

This quick reference guide presents the following step-by-step flows for
quickly closing timing, based on the recommendations in the UltraFast
Design Methodology Guide for Xilinx FPGAs and SoCs (UG949):
 Initial Design Checks: Review utilization, logic levels, and timing

constraints before implementing the design.
 Timing Baselining: Review and address timing violations after each

implementation step to help close timing after routing.
 Timing Violation Resolution: Identify the root cause of setup or hold

violations, and resolve the timing violations.
Failfast and QoR Assessment Reports
You can use the failfast and quality of results (QoR) assessment reports
interchangeably to quickly review your design. Both reports compare
key design and constraints metrics against guideline limits. Metrics that
do not comply with guidelines are marked as REVIEW. The reports
include the following sections:
 Design characteristics
 Methodology checks
 Conservative logic-level assessments based on a target Fmax
In the Vivado® tools, you can run these reports as follows:
xilinx::designutils::report_failfast
report_qor_assessment

See Failfast Report Overview (page 10) and the Vivado Design Suite
User Guide: Design Analysis and Closure Techniques (UG906).
QoR Suggestions Report
In the Vivado tools, report_qor_suggestions is called during the
implementation phase. This report analyzes the design, offers
suggestions, and automatically applies the suggestions in some cases.
Reports in the Vitis Environment
In the Vitis™ environment, report_failfast is called during the
compilation flow when using v++ –R 1 or v++ –R 2. To generate QoR
assessment and suggestions in the Vivado tools, use:
v++ --interactive

TIP: To automatically address most timing closure challenges during
implementation, you can use an Intelligent Design Run (IDR), which
is a special type of implementation run that leverages
report_qor_suggestions, ML-based strategy predictions, and
incremental compile. See UG949: Using Intelligent Design Runs.

Although implementing a design on a Xilinx® device is a fairly automated
task, achieving higher performance and resolving compilation issues due
to timing or routing violations can be a complex and time-consuming
activity. It can be difficult to identify the reason for a failure based on
simple log messages or post-implementation timing reports generated
by the tools. Therefore, it is essential to adopt a step-by-step design
development and compilation methodology, including the review of
intermediate results to ensure the design can proceed to the next
implementation step.
The first step is to make sure all initial design checks are addressed.
Review these checks at the following levels:
 Each kernel made of custom RTL or generated by Vivado HLS

Note: Check that target clock frequency constraints are realistic.
 Each major hierarchy corresponding to a subsystem, such as a

Vivado IP integrator block diagram with several kernels, IP blocks,
and connectivity logic

 Complete design with all major functions and hierarchies, I/O
interfaces, complete clocking circuitry, and physical and timing
constraints

If the design uses floorplanning constraints, such as super logic region
(SLR) assignments or logic assigned to Pblocks, review the estimated
resource utilization for each physical constraint, and make sure that the
utilization guidelines are met. See the default guidelines in the failfast
report. To generate reports, use the following commands:
 report_utilization –pblocks <pblockName>
 report_failfast –pblock <pblockName>
 report_failfast [–slr SLRn | -by_slr]

UG1292 (v2021.1) August 18, 2021

1

Open the synthesized design checkpoint (DCP) or the post-opt_design DCP
(if available)

Run report_failfast

Review Check Timing section in
report_timing_summary

Run report_methodology

Proceed to design implementation (logic optimization, placement, routing)

Fix methodology checks that impact
timing closure (Fmax)

Create missing clock constraints to
eliminate unconstrained internal
endpoints and avoid timing loops

Review the detailed reports to identify
the design characteristics or
constraints to improve:

● Estimated device and SLR Pblock
 resource utilization

● Constraints preventing optimizations

● Control signals and average fanout

● Clock tree and clock domain
 crossing constraints

● High logic levels given the target
 frequency

Clean report?

Clean report?

Clean report?

Yes

Yes

Yes

No

No

No

X21574-091818

INTRODUCTION INITIAL DESIGN CHECKS - DETAILS INITIAL DESIGN CHECKS FLOW INITIAL DESIGN CHECKS DETAILS

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug906-vivado-design-analysis.pdf

The objective of timing baselining is to ensure that the design meets timing by analyzing and resolving timing challenges after each
implementation step. Fixing the design and constraints issues earlier in the compilation flow ensures a broader impact and higher performance.
Review and address timing violations before moving onto the next step by creating intermediate reports as follows:

Reports in Vivado Project Mode Reports in Vivado Non-Project Mode Reports in the Vitis Software Platform
Use the UltraFast™ design methodology
or timing closure report strategies

