
Vivado Design Suite User
Guide

High-Level Synthesis

UG902 (v2020.1) May 4, 2021

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG902

Revision History
The following table shows the revision history for this document.

Section Revision Summary
05/04/2021 Version 2020.1

C++ Classes and Templates Removed section detailing support for constructors,
destructors, and virtual functions.

config_export Updated commands in the Options subsection.

config_sdx Updated commands in the Options subsection.

Revision History

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: High-Level Synthesis.. 5
High-Level Synthesis Benefits..5
High-Level Synthesis Basics... 6
Understanding Vivado HLS.. 12
Using Vivado HLS.. 19
Data Types for Efficient Hardware.. 71
Managing Interfaces...77
Optimizing the Design..118
Verifying the RTL... 177
Exporting the RTL Design...191

Chapter 2: High-Level Synthesis C Libraries..198
Arbitrary Precision Data Types Library... 198
HLS Stream Library... 213
HLS Math Library...222
HLS Video Library.. 232
HLS IP Libraries..232
HLS Linear Algebra Library.. 264
HLS DSP Library... 275
HLS SQL Library... 277

Chapter 3: High-Level Synthesis Coding Styles..279
Unsupported C Constructs...279
C Test Bench...283
Functions.. 290
RTL Blackbox..292
Loops.. 297
Arrays..305
Data Types..314
C Builtin Functions.. 339

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=3

Hardware Efficient C Code... 340
C++ Classes and Templates..358
Assertions...364
SystemC Synthesis.. 367

Chapter 4: High-Level Synthesis Reference Guide...................................387
Command Reference.. 387
GUI Reference..461
Interface Synthesis Reference... 465
AXI4-Lite Slave C Driver Reference..483
HLS Video Functions Library.. 496
HLS Linear Algebra Library Functions.. 496
HLS DSP Library Functions... 505
HLS SQL Library Functions... 518
C Arbitrary Precision Types.. 521
C++ Arbitrary Precision Types.. 535
C++ Arbitrary Precision Fixed-Point Types... 555
Comparison of SystemC and Vivado HLS Types..577
RTL Blackbox JSON File... 584

Appendix A: Additional Resources and Legal Notices........................... 587
Xilinx Resources...587
Documentation Navigator and Design Hubs.. 587
References..587
Please Read: Important Legal Notices... 588

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=4

Chapter 1

High-Level Synthesis
The Xilinx® Vivado® High-Level Synthesis (HLS) tool transforms a C specification into a register
transfer level (RTL) implementation that you can synthesize into a Xilinx field programmable gate
array (FPGA). You can write C specifications in C, C++, or SystemC, and the FPGA provides a
massively parallel architecture with benefits in performance, cost, and power over traditional
processors. This chapter provides an overview of high-level synthesis.

Note: For more information on FPGA architectures and Vivado HLS basic concepts, see the Introduction to
FPGA Design Using High-Level Synthesis (UG998).

High-Level Synthesis Benefits
High-level synthesis bridges hardware and software domains, providing the following primary
benefits:

• Improved productivity for hardware designers

Hardware designers can work at a higher level of abstraction while creating high-performance
hardware.

• Improved system performance for software designers

Software developers can accelerate the computationally intensive parts of their algorithms on
a new compilation target, the FPGA.

Using a high-level synthesis design methodology allows you to:

• Develop algorithms at the C-level

Work at a level that is abstract from the implementation details, which consume development
time.

• Verify at the C-level

Validate the functional correctness of the design more quickly than with traditional hardware
description languages.

• Control the C synthesis process through optimization directives

Create specific high-performance hardware implementations.

• Create multiple implementations from the C source code using optimization directives

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=5

Explore the design space, which increases the likelihood of finding an optimal implementation.

• Create readable and portable C source code

Retarget the C source into different devices as well as incorporate the C source into new
projects.

High-Level Synthesis Basics
High-level synthesis includes the following phases:

• Scheduling

Determines which operations occur during each clock cycle based on:

• Length of the clock cycle or clock frequency

• Time it takes for the operation to complete, as defined by the target device

• User-specified optimization directives

If the clock period is longer or a faster FPGA is targeted, more operations are completed
within a single clock cycle, and all operations might complete in one clock cycle. Conversely, if
the clock period is shorter or a slower FPGA is targeted, high-level synthesis automatically
schedules the operations over more clock cycles, and some operations might need to be
implemented as multicycle resources.

• Binding

Determines which hardware resource implements each scheduled operation. To implement
the optimal solution, high-level synthesis uses information about the target device.

• Control logic extraction

Extracts the control logic to create a finite state machine (FSM) that sequences the operations
in the RTL design.

High-level synthesis synthesizes the C code as follows:

• Top-level function arguments synthesize into RTL I/O ports

• C functions synthesize into blocks in the RTL hierarchy

If the C code includes a hierarchy of sub-functions, the final RTL design includes a hierarchy of
modules or entities that have a one-to-one correspondence with the original C function
hierarchy. All instances of a function use the same RTL implementation or block.

• Loops in the C functions are kept rolled by default

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=6

When loops are rolled, synthesis creates the logic for one iteration of the loop, and the RTL
design executes this logic for each iteration of the loop in sequence. Using optimization
directives, you can unroll loops, which allows all iterations to occur in parallel. Loops can also
be pipelined, either with a finite-state machine fine-grain implementation (loop pipelining) or
with a more coarse-grain handshake-based implementation (dataflow).

• Arrays in the C code synthesize into block RAM or UltraRAM in the final FPGA design

If the array is on the top-level function interface, high-level synthesis implements the array as
ports to access a block RAM outside the design.

High-level synthesis creates an optimized implementation based on default behavior, constraints,
and any optimization directives you specify. You can use optimization directives to modify and
control the default behavior of the internal logic and I/O ports. This allows you to generate
variations of the hardware implementation from the same C code.

To determine if the design meets your requirements, you can review the performance metrics in
the synthesis report generated by high-level synthesis. After analyzing the report, you can use
optimization directives to refine the implementation. The synthesis report contains information
on the following performance metrics:

• Area: Amount of hardware resources required to implement the design based on the resources
available in the FPGA, including look-up tables (LUT), registers, block RAMs, and DSP48s.

• Latency: Number of clock cycles required for the function to compute all output values.

• Initiation interval (II): Number of clock cycles before the function can accept new input data.

• Loop iteration latency: Number of clock cycles it takes to complete one iteration of the loop.

• Loop initiation interval: Number of clock cycles before the next iteration of the loop starts to
process data.

• Loop latency: Number of cycles to execute all iterations of the loop.

Scheduling and Binding Example
The following figure shows an example of the scheduling and binding phases for this code
example:

int foo(char x, char a, char b, char c) {
 char y;
 y = x*a+b+c;
 return y;
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=7

Figure 1: Scheduling and Binding Example

Target Binding
Phase DSP48 AddSub

Initial Binding
Phase

Scheduling
Phase

X14220-061518

Clock Cycle

a

x
+

1 2 3

*

b

c

+
y

Mul AddSub

AddSub

In the scheduling phase of this example, high-level synthesis schedules the following operations
to occur during each clock cycle:

• First clock cycle: Multiplication and the first addition

• Second clock cycle: Second addition and output generation

Note: In the preceding figure, the square between the first and second clock cycles indicates when an
internal register stores a variable. In this example, high-level synthesis only requires that the output of the
addition is registered across a clock cycle. The first cycle reads x, a, and b data ports. The second cycle
reads data port c and generates output y.

In the final hardware implementation, high-level synthesis implements the arguments to the top-
level function as input and output (I/O) ports. In this example, the arguments are simple data
ports. Because each input variable is a char type, the input data ports are all 8-bits wide. The
function return is a 32-bit int data type, and the output data port is 32-bits wide.

IMPORTANT! The advantage of implementing the C code in the hardware is that all operations finish in a
shorter number of clock cycles. In this example, the operations complete in only two clock cycles. In a
central processing unit (CPU), even this simple code example takes more clock cycles to complete.

In the initial binding phase of this example, high-level synthesis implements the multiplier
operation using a combinational multiplier (Mul) and implements both add operations using a
combinational adder/subtractor (AddSub).

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=8

In the target binding phase, high-level synthesis implements both the multiplier and one of the
addition operations using a DSP48 resource. The DSP48 resource is a computational block
available in the FPGA architecture that provides the ideal balance of high-performance and
efficient implementation.

Extracting Control Logic and Implementing I/O Ports
Example
The following figure shows the extraction of control logic and implementation of I/O ports for
this code example:

void foo(int in[3], char a, char b, char c, int out[3]) {
 int x,y;
 for(int i = 0; i < 3; i++) {
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

Figure 2: Control Logic Extraction and I/O Port Implementation Example

Clock

b

c

a

in_data

+

+

*

out_ce

out_we

out_addr

in_addr

in_ce

x

y

Finite State Machine (FSM)

C0 C1 C2 C3
x3

+

X14218

out_data

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=9

This code example performs the same operations as the previous example. However, it performs
the operations inside a for-loop, and two of the function arguments are arrays. The resulting
design executes the logic inside the for-loop three times when the code is scheduled. High-level
synthesis automatically extracts the control logic from the C code and creates an FSM in the RTL
design to sequence these operations. High-level synthesis implements the top-level function
arguments as ports in the final RTL design. The scalar variable of type char maps into a standard
8-bit data bus port. Array arguments, such as in and out, contain an entire collection of data.

In high-level synthesis, arrays are synthesized into block RAM by default, but other options are
possible, such as FIFOs, distributed RAM, and individual registers. When using arrays as
arguments in the top-level function, high-level synthesis assumes that the block RAM is outside
the top-level function and automatically creates ports to access a block RAM outside the design,
such as data ports, address ports, and any required chip-enable or write-enable signals.

The FSM controls when the registers store data and controls the state of any I/O control signals.
The FSM starts in the state C0. On the next clock, it enters state C1, then state C2, and then
state C3. It returns to state C1 (and C2, C3) a total of three times before returning to state C0.

Note: This closely resembles the control structure in the C code for-loop. The full sequence of states are:
C0,{C1, C2, C3}, {C1, C2, C3}, {C1, C2, C3}, and return to C0.

The design requires the addition of b and c only one time. High-level synthesis moves the
operation outside the for-loop and into state C0. Each time the design enters state C3, it reuses
the result of the addition.

The design reads the data from in and stores the data in x. The FSM generates the address for
the first element in state C1. In addition, in state C1, an adder increments to keep track of how
many times the design must iterate around states C1, C2, and C3. In state C2, the block RAM
returns the data for in and stores it as variable x.

High-level synthesis reads the data from port a with other values to perform the calculation and
generates the first y output. The FSM ensures that the correct address and control signals are
generated to store this value outside the block. The design then returns to state C1 to read the
next value from the array/block RAM in. This process continues until all outputs are written. The
design then returns to state C0 to read the next values of b and c to start the process again.

Performance Metrics Example
The following figure shows the complete cycle-by-cycle execution for the code in the previous
example, including the states for each clock cycle, read operations, computation operations, and
write operations.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=10

Figure 3: Latency and Initiation Interval Example

b

+

C0 C1 C2 C3 C1 C2 C3 C1 C2 C3 C0

Read B
and C

Addr
in[0]

Read
in[0]

Calc.
out[0]

Addr
in[1]

Read
in[1]

Calc.
out[1]

Addr
in[2]

Read
in[2]

Calc.
out[2]

Read B
and C

c Addr x=Data a Addr x=Data a Addr x=Data a b c

* + * + * + +

Y[0] Y[1] Y[2]

Function Latency = 9

Function Initiation Interval = 10

Loop Iteration Latency = 3

Loop Iteration Interval = 3

Loop Latency = 9

X14219

The following are performance metrics for this example:

• Latency: It takes the function 9 clock cycles to output all values.

Note: When the output is an array, the latency is measured to the last array value output.

• II: The II is 10, which means it takes 10 clock cycles before the function can initiate a new set
of input reads and start to process the next set of input data.

Note: The time to perform one complete execution of a function is referred to as one transaction. In this
example, it takes 11 clock cycles before the function can accept data for the next transaction.

• Loop iteration latency: The latency of each loop iteration is 3 clock cycles.

• Loop II: The interval is 3.

• Loop latency: The latency is 9 clock cycles.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=11

Understanding Vivado HLS
The Xilinx Vivado HLS tool synthesizes a C function into an IP block that you can integrate into a
hardware system. It is tightly integrated with the rest of the Xilinx design tools and provides
comprehensive language support and features for creating the optimal implementation for your
C algorithm.

