stopped is
displayed in the text editor.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=117

Note: This behavior applies to designs that are compiled with the -debug <kind> switch.

Resume the simulation any time using the Run All, Run, or Step commands. See Stepping
Through a Simulation for more information.

Tracing the Execution of a Simulation
You can display a note on the Tcl console for every source line that the simulation encounters
while running. This continuous display of encountered lines is called line tracing.

To turn on line tracing, use one of the following Tcl commands:

ltrace on
set_property line_tracing true [current_sim]

To turn off line tracing use one of the following Tcl commands:

ltrace off
set_property line_tracing false [current_sim]

You can display a note on the Tcl console for every process that the simulation encounters while
running. This continuous display of encountered processes is called process tracing.

To turn on process tracing, use one of the following Tcl commands:

ptrace on
set_property process_tracing true [current_sim]

To turn off process tracing, use one of the following Tcl commands:

ptrace off
set_property process_tracing false [current_sim]

Forcing Objects to Specific Values
Using Force Commands
The Vivado simulator provides an interactive mechanism to force a signal, wire, or register to a
specified value at a specified time or period of time. You can also force values on objects to
change over a period of time.

TIP: A 'force' is both an action (that is, the overriding of HDL-defined behavior on a signal) and also a Tcl
first-class object, something you can hold in a Tcl variable.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=118

You can use force commands on an HDL signal to override the behavior for that signal as defined
in your HDL design. You might, for example, choose to override the behavior of a signal to:

• Supply a stimulus to a test bench signal that the HDL test bench itself is not driving

• Correct a bad value temporarily during debugging (allowing you to continue analyzing a
problem)

The available force commands are:

• Force Constant

• Force Clock

• Remove Force

The following figure illustrates how the add_force functionality is applied given the following
command:

add_force mySig {0 t1} {1 t2} {0 t3} {1 t4} {0 t5} -repeat_every tr -
cancel_after tc

Figure 37: Illustration of -add_force Functionality

tc

tr

t1

t2

t3
t4

t5

Current Time

You can get more detail on the command by typing the following in the Tcl Console:

add_force -help

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=119

Force Constant

The Force Constant option lets you fix a signal to a constant value, overriding the assignments
made within the HDL code or another previously applied constant or clock force.

Force Constant and Force Clock are options in the Objects or wave window right-click menu (as
shown in the following figure), or in the text editor (source code).

TIP: Double-click an item in the Objects, Sources, or Scope window to open it in the text editor. For
additional information about the text editor, see the Vivado Design Suite User Guide: Using the Vivado IDE
(UG893).

Figure 38: Force Options

The Force options are disabled for the objects for which the Vivado simulator does not support
forcing. The type of object or limitations in the Vivado simulator's modeling for those objects
may be the cause for not supporting such objects.

TIP: To force a module or entity port whose Force options are disabled, try forcing its connected actual
signal one scope level up. Use the add_force  Tcl command (for example, add_force myObj 0) to
view the reason why the options are disabled.

When you select the Force Constant option, the Force Constant dialog box opens so you can
enter the relevant values, as shown in the following figure.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 120Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=120

Figure 39: Force Constant Dialog Box

The following are Force Constant option descriptions:

• Signal name: Displays the default signal name, that is, the full path name of the selected
object.

• Value radix: Displays the current radix setting of the selected signal. You can choose one of
the supported radix types: Binary, Hexadecimal, Unsigned Decimal, Signed Decimal, Signed
Magnitude, Octal, and ASCII. The GUI then disallows entry of the values based on the Radix
setting. For example: if you choose Binary, no numerical values other than 0 and 1 are
allowed.

• Force value: Specifies a force constant value using the defined radix value. (For more
information about radixes, see Changing the Default Radix and Using Analog Waveforms.)

• Starting after time offset: Starts after the specified time. The default starting time is 0. Time
can be a string, such as 10 or 10 ns. When you enter a number without a unit, the Vivado
simulator uses the default (ns).

• Cancel after time offset: Cancels after the specified time. Time can be a string such as 10 or
10 ns. If you enter a number without a unit, the default simulation time unit is used.

Tcl command:

add_force /testbench/TENSOUT 1 200 -cancel_after 500

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=121

Force Clock

The Force Clock command lets you assign a signal a value that toggles at a specified rate
between two states, in the manner of a clock signal, for a specified length of time. When you
select the Force Clock option in the Objects window menu, the Force Clock dialog box opens, as
shown in the following figure.

Figure 40: Force Clock Dialog Box

The options in the Force Clock dialog box are shown below.

• Signal name: Displays the default signal name; the full path name of the item selected in the
Objects window or waveform.

TIP: The Force Clock command can be applied to any signal (not just clock signals) to define an
oscillating value.

• Value radix: Displays the current radix setting of the selected signal. Select one of the
displayed radix types from the drop-down menu: Binary, Hexadecimal, Unsigned Decimal,
Signed Decimal, Signed Magnitude, Octal, or ASCII.

• Leading edge value: Specifies the first edge of the clock pattern. The leading edge value uses
the radix defined in Value radix field.

• Trailing edge value: Specifies the second edge of the clock pattern. The trailing edge value
uses the radix defined in the Value radix field.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=122

• Starting after time offset: Starts the force command after the specified time from the current
simulation. The default starting time is 0. Time can be a string, such as 10 or 10 ns. If you
enter a number without a unit, the Vivado simulator uses the default user unit.

• Cancel after time offset: Cancels the force command after the specified time from the current
simulation time. Time can be a string, such as 10 or 10 ns. When you enter a number without
a unit, the Vivado simulator uses the default simulation time unit.

• Duty cycle (%): Specifies the percentage of time that the clock pulse is in an active state. The
acceptable value is a range from 0 to 100 (default is 50%).

• Period: Specifies the length of the clock pulse, defined as a time value. Time can be a string,
such as 10 or 10 ns.

Note: For more information about radixes, see Changing the Default Radix and Using Analog
Waveforms.

Example Tcl command:

add_force /testbench/TENSOUT -radix bin {0} {1} -repeat_every 10ns -
cancel_after 3us

Remove Force

Remove Force

To remove any specified force from an object use the following Tcl command:

remove_forces <force object>
remove_forces <HDL object>

Using Force in Batch Mode
The code examples below show how to force a signal to a specified value using the add_force
command. A simple verilog circuit is provided. The first example shows the interactive use of the
add_force command and the second example shows the scripted use.

Example 1: Adding Force

The following code snippet is a Verilog circuit:

module bot(input in1, in2,output out1);
reg sel;
assign out1 = sel? in1: in2;
endmodule
module top;
reg in1, in2;
wire out1;
bot I1(in1, in2, out1);
initial
begin
 #10 in1 = 1'b1; in2 = 1'b0;

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=123

 #10 in1 = 1'b0; in2 = 1'b1;
end
initial
 $monitor("out1 = %b\n", out1);
endmodule

You can invoke the following commands to observe the effect of add_force:

xelab -vlog tmp.v -debug all
xsim work.top

At the command prompt, type:

add_force /top/I1/sel 1
run 10
add_force /top/I1/sel 0
run all

You can use the add_force Tcl command to force a signal, wire, or register to a specified value:

add_force [-radix <arg>] [-repeat_every <arg>] [-cancel_after <arg>] [-
quiet]
[-verbose] <hdl_object> <values>...

For more info on this and other Tcl commands, see the Vivado Design Suite Tcl Command Reference
Guide (UG835).

Example 2: Scripted Use of add_force with remove_forces

The following is an example Verilog file, top.v, which instantiates a counter. You can use this file
in the following command example.

module counter(input clk,reset,updown,output [4:0] out1);
reg [4:0] r1;
always@(posedge clk)
begin
 if(reset)
 r1 <= 0;
 else
 if(updown)
 r1 <= r1 + 1;
 else
 r1 <= r1 - 1;
end
assign out1 = r1;
endmodule
module top;
reg clk;
reg reset;
reg updown;
wire [4:0] out1;
counter I1(clk, reset, updown, out1);
initial
begin
 reset = 1;
 #20 reset = 0;
end

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 124Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=124

initial
begin
 updown = 1; clk = 0;
end
initial
 #500 $finish;
initial
 $monitor("out1 = %b\n", out1);
endmodule

Command Example

1. Create a file called add_force.tcl with following command:

create_project add_force -force
add_files top.v
set_property top top [get_filesets sim_1]
set_property -name xelab.more_options -value {-debug all} -objects
[get_filesets
sim_1]
set_property runtime {0} [get_filesets sim_1]
launch_simulation -simset sim_1 -mode behavioral
add_wave /top/*

2. Invoke the Vivado Design Suite in Tcl mode, and source the add_force.tcl file.

3. In the Tcl Console, type:

set force1 [add_force clk {0 1} {1 2} -repeat_every 3 -cancel_after 500]
set force2 [add_force updown {0 10} {1 20} -repeat_every 30]
run 100

Observe that the value of out1 increments as well as decrements in the Wave window. You
can observe the waveforms in the Vivado IDE using the start_gui command.

Observe the value of updown signal in the Wave window.

4. In the Tcl Console, type:

remove_forces $force2
run 100

Observe that only the value of out1 increments.

5. In the Tcl Console, type:

remove_forces $force1
run 100

Observe that the value of out1 is not changing because the clk signal is not toggling.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=125

Power Analysis Using Vivado Simulator
The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting and
storing switching activity information generated by simulator tools. This switching activity can be
back-annotated into the Xilinx® power analysis and optimization tools for the power
measurements and estimations.

Switching Activity Interchange Format (SAIF) dumping is optimized for Xilinx power tools and for
use by the report_power Tcl command. The Vivado simulator writes the following HDL types
to the SAIF file. Refer to this link in the Vivado Design Suite User Guide: Power Analysis and
Optimization (UG907) for additional information.

• Verilog:

○ Input, Output, and Inout ports

○ Internal wire declarations

• VHDL:

○ Input, Output, and Inout ports of type std_logic, std_ulogic, and bit (scalar, vector,
and arrays).

Note: A VHDL netlist is not generated in the Vivado Design Suite for timing simulations; consequently,
the VHDL sources are for RTL-level code only, and not for netlist simulation.

For RTL-level simulations, only block-level ports are generated and not the internal signals.

For information about power analysis using third-party simulation tools, see Dumping SAIF for
Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in Chapter 3: Simulating with
Third-Party Simulators.

Generating SAIF Dumping
Before you use the log_saif command, you must call open_saif. The log_saif command
does not return any object or value.

1. Compile your RTL code with the -debug typical option to enable SAIF dumping:

xvlog -sv <fileName>.sv
xelab xsim mysim -debug typical top -s mysim

2. Use the following Tcl command to start SAIF dumping:

open_saif <saif_file_name>

3. Add the scopes and signals to be generated by typing one of the following Tcl commands:

log_saif [get_objects]

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xSpecifyingSwitchingActivityForTheAnalysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=126

To recursively log all instances, use the Tcl command:

log_saif [get_objects -r *]

4. Run the simulation (use any of the run commands).

5. Import simulation data into an SAIF format using the following Tcl command:

close_saif

Example SAIF Tcl Commands
To log SAIF for:

• All signals in the scope: /tb: log_saif /tb/*

• All the ports of the scope: /tb/UUT

• Those objects having names that start with a and end in b and have digits in between:

log_saif [get_objects -regexp {^a[0-9]+b$}]

• The objects in the current_scope and children_scope:

log_saif [get_objects -r *]

• The objects in the current_scope:

log_saif * or log_saif [get_objects]

• Only the ports of the scope /tb/UUT, use the command:

id="ah453025">log_saif [get_objects -filter {type == in_port || type ==
out_port || type ==
inout_port || type == port } /tb/UUT/*]

• Only the internal signals of the scope /tb/UUT, use the command:

log_saif [get_objects -filter { type == signal } /tb/UUT/*]

TIP: This filtering is applicable to all Tcl commands that require HDL objects.

Dumping SAIF using a Tcl Simulation Batch File
sim.tcl:
open_saif xsim_dump.saif
log_saif /tb/dut/*
run all
close_saif
quit

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=127

Using the report_drivers Tcl Command
You can use the report_drivers Tcl command to determine what signal is driving a value on
an HDL object. The syntax is as follows:

report_drivers <hdl_object>

The command prints drivers (HDL statements doing the assignment) to the Tcl Console along
with current driving values on the right side of the assignment to a wire or signal-type HDL
object.

You can also call the report_drivers command from the Object or Wave window context
menu or text editor. To open the context menu (shown in the figure below), right-click any signal
and click Report Drivers. The result appears in the Tcl console.

Figure 41: Context Menu with Report Drivers Command Option

Using the Value Change Dump Feature
You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl commands
are based on Verilog system tasks related to dumping values.

For the VCD feature, the Tcl commands listed in the table below model the Verilog system tasks.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=128

Table 13: Tcl Commands for VCD

Tcl Command Description
open_vcd Opens a VCD file for capturing simulation output. This Tcl command models the behavior

of $dumpfile Verilog system task.

checkpoint_vcd Models the behavior of the $dumpall Verilog system task.

start_vcd Models the behavior of the $dumpon Verilog system task.

log_vcd Logs VCD for the specified HDL objects. This command models behavior of the
$dumpvars Verilog system task.

flush_vcd Models behavior of the $dumpflush Verilog system task.

limit_vcd Models behavior of the $dumplimit Verilog system task.

stop_vcd Models behavior of the $dumpoff Verilog system task.

close_vcd Closes the VCD generation.

See the Vivado Design Suite Tcl Command Reference Guide (UG835), or type the following in the Tcl
Console:

<command> -help

Example:

open_vcd xsim_dump.vcd
log_vcd /tb/dut/*
run all
close_vcd
quit

See Verilog Language Support Exceptions for more information.

You can use the VCD data to validate the output of the simulator to debug simulation failures.

Related Information

Vivado Simulator Mixed Language Support and Language Exceptions

Using the log_wave Tcl Command
The log_wave command logs simulation output for viewing specified HDL objects with the
Vivado simulator waveform viewer. Unlike add_wave, the log_wave command does not add
the HDL object to the waveform viewer (that is, the Waveform Configuration). It simply enables
the logging of output to the Vivado simulator Waveform Database (WDB).

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
having to restart the simulation because of missing value changes: issue the log_wave -r / Tcl command at
the start of a simulation run to capture value changes for all display-able HDL objects in your design.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 129Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=129

Syntax:

log_wave [-recursive] [-r] [-quiet] [-verbose] <hdl_objects>...

Example log_wave TCL Command Usage

To log the waveform output for:

• All signals in the design (excluding those of alternate top modules):

log_wave -r /

• All signals in a scope: /tb:

log_wave /tb/*

• Those objects having names that start with a and end in b and have digits in between:

log_wave [get_objects -regexp {^a[0-9]+b$}]

• All objects in the current scope and all child scopes, recursively:

log_wave -r *

• Temporarily overriding any message limits and return all messages from the following
command:

log_wave -v

• The objects in the current scope:

log_wave *

• Only the ports of the scope /tb/UUT, use the command:

log_wave [get_objects -filter {type == in_port || type == out_port ||
type ==
inout_port || type == port} /tb/UUT/*]

• Only the internal signals of the scope /tb/UUT, use the command:

log_wave [get_objects -filter {type == signal} /tb/UUT/*]

The wave configuration settings; which include the signal order, name style, radix, and color; are
saved to the wave configuration (WCFG) file upon demand. See Chapter 5: Analyzing Simulation
Waveforms with Vivado Simulator.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=130

Cross Probing Signals in the Object, Wave,
and Text Editor Windows

In Vivado simulator, you can do cross probing on signals present in the Objects, Wave, and text
editor windows.

From the Objects window, you can check to see if a signal is present in the Wave window and
vice versa. Right-click the signal to open the context menu shown in the following figure. Click
Show in Wave Window or Add to Wave Window (if signal is not yet present in the Wave
window).

Figure 42: Objects Window Context Menu Options

You can also cross probe a signal from the text editor. Right-click a signal to open the context
menu shown in the figure below. Select Add to Wave Window, Show in Waveform or Show in
Objects. The signal then appears highlighted in the Wave or Objects window.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=131

Figure 43: Text Editor Right-Click (Context) Menu

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=132

Tool Specific init.tcl
During execution of simulation, Vivado simulator sources the init file present at the following
location:

$HOME/.xilinx/xsim/xsim_init.tcl

It is useful, if you want to set a property across multiple runs. In such a scenario, you can write
these inside a tcl file and Vivado simulator will source this tcl file before time 0' during execution.

Subprogram Call-Stack Support
You can now step-through subprogram calls and access automatic (as well as static) variables
inside subprogram using get_value/set_value options.

Currently, you can only access these variables if the subprogram is at the top of the call-stack.

Use the following options to support access to variables at any level of the call-stack.

Call Stacks Window

Call Stacks window shows HDL scopes for all the VHDL/Verilog processes in a design which are
waiting inside a subprogram at the current simulation time. This is similar to get_stacks Tcl
command.

By default, the current process in which simulation is stopped (inside a subprogram) will be
selected in the Call Stacks window. However, you can select any other processes waiting in a
subprogram. The effect of selecting a process on the Call Stack window is same as selecting a
process scope from the Scope window or using current_scope Tcl command. When you
select a process on the Call Stacks window, the updated process appears in the Scope window,
Objects window, Stack Frames window and Locals tab. The process name with absolute path and
its type of the selected process is shown in the Call Stacks window.

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=133

Figure 44: Call Stacks Window

Stack Frames Window

Stack Frames window shows the current HDL process that is waiting inside a subprogram and
the subprograms in its call-stack. This is similar to report_frames and current_frame Tcl
commands. In the Stack Frames windows, the most recent subprogram in the current hierarchy is
shown at the top, followed by caller subprograms. The caller HDL process is shown the bottom.
You can select other frames to be current and the effect is same as the current_frame –set
<selected_frame_index> Tcl command. The Locals tab in the Objects window follows the
subprogram frame selection and shows the static and automatic variables local to the selected
subprogram frame. The frame number, subprogram/process name, source file and current line for
the selected HDL process is shown in the Stack Frames window.

Figure 45: Stack Frames Window

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=134

Locals Tab in Objects Window

The Locals tab in Objects window shows the name, value and type of static and automatic
variables local to the currently executing (or selected) subprogram. This is similar to
get_objects –local Tcl command. This window follows the frame selected in the Stack
Frames window. For every variable/argument, its name, value and type would be shown in the
Locals tab.

Figure 46: Locals Tab in Objects Window

Debugging with Dynamic Type

In the SystemVerilog, there are dynamic types such as Class, Dynamic Array, Queue, and
Associative Array etc. These dynamic types are supported in the Vivado simulator. Vivado allows
you to probe the dynamic type variables. For example:

module top();
int dynamicArray[];
byte queue[$];
initial
begin
 dynamicArray = new[3];
 dynamicArray = '{10, 20, 30};
 queue.push_back(8'hab);
 queue.push_back(8'hff);
 #10;
 dynamicArray = new[5](dynamicArray);
 $display(queue.pop_front());
end
endmodule

You can probe the dynamic type variables using the following windows as shown in the following
figure:

• Objects window

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=135

• Tcl Console window by using get_value and report_value commands.

• Tooltip in the Sources window

Figure 47: Probing Dynamic Type

Note: Dynamic types are not supported for tracing waveform (add_wave) or for creating waveform
data base (log_wave).

Chapter 6: Debugging a Design with Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=136

Chapter 7

Simulating in Batch or Scripted
Mode in Vivado Simulator

This chapter describes the command line compilation and simulation process.

Vivado supports an integrated simulation flow where the tool can launch Vivado simulator, or a
third party simulator from the IDE. However, many users also want to run simulation in batch or
scripted mode in their verification environment, which may include system-level simulation, or
advanced verification such as UVM. The Vivado Design Suite supports batch or scripted
simulation in the Vivado simulator.

This chapter describes a process to gather the needed design files, to generate simulation scripts
for your target simulator, and to run simulation in batch mode. The simulation scripts can be
generated for a top-level HDL design, or for hierarchical modules, managed IP projects, or block
designs from Vivado IP integrator. Batch simulation is supported in both project and non-project
script-based flow.

Exporting Simulation Files and Scripts
Running a simulation from the command line for either a behavioral or timing simulation requires
you to perform the following steps:

1. Identifying and parsing design files.

2. Elaborating and generating an executable simulation snapshot of the design.

3. Running simulation using the executable snapshot.

The Vivado Design Suite provides an Export Simulation command to let you quickly gather the
design files required for simulation, and generate the simulation scripts for the top-level RTL
design, or a sub-design. The export_simulation command will generate scripts for all of the
supported third-party simulators, or for the target simulator of your choice.

From within the Vivado IDE, use the File → Export → Export Simulation command to open the
Export Simulation dialog box as shown in the following figure.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=137

Figure 48: Export Simulation dialog box

The Export Simulation command writes a simulation script file for all supported simulators, or for
the specified Target simulator. The generated scripts will contain simulator commands for
compiling, elaborating, and simulating the design.

The features of the Export Simulation dialog box include the following:

• Target simulator: Specifies all simulators, or a specific simulator to generate command line
scripts for. Target simulators include Vivado simulator as well as various supported third-party
simulators. Refer to Chapter 3: Simulating with Third-Party Simulators for more information.

Note: On the Windows operating system, scripts will only be generated for those simulators that run on
Windows.

• Compiled library location: In order to perform simulation with the script generated by Export
Simulation, your simulation libraries must first be compiled with the compile_simlib Tcl
command. The generated scripts will automatically include the setup files needed for the
target simulator from the compiled library directory. Refer to Compiling Simulation Libraries
for more information.

TIP: It is recommended to provide the path to the Compile library location whenever running Export
Simulation. This insures that the scripts will always point to the correct simulation libraries.

• Export directory: Specifies the output directory for the scripts written by Export Simulation.
By default, the simulation scripts are written to the local directory of the current project.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 138Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xcompile_simlib
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=138

• Overwrite files: Overwrites the files of the same name that already exist in the export
directory.

• Use absolute paths: By default, source files and directory paths in the generated scripts will be
relative to a reference directory that is defined in the scripts. Use this switch to make file
paths in the script absolute rather than relative.

• Copy source files to export directory: Copy design files to the output directory. This copies
the simulation source files as well as the generated scripts to make the entire simulation folder
more portable.

• Command: This field provides the Tcl command syntax for the export_simulation
command that will be run as a result of the various options and settings that you have
specified in the Export Simulation dialog box.

• Help: For detailed information on various options in Export Simulation files dialog box, click
the help button.

The Export Simulation command supports both project and non-project designs. It does not read
properties from the current project to query for Verilog defines and include directories. Instead,
the Export Simulation command gets directives from the dialog box or from
export_simulation command options. You must specify the appropriate options to get the
results you want. In addition, you must have output products generated for all IP and BD that are
used in the top-level design.

IMPORTANT! The export_simulation  command will not generate output products for IP and BD if
they do not exist. Instead it will return an error and exit.

When you click OK on the Export Simulation dialog box, the command gets the simulation
compile order of all design files required for simulating the specified design object: the top-level
design, a hierarchical module, IP core, a block design from Vivado IP integrator, or a Managed IP
project with multiple IP. The simulation compile order of the required design files is exported to a
shell script with compiler commands and options for the target simulator.

The simulation scripts are written to separate folders in the Export directory as specified in the
Export Simulation dialog box. A separate folder is created for each specified simulator, and
compile, elaborate, and simulate scripts are written for the simulator.

The scripts generated by the Export Simulation command uses a 3-step process, analyze/
compile, elaborate and simulate, that is common to many simulators including the Vivado
simulator. However, for ModelSim and Riviera the generated scripts use the two-step process of
compile and simulate that the tool requires.

TIP: To use the two-step process in the Questa simulator, you can start with the scripts generated for
ModelSim and modify them as needed.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=139

The Export Simulation command will also copy data files (if any) from the fileset, or from an IP, to
the specified export directory. If the design contains Verilog sources, then the generated script
will also copy the glbl.v file from the Vivado software installation path to the output directory.

export_ip_user_files -no_script -force
export_simulation -directory "C:/Data/project_wave1" -simulator all

When you run the Export Simulation command from the dialog box, the Vivado IDE actually runs
a sequence of commands that defines the base directory (or location) for the exported scripts,
exports the IP user files, and then runs the export_simulation command.

The export_ip_user_files command is run automatically by the Vivado IDE to ensure that
all required files needed to support simulation for both core container and non-core container IP,
as well as block designs, are available. See this link in the Vivado Design Suite User Guide: Designing
with IP (UG896) for more information. While export_ip_user_files is run automatically
when working with the Export Simulation dialog box, you must be sure to run it manually before
running the export_simulation command.

TIP: Notice the -no_script  option is specified when export_ip_user_files  is run automatically
by the Vivado IDE. This is to prevent the generation of simulation scripts for the individual IP and BDs that
are used in the top-level design because it can add significant run time to the command. However, you can
generate these simulation scripts for individual IP and BD by running export_ip_user_files  on
specified objects (-of_objects), or without the -no_script option.

The export_ip_user_files command sets up the user file environment for IP and block
design needed for simulation and synthesis. The command creates a folder called
ip_user_files which contains instantiation templates, stub files for use with third-party
synthesis tools, wrapper files, memory initialization files, and simulation scripts.

The export_ip_user_files command also consolidates static simulation files that are
shared across all IP and block designs in the project and copies them to an ipstatic folder.
Many of the IP files that are shared across multiple IP and BDs in a project do not change for
specific IP customizations. These static files are copied into the ipstatic directory. The scripts
created for simulation reference the shared files in this directory as needed. The dynamic
simulation files that are specific to an IP customization are copied to the IP folder. See this link,
or "Understanding IP User Files" in Vivado Design Suite User Guide: Designing with IP (UG896) for
more information.

IMPORTANT! The scripts and files generated by the export_simulation  command point to the files
in the ip_user_files  directory. You must run the export_ip_user_files  command before you
run export_simulation  or simulation errors may occur.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 140Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xexport_ip_user_files
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug835-vivado-tcl-commands.pdf;a=xexport_simulation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xUsingACoreContainerForCommonFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xUnderstandingTheIPUserFilesIpUserFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=140

Exporting the Top Level Design
To create simulation scripts for the top-level RTL design use export_simulation and provide
the simulation fileset object. In the following example sim_1 is the simulation fileset, and export
simulation will create simulation scripts for all the RTL entities, IP, and BD objects in the design.

export_ip_user_files -no_script
export_simulation -of_objects [get_filesets sim_1] -directory C:/test_sim \
-simulator questa

Exporting IP from the Xilinx Catalog and Block
Designs
To generate scripts for an IP, or a Vivado IP integrator block design, you can simply run the
command on the IP or block design object:

export_ip_user_files -of_objects [get_ips blk_mem_gen_0] -no_script -force
export_simulation -simulator ies -directory ./export_script \
-of_objects [get_ips blk_mem_gen_0]

Or, export the ip_user_files for all IP and BDs in the design:

export_ip_user_files -no_script -force
export_simulation -simulator ies -directory ./export_script

You can also generate simulation scripts for block design objects:

export_ip_user_files -of_objects [get_files base_microblaze_design.bd] \
-no_script -force
export_simulation -of_objects [get_files base_microblaze_design.bd] \
-directory ./sim_scripts

IMPORTANT! You must have output products generated for all IP and BD that are used in the top-level
design. The export_simulation  command will not generate output products for IP and BD if they do
not exist. Instead it will return an error and exit.