Add the following report commands after
each implementation step:
 report_timing_summary
 report_methodology
 report_failfast

Use the v++ -R 1 or v++ -R 2 option to generate
failfast reports, intermediate timing reports, and
DCPs in the following directory:
<runDir>/_x/link/vivado/prj/prj.runs/impl_1

Pre-Placement (WNS < 0 ns)
Before place_design, the timing report reflects the design performance assuming the best possible logic placement for each logic path. Setup
violations must be addressed by adopting the Initial Checks recommendations.
Pre-Routing (WNS < 0 ns)
Before route_design, the timing report reflects the design performance assuming the best possible routing delays for each individual net with
some fanout penalty and without considering hold fixing impact (net routing detours) or congestion. Setup violations are often due to sub-
optimal placement caused by (1) high device or SLR utilization, (2) placement congestion due to complex logic connectivity, (3) many paths with
many logic levels, and (4) high clock skew between unbalanced clocks or high clock uncertainty. Run phys_opt_design in Explore or
AggressiveExplore mode to try improving the post-place_design QoR. If unsuccessful, focus on improving the placement QoR first.
Pre-Routing (WHS < -0.5 ns)
When the performance goal is not met after routing and worst negative slack (WNS) is positive before routing, try to reduce large estimated
worst hold slack (WHS) violations. Fewer and smaller pre-route hold violations help route_design focus on Fmax rather than fixing hold time
violations.
Post-Routing (WNS < 0 ns or WHS < 0 ns)
After route_design, first verify that the design is fully routed by reviewing the log files or running report_route_status on the post-route
design checkpoint (DCP). Routing violations and large setup (WNS) or hold (WHS) violations are the result of high congestion. Use the Analyzing
Setup Violations (page 3), Resolving Hold Violations (page 4), and Congestion Reduction Techniques (page 6) to identify and implement the
resolution steps. Try running phys_opt_design after route_design to address small setup violations > -0.200 ns.
When iterating the design, constraints, and compilation strategies, keep track of the QoR after each step, including the congestion information.
Use the QoR table to compare run characteristics and determine what to focus on first when addressing the remaining timing violations.

TIP: Use report_qor_suggestions after place_design and after route_design to automatically identify design, constraints, and tool option
changes that can help improve the QoR for new compilations.

UG1292 (v2021.1) August 18, 2021

2

Generate bitstream and run
design on the Xilinx device

See Post-Routing (WNS < 0 ns or
WHS < 0 ns) (this page)

WNS > 0 ns?

See Pre-Routing (WHS < -0.5 ns) (this
page)

See Pre-Routing (WNS < 0 ns) (this page)

See Pre-Placement (WNS < 0 ns) (this
page)

Open the synthesized design
checkpoint, run opt_design,

and run
report_timing_summary

Run place_design,
phys_opt_design (optional),

and report_timing_summary

Run route_design,
phys_opt_design (optional),

and report_timing_summary

WNS > 0 ns?

WHS > -0.5 ns?

WNS > 0 ns?

WHS > 0 ns?

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

X21575-091818

TIMING BASELINING FLOW TIMING BASELINING EXAMPLE

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Design performance is determined by the following:
 Clock skew and clock uncertainty: How efficiently the clocks are

implemented
 Logic delay: Amount of logic traversed during a clock cycle
 Net or route delay: How efficiently Vivado implementation places

and routes the design
Use the information in the timing path or design analysis reports to:
 Identify which of these factors contributes most to timing violations
 Determine how to iteratively improve the QoR
TIP: If needed, open the DCP after each step to generate additional
reports.

In Vivado project mode, find setup timing path characteristics as follows:
1. In the Design Runs window, select the implementation run to analyze.
2. In the Implementation Run Properties window, select the Reports tab.
3. Open the timing summary report or design analysis report for the selected implementation step:
 Timing summary report: <runName>_<flowStep>_report_timing_summary (.rpt for text or .rpx for the Vivado IDE)
 Design analysis report: <runName>_<flowStep>_report_design_analysis

In Vivado non-project mode or in the Vitis software platform, do either of the following:
 Open the reports in the implementation run directory.
 Open the implementation DCP in the Vivado IDE, and open the RPX version of the report.