Following is the Vivado HLS design flow:

1. Compile, execute (simulate), and debug the C algorithm.

2. Synthesize the C algorithm into an RTL implementation, optionally using user optimization
directives.

3. Generate comprehensive reports and analyze the design.

4. Verify the RTL implementation using a pushbutton flow.

5. Package the RTL implementation into a selection of IP formats.

Note: In high-level synthesis, running the compiled C program is referred to as C simulation. Executing the C
algorithm simulates the function to validate that the algorithm is functionally correct.

Inputs and Outputs
The following are Vivado® HLS inputs:

• C function written in C, C++, or SystemC

This is the primary input to Vivado HLS. The function can contain a hierarchy of sub-
functions.

• Constraints

Constraints are required and include the clock period, clock uncertainty, and FPGA target. The
clock uncertainty defaults to 12.5% of the clock period if not specified.

• Directives

Directives are optional and direct the synthesis process to implement a specific behavior or
optimization.

• C test bench and any associated files

Vivado HLS uses the C test bench to simulate the C function prior to synthesis and to verify
the RTL output using C/RTL Cosimulation.

You can add the C input files, directives, and constraints to a Vivado HLS project interactively
using the Vivado HLS graphical user interface (GUI) or using Tcl commands at the command
prompt. You can also create a Tcl file and execute the commands in batch mode.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=12

The following are Vivado HLS outputs:

• RTL implementation files in hardware description language (HDL) formats

This is the primary output from Vivado HLS. Using Vivado synthesis, you can synthesize the
RTL into a gate-level implementation and an FPGA bitstream file. The RTL is available in the
following industry standard formats:

○ VHDL (IEEE 1076-2000)

○ Verilog (IEEE 1364-2001)

Vivado HLS packages the implementation files as an IP block for use with other tools in the
Xilinx® design flow. Using logic synthesis, you can synthesize the packaged IP into an FPGA
bitstream.

• Report files

This output is the result of synthesis, C/RTL co-simulation, and IP packaging.

The following figure shows an overview of the Vivado HLS input and output files.

Figure 4: Vivado HLS Design Flow

Test
Bench

Constraints/
Directives

Vivado HLS

C Simulation C Synthesis

RTL
Adapter

VHDL
Verilog

RTL Simulation Packaged IP

Vivado
Design
Suite

System
Generator

Xilinx
Platform
Studio

X14309

C, C++,
SystemC

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=13

Test Bench, Language Support, and C Libraries
In any C program, the top-level function is called main(). In the Vivado® HLS design flow, you
can specify any sub-function below main() as the top-level function for synthesis. You cannot
synthesize the top-level function main(). Following are additional rules:

• Only one function is allowed as the top-level function for synthesis.

• Any sub-functions in the hierarchy under the top-level function for synthesis are also
synthesized.

• If you want to synthesize functions that are not in the hierarchy under the top-level function
for synthesis, you must merge the functions into a single top-level function for synthesis.

Test Bench

When using the Vivado® HLS design flow, it is time consuming to synthesize a functionally
incorrect C function and then analyze the implementation details to determine why the function
does not perform as expected. To improve productivity, use a test bench to validate that the C
function is functionally correct prior to synthesis.

The C test bench includes the function main() and any sub-functions that are not in the
hierarchy under the top-level function for synthesis. These functions verify that the top-level
function for synthesis is functionally correct by providing stimuli to the function for synthesis
and by consuming its output.

Vivado HLS uses the test bench to compile and execute the C simulation. During the compilation
process, you can select the Launch Debugger option to open a full C-debug environment, which
enables you to analyze the C simulation.

RECOMMENDED: Because Vivado HLS uses the test bench to both verify the C function prior to
synthesis and to automatically verify the RTL output, using a test bench is highly recommended.

Language Support

Vivado HLS supports the following standards for C compilation/simulation:

• ANSI-C (GCC 4.6)

• C++ (G++ 4.6)

• SystemC (IEEE 1666-2006, version 2.2)

C, C++, and SystemC Language Constructs

Vivado HLS supports many C, C++, and SystemC language constructs and all native data types
for each language, including float and double types. However, synthesis is not supported for
some constructs, including:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=14

• Dynamic memory allocation

An FPGA has a fixed set of resources, and the dynamic creation and freeing of memory
resources is not supported.

• Operating system (OS) operations

All data to and from the FPGA must be read from the input ports or written to output ports.
OS operations, such as file read/write or OS queries like time and date, are not supported.
Instead, the C test bench can perform these operations and pass the data into the function for
synthesis as function arguments.

For details on the supported and unsupported C constructs and examples of each of the main
constructs, see Chapter 3: High-Level Synthesis Coding Styles.

C Libraries

C libraries contain functions and constructs that are optimized for implementation in an FPGA.
Using these libraries helps to ensure high quality of results (QoR), that is, the final output is a
high-performance design that optimizes resource usage. Because the libraries are provided in C,
C++, or SystemC, you can incorporate the libraries into the C function and simulate them to
verify the functional correctness before synthesis.

Vivado® HLS provides the following C libraries to extend the standard C languages:

• Arbitrary precision data types

• Half-precision (16-bit) floating-point data types

• Math operations

• Xilinx® IP functions, including fast fourier transform (FFT) and finite impulse response (FIR)

• FPGA resource functions to help maximize the use of shift register LUT (SRL) resources

C Library Example

C libraries ensure a higher QoR than standard C types. Standard C types are based on 8-bit
boundaries (8-bit, 16-bit, 32-bit, 64-bit). However, when targeting a hardware platform, it is often
more efficient to use data types of a specific width.

For example, a design with a filter function for a communications protocol requires 10-bit input
data and 18-bit output data to satisfy the data transmission requirements. Using standard C data
types, the input data must be at least 16-bits and the output data must be at least 32-bits. In the
final hardware, this creates a datapath between the input and output that is wider than
necessary, uses more resources, has longer delays (for example, a 32-bit by 32-bit multiplication
takes longer than an 18-bit by 18-bit multiplication), and requires more clock cycles to complete.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=15

Using an arbitrary precision data type in this design instead, you can specify the exact bit-sizes to
be specified in the C code prior to synthesis, simulate the updated C code, and verify the quality
of the output using C simulation prior to synthesis. Arbitrary precision data types are provided
for C and C++ and allow you to model data types of any width from 1 to 1024-bit. For example,
you can model some C++ types up to 32768 bits.

Note: Arbitrary precision types are only required on the function boundaries, because Vivado HLS
optimizes the internal logic and removes data bits and logic that do not fanout to the output ports.

Synthesis, Optimization, and Analysis
Vivado® HLS is project based. Each project holds one set of C code and can contain multiple
solutions. Each solution can have different constraints and optimization directives. You can
analyze and compare the results from each solution in the Vivado HLS GUI.

Following are the synthesis, optimization, and analysis steps in the Vivado HLS design process:

1. Create a project with an initial solution.

2. Verify the C simulation executes without error.

3. Run synthesis to obtain a set of results.

4. Analyze the results.

After analyzing the results, you can create a new solution for the project with different
constraints and optimization directives and synthesize the new solution. You can repeat this
process until the design has the desired performance characteristics. Using multiple solutions
allows you to proceed with development while still retaining the previous results.

Optimization

Using Vivado® HLS, you can apply different optimization directives to the design, including:

• Instruct a task to execute in a pipeline, allowing the next execution of the task to begin before
the current execution is complete.

• Specify a latency for the completion of functions, loops, and regions.

• Specify a limit on the number of resources used.

• Override the inherent or implied dependencies in the code and permit specified operations.
For example, if it is acceptable to discard or ignore the initial data values, such as in a video
stream, allow a memory read before write if it results in better performance.

• Select the I/O protocol to ensure the final design can be connected to other hardware blocks
with the same I/O protocol.

Note: Vivado HLS automatically determines the I/O protocol used by any sub-functions. You cannot
control these ports except to specify whether the port is registered.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=16

You can use the Vivado HLS GUI to place optimization directives directly into the source code.
Alternatively, you can use Tcl commands to apply optimization directives.

Analysis

When synthesis completes, Vivado® HLS automatically creates synthesis reports to help you
understand the performance of the implementation. In the Vivado HLS GUI, the Analysis
Perspective includes the Performance tab, which allows you to interactively analyze the results in
detail. The following figure shows the Performance view for the Extracting Control Logic and
Implementing I/O Ports Example.

Figure 5: Vivado HLS Analysis Example

The Performance tab shows the following for each state:

• C0: The first state includes read operations on ports a, b, and c and the addition operation.

• C1 and C2: The design enters a loop and checks the loop increment counter and exit
condition. The design then reads data into variable x, which requires two clock cycles. Two
clock cycles are required, because the design is accessing a block RAM, requiring an address in
one cycle and a data read in the next.

• C3: The design performs the calculations and writes output to port y. Then, the loop returns
to the start.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=17

RTL Verification
If you added a C test bench to the project, you can use it to verify that the RTL is functionally
identical to the original C. The C test bench verifies the output from the top-level function for
synthesis and returns zero to the top-level function main() if the RTL is functionally identical.
Vivado® HLS uses this return value for both C simulation and C/RTL co-simulation to determine
if the results are correct. If the C test bench returns a non-zero value, Vivado HLS reports that
the simulation failed. For more information, see Test Bench Requirements.

TIP: Vivado HLS automatically creates the infrastructure to perform the C/RTL co-simulation and
automatically executes the simulation using one of the following supported RTL simulators:

• Vivado Simulator (XSim)

• ModelSim simulator

• VCS

• NCSim

• Riviera

• Xcelium

If you select Verilog or VHDL HDL for simulation, Vivado HLS uses the HDL simulator you
specify. The Xilinx® design tools include Vivado Simulator. Third-party HDL simulators require a
license from the third-party vendor. The VCS and NCSim simulators are only supported on the
Linux operating system.

RTL Export
Using Vivado® HLS, you can export the RTL and package the final RTL output files as IP in any of
the following Xilinx® IP formats:

• Vivado IP Catalog

Import into the Vivado IP catalog for use in the Vivado Design Suite.

• System Generator for DSP

Import the HLS design into System Generator.

• Synthesized Checkpoint (.dcp)

Import directly into the Vivado Design Suite the same way you import any Vivado Design
Suite checkpoint.

Note: The synthesized checkpoint format invokes logic synthesis and compiles the RTL implementation
into a gate-level implementation, which is included in the IP package.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=18

For all IP formats except the synthesized checkpoint, you can optionally execute logic synthesis
from within Vivado HLS to evaluate the results of RTL synthesis or implementation. This optional
step allows you to confirm the estimates provided by Vivado HLS for timing and area before
handing off the IP package. These gate-level results are not included in the packaged IP.

Note: Vivado HLS estimates the timing and area resources based on built-in libraries for each FPGA. When
you use logic synthesis to compile the RTL into a gate-level implementation, perform physical placement of
the gates in the FPGA, and perform routing of the inter-connections between gates, logic synthesis might
make additional optimizations that change the Vivado HLS estimates.

Using Vivado HLS
To open Vivado® HLS on a Windows platform, double-click the desktop button as shown in the
following figure.

Figure 6: Vivado HLS GUI Button

To invoke Vivado HLS on a Linux platform (or from the Vivado HLS Command Prompt on
Windows) execute the following command at the command prompt.

$ vivado_hls

The Vivado HLS GUI opens as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=19

Figure 7: Vivado HLS GUI Welcome Page

You can use the Quick Start options to perform the following tasks:

• Create New Project: Launch the project setup wizard.

• Open Project: Navigate to an existing project or select from a list of recent projects.

• Open Example Project: Open Vivado HLS examples.

You can use the Documentation options to perform the following tasks:

• Tutorials: Opens the Vivado Design Suite Tutorial: High-Level Synthesis (UG871).

• User Guide: Opens this document, the Vivado Design Suite User Guide: High-Level Synthesis
(UG902).

• Release Notes Guide: Opens the Vivado Design Suite User Guide: Release Notes, Installation, and
Licensing (UG973) for the latest software version.

The primary controls for using Vivado HLS are shown in the toolbar in the following figure.
Project control ensures only commands that can be currently executed are highlighted. For
example, synthesis must be performed before C/RTL co-simulation can be executed. The C/RTL
co-simulation toolbar buttons remain gray until synthesis completes.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=20

Figure 8: Vivado HLS Controls

In the Project Management section, the buttons are (from left to right):

• Create New Project opens the new project wizard.

• Project Settings allows the current project settings to be modified.

• New Solution opens the new solution dialog box.

• Solution Settings allows the current solution settings to be modified.

The next group of toolbar buttons control the tool operation (from left to right):

• Index C Source refreshes the annotations in the C source.

• Run C Simulation opens the C Simulation dialog box.

• C Synthesis starts C source code in Vivado HLS.