Exporting a Manage IP Project
Manage IP project provides users an ability to create and manage a centralized repository of
customized IPs. See this link in the Vivado Design Suite User Guide: Designing with IP (UG896) for
more information on Manage IP projects. When generating the IP output products for Manage IP
projects, the Vivado tool also generates simulation scripts for each IP using the
export_ip_user_files command as previously discussed.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 141Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf;a=xUsingManageIPProjects
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=141

Figure 49: Managed IP Project

The Managed IP Project shown above features four different customized IP: blk_mem_gen_0,
c_addsub_0, fifo_generator_0, xdma_0. For this project the Vivado Design Suite creates
an ip_user_files folder as shown in the following figure.

Figure 50: Managed IP Directory Structure

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=142

The ip_user_files folder is generated by the export_ip_user_files command as
previously described. When this command is run on a Manage IP project, it will recursively
process all the IP in the project and generate the scripts and other files needed for synthesis and
simulation of the IP. The ip_user_files folder contains the scripts used for batch simulation,
as well as the dynamic and static IP files needed to support simulation.

The simulation scripts for your target simulator, or for all supported simulators, are located in
the ./sim_scripts folder as seen in Exporting a Manage IP Project. You can go to the folder
of your target simulator and incorporate the compile, elaborate, and simulate scripts into
your simulation flow.

The Vivado tool consolidates all the shared simulation files, used by multiple IP and BD in the
design, into a folder called ./ipstatic. The dynamic files that vary depending on the specifics
of an IP customization are located in the ./ip folder.

TIP: In addition to exporting all the IP in a Manage IP project, you can use the steps outlined in Exporting
IP from the Xilinx Catalog and Block Designs to generate scripts for individual IP in the project.

Running the Vivado Simulator in Batch Mode
To run in batch or scripted mode, the Vivado simulator relies on three processes which are
supported by the files generated by the export_simulation command.

• Parsing Design Files, xvhdl and xvlog

• Elaborating and Generating a Design Snapshot, xelab

• Simulating the Design Snapshot, xsim

For timing simulation, there are additional steps and data required to complete the simulation, as
described in the following:

• Generating a Timing Netlist

• Running Post-Synthesis and Post-Implementation Simulations

Parsing Design Files, xvhdl and xvlog
The xvhdl and xvlog commands parse VHDL and Verilog files, respectively. Descriptions for
each option are available in Table 15: xelab, xvhd, and xvlog Command Options.

xvhdl

The xvhdl command is the VHDL analyzer (parser).

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=143

xvhdl Syntax

xvhdl
[-encryptdumps]
[-f [-file] <filename>]
[-h [-help]
[-initfile <init_filename>]
[-L [-lib] <library_name> [=<library_dir>]]
[-log <filename>]
[-nolog]
[-prj <filename>]
[-relax]
[-v [verbose] [0|1|2]]
[-version]
[-work <library_name> [=<library_dir>]
[-incr]
[-2008]
[-93_mode]
[-nosignalhandlers]

This command parses the VHDL source file(s) and stores the parsed dump into a HDL library on
disk.

xvhdl Examples

xvhdl file1.vhd file2.vhd
xvhdl -work worklib file1.vhd file2.vhd
xvhdl -prj files.prj

xvlog

The xvlog command is the Verilog parser. The xvlog command parses the Verilog source file(s)
and stores the parsed dump into a HDL library on disk.

xvlog Syntax

xvlog
[-d [define] <name>[=<val>]]
[-encryptdumps]
[-f [-file] <filename>]
[-h [-help]]
[-i [include] <directory_name>]
[-initfile <init_filename>]
[-L [-lib] <library_name> [=<library_dir>]]
[-log <filename>]
[-nolog]
[-noname_unamed_generate]
[-relax]
[-prj <filename>]
[-sourcelibdir <sourcelib_dirname>]
[-sourcelibext <file_extension>]
[-sourcelibfile <filename>]
[-sv]
[-v [verbose] [0|1|2]]

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=144

[-version]
[-work <library_name> [=<library_dir>]
[-incr]
[-nosignalhandlers]
[-uvm_version arg]

xvlog Examples

xvlog file1.v file2.v
xvlog -work worklib file1.v file2.v
xvlog -prj files.prj

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-
independent compiler executables. Hence, there is no Tcl command for them.

The simulation launching is Vivado dependent and hence is done through xsim Tcl command.

For usage of simulation outside Vivado, an executable by the same name as xsim is provided.
The xsim executable launches Vivado in project less mode and executes xsim Tcl command to
launch simulation. Hence, to get help on xvlog, xvhdl, xelab form within Vivado IDE, please
precede the command with exec.

Example: exec xvlog –help.

To get help on xsim, use xsim –help.

Elaborating and Generating a Design
Snapshot, xelab

Simulation with the Vivado simulator happens in two phases:

• In the first phase, the simulator compiler xelab, compiles your HDL model into a snapshot,
which is a representation of the model in a form that the simulator can execute.

• In the second phase, the simulator loads and executes (using the xsim command) the
snapshot to simulate the model. In Non-Project Mode, you can reuse the snapshot by skipping
the first phase and repeating the second.

When the simulator creates a snapshot, it assigns the snapshot a name based on the names of
the top modules in the model. You can, however, override the default by specifying a snapshot
name as an option to the compiler. Snapshot names must be unique in a directory or SIMSET;
reusing a snapshot name, whether default or custom, results in overwriting a previously-built
snapshot with that name.

IMPORTANT! You cannot run two simulations with the same snapshot name in the same directory or
SIMSET.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=145

xelab
The xelab command, for given top-level units, does the following:

• Loads children design units using language binding rules or the -L <library> command line
specified HDL libraries

• Performs a static elaboration of the design (sets parameters, generics, puts generate
statements into effect, and so forth)

• Generates executable code

• Links the generated executable code with the simulation kernel library to create an executable
simulation snapshot

You then use the produced executable simulation snapshot name as an option to the xsim
command along with other options to effect HDL simulation.

TIP: xelab  can implicitly call the parsing commands, xvlog  and xvhdl . You can incorporate the
parsing step by using the xelab -prj  option. See Project File (.prj) Syntax for more information about
project files.

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-
independent compiler executables. Hence, there is no Tcl command for them.

xelab Command Syntax Options

Descriptions for each option are available in the following codeblock.

xelab
[-d [define] <name>[=<val>]
[-debug <kind>]
[-f [-file] <filename>]
[-generic_top <value>]
[-h [-help]
[-i [include] <directory_name>]
[-initfile <init_filename>]
[-log <filename>]
[-L [-lib] <library_name> [=<library_dir>]
[-maxdesigndepth arg]
[-mindelay]
[-typdelay]
[-maxarraysize arg]
[-maxdelay]
[-mt arg]
[-nolog]
[-noname_unnamed_generate]
[-notimingchecks]
[-nosdfinterconnectdelays]
[-nospecify]
[-O arg]
[-override_timeunit]
[-override_timeprecision]
[-prj <filename>]
[-pulse_e arg]
[-pulse_r arg]
[-pulse_int_e arg]

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=146

[-pulse_int_r arg]
[-pulse_e_style arg]
[-r [-run]]
[-R [-runall]]
[-rangecheck]
[-relax]
[-s [-snapshot] arg]
[-sdfnowarn]
[-sdfnoerror]
[-sdfroot <root_path>]
[-sdfmin arg]
[-sdftyp arg]
[-sdfmax arg]
[-sourcelibdir <sourcelib_dirname>]
[-sourcelibext <file_extension>]
[-sourcelibfile <filename>]
[-stats]
[-timescale]
[-timeprecision_vhdl arg]
[-transport_int_delays]
[-v [verbose] [0|1|2]]
[-version]
[-sv_root arg]
[-sv_lib arg]
[-sv_liblist arg]
[-dpiheader arg]
[-driver_display_limit arg]
[-dpi_absolute]
[-incr]
[-93_mode]
[-nosignalhandlers]
[-dpi_stacksize arg]
[-transform_timing_checkers]
[-a[--standalone]
[-ignore_assertions]
[-ignore_coverage]
[-cov_db_dir arg]
[-cov_db_name arg]
[-uvm_version arg]
[-report_assertion_pass]
[-dup_entity_as_module]
[-cc_celldefines]
[-cc_libs]
[-cc_type arg]
[-cc_db arg]
[-cc_dir arg]
--cov_db_dir
--cov_db_name

xelab Examples
xelab work.top1 work.top2 -s cpusim
xelab lib1.top1 lib2.top2 -s fftsim
xelab work.top1 work.top2 -prj files.prj -s pciesim
xelab lib1.top1 lib2.top2 -prj files.prj -s ethernetsim

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=147

Verilog Search Order
The xelab command uses the following search order to search and bind instantiated Verilog
design units:

1. A library specified by the 'uselib directive in the Verilog code. For example:

module
full_adder(c_in, c_out, a, b, sum)
input c_in,a,b;
output c_out,sum;
wire carry1,carry2,sum1;
`uselib lib = adder_lib
half_adder adder1(.a(a),.b(b),.c(carry1),.s(sum1));
half_adder adder1(.a(sum1),.b(c_in),.c(carry2),.s(sum));
c_out = carry1 | carry2;
endmodule

2. Libraries specified on the command line with -lib|-L switch.

3. A library of the parent design unit.

4. The work library.

Verilog Instantiation Unit
When a Verilog design instantiates a component, the xelab command treats the component
name as a Verilog unit and searches for a Verilog module in the user-specified list of unified
logical libraries in the user-specified order.

• If found, xelab binds the unit and the search stops.

• If the case-sensitive search is not successful, xelab performs a case-insensitive search for a
VHDL design unit name constructed as an extended identifier in the user-specified list and
order of unified logical libraries, selects the first one matching name, then stops the search.

• If xelab finds a unique binding for any one library, it selects that name and stops the search.

Note: For a mixed language design, the port names used in a named association to a VHDL entity
instantiated by a Verilog module are always treated as case insensitive. Also note that you cannot use a
defparam statement to modify a VHDL generic. See Using Mixed Language Simulation, for more
information.

IMPORTANT! Connecting a whole VHDL record object to a Verilog object is unsupported.

VHDL Instantiation Unit
When a VHDL design instantiates a component, the xelab command treats the component
name as a VHDL unit and searches for it in the logical work library.

• If a VHDL unit is found, the xelab command binds it and the search stops.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=148

• If xelab does not find a VHDL unit, it treats the case-preserved component name as a Verilog
module name and continues a case-sensitive search in the user-specified list and order of
unified logical libraries. The command selects the first matching the name, then stops the
search.

• If case sensitive search is not successful, xelab performs a case-insensitive search for a
Verilog module in the user-specified list and order of unified logical libraries. If a unique
binding is found for any one library, the search stops.

`uselib Verilog Directive
The Verilog `uselib directive is supported, and sets the library search order.

`uselib Syntax

<uselib compiler directive> ::= `uselib [<Verilog-XL uselib directives>|
<lib
directive>]
<Verilog-XL uselib directives> :== dir = <library_directory> | file =
<library_file>
| libext = <file_extension>
<lib directive>::= <library reference> {<library reference>}
<library reference> ::= lib = <logical library name>

`uselib Lib Semantics

The `uselib lib directive cannot be used with any of the Verilog-XL `uselib directives. For
example, the following code is illegal:

`uselib dir=./ file=f.v lib=newlib

Multiple libraries can be specified in one `uselib directive.

The order in which libraries are specified determines the search order. For example:

`uselib lib=mylib lib=yourlib

Specifies that the search for an instantiated module is made in mylib first, followed by
yourlib.

Like the directives, such as `uselib dir, `uselib file, and `uselib libext, the
`uselib lib directive is persistent across HDL files in a given invocation of parsing and
analyzing, just like an invocation of parsing is persistent. Unless another `uselib directive is
encountered, a `uselib (including any Verilog XL `uselib) directive in the HDL source
remains in effect. A `uselib without any argument removes the effect of any currently active
`uselib <lib|file|dir|libext>.

The following module search mechanism is used for resolving an instantiated module or UDP by
the Verific Verilog elaboration algorithm:

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=149

• First, search for the instantiated module in the ordered list of logical libraries of the currently
active `uselib lib (if any).

• If not found, search for the instantiated module in the ordered list of libraries provided as
search libraries in xelab command line.

• If not found, search for the instantiated module in the library of the parent module. For
example, if module A in library work instantiated module B of library mylib and B
instantiated module C, then search for module C in the /mylib, library, which is the library of
B (parent of C).

• If not found, search for the instantiated module in the work library, which is one of the
following:

○ The library into which HDL source is being compiled

○ The library explicitly set as work library

○ The default work library is named as work

`uselib Examples

Table 14: `uselib Examples

File half_adder.v compiled into logical
library named adder_lib File full_adder.v compiled into logical library named work

module half_adder(a,b,c,s);
input a,b;
output c,s;
s = a ^ b;
c = a & b;
endmodule

module
full_adder(c_in, c_out, a, b, sum)
input c_in,a,b;
output c_out,sum;
wire carry1,carry2,sum1;
`uselib lib = adder_lib
half_adder
adder1(.a(a),.b(b),. c(carry1),.s(sum1)); half_adder
adder1(.a(sum1),.b(c_in),.c (carry2),.s(sum)); c_out =
carry1 | carry2; endmodule

xelab, xvhdl, and xvlog xsim Command Options
The following table lists the command options for the xelab, xvhdl, and xvlog xsim
commands.

Table 15: xelab, xvhd, and xvlog Command Options

Command Option Description Used by
Command

-d [define] <name>[=<val>] Define Verilog macros. Use -d|--define for each
Verilog macro. The format of the macro is
<name>[=<val>] where <name> is name of the macro
and <value> is an optional value of the macro.

xelab
Parsing Design Files,
xvhdl and xvlog

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=150

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-debug <kind> Compile with specified debugging ability turned on.
The <kind> options are:

• typical: Most commonly used abilities, including:
line and wave.

• line: HDL breakpoint.

• wave: Waveform generation, conditional execution,
force value.

• xlibs: Visibility into Xilinx® precompiled libraries.
This option is only available on the command line.

• off: Turn off all debugging abilities (Default).

• all: Uses all the debug options.

xelab

-encryptdumps Encrypt parsed dump of design units being compiled. Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-f [-file] <filename> Read additional options from the specified file. xelab
xsim Executable
Options
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-generic_top <value> Override generic or parameter of a top-level design
unit with specified value. Example: -generic_top
"P1=10"

xelab

-h [-help] Print this help message. xelab
xsim Executable
Options
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-i [include] <directory_name> Specify directories to be searched for files included
using Verilog `include. Use -i|--include for each
specified search directory.

xelab
Parsing Design Files,
xvhdl and xvlog

-initfile <init_filename> User-defined simulator initialization file to add to or
override settings provided by the default xsim.ini
file.

xelab
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-L [-lib] <library_name>
[=<library_dir>]

Specify search libraries for the instantiated non-VHDL
design units; for example, a Verilog design unit.
Use -L|--lib for each search library. The format of
the argument is <name>[=<dir>] where <name> is the
logical name of the library and <library_dir> is an
optional physical directory of the library.

xelab
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=151

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-log <filename> Specify the log file name. Default: <xvlog|xvhdl|
xelab|xsim>.log.

xelab
xsim Executable
Options
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-maxarraysize <arg> Set maximum vhdl array size to be 2**n (Default: n =
28, which is 2**28).

xelab

-maxdelay Compile Verilog design units with maximum delays. xelab
-maxdesigndepth <arg> Override maximum design hierarchy depth allowed by

the elaborator (Default: 5000).
xelab

-maxlogsize <arg> Set the maximum size a log file can reach in MB. The
default setting is unlimited.

xsim Executable
Options

-mindelay Compile Verilog design units with minimum delays. xelab
-mt <arg> Specifies the number of sub-compilation jobs which

can be run in parallel. Possible values are auto, off, or
an integer greater than 1.
If auto is specified, xelab selects the number of
parallel jobs based on the number of CPUs on the host
machine. (Default = auto.)
Advanced usage: to further control the -mt option, you
can set the Tcl property as follows:

set_property XELAB.MT_LEVEL off|N
[get_filesets sim_1]

xelab

-nolog Suppress log file generation. xelab
xsim Executable
Syntax
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-noieeewarnings Disable warnings from VHDL IEEE functions. xelab
-noname_unnamed_generate Do not generate name for an unnamed generate block. xelab

Parsing Design Files,
xvhdl and xvlog

-notimingchecks Ignore timing check constructs in Verilog specify
block(s).

xelab

-nosdfinterconnectdelays Ignore SDF port and interconnect delay constructs in
SDF.

xelab

-nospecify Ignore Verilog path delays and timing checks. xelab

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=152

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-O <arg> Enable or disable optimizations.

• -O 0 = Disable optimizations

• -O 1 = Enable basic optimizations

• -O 2 = Enable most commonly desired
optimizations (Default)

• -O 3 = Enable advanced optimizations

Note: A lower value speeds compilation at expense of
slower simulation: a higher value slows compilation but
simulation runs faster.

xelab

-override_timeunit Override timeunit for all Verilog modules, with the
specified time unit in -timescale option.

xelab

-override_timeprecision Override time precision for all Verilog modules, with
the specified time precision in -timescale option.

xelab

-pulse_e <arg> Path pulse error limit as percentage of path delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_r <arg> Path pulse reject limit as percentage of path delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_int_e arg Interconnect pulse reject limit as percentage of delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_int_r <arg> Interconnect pulse reject limit as percentage of delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_e_style <arg> Specify when error about pulse being shorter than
module path delay should be handled. Choices are:

• ondetect: Report error right when violation is
detected.

• onevent: Report error after the module path delay.

Default: onevent

xelab

-prj <filename> Specify the Vivado simulator project file containing one
or more entries of vhdl|verilog <work lib> <HDL
file name>.

xelab
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-r [-run] Run the generated executable snapshot in command-
line interactive mode.

xelab

-rangecheck Enable run time value range check for VHDL. xelab
-R [-runall] Run the generated executable snapshot until the end

of simulation.
xelab
xsim Executable
Syntax

-relax Relax strict language rules. xelab
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=153

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-s [-snapshot] <arg> Specify the name of output simulation snapshot.
Default is <worklib>.<unit>; for example:
work.top. Additional unit names are concatenated
using #; for example: work.t1#work.t2.

xelab

-sdfnowarn Do not emit SDF warnings. xelab
-sdfnoerror Treat errors found in SDF file as warning. xelab
-sdfmin <arg> <root=file> SDF annotate <file> at <root> with

minimum delay.
xelab

-sdftyp <arg> <root=file> SDF annotate <file> at <root> with
typical delay.

xelab

-sdfmax <arg> <root=file> SDF annotate <file> at <root> with
maximum delay.

xelab

-sdfroot <root_path> Default design hierarchy at which SDF annotation is
applied.

xelab

-sourcelibdir
<sourcelib_dirname>

Directory for Verilog source files of uncompiled
modules.
Use -sourcelibdir <sourcelib_dirname> for each
source directory.

xelab
Parsing Design Files,
xvhdl and xvlog

-sourcelibext <file_extension> File extension for Verilog source files of uncompiled
modules.
Use -sourcelibext <file extension> for source
file extension.

xelab
Parsing Design Files,
xvhdl and xvlog

-sourcelibfile <filename> File name of a Verilog source file with uncompiled
modules.

xelab
Parsing Design Files,
xvhdl and xvlog

-stat Print tool CPU and memory usages, and design
statistics.

xelab

-sv Compile input files in SystemVerilog mode. Parsing Design Files,
xvhdl and xvlog

-timescale Specify default timescale for Verilog modules. Default:
1ns/1ps.

xelab

-timeprecision_vhdl <arg> Specify time precision for vhdl designs. Default: 1ps. xelab

-transport_int_delays Use transport model for interconnect delays. xelab
-typdelay Compile Verilog design units with typical delays

(Default).
xelab

-v [verbose] [0|1|2] Specify verbosity level for printing messages. Default =
0.

xelab
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-version Print the compiler version to screen. xelab
xsim Executable
Options
Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=154

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-work <library_name>
[=<library_dir>]

Specify the work library. The format of the argument is
<name>[=<dir>] where:

• <name> is the logical name of the library.

• <library_dir> is an optional physical directory of
the library.

Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog

-sv_root <arg> Root directory of which DPI libraries are to be found.
Default: <current_directory/xsim.dir/xsc>

xelab

--sc_lib arg Shared library name for SystemC functions; (.dll/.so)
without the file extension

xelab

--sc_root <arg> Root directory of which SystemC libraries are to be
found. Default: <current_directory>/xsim.dir/
work/xsc

xelab

-sv_lib <arg> Shared library name for DPI imported functions
(.dll/.so) without the file extension.

xelab

-sv_liblist <arg> Bootstrap file pointing to DPI shared libraries. xelab
-dpiheader <arg> Header filename for the exported and imported

functions.
xelab

-driver_display_limit <arg> Enable driver debugging for signals with maximum size
(Default: n = 65536).

xelab

-dpi_absolute Use absolute paths instead of LD_LIBRARY_PATH on
Linux for DPI libraries that are formatted as
lib<libname>.so.

xelab

-incr Enable incremental analysis/elaboration in simulation. Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog
xelab

-93_mode Compile VHDL in pure 93 mode. Parsing Design Files,
xvhdl and xvlog
xelab

-2008 Compile VHDL file in 2008 mode. Parsing Design Files,
xvhdl and xvlog

-nosignalhandlers Don't allow compiler to trap Antivirus, firewall signal. Parsing Design Files,
xvhdl and xvlog
Parsing Design Files,
xvhdl and xvlog
xelab

-dpi_stacksize <arg> User defined stack size for DPI task. xelab
-transform_timing_checkers Transform timing checker to Verilog process. xelab
-a Generate a standalone non-interactive simulation

executable that performs run-all.
Always use with -R.
To run the simulation faster without any debug
capability, use -standalone with -R. It will invoke the
Simulation standalone without invoking Vivado IDE.
This option will save the license loading time.

xelab

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=155

Table 15: xelab, xvhd, and xvlog Command Options (cont'd)

Command Option Description Used by
Command

-ignore_assertions Ignore SystemVerilog concurrent assertions. xelab
-ignore_coverage Ignore SystemVerilog functional coverage. xelab
-cov_db_dir <arg> Functional coverage database dump directory. The

coverage data is present under <arg>/xsim.covdb/
<cov_db_name> directory. Default is ./.

xelab

-cov_db_name <arg> Functional coverage database name. The coverage data
is present under <cov_db_dir>/xsim.covdb/<arg>
directory. Default is a snapshot name.

xelab

-uvm_version <arg> Specify UVM version (default 1.2). Parsing Design Files,
xvhdl and xvlogxelab

-report_assertion_pass Report SystemVerilog Concurrent Assertions Pass, even
if there is no pass action block.

xelab

-dup_entity_as_module Enable support for hierarchical references inside the
Verilog hierarchy in mixed language designs.

CAUTION! This may cause significant slow down of
compilation.

xelab

-cc_celldefines Specify if code coverage information needs to be
captured for libs/modules with cell define attribute set.
OFF by default.

xelab

-cc_libs Specify if code coverage information needs to be
captured for all the libraries specified. OFF by default.

xelab

-cc_type arg Specify options for generating Code Coverage Statistics
-bcesfxt. (s)Statement Coverage, (b)Branch Coverage,
(c)Condition Coverage Supported.

xelab

-cc_db arg Code coverage database will be saved inside
<cc_dir_argvalue>/xsim.codecov/<cc_db_argvalue>.
Default is SnapshotName.

xelab

-cc_dir arg Code coverage database will be saved under the dir
<cc_dir_argvalue>/xsim.codeCov/<cc_db_argvalue>.
Default is ./xsim.codecov/.

xelab

Simulating the Design Snapshot, xsim
The xsim command loads a simulation snapshot to effect a batch mode simulation or provides a
workspace (GUI) and/or a Tcl-based interactive simulation environment.

xsim Executable Syntax
The command syntax is as follows:

xsim <options> <snapshot>

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=156

Where:

• xsim is the command.

• <options> are the options specified in the following table.

• <snapshot> is the simulation snapshot.

xsim Executable Options
Table 16: xsim Executable Command Options

xsim Option Description
-f [-file] <filename> Load the command line options from a file.
-g [-gui] Run with interactive workspace.
-h [-help] Print help message to screen.
-log <filename> Specify the log file name.
-maxdeltaid arg (=-1) Specify the maximum delta number. Report an error if it exceeds maximum

simulation loops at the same time.
-maxlogsize arg (=-1) Set the maximum size a log file can reach in MB. The default setting is unlimited.
-ieeewarnings Enable warnings from VHDL IEEE functions.
-nolog Suppresses log file generation.
-nosignalhandlers Disables the installation of OS-level signal handlers in the simulation. For

performance reasons, the simulator does not check explicitly for certain conditions,
such as an integer division by zero, that could generate an OS-level fatal run time
error. Instead, the simulator installs signal handlers to catch those errors and
generates a report.
With the signal handlers disabled, the simulator can run in the presence of such
security software, but OS-level fatal errors could crash the simulation abruptly with
little indication of the nature of the failure.

CAUTION! Use this option only if your security software prevents the simulator
from running successfully.

-onfinish <quit|stop> Specify the behavior at end of simulation.
-onerror <quit|stop> Specify the behavior upon simulation run time error.
-R [-runall] Runs simulation till end (such as do 'run all;quit').

-stats Display memory and CPU stats upon exiting.
-testplusarg <arg> Specify plusargs to be used by $test$plusargs and $value$plusargs system

functions.
-t [-tclbatch] <filename> Specify the Tcl file for batch mode execution.
-tp Enable printing to screen of hierarchical names of process being executed.
-tl Enable printing to screen of file name and line number of statements being

executed.
-vcdfile <vcd_filename> Specifies the VCD output file.
-vcdunit <vcd_unit> Specifies the VCD output unit. The default is the engine precision unit.
-wdb <filename.wdb> Specify the waveform database output file.
-version Print the compiler version to screen.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=157

Table 16: xsim Executable Command Options (cont'd)

xsim Option Description
-view <wavefile.wcfg> Open a wave configuration file. Use this switch together with -gui switch.

-protoinst Specify a .protoinst file for protocol analysis.
-sv_seed Seed for SystemVerilog constraint random.
-cov_db_dir Functional coverage database dump directory. The coverage data is present under

<arg>/xsim.covdb/<cov_db_name> directory. Default is ./ or inherits the value set in
xelab.

-cov_db_name Functional coverage database name. The coverage data will be present under
<cov_db_dir>/xsim.covdb/<arg> directory. Default is snapshot name or inherits the
value set in xelab.