Note: Using the Vivado IDE allows you to cross-probe between the reports, schematics, and Device window.
For each timing path, the logic delay, route delay, clock skew, and clock uncertainty characteristics are located in the header of the path:

Except for the clock uncertainty, the same timing path characteristics are located in the Setup Path Characteristics of the design analysis report:

TIP: In text mode, all columns of the Setup Path Characteristics column appear, making the table very wide. In the Vivado IDE, the same table
shows a reduced number of columns to help with visualization. Right-click the table header to enable or disable columns as needed. For
example, the DONT_TOUCH or MARK_DEBUG columns are not visible by default. Enable these columns to view important information skipped
logic optimization analysis, which is difficult to identify otherwise.

UG1292 (v2021.1) August 18, 2021

3

Logic delay > 50%
 of datapath delay?

Open the timing report, identify the worst violating paths for each clock group, and
apply the following step-by-step analysis to each of the paths

Net delay > 50%
 of datapath delay?

Clock skew < -0.5 ns?

Clock uncertainty > 0.100 ns?

See Reducing Logic
Delay (page 5)

See Reducing Net Delay
(pages 6 and 7)

See Improving Clock
Skew (page 8)

See Improving Clock
Uncertainty (page 9)

Yes

Yes

Yes

Yes

X21576-091818

ANALYZING SETUP VIOLATIONS FLOW

FINDING SETUP TIMING PATH CHARACTERISTICS IN THE REPORTS

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Following is an example of a hold timing path with high clock skew:

Avoiding Positive Hold Requirements
When using multicycle path constraints to relax setup checks, you must:
 Adjust hold checks on the same path so the same launch and capture edges are used in the hold time analysis. Failure to do so leads to a

positive hold requirement (one or multiple clock periods) and impossible timing closure.
 Specify the endpoint pin instead of just the cell or clock. For example, the endpoint cell REGB has three input pins: C, EN, and D. Only the

REGB/D pin should be constrained by the multicycle path exception, not the clock enable (EN) pin because the EN pin can change at every
clock cycle. If the constraint is attached to a cell instead of a pin, all of the valid endpoint pins are considered for the constraints, including
the EN pin.

Xilinx recommends that you always use the following syntax:
set_multicycle_path -from [get_pins REGA/C] -to [get_pins REGB/D] -setup 3
set_multicycle_path -from [get_pins REGA/C] -to [get_pins REGB/D] -hold 2

Reducing the WHS and THS Before Routing
Large estimated hold violations increase the routing challenge and cannot always be resolved by route_design. The post-placement
phys_opt_design command provides several hold fixing options:
 The insertion of opposite-edge triggered registers between sequential elements splits a timing path into two half period paths and

significantly reduces hold violations. This optimization is only performed if setup timing does not degrade. Use the following command:
phys_opt_design -insert_negative_edge_ffs

 The insertion of LUT1 buffers delays the datapath to reduce hold violations without introducing setup violations. Use the following
commands:
 phys_opt_design -hold_fix: Performs LUT1 insertion on paths with the largest WHS violations only.
 phys_opt_design -aggressive_hold_fix: Performs LUT1 insertion on more paths to significantly reduce the total hold slack (THS) at

the expense of a noticeable LUT utilization increase and longer compile time. This option can be combined with any phys_opt_design
directive.

 phys_opt_design -directive ExploreWithAggressiveHoldFix: Performs LUT1 insertion to fix hold in addition to all other physical
optimizations designed to improve Fmax.

UG1292 (v2021.1) August 18, 2021

4

Clock skew > 0.5 ns?

Open the timing report, identify the worst hold violating paths for the entire design, and
apply the following step-by-step analysis to each of the paths

Positive hold path requirement?

WHS < -0.4 ns
or

THS < -1000 ns?

Clock uncertainty >
 0.100 ns?

See Improving Clock
Skew (page 8)

See Avoiding Positive
Hold Requirements (this
page)

See Reducing the WHS
and THS Before Routing
(this page)

See Improving Clock
Uncertainty (page 9)

Yes

Yes

Yes

Yes

X21577-091818

D Q
REGA

EN

D Q
REGB

EN

X21578-091818

launch edge

Source clock (REGA)

Destination clock (REGB)

Clock Enable

capture edge

HoldSetup Hold

X21579-091818

RESOLVING HOLD VIOLATIONS FLOW RESOLVING HOLD VIOLATIONS TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Vivado implementation focuses on the most critical paths first. This
means less difficult paths often become critical after placement or after
routing. Xilinx recommends identifying and improving the longest paths
after synthesis or after opt_design, because this has the biggest impact
on QoR and usually dramatically reduces the number of place and route
iterations to reach timing closure. Use the report_design_analysis
Logic Level Distribution table to identify the clock domains that require
design improvements by weighing the logic level distribution against the
requirement. The lower the requirement, the fewer logic levels are
allowed. For example, in the following pre-placement logic level
distribution report:
 Review all paths with 8 logic levels or more for txoutclk_out[0]_4.
 Review all paths with 11 logic levels or more for app_clk.