• Run C/RTL Cosimulation verifies the RTL output.

• Export RTL packages the RTL into the desired IP output format.

The final group of toolbar buttons are for design analysis (from left to right):

• Open Report opens the C synthesis report or drops down to open other reports.

• Compare Reports allows the reports from different solutions to be compared.

Each of the buttons on the toolbar has an equivalent command in the menus. In addition, Vivado
HLS GUI provides three perspectives. When you select a perspective, the windows automatically
adjust to a more suitable layout for the selected task.

• The Debug perspective opens the C debugger.

• The Synthesis perspective is the default perspective and arranges the windows for performing
synthesis.

• The Analysis perspective is used after synthesis completes to analyze the design in detail. This
perspective provides considerable more detail than the synthesis report.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=21

Changing between perspectives can be done at any time by selecting the desired perspective
button.

The remainder of this chapter discusses how to use Vivado HLS. The following topics are
discussed:

• How to create a Vivado HLS synthesis project.

• How to simulate and debug the C code.

• How to synthesize the design, create new solutions and add optimizations.

• How to perform design analysis.

• How to verify and package the RTL output.

• How to use the Vivado HLS Tcl commands and batch mode.

This chapter ends with a review of the design examples, tutorials, and resources for more
information.

Creating a New Synthesis Project
To create a new project, click the Create New Project link on the Welcome page, or select the
File > New Project menu command. This opens the project wizard shown in Creating a New
Synthesis Project, which allows you to specify the following:

• Project Name: Specifies the project name, which is also the name of the directory in which the
project details are stored.

• Location: Specifies where to store the project.

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect
the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating
projects, defining IP or managed IP projects, and creating block designs.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=22

Figure 9: Project Specification

Selecting the Next > button moves the wizard to the second screen where you can enter details
in the project C source files (Creating a New Synthesis Project).

• Top Function: Specifies the name of the top-level function to be synthesized. If you add the C
files first, you can use the Browse button to review the C hierarchy, and then select the top-
level function for synthesis. The Browse button remains grayed out until you add the source
files.

Note: This step is not required when the project is specified as SystemC, because Vivado HLS automatically
identifies the top-level functions.

Use the Add Files button to add the source code files to the project.

IMPORTANT! Do not add header files (with the .h  suffix) to the project using the Add Files button (or
with the associated add_files  Tcl command).

Vivado HLS automatically adds the following directories to the search path:

• Working directory

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=23

Note: The working directory contains the Vivado HLS project directory.

• Any directory that contains C files added to the project

Header files that reside in these directories are automatically included in the project. You must
specify the path to all other header files using the Edit CFLAGS button.

The Edit CFLAGS button specifies the C compiler flags options required to compile the C code.
These compiler flag options are the same used in gcc or g++. C compiler flags include the path
name to header files, macro specifications, and compiler directives, as shown in the following
examples:

• -I/project/source/headers: Provides the search path to associated header files

Note: You must specify relative path names in relation to the working directory not the project
directory.

• -DMACRO_1: Defines macro MACRO_1 during compilation

• -fnested-functions: Defines directives required for any design that contains nested functions

TIP: For a complete list of supported Edit CFLAGS options, see the Option Summary page (http://
gcc.gnu.org/onlinedocs/gcc/Option-Summary.html) on the GNU Compiler Collection (GCC) website.

TIP: You can use $::env(MY_ENV_VAR)  to specify environment variables in CFLAGS. For example, to
include the directory $MY_ENV_VAR/include  for compilation, you can specify -I
$::env(MY_ENV_VAR)/include in CFLAGS.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 24Send Feedback

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=24

Figure 10: Project Source Files

The next window in the project wizard allows you to add the files associated with the test bench
to the project.

Note: For SystemC designs with header files associated with the test bench but not the design file, you
must use the Add Files button to add the header files to the project.

In most of the example designs provided with Vivado HLS, the test bench is in a separate file
from the design. Having the test bench and the function to be synthesized in separate files keeps
a clean separation between the process of simulation and synthesis. If the test bench is in the
same file as the function to be synthesized, the file should be added as a source file and, as
shown in the next step, a test bench file.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=25

Figure 11: Project Test Bench Files

As with the C source files, click the Add Files button to add the C test bench and the Edit
CFLAGS button to include any C compiler options.

In addition to the C source files, all files read by the test bench must be added to the project. In
the example shown in the preceding figure, the test bench opens file in.dat to supply input
stimuli to the design and file out.golden.dat to read the expected results. Because the test
bench accesses these files, both files must be included in the project.

If the test bench files exist in a directory, the entire directory might be added to the project,
rather than the individual files, using the Add Folders button.

If there is no C test bench, there is no requirement to enter any information here and the Next >
button opens the final window of the project wizard, which allows you to specify the details for
the first solution, as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=26

Figure 12: Initial Solution Settings

The final window in the new project wizard allows you to specify the details of the first solution:

• Solution Name: Vivado HLS provides the initial default name solution1, but you can specify
any name for the solution.

• Clock Period: The clock period specified in units of ns or a frequency value specified with the
MHz suffix (For example, 150MHz).

• Uncertainty: The clock period used for synthesis is the clock period minus the clock
uncertainty. Vivado HLS uses internal models to estimate the delay of the operations for each
FPGA. The clock uncertainty value provides a controllable margin to account for any increases
in net delays due to RTL logic synthesis, place, and route. If not specified in nanoseconds (ns)
or a percentage, the clock uncertainty defaults to 12.5% of the clock period.

• Part: Click to select the appropriate technology, as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=27

Figure 13: Part Selection

Select the FPGA to be targeted. You can use the filter to reduce the number of device in the
device list. If the target is a board, specify boards in the top-left corner and the device list is
replaced by a list of the supported boards (and Vivado HLS automatically selects the correct
target device).

Clicking Finish opens the project as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=28

Figure 14: New Project in the Vivado HLS GUI

The Vivado HLS GUI consists of four panes:

• On the left hand side, the Explorer pane lets you navigate through the project hierarchy. A
similar hierarchy exists in the project directory on the disk.

• In the center, the Information pane displays files. Files can be opened by double-clicking on
them in the Explorer Pane.

• On the right, the Auxiliary pane shows information relevant to whatever file is open in the
Information pane,

• At the bottom, the Console Pane displays the output when Vivado HLS is running.

Simulating the C Code
Verification in the Vivado® HLS flow can be separated into two distinct processes.

• Pre-synthesis validation that validates the C program correctly implements the required
functionality.

• Post-synthesis verification that verifies the RTL is correct.

Both processes are referred to as simulation: C simulation and C/RTL co-simulation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=29

Before synthesis, the function to be synthesized should be validated with a test bench using C
simulation. A C test bench includes a top-level function main() and the function to be
synthesized. It might include other functions. An ideal test bench has the following attributes:

• The test bench is self-checking and verifies the results from the function to be synthesized are
correct.

• If the results are correct the test bench returns a value of 0 to main(). Otherwise, the test
bench should return any non-zero values

Clicking the Run C Simulation toolbar button opens the C Simulation Dialog box, shown in
the following figure.

Figure 15: C Simulation Dialog Box

If no option is selected in the dialog box, the C code is compiled and the C simulation is
automatically executed. The results are shown in the following figure. When the C code
simulates successfully, the console window displays a message, as shown in the following figure.
The test bench echoes to the console any printf commands used with the message “Test
Passed!”

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=30

Figure 16: C Compiled with Build

The other options in the C Simulation dialog box are:

• Launch Debugger: This compiles the C code and automatically opens the debug perspective.
From within the debug perspective the Synthesis perspective button (top left) can be used to
return the windows to synthesis perspective.

• Build Only: The C code compiles, but the simulation does not run.

• Clean Build: Remove any existing executable and object files from the project before
compiling the code.

• Optimized Compile: By default the design is compiled with debug information, allowing the
compilation to be analyzed in the debug perspective. This option uses a higher level of
optimization effort when compiling the design but removes all information required by the
debugger. This increases the compile time but should reduce the simulation run time.

• Compiler: Allows you to select between using gcc/g++ to compile the code.

If you select the Launch Debugger option, the windows automatically switch to the debug
perspective and the debug environment opens as shown in the following figure. This is a full
featured C debug environment. The step buttons (red box in the following figure) allow you to
step through code, breakpoints can be set and the value of the variables can be directly viewed.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=31

Figure 17: C Debug Environment

TIP: Click the Synthesis perspective button to return to the standard synthesis windows.

Reviewing the C Simulation Output

When C simulation completes, a folder csim is created inside the solution folder as shown.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=32

Figure 18: C Simulation Output Files

The folder csim/build is the primary location for all files related to the C simulation.

• Any files read by the test bench are copied to this folder.

• The C executable file csim.exe is created and run in this folder.

• Any files written by the test bench are created in this folder.

If the Build Only option is selected in the C simulation dialog box, the file csim.exe is created in
this folder but the file is not executed. The C simulation is run manually by executing this file
from a command shell. On Windows the Vivado® HLS command shell is available through the
start menu.

The folder csim/report contains a log file of the C simulation.

The next step in the Vivado HLS design flow is to execute synthesis.

Synthesizing the C Code
The following topics are discussed in this section:

• Creating an Initial Solution.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=33

• Reviewing the Output of C Synthesis.

• Analyzing the Results of Synthesis.

• Creating a New Solution.

• Applying Optimization Directives.

Creating an Initial Solution

Use the C Synthesis toolbar button or the menu Solution > Run C Synthesis to synthesize the
design to an RTL implementation. During the synthesis process messages are echoed to the
console window.

The message include information messages showing how the synthesis process is proceeding:

INFO: [HLS 200-10] Opening and resetting project
'C:/Vivado_HLS/My_First_Project/proj_dct'.
INFO: [HLS 200-10] Adding design file 'dct.cpp' to the project
INFO: [HLS 200-10] Adding test bench file 'dct_test.cpp' to the project
INFO: [HLS 200-10] Adding test bench file 'in.dat' to the project
INFO: [HLS 200-10] Adding test bench file 'out.golden.dat' to the project
INFO: [HLS 200-10] Opening and resetting solution
'C:/Vivado_HLS/My_First_Project/proj_dct/solution1'.
INFO: [HLS 200-10] Cleaning up the solution database.
INFO: [HLS 200-10] Setting target device to 'xc7k160tfbg484-1'
INFO: [SYN 201-201] Setting up clock 'default' with a period of 4ns.

Within the GUI, some messages may contain links to enhanced information. In the following
example, message XFORM 203-602 is underlined indicating the presence of a hyperlink. Clicking
on this message provides more details on why the message was issued and possible resolutions.
In this case, Vivado® HLS automatically inlines small functions and using the INLINE directive
with the -off option may be used to prevent this automatic inlining.

INFO: [XFORM 203-602] Inlining function 'read_data' into 'dct' (dct.cpp:85)
automatically.
INFO: [XFORM 203-602] Inlining function 'write_data' into 'dct'
(dct.cpp:90) automatically.

When synthesis completes, the synthesis report for the top-level function opens automatically in
the information pane as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=34

Figure 19: Synthesis Report

Reviewing the Output of C Synthesis

When synthesis completes, the folder syn is now available in the solution folder.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=35

Figure 20: C Synthesis Output Files

The syn folder contains four sub-folders. A report folder and one folder for each of the RTL
output formats.

The report folder contains a report file for the top-level function and one for every sub-
function in the design: provided the function was not inlined using the INLINE directive or inlined
automatically by Vivado® HLS. The report for the top-level function provides details on the
entire design.

The verilog, vhdl, and systemc folders contain the output RTL files. The preceding figure
shows the verilog folder expanded. The top-level file has the same name as the top-level
function for synthesis. In the C design there is one RTL file for each function (not inlined). There
might be additional RTL files to implement sub-blocks (block RAM, pipelined multipliers, etc).

IMPORTANT! Xilinx® does not recommend using these files for RTL synthesis. Instead, Xilinx recommends
using the packaged IP output files discussed later in this design flow. Carefully read the text that
immediately follows this note.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=36

In cases where Vivado HLS uses Xilinx IP in the design, such as with floating point designs, the
RTL directory includes a script to create the IP during RTL synthesis. If the files in the syn folder
are used for RTL synthesis, it is your responsibility to correctly use any script files present in
those folders. If the package IP is used, this process is performed automatically by the design
Xilinx tools.

Analyzing the Results of C Synthesis

The two primary features provided to analyze the RTL design are:

• Synthesis reports

• Analysis Perspective

In addition, if you are more comfortable working in an RTL environment, Vivado® HLS creates
two projects during the IP packaging process:

• Vivado Design Suite project

• Vivado IP Integrator project

Synthesis Reports

When synthesis completes, the synthesis report for the top-level function opens automatically in
the information pane. The report provides details on both the performance and area of the RTL
design. The outline tab on the right-hand side can be used to navigate through the report.