-downgrade_error2info Downgrade the severity level of the HDL messages from Error to Info.
-downgrade_error2warning Downgrade the severity level of the HDL messages from Error to Warning.
-downgrade_fatal2info Downgrade the severity level of the HDL messages from Fatal to Info.
-downgrade_fatal2warning Downgrade the severity level of the HDL messages from Fatal to Warning.
-downgrade_severity Downgrade the severity level of the HDL messages. Following are the choices:

• error2warning
• error2info
• fatal2warning
• fatal2info

-ignore_assertions Ignore SystemVerilog concurrent assertions.
-ignore_coverage Ignore SystemVerilog functional coverage.
-ignore_feature Ignore the effect of a specific HDL feature or construct. Following are the choices:

• assertion
• coverage

-tempDir Specify the temporary directory name.

TIP: When running the xelab, xsc, xsim, xvhdl, xcrg, or xvlog commands in batch files or scripts,
it might also be necessary to define the XILINX_VIVADO environment variable to point to the installation
hierarchy of the Vivado Design Suite. To set the XILINX_VIVADO variable, add one of the following to your
script or batch file:

• On Windows: set XILINX_VIVADO=<vivado_install_area>/Vivado/<version>

• On Linux: setenv XILINX_VIVADO vivado_install_area>/Vivado/<version>

• Where <version> is the version of Vivado tools you are using: 2014.3, 2014.4, 2015.1, etc

Functional Coverage Report Generator
Vivado simulator provides a utility using which you can generate the functional coverage report
either in text or html format. The Xilinx Coverage Report Generator (XCRG) can also be used for
merging multiple coverage databases into a single database.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=158

Table 17: xcrg Command Options and Description

xcrg Option Description
-db_name arg Name of the database inside xsim.covdb. If unspecified all databases present in the

directory are used.
-dir arg Path where the xsim.covdb database directory is located. Default is ./xsim.covdb.

-file arg Specify file with location of the coverage databases to be restored.
-h Print help message and exit.
-help Print help message and exit.
-merge_db_name arg Name of the merged database. Default is xcrg_mdb.
-merge_dir arg Directory where the merged database is saved. Default is ./xsim.covdb.

-nolog Suppresses the log file generation.
-report_dir arg Directory where the coverage database and the report are saved. Default is ./

xcrg_report.

-report_format arg Specify the desired format of the coverage report html or text or all. Default is html.
-log arg Specify the file name which has the log saved. Default is xcrg.log.

-version Print the version of XCRG and exit.
-cc_db <arg> Specify the DB Name (Snapshot Name) which is used to save the code coverage

database. Code coverage database can be restored from <cc_dir_argvalue>/
xsim.codeCov/<cc_db_argvalue>.

-cc_dir <arg> Specify the directory where the code coverage information database is saved. Code
coverage database can be restored from <cc_dir_argvalue>/xsim.codeCov/
<cc_db_argvalue>. Default is ./xsim.CodeCov/.

-cc_fullfile Show the entire file in the code coverage report. By default this is OFF for files more
than 50000 lines and only the file's module contents are shown.

-cc_report <arg> Directory where the code coverage HTML report is saved. Default is
xcrg_code_cov_report.

-merge_cc Merge the code coverage databases specified and create a output merged code
coverage database.

xcrg Example Syntax

xcrg -h
xcrg -file /path/to/file
xcrg -file /path/to/file -db_name work.top
xcrg -dir /path/to/abc
xcrg -dir ./abc -report_dir def -report_format html
xcrg -dir ./abc -db_name work.top -report_dir def -report_format html
xcrg -dir /path/to/abc -db_name work.top -report_dir def -report_format text
xcrg -merge_dir m
xcrg -merge_db_name xyz -report_dir def
xcrg -report_format html -nolog
xcrg -report_format html -log xcrgOutput.log
xcrg -cc_db a1 -cc_dir ./
xcrg -cc_report abc -cc_db work.testbench -cc_dir ./xsim.codeCov/

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=159

Example of Running Vivado Simulator in
Standalone Mode

When running the Vivado simulator in standalone mode, you can execute commands to:

• Analyze the design file

• Elaborate the design and create a snapshot

• Open the Vivado simulator workspace and wave configuration file(s) and run simulation

Step 1: Analyzing the Design File
To begin, analyze your HDL source files by type, as shown in the table below. Each command can
take multiple files.

Table 18: File Types and Associated Commands for Design File Analysis

File Type Command
Verilog xvlog <VerilogFileName(s)>

SystemVerilog xvlog -sv <SystemVerlilogFileName(s)>

VHDL xvhdl <VhdlFileName(s)>

Step 2: Elaborating and Creating a Snapshot
After analysis, elaborate the design and create a snapshot for simulation using the xelab
command:

xelab <topDesignUnitName> -debug typical

IMPORTANT! You can provide multiple top-level design unit names with xelab . To use the Vivado
simulator workspace for purposes similar to those used during launch_simulation, you must set
debug level to typical.

Step 3: Running Simulation
After successful completion of the xelab phase, the Vivado simulator creates a snapshot used
for running simulation.

To invoke the Vivado simulator workspace, use the following command:

xsim <SnapShotName> -gui

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=160

To open the wave config file:

xsim <SnapShotName> -view <wcfg FileName> -gui

You can provide multiple wcfg files using multiple -view flags. For example:

xsim <SnapShotName> -view <wcfg FileName> -view <wcfg FileName>

Project File (.prj) Syntax
Note: The project file discussed here is a Vivado simulator text-based project file. It is not the same as the
project file (.xpr) created by the Vivado Design Suite.

To parse design files using a project file, create a text file called <proj_name>.prj, and use the
syntax shown below inside the project file.

verilog <work_library> <file_names>... [-d <macro>]...[-i
<include_path>]...
vhdl <work_library> <file_name>
sv <work_library> <file_name>
vhdl2008 <work_library> <file_name>

Where:

<work_library>: Is the library into which the HDL files on the given line are to be compiled.

<file_names>: Are Verilog source files. You can specify multiple Verilog files per line.

<file_name>: Is a VHDL source file; specify only one VHDL file per line.

1. For Verilog or SystemVerilog: [-d <macro>] provides you the option to define one or more
macros.

2. For Verilog or SystemVerilog: [-i <include_path>] provides you the option to define
one or more <include_path> directories.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=161

Predefined Macros
XILINX_SIMULATOR is a Verilog predefined-macro. The value of this macro is 1. Predefined
macros perform tool-specific functions, or identify which tool to use in a design flow. The
following is an example usage:

`ifdef VCS
 // VCS specific code
`endif
`ifdef INCA
 // NCSIM specific code
`endif
`ifdef MODEL_TECH
 // MODELSIM specific code
`endif
`ifdef XILINX_ISIM
 // ISE Simulator (ISim) specific code
`endif
`ifdef XILINX_SIMULATOR
 // Vivado Simulator (XSim) specific code
`endif
`ifdef _VCP
//Aldec specific code
`endif

Library Mapping File (xsim.ini)
The HDL compile programs, xvhdl, xvlog, and xelab, use the xsim.ini configuration file to
find the definitions and physical locations of VHDL and Verilog logical libraries.

The compilers attempt to read xsim.ini from these locations in the following order:

1. xsim.ini in current working directory

2. User-file specified through the -initfile switch. If -initfile is not specified, the
program searches for xsim.ini in the current working directory.

3. <Vivado_Install_Dir>/data/xsim

The xsim.ini file has the following syntax:

<logical_library1> = <physical_dir_path1>
<logical_library2> = <physical_dir_path2>

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=162

The following is an example xsim.ini file:

std=<Vivado_Install_Area>/xsim/vhdl/std
ieee=<Vivado_Install_Area>/xsim/vhdl/ieee
vl=<Vivado_Install_Area>/xsim/vhdl/vl
ieee_proposed=$RDI_DATADIR/xsim/vhdl/ieee_proposed
synopsys=<Vivado_Install_Area>/xsim/vhdl/synopsys
uvm=<Vivado_Install_Area>/xsim/system_verilog/uvm
unisim=<Vivado_Install_Area>/xsim/vhdl/unisim
unimacro=<Vivado_Install_Area>/xsim/vhdl/unimacro
unifast=<Vivado_Install_Area>/xsim/vhdl/unifast
simprims_ver=<Vivado_Install_Area>/xsim/verilog/simprims_ver
unisims_ver=<Vivado_Install_Area>/xsim/verilog/unisims_ver
unimacro_ver=<Vivado_Install_Area>/xsim/verilog/unimacro_ver
unifast_ver=<Vivado_Install_Area>/xsim/verilog/unifast_ver
secureip=<Vivado_Install_Area>/xsim/verilog/secureip
work=./work

The xsim.ini file has the following features and limitations:

• There must be no more than one library path per line inside the xsim.ini file.

• If the directory corresponding to the physical path does not exist, xvhd or xvlog creates it
when the compiler first tries to write to that path.

• You can describe the physical path in terms of environment variables. The environment
variable must start with the $ character.

• The default physical directory for a logical library is xsim/<language>/
<logical_library_name>, for example, a logical library name of:

<Vivado_Install_Area>/xsim/vhdl/unisim

• File comments must start with --.

Note: From 2018.2 release onwards, Xilinx provides two init files named as xsim.ini and
xsim_legacy.ini. The xsim_legacy.ini file is similar to xsim.ini of older version. It contains
mapping for UNISIM library while the new xsim.ini file contains mapping for all the files of UNISIM
library along with the mapping for pre-compiled IP.

Running Simulation Modes
You can run any mode of simulation from the command line. The following subsections illustrate
and describe the simulation modes when run from the command line.

Behavioral Simulation
The following figure illustrates the behavioral simulation process:

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=163

Figure 51: Behavioral Simulation Process

Gather Files

Parse Using XVLOG/XVHDL

Compile and Elaborate Using
XELAB (Create Snapshot)

Debug on Waveform

Execute Using
 XSIM <snapshot>

X23705-021420

To run behavioral simulation from within the Vivado Design Suite, use the Tcl command:
launch_simulation -mode behavioral.

Running Post-Synthesis and Post-Implementation
Simulations
At post-synthesis and post-implementation, you can run a functional or a Verilog timing
simulation. The following figure illustrates the post-synthesis and post-implementation
simulation process:

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=164

Figure 52: Post-Synthesis and Post-Implementation Simulation

Run Synthesis or Implementation

Parse Using xvlog/xvhdl

Simulation Using
xsim <snapshot>

Create Netlist
write_verilog or write_vhdl

Post-Synthesis
Post-Implementation

Simulation

Gather Files
(Create Project File)

Compile and Elaborate
Using xelab

Debug in Waveform
Or Self-checking Test Bench

X12985

For Timing Simulation
write_sdf

The following is an example of running a post-synthesis functional simulation from the command
line:

synth_design -top top -part xc7k70tfbg676-2
open_run synth_1 -name netlist_1
write_verilog -mode funcsim test_synth.v
launch_simulation

TIP: When you run a post-synthesis or post-implementation timing simulation, you must run the
write_sdf  command after the write_verilog  command, and the appropriate annotate command
is needed for elaboration and simulation.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=165

Using Tcl Commands and Scripts
You can run Tcl commands on the Tcl Console individually, or batch the commands into a Tcl
script to run simulation.

Using a -tclbatch File
You can type simulation commands into a Tcl file, and reference the Tcl file with the following
command: -tclbatch <filename>

Use the -tclbatch option to contain commands within a file and execute those command as
simulation starts. For example, you can have a file named run.tcl that contains the following:

run 20ns

id="ag415279">current_time
quit

Then launch simulation as follows:

xsim <snapshot> -tclbatch run.tcl

You can set a variable to represent a simulation command to quickly run frequently used
simulation commands.

Launching Vivado Simulator from the Tcl Console
The following is an example of Tcl commands that create a project, read in source files, launch the
Vivado simulator, do placing and routing, write out an SDF file, and re-launch simulation.

Vivado -mode Tcl
Vivado% create_project prj1
Vivado% read_verilog dut.v
Vivado% synth_design -top dut
Vivado% launch_simulation -simset sim_1 -mode post-synthesis -type
functional
Vivado% place_design
Vivado% route_design
Vivado% write_verilog -mode timesim -sdf_anno true -sdf_file postRoute.sdf
postRoute_netlist.v
Vivado% write_sdf postRoute.sdf
Vivado% launch_simulation -simset sim_1 -mode post-implementation -type
timing
Vivado% close_project

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=166

export_simulation
Export a simulation script file for the target simulator. The generated script will contain simulator
commands for compiling, elaborating and simulating the design.

This command will retrieve the simulation compile order of specified objects, and export this
information in a shell script with the compiler commands and default options for the target
simulator. The specified object can be either a simulation fileset or an IP. If you want to run
simulation outside Vivado IDE, use export_simulation in place of launch_simulation -
scripts_only to generate scripts file.

export_simulation [-simulator <arg>] [-of_objects <arg>]
 [-ip_user_files_dir <arg>] [-ipstatic_source_dir <arg>]
 [-lib_map_path <arg>] [-script_name <arg>]
 [-directory <arg>] [-runtime <arg>] [-define <arg>]
 [-generic <arg>] [-include <arg>] [-use_ip_compiled_libs]
 [-absolute_path] [-export_source_files]
 [-generate_hier_access] [-32bit] [-force] [-quiet]
 [-verbose][-gcc_install_path <arg>] [-more_options <arg>]

Usage

Table 19: export_simulation Options

Name Description
[-simulator] Simulator for which the simulation script will be created. Allowed values are all,

xsim, modelsim, questa, ies, vcs, xcelium, riviera, and activehdl.
Default: all

[-of_objects] Export simulation script for the specified object.
Default: None

[-lib_map_path] Precompiled simulation library directory path. If not specified, follow the
instructions in the generated script header to manually provide the simulation
library mapping information.
Default: Empty

[-script_name] Output shell script filename. If not specified, then file with a default name will be
created.
Default: top_module.sh

[-directory] Directory where the simulation script will be generated.
Default: export_sim

[-runtime] Run simulation for this time.
Default: full simulation run or until a logical break or finish condition

[-absolute_path] Make all file paths absolute with respect to the reference directory.
[-export_source_files] Copy IP/BD design files to output directory.
[-32bit] Perform 32-bit compilation.
[-force] Overwrite previous files.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=167

Table 19: export_simulation Options (cont'd)

Name Description
[-ip_user_files_dir] Directory path to exported IP/BD user files (for static, dynamic and data files).

Default: Empty
[-ipstatic_source_dir] Directory path to the exported IP/BD static files.

Default: Empty
[-define] Read Verilog defines from the list specified with this switch.

Default: Empty
[-generic] Read VHDL generics from the list specified with this switch.

Default: Empty
[-include] Read include directory paths from the list specified with this switch.

Default: Empty
[-use_ip_compiled_libs] Reference pre-compiled IP static library during compilation. This switch requires -

ip_user_files_dir and -ipstatic_source_dir switches also for generating
scripts using pre-compiled IP library.

[-generate_hier_access] Extract path for hierarchical access simulation
[-gcc_install_path] GNU compiler installation directory path for the g++/gcc executables.

Default: Empty
[-more_options] Pass specified options to the simulator tool.

Default: Empty

Description

Export a simulation script file for the target simulator (please see the list of supported simulators
below). The generated script will contain simulator commands for compiling, elaborating and
simulating the design.

The command will retrieve the simulation compile order of specified objects, and export this
information in a shell script with the compiler commands and default options for the target
simulator. The specified object can be either a simulation fileset, IP or a BD (block design).

If the object is not specified, then this command will generate the script for the active simulation
top. Any Verilog include directories or file paths for the files containing Verilog define
statements will be added to the compiler command line.

By default, the design source file and include directory paths in the compiler command line will
be set relative to the reference_dir variable that is set in the generated script. To make these
paths absolute, specify the -absolute_path switch.

The command will also copy data files (if any) from the fileset, or from an IP, to the output
directory. If the design contains Verilog sources, then the generated script will also copy the
glbl.v file from the software installation path to the output directory.

A default .do file that is used in the compiler commands in the simulation script for the target
simulator, will be written to the output directory.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=168

Note: In order to perform simulation with the generated script, the simulation libraries must be compiled
first using the compile_simlib Tcl command. The compiled library directory path must be specified
when generating this script. The generated script will automatically include the setup files for the target
simulator from the compiled library directory.

Supported Simulators

• Vivado simulator (xsim)

• ModelSim Simulator (modelsim)

• Questa Advanced Simulator (questa)

• Incisive Enterprise Simulator (ies)

• Verilog Compiler Simulator (vcs)

• Riviera-PRO Simulator (riviera)

• Active-HDL Simulator (activehdl)

• Cadence Xcelium Parallel Simulator (xcelium)

Arguments

• -of_objects: (Optional) Specify the target object for which the simulation script file needs
to be generated. The target object can be either a simulation fileset (simset) or an IP. If this
option is not specified then this command will generate file for the current simulation fileset.

• -lib_map_path: (Optional) Specify path to the Xilinx pre-compiled simulation library for the
selected simulator. The simulation library is compiled using compile_simlib. See the
header section in the generated script for more information. If this switch is not specified,
then the generated script will not reference the pre-compiled simulation library and the static
IP files will be locally compiled.

• -script_name: (Optional) Specify name of the generated script. Default name is
<simulation_top>.sh. If the -of_objects switch is specified, then the default syntax of the
script will be as follows:

-of_objects [current_fileset -simset] .sh
-of_objects [get_ips] .sh
-of_objects [get_files .xci] .sh
-of_objects [get_files .bd] .sh

• -absolute_path: (Optional) Specify this option to make source and include directory paths
absolute. By default, all paths are set relative to the output directory specified with the -
directory switch.

• -32bit: (Optional) Specify this option to perform 32-bit simulation. If this option is not
specified then by default 64-bit option will be added to the simulation command line.

• -force: (Optional) Overwrite an existing script file of the same name. If the script file already
exists, the tool returns an error unless the -force argument is specified.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=169

• -directory: (Required) Specify the directory path where the script file will be exported.

• -simulator: (Required) Specify the target simulator name for the simulation script. The valid
simulators names are xsim, modelsim, questa, ies, and vcs (or vcs_mx).

• -quiet: (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

• -verbose: (Optional) Temporarily override any message limits and return all messages from
this command.

• -generate_hier_access: (Optional) Extract path for hierarchical access simulation.

• -runtime: (Optional) Specify simulation run-time.

• -define: (Optional) Specify the list of verilog defines used in the design.

• -generic: (Optional) Specify the list of VHDL generics used in the design.

• -include: (Optional) Specify the list of include directory paths for verilog include files in the
design.

• -export_source_files: (Optional) Specify this option to copy the IP design files to the
generated script directory in a sub-directory named srcs. The generated script will reference
the design files from this srcs directory.

export_ip_user_files
Generate and export IP/IP integrator user files from a project. This can be scoped to work on one
or more IPs.

Syntax

export_ip_user_files [-of_objects <arg>] [-ip_user_files_dir <arg>]
 [-ipstatic_source_dir <arg>] [-lib_map_path <arg>]
 [-no_script] [-sync] [-reset] [-force] [-quiet]
 [-verbose]

Returns: List of files that were exported.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=170

Usage

Table 20: export_ip_user_files

Name Description
[-of_objects] IP, IP integrator or a fileset.

Default: None
[-ip_user_files_dir] Directory path to simulation base directory (for static, dynamic, wrapper, netlist,

script, and MEM files).
Default: None

[-ipstatic_source_dir] Directory path to the static IP files.
Default: None

[-lib_map_path] Compiled simulation library directory path.
Default: Empty

[-no_script] Do not export simulation scripts.
Default: 1

[-sync] Delete IP/IP integrator dynamic and simulation script files.
[-reset] Delete all IP/IP integrator static, dynamic and simulation script files.
[-force] Overwrite files.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.

Description

Export IP user files repository with static, dynamic, netlist, Verilog/VHDL stubs and memory
initialization files.

Arguments

• -of_objects: (Optional) Specify the target object for which the IP static and dynamic files
needs to be exported.

• -ip_user_files_dir: (Optional) Directory path to IP user files base directory (for dynamic
and other IP non static files). By default, if this switch is not specified then this command will
use the path specified with the IP.USER_FILES_DIR project property value.

• -ipstatic_source_dir: (Optional) Directory path to the static IP files. By default, if this
switch is not specified then this command will use the path specified with the
SIM.IPSTATIC_SOURCE_DIR project property value.

Note: If the -ip_user_files_dir switch is specified, by default the IP static files will be exported
under the sub-directory with the name ipstatic. If this switch is specified with -
ipstatic_source_dir, then the IP static files will be exported in the path specified with the -
ipstatic_source_dir switch.

• -clean_dir: (Optional) Delete all files from central directory (including static, dynamic and
other files)

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=171

Examples

The following command will export char_fifo IP dynamic files to <project>/
<project>.ip_user_files/ip/char_fifo directory and char_fifo IP static files to
<project>/<project>.ip_user_files/ipstatic directory:

% export_ip_user_files -of_objects [get_ips char_fifo]

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=172

Appendix A

Compilation, Elaboration,
Simulation, Netlist, and Advanced
Options

From the Vivado IDE Flow Navigator, you can right-click Simulation, and select Simulation
Settings to open the simulation settings in the Settings dialog box. From the Simulation settings,
you can set various compilation, elaboration, simulation, netlist, and advanced options.

Compilation Options
The Compilation tab defines and manages compiler directives, which are stored as properties on
the simulation fileset and used by the xvlog and xvhdl utilities to compile Verilog and VHDL
source files for simulation.

Vivado Simulator Compilation Options
Table 21: Vivado Simulator Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter value
xsim.compile.tcl.pre Tcl file containing set of commands that should be invoked before launch of

compilation
xsim.compile.xvlog.nosort Do not sort Verilog file during compilation
xsim.compile.xvhdl.nosort Do not sort VHDL file during compilation
xsim.compile.xvlog.relax Relax strict HDL language checking rules
xsim.compile.xvhdl.relax Relax strict HDL language checking rules
xsim.compile.xvlog.more_options More XVLOG compilation options
xsim.compile.xvhdl.more_options More XVHDL compilation options
xsim.compile.xsc.more_options More XSC compilation options

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=173

Questa Advanced Simulator Compilation Options
Table 22: Questa Advanced Simulator Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter value

questasim.compile.tcl.pre TCL file containing set of commands that should be invoked before
launch of compilation

questasim.compile.vhdl_syntax Specify VHDL syntax

questasim.compile.use_explicit_decl Log all signals

questasim.compile.load_glbl Load GLBL module

questasim.compile.vlog.more_options More VLOG compilation options

questasim.compile.vcom.more_options More VCOM compilation options

questasim.compile.sccom.cores Specify the number of process cores to run in parallel

questasim.compile.sccom.more_options More SCCOM compilation options

ModelSim Simulator Compilation Options
Table 23: ModelSim Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter value

modelsim.compile.tcl.pre TCL file containing set of commands that should be invoked before launch
of compilation

modelsim.compile.vhdl_syntax Specify VHDL syntax

modelsim.compile.use_explicit_decl Log all signals

modelsim.compile.load_glbl Load GLBL module

modelsim.compile.vlog.more_options More VLOG compilation options

modelsim.compile.vcom.more_options More VCOM compilation options

IES Simulator Compilation Options
Table 24: IES Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter value

ies.compile.tcl.pre TCL file containing set of commands that should be invoked before launch of
compilation

ies.compile.v93 Enable VHDL-93 features

ies.compile.relax Enable relaxed VHDL interpretation

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=174

Table 24: IES Compilation Options (cont'd)

Option Description
ies.compile.load_glbl Load GLBL module

ies.compile.ncvhdl.more_options More NCVHDL compilation options

ies.compile.ncvlog.more_options More NCVLOG compilation options

xcelium.compile.gcc.more_options More GCC compilation options

VCS Simulator Compilation Options
Table 25: VCS Simulator Compilation Options

Option Description
Verilog options Browse to set the Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter values

vcs.compile.tcl.pre TCL file containing set of commands that should be invoked before launch of
compilation

vcs.compile.load_glbl Load GLBL module

vcs.compile.vhdlan.more_options More VHDLAN compilation options

vcs.compile.vlogan.more_options Extra VLOGAN compilation options

vcs.compile.syscan.more_options More SYSCAN compilation options

vcs.compile.g++.more_options More G++ compilation options

vcs.compile.gcc.more_options More GCC compilation options

Xcelium Simulator Compilation Options
Table 26: Xcelium Compilation Options

Options Description
Verilog Options Browse to set Verilog include path and to define macro

Generics/Parameters options Specify or browse to set the generic/parameter value

xcelium.compile.tcl.pre TCL file containing set of commands that should be invoked before the
launch of a compilation

xcelium.compile.v93 Enable VHDL-93 features

xcelium.compile.relax Enable relaxed VHDL interpretation

xcelium.compile.load_glbl Load GLBL module

xcelium.compile.xmvhdl.more_options More XMVHDL compilation options

xcelium.compile.xmvlog.more_options More XMVLOG compilation options

xcelium.compile.xmsc.more_option More XMSC compilation option

xcelium.compile.g++.more_option More G++ compilation option

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=175

Elaboration Options
The Elaboration tab defines and manages elaboration directives, which are stored as properties
on the simulation fileset and used by the xelab utility for elaborating and generating a simulation
snapshot. Select a property in the table to display a description of the property and edit the
value.

Vivado Simulator Elaboration Options
Table 27: Vivado Simulator Elaboration Options

Option Description
xsim.elaborate.snapshot Specifies the simulation snapshot name

xsim.elaborate.debug_level Choose simulation debug visibility level. By default it is "typical"

xsim.elaborate.relax Relax strict HDL Language checking rules

xsim.elaborate.mt_level Specify number of sub-compilation jobs to run in parallel

xsim.elaborate.load_glbl Load GLBL module

xsim.elaborate.rangecheck Enables run time value range check for VHDL

xsim.elaborate.sdf_delay Specifies sdf timing delay type to be read for use in timing simulation

xsim.elaborate.xelab.more_option More XELAB elaboration options

xsim.elaborate.xsc.more_option More options for XSC during elaboration

xsim.elaborate.coverage.name Specify coverage database name

xsim.elaborate.coverage.dir Specify coverage database directory name

xsim.elaborate.coverage.type Specify coverage type(s) (line branch condition or all)

xsim.elaborate.coverage.library Track std/unisims/retarget libraries

xsim.elaborate.coverage.celldefine Track modules with celldefine attributes

Questa Advanced Simulator Elaboration Options
Table 28: Questa Advanced Simulator Elaboration Options

Option Description
questasim.elaborate.acc Enables access to simulation objects that might be optimized by

default (default: npr)

questasim.elaborate.vopt.more_options More VOPT elaboration options

questasim.elaborate.sccom.more_options More options for sccom during elaboration

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=176

ModelSim Simulator Elaboration Options
Table 29: ModelSim Elaboration Options

Option Description
modelsim.elaborate.acc Enables access to simulation objects that might be optimized by default

modelsim.elaborate.vopt.more_options More VOPT elaboration options

IES Simulator Elaboration Options
Table 30: IES Elaboration Options

Option Description
ies.elaborate.update Checks if unit is up-to-date before writing

ies.elaborate.ncelab.more_options More ncelab elaboration options

VCS Simulator Elaboration Options
Table 31: VCS Elaboration Options

Option Description
vcs.elaborate.debug_pp Enable post-process debug access

vcs.elaborate.vcs.more_options More VCS elaboration options

Xcelium Simulator Elaboration Options
Table 32: Xcelium Elaboration Options

Option Description
xcelium.elaborate.update Checks if unit is up-to-date before writing

xcelium.elaborate.xmelab.more_options More xmelab elaboration options

Simulation Options
The Simulation tab defines and manages simulation directives, which are stored as properties on
the simulation fileset and used by the xsim application for simulating the current project. Select a
property in the table to display a description of the property and edit the value.