Note: Cascaded CARRY or MUXF cells can artificially increase the logic
level number and have a low impact on delay.
TIP: In the Vivado IDE report, click the logic level number to select the
paths, and press F4 to generate the schematics and review the logic.

Optimizing Regular Fabric Paths
Regular fabric paths are paths between registers (FD*) or shift registers (SRL*) that traverse a mix of LUTs, MUXFs, and CARRYs. If you encounter
issues with regular fabric paths, Xilinx recommends the following. For more information, see the Vivado Design Suite User Guide: Synthesis
(UG901) and Vivado Design Suite User Guide: Implementation (UG904).
 For high logic levels, paths can be identified with LUT/net budget checks using report_failfast or report_qor_assessment. Address high

logic levels early in the design cycle through either recoding RTL or using retiming.1
Recommended: Use synthesis -retiming globally. Use the block synthesis strategy BLOCK_SYNTH.RETIMING 1 to target a module or
RETIMING_FORWARD/BACKWARD properties to target a specific cell.

 Small cascaded LUTs (LUT1-LUT4) can be merged into fewer LUTs unless prevented by the design hierarchy, by intermediate nets with
some fanout (10 and higher), or by the use of KEEP, KEEP_HIERARCHY, DONT_TOUCH, or MARK_DEBUG properties.1
Recommended: Remove the properties, and rerun starting from the synthesis step or from opt_design -remap.

 Single CARRY (non-cascaded) cells limit LUT optimizations and can make placement less optimal. 1
Recommended: Use the FewerCarryChains synthesis directive, or set the CARRY_REMAP property on the cells to be removed by
opt_design.

 The shift register SRL* delay is higher than the register FD* delay, and SRL placement might be less optimal than FD placement. 1
Recommended: Pull a register from the input or output of the SRL using the SRL_STYLE attribute in RTL or the SRL_STAGES_TO_INPUT or
SLR_STAGES_TO_OUTPUT property on the cell after synthesis. Dynamic SRLs must be modified in the RTL.

 When the logic path ends with a LUT driving a clock enable (CE), synchronous set (S), or synchronous reset (R) pin of a fabric register (FD*),
the routing delay is higher than register data pin (D), especially when the fanout of the last net of the path is greater than 1. 1
Recommended: If the path ending at the data pin (D) has a higher slack and fewer logic levels, set the EXTRACT_ENABLE or EXTRACT_RESET
attribute to no on the signal in RTL. Alternatively, set the CONTROL_SET_REMAP property on the cell to trigger the same optimization
during opt_design.

Optimizing Paths with Dedicated Blocks and Macro Primitives
Logic paths from/to/between dedicated blocks and macro primitives (e.g., DSP, RAMB, URAM, FIFO, or GT_CHANNEL) are more difficult to
place and have higher cell and routing delays. Therefore, adding extra pipelining around the macro primitives or reducing the logic levels on the
macro primitive paths is critical for improving the overall design performance.
Before modifying the RTL, validate the QoR benefit of adding pipelining by enabling all optional DSP, RAMB, and URAM registers and rerunning
implementation. Do not generate a bitstream when adopting this evaluation technique. For example:
set_property –dict {DOA_REG 1 DOB_REG 1} [get_cells xx/ramb18_inst]

Following is an example of a RAMB18 path that requires additional pipeline registers or logic level reduction (reported after route_design):

1. Indicates automated resolution using report_qor_suggestions

UG1292 (v2021.1) August 18, 2021

5

Path with only CLB primitives?

Use the report_design_analysis command, and enable all columns of the Setup
Path Characteristics table

Path with DSP, RAMB, URAM,
FIFO, or GT primitives?

See Optimizing Regular Fabric
Paths (this page)

See Optimizing Paths with
Dedicated Blocks and Macro
Primitives (this page)

Yes

Yes

No

X21580-091818

REDUCING LOGIC DELAY FLOW

REDUCING LOGIC DELAY TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug904-vivado-implementation.pdf

Global congestion impacts the design performance as follows:
 Level 4 (16x16): Small QoR variability during route_design
 Level 5 (32x32): Sub-optimal placement and noticeable QoR

variations
 Level 6 (64x64): Difficult placement and routing and long

compilation time. Timing QoR is severely degraded unless the
performance goal is low.