The following table explains the categories in the synthesis report.

Table 1: Synthesis Report Categories

Category Description
General Information Details on when the results were generated, the version of

the software used, the project name, the solution name, and
the technology details.

Performance Estimates > Timing The target clock frequency, clock uncertainty, and the
estimate of the fastest achievable clock frequency.

Performance Estimates > Latency > Summary Reports the latency and initiation interval for this block and
any sub-blocks instantiated in this block.
Each sub-function called at this level in the C source is an
instance in this RTL block, unless it was inlined.
The latency is the number of cycles it takes to produce the
output. The initiation interval is the number of clock cycles
before new inputs can be applied.
In the absence of any PIPELINE directives, the latency is one
cycle less than the initiation interval (the next input is read
when the final output is written).

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=37

Table 1: Synthesis Report Categories (cont'd)

Category Description
Performance Estimates > Latency > Detail The latency and initiation interval for the instances (sub-

functions) and loops in this block. If any loops contain sub-
loops, the loop hierarchy is shown.
The min and max latency values indicate the latency to
execute all iterations of the loop. The presence of
conditional branches in the code might make the min and
max different.
The Iteration Latency is the latency for a single iteration of
the loop.
If the loop has a variable latency, the latency values cannot
be determined and are shown as a question mark (?). See
the text after this table.
Any specified target initiation interval is shown beside the
actual initiation interval achieved.
The tripcount shows the total number of loop iterations.

Utilization Estimates > Summary This part of the report shows the resources (LUTS, Flip-
Flops, DSP48s) used to implement the design.

Utilization Estimates > Details > Instance The resources specified here are used by the sub-blocks
instantiated at this level of the hierarchy.
If the design only has no RTL hierarchy, there are no
instances reported.
If any instances are present, clicking on the name of the
instance opens the synthesis report for that instance.

Utilization Estimates > Details > Memory The resources listed here are those used in the
implementation of memories at this level of the hierarchy.
Vivado HLS reports a single-port BRAM as using one bank of
memory and reports a dual-port BRAM as using two banks
of memory.

Utilization Estimates > Details > FIFO The resources listed here are those used in the
implementation of any FIFOs implemented at this level of
the hierarchy.

Utilization Estimates > Details > Shift Register A summary of all shift registers mapped into Xilinx SRL
components.
Additional mapping into SRL components can occur during
RTL synthesis.

Utilization Estimates > Details > Expressions This category shows the resources used by any expressions
such as multipliers, adders, and comparators at the current
level of hierarchy.
The bit-widths of the input ports to the expressions are
shown.

Utilization Estimates > Details > Multiplexors This section of the report shows the resources used to
implement multiplexors at this level of hierarchy.
The input widths of the multiplexors are shown.

Utilization Estimates > Details > Register A list of all registers at this level of hierarchy is shown here.
The report includes the register bit-widths.

Interface Summary > Interface This section shows how the function arguments have been
synthesized into RTL ports.
The RTL port names are grouped with their protocol and
source object: these are the RTL ports created when that
source object is synthesized with the stated I/O protocol.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=38

Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). When you select an SSI
technology device as the target technology, the utilization report includes details on both the
SLR usage and the total device usage.

IMPORTANT! When using SSI technology devices, it is important to ensure that the logic created by
Vivado HLS fits within a single SLR.

A common issue for new users of Vivado HLS is seeing a synthesis report similar to the following
figure. The latency values are all shown as a “?” (question mark).

Figure 21: Synthesis Report

Vivado HLS performs analysis to determine the number of iteration of each loop. If the loop
iteration limit is a variable, Vivado HLS cannot determine the maximum upper limit.

In the following example, the maximum iteration of the for-loop is determined by the value of
input num_samples. The value of num_samples is not defined in the C function, but comes
into the function from the outside.

void foo (char num_samples, ...);

void foo (num_samples, ...) {
 int i;
 ...

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=39

 loop_1: for(i=0;i< num_samples;i++) {
 ...
 result = a + b;
 }
}

If the latency or throughput of the design is dependent on a loop with a variable index, Vivado
HLS reports the latency of the loop as being unknown (represented in the reports by a question
mark “?”).

The TRIPCOUNT directive can be applied to the loop to manually specify the number of loop
iterations and ensure the report contains useful numbers. The -max option tells Vivado HLS the
maximum number of iterations that the loop iterates over and the -min option specifies the
minimum number of iterations performed.

Note: The TRIPCOUNT directive does not impact the results of synthesis.

The tripcount values are used only for reporting, to ensure the reports generated by Vivado HLS
show meaningful ranges for latency and interval. This also allows a meaningful comparison
between different solutions.

If the C assert macro is used in the code, Vivado HLS can use it to both determine the loop limits
automatically and create hardware that is exactly sized to these limits.

Analysis Perspective

In addition to the synthesis report, you can use the Analysis Perspective to analyze the results. To
open the Analysis Perspective, click the Analysis button as shown in the following figure.

Figure 22: Analysis Perspective

The Analysis Perspective provides both a tabular and graphical view of the design performance
and resources and supports cross-referencing between both views. The following figure shows
the default window configuration when the Analysis Perspective is first opened.

The Module Hierarchy pane provides an overview of the entire RTL design.

• This view can navigate throughout the design hierarchy.

• The Module Hierarchy pane shows the resources and latency contribution for each block in
the RTL hierarchy.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=40

The following figure shows the dct design uses six block RAMs, approximately 300 LUTs and has
a latency of around 3000 clock cycles. Sub-block dct_2b contributes four block RAMs,
approximately 250 LUTs and about 2600 cycle of latency to the total. It is immediately clear that
most of the resources and latency in this design are due to sub-block dct_2d and this block
should be analyzed first.

Figure 23: Analysis Perspective in the Vivado HLS GUI

The Performance Profile pane provides details on the performance of the block currently
selected in the Module Hierarchy pane, in this case, the dct block highlighted in the Module
Hierarchy pane.

• The performance of the block is a function of the sub-blocks it contains and any logic within
this level of hierarchy. The Performance Profile pane shows items at this level of hierarchy that
contribute to the overall performance.

• Performance is measured in terms of latency and the initiation interval. This pane also includes
details on whether the block was pipelined or not.

• In this example, you can see that two loops (RD_Loop_Row and WR_Loop_Row) are
implemented as logic at this level of hierarchy and both contain sub-loops and both contribute
144 clock cycles to the latency. Add the latency of both loops to the latency of dct_2d which
is also inside dct and you get the total latency for the dct block.

The Analysis Perspective also allows you to analyze resource usage. The following figure shows
the resource profile and the resource panes.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=41

Figure 24: Analysis Perspective with Resource Profile

The Resource Profile pane shows the resources used at this level of hierarchy. In this example,
you can see that most of the resources are due to the instances: blocks that are instantiated
inside this block.

You can see by expanding the Expressions that most of the resources at this level of hierarchy are
used to implement adders.

The Resource pane shows the control state of the operations used. In this example, all the adder
operations are associated with a different adder resource. There is no sharing of the adders.
More than one add operation on each horizontal line indicates the same resource is used multiple
times in different states or clock cycles.

The adders are used in the same cycles that are memory accessed and are dedicated to each
memory. Cross correlation with the C code can be used to confirm.

Schedule Viewer

The schedule viewer gives you a detailed view of the synthesized RTL. You can identify any loop
dependencies that are preventing parallelism, timing violations, and data dependencies.

• This viewer can be accessed by navigating to the Analysis view on the right.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=42

• Navigate through the module hierarchy window to view the scheduling of each individual
block by right-clicking and selecting Open Schedule Viewer. The module hierarchy indicates
directly any II or timing violation. In case of timing violations, the hierarchy window will also
show the total negative slack observed in a specific module.

Note: Using the window menu buttons allows you to filter in the module hierarchy for blocks exhibiting
II or timing violations.

In the schedule viewer main window:

• The vertical axis shows the names of operations and loops.

• Operations are in topological order, implying that an operation on line n can only be driven by
operations from a previous line and will only drive inputs of an operation in a later line.

In the example below, only top level functions are shown in the following order:

○ read_data

○ dct_2d

○ write_data

• The solid gray bar on the horizontal axis shows the cycles in consecutive order.

• The vertical dashed line shows proportionally the reserved part of the clock period due to
clock uncertainty. This time is left by the tool for the Vivado back-end processes, like place
and route.

• For each operation, a gray box is shown in the table. In general, the box is sized horizontally
according to the delay of the operation as percentage of the total clock cycle. In case of
function calls, such as in this example, the provided cycle information is equivalent to the op
latency. In this case, the read_data function has an op latency of 1.

• Multi-cycle operations are visualized with a line straight through the box of the op. All

different visualization elements are listed in the Schedule Viewer Legend button in the
top right corner of the schedule viewer menu.

• Most importantly, a source location is associated with any operation. Double-clicking on the
operation highlights the source of the operation in the input source code.

For a function call, the provided cycle information is op Latency. In this case, the read_data
function has an op Latency of 1, as shown in the below properties tab.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=43

Figure 25: Schedule Viewer

• Navigate to the read_data function in the module hierarchy and identify a loop called
RD_Loop_Row loop.

○ This is a pipelined loop and the initiation interval (II) is explicitly stated in the loop bar. Any
pipelined loop is visualized unfolded, meaning one full iteration is shown in the schedule
viewer. Overlap as defined by II is marked by a thick clock boundary on the loop marker.

○ The total latency of a single iteration is equivalent to the number of cycles covered by the
loop marker. In this case, it is 5 cycles (1-5).

• Timing Violation

There is a timing violation in the following figure. The timing violation view can be navigated
to from the selected module hierarchy entry context menu or by using the focus pulldown in
the schedule viewer menu, as shown in the left pane in the following figure.

A timing violation is a path of operations requiring more time than the available clock cycle. To
visualize this, the problematic cycle is visualized with-in an extended cycle representation
where the actual cycle boundary is moved out and an opaque box is shown all belonging to
the same cycle.

By default all dependencies (blue lines) are shown between each operation in the critical
timing path.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=44

Figure 26: Operation Causing Violation

• This viewer is capable of displaying general operator dependencies. When selecting an
operation, you can see blue arrows highlighting the specific operator dependency in the
display. This gives you the ability to perform detailed analysis of data dependencies.

• Analyzing II violations are another special focus view. If a module contains such a violation,
the schedule viewer can show the violation through the context menu in the module hierarchy
or the focus drop down in the viewer.

As shown in the following figure, there is a path spawning the complete II. This implies that a
value needs to be computed before the next iteration can start and the path needs to be
shortened to get a lower II.

To identify the operations in the source code, double-click on the operation and the source
viewer will appear and identify the root of the object in the source.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=45

Figure 27: Timing Violations

• The filter button in the schedule viewer menu bar allows you to dynamically filter what
operations are shown in the schedule viewer. This can be done by type or by clustered
operations.

○ Filtering by type allows you to limit what operations get presented based on their
functionality. For example, visualizing only adders, multipliers, and function calls will
remove all of the small operations such as “and” and “or”s.

○ Filtering by clusters exploits the fact that the scheduler is able to group basic operations
and then schedule them as one component. The cluster filter setting can be enabled to
color the clusters or even collapse them into one large operation in the viewer. This allows
a more concise view of the schedule.

Dataflow Viewer

If the DATAFLOW directive has been applied to a function, the Analysis Perspective provides a
dataflow viewer which shows the structure of the design. This view gives a representation of the
dataflow graph structure, showing the different processes and the underlying producer-
consumer connections.

In the following figure, the icon beside the dct function indicates a dataflow view is available.
Right-click the function to open the dataflow view.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=46

Figure 28: Dataflow View

The Analysis Perspective is a highly interactive feature. More information on the Analysis
Perspective can be found in the Design Analysis section of the Vivado Design Suite Tutorial: High-
Level Synthesis (UG871).

TIP: Remember, even if a Tcl flow is used to create designs, the project can still be opened in the GUI and
the Analysis Perspective used to analyze the design.

Use the Synthesis perspective button to return to the synthesis view.

Generally after design analysis you can create a new solution to apply optimization directives.
Using a new solution for this allows the different solutions to be compared.

Creating a New Solution

The most typical use of Vivado HLS is to create an initial design, then perform optimizations to
meet the desired area and performance goals. Solutions offer a convenient way to ensure the
results from earlier synthesis runs can be both preserved and compared.