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=177

Vivado Simulator Simulation Options
Table 33: Vivado Simulator Simulation Options

Option Description
xsim.simulate.runtime Specifies simulation run time for the Vivado simulator. Enter blank to load just

the simulation snapshot and wait for user input.

xsim.simulate.tcl.post Tcl file containing set of commands that you want to invoke at end of simulation.

xsim.simulate.log_all_signals Logs all object signals

xsim.simulate.wdb Specifies simulation waveform database file

xsim.simulate.saif Specifies SAIF file name

xsim.simulate.saif_scope Specifies design hierarchy instance name for which power estimation is desired.

xsim.simulate.saif_all_signals Logs all object signals for the design under test for SAIF file generation

xsim.simulate.xsim.more_option More Vivado simulator simulation options

xsim.simulate.custom_tcl Specify the name of a custom tcl file which will be the source during simulation in
place of a regular Tcl file generated by Vivado

xsim.simulate.add_positional Add positional parameter to XSIM for passing command line argument

xsim.simulate.no_quit Do not quit simulation

Questa Advanced Simulator Simulation Options
Table 34: Questa Advanced Simulator Simulation Options

Option Description
questasim.simulate.runtime Specify simulation run time

questasim.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of
simulation.

questasim.simulate.log_all_signals Log all signals

questasim.simulate.custom_do Specify the name of custom do file

questasim.simulate.custom_udo Specify the name of custom user do file

questa.simulate.ieee_warning Suppresses IEEE warnings

questasim.simulate.sdf_delay Specify the delay type for sdf annotation

questasim.simulate.saif Specify SAIF file

questasim.simulate.saif_scope Specify design hierarchy instance name for which power estimation is
desired

questasim.simulate.vsim.more_option More VSIM simulation options

questa.simulate.custom_wave_do Name of the custom wave.do file which is used in place of a regular Vivado
generated wave.do file

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=178

ModelSim Simulator Simulation Options
Table 35: ModelSim Simulation Options

Option Description
modelsim.simulate.runtime Specify simulation run time

modelsim.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of
simulation.

modelsim.simulate.log_all_signals Log all signals

modelsim.simulate.custom_do Specify the name of custom do file

modelsim.simulate.custom_udo Specify the name of custom user do file

modelsim.simulate.sdf_delay Specify the delay type for sdf annotation

modelsim.simulate.ieee_warning Suppresses IEEE warnings

modelsim.simulate.saif Specify SAIF file

modelsim.simulate.saif_scope Specify design hierarchy instance name for which power estimation is
desired

modelsim.simulate.vsim.more_option More VSIM simulation options

modelsim.simulate.custom_wave_do Name of the custom wave.do file which is used in place of a regular Vivado
generated wave.do file

IES Simulator Simulation Options
Table 36: IES Simulation Options

Option Description
ies.simulate.runtime Specify simulation run time

ies.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of simulation

ies.simulate.log_all_signals Log all signals

ies.simulate.update Check if unit is up-to-date before writing

ies.simulate.ieee_warning Suppress IEEE warnings

ies.simulate.saif SAIF file name

ies.simulate.saif_scope Specify design hierarchy instance name for which power estimation is desired

ies.simulate.ncsim.more_option More NCSIM simulation option

VCS Simulator Simulation Options
Table 37: VCS Simulation Options

Option Description
vcs.simulate.runtime Specify simulation run time

vcs.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of simulation.

vcs.simulate.log_all_signals Log all signals

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=179

Table 37: VCS Simulation Options (cont'd)

Option Description
vcs.simulate.saif SAIF file name

vcs.simulate.saif_scope Specify design hierarchy instance name for which power estimation is desired

vcs.simulate.vcs.more_option More VCS simulation options

Xcelium Simulator Simulation Options
Table 38: Xcelium Simulator Simulation Options

Option Description
xcelium.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of

simulation

xcelium.simulate.runtime Specify simulation run time

xcelium.simulate.log_all_signals Log all signals

xcelium.simulate.update Check if unit is up-to-date before writing

xcelium.simulate.ieee_warnings Suppress IEEE warnings

xcelium.simulate.saif_scope SAIF file name

xcelium.simulate.saif Specify design hierarchy instance name for which power estimation is
desired

xcelium.simulate.xmsim.more_options More XMSIM simulation options

Netlist Options
The Netlist tab provides access to netlist configuration options related to SDF annotation of the
Verilog netlist and the process corner captured by SDF delays. These options are stored as
properties on the simulation fileset and are used while writing the netlist for simulation.

Vivado Simulator Netlist Options
Table 39: Vivado Simulator Netlist Options

Option Description
-sdf_anno A check box is available to select the -sdf_anno option. This option is enabled by default

-process_corner You can specify the -process_corner as fast or slow

Note: The Netlist Options of all the third-party simulators (Questa Advanced Simulator, ModelSim
Simulator, IES, VCS and Xcelium Simulators) are similar to the options of Vivado simulator Netlist Options.

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=180

Advanced Simulation Options
Advanced tab contains two options.

• Enable incremental compilation option: This option enables the incremental compilation and
preserves the simulation files during successive run.

• Include all design sources for simulation option: By default, this option is enabled. Selecting
this option ensures that all the files from design sources along with the files from the current
simulation set will be used for simulation. Even if you change the design sources, the same
changes will be updated when you launch behavioral simulation.

IMPORTANT! This is an advanced user feature. Unchecking the box could produce unexpected results.
The Include all design sources for simulation check box is selected by default. As long as the check box
is selected, the simulation set includes Out-of-Context (OOC) IP, IP Integrator files, and DCP.

Unchecking the box gives you the flexibility to include only the files you want to simulate, but, as
stated above, you might experience unexpected results.

Note: The Advanced Simulation Options are the same for all simulators.

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=181

Appendix B

SystemVerilog Support in Vivado
Simulator

The Vivado simulator supports the subset of SystemVerilog. The synthesizable set of
SystemVerilog is listed in the following table. The supported test bench features are listed in
Table 41: Supported Dynamic Type Constructs.

Targeting SystemVerilog for a Specific File
By default, the Vivado IDE compiles .v files with the Verilog 2001 syntax and .sv files with the
SystemVerilog syntax.

To target SystemVerilog for a specific .v file in the Vivado IDE:

1. Right-click the file and select Set file type as shown in the figure below.

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=182

2. In the Set Type dialog box, shown in the figure below, change the file type from Verilog to
SystemVerilog and click OK.

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=183

Alternatively, you can use the following command in the Tcl Console:

set_property file_type SystemVerilog [get_files <filename>.v]

Running SystemVerilog in Standalone or prj Mode
Standalone Mode

A new -sv flag has been introduced to xvlog, so if you want to read any SystemVerilog file, you
can use following command:

 xvlog -sv <Design file list>
 xvlog -sv -work <LibraryName> <Design File List>
 xvlog -sv -f <FileName> [Where FileName contain path of test cases]

prj Mode

If you want to run the Vivado simulator in the prj-based flow, use sv as the file type, as you
would verilog or vhdl.

xvlog -prj <prj File>
xelab -prj <prj File> <topModuleName> <other options>

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=184

Where the entry in prj file appears as follows:

verilog library1 <FileName>
sv library1 <FileName> [File parsed in SystemVerilog mode]
vhdl library2 <FileName>
sv library3 <FileName> [File parsed in SystemVerilog mode]

Table 40: Synthesizable Set of SystemVerilog 1800-2012

Primary construct Secondary construct LRM section Status
Data type 6

Singular and aggregate types 6.4 Supported

Nets and variables 6.5 Supported

Variable declarations 6.8 Supported

Vector declarations 6.9 Supported

2-state (two-value) and 4-state (four-value)
data types

6.11.2 Supported

Signed and unsigned integer types 6.11.3 Supported

Real, shortreal and realtime data types 6.12 Supported

User-defined types 6.18 Supported

Enumerations 6.19 Supported

Defining new data types as enumerated
types

6.19.1 Supported

Enumerated type ranges 6.19.2 Supported

Type checking 6.19.3 Supported

Enumerated types in numerical
expressions

6.19.4 Supported

Enumerated type methods 6.19.5 Supported

Type parameters 6.20.3 Supported

Const constants 6.20.6 Supported

Type operator 6.23 Supported

Cast operator 6.24.1 Supported

$cast dynamic casting 6.24.2 Supported

Bitstream casting 6.24.3 Supported

Aggregate data types 7

Structures 7.2 Supported

Packed/Unpacked structures 7.2.1 Supported

Assigning to structures 7.2.2 Supported

Unions 7.3 Supported

Packed/Unpacked unions 7.3.1 Supported

Tagged unions 7.3.2 Not Supported

Packed arrays 7.4.1 Supported

Unpacked arrays 7.4.2 Supported

Operations on arrays 7.4.3 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=185

Table 40: Synthesizable Set of SystemVerilog 1800-2012 (cont'd)

Primary construct Secondary construct LRM section Status
Multidimensional arrays 7.4.5 Supported

Indexing and slicing of arrays 7.4.6 Supported

Array assignments 7.6 Supported

Arrays as arguments to subroutines 7.7 Supported

Array querying functions 7.11 Supported

Array manipulation methods 7.12 Supported

Processes 9

Combinational logic always_comb
procedure

9.2.2 Supported

Implicit always_comb sensitivities 9.2.2.1 Supported

Latched logic always_latch procedure 9.2.2.3 Supported

Sequential logic always_ff procedure 9.2.2.4 Supported

Sequential blocks 9.3.1 Supported

Parallel blocks 9.3.2 Supported

Procedural timing controls 9.4 Supported

Conditional event controls 9.4.2.3 Supported

Sequence events 9.4.2.4 Not Supported

Assignment statement 10

The continuous assignment statement 10.3.2 Supported

Variable declaration assignment (variable
initialization)

10.5 Supported

Assignment-like contexts 10.8 Supported

Array assignment patterns 10.9.1 Supported

Structure assignment patterns 10.9.2 Supported

Unpacked array concatenation 10.10 Supported

Net aliasing 10.11 Not Supported

Operators and expressions 11

Constant expressions 11.2.1 Supported

Aggregate expressions 11.2.2 Supported

Operators with real operands 11.3.1 Supported

Operations on logic (4-state) and bit (2-
state) types

11.3.4 Supported

Assignment within an expression 11.3.6 Supported

Assignment operators 11.4.1 Supported

Increment and decrement operators 11.4.2 Supported

Arithmetic expressions with unsigned and
signed types

11.4.3.1 Supported

Wildcard equality operators 11.4.6 Supported

Concatenation operators 11.4.12 Supported

Set membership operator 11.4.13 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=186

Table 40: Synthesizable Set of SystemVerilog 1800-2012 (cont'd)

Primary construct Secondary construct LRM section Status
Concatenation of stream_expressions 11.4.14.1 Supported

Re-ordering of the generic stream 11.4.14.2 Supported

Streaming concatenation as an assignment
target (unpack)

11.4.14.3 Supported

Streaming dynamically sized data 11.4.14.4 Supported

Procedural programming
statement

12

unique-if, unique0-if and priority-
if

12.4.2 Supported

Violation reports generated by unique-if,
unique0-if, and priority-if
constructs

12.4.2.1 Supported

If statement violation reports and multiple
processes

12.4.2.2 Supported

unique-case, unique0-case, and
priority-case

12.5.3 Supported

Violation reports generated by unique-
case, unique0-case, and priority-
case construct

12.5.3.1 Supported

Case statement violation reports and
multiple processes

12.5.3.2 Supported

Set membership case statement 12.5.4 Supported

Pattern matching conditional statements 12.6 Not Supported

Loop statements 12.7 Supported

Jump statement 12.8 Supported

Tasks 13.3

Static and Automatic task 13.3.1 Supported

Tasks memory usage and concurrent
activation

13.3.2 Supported

Function 13.4

Return values and void functions 13.4.1 Supported

Static and Automatic function 13.4.2 Supported

Constant function 13.4.3 Supported

Background process spawned by function
call

13.4.4 Supported

Subroutine calls and
argument passing

13.5

Pass by value 13.5.1 Supported

Pass by reference 13.5.2 Supported

Default argument value 13.5.3 Supported

Argument binding by name 13.5.4 Supported

Optional argument list 13.5.5 Supported

Import and Export function 13.6 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=187

Table 40: Synthesizable Set of SystemVerilog 1800-2012 (cont'd)

Primary construct Secondary construct LRM section Status
Task and function name 13.7 Supported

Utility system tasks and
system functions (only
synthesizable set)

20 Supported

I/O system tasks and
system functions (only
synthesizable set)

21 Supported

Compiler directives 22 Supported

Modules and hierarchy 23

Default port values 23.2.2.4 Supported

Top-level modules and $root 23.3.1 Supported

Module instantiation syntax 23.3.2 Supported

Nested modules 23.4 Supported

Extern modules 23.5 Supported

Hierarchical names 23.6 Supported

Member selects and hierarchical names 23.7 Supported

Upwards name referencing 23.8 Supported

Overriding module parameters 23.10 Supported

Binding auxiliary code to scopes or
instances

23.11 Not Supported

Interfaces 25

Interface syntax 25.3 Supported

 Nested interface 25.3 Supported

Ports in interfaces 25.4 Supported

Example of named port bundle 25.5.1 Supported

Example of connecting port bundle 25.5.2 Supported

Example of connecting port bundle to
generic interface

25.5.3 Supported

Modport expressions 25.5.4 Supported

Clocking blocks and modports 25.5.5 Supported

Interfaces and specify blocks 25.6 Supported

Example of using tasks in interface 25.7.1 Supported

Example of using tasks in modports 25.7.2 Supported

Example of exporting tasks and functions 25.7.3 Supported

Example of multiple task exports 25.7.4 Supported

Parameterized interfaces 25.8 Supported

Virtual interfaces 25.9 Supported

Packages 26

Package declarations 26.2 Supported

Referencing data in packages 26.3 Supported

Using packages in module headers 26.4 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=188

Table 40: Synthesizable Set of SystemVerilog 1800-2012 (cont'd)

Primary construct Secondary construct LRM section Status
Exporting imported names from packages 26.6 Supported

The std built-in package 26.7 Supported

Generate constructs 27 Supported

Testbench Feature
In Vivado simulator, support for some of the commonly used testbench features have been
added, as shown in the table below.

Table 41: Supported Dynamic Type Constructs

Primary Construct Secondary Construct LRM Section Status
String data type 6.16 Supported

String operators (table 6-9 of IEEE
1800-2012)

6.16 Supported

Len() 6.16.1 Supported

Putc() 6.16.2 Supported

Getc() 6.16.3 Supported

Toupper() 6.16.4 Supported

Tolower() 6.16.5 Supported

Compare 6.16.6 Supported

Icompare() 6.16.7 Supported

Substr() 6.16.8 Supported

Atoi(), atohex(), atooct(), atobin() 6.16.9 Supported

Atoreal() 6.16.10 Supported

Itoa() 6.16.11 Supported

Hextoa() 6.16.12 Supported

Octtoa() 6.16.13 Supported

Bintoa() 6.16.14 Supported

Realtoa() 6.16.15 Supported

Dynamic Array 7.5 Supported

Dynamic array new 7.5.1 Supported

Size 7.5.2 Supported

Delete 7.5.3 Supported

Associative Array 7.8 Supported

Wildcard index 7.8.1 Supported

String index 7.8.2 Supported

Class index 7.8.3 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=189

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Integral index 7.8.4 Supported

Other user-defined types 7.8.5 Supported

Accessing invalid index 7.8.6 Supported

Associative array methods 7.9 Supported

Num() and Size() 7.9.1 Supported

Delete() 7.9.2 Supported

Exists() 7.9.3 Supported

First() 7.9.4 Supported

Last() 7.9.5 Supported

Next() 7.9.6 Supported

Prev() 7.9.7 Supported

Arguments to traversal Method 7.9.8 Supported

Associative array assignment 7.9.9 Supported

Associative array arguments 7.9.10 Supported

Associative Array literals 7.9.11 Supported

Queue 7.10 Supported

Queue operators 7.10.1 Supported

Queue methods 7.10.2 Supported

Size() 7.10.2.1 Supported

Insert() 7.10.2.2 Supported

Delete() 7.10.2.3 Supported

Pop_front() 7.10.2.4 Supported

Pop_back() 7.10.2.5 Supported

Push_front() 7.10.2.6 Supported

Push_back() 7.10.2.7 Supported

Persistence of references to
elements of a queue

7.10.3 Supported

Updating a queue using
assignment and unpacked array
concatenation

7.10.4 Supported

Bounded queues 7.10.5 Supported

Class 8 Supported

Class General 8.1 Supported

Overviews 8.2 Supported

Syntax 8.3 Supported

Objects(Class instance) 8.4 Supported

Object properties and object
parameter data

8.5 Supported

Object methods 8.6 Supported

Constructors 8.7 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=190

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Static class properties 8.8 Supported

Static methods 8.9 Supported

This 8.10 Supported

Assignment, renaming, and
copying

8.11 Supported

Inheritance and subclasses 8.12 Supported

Overridden members 8.13 Supported

Super 8.14 Supported

Casting 8.15 Supported

Chaining constructors 8.16 Supported

Data hiding and encapsulation 8.17 Supported

Constant class properties 8.18 Supported

Virtual methods 8.19 Supported

Abstract classes and pure virtual
methods

8.20 Supported

Polymorphism: dynamic method
lookup

8.21 Supported

Class scope resolution operator :: 8.22 Supported

Out-of-block declarations 8.23 Supported

Parameterized classes 8.24 Supported

Class resolution operator for
parameterized classes

8.24.1 Supported

Typedef class 8.25 Supported

Classes and structures 8.26 Supported

Memory management 8.27 Supported

Processes 9 Supported

Parallel Process - Fork Join_Any
and Fork Join_None

9.3 Supported

Wait fork 9.6.1 Supported

Disable Fork 9.6.3 Supported

Fine grain process control 9.7 Supported

Clocking Block 14 Supported

General 14.1 Supported

Overview 14.2 Supported

Clocking block declaration 14.3 Supported

Input and output Skew 14.4 Supported

Hierarchical Expressions 14.5 Not Supported

Signals in multiple clocking block 14.6 Supported

Clocking block scope and lifetime 14.7 Supported

Multiple clocking block example 14.8 Supported

Interface and clocking block 14.9 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=191

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Clocking block event 14.10 Supported

Cycle Delay 14.11 Supported

Default clocking 14.12 Supported

Input Sampling 14.13 Supported

Global clocking 14.14 Not Supported

Synchronous events 14.15 Supported

Synchronous drives 14.16 Supported

Drives and nonblocking
assignments

14.16.1 Supported

Driving clocking output signals 14.16.2 Supported

Semaphore 15.3 Supported

Semaphore method new() 15.3.1 Supported

Semaphore method put() 15.3.2 Supported

Semaphore method get() 15.3.3 Supported

Semaphore method try_get() 15.3.4 Supported

Mailbox 15.4 Supported

Mailbox method new() 15.4.1 Supported

Mailbox method num() 15.4.2 Supported

Mailbox method put() 15.4.3 Supported

Mailbox method try_put() 15.4.4 Supported

Mailbox method get() 15.4.5 Supported

Mailbox method try_get() 15.4.6 Supported

Mailbox method peek() 15.4.7 Supported

Mailbox method try_peek() 15.4.8 Supported

Parameterized mailbox 15.4.9 Supported

Named Event 15.5 Supported

Triggering an event 15.5.1 Supported

Waiting on event 15.5.2 Supported

Persistent trigger 15.5.3 Not Supported

Event Sequence 15.5.4 Not Supported

Operation on named event
variable

15.5.5 Supported

Merging Events 15.5.5.1 Supported

Reclaiming event 15.5.5.2 Supported

Event comparison 15.5.5.3 Supported

Assertion 16 Supported

General 16.1 Supported

Overview 16.2 Supported

Assert 16.2 Supported

Assume 16.2 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=192

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Cover 16.2 Not Supported

Restrict 16.2 Not Supported

Immediate assertion 16.3 Supported

Deferred assertion 16.4 Not Supported

Concurrent assertion overview 16.5 Supported

Sampling 16.5.1 Supported

Assertion clock 16.5.2 Supported

Boolean expression 16.6 Supported

Sequence 16.7 Supported

Declaring sequence 16.8 Supported

Typed formal argument in
sequence declarations

16.8.1 Supported

Local variable formal arguments
in sequence declarations

16.8.2 Supported

Sequence operations 16.9 Supported

Operator precedence 16.9.1 Supported

Repetition in sequences 16.9.2 Supported

Sampled value functions 16.9.3 Supported

Global clocking past and future
sampled value functions

16.9.4 Not Supported

AND operation 16.9.5 Supported

Intersection (AND with length
restriction)

16.9.6 Supported

OR operation 16.9.7 Supported

First_match operation 16.9.8 Supported

Conditions over sequences 16.9.9 Supported

Sequence contained within
another sequence

16.9.10 Supported

Composing sequences from
simpler subsequences

16.9.11 Supported

Local variables 16.10 Supported

Calling subroutines on match of a
sequence

16.11 Supported

Declaring properties 16.12 Supported

Sequence property 16.12.1 Supported

Negation property 16.12.2 Supported

Disjunction property 16.12.3 Supported

Conjunction property 16.12.4 Supported

If-else property 16.12.5 Supported

Implication 16.12.6 Supported

Implies and iff properties 16.12.7 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=193

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Property instantiation 16.12.8 Supported

Followed-by property 16.12.9 Not Supported

Next time property 16.12.10 Not Supported

Always property 16.12.11 Not Supported

Until property 16.12.12 Not Supported

Eventually property 16.12.13 Not Supported

Abort properties 16.12.14 Not Supported

Weak and strong operators 16.12.15 Not Supported

Case 16.12.16 Not Supported

Recursive properties 16.12.17 Not Supported

Typed formal arguments in
property declarations

16.12.18 Supported

Local variable formal arguments
in property declarations

16.12.19 Supported

Property examples 16.12.20 Supported

Finite-length versus infinite-length
behavior

16.12.21 Supported

Nondegeneracy 16.12.22 Supported

Multiclock support 16.13 Not Supported

Concurrent assertions 16.14 Supported

Assert statement 16.14.1 Supported

Assume statement 16.14.2 Supported

Cover statement 16.14.3 Not Supported

Restrict statement 16.14.4 Not Supported

Using concurrent assertion
statements outside procedural
code

16.14.5 Supported

Embedding concurrent assertions
in procedural code

16.14.6 Not Supported

Inferred value functions 16.14.7 Not Supported

Nonvacuous evaluations 16.14.8 Not Supported

Disable iff resolution 16.15 Supported

Clock resolution 16.16 Supported

Semantic leading clocks for
multiclocked sequence and
properties

16.16.1 Supported

Expect statement 16.17 Not Supported

Clocking blocks and concurrent
assertions

16.18 Supported

Random Constraint 18 Supported

Concepts and Usage 18.3 Supported

Random Variable 18.4 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=194

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Rand modifier 18.4.1 Supported

Randc modifier 18.4.2 Supported

Constraint block 18.5 Supported

External constraint block 18.5.1 Supported

Constraint inheritance 18.5.2 Supported

Set membership 18.5.3 Supported

Distribution 18.5.4 Supported

Implication 18.5.6 Supported

If-else constraint 18.5.7 Supported

Iterative constraint 18.5.8 Supported

foreach iterative constraint 18.5.8.1 Supported

Array reduction iterative
constraint

18.5.8.2 Supported

Global constraint 18.5.9 Supported

Variable Ordering 18.5.10 Supported

Static constraint block 18.5.11 Supported

Function in constraint 18.5.12 Supported

Constraint Guards 18.5.13 Supported

Soft constraint 18.5.14 Supported

Method Randomize 18.6.1 Supported

Pre_randomize and
post_randomize

18.6.2 Supported

Behavior of randomization
method

18.6.3 Supported

In-line constraints 18.7 Supported

Local scope resolution 18.7.1 Supported

Disabling random variable with
rand_mode

18.8 Supported

Controlling constraints with
constraint_mode

18.9 Supported

Dynamic constraint modification 18.10 Supported

In-line random variable control 18.11 Supported

In-line constraint checker 18.11.1 Supported

Randomize of a scope variable
std::randomize

18.12 Supported

Adding constraint to scope
variables std::randomize with

18.12.1 Supported

Random number system
functions and method

18.13 Supported

$urandom 18.13.1 Supported

$urandom_range 18.13.2 Supported

srandom 18.13.3 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=195

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Get_randstate 18.13.4 Supported

Set_randstate 18.13.5 Supported

Random stability 18.14 Supported

Manually seeding randomization 18.15 Supported

Randcase 18.16 Supported

Randsequence 18.17 Not Supported

Programs 24 Supported

The Program construct 24.3 Supported

Scheduling semantic of code in
program construct

24.3.1 Supported

Program port connection 24.3.2 Supported

Eliminating test bench race 24.4 Supported

Blocking task in cycle/event mode 24.5 Supported

Anonymous Programs 24.6 Not Supported

Program control task 24.7 Supported

Functional Coverage 19 Supported

General 19.1 Supported

Overview 19.2 Supported

Defining coverage model:
covergroup

19.3 Supported

Using covergroup in classes 19.4 Supported

Defining coverage points 19.5 Supported

Specifying bins for values 19.5.1 Supported

Coverpoint bin with covergroup
expressions

19.5.1.1 Supported

Coverpoint bin set covergroup
expressions

19.5.1.2 Not supported

Specifying bins for transitions 19.5.2 Supported

Automatic bin creation for
coverage points

19.5.3 Supported

Wildcard specification of coverage
point bins

19.5.4 Supported

Excluding coverage point values
or transitions

19.5.5 Supported

Specifying Illegal coverage point
values or transitions

19.5.6 Supported

Value resolution 19.5.7 Supported

Defining cross coverage 19.6 Supported

Defining cross coverage bins 19.6.1 Supported

Example of user-defined cross
coverage and select expressions

19.6.1.1 Supported

Cross bin with covergroup
expressions

19.6.1.2 Supported

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=196

Table 41: Supported Dynamic Type Constructs (cont'd)

Primary Construct Secondary Construct LRM Section Status
Cross bin automatically defined
types

19.6.1.3 Supported

Cross bin set expression 19.6.1.4 Supported

Excluding cross products 19.6.2 Supported

Specifying illegal cross products 19.6.3 Supported

Specifying coverage options 19.7 Supported

Covergroup type options 19.7.1 Supported

Predefined coverage methods 19.8 Supported

Overriding the built-in sample
method

19.8.1 Supported

Predefined coverage system tasks
and system functions

19.9 Supported

Organization of option and
type_option members

19.10 Supported

Note: Sensitivity on dynamic types such as Queue, Dynamic Array, Associative Array, and Class are not
supported, therefore, block waiting on dynamic type update may not work correctly. For example:

module top();
int c[$];
event e1;
initial
begin
 c[0] = 10;
 for(int i = 0; i <= 10; i++)
 begin
 c = {i, c};
 -> e1;
 #5;
 end
end
always@(*) $display($time, " trying to read sensitivity on dynamic type :
%d", c[0]);
// this won't work as sensitivity on dynamic type is not supported
always @(e1) $display($time, " coming from event sensitivity : %d",
c[0]); // this we
can do as WA
always_comb if(c.size() > 0) $display($time, " Coming from size
sensitivity : %d",
c[0]); // sensitivity on size works

Appendix B: SystemVerilog Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=197

Appendix C

Universal Verification Methodology
Support

Vivado® integrated design environment supports universal verification methodology (UVM) in
Vivado simulator (XSim). The UVM version 1.2 library is precompiled and is available with Vivado.
If you are running your design through Vivado, you need not set anything. But if you are running
standalone Vivado simulator, then you need to pass -L uvm to xvlog and xelab command.