 Level 7 (128x128) and above: Impossible to place or route.
The route_design command outputs the Initial Estimated Congestion
table in the log file for congestion Level 4 or above.
To report both placer and router congestion information, use
report_design_analysis –congestion.
TIP: Open the post-place or post-route DCP to create an interactive
report_design_analysis window in the Vivado IDE. Highlight the
congested areas and visualize the impact of congestion on individual
logic path placement and routing by cross-probing. See UG949:
Reducing Net Delay Caused by Congestion.

Following is an example of a critical timing path where net routing is detoured around the congested area, leading to higher net delays:
 All views are accessible from the design analysis report.
 Enable Interconnect Congestion Level metrics in the Device window.

Reducing Congestion
To reduce congestion, Xilinx recommends using the following techniques in the order listed:
 When the overall resource utilization is above 70-80%, lower the device or SLR utilization by either removing some design functions or

moving some modules or kernels to a different SLR. Avoid LUT and DSP/RAMB/URAM utilization that is above 80% at the same time. If the
macro primitive utilization percentage must be high, try keeping LUT utilization below 60% to allow placement spreading in the congested
area, without introducing complex floorplanning constraints. Use xilinx::designutils::report_failfast -by_slr to review the
utilization per SLR after placement.

 Promote non-critical high fanout nets in the congested region to global clock routing as follows:1
set_property CLOCK_BUFFER_TYPE BUFG [get_nets <highFanoutNetName>]

 Reduce equivalent net overlap in the congested area by merging synthesis-replicated nets. Remove the MAX_FANOUT property from the
RTL and synthesis XDC, or use set_property EQUIVALENT_DRIVER_OPT merge on target cells.1

 Try several placer directives (e.g., AltSpreadLogic* or SSI_Spread*), the Congestion_* implementation run strategies, or ML strategies.
 Reduce MUXF* and LUT combining usage in the congested region. See the corresponding columns in the RDA congestion report. Set

MUXF_REMAP to 1 and SOFT_HLUTNM to “” on the congested leaf cells. Use report_qor_suggestions for help.1

 Use report_design_analysis -complexity -congestion to identify large, congested modules (> 15,000 cells) with high connectivity
complexity (Rent Exponent > 0.65 or Average Fanout > 4). Use the congestion-oriented synthesis settings, which are added to the XDC file:
set_property BLOCK_SYNTH.STRATEGY {ALTERNATE_ROUTABILITY} [get_cells <congestedHierCellName>]

 Reuse DSP, RAMB, and URAM placement constraints from previous implementation runs with low congestion. For example:
read_checkpoint -incremental routed.dcp -reuse_objects [all_rams] -fix_objects [all_rams]

Optimizing High Fanout Nets
 Use hierarchy-based register replication explicitly in RTL or with the following logic optimization:

opt_design –merge_equivalent_drivers –hier_fanout_limit 512

 Force replication on critical high fanout nets with more physical optimization steps before place: set_property FORCE_MAX_FANOUT1
1. Indicates automated resolution using report_qor_suggestions

UG1292 (v2021.1) August 18, 2021

6

Is the path overlapping a
congested area?

If the congestion level is 4 or higher, open the design checkpoint in the Vivado IDE, show
the congestion metric in the Device window, and highlight and mark the timing path to
analyze the path placement and routing

Is the fanout < 10 for
the critical nets?

See Reducing Net Delay (page 7)

See Optimizing High Fanout Nets (this
page)

See Reducing Congestion
(this page)

No

Yes

Yes

No

X21581-091818

REDUCING NET DELAY FLOW 1 REDUCING CONGESTION TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Fixing Setup Violations Due to Hold Detours
To ensure the design is functional in hardware, fixing hold violations has higher priority than fixing setup violations (or Fmax). The following
example shows a path between two synchronous clocks with high skew with a tight setup requirement:

Note: The Hold Fix Detour is in picoseconds. To address the hold detour impact on Fmax, see Resolving Hold Violations Techniques (page 4).
Reviewing and Correcting Physical Constraints
All designs include physical constraints. Although I/O locations cannot usually be changed, Pblock and location constraints must be carefully
validated and reviewed when making design changes. Changes can move the logic farther apart and introduce long net delays. Review the
paths with more than 1 Pblock (PBlocks column) and with location constraints (Fixed Loc column).
Improving the SLR Crossing Performance
When targeting stacked silicon interconnect (SSI) technology devices, making the following early design considerations helps to improve the
performance:
 Add pipeline registers at the boundary of major design hierarchies or kernels to help long distance and SLR crossing routing.
 Verify that each SLR utilization is within the guidelines (use report_failfast –by_slr).
 Use USER_SLR_ASSIGNMENT constraints to guide the implementation tools. See UG949: Using Soft SLR Floorplan Constraints.
 Use SLR Pblock placement constraints if the soft constraints do not work.
 Use phys_opt_design -slr_crossing_opt after placement or after routing.
Reducing Control Sets
Try reducing the number of control sets when their number is over the guideline (7.5%), either for the entire device or per SLR:
 Remove MAX_FANOUT attributes on clock enable, set, or reset signals in RTL. 1
 Increase the minimum synthesis control signal fanout (e.g., synth_design –control_set_opt_threshold 16). 1
 Merge the replicated control signals with opt_design –control_set_merge or –merge_equivalent_drivers.
 Remap low fanout control signals to LUTs by setting the CONTROL_SET_REMAP property on CLB register cells. 1
Trying Alternative Implementation Flows
The default compilation flow provides a quick way to obtain a baseline of the design and start analyzing the design if timing is not met. If timing
is not met after initial implementa1tion, try some of the other recommended flows:
 Try several place_design directives (up to 10), and several phys_opt_design iterations (Aggressive*, Alternate* directives).
 Overconstrain the most critical clocks (up to 0.500 ns) during place_design/phys_opt_design using set_clock_uncertainty.
 Increase the timing QoR priority on timing clocks that must meet timing using group_path –weight.
 Use the incremental compilation flow after minor design modifications to preserve QoR and reduce runtime.
 Run the top 3 implementation ML strategies for your design generated by report_qor_suggestions.

1. Indicates automated resolution using report_qor_suggestions

UG1292 (v2021.1) August 18, 2021

7

Is the Hold Fix Detour
> 0 ps?

Use the report_design_analysis command, enable all columns of the Setup Path
Characterisitcs table, and use report_utilization or report_failfast to get the
number of control signals after placement

Is the path constrained by
Pblock or LOC constraints?

Is the path crossing an
SLR boundary?

Is the # of control sets > 7.5%
the # of CLB registers ÷ 8

See Fixing Setup Violations Due to
Hold Detours (this page)

See Reviewing and Correcting Physical
Constraints (this page)

See Improving the SLR Crossing
Performance (this page)

See Reducing Control Sets
(this page)

Several implementation
strategies attempted?

See UG949: Design Creation to identify
additional logic optimizations

See Trying Alternative Implementation Flows (this page)

No

No

No

Yes

Yes

Yes

No

Yes

Yes

No

X21582-091818

REDUCING NET DELAY FLOW 2

REDUCING NET DELAY TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Adding Timing Exceptions Between Asynchronous Clocks
Timing paths in which the source and destination clocks originate from different primary clocks or have no common node must be treated as
asynchronous clocks. In this case, the skew can be extremely high, making it impossible to close timing. Add set_clock_groups,
set_false_path and set_max_delay –datapath_only constraints as needed. For details, see UG949: Adding Timing Exceptions Between
Asynchronous Clocks.
Cleaning Up the Logic Used in Clock Trees
The opt_design command automatically cleans up clock trees unless DONT_TOUCH constraints are used on the clocking logic. Select the
timing path, enable the Clock Path Visualization toolbar button , and open the schematic (F4) to review the clock logic.
 Avoid timing paths between cascaded clock buffers by eliminating unnecessary buffers or connecting them in parallel. For example:

 Combine parallel clock buffers into a single clock buffer unless the clocks are not equivalent.
 Remove LUTs or any combinatorial logic in clock paths, which can make clock delays and clock skew unpredictable.
Matching Clock Routing
Use the CLOCK_DELAY_GROUP to improve clock routing delay matching between critical synchronous clocks, even when the two clock nets
already have the same CLOCK_ROOT. The following example shows two synchronous clocks without the CLOCK_DELAY_GROUP:1

Constraining the Clock Loads Placement Next to the Related I/O Bank
For clocks between I/O logic and fabric cells with less than 2,000 loads, set the CLOCK_LOW_FANOUT property on the clock net to
automatically place all the loads in the same clock region as the clock buffer (BUFG*) and keep insertion delay and skew low. 1
Constraining the Clock Loads Placement to a Smaller Area
You can use Pblocks to force the placement of clock net loads in a smaller area (e.g., 1 SLR) to reduce insertion delay and skew or to avoid
crossing special columns, such as I/O columns that introduce a skew penalty.
Reducing the Clock Net Delay by Moving the Physical Source
Use a location constraint to move the source mixed-mode clock manager (MMCM) or phase-locked loop (PLL) to the center of the clock loads
to reduce the maximum clock insertion delay, which results in lower clock pessimism and skew. For details, see UG949: Improving Skew in
UltraScale and UltraScale+ Devices.