Use the New Solution toolbar button or the menu Project > New Solution to create a new
solution. This opens the Solution Wizard as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=47

Figure 29: New Solution Wizard

The Solution Wizard has the same options as the final window in the New Project wizard plus an
additional option that allow any directives and customs constraints applied to an existing
solution to be conveniently copied to the new solution, where they can be modified or removed.

After the new solution has been created, optimization directives can be added (or modified if
they were copied from the previous solution). The next section explains how directives can be
added to solutions. Custom constraints are applied using the configuration options and are
discussed in Optimizing the Design.

Applying Optimization Directives

The first step in adding optimization directives is to open the source code in the Information
pane. As shown in the following figure, expand the Source container located at the top of the
Explorer pane, and double-click the source file to open it for editing in the Information pane.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=48

Figure 30: Source and Directive

With the source code active in the Information pane, select the Directives tab on the right to
display and modify directives for the file. The Directives tab contains all the objects and scopes in
the currently opened source code to which you can apply directives.

Note: To apply directives to objects in other C files, you must open the file and make it active in the
Information pane.

Although you can select objects in the Vivado HLS GUI and apply directives, Vivado HLS applies
all directives to the scope that contains the object. For example, you can apply an INTERFACE
directive to an interface object in the Vivado HLS GUI. Vivado HLS applies the directive to the
top-level function (scope), and the interface port (object) is identified in the directive. In the
following example, port data_in on function foo is specified as an AXI4-Lite interface:

set_directive_interface -mode s_axilite "foo" adata_in

You can apply optimization directives to the following objects and scopes:

• Interfaces

When you apply directives to an interface, Vivado HLS applies the directive to the top-level
function, because the top-level function is the scope that contains the interface.

• Functions

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=49

When you apply directives to functions, Vivado HLS applies the directive to all objects within
the scope of the function. The effect of any directive stops at the next level of function
hierarchy. The only exception is a directive that requires a recursive option, such as the
PIPELINE directive that recursively unrolls all loops in the hierarchy.

• Loops

When you apply directives to loops, Vivado HLS applies the directive to all objects within the
scope of the loop. For example, if you apply a LOOP_MERGE directive to a loop, Vivado HLS
applies the directive to any sub-loops within the loop but not to the loop itself.

Note: The loop to which the directive is applied is not merged with siblings at the same level of
hierarchy.

• Arrays

When you apply directives to arrays, Vivado HLS applies the directive to the scope that
contains the array.

• Regions

When you apply directives to regions, Vivado HLS applies the directive to the entire scope of
the region. A region is any area enclosed within two braces. For example:

{
 the scope between these braces is a region
}

Note: You can apply directives to a region in the same way you apply directives to functions and loops.

To apply a directive, select an object in the Directives tab, right-click, and select Insert Directive
to open the Directives Editor dialog box. From the drop-down menu, select the appropriate
directive. The drop-down menu only shows directives that you can add to the selected object or
scope. For example, if you select an array object, the drop-down menu does not show the
PIPELINE directive, because an array cannot be pipelined. The following figure shows the
addition of the DATAFLOW directive to the DCT function.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=50

Figure 31: Adding Directives

Using Tcl Commands or Embedded Pragmas

In the Vivado HLS Directive Editor dialog box, you can specify either of the following Destination
settings:

• Directive File: Vivado HLS inserts the directive as a Tcl command into the file directives.tcl in
the solution directory.

• Source File: Vivado HLS inserts the directive directly into the C source file as a pragma.

The following table describes the advantages and disadvantages of both approaches.

Table 2: Tcl Commands Versus Pragmas

Directive Format Advantages Disadvantages
Directives file (Tcl Command) Each solution has independent

directives. This approach is ideal for
design exploration.
If any solution is re-synthesized, only
the directives specified in that solution
are applied.

If the C source files are transferred to a
third-party or archived, the
directives.tcl file must be included.
The directives.tcl file is required if
the results are to be re-created.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=51

Table 2: Tcl Commands Versus Pragmas (cont'd)

Directive Format Advantages Disadvantages
Source Code (Pragma) The optimization directives are

embedded into the C source code.
Ideal when the C sources files are
shipped to a third-party as C IP. No
other files are required to recreate the
same results.
Useful approach for directives that are
unlikely to change, such as TRIPCOUNT
and INTERFACE.

If the optimization directives are
embedded in the code, they are
automatically applied to every solution
when re-synthesized.

When specifying values for pragma arguments, you can use literal values (e.g., 1, 55, 3.14), or
pass a macro using #define. The following example shows a pragma with literal values:

#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=5

This example uses defined macros:

#define E 5
#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=E

IMPORTANT! Do not use user-defined macros to specify values for pragmas as they are not supported.

Pragma Validation

During C synthesis, the tool validates the pragmas on variables, functions, and loops. This
validation also includes pragma conflicts.

For example, when an array is declared, it is mapped to block RAM by default. You can partition
or reshape the array, but these are mutually exclusive options. And if you mistakenly specify the
array partition and reshape on the same variable, the tool errors out and the synthesis fails with
the following message:

WARNING: [XFORM 203-180] Applying partition directive (core.cpp:12:1) and
reshape
directive (core.cpp:13:1) on the same variable 'A' (core.cpp:11) may lead
to
unexpected synthesis behaviors. INFO: [XFORM 203-131] Reshaping array 'A'
(core.cpp:11) in dimension 1 completely. ERROR: [XFORM 203-103] Cannot
partition
array 'A' (core.cpp:11): variable is not an array. ERROR: [HLS 200-70] Pre-
synthesis
failed. command 'ap_source' returned error code

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=52

The following figure shows the DATAFLOW directive being added to the Directive File. The
directives.tcl file is located in the solution constraints folder and opened in the
Information pane using the resulting Tcl command.

Figure 32: Adding Tcl Directives

When directives are applied as a Tcl command, the Tcl command specifies the scope or the scope
and object within that scope. In the case of loops and regions, the Tcl command requires that
these scopes be labeled. If the loop or region does not currently have a label, a pop-up dialog box
asks for a label.

The following shows examples of labeled and unlabeled loops and regions.

// Example of a loop with no label
for(i=0; i<3;i++ {
 printf(“This is loop WITHOUT a label \n”);
}

// Example of a loop with a label
My_For_Loop:for(i=0; i<3;i++ {
 printf(“This loop has the label My_For_Loop \n”);
}

// Example of a region with no label
{
 printf(“The scope between these braces has NO label”);

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=53

}

// Example of a NAMED region
My_Region:{
 printf(“The scope between these braces HAS the label My_Region”);
}

TIP: Named loops allow the synthesis report to be easily read. An auto-generated label is assigned to loops
without a label.

The following figure shows the DATAFLOW directive added to the Source File and the resultant
source code open in the information pane. The source code now contains a pragma which
specifies the optimization directive.

Figure 33: Adding Pragma Directives

In both cases, the directive is applied and the optimization performed when synthesis is
executed. If the code was modified, either by inserting a label or pragma, a pop-up dialog box
reminds you to save the code before synthesis.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=54

Applying Optimization Directives to Global Variables

Directives can only be applied to scopes or objects within a scope. As such, they cannot be
directly applied to global variables which are declared outside the scope of any function.

To apply a directive to a global variable, apply the directive to the scope (function, loop or region)
where the global variable is used. Open the directives tab on a scope were the variable is used,
apply the directive and enter the variable name manually in Directives Editor.

Applying Optimization Directives to Class Objects

Optimization directives can be also applied to objects or scopes defined in a class. The difference
is typically that classes are defined in a header file. Use one of the following actions to open the
header file:

• From the Explorer pane, open the Includes folder, navigate to the header file, and double-click
the file to open it.

• From within the C source, place the cursor over the header file (the #include statement), to
open hold down the Ctrl key, and click the header file.

The directives tab is then populated with the objects in the header file and directives can be
applied.

CAUTION! Care should be taken when applying directives as pragmas to a header file. The file might be
used by other people or used in other projects. Any directives added as a pragma are applied each time the
header file is included in a design.

Applying Optimization Directives to Templates

To apply optimization directives manually on templates when using Tcl commands, specify the
template arguments and class when referring to class methods. For example, given the following
C++ code:

template <uint32 SIZE, uint32 RATE>
void DES10<SIZE,RATE>::calcRUN() {}

The following Tcl command is used to specify the INLINE directive on the function:

set_directive_inline DES10<SIZE,RATE>::calcRUN

Using #Define with Pragma Directives

Pragma directives do not natively support the use of values specified by the define statement.
The following code seeks to specify the depth of a stream using the define statement and will
not compile.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=55

TIP: Specify the depth argument with an explicit value.

#include <hls_stream.h>
using namespace hls;

#define STREAM_IN_DEPTH 8

void foo (stream<int> &InStream, stream<int> &OutStream) {

// Illegal pragma
#pragma HLS stream depth=STREAM_IN_DEPTH variable=InStream

// Legal pragma
#pragma HLS stream depth=8 variable=OutStream

}

If #define is unnecessary, you can use a constant, such as const int. For example:

const int MY_DEPTH=1024;
#pragma HLS stream variable=my_var depth=MY_DEPTH

You can use macros in the C code to implement this functionality. The key to using macros is to
use a level of hierarchy in the macro. This allows the expansion to be correctly performed. The
code can be made to compile as follows:

#include <hls_stream.h>
using namespace hls;

#define PRAGMA_SUB(x) _Pragma (#x)
#define PRAGMA_HLS(x) PRAGMA_SUB(x)
#define STREAM_IN_DEPTH 8

void foo (stream<int> &InStream, stream<int> &OutStream) {

// Legal pragmas
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=InStream)
#pragma HLS stream depth=8 variable=OutStream

}

Failure to Satisfy Optimization Directives

When optimization directives are applied, Vivado HLS outputs information to the console (and
log file) detailing the progress. In the following example the PIPELINE directives was applied to
the C function with an II=1 (iteration interval of 1) but synthesis failed to satisfy this objective.

INFO: [SCHED 11] Starting scheduling ...
INFO: [SCHED 61] Pipelining function 'array_RAM'.
WARNING: [SCHED 63] Unable to schedule the whole 2 cycles 'load' operation
('d_i_load', array_RAM.c:98) on array 'd_i' within the first cycle (II = 1).

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=56

WARNING: [SCHED 63] Please consider increasing the target initiation
interval of the
pipeline.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('idx_load_2',
array_RAM.c:98) on array 'idx' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 4, Depth: 6.
INFO: [SCHED 11] Finished scheduling.

IMPORTANT! If Vivado HLS fails to satisfy an optimization directive, it automatically relaxes the
optimization target and seeks to create a design with a lower performance target. If it cannot relax the
target, it will halt with an error.

By seeking to create a design which satisfies a lower optimization target, Vivado HLS is able to
provide three important types of information:

• What target performance can be achieved with the current C code and optimization
directives.

• A list of the reasons why it was unable to satisfy the higher performance target.

• A design which can be analyzed to provide more insight and help understand the reason for
the failure.

In message SCHED-69, the reason given for failing to reach the target II is due to limited ports.
The design must access a block RAM, and a block RAM only has a maximum of two ports.

The next step after a failure such as this is to analyze what the issue is. In this example, analyze
line 52 of the code and/or use the Analysis perspective to determine the bottleneck and if the
requirement for more than two ports can be reduced or determine how the number of ports can
be increased.

After the design is optimized and the desired performance achieved, the RTL can be verified and
the results of synthesis packaged as IP.

Verifying the RTL is Correct
Use the C/RTL cosimulation toolbar button or the menu Solution > Run C/RTL cosimulation
verify the RTL results.

The C/RTL co-simulation dialog box shown in the following figure allows you to select which
type of RTL output to use for verification (Verilog or VHDL) and which HDL simulator to use for
the simulation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=57

Figure 34: C/RTL Co-Simulation Dialog Box

When verification completes, the console displays message SIM-1000 to confirm the
verification was successful. The result of any printf commands in the C test bench are echoed
to the console.

INFO: [COSIM 316] Starting C post checking ...
Test passed !
INFO: [COSIM 1000] *** C/RTL co-simulation finished: PASS ***

The simulation report opens automatically in the Information pane, showing the pass or fail
status and the measured statistics on latency and II.

IMPORTANT! The C/RTL co-simulation only passes if the C test bench returns a value of zero. Co-
simulation tests the scenarios in the test bench and passes if it returns True or 0. If it fails, it returns False
or 1.

Reviewing the Output of C/RTL Co-Simulation

A sim directory is created in the solution folder when RTL verification completes. The following
figure shows the sub-folders created.

• The report folders contains the report and log file for each type of RTL simulated.

• A verification folder is created for each type of RTL which is verified. The verification folder is
named verilog or vhdl. If an RTL format is not verified, no folder is created.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=58

• The RTL files used for simulation are stored in the verification folder.