By default, Vivado simulator supports UVM version 1.2. If you want to use UVM version 1.1, you
need to pass -uvm_version 1.1 to xvlog and xelab command. Set the following properties
if you are using it through the Vivado integrated design environment:

set_property -name {xsim.compile.xvlog.more_options} -value {-uvm_version
1.1} -objects [get_filesets sim_1]
set_property -name {xsim.elaborate.xelab.more_options} -value {-uvm_version
1.1} -objects [get_filesets sim_1]

You can also set these properties from Vivado GUI using Compilation and Elaboration tab in
simulation settings. For more information, see Using Simulation Settings.

Appendix C: Universal Verification Methodology Support

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=198

Appendix D

VHDL 2008 Support in Vivado
Simulator

Introduction
The Vivado® simulator supports the subset of VHDL 2008 (IEEE 1076-2008). The complete list
is given in Supported features of VHDL 2008 (IEEE1076-2008).

Compiling and Simulating
The Vivado simulator executable xvhdl is used to convert a VHDL design unit into parser dump
(.vdb). By default, Vivado simulator uses mixed 93 and 2008 standard (STD) and IEEE packages
to freely allow mixing of 93 and 2008 features. If you want to force only the VHDL-93 standard
(STD) and IEEE package, pass -93_mode to xvhdl. To compile a file only with VHDL 2008 mode,
you need to pass -2008 switch to xvhdl.

For example, to compile a design called top.vhdl in VHDL-2008, following command line can be
used:

xvhdl -2008 -work mywork top.vhdl

The Vivado simulator executable xelab is used to elaborate a design and produce an executable
image for simulation.

xelab can do either of the following:

• Elaborate on parser dumps produced by xvhdl

• Directly use vhdl source files.

No switch is needed to elaborate on parser dumps produced by xvhdl. You can pass -vhdl2008
to xelab to directly use vhdl source files.

Appendix D: VHDL 2008 Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=199

Example 1:

xelab top -s mysim; xsim mysim -R

Example 2:

xelab -vhdl2008 top.vhdl top -s mysim; xsim mysim -R

Instead of specifying VHDL files in the command line for xvhdl and xelab, a .prj file can be
used. If you have two files for a design called top.vhdl (2008 mode) and bot.vhdl (93 mode),
you can create a project file named example.prj as follows:

vhdl xil_defaultlib bot.vhdl

vhdl2008 xil_defaultlib top.vhdl

In the project file, each line starts with the language type of the file, followed by the library name
such as xil_defaultlib and one or more file names with a space separator. For VHDL 93,
one should use vhdl as the language type. For VHDL 2008, use vhdl2008 instead.

A .prj file can be used as shown in the example below:

xelab -prj example.prj xil_defaultlib.top -s mysim; xsim mysim -R

Alternatively, to mix VHDL 93 and VHDL 2008 design units, compile the files separately with a
proper language mode specified to xvhdl. Then, elaborate on top(s) of the design. For example,
if we have a VHDL 93 module called bot in file bot.vhdl, and a VHDL-2008 module called top
in file top.vhdl, you can compile them as shown in the example below:

xvhdl bot.vhdl
xvhdl -2008 top.vhdl
xelab -debug typical top -s mysim

Once the executable is produced by xelab, you can run the simulation as usual.

Example 1:

xsim mysim -gui

Example 2:

xsim mysim -R

Appendix D: VHDL 2008 Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=200

Fixed and Floating Point Packages
Fixed and floating point packages used by the Vivado simulator are the new enhanced IEEE
standard packages introduced in VHDL-2008. If you are using the VHDL-93 standard fixed or
floating package, that may work in Vivado synthesis, however you must edit your VHDL source
file for simulation.

For example, if you are using the following syntax for the fixed package in Vivado synthesis:

library ieee;
use ieee.fixed_pkg.all;

Change this to the following syntax in VHDL-2008 for use in the Vivado simulator:

library ieee_proposed;
use ieee_proposed.fixed_pkg.all;

See this link in the Vivado Design Suite User Guide: Synthesis (UG901) for more information about
fixed and floating packages in Vivado Synthesis.

Similar changes will apply for floating package too.

Supported Features
Table 42: Supported features of VHDL 2008 (IEEE1076-2008)

Features Example/Comment
VHDL-2008 STD and IEEE packages precompiled,
including new fixed and float packages, unsigned bit
etc.

Limited by other language features such as generic package
which XSIM does not yet support. Not all newly added std
functions are supported.
Notably, stop and finish are supported.

Simplified sensitivity list process(all)

Matching Relational Operators ?=, ?/=, ?>, ?>=, ?<, ?<=
x ?= y

Unary Reduction Logic Operators
signal x: std_logic_vector(0 to 31);
signal x_and : std:logic;
...
x_and <= and x;

Simplified Case Statement
case x and y is
 when '1' => report "1";
 when '0' => report "0";
end case;

Instead of an intermediate variable or signal, we can use an
expression directly in the case statement.

Appendix D: VHDL 2008 Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 201Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug901-vivado-synthesis.pdf;a=xFixedPointSupport
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=201

Table 42: Supported features of VHDL 2008 (IEEE1076-2008) (cont'd)

Features Example/Comment
Array / Bit Logic Operators

signal s : std_logic;
signal v, r : std_logic_vector(0 to 7);
...
r <= s and v;

Array / Bit Addition Operators Library functions

Enhanced Bit String Literals 16SX"FF” = "1111_1111_1111_1111”
16UX”FF” = “0000_0000_1111_1111”

Conditional and selected sequential statements
process(clk)
...
 with x select
 y := "111" when "110",
 "000" when others;
 a := '1' when b = '1' else
 '0' when b = '0';
...

Protected type
type areaOfSquare is protected
 procedure setx(newx : real);
 impure function area return real;
end protected;

type areaOfSquare is protected body
variable x : real = 0.0;
...

Protected type shared variable is supported in HDL simulation,
but Tcl and GUI does not allow examining value of protected
type shared variables yet.

Keyword 'parameter' in procedure declaration procedure proc parameter (a : in std_logic)

Array element resolution function in subtype definition
type bit_word is array (natural range <>) of bit;
function resolve_array (s : bit_word) return bit;
subtype resolved_array is (resolve_array)
bit_word;

Block comments
/*
X <= 1;
process(all)
...
*/

Predefined array types boolean_vector, integer_vector etc.

Type passed as Generic
Sentity test is
 generic (type data_type);
 port (
 x : in data_type;
 s : out data_type);
end entity test;

Hierarchical references to signal <<signal .top.dut_inst.sig1 : std_logic_vector(3
downto 0)>>

Expression in port map

Appendix D: VHDL 2008 Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=202

Table 42: Supported features of VHDL 2008 (IEEE1076-2008) (cont'd)

Features Example/Comment
Reading output port

Max and Min operator

Matching case statement

Shift operators (rol, ror, sll, srl, sla and sra)

Mixing array and scalar logical operators

Conditional sequential assignments on signal

Case generate

Extensions to globally static and locally static
expressions

Static ranges and integer expressions in range bound

Other features that are not mentioned in the above table, are not supported by Vivado simulator.

Appendix D: VHDL 2008 Support in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=203

Appendix E

Direct Programming Interface (DPI)
in Vivado Simulator

Introduction
You can use the SystemVerilog Direct Programming Interface (DPI) to bind C code to
SystemVerilog code. Using DPI, SystemVerilog code can call a C function, which in turn can call
back a SystemVerilog task or function. Vivado® simulator supports all the constructs as DPI task/
function, as described below.

Compiling C Code
A new compiler executable, xsc, is provided to convert C code into an object code file and to
link multiple object code files into a shared library (.a on Windows and .so on Linux). The xsc
compiler is available in the <Vivado installation>/bin directory. You can use -sv_lib to
pass the shared library containing your C code to the Vivado simulator/elaborator executable.
The xsc compiler works in the same way as a C compiler, such as gcc. The xsc compiler:

• Calls the LLVM clang compiler to convert C code into object code

• Calls the GNU linker to create a shared library (.a on Windows and .so on Linux) from one or
more object files corresponding to the C files

The shared library generated by the xsc compiler is linked with the Vivado simulator kernel using
one or more newly added switches in xelab, as described below. The simulation snapshot created
by xelab thus has ability to connect the compiled C code with compiled SystemVerilog code and
effect communication between C and SystemVerilog.

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=204

xsc Compiler
The xsc compiler helps you to create a shared library (.a on Windows or .so on Linux) from one
or more C files. Use xelab to bind the shared library generated by xsc into the rest of your design.
You can create a shared library using the following processes:

• One-step process: Pass all C files to xsc without using the -compile or -shared/
shared_systemc/static switch.

• Two-step process:

xsc -compile <C files>
xsc --shared or -shared_systemc or -static <object files>

Usage

xsc [options] <files...>

Switches

You can use a double dash (--) or a single dash (-) for switches.

Table 43: XSC Compiler Switches

Switch Description
-compile [c] Generate the object files only from the source C files. The link stage is not

run.
-f [-file] <arg> Read additional options from the specified file.
-h [-help] Print this help message.
-i [-input_file] <arg> List of input files (one file per switch) for compiling or linking.
-mt <arg> (=auto) Specifies the number of sub-compilation jobs that can be run in parallel.

Choices are:

• auto: automatic

• n: where n is an integer greater than 1

• off: turn off multi-threading

Default: auto

-o [-output] <arg> Specify the name of output shared library. Works with --shared, --
shared_systemc, --exe options only. Default for shared library is
<current_directory>/xsim.dir/work/xsc/dpi.so.

-work <arg> Specify the work directory in which to place the outputs (object files).
Default: <current_directory>/xsim.dir/xsc

-v [-verbose] <arg> Specify verbosity level for printing messages.
Allowed values are: 0, 1
Default: 0

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=205

Table 43: XSC Compiler Switches (cont'd)

Switch Description
-gcc_compile_options <arg> Supply an additional option to the compiler. You can use multiple -

gcc_compile_options switches.

-gcc_link_options <arg> Supply an additional option to the linker. You can use multiple -
gcc_link_options switches.

-shared Run only the linking stage to generate the shared library (.so) from the
object files.

-gcc_version Print version of the C compiler used internally.
-gcc_path Print path of the C compiler used internally.
-lib <arg> Specify the logical library directories that will be read. Default is

<current_directory>/xsim.dir/xs.

-cppversion <arg> Set the CPP version. Currently CPP 11 and 14 are supported. Default is 11.
--shared_systemc Run only the linking stage to generate the shared library (.dll) for SystemC

from the object files.
--static Run only the linking stage to generate a static library (.a) for SystemC from

the object files.
--exe Create executable for standalone SystemC.
--version Print version of the Vivado Simulator xsc being used.
--debug Debug SystemC modules. This option is relevant only when used together

with -exe option, otherwise is ignored.

Examples

xsc function1.c function2.c
xelab -svlog file.sv -sv_lib dpi
xsc -compile function1.c function2.c -work abc
xsc -shared abc/function1.lnx64.o abc/function2.lnx64.o -work abc

Note: By default, Linux uses the LD_LIBRARY_PATH for searching the DPI libraries. Hence, provide -
dpi_absolute flag to xelab on Linux if library name start with lib*.

Note: You can use -additional_option to the compiler to pass extra switch.

• Example:

xsc t1.c --additional_option "-I<path>"

• Example to pass multiple path:

xsc t1.c --additional_option "-I<path>" --additional_option "-I<path>"

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=206

Binding Compiled C Code to SystemVerilog
Using xelab

The DPI-related switches for xelab that bind the compiled C code to SystemVerilog are as
follows:

Table 44: DPI-Related Switches for xelab

Switch Description
-sv_root arg Root directory relative to which a DPI shared library should be searched. (Default:

<current_directory>/xsim.dir/xsc)

-sv_lib arg Name of the DPI shared library without the file extension defining C function imported in
SystemVerilog.

-sv_liblist arg Bootstrap file pointing to DPI shared libraries.
-dpiheader arg Generate a DPI C header file containing C declaration of imported and exported functions.

-dpi_absolute Use absolute paths instead of LD_LIBRARY_PATH on Linux for DPI libraries that are formatted as
lib<libname>.so.

-dpi_stacksize arg User defined stack size for DPI tasks.

For more information on r-sv_liblist arg, refer to the IEEE Standard for SystemVerilog—
Unified Hardware Design, Specification, and Verification Language, Appendix J.4.1, page 1228.

Data Types Allowed on the Boundary of C and
SystemVerilog

The IEEE Standard for SystemVerilog allows only subsets of C and SystemVerilog data types on
the C and SystemVerilog boundary. Provided below are (1) details on data types supported in
Vivado simulator and (2) descriptions of mapping between the C and SystemVerilog data types.

Supported Data Types
The following table describes data types allowed on the boundary of C and SystemVerilog, along
with mapping of data types from SystemVerilog to C and vice versa.

Table 45: Data Types Allowed on the C-SystemVerilog Boundary

SystemVerilog C Supported Comments
byte char Yes None
shortint short int Yes None

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=207

Table 45: Data Types Allowed on the C-SystemVerilog Boundary (cont'd)

SystemVerilog C Supported Comments
int int Yes None
longint long long Yes None
real double Yes None
shortreal float Yes None
chandle void * Yes None
string const char* Yes None
bit unsigned char Yes sv_0, sv_1

Available on C side using svdpi.h

logic, reg unsigned char Yes sv_0, sv_1, sv_z, sv_x:

Array (packed) of bits svBitVecVal Yes Defined in svdpi.h

Array (packed) of logic/reg svLogicVecVal Yes Defined in svdpi.h

enum Underlying enum type Yes None

Packed struct, union Passed as array Yes None

Unpacked arrays of bit, logic Passed as array Yes C can call SystemVerilog

Unpacked struct Passed as struct Yes None

Unpacked union Passed as struct No None

Open arrays svOpenArrayHandle Yes None

To generate a C header file that provides details on how SystemVerilog data types are mapped to
C data types: pass the parameter -dpiheader <file name> to xelab. Additional details on
data type mapping are available in the The IEEE Standard for SystemVerilog.

Mapping for User-Defined Types
Enum
You can define an enumerated type (enum) for conversion to the equivalent SystemVerilog types,
svLogicVecVal or svBitVecVal, depending on the base type of enum. For enumerated
arrays, equivalent SystemVerilog arrays are created.

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=208

Examples

• SystemVerilog types::

typedef enum reg [3:0] { a = 0, b = 1, c} eType;
eType e;
eType e1[4:3];
typedef enum bit { a = 0, b = 1} eTypeBit;
eTypeBit e3;
eTypeBit e4[3:1] ;

• C types:

svLogicVecVal e[SV_PACKED_DATA_NELEMS(4)];
svLogicVecVal e1[2][SV_PACKED_DATA_NELEMS(4)];
svBit e3;
svBit e4[3];

TIP: The C argument types depend on the base type of the enum  and the direction.

Packed Struct/Union
When using a packed struct or union type, an equivalent SystemVerilog type, svLogicVecVal
or svBitVecVal, is created on the DPI C side.

Examples

• SystemVerilog type:

typedef struct packed {
 int i;
 bit b;
 reg [3:0]r;
 logic [2:0] [4:8][9:1] l;
 } sType;
 sType c_obj;
 sType [3:2] c_obj1[5];

• C type:

svLogicVecVal c_obj[SV_PACKED_DATA_NELEMS(172)];
svLogicVecVal c_obj1[5][SV_PACKED_DATA_NELEMS(344)];

Arrays, both packed and unpacked, are represented as arrays of svLogicVecVal or
svBitVecVal.

Unpacked Struct
An equivalent unpacked type is created on the C side, in which all the members are converted to
the equivalent C representation.

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=209

Examples

• SystemVerilog type:

typedef struct {
 int i;
 bit b;
 reg r[3:0];
 logic [2:0] l[4:8][9:1];
 } sType;

• C type:

typedef struct {
 int i;
 svBit b;
 svLogic r[4];
 svLogicVecVal l[5][9][SV_PACKED_DATA_NELEMS(3)];
} sType;

Support for svdpi.h Functions
The svdpi.h header file is provided in this directory: <vivado installation>/data/
xsim/include.

The following svdpi.h functions are supported:

svBit svGetBitselBit(const svBitVecVal* s, int i);
svLogic svGetBitselLogic(const svLogicVecVal* s, int i);
void svPutBitselBit(svBitVecVal* d, int i, svBit s);
void svPutBitselLogic(svLogicVecVal* d, int i, svLogic s);
void svGetPartselBit(svBitVecVal* d, const svBitVecVal* s, int i, int w);
void svGetPartselLogic(svLogicVecVal* d, const svLogicVecVal* s, int i, int
w);
void svPutPartselBit(svBitVecVal* d, const svBitVecVal s, int i, int w);
void svPutPartselLogic(svLogicVecVal* d, const svLogicVecVal s, int i, int
w);
const char* svDpiVersion();
 svScope svGetScope();
 svScope svSetScope(const svScope scope);
 const char* svGetNameFromScope(const svScope);
 int svPutUserData(const svScope scope, void*userKey, void* userData);
 void* svGetUserData(const svScope scope, void* userKey);

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=210

Open Arrays in DPI
When declaring an import function in SystemVerilog, you may specify formal argument as open
arrays. By specifying certain dimension(s) of formal array arguments as blank (open), it will allow
passing actual arguments of different size, which facilitates more general C code. At C side, the
open arrays are represented as SVOpenArrayHandle. By passing this handle to provided
functions, you may query the information of open array, e.g. the size of opened dimension, and
access the actual data.

Declaration

Open arrays may only appear in import function/task declaration in SystemVerilog code. By
leaving the dimension(s) open, you must specify an open array and the size of blank dimension
will be determined with respect to actual argument.

Examples

SystemVerilog function declaration:

import "DPI-C" function int myFunction1(input bit[] v);
import "DPI-C" function void myFunction2(input int v1[], input int v2[],
output int
v3[]);

At C side, the open array(s) may only be accessed by the handle and provided APIs:

int myFunction1(const SVOpenArrayHandle v);
void myFunction2(const SVOpenArrayHandle v1, const SVOpenArrayHandle v2,
const
SVOpenArrayHandle v3);

svdpi.h Support

The following open array related functions are supported in svdpi.h:

int svLeft(const svOpenArrayHandle h, int d);
int svRight(const svOpenArrayHandle h, int d);
int svLow(const svOpenArrayHandle h, int d);
int svHigh(const svOpenArrayHandle h, int d);
int svIncrement(const svOpenArrayHandle h, int d);
int svSize(const svOpenArrayHandle h, int d);
int svDimensions(const svOpenArrayHandle h);
void *svGetArrayPtr(const svOpenArrayHandle);
int svSizeOfArray(const svOpenArrayHandle);
void *svGetArrElemPtr(const svOpenArrayHandle, int indx1, ...);
void *svGetArrElemPtr1(const svOpenArrayHandle, int indx1);
void *svGetArrElemPtr2(const svOpenArrayHandle, int indx1, int indx2);
void *svGetArrElemPtr3(const svOpenArrayHandle, int indx1, int indx2,
int indx3);
void svPutBitArrElemVecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1, ...);
void svPutBitArrElem1VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1);

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=211

void svPutBitArrElem2VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1, int indx2);
void svPutBitArrElem3VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1, int indx2, int indx3);
void svPutLogicArrElemVecVal(const svOpenArrayHandle d, const svLogicVecVal*
s, int indx1, ...);
void svPutLogicArrElem1VecVal(const svOpenArrayHandle d, const
svLogicVecVal*
s, int indx1);
void svPutLogicArrElem2VecVal(const svOpenArrayHandle d, const
svLogicVecVal*
s, int indx1, int indx2);
void svPutLogicArrElem3VecVal(const svOpenArrayHandle d, const
svLogicVecVal*
s, int indx1, int indx2, int indx3);
void svGetBitArrElemVecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, ...);
void svGetBitArrElem1VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1);
void svGetBitArrElem2VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2);
void svGetBitArrElem3VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2, int indx3);
void svGetLogicArrElemVecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, ...);
void svGetLogicArrElem1VecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int
indx1);
void svGetLogicArrElem2VecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2);
void svGetLogicArrElem3VecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2, int indx3);
svBit svGetBitArrElem(const svOpenArrayHandle s, int indx1, ...);
svBit svGetBitArrElem1(const svOpenArrayHandle s, int indx1);
svBit svGetBitArrElem2(const svOpenArrayHandle s, int indx1, int indx2);
svBit svGetBitArrElem3(const svOpenArrayHandle s, int indx1, int indx2, int
indx3);
svLogic svGetLogicArrElem(const svOpenArrayHandle s, int indx1, ...);
svLogic svGetLogicArrElem1(const svOpenArrayHandle s, int indx1);
svLogic svGetLogicArrElem2(const svOpenArrayHandle s, int indx1, int indx2);
svLogic svGetLogicArrElem3(const svOpenArrayHandle s, int indx1, int indx2,
int
indx3);
void svPutLogicArrElem(const svOpenArrayHandle d, svLogic value, int
indx1, ...);
void svPutLogicArrElem1(const svOpenArrayHandle d, svLogic value, int
indx1);
void svPutLogicArrElem2(const svOpenArrayHandle d, svLogic value, int
indx1, int
indx2);
void svPutLogicArrElem3(const svOpenArrayHandle d, svLogic value, int indx1,
int indx2, int indx3);
void svPutBitArrElem(const svOpenArrayHandle d, svBit value, int
indx1, ...);
void svPutBitArrElem1(const svOpenArrayHandle d, svBit value, int indx1);
void svPutBitArrElem2(const svOpenArrayHandle d, svBit value, int indx1,
int indx2);
void svPutBitArrElem3(const svOpenArrayHandle d, svBit value, int indx1,
int indx2, int indx3);

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=212

Usage Example - SystemVerilog code

module m();
import "DPI-C" function void myFunction1(input int v[]);
int arr[4];
int dynArr[];
initial begin
arr = '{4, 5, 6, 7};
myFunction1(arr);
dynArr = new[6];
dynArr = '{8, 9, 10, 11, 12, 13};
myFunction1(dynArr);
end
endmodule
C code:
#include "svdpi.h"
void myFunction1(const svOpenArrayHandle v)
{
int l1 = svLow(v, 1);
int h1 = svHigh(v, 1);
for(int i = l1; i<= h1; i++) {
 printf("\t%d", *((char*)svGetArrElemPtr1(v, i)));
}
printf("\n");
 }

Examples
Note: All the examples below print PASSED for a successful run.

Examples include:

• Import Example Using -sv_lib, -sv_liblist, and -sv_root: A function import example that
illustrates different ways to use the -sv_lib, -sv_liblist and -sv_root options.

• Function with Output: A function that has output arguments.

• Simple Import-Export Flow (Illustrates xelab -dpiheader Flow): Shows a simple import>export
flow (illustrates xelab -dpiheader <filename> flow).

Import Example Using -sv_lib, -sv_liblist, and -sv_root
Code

Assume that there are:

• Two files each containing a C function

• A SystemVerilog file that uses the following functions:

○ function1.c

○ function2.c

○ file.sv

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=213

function1.c

#include "svdpi.h"
DPI_DLLESPEC
int myFunction1()
{
 return 5;
}

function2.c

#include <svdpi.h>
DPI_DLLESPEC
int myFunction2()
{
 return 10;
}

file.sv

module m();
import "DPI-C" pure function int myFunction1 ();
import "DPI-C" pure function int myFunction2 ();
integer i, j;
initial
begin
#1;
 i = myFunction1();
 j = myFunction2();
 $display(i, j);
 if(i == 5 && j == 10)
 $display("PASSED");
 else
 $display("FAILED");
end
endmodule

Usage

Methods for compiling and linking the C files into the Vivado simulator are described below.

Single-step flow (simplest flow)

xsc function1.c function2.c
xelab -svlog file.sv -sv_lib dpi

Flow description:

The xsc compiler compiles and links the C code to create the shared library xsim.dir/xsc/
dpi.so, and xelab references the shared library through the switch -sv_lib.

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=214

Two-step flow

xsc -compile function1.c function2.c -work abc
xsc -shared/-shared_systemc abc/function1.lnx64.o abc/function2.lnx64.o -
work abc
xelab -svlog file.sv -sv_root abc -sv_lib dpi -R

Flow description:

• Compile the two C files into corresponding object code in the work directory abc.

• Link these two files together to create the shared library dpi.so.

• Make sure that this library is picked up from the work library abc via the -sv_root switch.

TIP: -sv_root  specifies where to look for the shared library specified through the switch -sv_lib .
On Linux, if -sv_root  is not specified and the DPI library is named with the prefix lib  and the
suffix .so, then use the LD_LIBRARY_PATH environment variable for the location of shared library.

Two-step flow (same as above with few extra options)

xsc -compile function1.c function2.c -work "abc" -v 1
xsc -shared/-shared_systemc "abc/function1.lnx64.o" "abc/function2.lnx64.o"
-work "abc" -o final -v 1
xelab -svlog file.sv -sv_root "abc" -sv_lib final -R

Flow description:

If you want to do your own compilation and linking, you can use the -verbose switch to see the
path and the options with which the compiler was invoked. You can then tailor those to suit your
needs. In the example above, a distinct shared library final is created. This example also
demonstrates how spaces in file path work.