1. Indicates automated resolution using report_qor_suggestions

UG1292 (v2021.1) August 18, 2021

8

Does Clock Relationship
show Safely Timed?

Use the report_design_analysis command, enable all columns in the Setup Path
Characterisitcs table, and optionally use report_clock_utilization to review the
existing constraints on clock nets

Is the path between
balanced clocks?

Is the skew < 0.5 ns?

Is the clock connected to
both I/O and fabric cells?

See Adding Timing Exceptions between
Asynchronous Clocks (this page)

See Cleaning Up the Logic Used in
Clock Trees (this page)

See Matching Clock Routing
(this page)

See Constraining the Clock Loads
Placement Next to the Related I/O Bank
(this page)

Does the data path
 cross an SLR boundary or I/O

column?
See Constraining the Clock Loads
Placement to a Smaller Area
(this page)

See Reducing the Clock Net
Delay by Moving the Physical
Source (this page)

No

Yes

Yes

No

No

No

Yes

No

Yes

Yes

X21583-091818

IMPROVING CLOCK SKEW FLOW

IMPROVING CLOCK SKEW TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

Clock uncertainty is the amount of input jitter, system jitter, discrete
jitter, phase error, or user-added uncertainty, which is added to the ideal
clock edges to model the hardware operating conditions accurately.
Clock uncertainty impacts both setup and hold timing paths and varies
based on the resources used in the clock trees.

Reducing Clock Uncertainty by Using Parallel BUFGCE_DIV Clock Buffers
For synchronous clocks with a period ratio of 2, 4, or 8 generated by the same MMCM or PLL and driven by several clock outputs, use only 1
MMCM or PLL output and connect it to parallel BUFGCE_DIV clock buffers (UltraScale™ and UltraScale+™ devices only). This clock topology
eliminates the MMCM or PLL phase error that results in 0.120 ns clock uncertainty in most cases.

Following is an example of a clock uncertainty reduction for
clock domain crossing (CDC) paths between a 150 MHz clock
and a 300 MHz clock:
 Clock Uncertainty Before: 0.188 ns (setup), 0.188 ns (hold)
 Clock Uncertainty After: 0.068 ns (setup), 0.000 ns (hold)
Use the Clocking Wizard to generate the clock topology with
parallel BUFGCE_DIV buffers, and set the
CLOCK_DELAY_GROUP property on the clocks.

Reducing Clock Uncertainty by Changing the MMCM or PLL settings
Clock modifying blocks, such as the MMCM and PLL, contribute to clock uncertainty in the form of discrete jitter and phase error. 1
 In the Clocking Wizard or using the set_property command, increase the voltage-controlled oscillator (VCO) frequency by modifying the

M (multiplier) and D (divider) values. For example, MMCM (VCO=1 GHz) introduces 167 ps jitter and 384 ps phase error versus 128 ps and
123 ps for MMCM (VCO=1.43 GHz).

Limiting Synchronous Clock Domain Crossing Paths
Timing paths between synchronous clocks that are driven by separate clock buffers exhibit higher skew, because the common clock tree node
is located before the clock buffers, resulting in higher pessimism in the timing analysis. As a result, it is more challenging to meet both setup
and hold requirements at the same time on these paths, especially for high frequency clocks (over 500 MHz). To identify the number of paths
between two clocks, use report_timing_summary (Inter-Clock Paths section) or report_clock_interaction. The following example shows a
design that contains many paths between two high speed clocks (requirement = 1.592 ns). 30% of these paths fail timing, which indicates that
they are particularly difficult to implement.

Review the logic involved in the clock domain crossings and remove unnecessary logic paths, or try the following modifications:
 Add multicycle path constraints on the paths controlled by clock enable, because new data are not transferred every cycle.
 Replace the crossing logic with asynchronous crossing circuitry and appropriate timing exceptions at the expense of extra latency. For

example, use asynchronous FIFOs or XPM_CDC parameterized macros. For details, see the UltraScale Architecture Libraries Guide (UG974).