• The RTL simulation is executed in the verification folder.

• Any outputs, such as trace files, are written to the verification folder.

• Folders autowrap, tv, wrap and wrap_pc are work folders used by Vivado HLS. There are
no user files in these folders.

If the Setup Only option was selected in the C/RTL Co-Simulation dialog boxes, an executable is
created in the verification folder but the simulation is not run. The simulation can be manually
run by executing the simulation executable at the command prompt.

Note: For more information on the RTL verification process, see Verifying the RTL.

Figure 35: RTL Verification Output

Packaging the IP
The final step in the Vivado HLS design flow is to package the RTL output as IP. Use the Export

RTL toolbar button or the menu Solution > Export RTL to open the Export RTL dialog box
shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=59

Figure 36: RTL Export Dialog Box

The selections available in the drop-down Format Selection menu depend on the FPGA device
targeted for synthesis.

Reviewing the Output of IP Packaging

The folder impl is created in the solution folder when the Export RTL process completes.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=60

Figure 37: Export RTL Output

In all cases the output includes:

• The report folder. If the flow option is selected, the report for Verilog and VHDL synthesis
or implementation is placed in this folder.

• The verilog folder. This contains the Verilog format RTL output files. If the flow option is
selected, RTL synthesis or implementation is performed in this folder.

• The vhdl folder. This contains the VHDL format RTL output files. If the flow option is
selected, RTL synthesis or implementation is performed in this folder.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=61

IMPORTANT! Xilinx does not recommend directly using the files in the verilog  or vhdl  folders for
your own RTL synthesis project. Instead, Xilinx recommends using the packaged IP output files discussed
next. Please carefully read the text that immediately follows this note.

In cases where Vivado HLS uses Xilinx IP in the design, such as with floating point designs, the
RTL directory includes a script to create the IP during RTL synthesis. If the files in the verilog
or vhdl folders are copied out and used for RTL synthesis, it is your responsibility to correctly
use any script files present in those folders. If the package IP is used, this process is performed
automatically by the design Xilinx tools.

The Format Selection drop-down determines which other folders are created. The following
formats are provided: IP Catalog, System Generator for DSP, and Synthesized Checkpoint (.dcp).

Table 3: RTL Export Selections

Format Selection Sub-Folder Comments
IP Catalog ip Contains a ZIP file which can be added to the Vivado IP Catalog. The

ip folder also contains the contents of the ZIP file (unzipped).
This option is not available for FPGA devices older than 7 series or
Zynq-7000 SoC.

System Generator for DSP sysgen This output can be added to the Vivado edition of System Generator
for DSP.
This option is not available for FPGA devices older than 7 series or
Zynq-7000 SoC.

Synthesized Checkpoint (.dcp) ip This option creates Vivado checkpoint files which can be added
directly into a design in the Vivado Design Suite.
This option requires RTL synthesis to be performed. When this
option is selected, the flow option and setting syn is automatically
selected.
The output includes an HDL wrapper you can use to instantiate the
IP into an HDL file.

Example Vivado RTL Project

The Export RTL process automatically creates a Vivado RTL project. For hardware designers more
familiar with RTL design and working in the Vivado RTL environment, this provides a convenient
way to analyze the RTL.

As shown in the preceding figure, a project.xpr file is created in the verilog and vhdl folders.
This file can be used to directly open the RTL output inside the Vivado Design Suite.

If C/RTL co-simulation has been executed in Vivado HLS, the Vivado project contains an RTL test
bench and the design can be simulated.

The Vivado RTL project has the RTL output from Vivado HLS as the top-level design. Typically,
this design should be incorporated as IP into a larger Vivado RTL project. This Vivado project is
provided solely as a means for design analysis and is not intended as a path to implementation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=62

Example IP Integrator Project

If IP Catalog is selected as the output format, the output folder impl/ip/example is created.
This folder contains an executable (ipi_example.bat or ipi_example.csh) which can be
used to create a project for IP Integrator.

To create the IP Integrator project, execute the ipi_example.* file at the command prompt
then open the Vivado IPI project file which is created.

Archiving the Project
To archive the Vivado HLS project to an industry-standard ZIP file, select File > Archive. Use the
Archive Name option to name the specified ZIP file. You can modify the default settings as
follows:

• By default, only the current active solution is archived. To ensure all solutions are archived,
deselect the Active Solution Only option.

• By default, the archive contains all of the output results from the archived solutions. If you
want to archive the input files only, deselect the Include Run Results option.

Using the Command Prompt and Tcl Interface
On Windows the Vivado HLS Command Prompt can be invoked from the start menu: Xilinx
Design Tools → Vivado 2018.x → Vivado HLS → Vivado HLS 2018.x Command Prompt.

On Windows and Linux, using the -i option with the vivado_hls command opens Vivado HLS
in interactive mode. Vivado HLS then waits for Tcl commands to be entered.

$ vivado_hls -i [-l <log_file>]

vivado_hls>

By default, Vivado HLS creates a vivado_hls.log file in the current directory. To specify a
different name for the log file, the -1 <log_file> option can be used.

The help command is used to access documentation on the commands. A complete list of all
commands is provided using:

vivado_hls> help

Help on any individual command is provided by using the command name.

vivado_hls> help <command>

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=63

Any command or command option can be completed using the auto-complete feature. After a
single character has been specified, pressing the tab key causes Vivado HLS to list the possible
options to complete the command or command option. Entering more characters improves the
filtering of the possible options. For example, pressing the tab key after typing “open” lists all
commands that start with “open”.

vivado_hls> open <press tab key>
open
open_project
open_solution

Selecting the Tab Key after typing open_p auto-completes the command open_project,
because there are no other possible options.

Type the exit command to quit interactive mode and return to the shell prompt:

vivado_hls> exit

Additional options for Vivado HLS are:

• vivado_hls -p: open the specified project

• vivado_hls -nosplash: open the GUI without the Vivado HLS splash screen

• vivado_hls -r: return the path to the installation root directory

• vivado_hls -s: return the type of system (for example: Linux, Win)

• vivado_hls -v: return the release version number.

Commands embedded in a Tcl script are executed in batch mode with the -f <script_file>
option.

$ vivado_hls -f script.tcl

All the Tcl commands for creating a project in GUI are stored in the script.tcl file within the
solution. If you wish to develop Tcl batch scripts, the script.tcl file is an ideal starting point.

Understanding the Windows Command Prompt

On the Windows OS, the Vivado HLS Command prompt is implemented using the Minimalist
GNU for Windows (minGW) environment, that allows both standard Windows DOS commands
to be used and/or a subset of Linux commands.

The following figure shows that both (or either) the Linux ls command and the DOS dir
command is used to list the contents of a directory.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=64

Figure 38: Vivado HLS Command Prompt

Be aware that not all Linux commands and behaviors are supported in the minGW environment.
The following represent some known common differences in support:

• The Linux which command is not supported.

• Linux paths in a Makefile expand into minGW paths. In all Makefile files, replace any Linux
style path name assignments such as FOO := :/ with versions in which the path name is
quoted such as FOO := “:/” to prevent any path substitutions.

Improving Runtime and Capacity
If the issue is with C/RTL co-simulation, refer to the reduce_diskspace option discussed in
Verifying the RTL. The remainder of this section reviews issues with synthesis runtime.

Vivado HLS schedules operations hierarchically. The operations within a loop are scheduled, then
the loop, the sub-functions and operations with a function are scheduled. Runtime for Vivado
HLS increases when:

• There are more objects to schedule.

• There is more freedom and more possibilities to explore.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=65

Vivado HLS schedules objects. Whether the object is a floating-point multiply operation or a
single register, it is still an object to be scheduled. The floating-point multiply may take multiple
cycles to complete and use many resources to implement but at the level of scheduling it is still
one object.

Unrolling loops and partitioning arrays creates more objects to schedule and potentially increases
the runtime. Inlining functions creates more objects to schedule at this level of hierarchy and also
increases runtime. These optimizations may be required to meet performance but be very careful
about simply partitioning all arrays, unrolling all loops and inlining all functions: you can expect a
runtime increase. Use the optimization strategies provided earlier and judiciously apply these
optimizations.

If the arrays must be partitioned to achieve performance, consider using the
throughput_driven option for config_array_partition to only partition the arrays
based on throughput requirements.

If the loops must be unrolled, or if the use of the PIPELINE directive in the hierarchy above has
automatically unrolled the loops, consider capturing the loop body as a separate function. This
will capture all the logic into one function instead of creating multiple copies of the logic when
the loop is unrolled: one set of objects in a defined hierarchy will be scheduled faster. Remember
to pipeline this function if the unrolled loop is used in pipelined region.

The degrees of freedom in the code can also impact runtime. Consider Vivado HLS to be an
expert designer who by default is given the task of finding the design with the highest
throughput, lowest latency and minimum area. The more constrained Vivado HLS is, the fewer
options it has to explore and the faster it will run. Consider using latency constraints over scopes
within the code: loops, functions or regions. Setting a LATENCY directive with the same
minimum and maximum values reduces the possible optimization searches within that scope.

Finally, the config_schedule configuration controls the effort level used during scheduling.
This generally has less impact than the techniques mentioned above, but it is worth considering.
The default strategy is set to Medium.

If this setting is set to Low, Vivado HLS will reduce the amount of time it spends on trying to
improve on the initial result. In some cases, especially if there are many operations and hence
combinations to explore, it may be worth using the low setting. The design may not be ideal but
it may satisfy the requirements and be very close to the ideal. You can proceed to make progress
with the low setting and then use the default setting before you create your final result.

With a run strategy set to High, Vivado HLS uses additional CPU cycles and memory, even after
satisfying the constraints, to determine if it can create an even smaller or faster design. This
exploration may, or may not, result in a better quality design but it does take more time and
memory to complete. For designs that are just failing to meet their goals or for designs where
many different optimization combinations are possible, this could be a useful strategy. In general,
it is a better practice to leave the run strategies at the Medium default setting.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=66

Design Examples and References

Tutorials

Tutorials are available in the Vivado Design Suite Tutorial: High-Level Synthesis (UG871). The
following table shows a list of the tutorial exercises.

Table 4: Vivado HLS Tutorial Exercises

Tutorial Exercise Description
Vivado HLS Introductory Tutorial An introduction to the operation and primary features of

Vivado HLS using an FIR design.

C Validation This tutorial uses a Hamming window design to explain C
simulation and using the C debug environment to validate
your C algorithm.

Interface Synthesis Exercises on how to create various types of RTL interface
ports using interface synthesis.

Arbitrary Precision Types Shows how a floating-point winding function is
implemented using fixed-point arbitrary precision types to
produce more optimal hardware.

Design Analysis Shows how the Analysis perspective is used to improve the
performance of a DCT block.

Design Optimization Uses a matrix multiplication example to show how an
algorithm in optimized. This tutorial demonstrates how
changes to the initial might be required for a specific
hardware implementation.

RTL Verification How to use the RTL verification features and analyze the RTL
signals waveforms.

Using HLS IP in IP Integrator Shows how two HLS pre and post processing blocks for an
FFT can be connected to an FFT IP block using IP integrator.

Using HLS IP in a Zynq-7000 SoC Processor Design Shows how the CPU can be used to control a Vivado HLS
block through the AXI4-Lite interface and DMA streaming
data from DDR memory to and from a Vivado HLS block.
Includes the CPU source code and required steps in SDK.

Using HLS IP in System Generator for DSP A tutorial on how to use an HLS block and inside a System
Generator for DSP design.

Design Examples

To open the Vivado HLS design examples from the Welcome Page, click Open Example Project.
In the Examples wizard, select a design from the Design Examples folder.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by
selecting Help → Welcome.

You can also open the design examples directly from the Vivado Design Suite installation area:
Vivado_HLS\2018.x\examples\design.

The following table provides a description for each design example.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 67Send Feedback

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=67

Table 5: Vivado HLS Design Examples

Design Example Description
2D_convolution_with_linebuffer 2D convolution implemented using hls::streams and a line

buffer to conserve resources.

FFT > fft_ifft Inverse FFT using FFT IP.

FFT > fft_single Single 1024 point forward FFT with pipelined streaming I/O.

FIR > fir_2ch_int FIR filter with 2 interleaved channels.

FIR > fir_3stage FIR chain with 3 FIRs connected in series: Half band FIR to
Half band FIR to a square root raise cosine (SRRC) FIR.

FIR > fir_config FIR filter with coefficients updated using the FIR CONFIG
channel.

FIR > fir_srrc SRRC FIR filter.