Function with Output
Code

file.sv

/*- - - -*/
package pack1;
import "DPI-C" function int myFunction1(input int v, output int o);
import "DPI-C" function void myFunction2 (input int v1, input int v2,
output int o);
endpackage
/*-- ---*/
module m();
int i, j;
int o1 ,o2, o3;
initial
begin
#1;
j = 10;

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=215

o3 =pack1:: myFunction1(j, o1);//should be 10/2 = 5
pack1::myFunction2(j, 2+3, o2); // 5 += 10 + 2+3
$display(o1, o2);
if(o1 == 5 && o2 == 15)
$display("PASSED");
else
$display("FAILED");
end
endmodule

function.c

#include "svdpi.h"
DPI_DLLESPEC
int myFunction1(int j, int* o)
{
*o = j /2;
return 0;
}
DPI_DLLESPEC
void myFunction2(int i, int j, int* o)
{
*o = i+j;
return;
}

run.ksh

xsc function.c
xelab -vlog file.sv -sv -sv_lib dpi -R

Simple Import-Export Flow (Illustrates xelab -
dpiheader Flow)
In this flow:

1. Run xelab with the -dpiheader switch to create the header file, file.h.

2. Your code in file.c then includes the xelab-generated header file (file.h), which is listed
at the end.

3. Compile the code in file.c and test.sv as before to generate the simulation executable.

file.c

#include "file.h"
/* NOTE: This file is generated by xelab -dpiheader <filename> flow */
int cfunc (int a, int b) {
//Call the function exported from SV.
return c_exported_func (a,b);
}

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=216

test.sv

module m();
export "DPI-C" c_exported_func = function func;
import "DPI-C" pure function int cfunc (input int a ,b);
/*This function can be called from both SV or C side. */
function int func(input int x, y);
begin
func = x + y;
end
endfunction
int z;
initial
begin
#5;
z = cfunc(2, 3);
if(z == 5)
$display("PASSED");
else
$display("FAILED");
end
endmodule

run.ksh

xelab -dpiheader file.h -svlog test.sv
xsc file.c
xelab -svlog test.sv -sv_lib dpi -R
file.h
/**/
/* ____ ____ */
/* / /\/ / */
/* /___/ \ / */
/* \ \ \/ */
/* \ \ Copyright (c) 2003-2013 Xilinx, Inc. */
/* / / All Right Reserved. */
/* /---/ /\ */
/* \ \ / \ */
/* ___\/___\ */
/**/
/* NOTE: DO NOT EDIT. AUTOMATICALLY GENERATED FILE. CHANGES WILL BE LOST. */
#ifndef DPI_H
#define DPI_H
#ifdef __cplusplus
#define DPI_LINKER_DECL extern "C"
#else
#define DPI_LINKER_DECL
#endif
#include "svdpi.h"
/* Exported (from SV) function */
DPI_LINKER_DECL DPI_DLLISPEC
int c_exported_func(
int x, int y);
/* Imported (by SV) function */
DPI_LINKER_DECL DPI_DLLESPEC
int cfunc(
int a, int b);
#endif

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=217

DPI Examples Shipped with the Vivado Design
Suite

There are two examples shipped with the Vivado Design Suite that can help you understand how
to use DPI in Vivado simulator. Locate these in your installation directory, <vivado
installation dir>/examples/xsim/systemverilog/dpi. Each includes a README file
that can help you get started. The examples include:

• simple_import: simple import of pure function

• simple_export: simple export of pure function

TIP: When the return value of a function is computed solely on the value of its inputs, it is called a
"pure function."

Appendix E: Direct Programming Interface (DPI) in Vivado Simulator

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=218

Appendix F

SystemC Support in Vivado IDE
Vivado® Design Suite provides simulation models as a set of files and libraries. Simulation
libraries contain the device and IP behavioral and timing models. The compiled libraries can be
used by multiple design projects. You must compile these files prior to design simulation through
a utility called compile_simlib to compile the simulation models for the target simulator. This
utility can be invoked from the Vivado IDE or by executing it from the Tcl console.

For SystemC simulation verification, simulation models are provided in C/C++/SystemC. Vivado
Design Suite provides two sets of simulation models:

• Protected models

• Unprotected models

Note: With Vivado simulator, there is no need to compile the simulation libraries. Libraries must generally
be compiled or recompiled with a new software release to update simulation models and to support a new
version of simulator and GCC.

Selecting Simulation Model Type
To speed up the simulation run time, Xilinx provides transaction level simulation models (tlm) for
certain IPs like Control, Interfaces and Processing System, SmartConnect, NoC, and AIE. You can
select one of the supported simulation models for your IP by using either project property
(PREFERRED_SIM_MODEL) or an IP property (SELECTED_SIM_MODEL). Following are the
supported simulation models properties:

• ALLOWED_SIM_MODELS: This is a read only property. It describes different simulation
model types such as rtl, tlm, tlm_dpi, dpi which are available for a particular IP.

• SELECTED_SIM_MODEL: This is an IP level setting which allows you to select and set one of
the simulation model from the ALLOWED_SIM_MODELS.

• PREFFERED_SIM_MODEL: This is a project level setting which allows you to set the default
simulation model for the project. This is common across all IPs present in your project.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=219

Using SELECTED_SIM_MODEL IP Property
Perform the following steps to change the simulation model of your IP using
SELECTED_SIM_MODEL:

1. In the Flow Navigator, click Open Block Design to open a block design.

2. Select the desired IP from the block design.

3. Right-click and click Block Properties option.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=220

4. Change the SELECTED_SIM_MODEL option from Block Properties window of your IP, for
example from rtl to tlm.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=221

The following Tcl command is an equivalent to change the SELECTED_SIM_MODEL:

set_property SELECTED_SIM_MODEL tlm [get_bd_cells /NOC_INST_0]

Using PREFERRED_SIM_MODEL Project Property
Perform the following steps to change the simulation model of your IP using
PREFERRED_SIM_MODEL:

1. Click IP option in the Settings dialog box.

2. Select tlm from Select preferred simulation model of IP drop-down menu.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=222

The following Tcl command is an equivalent to change the PREFERRED_SIM_MODEL:

set_property preferred_sim_model tlm [current_project]

Note: Setting PREFFERED_SIM_MODEL to tlm sets all IPs SELECTED_SIM_MODEL to tlm except IPs
which does not support tlm.

Protected Models
The protected models are pre-compiled and released in the form of a shared library that is built
for the respective simulator. This shared library is packaged as part of the Vivado® install and
based on the design configuration these models are bonded during elaboration. The following
two protected models are delivered as part of Vivado install:

• AI Engine

• Network on chip (NoC)

These models are in the form of shared library present in the following installation path:

<Vivado-install-path>/data/simmodels/<simulator>/<simulator_version>/
<os_type>/<gcc_version>/systemc/protected

• Vivado simulator: <Vivado-install-path>/data/simmodels/xsim/2020.2/
lnx64/6.2.0/systemc/protected

• Xcelium simulator: <Vivado-install-path>/data/simmodels/xcelium/
20.03.005/lnx64/6.3/systemc/protected

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=223

• Questa Advanced Simulator: <Vivado-install-path>/data/simmodels/questa/
2020.2/lnx64/5.3.0/systemc/protected

• VCS Simulator: <Vivado-install-path>/data/simmodels/vcs/R-2020.12/
lnx64/6.2.0/systemc/protected/

Unprotected Models
The unprotected models are released as a source code in the install. You need to compile the
model for the target simulator using the compile_simlib utility. For Vivado® simulator, these
unprotected models are pre-compiled in the standard <Vivado-install-path>/data/xsim
folder where other libraries are compiled. For third party simulators, these models must be
compiled using compile_simlib. The following un-protected models are delivered as part of
Vivado installation:

• aie_xtlm

• axi_tg_sc

• axis_dwidth_converter_sc

• axis_switch_sc

• common_cpp

• common_rpc

• debug_tcp_server

• emu_perf_common

• noc_sc

• pl_fileio

• remote_port_c

• remote_port_sc

• rwd_tlmmodel

• sim_ddr

• sim_qdma_cpp

• sim_qdma_sc

• sim_xdma_cpp

• sim_xdma_sc

• tlm_ext

• xtlm

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=224

• xtlm_ap_ctrl

• xtlm_ipc

• xtlm_simple_interconnect

• xtlm_trace_model

These simulation model sources are present in the following installation path:

<Vivado-install-path>/data/systemc/

The following IP support SystemC simulation:

• processing_system7_v5_5_6

• versal_cips_v2_1_0

• zynq_ultra_ps_e_v3_2_6

• zynq_ultra_ps_e_v3_3_3

Note: GCC version to compile these models should be supported version as mentioned in this user guide.

SystemC Simulation Using Vivado
Running SystemC simulation design needs:

• Creating design sources

• Compiling simulation models using compile_simlib

• Specify tool/design settings needed

c/c++/SystemC sources can be compiled using GCC. Each simulator supports different versions
of GCC. If design contains Xilinx provided SystemC models, GCC version used should be the
supported version. Design needs to be re-compiled if GCC version changes.

Simulators Supported for SystemC Simulation
Following are the simulators supported for SystemC simulation in the Vivado® Design Suite:

Table 46: Simulators Supported for SystemC Simulation

Simulator Version Compatible GCC
Version SystemC Compiler

Vivado® simulator 2021.1 6.2.0 XSC

Siemens EDA Questa Advanced
simulator

2020.4 5.3.0 SCCOM

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=225

Table 46: Simulators Supported for SystemC Simulation (cont'd)

Simulator Version Compatible GCC
Version SystemC Compiler

Cadence Xcelium Parallel simulator 20.09.006 6.3 XMSC

VCS R-2020.12 6.2.0 SYSCAN

Simulator Settings for Third-Party Tools
Table 47: Simulator Settings for Third Party Tools

Simulator Linux
Questa setenv MODEL_TECH <tool installation path>

setenv LM_LICENSE_FILE <license file>

setenv PATH ${MODEL_TECH}/bin:$PATH

Xcelium setenv CDS_INST_DIR <xcelium_install_dir>

setenv LD_LIBRARY_PATH $CDS_INST_DIR/tools/xcelium/
lib:$LD_LIBRARY_PATH

setenv PATH $CDS_INST_DIR/tools/xcelium/
bin:$CDS_INST_DIR/tools/bin:$PATH

setenv CDS_LICENSE_DIR <tool_license>

VCS setenv VCS_HOME <tool_install_path>

setenv SYSTEMC_HOME $VCS_HOME/linux64/lib

setenv LM_LICENSE_FILE <license file>

setenv VG_GNU_PACKAGE /tools/installs/synopsys/vg_gnu/
2020.12/linux

setenv PATH ${VCS_HOME}/bin:${PATH}

source $VG_GNU_PACKAGE/source_me[.sh|.csh]

Note: By default, GCC path is auto determined from the tool installation location for Questa and Xcelium.

GCC Path Settings
The following table describes GCC executable path settings for compile_simlib and
launch_simulation:

Table 48: GCC Path Settings

Command Settings
compile_simlib • Specify the GCC compiler install path using -gcc_exec_path switch.

• If not, set the environment variable GCC_SIM_EXE_PATH <gcc_install_dir>.

launch_simulation • Specify the GCC compiler install path using -gcc_install_path switch.

• If not, set the property using set_property
simulator.<name>_gcc_install_dir <gcc_path> [current_project]

• If not, set the environment variable GCC_SIM_EXE_PATH <gcc_install_dir>.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=226

Note: If these recommended settings are not found, Vivado would pick install path from PATH env variable.
Also, it is always recommended to use tool native SystemC compilers.

Running SystemC Simulation Using Vivado
Simulator

For step-by-step demonstration on how to run Vivado® simulation, see Vivado Design Suite User
Guide: Release Notes, Installation, and Licensing (UG973).

Note: If you are using the Vivado simulator, be sure to specify all appropriate project settings for your
design before running simulation.

Appendix F: SystemC Support in Vivado IDE

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 227Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=227

Appendix G

Handling Special Cases

Using Global Reset and 3-State
Xilinx devices have dedicated routing and circuitry that connect to every register in the device.

Global Set and Reset Net
During configuration, the dedicated Global Set/Reset (GSR) signal is asserted. The GSR signal is
deasserted upon completion of device configuration. All the flip-flops and latches receive this
reset, and are set or reset depending on how the registers are defined.

Although you can access the GSR net after configuration, avoid use of the GSR circuitry in place
of a manual reset. This is because the FPGA devices offer high-speed backbone routing for high
fanout signals such as a system reset. This backbone route is faster than the dedicated GSR
circuitry, and is easier to analyze than the dedicated global routing that transports the GSR signal.

In post-synthesis and post-implementation simulations, the GSR signal is automatically asserted
for the first 100 ns to simulate the reset that occurs after configuration.

A GSR pulse can optionally be supplied in pre-synthesis functional simulations, but is not
necessary if the design has a local reset that resets all registers.

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the post-
synthesis and post-implementation simulation. This holds all registers in reset for the first 100 ns of the
simulation.

Note: If a design uses ICAP primitive, GSR will last for 1.281 us at that time.

Global 3-State Net
In addition to the dedicated global GSR, output buffers are set to a high impedance state during
configuration mode with the dedicated Global 3-state (GTS) net. All general-purpose outputs are
affected whether they are regular, 3-state, or bidirectional outputs during normal operation. This
ensures that the outputs do not erroneously drive other devices as the FPGA is configured.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=228

In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is available in the
post-synthesis and post-implementation simulations and can be optionally added for the pre-
synthesis functional simulation, but the GTS pulse width is set to 0 by default.

Using Global 3-State and Global Set and Reset
Signals
The following figure shows how Global 3-State (GTS) and Global Set/Reset (GSR) signals are used
in an FPGA.

Figure 53: Built-in FPGA Initialization Circuitry Diagram

X8352

User
Programmable
Latch/Register

Global Tri-State
(GTS)

User OutputI/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

General Purpose

I/Os Used for
Initialization

GTS

GSR

User
Async.
Reset Global

Set/Reset
(GSR)

Initialization
Controller

User
Programmable

Logic
Resources

QD

CLR
C

CE

Global Set and Reset and Global 3-State Signals in
Verilog
The GSR and GTS signals are defined in the <Vivado_Install_Dir>/data/verilog/src/
glbl.v module.

In most cases, GSR and GTS need not be defined in the test bench.

The glbl.v file declares the global GSR and GTS signals and automatically pulses GSR for 100
ns.

Global Set and Reset and Global 3-State Signals in
VHDL
The GSR and GTS signals are defined in the file: <Vivado_Install_Dir>/data/vhdl/src/
unisims/primitive/GLBL_VHD.vhd.

To use the GLBL_VHD component you must instantiate it into the test bench.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=229

The GLBL_VHD component declares the global GSR and GTS signals and automatically pulses
GSR for 100 ns.

The following code snippet shows an example of instantiating the GLBL_VHD component in the
test bench and changing the assertion pulse width of the Reset on Configuration (ROC) to 90 ns:

GLBL_VHD inst:GLBL_VHD generic map (ROC_WIDTH => 90000);

Delta Cycles and Race Conditions
This user guide describes event-based simulators. Event-based simulators can process multiple
events at a given simulation time. While these events are being processed, the simulator cannot
advance the simulation time. This event processing time is commonly referred to as delta cycles.
There can be multiple delta cycles in a given simulation time step.

Simulation time is advanced only when there are no more transactions to process for the current
simulation time. For this reason, simulators can give unexpected results, depending on when the
events are scheduled within a time step. The following VHDL coding example shows how an
unexpected result can occur.

VHDL Coding Example With Unexpected Results
clk_b <= clk;
clk_prcs : process (clk)
begin
 if (clk'event and clk='1') then
 result <= data;
 end if;
end process;
clk_b_prcs : process (clk_b)
begin
 if (clk_b'event and clk_b='1') then
 result1 <= result;
 end if;
end process;

In this example, there are two synchronous processes:

• clk_prcs

• clk_b_prcs

The simulator performs the clk_b <= clk assignment before advancing the simulation time.
As a result, events that should occur in two clock edges occur in one clock edge instead, causing
a race condition.

Recommended ways to introduce causality in simulators for such cases include:

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=230

• Do not change clock and data at the same time. Insert a delay at every output.

• Use the same clock.

• Force a delta delay by using a temporary signal, as shown in the following example:

clk_b <= clk;
clk_prcs : process (clk)
begin
 if (clk'event and clk='1') then
 result <= data;
 end if;
end process;
result_temp <= result;
clk_b_prcs : process (clk_b)
begin
if (clk_b'event and clk_b='1') then
 result1 <= result_temp;
 end if;
end process;

Most event-based simulators can display delta cycles. Use this to your advantage when
debugging simulation issues.

Using the ASYNC_REG Constraint
The ASYNC_REG constraint:

• Identifies asynchronous registers in the design

• Disables X propagation for those registers

The ASYNC_REG constraint can be attached to a register in the front-end design by using either:

• An attribute in the HDL code

• A constraint in the Xilinx Design Constraints (XDC)

The registers to which ASYNC_REG are attached retain the previous value during timing
simulation, and do not output an X to simulation. Use care; a new value might have been clocked
in as well.

The ASYNC_REG constraint is applicable to CLB and Input Output Block (IOB) registers and
latches only. For more information, see ASYNC_REG constraint at this link in the Vivado Design
Suite Properties Reference Guide (UG912).

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 231Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug912-vivado-properties.pdf;a=xAsyncReg
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=231

If you cannot avoid clocking in asynchronous data, do so for IOB or CLB registers only. Clocking
in asynchronous signals to RAM, Shift Register LUT (SRL), or other synchronous elements has less
deterministic results; therefore, should be avoided. Xilinx highly recommends that you first
properly synchronize any asynchronous signal in a register, latch, or FIFO before writing to a
RAM, Shift Register LUT (SRL), or any other synchronous element. For more information, see the
Vivado Design Suite User Guide: Using Constraints (UG903).

Disabling X Propagation for Synchronous Elements
When a timing violation occurs during a timing simulation, the default behavior of a latch,
register, RAM, or other synchronous elements is to output an X to the simulator. This occurs
because the actual output value is not known. The output of the register could:

• Retain its previous value

• Update to the new value

• Go metastable, in which a definite value is not settled upon until some time after the clocking
of the synchronous element

Because this value cannot be determined, and accurate simulation results cannot be guaranteed,
the element outputs an X to represent an unknown value. The X output remains until the next
clock cycle in which the next clocked value updates the output if another violation does not
occur.

The presence of an X output can significantly affect simulation. For example, an X generated by
one register can be propagated to others on subsequent clock cycles. This can cause large
portions of the design under test to become unknown.

To correct X-generation:

• On a synchronous path, analyze the path and fix any timing problems associated with this or
other paths to ensure a properly operating circuit.

• On an asynchronous path, if you cannot otherwise avoid timing violations, disable the X
propagation on synchronous elements during timing violations by using the ASYNC_REG
property.

When X propagation is disabled, the previous value is retained at the output of the register. In
the actual silicon, the register might have changed to the 'new' value. Disabling X propagation
might yield simulation results that do not match the silicon behavior.

CAUTION! Exercise care when using this option. Use it only if you cannot otherwise avoid timing
violations.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 232Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=232

Simulating Configuration Interfaces
This section describes the simulation of the following configuration interfaces:

• JTAG simulation

• SelectMAP simulation

JTAG Simulation
BSCAN component simulation is supported on all devices.

The simulation supports the interaction of the JTAG ports and some of the JTAG operation
commands. The JTAG interface, including interface to the scan chain, is not fully supported. To
simulate this interface:

1. Instantiate the BSCANE2 component and connect it to the design.

2. Instantiate the JTAG_SIME2 component into the test bench (not the design).

This becomes:

• The interface to the external JTAG signals (such as TDI, TDO, and TCK)

• The communication channel to the BSCAN component

The communication between the components takes place in the VPKG VHDL package file or the
glbl Verilog global module. Accordingly, no implicit connections are necessary between the
specific JTAG_SIME2 component and the design, or the specific BSCANE2 symbol.

Stimulus can be driven and viewed from the specific JTAG_SIME2 component within the test
bench to understand the operation of the JTAG/BSCAN function. Instantiation templates for
both of these components are available in both the Vivado® Design Suite templates and the
specific-device libraries guides.

SelectMAP Simulation
The configuration simulation models (SIM_CONFIGE2 and SIM_CONFIGE3) with an
instantiation template allow supported configuration interfaces to be simulated to ultimately
show the DONE pin going HIGH. This is a model of how the supported devices react to stimulus
on the supported configuration interface.

The following table lists the supported interfaces and devices.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=233

Table 49: Supported Configuration Devices and Modes

Devices SelectMAP Serial SPI BPI
7 series and Zynq®-7000 SoC
Devices

Yes Yes No No

UltraScale Devices Yes Yes No No

UltraScale+™ Devices Yes Yes No No

The models handle control signal activity as well as bit file downloading. Internal register settings
such as the CRC, IDCODE, and status registers are included. You can monitor the Sync Word as it
enters the device and the start-up sequence as it progresses. The following figure illustrates how
the system should map from the hardware to the simulation environment.

The configuration process is specifically outlined in the configuration user guides for each device.
These guides contain information on the configuration sequence, as well as the configuration
interfaces.

Figure 54: Block Diagram of Model Interaction
Host Controller - Input Stimulus to Model Configuration Simulation Model

IDCODE Parameter
Memory

Controller

Target FPGABit File

User
Memory

SelectMAP
Control
Logic

CCLK
Data [0-n]

RDWR

PROG_B
INIT_B

CS

Mode Pins [2:0]

1 1 0
X10194

System Level Description

The configuration models allow the configuration interface control logic to be tested before the
hardware is available. It simulates the entire device, and is used at a system level for:

• Applications using a processor to control the configuration logic to ensure proper wiring,
control signal handling, and data input alignment.

• Applications that control the data loading process with the CS (SelectMAP Chip Select) or CLK
signal to ensure proper data alignment.

• Systems that need to perform a SelectMAP ABORT or Readback.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=234

The config_test_bench.zip file has sample test benches that simulate a processor running
the SelectMAP logic. These test benches have control logic to emulate a processor controlling
the SelectMAP interface, and include features such as a full configuration, ABORT, and Readback
of the IDCODE and status registers.

For the ZIP files associated with this model, see Xilinx Answer Record 53632.

The simulated host system must have a method for file delivery as well as control signal
management. These control systems should be designed as set forth in the device configuration
user guides.

The configuration models also demonstrate what is occurring inside the device during the
configuration procedure when a BIT file is loaded into the device.

During the BIT file download, the model processes each command and changes registers settings
that mirror the hardware changes.

You can monitor the CRC register as it actively accumulates a CRC value. The model also shows
the Status Register bits being set as the device progresses through the different states of
configuration.

Debugging with the Model

Each configuration model provides an example of a correct configuration. You can leverage this
example to assist in the debug procedure if you encounter device programming issues.

You can read the Status Register through JTAG using the Vivado Device Programmer tool. This
register contains information relating to the current status of the device and is a useful
debugging resource. If you encounter issues on the board, reading the Status Register in Vivado
Device Programmer is one of the first debugging steps to take.

After the status register is read, you can map it to the simulation to pinpoint the configuration
stage of the device.

For example, the GHIGH bit is set HIGH after the data load process completes successfully; if this
bit is not set, then the data loading operation did not complete. You can also monitor the GTW,
GWE, and DONE signals set in BitGen that are released in the start-up sequence.

The configuration models also allow for error injection. The active CRC logic detects any issue if
the data load is paused and started again with any problems. It also detects bit flips manually
inserted in the BIT file, and handles them just as the device would handle this error.

Feature Support

Each device-specific configuration user guide outlines the supported methods of interacting with
each configuration interface.The table below shows which features discussed in the configuration
user guides are supported.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 235Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=53632.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=235

The SIM_CONFIGE2 model:

• Does not support Readback of configuration data.

• Does not store configuration data provided, although it does calculate a CRC value.

• Can perform Readback on specific registers only to ensure that a valid command sequence
and signal handling is provided to the device.

• Is not intended to allow Readback data files to be produced.

Table 50: Model-Supported Slave SelectMAP and Serial Features

Slave SelectMAP and Serial Features Supported
Master mode No

Daisy chain - slave parallel daisy chains No

SelectMAP data loading Yes

Continuous SelectMAP data loading Yes

Non-continuous SelectMAP data loading Yes

SelectMAP ABORT Yes

SelectMAP reconfiguration No

SelectMAP data ordering Yes

Reconfiguration and MultiBoot No

Configuration CRC—CRC checking during configuration Yes

Configuration CRC—post-configuration CRC No

Disabling Block RAM Collision Checks for
Simulation

Xilinx® block RAM memory is a true dual-port RAM where both ports can access any memory
location at any time. Be sure that the same address space is not accessed for reading and writing
at the same time. This causes a block RAM address collision. These are valid collisions, because
the data that is being read from the read port is not valid.

In the hardware, the value that is read might be the old data, the new data, or a combination of
the old data and the new data.

In simulation, this is modeled by outputting X because the value read is unknown. For more
information on block RAM collisions, see the user guide for the device.

In certain applications, this situation cannot be avoided or designed around. In these cases, the
block RAM can be configured not to look for these violations. This is controlled by the generic
(VHDL) or parameter (Verilog) SIM_COLLISION_CHECK string in block RAM primitives.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=236

The following table shows the string options you can use with SIM_COLLISION_CHECK to
control simulation behavior in the event of a collision.

Table 51: SIM_COLLISION_CHECK Strings

String Write Collision
Messages Write Xs on the Output

ALL Yes Yes

WARNING_ONLY Yes No. Applies only at the time of collision. Subsequent reads of
the same address space could produce Xs on the output.

GENERATE_X_ONLY No Yes

None No No. Applies only at the time of collision. Subsequent reads of
the same address space could produce Xs on the output.

Apply the SIM_COLLISION_CHECK at an instance level so you can change the setting for each
block RAM instance.

Dumping the Switching Activity Interchange
Format File for Power Analysis

• Vivado simulator: Power Analysis Using Vivado Simulator

• Dumping SAIF for Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in Chapter
3: Simulating with Third-Party Simulators

Skipping Compilation or Simulation
Skipping Compilation
You can run simulation on an existing snapshot and skip the compilation (or recompilation) of the
design by setting the SKIP_COMPILATION property on the simulation fileset:

set_property SKIP_COMPILATION 1 [get_filesets sim_1]

Note: Any change to design files after the last compilation is not reflected in simulation when you set this
property.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=237

Skipping Simulation
To perform a semantic check on the design HDL files, by elaborating and compiling the
simulation snapshot without running simulation, you can set the SKIP_SIMULATION property on
the simulation fileset:

set_property SKIP_SIMULATION true [get_filesets sim_1]

IMPORTANT! If you elect to use one of the properties above, disable the Clean up simulation files check
box in the simulations settings, or if you are running in batch/Tcl mode, call launch_simulation  with
-noclean_dir.

Appendix G: Handling Special Cases

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=238

Appendix H

Value Rules in Vivado Simulator Tcl
Commands

This appendix contains the value rules that apply to both the add_force and the set_value
Tcl commands.

String Value Interpretation
The interpretation of the value string is determined by the declared type of the HDL object and
the -radix command line option. The -radix always overrides the default radix determined by
the HDL object type.

• For HDL objects of type logic, the value is a one-dimensional array of the logic type or
the value is a string of digits of the specified radix.