1. Indicates automated resolution using report_qor_suggestions

UG1292 (v2021.1) August 18, 2021

9

Are the synchronous
clocks generated by parallel

MMCM/PLL outputs?

Open the timing report, identify the worst violating paths for each clock group, and apply
the following step-by-step analysis to each path

Is the clock driven by an
 MMCM/PLL with discrete jitter

above 0.050 ns?

Are there over 1,000
paths between the synchronous

clocks?

See Reducing Clock Uncertainty by
Using Parallel BUFGCE_DIV Clock
Buffers (this page)

See Reducing Clock Uncertainty by
Changing the MMCM or PLL Settings
(this page)

See Limiting Synchronous Clock
Domain Crossing Paths (this page)

Yes

Yes

Yes

X21584-091818X21581-091818

IMPROVING CLOCK UNCERTAINTY FLOW

IMPROVING CLOCK UNCERTAINTY TECHNIQUES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;d=ug974-vivado-ultrascale-libraries.pdf

In the failfast report, address the checks marked as REVIEW to improve
implementation and timing closure. Following are the different sections
of the failfast report:
1. Design Characteristics: The default utilization guidelines are based

on SSI technology devices and can be relaxed for non-SSI technology
devices. Designs with one or more REVIEW checks are feasible but
are difficult to implement.

2. Clocking Checks: These checks are critical and must be addressed.
3. LUT and Net Budgeting: Use a conservative method to better predict

which logic paths are unlikely to meet timing after placement with
high device utilization.

Pblock-Based and SLR-Based Analysis
The report_failfast script reports the utilization of the specified physical area or SLR as follows:
 Before placement: Use -pblock <pblockName> to report on floorplanning constraints. This is especially important for reviewing SLR

placement constraints early in the design cycle when SLR Pblocks exist.
 After placement: Use -slr <slrName> or -by_slr to report utilization metrics for each SLR.
Floorplanning What-If Analysis
Use -top or -cell <hierCellName> with -pblock <pblockName> to report utilization metrics and identify good floorplanning constraints
without changing the cells to the Pblock.
Failfast Report Checks Marked as REVIEW Analysis
When you use the -detailed_report <prefix> option, report_failfast generates additional detailed reports for each check that does not
meet the guideline (except for resource utilization checks). Review each of the following reports:
 <prefix>.TIMING.rpt: Detailed Methodology TIMING-* violations
 <prefix>.AVGFO.rpt: Average Fanout for modules bigger than 100,000
 <prefix>.HFN.rpt: Non-FD high fanout net (HFN) driving more than 10,000 loads
 <prefix>.DONT_TOUCH.rpt: List of cells/nets with DONT_TOUCH property set
 <prefix>.timing_budget_LUT.rpt: Detailed timing paths failing the LUT budgeting
 <prefix>.timing_budget_LUT.rpx: Detailed timing paths failing the LUT budgeting (Vivado IDE interactive report)
 <prefix>.timing_budget_Net.rpt: Detailed timing paths failing the net budgeting
 <prefix>.timing_budget_Net.rpx: Detailed timing paths failing the net budgeting (Vivado IDE interactive report)
Kernel-Level or Module-Level Analysis
Synthesize each kernel or major design hierarchy in an out-of-context mode. Then, verify that timing is met with estimated delays and with a
realistic clock constraint:
 Review the timing reports and address any failing paths.
 Review the logic level budgeting section of report_failfast to identify the paths that are more likely to fail timing after placement. Optimize

the paths flagged by this analysis by modifying your design.
Pre-Implementation Design Analysis
After all kernels, sub-modules, and the top-level design are assembled and synthesized, review and address all checks flagged as REVIEW.
Pre-Implementation Floorplan Constraints Analysis
For large designs and for Vitis software platform designs, verify that the design architecture and hierarchies fit the device floorplan appropriately.
Post-Placement SLR Utilization Analysis
Use report_failfast -by_slr to verify that the resource utilization in each SLR is within the recommended guidelines.
TIP: In Project Mode, add the failfast report with the following Tcl hook:
set_property STEPS.OPT_DESIGN.TCL.POST <path>/postopt_failfast.tcl [get_runs impl_*]

Following is an example of postopt_failfast.tcl:
xilinx::designutils::report_failfast -file failfast_postopt.rpt -detailed_reports postopt

UG1292 (v2021.1) August 18, 2021

10

1 2 3

X21613-092118

FAILFAST REPORT OVERVIEW

FAILFAST REPORT USAGE EXAMPLES

UltraFast Design Methodology Timing Closure
Quick Reference Guide (UG1292)

	