__builtin_ctz Priority encoder (32- and 64-bit versions) implemented
using gcc built-in ‘count trailing zero’ function.

axi_lite AXI4-Lite interface.

axi_master AXI4 master interface.

axi_stream_no_side_channel_data AXI4-Stream interface with no side-channel data in the C
code.

axi_stream_side_channel_data AXI4-Stream interfaces using side-channel data.

dds > dds_mode_fixed DDS IP created with both phase offset and phase increment
used in fixed mode.

dds > dds_mode_none DDS IP created with phase offset in fixed mode and no
phase increment (mode=none).

dsp > atan2 arctan function from the HLS DSP library.

dsp > awgn Additive white Gaussian noise (awgn) function from the HLS
DSP library.

dsp > cmpy_complex Fixed-point complex multiplier using complex data types.

dsp > cmpy_scalar Fixed-point complex multiplier using separate scalar data
types for the real and imaginary components.

dsp > convolution_encoder Convolution_encoder function from the HLS DSP library,
which performs convolutional encoding of an input data
stream based on user-defined convolution codes and
constraint length.

dsp > nco Numerically controlled oscillator (NCO) function from the
HLS DSP library.

dsp > sqrt Fixed-point coordinate rotation digital computer (CORDIC)
implementation of the square root function from the HLS
DSP library.

dsp > viterbi_decoder Viterbi decoder from the HLS DSP library.

fp_mul_pow2 Efficient (area and timing) floating point multiplication
implementation using power-of-two, which uses a small
adder and some optional limit checks instead of a floating-
point core and DSP resources.

fxp_sqrt Square-root implementation for ap_fixed types
implemented in a bit-serial, fully pipelineable manner.

hls_stream Multirate dataflow (8-bit I/O, 32-bit data processing and
decimation) design using hls::stream.

linear_algebra > cholesky Parameterized Cholesky function.

linear_algebra > cholesky_alt Alternative Cholesky implementation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=68

Table 5: Vivado HLS Design Examples (cont'd)

Design Example Description
linear_algebra > cholesky_alt_inverse Cholesky function with a customized trait class to select

different implementations.

linear_algebra > cholesky_complex Cholesky function with a complex data type.

linear_algebra > cholesky_inverse Parameterized Cholesky Inverse function.

linear_algebra > implementation_targets Implementation target examples.
For details, see Optimizing the Linear Algebra Functions.

linear_algebra > matrix_multiply Parameterized matrix multiply function.

linear_algebra > matrix_multiply_alt Alternative matrix multiply function.

linear_algebra > qr_inverse Parameterized QR Inverse function.

linear_algebra > qrf Parameterized QRF function.

linear_algebra > qrf_alt Alternative parameterized QRF function.

linear_algebra > svd Parameterized SVD function.

linear_algebra > svd_pairs Parameterized SVD function with alternative “pairs” SVD
implementation.

loop_labels > loop_label Loop with a label.

loop_labels > no_loop_label Loop without a label.

memory_porting_and_ii Initiation interval improved using array partitioning
directives.

perfect_loop > perfect Perfect loop.

perfect_loop > semi_perfect Semi-perfect loop.

rom_init_c Array coded using a sub-function to guarantee a ROM
implementation.

window_fn_float Single-precision floating point windowing function. C++
template class example with compile time selection
between Rectangular (none), Hann, Hamming, or Gaussian
windows.

window_fn_fxpt Fixed-point windowing function. C++ template class
example with compile time selection between Rectangular
(none), Hann, Hamming, or Gaussian windows.

Coding Examples

The Vivado HLS coding examples provide examples of various coding techniques. These are small
examples intended to highlight the results of Vivado HLS synthesis on various C, C++, and
SystemC constructs.

To open the Vivado HLS coding examples from the Welcome Page, click Open Example Project.
In the Examples wizard, select a design from the Coding Style Examples folder.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by
selecting Help → Welcome.

You can also open the design examples directly from the Vivado Design Suite installation area:
Vivado_HLS\2018.x\examples\coding.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=69

The following table provides a description for each coding example.

Table 6: Vivado HLS Coding Examples

Coding Example Description
apint_arith Using C ap_cint types.

apint_promotion Highlights the casting required to avoid integer promotion
issues with C ap_cint types.

array_arith Using arithmetic in interface arrays.

array_FIFO Implementing a FIFO interface.

array_mem_bottleneck Demonstrates how access to arrays can create a
performance bottleneck.

array_mem_perform A solution for the performance bottleneck shown by
example array_mem_bottleneck.

array_RAM Implementing a block RAM interface.

array_ROM Example demonstrating how a ROM is automatically
inferred.

array_ROM_math_init Example demonstrating how to infer a ROM in more
complex cases.

cpp_ap_fixed Using C++ ap_int types.

cpp_ap_int_arith Using C++ ap_int types for arithmetic.

cpp_FIR An example C++ design using object orientated coding style.

cpp_math An example floating point math design that shows how to
use a tolerance in the test bench when comparing results
for operations that are not IEEE exact.

cpp_template C++ template example.

func_sized Fixing the size of operation by defining the data widths at
the interface.

hier_func An example of adding files as test bench and design files.

hier_func2 An example of adding files as test bench and design files. An
example of synthesizing a lower-level block in the hierarchy.

hier_func3 An example of combining test bench and design functions
into the same file.

hier_func4 Using the pre-defined macro __SYNTHESIS__ to prevent code
being synthesized.
Only use the __SYNTHESIS__ macro in the code to be
synthesized. Do not use this macro in the test bench,
because it is not obeyed by C simulation or C RTL co-
simulation.

loop_functions Converting loops into functions for parallel execution.

loop_imperfect An imperfect loop example.

loop_max_bounds Using a maximum bounds to allow loops be unrolled.

loop_perfect A perfect loop example.

loop_pipeline Example of loop pipelining.

loop_sequential Sequential loops.

loop_sequential_assert Using assert statements.

loop_var A loop with variable bounds.

malloc_removed Example on removing mallocs from the code.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=70

Table 6: Vivado HLS Coding Examples (cont'd)

Coding Example Description
pointer_arith Pointer arithmetic example.

pointer_array An array of pointers.

pointer_basic Basic pointer example.

pointer_cast_native Pointer casting between native C types.

pointer_double Pointer-to-Pointer example.

pointer_multi An example of using multiple pointer targets.

pointer_stream_better Example showing how the volatile keyword is used on
interfaces.

pointer_stream_good Multi-read pointer example using explicit pointer arithmetic.

sc_combo_method SystemC combinational design example.

sc_FIFO_port SystemC FIFO port example.

sc_multi_clock SystemC example with multiple clocks.

sc_RAM_port SystemC block RAM port example.

sc_sequ_cthread SystemC sequential design example.

struct_port Using structs on the interface.

sum_io Example of top-level interface ports.

types_composite Composite types.

types_float_double Float types to double type conversion.

types_global Using global variables.

types_standard Example with standard C types.

types_union Example with unions.

Data Types for Efficient Hardware
C-based native data types are all on 8-bit boundaries (8, 16, 32, 64 bits). RTL buses
(corresponding to hardware) support arbitrary data lengths. Using the standard C data types can
result in inefficient hardware. For example the basic multiplication unit in an FPGA is the DSP48
macro. This provides a multiplier which is 18*18-bit. If a 17-bit multiplication is required, you
should not be forced to implement this with a 32-bit C data type: this would require three DSP48
macros to implement a multiplier when only one is required.

The advantage of arbitrary precision data types is that they allow the C code to be updated to
use variables with smaller bit-widths and then for the C simulation to be re-executed to validate
the functionality remains identical or acceptable. The smaller bit-widths result in hardware
operators which are in turn smaller and faster. This is in turn allows more logic to be place in the
FPGA and for the logic to execute at higher clock frequencies.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=71

Advantages of Hardware Efficient Data Types
The following code performs some basic arithmetic operations:

#include "types.h"

void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD_t inD,
 dout1_t *out1, dout2_t *out2, dout3_t *out3, dout4_t *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

The data types dinA_t, dinB_t, etc. are defined in the header file types.h. It is highly
recommended to use a project wide header file such as types.h as this allows for the easy
migration from standard C types to arbitrary precision types and helps in refining the arbitrary
precision types to the optimal size.

If the data types in the above example are defined as:

typedef char dinA_t;
typedef short dinB_t;
typedef int dinC_t;
typedef long long dinD_t;
typedef int dout1_t;
typedef unsigned int dout2_t;
typedef int32_t dout3_t;
typedef int64_t dout4_t;

The design gives the following results after synthesis:

+ Timing (ns):
 * Summary:
 +---------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +---------+-------+----------+------------+
 |default | 4.00| 3.85| 0.50|
 +---------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 66| 66| 67| 67| none |
 +-----+-----+-----+-----+---------+
* Summary:
+-----------------+---------+-------+--------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=72

+-----------------+---------+-------+--------+--------+
Expression	-	-	0	17
FIFO	-	-	-	-
Instance	-	1	17920	17152
Memory	-	-	-	-
Multiplexer	-	-	-	-
Register	-	-	7	-
+-----------------+---------+-------+--------+--------+				
Total	0	1	17927	17169
+-----------------+---------+-------+--------+--------+				
Available	650	600	202800	101400
+-----------------+---------+-------+--------+--------+				
Utilization (%)	0	~0	8	16
+-----------------+---------+-------+--------+--------+

If the width of the data is not required to be implemented using standard C types but in some
width which is smaller, but still greater than the next smallest standard C type, such as the
following,

typedef int6 dinA_t;
typedef int12 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;
typedef int18 dout1_t;
typedef uint13 dout2_t;
typedef int22 dout3_t;
typedef int6 dout4_t;

The results after synthesis shown an improvement to the maximum clock frequency, the latency
and a significant reduction in area of 75%.

+ Timing (ns):
 * Summary:
 +---------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +---------+-------+----------+------------+
 |default | 4.00| 3.49| 0.50|
 +---------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 35| 35| 36| 36| none |
 +-----+-----+-----+-----+---------+
* Summary:
+-----------------+---------+-------+--------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+-----------------+---------+-------+--------+--------+
|Expression | -| -| 0| 13|
|FIFO | -| -| -| -|
|Instance | -| 1| 4764| 4560|
|Memory | -| -| -| -|
|Multiplexer | -| -| -| -|
|Register | -| -| 6| -|
+-----------------+---------+-------+--------+--------+

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=73

|Total | 0| 1| 4770| 4573|
+-----------------+---------+-------+--------+--------+
|Available | 650| 600| 202800| 101400|
+-----------------+---------+-------+--------+--------+
|Utilization (%) | 0| ~0 | 2| 4|
+-----------------+---------+-------+--------+--------+

The large difference in latency between both design is due to the division and remainder
operations which take multiple cycles to complete. Using accurate data types, rather than force
fitting the design into standard C data types, results in a higher quality FPGA implementation: the
same accuracy, running faster with less resources.

Overview of Arbitrary Precision Integer Data Types
Vivado® HLS provides integer and fixed-point arbitrary precision data types for C, C++ and
supports the arbitrary precision data types that are part of SystemC.

Table 7: Arbitrary Precision Data Types

Language Integer Data Type Required Header
C [u]int<W> (1024 bits) #include “ap_cint.h”

C++ ap_[u]int<W> (1024 bits)
Can be extended to 32K bits wide.

#include “ap_int.h”

C++ ap_[u]fixed<W,I,Q,O,N> #include “ap_fixed.h”

System C sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)

#include “systemc.h”

System C sc_[u]fixed<W,I,Q,O,N> #define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”

The header files which define the arbitrary precision types are also provided with Vivado® HLS as
a standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>.tgz is provided in the include directory in the
Vivado® HLS installation area. The package does not include the C arbitrary precision types
defined in ap_cint.h. These types cannot be used with standard C compilers - only with
Vivado® HLS.

Arbitrary Precision Integer Types with C

For the C language, the header file ap_cint.h defines the arbitrary precision integer data types
[u]int. To use arbitrary precision integer data types in a C function:

• Add header file ap_cint.h to the source code.

• Change the bit types to intN or uintN, where N is a bit-size from 1 to 1024.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=74

Arbitrary Precision Types with C++

For the C++ language ap_[u]int data types the header file ap_int.h defines the arbitrary
precision integer data type. To use arbitrary precision integer data types in a C++ function:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_int.h"

void foo_top () {

ap_int<9> var1; // 9-bit
ap_uint<10> var2; // 10-bit unsigned

The default maximum width allowed for ap_[u]int data types is 1024 bits. This default may be
overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 32768 before inclusion of the ap_int.h header file.

CAUTION! Setting the value of AP_INT_MAX_W  too high can cause slow software compile and run
times.