○ If the string specifies less bits than the type expects, the string is implicitly zero-extended
(not sign-extended) to match the length of the type.

○ If the string specifies more bits than the type expects, the extra bits on the MSB side must
be zero; otherwise the command generates a size mismatch error.

For example: The value 3F specifies 8 bits (4 per hex digit) with radix hex and a 6 bit logic
array, equivalent to binary 0011 1111. But, because the upper two bits of 3 are zero, the
value can be assigned to the HDL object. In contrast, the value 7F would generate an error,
because the upper two bits are not zero.

○ A scalar (not array or record) logic HDL object has an implicit length of 1 bit.

○ For a logic array declared as a [left:right] (Verilog) or a(left TO/DOWNTO
right), the left-most value bit (after extension/truncation) is assigned to a[left] and
the right-most value bit is assigned to a[right].

Vivado Design Suite Simulation Logic
The logic is not a concept defined in HDL but is a heuristic introduced by the Vivado® simulator.

Appendix H: Value Rules in Vivado Simulator Tcl Commands

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=239

• A Verilog object is considered to be of logic type if it is of the implicit Verilog bit type, which
includes wire and reg objects, as well as integer and time.

• A VHDL object is considered to be of logic type if the objects type is bit, std_logic, or
any enumeration type whose enumerators are a subset of those of std_logic and include at
least 0 and 1, or type of the object is a one-dimensional array of such a type.

• For HDL objects, which are of VHDL enumeration type, the value can be one of the
enumerator literals, without single quotes if the enumerator is a character literal. Radix is
ignored.

• For VHDL objects, of integral type, the value can be a signed decimal integer in the range of
the type. Radix is ignored.

• For VHDL and Verilog floating point types the value can be a floating point value. Radix is
ignored.

• For all other types of HDL objects, the Tcl command set does not support setting values.

Appendix H: Value Rules in Vivado Simulator Tcl Commands

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=240

Appendix I

Vivado Simulator Mixed Language
Support and Language Exceptions

The Vivado Integrated Design Environment (IDE) supports the following languages:

• VHDL, see EEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)

• Verilog, see IEEE Standard Verilog Hardware Description Language (IEEE-STD-1364-2001)

• SystemVerilog Synthesizable subset. See IEEE Standard for SystemVerilog--Unified Hardware
Design, Specification, and Verification Language (IEEE-STD-1800-2009)

• IEEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735)

This appendix lists the application of Mixed Language in the Vivado simulator, and the exceptions
to Verilog, SystemVerilog, and VHDL support.

Using Mixed Language Simulation
The Vivado simulator supports mixed language project files and mixed language simulation. This
lets you include Verilog/SystemVerilog (SV) modules in a VHDL design, and vice versa.

Restrictions on Mixed Language in Simulation
• A VHDL design can instantiate Verilog/SystemVerilog (SV) modules and a Verilog/SV design

can instantiate VHDL components. Component instantiation-based default binding is used for
binding a Verilog/SV module to a VHDL component. Any other kind of mixed use of VHDL
and Verilog, such as VHDL process calling a Verilog function, is not supported.

• A subset of VHDL types, generics, and ports are allowed on the boundary to a Verilog/SV
module. Similarly, a subset of Verilog/SV types, parameters and ports are allowed on the
boundary to VHDL components. See Table 53: Supported VHDL and Verilog Data Types.

IMPORTANT! Connecting whole VHDL record object to a Verilog object is unsupported; however,
VHDL record elements of a supported type can be connected to a compatible Verilog port.

• A Verilog/SV hierarchical reference cannot refer to a VHDL unit nor can a VHDL expanded or
selected name refer to a Verilog/SV unit.

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 241Send Feedback

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392561
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://standards.ieee.org/develop/project/1735.html
http://standards.ieee.org/develop/project/1735.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=241

Key Steps in a Mixed Language Simulation
1. Optionally, specify the search order for VHDL components or Verilog/SV modules in the

design libraries of a mixed language project.

2. Use xelab -L to specify the binding order of a VHDL component or a Verilog/SV module in
the design libraries of a mixed language project.

Note: The library search order specified by -L is used for binding Verilog modules to other Verilog
modules as well.

Mixed Language Binding and Searching
When you instantiate a VHDL component in a Verilog/SV module or a Verilog/SV module in a
VHDL architecture, the xelab command:

• First searches for a unit of the same language as that of the instantiating design unit.

• If a unit of the same language is not found, xelab searches for a cross-language design unit in
the libraries specified by the -L option.

The search order is the same as the order of appearance of libraries on the xelab command line.

Note: When using the Vivado IDE, the library search order is specified automatically. No user intervention
is necessary or possible.

Related Information

Verilog Search Order

Instantiating Mixed Language Components
In a mixed language design, you can instantiate a Verilog/SV module in a VHDL architecture or a
VHDL component in a Verilog/SV module as described in the following subsections.

To ensure that you are correctly matching port types, review the Port Mapping and Supported
Port Types.

Instantiating a Verilog Module in a VHDL Design Unit

1. Declare a VHDL component with the same name and in the same case as the Verilog module
that you want to instantiate. For example:

COMPONENT MY_VHDL_UNIT PORT (
 Q : out STD_ULOGIC;
 D : in STD_ULOGIC;
 C : in STD_ULOGIC);
END COMPONENT;

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=242

2. Use named or positional association to instantiate the Verilog module. For example:

UUT : MY_VHDL_UNIT PORT MAP(
 Q => O,
 D => I,
 C => CLK);

Instantiating a VHDL Component in a Verilog/SV Design Unit

To instantiate a VHDL component in a Verilog/SV design unit, instantiate the VHDL component
as if it were a Verilog/SV module.

For example:

module testbench ;
wire in, clk;
wire out;
FD FD1(
 .Q(Q_OUT),
 .C(CLK);
 .D(A);
);

Port Mapping and Supported Port Types
The following table lists the supported port types.

Table 52: Supported Port Types

VHDL1 Verilog/SV 2

IN INPUT

OUT OUTPUT

INOUT INOUT

Notes:
1. Buffer and linkage ports of VHDL are not supported.
2. Connection to bi-directional pass switches in Verilog are not supported. Unnamed Verilog ports are not allowed on

mixed design boundary.

The following table shows the supported VHDL and Verilog data types for ports on the mixed
language design boundary.

Table 53: Supported VHDL and Verilog Data Types

VHDL Port Verilog Port
bit net
std_logic net
bit_vector vector net
signed vector net

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=243

Table 53: Supported VHDL and Verilog Data Types (cont'd)

VHDL Port Verilog Port
unsigned vector net
std_ulogic_vector vector net
std_logic_vector vector net

Note: Verilog output port of type reg is supported on the mixed language boundary. On the boundary, an
output reg port is treated as if it were an output net (wire) port. Any other type found on mixed language
boundary is considered an error.

Note: The Vivado simulator supports the record element as an actual in the port map of a Verilog module
that is instantiated in the mixed domain. All those types that are supported as VHDL port (listed in Table
53: Supported VHDL and Verilog Data Types) are also supported as a record element.

Table 54: Supported SV and VHDL Data Types

SV Data type VHDL Data type
Int

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

byte
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

shortint
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

longint
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

integer
bit_vector

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=244

Table 54: Supported SV and VHDL Data Types (cont'd)

SV Data type VHDL Data type
std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of bit(1D)
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of logic(1D)
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of reg(1D)
bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

logic/bit
bit

std_logic

std_ulogic

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

Note: VHDL entity instantiating Verilog Module having real port is supported.

Generics (Parameters) Mapping
The Vivado simulator supports the following VHDL generic types (and their Verilog/SV
equivalents):

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=245

• integer

• real

• string

• boolean

Note: Any other generic type found on mixed language boundary is considered an error.

VHDL and Verilog Values Mapping
The following table lists the Verilog states mappings to std_logic and bit.

Table 55: Verilog States mapped to std_logic and bit

Verilog std_logic bit
Z Z 0

0 0 0

1 1 1

X X 0

Note: Verilog strength is ignored. There is no corresponding mapping to strength in VHDL.

The following table lists the VHDL type bit mapping to Verilog states.

Table 56: VHDL bit Mapping to Verilog States

bit Verilog
0 0

1 1

The folowing table lists the VHDL type std_logic mappings to Verilog states.

Table 57: VHDL std_logic mapping to Verilog States

std_logic Verilog
U X

X X

0 0

1 1

Z Z

W X

L 0

H 1

- X

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=246

Because Verilog is case sensitive, named associations and the local port names that you use in
the component declaration must match the case of the corresponding Verilog port names.

VHDL Language Support Exceptions
Certain language constructs are not supported by the Vivado simulator. The following table lists
the VHDL language support exceptions.

Table 58: VHDL Language Support Exceptions

Supported VHDL Construct Exceptions
abstract_literal Floating point expressed as based literals are not supported.
alias_declaration Alias to non-objects are in general not supported;

particularly the following:

• Alias of an alias

• Alias declaration without subtype_indication

• Signature on alias declarations

• Operator symbol as alias_designator

• Alias of an operator symbol

• Character literals as alias designators

alias_designator Operator_symbol as alias_designator
Character_literal as alias_designator

association_element Globally, locally static range is acceptable for taking slice of
an actual in an association element.

attribute_name Signature after prefix is not supported.
binding_indication Binding_indication without use of entity_aspect is not

supported.
bit_string_literal Empty bit_string_literal (" ") is not supported.
block_statement Guard_expression is not supported; for example, guarded

blocks, guarded signals, guarded targets, and guarded
assignments are not supported.

choice Aggregate used as choice in case statement is not
supported.

concurrent_assertion_statement Postponed is not supported.
concurrent_signal_assignment_statement Postponed is not supported.
concurrent_statement Concurrent procedure call containing wait statement is not

supported.
conditional_signal_assignment Keyword guarded as part of options is not supported as

there is no supported for guarded signal assignment.
configuration_declaration Non locally static for generate index used in configuration is

not supported.
entity_class Literals, unit, file, and group as entity class are not

supported.

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=247

Table 58: VHDL Language Support Exceptions (cont'd)

Supported VHDL Construct Exceptions
entity_class_entry Optional <> intended for use with group templates is not

supported.
file_logical_name Although file_logical_name is allowed to be any wild

expression evaluating to a string value, only string literal and
identifier is acceptable as file name.

function_call Slicing, indexing, and selection of formals is not supported in
a named parameter association within a function_call.

instantiated_unit Direct configuration instantiation is not supported.
mode Linkage and Buffer ports are not supported completely.
options Guarded is not supported.
primary At places where primary is used, allocator is expanded there.
procedure_call Slicing, indexing, and selection of formals is not supported in

a named parameter association within a procedure_call.

process_statement Postponed processes are not supported.
selected_signal_assignment The guarded keyword as part of options is not supported as

there is no support for guarded signal assignment.
signal_declaration The signal_kind is not supported. The signal_kind is

used for declaring guarded signals, which are not supported.
subtype_indication Resolved subtype of composites (arrays and records) is not

supported.
waveform Unaffected is not supported.
waveform_element Null waveform element is not supported as it only has

relevance in the context of guarded signals.

Verilog Language Support Exceptions
The following table lists the exceptions to supported Verilog language support.

Table 59: Verilog Language Support Exceptions

Verilog Construct Exception
Compiler Directive Constructs
`unconnected_drive not supported
`nounconnected_drive not supported

Attributes
attribute_instance not supported
attr_spec not supported
attr_name not supported

Primitive Gate and Switch Types
cmos_switchtype not supported
mos_switchtype not supported

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=248

Table 59: Verilog Language Support Exceptions (cont'd)

Verilog Construct Exception
pass_en_switchtype not supported

Generated Instantiation
generated_instantiation The module_or_generate_item alternative is not supported.

Production from IEEE standard (see IEEE Standard Verilog Hardware
Description Language (IEEE-STD-1364-2001) section 13.2):

generate_item_or_null ::=
generate_conditonal_statement |
generate_case_statement |
generate_loop_statement |
generate_block |
module_or_generate_item

Production supported by Simulator:

generate_item_or_null ::=
generate_conditional_statement|
generate_case_statement |
generate_loop_statement |
generate_blockgenerate_condition

genvar_assignment Partially supported.
All generate blocks must be named.
Production from standard (see IEEE Standard Verilog Hardware
Description Language (IEEE-STD-1364-2001) section 13.2):

generate_block ::=
begin
[: generate_block_identifier]
{ generate_item }
end

Production supported by Simulator:

generate_block ::=
begin:
generate_block_identifier {
generate_item }
end

Source Text Constructs

Library Source Text
library_text not supported
library_descriptions not supported
library_declaration not supported
include_statement This refers to include statements within library map files (See IEEE

Standard Verilog Hardware Description Language (IEEE-STD-1364-2001)
section 13.2. This does not refer to the `include compiler directive.

System Timing Check Commands
$skew_timing_check not supported
$timeskew_timing_check not supported
$fullskew_timing_check not supported

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 249Send Feedback

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=249

Table 59: Verilog Language Support Exceptions (cont'd)

Verilog Construct Exception
$nochange_timing_check not supported

System Timing Check Command Argument
checktime_condition not supported

PLA Modeling Tasks
$async$nand$array not supported
$async$nor$array not supported
$async$or$array not supported
$sync$and$array not supported
$sync$nand$array not supported
$sync$nor$array not supported
$sync$or$array not supported
$async$and$plane not supported
$async$nand$plane not supported
$async$nor$plane not supported
$async$or$plane not supported
$sync$and$plane not supported
$sync$nand$plane not supported
$sync$nor$plane not supported
$sync$or$plane not supported

Value Change Dump (VCD) Files
$dumpportson

$dumpports

$dumpportsoff

$dumpportsflush

$dumpportslimit

$vcdplus

not supported

Appendix I: Vivado Simulator Mixed Language Support and Language Exceptions

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=250

Appendix J

Vivado Simulator Quick Reference
Guide

The following table provides a quick reference and examples for common Vivado® simulator
commands.

Parsing HDL Files

Vivado simulator supports three HDL file types: Verilog, SystemVerilog and VHDL. You can parse the supported files using
XVHDL and XVLOG commands.

Parsing VHDL files xvhdl file1.vhd file2.vhd

xvhdl -work worklib file1.vhd file2.vhd

xvhdl -prj files.prj

Parsing Verilog
files

xvlog file1.v file2.v

xvlog -work worklib file1.v file2.v

xvlog -prj files.prj

Parsing
SystemVerilog
files

xvlog -sv file1.v file2.v

xvlog -work worklib -sv file1.v file2.v

xvlog -prj files.prj

For information about the PRJ file format, see Project File (.prj) Syntax.

Additional xvlog and xvhdl Options

xvlog and xvhdl
Key Options

See Table 15: xelab, xvhd, and xvlog Command Options for a complete list of command options.
The following are key options for xvlog and xvhdl:

Key Option Applies to:

xelab, xvhdl, and xvlog xsim
Command Options

xvlog

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

xelab, xvhdl, and xvlog xsim
Command Options

xvlog

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

xelab, xvhdl, and xvlog xsim
Command Options

xvhdl, vlog

xelab, xvhdl, and xvlog xsim
Command Options

xvlog, xvhdl

Appendix J: Vivado Simulator Quick Reference Guide

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=251

Elaborating and Generating an Executable Snapshot

After parsing, you can elaborate the design in Vivado simulator using the XELAB command. XELAB generates an
executable snapshot.
You can skip the parser stage, directly invoke the XELAB command, and pass the PRJ file. XELAB calls XVLOG and XVHDL for
parsing the files.

Usage xelab top1 top2 Elaborates a design that has two top design units: top1 and top2.
In this example, the design units are compiled in the work library.

xelab lib1.top1 lib2.top2 Elaborates a design that has two top design units: top1 and top2.
In this example, the design units have are compiled in lib1 and
lib2, respectively

xelab top1 top2 -prj
files.prj

Elaborates a design that has two top design units: top1 and top2.
In this example, the design units are compiled in the work library.
The file files.prj contains entries such as:

verilog <libraryName>
<VerilogDesignFileName>
vhdl <libraryName> <VHDLDesignFileName>
sv <libraryName>
<SystemVerilogDesignFileName>

xelab top1 top2 -s top Elaborates a design that has two top design units: top1 and top2.
In this example, the design units are compiled in the work library.
After compilation, xelab generates an executable snapshot with
the name top. Without the -s top switch, xelab creates the
snapshot by concatenating the unit names.

Command Line
Help and xelab
Options

xelab -help

Table 15: xelab, xvhd, and xvlog Command Options

Running Simulation

After parsing, elaboration and compilation stages are successful; xsim generates an executable snapshot to run
simulation.

Usage xsim top -R Simulates the design to through completion.
xsim top -gui Opens the Vivado simulator workspace (GUI).
xsim top Opens the Vivado Design Suite command prompt in Tcl mode.

From there, you can invoke such options as:

run -all
run 100 ns

Important Shortcuts

You can invoke the parsing, elaboration, and executable generation and simulation in one, two, or three stages.

Three Stage xvlog bot.v

xvhdl top.vhd

xelab work.top -s top

xsim top -R

Two Stage xelab -prj my_prj.prj work.top -s top

xsim top -R

where my_prj.prj file contains:
verilog work bot.v

vhdl work top.vhd

Single Stage xelab -prj my_prj.prj work.top -s top -R

where my_prj.prj file contains:
verilog work bot.v vhdl work top.vhd

Appendix J: Vivado Simulator Quick Reference Guide

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=252

Note: If your design contain UVM construct then you need to pass -L uvm to xvlog and xelab command

Vivado Simulation Tcl Commands

The following are commonly used Tcl commands. For a complete list, invoke following commands in the Tcl Console:
load_features simulator

help -category simulation

For information on any Tcl Command, type: -help <Tcl_command>

Common Vivado
Simulator Tcl
Commands:

add_bp Add break point at a line of HDL source.
add_force Force the value of a signal, wire, or register to a specified value. Tcl

command exampled are provided on Using Force Commands.
current_time

now

Report current simulation time. See Using a -tclbatch File for an
example of this command within a Tcl script.

current_scope Report or set the current, working HDL scope. See Scope Window
for more information.

get_objects Get a list of HDL objects in one or more HDL scopes, per the
specified pattern. For example command usage refer to: Example
SAIF Tcl Commands.

get_scopes Get a list of child HDL scopes. See Scope Window for more
information.

get_value Get the current value of the selected HDL object (variable, signal,
wire, register). Type get_value -help in Tcl Console for more
information.

launch_simulation Launch simulation using the Vivado simulator.
remove_bps Remove breakpoints from a simulation.
report_drivers Print drivers along with current driving values for an HDL wire or

signal object. Reference for more information: Using the
report_drivers Tcl Command.

report_values Print current simulated value of given HDL objects (variables,
signals, wires, or registers). For example Tcl command usage, see
Scope Window.

restart Rewind simulation to post loading state (as though the design was
reloaded); time is set to 0.

set_value Set the HDL object (variable, signal, wire, or register) to a specified
value. Reference for more information: Appendix H: Value Rules in
Vivado Simulator Tcl Commands.

step Step simulation to the next statement. See Stepping Through a
Simulation.

Appendix J: Vivado Simulator Quick Reference Guide

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=253

Appendix K

Using Xilinx Simulator Interface
The Xilinx® Simulator Interface (XSI) is a C/C++ application programming interface (API) to the
Xilinx Vivado simulator (xsim) that enables a C/C++ program to serve as the test bench for a HDL
design. Using XSI, the C/C++ program controls the activity of the Vivado simulator which hosts
the HDL design.

The C/C++ program controls the simulation in the following methods:

• Setting the values of the top-level input ports of the HDL design

• Instructing the Vivado simulator to run the simulation for a certain amount of simulation time

Additionally, the C/C++ program can read the values of the top-level output ports of the HDL
design.

Perform the following steps to use XSI in your C/C++ program:

1. Prepare the XSI API functions to be called through dynamic linking

2. Write your C/C++ test bench code using the API functions

3. Compile and link your C/C++ program

4. Package the Vivado simulator and the HDL design together into a shared library

Preparing the XSI Functions for Dynamic
Linking

Xilinx recommends the usage of dynamic linking for indirectly calling the XSI functions. While
this technique involves more steps than simply calling XSI functions directly, dynamic linking
allows you to keep the compilation of your HDL design independent of the compilation of your
C/C++ program. You can compile and load your HDL design at any time, even while your C/C++
program continues to run.

To call a function through dynamic linking requires your program to perform the following steps:

1. Open the shared library containing the function.

2. Look up the function by name to get a pointer to the function.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=254

3. Call the function using the function pointer.

4. Close the shared library (optional).

Steps 1, 2, and 4 require the use of OS-specific library calls, as shown in the following table. See
your operating system documentation for details about these functions.

Table 61: Operating System Specific Library Calls

Function Linux Windows
Open shared library

void *dlopen(const char
*filename, int flag);

HMODULE WINAPI
LoadLibrary(_In_ LPCTSTR
lpFileName
);

Look up function by name
void *dlsym(void
*handle, const char
*symbol);

FARPROC WINAPI
GetProcAddress(_In_
HMODULE hModule,_In_
LPCSTR lpProcName
);

Close shared library
int dlclose(void
*handle);

BOOL WINAPI
FreeLibrary(_In_ HMODULE
hModule
);

XSI requires you to call functions from two shared libraries: the kernel shared library and your
design shared library. The kernel shared library ships with the Vivado simulator and is called
librdi_simulator_kernel.so (Linux) or librdi_simulator_kernel.dll (Windows).
It resides in the following directory:

<Vivado Installation Root>/lib/<platform>

where <platform> is lnx64.o or win64.o. Make sure to include this directory in your library
path while running your program. On Linux, include the directory in the environment variable
LD_LIBRARY_PATH, and on Windows, in the environment variable PATH.

Your design shared library, which the Vivado simulator creates in the course of compiling your
HDL design, as described in Preparing the Design Shared Library, is called xsimk.so (Linux) or
xsimk.dll (Windows) and typically resides at the following location:

<HDL design directory>/xsim.dir/<snapshot name>

where <HDL design directory> is the directory from which your design shared library was
created, and <snapshot name> is the name of the snapshot that you specify during the
creation of the library.

Your C/C++ program will call the XSI function xsi_open() residing in your design shared library
and all other XSI functions from the kernel shared library.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=255

The XSI code examples that ship with the Vivado simulator consolidate the XSI functions into a C
++ class called Xsi::Loader. The class accepts the names of the two shared libraries, internally
executes the necessary dynamic linking steps, and exposes all the XSI functions as member
functions of the class. Wrapping the XSI functions in this manner eliminates the necessity of
calling the dynamic linking OS functions directly. You can find the source code for the class that
can be copied into your own program at the following location under your Vivado installation:

<Vivado Installation Root>/examples/xsim/verilog/xsi/counter/xsi_loader.h
<Vivado Installation Root>/examples/xsim/verilog/xsi/counter/xsi_loader.cpp

To use Xsi::Loader, simply instantiate it by passing the names of the two shared libraries as
shown in the following example:

#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so",
"librdi_simulator_kernel.so");

Writing the Test Bench Code
A C/C++ test bench using XSI typically uses the following steps:

1. Open the design.

2. Fetch the IDs of each top-level port.

3. Repeat the following until the simulation is finished:

a. Set values on top-level input ports.

b. Run the simulation for a specific amount of time.

c. Fetch the values of top-level output ports.

4. Close the design.

The following table lists the XSI functions and their Xsi::Loader member function equivalents
to use for each step. You can find the usage details for each XSI function in the XSI Function
Reference.

Table 62: Xsi::Loader member functions

Activity XSI Function Xsi::Loader Member Function

Open the design xsi_open open

Fetch a port ID xsi_get_port_number get_port_number

Set an input port value xsi_put_value put_value

Run the simulation xsi_run run

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=256

Table 62: Xsi::Loader member functions (cont'd)

Activity XSI Function Xsi::Loader Member Function

Fetch an output port
value

xsi_get_value get_value

Close the design xsi_close close

You can find the example C++ programs that use XSI in your Vivado simulator installation at the
following location:

<Vivado Installation Root>/examples/xsim/<HDL language>/xsi

Compiling Your C/C++ Program
You can use the XSI example programs as a guideline. Each example supplies one or two scripts
for compiling and running the example. Refer to your compiler's documentation for details on
compiling a program. On Linux, compiling and running is a two-step process.

1. In a C shell, source set_env.csh

2. Invoke run.csh

On Windows, simply run the batch file run.bat.

Note the following from the scripts:

1. The compilation lines specify (via -I) the inclusion of the directory containing the xsi.h
include file.

2. There is no mention of the design shared library or kernel shared library during the
compilation of a C++ program.

The XSI include file resides at the following location:

<Vivado Installation Root>/data/xsim/include/xsi.h

Preparing the Design Shared Library
The last step for producing a working XSI-based C/C++ program involves the compilation of a
HDL design and packaging it together with the Vivado simulator to become your design shared
library. You may repeat this step whenever there is a change in HDL designs source code.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=257

CAUTION! If you intend to rebuild the design shared library for your C/C++ program while your program
continues to run, be sure to close the design in your program before executing this step.

Create your design shared library by invoking xelab on the HDL design and including the -dll
switch to instruct xelab to produce a shared library instead of the usual snapshot for use with the
Vivado simulator's user interface.

For example:

Type the following in the Linux command line to create a design shared library at ./xsim.dir/
design/xsimk.so:

xelab work.top1 work.top2 -dll -s design

where work.top1 and work.top2 are the top module names and design is the snapshot
name.

See xelab, xvhdl, and xvlog xsim Command Options for more details on compiling an HDL design.

XSI Function Reference
This section presents each of the XSI API functions in plain (direct C call) and Xsi::Loader
member function forms. The plain form functions take an xsiHandle argument, whereas the
member functions do not take this argument. The xsiHandle contains state information about
the opened HDL design. The plain form xsi_open produces the xsiHandle. Xsi::Loader
contains an xsiHandle internally.

xsi_close
void xsi_close(xsiHandle design_handle);
void Xsi::Loader::close();

This function closes an HDL design, freeing the memory associated with the design. Call this
function to end the simulation.

xsi_get_error_info
const char* xsi_get_error_info(xsiHandle design_handle);
const char* Xsi::Loader::get_error_info();

This function returns a string description of the last error encountered.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=258

xsi_get_port_number
XSI_INT32 xsi_get_port_number(xsiHandle design_handle, const char*
port_name);
int Xsi::Loader::get_port_number(const char* port_name);

This function returns an integer ID for the requested top-level port of the HDL design. You may
subsequently use the ID to specify the port in xsi_get_value and xsi_put_value calls.
port_name is the name of the port and is case sensitive for Verilog and case insensitive for
VHDL. The function returns -1 if no port of the specified name exists.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
...
int count = loader.get_port_number("count");

xsi_get_status
XSI_INT32 xsi_get_status(xsiHandle design_handle);
int Xsi::Loader::get_status();

This function returns the status of the simulation. The status may be equal to one of the
following identifiers:

Table 63: Xsi Simulation Status Identifiers

Status code Identifiers Description
xsiNormal No error
xsiError The simulation has encountered an HDL run-time error
xsiFatalError The simulation has encountered an error condition for which the

Vivado simulator cannot continue.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
...
if (loader.get_status() == xsiError)
 printf("HDL run-time error encountered.\n");

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=259

xsi_get_value
void xsi_get_value(xsiHandle design_handle, XSI_INT32 port_number, void*
value);
int Xsi::Loader::get_value(int port_number, void* value);

This function fetches the value of the port indicated by port ID port_number. The value is
placed in the memory buffer to which value points. See xsi_get_port_number for information on
obtaining an ID for a port.

IMPORTANT! Your program must allocate sufficient memory for the buffer before calling the function.
See Vivado Simulator VHDL Data Format and Vivado Simulator Verilog Data Format to determine the
necessary size of the buffer.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
// Buffer for value of port "count"
s_xsi_vlog_logicval count_val = {0X00000000, 0X00000000};
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
...
int count = loader.get_port_number("count");
loader.get_value(count, &count_val);

xsi_open
typedef struct t_xsi_setup_info {
 char* logFileName;
 char* wdbFileName;
} s_xsi_setup_info, *p_xsi_setup_info;
xsiHandle xsi_open(p_xsi_setup_info setup_info);
void Xsi::Loader::open(p_xsi_setup_info setup_info);
bool Xsi::Loader::isopen() const;

This function opens an HDL design for simulation. To use this function, you must first initialize an
s_xsi_setup_info struct to pass to the function. Use logFileName for the name of the
simulation log file, or NULL to disable logging. If waveform tracing is on (see xsi_trace_all),
wdbFileName is the name of the output WDB (waveform database) file. Use NULL for the
default name of xsim.wdb. If the waveform tracing is off, the Vivado simulator ignores the
wdbFileName field.

TIP: To protect your program from future changes to the XSI API, Xilinx recommends that you zero out the
s_xsi_setup_info  struct before filling in the fields, as shown in the xsi_open.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=260

The plain (non-loader) form of the function returns an xsiHandle, a C object containing process
state information about the design, to be used with all other plain-form XSI functions. The loader
form of the function has no return value. However, you may check whether the loader has
opened a design by querying the isopen member function, which returns true if the open
member function had been invoked.

Example

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
s_xsi_setup_info info;
memset(&info, 0, sizeof(info));
info.logFileName = NULL;
char wdbName[] = "test.wdb"; // make a buffer for holding the string
"test.wdb"
info.wdbFileName = wdbName;
loader.open(&info);

xsi_put_value
void xsi_put_value(xsiHandle design_handle, XSI_INT32 port_number, void*
value);
void Xsi::Loader::put_value(int port_number, const void* value);

This function deposits the value stored in value onto the port specified by port ID
port_number. See xsi_get_port_number for information on obtaining an ID for a port. value is
a pointer to a memory buffer that your program must allocate and fill. See the Vivado Simulator
VHDL Data Format and Vivado Simulator Verilog Data Format for information on the proper
format of value.

CAUTION! For maximum performance, the Vivado simulator performs no checking on the size or type of
the value you pass to xsi_put_value . Passing a value to xsi_put_value  which does not match
the size and type of the port may result in unpredictable behavior of your program and the Vivado
simulator.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
// Hard-coded Buffer for a 1-bit "1" Verilog 4-state value
const s_xsi_vlog_logicval one_val = {0X00000001, 0X00000000};
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=261

xsi_restart
void xsi_restart(xsiHandle design_handle);
void Xsi::Loader:: restart();

This function resets the simulation to simulation time 0.

xsi_run
void xsi_run(xsiHandle design_handle, XSI_UINT64 time_ticks);
void Xsi::Loader::run(XSI_INT64 step);

This function runs the simulation for the given amount of time specified in kernel precision units.
A kernel precision unit is the smallest unit of time precision specified among all HDL source files
of the design. For example, if a design has two source files, one of which that specifies a
precision of 1 ns and the other specifies a precision of 1 ps, the kernel precision unit becomes 1
ps, as that time unit is the smaller of the two.

A Verilog source file may specify the time precision using the `timescale directive.

Example:

`timescale 1ns/1ps

In this example, the time unit after the / (1 ps) is the time precision. VHDL has no equivalent of
`timescale.

You may additionally adjust the kernel precision unit through the use of the xelab command-
line options --timescale, --override_timeprecision, and --timeprecision_vhdl.
See xelab, xvhdl, and xvlog xsim Command Options for information on the use of these
command-line options.

Note: xsi_run blocks until the specified simulation run time has elapsed. Your program and the Vivado
simulator share a single thread of execution.

xsi_trace_all
void xsi_trace_all(xsiHandle design_handle);
void Xsi::Loader:: trace_all();

Call this function after xsi_open to turn on waveform tracing for all signals of the HDL design.
Running the simulation with waveform tracing on causes the Vivado simulator to produce a
waveform database (WDB) file containing all events for every signal in the design. The default
name of the WDB file is xsim.wdb. To specify a different WDB file name, set the
wdbFileName field of the s_xsi_setup_info struct when calling xsi_open, as shown in
the example code.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=262

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/
xsimk.so","librdi_simulator_kernel.so");
s_xsi_setup_info info;
memset(&info, 0, sizeof(info));
char wdbName[] = "test.wdb"; // make a buffer for holding the string
"test.wdb"
info.wdbFileName = wdbName;
loader.open(&info);
loader.trace_all();

After the simulation completes, you can open the WDB file in Vivado to examine the waveforms
of the signals. See Opening a Previously Saved Simulation Run for more information on how to
view WDB files in Vivado.

IMPORTANT! When compiling the HDL design, you must specify -debug all  or -debug typical 
on the xelab command line. The Vivado simulator will not record the waveform data without the -debug 
command line option.

Vivado Simulator VHDL Data Format
This section describes how to convert between VHDL values and the format of the memory
buffers to use with the XSI functions xsi_get_value and xsi_put_value.

IEEE std_logic Type
A single bit of VHDL std_logic and std_ulogic is represented in C/C++ as a single byte
(char or unsigned char). The following table shows the values of std_logic/std_ulogic and
their C/C++ equivalents.

Table 64: std_logic/std_ulogic values and their C/C++ Equivalents

std_logic Value C/C++ Byte Value (Decimal)
'U‘ 0
‘X‘ 1
‘0‘ 2
‘1‘ 3
‘Z‘ 4
‘W‘ 5
‘L‘ 6
‘H‘ 7

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=263

Table 64: std_logic/std_ulogic values and their C/C++ Equivalents (cont'd)

std_logic Value C/C++ Byte Value (Decimal)
‘_‘ 8

Example code:

// Put a '1' on signal "clk," where "clk" is defined as
// signal clk : std_logic;
const char one_val = 3; // C encoding for std_logic '1'...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

VHDL bit Type
A single bit of VHDL bit type is represented in C/C++ as a single byte. The following table
shows the values of bit and their C/C++ equivalents.

Table 65: Values of bit and their C/C++ equivalents

bit Value C/C++ Byte Value (Decimal)
'0‘ 0
‘1‘ 1

Example code:

// Put a '1' on signal "clk," where "clk" is defined as
// signal clk : bit;
const char one_val = 1; // C encoding for bit '1'...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

VHDL character Type
A single VHDL character value is represented in C/C++ as a single byte. VHDL character
values are exactly identical to C/C++ char literals and are also equal to their ASCII numeric
values. For example, the VHDL character value 'm’ is equivalent to the C/C++ char literal 'm’ or
decimal value 109.

Example code:

// Put a 'T' on signal "myChar," where "myChar" is defined as
// signal myChar : character;
const char tVal = 'T';
int myChar = loader.get_port_number("myChar");
loader.put_value(myChar, &tVal);

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=264

VHDL integer Type
A single VHDL integer value is represented in C/C++ as an int.

Example code:

// Put 1234 (decimal) on signal "myInt," where "myInt" is defined as
// signal myInt : integer;
const int intVal = 1234;
int myInt = loader.get_port_number("myInt");
loader.put_value(myInt, &intVal);

VHDL real Type
A single VHDL real value is represented in C/C++ as a double.

Example code:

// Put 3.14 on signal "myReal," where "myReal" is defined as
// signal myReal : real;
const double doubleVal = 3.14;
int myReal = loader.get_port_number("myReal");
loader.put_value(myReal, &doubleVal);

VHDL Array Types
A VHDL array is represented in C/C++ as an array of whatever C/C++ type represents the
element type of the VHDL array. The following table shows the examples of VHDL arrays and
their C/C++ equivalent types.

Table 66: VHDL Arrays and their C/C++ Equivalent Types

VHDL Array Type C/C++ Array Type
std_logic_vector (array of std_logic) char []

bit_vector (array of bit) char []

string (array of character) char []

array of integer int []

array of real double []

VHDL arrays are organized in C/C++ with the left index of the VHDL array mapped to C/C++
array element 0 and the right index mapped to C/C++ element <array size> - 1.

C/C++ Array Index 0 1 2 <array size> - 1

VHDL array(left TO right) Index left left + 1 left + 2 right

VHDL array(left DOWNTO right)
Index

left left – 1 left – 2 right

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=265

Example code:

// For the following VHDL definitions
// signal slv : std_logic_vector(7 downto 0);
// signal bv : bit_vector(3 downto 0);
// signal s : string(1 to 11);
// type IntArray is array(natural range <>) of integer;
// signal iv : IntArray(0 to 3);
// do the following assignments
//
// slv <= "11001010";
// bv <= B"1000";
// s <= "Hello world";
// iv <= (33, 44, 55, 66);
const unsigned char slvVal[] = {3, 3, 2, 2, 3, 2, 3, 2}; // 3 = '1', 2 = '0'
loader.put_value(slv, slvVal);
const unsigned char bvVal[] = {1, 0, 0, 0};
loader.put_value(bv, bvVal);
const char sVal[] = "Hello world"; // ends with extra '\0' that XSI ignores
loader.put_value(s, sVal);
const int ivVal[] = {33, 44, 55, 66};
loader.put_value(iv, ivVal);

Vivado Simulator Verilog Data Format
Verilog logic data is encoded in C/C++ using the following struct, defined in xsi.h:

typedef struct t_xsi_vlog_logicval {
 XSI_UINT32 aVal;
 XSI_UINT32 bVal;
} s_xsi_vlog_logicval, *p_xsi_vlog_logicval;

Each four-state bit of Verilog value occupies one bit position in aVal and the corresponding bit
position in bVal.

Table 68: Verilog Value Mapping

Verilog Value aVal Bit Value bVal Bit Value

0 0 0

1 1 0

X 1 1

Z 0 1

For two-state SystemVerilog bit values, an aVal bit holds the bit value, and the corresponding
bVal bit is unused. Xilinx recommends that you zero out bVal when composing two-state
values for xsi_put_value.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=266

Verilog vectors are organized in C/C++ with the right index of the Verilog vector mapped to
aVal/bVal bit position 0 and the left index mapped to aVal/bVal bit position <vector size> -
1

aVal/bVal Bit Position <vector size> to
31

<vector size> -
1

<vector size> - 2 ... 1 0

Index of
wire [left:right] vec

(where left > right)

unused left left - 1 ... right + 1 right

Index of
wire [left:right] vec

(where left < right)

unused left left + 1 ... right - 1 right

For example, the following table shows the Verilog and C/C++ equivalents of the following
Verilog vector.

wire [7:4] w = 4'bXX01;

Verilog Bit Index 7 6 5 4

Verilog Bit Value X X 0 1

C/C++ Bit Position 31 ... 4 3 2 1 0

aVal Bit Value unused ... unused 1 1 0 1

bVal Bit Value unused ... unused 1 1 0 0

The C/C++ representation of a Verilog vector with more than 32 elements is an array of
s_xsi_vlog_logicval, for which the right-most 32 bits of the Verilog vector maps to
element 0 of the C/C++ array. The next 32 bits of the Verilog vector maps to element 1 of the
C/C++ array, and so forth. For example, the following table shows the mapping of Verilog vector

wire [2:69] vec;

to the C/C++ array

s_xsi_vlog_logicval val[3];

Table 71: Verilog Index Range

Verilog Index Range C/C++ Array Element
vec[38:69] val[0]

vec[6:37] val[1]

vec[2:5] val[3]

Hence, vec[2] maps to val[3] bit position 3, and vec[69] maps to val[0] bit position 0.

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=267

A multi-dimensional Verilog array maps to the bits of a s_xsi_vlog_logicval or
s_xsi_vlog_logicval array as if the Verilog array were flattened in row-major order before
mapping to C/C++.

For example, the two-dimensional array

reg [7:0] mem[0:1];

is treated as if copied to a vector before mapping to C/C++:

reg [15:0] vec;
vec[7:0] = mem[1];
vec[8:15] = mem[0];

Appendix K: Using Xilinx Simulator Interface

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=268

Appendix L

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix L: Additional Resources and Legal Notices

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 269Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=269

1. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

2. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

3. Vivado Design Suite User Guide: Designing with IP (UG896)

4. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

5. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

6. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953)

7. Vivado Design Suite Tcl Command Reference Guide (UG835)

8. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

9. Vivado Design Suite User Guide: Using Constraints (UG903)

10. Vivado Design Suite Tutorial: Logic Simulation (UG937)

11. Vivado Design Suite User Guide: Design Flows Overview (UG892)

12. Vivado Design Suite Properties Reference Guide (UG912)

13. Vivado Design Suite User Guide: Synthesis (UG901)

14.Writing Efficient Test Benches (XAPP199)

15. IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)

16. IEEE Standard Verilog Hardware Description Language(IEEE-STD-1364-2001)

17. IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification
Language (IEEE-STD-1800-2009)

18. Standard Delay Format Specification (SDF) (IEEE-STD-1497-2004)

19. Recommended Practice for Encryption and Management of Electronic Design Intellectual
Property (IP) (IEEE-STD-P1735)

Links to Additional Information on Third-
Party Simulators

For more information on:

1. Questa Advanced Simulator/ModelSim simulators:

• http://www.mentor.com/products/fv/questa/

• http://www.mentor.com/products/fv/modelsim/

2. Cadence IES Simulators: http://www.cadence.com/products/fv/enterprise_simulator/pages/
default.aspx

Appendix L: Additional Resources and Legal Notices

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 270Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug937-vivado-design-suite-simulation-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392561
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/servlet/opac?punumber=9647
http://standards.ieee.org/develop/project/1735.html
http://standards.ieee.org/develop/project/1735.html
http://www.mentor.com/products/fv/questa/
http://www.mentor.com/products/fv/modelsim/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=270

3. Synopsys VCS Simulators: http://www.synopsys.com/Tools/Verification/
FunctionalVerification/Pages/VCS.aspx

4. Active-HDL Simulators: https://www.aldec.com/en/support/resources/documentation/
articles/1579

5. Riviera PRO Simulators: https://www.aldec.com/en/support/resources/documentation/
articles/1525

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course

2. Designing FPGAs Using the Vivado Design Suite 2 Training Course

3. Designing FPGAs Using the Vivado Design Suite 3 Training Course

4. Vivado Design Suite Quick Take Video: How to use the Zynq-7000 Verification IP to verify
and debug using simulation

5. Vivado Design Suite Quick Take Video: Logic Simulation

6. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Appendix L: Additional Resources and Legal Notices

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 271Send Feedback

http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
https://www.aldec.com/en/support/resources/documentation/articles/1579
https://www.aldec.com/en/support/resources/documentation/articles/1579
https://www.aldec.com/en/support/resources/documentation/articles/1525
https://www.aldec.com/en/support/resources/documentation/articles/1525
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=271

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries.AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries.PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.

Appendix L: Additional Resources and Legal Notices

UG900 (v2021.1) June 16, 2021 www.xilinx.com
Vivado Design Suite User Guide: Logic Simulation 272Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2021.1&docPage=272

	Vivado Design Suite User Guide: Logic Simulation
	Revision History
	Table of Contents
	Ch. 1: Overview
	Navigating Content by Design Process
	Logic Simulation Overview
	Supported Simulators
	Simulation Flow
	Behavioral Simulation at the Register Transfer Level
	Post-Synthesis Simulation
	Post-Implementation Simulation

	Language and Encryption Support

	Ch. 2: Preparing for Simulation
	Using Test Benches and Stimulus Files
	Pointing to the Simulator Install Location
	Compiling Simulation Libraries
	Compiling Simulation Libraries Using Vivado IDE
	Compiling Simulation Libraries Using Tcl Commands
	Changing compile_simlib Defaults

	Using Xilinx Simulation Libraries
	UNISIM Library
	UNIMACRO Library
	SIMPRIM Library
	SECUREIP Simulation Library
	UNIFAST Library
	Using Verilog UNIFAST Library
	Using VHDL UNIFAST Library

	Using Simulation Settings
	Understanding the Simulator Language Option
	Setting the Simulation Runtime Resolution

	Adding or Creating Simulation Source Files
	Working with Simulation Sets

	Generating a Netlist
	Generating a Functional Netlist
	Generating a Timing Netlist
	Using Versal CIPS VIP

	Ch. 3: Simulating with Third-Party Simulators
	Running Simulation Using Third Party Simulators with Vivado IDE
	Running Timing Simulation Using Third-Party Tools

	Dumping SAIF for Power Analysis
	Dumping SAIF in Questa Advanced Simulator/ModelSim
	Dumping SAIF in IES
	Dumping SAIF in VCS

	Dumping VCD
	Dumping VCD in Questa Advanced Simulator/ModelSim
	Dumping VCD in IES
	Dumping VCD in VCS

	Simulating IP
	Using a Custom DO File During an Integrated Simulation Run
	In Questa Advanced Simulator
	In Modelsim
	In IES
	In VCS
	In Xcelium
	Simulation Step Control Constructs for ModelSim and Questa Advanced Simulator

	Running Third-Party Simulators in Batch Mode

	Ch. 4: Simulating with Vivado Simulator
	Running the Vivado Simulator
	Main Toolbar
	Run Menu
	Simulation Toolbar
	Sources Window
	Scope Window
	Objects Window
	Wave Window
	Wave Objects
	Creating and Using Multiple Waveform Configurations

	Running Functional and Timing Simulation
	Running Functional Simulation
	Running Timing Simulation

	Saving Simulation Results
	Distinguishing Between Multiple Simulation Runs
	Closing a Simulation
	Adding a Simulation Start-up Script File
	Viewing Simulation Messages
	Managing Message Output

	Using the launch_simulation Command
	Examples

	Re-running the Simulation After Design Changes (relaunch)
	Using the Saved Simulator User Interface Settings
	Default Settings

	Ch. 5: Analyzing Simulation Waveforms with Vivado Simulator
	Using Wave Configurations and Windows
	Creating a New Wave Configuration
	Opening a WCFG File
	Saving a Wave Configuration

	Opening a Previously Saved Simulation Run
	Understanding HDL Objects in Waveform Configurations
	About Radixes
	Changing the Default Radix
	Changing the Radix on Individual Objects

	Customizing the Waveform
	Using Analog Waveforms
	Waveform Object Naming Styles
	Renaming Objects
	Changing the Object Display Name

	Reversing the Bus Bit Order
	Changing the Format of SystemVerilog Enumerations

	Controlling the Waveform Display
	Using the Column Resizing Handles
	Scrolling with the Mouse Wheel
	Using the Zoom Feature Buttons
	Zooming with the Mouse Wheel
	Y-Axis Zoom Gestures for Analog Waveforms
	Using the Waveform Settings Dialog Box
	Changing the Display of the Time Scale

	Organizing Waveforms
	Grouping Signals and Objects
	Using Dividers
	Defining Virtual Buses

	Analyzing Waveforms
	Using Cursors
	Using Markers
	Using the Floating Ruler
	Searching a Value in Waveform Configuration

	Analyzing AXI Interface Transactions
	Understanding Protocol Instances
	Using the IP Integrator to Mark an AXI Interface to View in the Vivado Simulator

	Finding Protocol Instances in the Vivado Simulator
	Finding Protocol Instances in the Objects Window
	Finding Protocol Instances Using a Tcl Command
	Protocol Instance in the Objects Window
	Adding Protocol Instances to the Wave Window
	Using get_objects Programmatically

	Analyzing Protocol Instances in the Wave Window
	Using Transaction Bars
	Analyzing AXI Memory-Mapped (AXI-MM) Interfaces
	Analyzing AXI4-Stream (AXI-S) Interfaces

	Ch. 6: Debugging a Design with Vivado Simulator
	Debugging at the Source Level
	Stepping Through a Simulation
	Using Breakpoints
	Adding Conditions
	Pausing a Simulation
	Tracing the Execution of a Simulation

	Forcing Objects to Specific Values
	Using Force Commands
	Force Constant
	Force Clock
	Remove Force

	Using Force in Batch Mode

	Power Analysis Using Vivado Simulator
	Generating SAIF Dumping
	Example SAIF Tcl Commands
	Dumping SAIF using a Tcl Simulation Batch File

	Using the report_drivers Tcl Command
	Using the Value Change Dump Feature
	Using the log_wave Tcl Command
	Cross Probing Signals in the Object, Wave, and Text Editor Windows
	Tool Specific init.tcl
	Subprogram Call-Stack Support

	Ch. 7: Simulating in Batch or Scripted Mode in Vivado Simulator
	Exporting Simulation Files and Scripts
	Exporting the Top Level Design
	Exporting IP from the Xilinx Catalog and Block Designs
	Exporting a Manage IP Project

	Running the Vivado Simulator in Batch Mode
	Parsing Design Files, xvhdl and xvlog

	Elaborating and Generating a Design Snapshot, xelab
	xelab
	xelab Examples
	Verilog Search Order
	Verilog Instantiation Unit
	VHDL Instantiation Unit
	`uselib Verilog Directive
	xelab, xvhdl, and xvlog xsim Command Options

	Simulating the Design Snapshot, xsim
	xsim Executable Syntax
	xsim Executable Options
	Functional Coverage Report Generator

	Example of Running Vivado Simulator in Standalone Mode
	Step 1: Analyzing the Design File
	Step 2: Elaborating and Creating a Snapshot
	Step 3: Running Simulation

	Project File (.prj) Syntax
	Predefined Macros
	Library Mapping File (xsim.ini)
	Running Simulation Modes
	Behavioral Simulation
	Running Post-Synthesis and Post-Implementation Simulations

	Using Tcl Commands and Scripts
	Using a -tclbatch File
	Launching Vivado Simulator from the Tcl Console

	export_simulation
	export_ip_user_files

	Appx. A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
	Compilation Options
	Vivado Simulator Compilation Options
	Questa Advanced Simulator Compilation Options
	ModelSim Simulator Compilation Options
	IES Simulator Compilation Options
	VCS Simulator Compilation Options
	Xcelium Simulator Compilation Options

	Elaboration Options
	Vivado Simulator Elaboration Options
	Questa Advanced Simulator Elaboration Options
	ModelSim Simulator Elaboration Options
	IES Simulator Elaboration Options
	VCS Simulator Elaboration Options
	Xcelium Simulator Elaboration Options

	Simulation Options
	Vivado Simulator Simulation Options
	Questa Advanced Simulator Simulation Options
	ModelSim Simulator Simulation Options
	IES Simulator Simulation Options
	VCS Simulator Simulation Options
	Xcelium Simulator Simulation Options

	Netlist Options
	Vivado Simulator Netlist Options

	Advanced Simulation Options

	Appx. B: SystemVerilog Support in Vivado Simulator
	Targeting SystemVerilog for a Specific File
	Running SystemVerilog in Standalone or prj Mode

	Testbench Feature

	Appx. C: Universal Verification Methodology Support
	Appx. D: VHDL 2008 Support in Vivado Simulator
	Introduction
	Compiling and Simulating
	Fixed and Floating Point Packages

	Supported Features

	Appx. E: Direct Programming Interface (DPI) in Vivado Simulator
	Introduction
	Compiling C Code
	xsc Compiler
	Binding Compiled C Code to SystemVerilog Using xelab
	Data Types Allowed on the Boundary of C and SystemVerilog
	Supported Data Types

	Mapping for User-Defined Types
	Enum
	Packed Struct/Union
	Unpacked Struct

	Support for svdpi.h Functions
	Open Arrays in DPI
	Examples
	Import Example Using -sv_lib, -sv_liblist, and -sv_root
	Function with Output
	Simple Import-Export Flow (Illustrates xelab -dpiheader Flow)

	DPI Examples Shipped with the Vivado Design Suite

	Appx. F: SystemC Support in Vivado IDE
	Selecting Simulation Model Type
	Using SELECTED_SIM_MODEL IP Property
	Using PREFERRED_SIM_MODEL Project Property

	Protected Models
	Unprotected Models
	SystemC Simulation Using Vivado
	Simulators Supported for SystemC Simulation
	Simulator Settings for Third-Party Tools
	GCC Path Settings

	Running SystemC Simulation Using Vivado Simulator

	Appx. G: Handling Special Cases
	Using Global Reset and 3-State
	Global Set and Reset Net
	Global 3-State Net
	Using Global 3-State and Global Set and Reset Signals
	Global Set and Reset and Global 3-State Signals in Verilog
	Global Set and Reset and Global 3-State Signals in VHDL

	Delta Cycles and Race Conditions
	VHDL Coding Example With Unexpected Results

	Using the ASYNC_REG Constraint
	Disabling X Propagation for Synchronous Elements

	Simulating Configuration Interfaces
	JTAG Simulation
	SelectMAP Simulation

	Disabling Block RAM Collision Checks for Simulation
	Dumping the Switching Activity Interchange Format File for Power Analysis
	Skipping Compilation or Simulation
	Skipping Compilation
	Skipping Simulation

	Appx. H: Value Rules in Vivado Simulator Tcl Commands
	String Value Interpretation
	Vivado Design Suite Simulation Logic

	Appx. I: Vivado Simulator Mixed Language Support and Language Exceptions
	Using Mixed Language Simulation
	Restrictions on Mixed Language in Simulation
	Key Steps in a Mixed Language Simulation
	Mixed Language Binding and Searching
	Instantiating Mixed Language Components
	Port Mapping and Supported Port Types
	Generics (Parameters) Mapping
	VHDL and Verilog Values Mapping

	VHDL Language Support Exceptions
	Verilog Language Support Exceptions

	Appx. J: Vivado Simulator Quick Reference Guide
	Appx. K: Using Xilinx Simulator Interface
	Preparing the XSI Functions for Dynamic Linking
	Writing the Test Bench Code
	Compiling Your C/C++ Program
	Preparing the Design Shared Library
	XSI Function Reference
	xsi_close
	xsi_get_error_info
	xsi_get_port_number
	xsi_get_status
	xsi_get_value
	xsi_open
	xsi_put_value
	xsi_restart
	xsi_run
	xsi_trace_all

	Vivado Simulator VHDL Data Format
	IEEE std_logic Type
	VHDL bit Type
	VHDL character Type
	VHDL integer Type
	VHDL real Type
	VHDL Array Types

	Vivado Simulator Verilog Data Format

	Appx. L: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Links to Additional Information on Third-Party Simulators
	Training Resources
	Please Read: Important Legal Notices