CAUTION! ROM Synthesis can take a long time when using APFixed: . Changing it to int  results in a
quicker synthesis. For example:

static ap_fixed<32> a[32][depth] =

Can be changed to:

static int a[32][depth] =

The following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_int.h"

ap_int<4096> very_wide_var;

Arbitrary Precision Types with SystemC

The arbitrary precision types used by SystemC are defined in the systemc.h header file that is
required to be included in all SystemC designs. The header file includes the SystemC sc_int<>,
sc_uint<>, sc_bigint<> and sc_biguint<> types.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=75

Overview of Arbitrary Precision Fixed-Point Data
Types
Fixed-point data types model the data as an integer and fraction bits. In this example the Vivado
HLS ap_fixed type is used to define an 18-bit variable with 6 bits representing the numbers
above the binary point and 12-bits representing the value below the decimal point. The variable
is specified as signed, the quantization mode is set to round to plus infinity. Since the overflow
mode is not specified, the default wrap-around mode is used for overflow.

#include <ap_fixed.h>
...
ap_fixed<18,6,AP_RND > my_type;
...

When performing calculations where the variables have different number of bits or different
precision, the binary point is automatically aligned.

The behavior of the C++/SystemC simulations performed using fixed-point matches the resulting
hardware. This allows you to analyze the bit-accurate, quantization, and overflow behaviors using
fast C-level simulation.

Fixed-point types are a useful replacement for floating point types which require many clock
cycle to complete. Unless the entire range of the floating-point type is required, the same
accuracy can often be implemented with a fixed-point type resulting in the same accuracy with
smaller and faster hardware.

A summary of the ap_fixed type identifiers is provided in the following table.

Table 8: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits

I The number of bits used to represent the integer value (the number of bits above the
binary point)

Q Quantization mode
This dictates the behavior when greater precision is generated than can be defined by
smallest fractional bit in the variable used to store the result.

SystemC Types ap_fixed Types Description

SC_RND AP_RND Round to plus infinity

SC_RND_ZERO AP_RND_ZERO Round to zero

SC_RND_MIN_INF AP_RND_MIN_INF Round to minus infinity

SC_RND_INF AP_RND_INF Round to infinity

SC_RND_CONV AP_RND_CONV Convergent rounding

SC_TRN AP_TRN Truncation to minus infinity
(default)

SC_TRN_ZERO AP_TRN_ZERO Truncation to zero

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=76

Table 8: Fixed-Point Identifier Summary (cont'd)

Identifier Description
O Overflow mode.

This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) value which can be stored in the result variable.

SystemC Types ap_fixed Types Description

SC_SAT AP_SAT Saturation

SC_SAT_ZERO AP_SAT_ZERO Saturation to zero

SC_SAT_SYM AP_SAT_SYM Symmetrical saturation

SC_WRAP AP_WRAP Wrap around (default)

SC_WRAP_SM AP_WRAP_SM Sign magnitude wrap
around

N This defines the number of saturation bits in the overflow wrap modes.

The default maximum width allowed for ap_[u]fixed data types is 1024 bits. This default may
be overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 32768 before inclusion of the ap_int.h header file.

CAUTION! Setting the value of AP_INT_MAX_W  too High may cause slow software compile and run
times.

CAUTION! ROM synthesis can be slow when: static APFixed_2_2 CAcode_sat[32]
[CACODE_LEN] =  . Changing APFixed  to int  results in a faster synthesis: static int
CAcode_sat[32][CACODE_LEN] =

The following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_fixed.h"

ap_fixed<4096> very_wide_var;

Arbitrary precision data types are highly recommend when using Vivado HLS. As shown in the
earlier example, they typically have a significant positive benefit on the quality of the hardware
implementation.

Managing Interfaces
In C based design, all input and output operations are performed, in zero time, through formal
function arguments. In an RTL design these same input and output operations must be
performed through a port in the design interface and typically operates using a specific I/O
(input-output) protocol.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=77

Vivado HLS supports the following solution for specifying the type of I/O protocol used:

• Interface Synthesis, where the port interface is created based on efficient industry standard
interfaces.

Interface Synthesis
When the top-level function is synthesized, the arguments (or parameters) to the function are
synthesized into RTL ports. This process is called interface synthesis.

Interface Synthesis Overview

The following code provides a comprehensive overview of interface synthesis.

#include "sum_io.h"

dout_t sum_io(din_t in1, din_t in2, dio_t *sum) {

 dout_t temp;

 *sum = in1 + in2 + *sum;
 temp = in1 + in2;

 return temp;
}

The above example includes:

• Two pass-by-value inputs in1 and in2.

• A pointer sum that is both read from and written to.

• A function return, the value of temp.

With the default interface synthesis settings, the design is synthesized into an RTL block with the
ports shown in the following figure.

Figure 39: RTL Ports After Default Interface Synthesis

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=78

Vivado HLS creates three types of ports on the RTL design:

• Clock and Reset ports: ap_clk and ap_rst.

• Block-Level interface protocol. These are shown expanded in the preceding figure: ap_start,
ap_done, ap_ready, and ap_idle.

• Port Level interface protocols. These are created for each argument in the top-level function
and the function return (if the function returns a value). In this example, these ports are: in1,
in2, sum_i, sum_o, sum_o_ap_vld, and ap_return.

Clock and Reset Ports

If the design takes more than 1 cycle to complete operation.

A chip-enable port can optionally be added to the entire block using Solution → Solution
Settings → General and config_interface configuration.

The operation of the reset is controlled by the config_rtl configuration.

Block-Level Interface Protocol

By default, a block-level interface protocol is added to the design. These signal control the block,
independently of any port-level I/O protocols. These ports control when the block can start
processing data (ap_start), indicate when it is ready to accept new inputs (ap_ready) and
indicate if the design is idle (ap_idle) or has completed operation (ap_done).

Port-Level Interface Protocol

The final group of signals are the data ports. The I/O protocol created depends on the type of C
argument and on the default. After the block-level protocol has been used to start the operation
of the block, the port-level IO protocols are used to sequence data into and out of the block.

By default input pass-by-value arguments and pointers are implemented as simple wire ports
with no associated handshaking signal. In the above example, the input ports are therefore
implemented without an I/O protocol, only a data port. If the port has no I/O protocol, (by
default or by design) the input data must be held stable until it is read.

By default output pointers are implemented with an associated output valid signal to indicate
when the output data is valid. In the above example, the output port is implemented with an
associated output valid port (sum_o_ap_vld) which indicates when the data on the port is valid
and can be read. If there is no I/O protocol associated with the output port, it is difficult to know
when to read the data. It is always a good idea to use an I/O protocol on an output.

Function arguments which are both read from and writes to are split into separate input and
output ports. In the above example, sum is implemented as input port sum_i and output port
sum_o with associated I/O protocol port sum_o_ap_vld.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=79

If the function has a return value, an output port ap_return is implemented to provide the
return value. When the design completes one transaction - this is equivalent to one execution of
the C function - the block-level protocols indicate the function is complete with the ap_done
signal. This also indicates the data on port ap_return is valid and can be read.

Note: The return value to the top-level function cannot be a pointer.

For the example code shown the timing behavior is shown in the following figure (assuming that
the target technology and clock frequency allow a single addition per clock cycle).

Figure 40: RTL Port Timing with Default Synthesis

• The design starts when ap_start is asserted High.

• The ap_idle signal is asserted Low to indicate the design is operating.

• The input data is read at any clock after the first cycle. Vivado HLS schedules when the reads
occur. The ap_ready signal is asserted high when all inputs have been read.

• When output sum is calculated, the associated output handshake (sum_o_ap_vld) indicates
that the data is valid.

• When the function completes, ap_done is asserted. This also indicates that the data on
ap_return is valid.

• Port ap_idle is asserted High to indicate that the design is waiting start again.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=80

Interface Synthesis I/O Protocols

The type of interfaces that are created by interface synthesis depends on the type of C
argument, the default interface mode, and the INTERFACE optimization directive. The following
figure shows the interface protocol mode you can specify on each type of C argument. This
figure uses the following abbreviations:

• D: Default interface mode for each type.

Note: If you specify an illegal interface, Vivado HLS issues a message and implements the default
interface mode.

• I: Input arguments, which are only read.

• O: Output arguments, which are only written to.

• I/O: Input/Output arguments, which are both read and written.

Figure 41: Data Type and Interface Synthesis Support

D

D

Input Return

Scalar

I I/O O

Array

D

D

D

I I/O O

Pointer or Reference

ap_ctrl_chain

axis

s_axilite

m_axi

ap_none

ap_stable

ap_ack

ap_vld

ap_ovld

ap_ctrl_hs

ap_ctrl_none

Interface Mode

Argument
Type

Supported D = Default Interface Not Supported

ap_hs

D D Dap_memory

bram

ap_fifo

ap_bus

X14293

I and O

D

HLS::
Stream

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=81

Full details on the interface protocols, including waveform diagrams, are included in Interface
Synthesis Reference. The following provides an overview of each interface mode.

Block-Level Interface Protocols

The block-level interface protocols are ap_ctrl_none, ap_ctrl_hs, and ap_ctrl_chain.
These are specified, and can only be specified, on the function or the function return. When the
directive is specified in the GUI, it will apply these protocols to the function return. Even if the
function does not use a return value, the block-level protocol may be specified on the function
return.

The ap_ctrl_hs mode described in the previous example is the default protocol. The
ap_ctrl_chain protocol is similar to ap_ctrl_hs but has an additional input port
ap_continue that provides back pressure from blocks consuming the data from this block. If
the ap_continue port is logic 0 when the function completes, the block will halt operation and
the next transaction will not proceed. The next transaction will only proceed when the
ap_continue is asserted to logic 1.

The ap_ctrl_none mode implements the design without any block-level I/O protocol.

If the function return is also specified as an AXI4-Lite interface (s_axilite) all the ports in the
block-level interface are grouped into the AXI4-Lite interface. This is a common practice when
another device, such as a CPU, is used to configure and control when this block starts and stops
operation.

Port-Level Interface Protocols: AXI4 Interfaces

The AXI4 interfaces supported by Vivado HLS include the AXI4-Stream (axis), AXI4-Lite
(s_axilite), and AXI4 master (m_axi) interfaces, which you can specify as follows:

• AXI4-Stream interface: Specify on input arguments or output arguments only, not on input/
output arguments.

• AXI4-Lite interface: Specify on any type of argument except streams. You can group multiple
arguments into the same AXI4-Lite interface.

• AXI4 master interface: Specify on arrays and pointers (and references in C++) only. You can
group multiple arguments into the same AXI4 interface.

Port-Level Interface Protocols: No I/O Protocol

The ap_none and ap_stable modes specify that no I/O protocol be added to the port. When
these modes are specified the argument is implemented as a data port with no other associated
signals. The ap_none mode is the default for scalar inputs. The ap_stable mode is intended
for configuration inputs that only change when the device is in reset mode.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=82

Port-Level Interface Protocols: Wire Handshakes

Interface mode ap_hs includes a two-way handshake signal with the data port. The handshake is
an industry standard valid and acknowledge handshake. Mode ap_vld is the same but only has a
valid port and ap_ack only has a acknowledge port.

Mode ap_ovld is for use with in-out arguments. When the in-out is split into separate input and
output ports, mode ap_none is applied to the input port and ap_vld applied to the output port.
This is the default for pointer arguments that are both read and written.

The ap_hs mode can be applied to arrays that are read or written in sequential order. If Vivado
HLS can determine the read or write accesses are not sequential, it will halt synthesis with an
error. If the access order cannot be determined, Vivado HLS will issue a warning.

Port-Level Interface Protocols: Memory Interfaces

Array arguments are implemented by default as an ap_memory interface. This is a standard
block RAM interface with data, address, chip-enable, and write-enable ports.

An ap_memory interface may be implemented as a single-port of dual-port interface. If Vivado
HLS can determine that using a dual-port interface will reduce the initial interval, it will
automatically implement a dual-port interface. The RESOURCE directive is used to specify the
memory resource and if this directive is specified on the array with a single-port block RAM, a
single-port interface will be implemented. Conversely, if a dual-port interface is specified using
the RESOURCE directive and Vivado HLS determines this interface provides no benefit it will
automatically implement a single-port interface.

The bram interface mode is functional identical to the ap_memory interface. The only difference
is how the ports are implemented when the design is used in Vivado IP Integrator:

• An ap_memory interface is displayed as multiple and separate ports.

• A bram interface is displayed as a single grouped port which can be connected to a Xilinx
block RAM using a single point-to-point connection.

If the array is accessed in a sequential manner an ap_fifo interface can be used. As with the
ap_hs interface, Vivado HLS will halt if it determines the data access is not sequential, report a
warning if it cannot determine if the access is sequential or issue no message if it determines the
access is sequential. The ap_fifo interface can only be used for reading or writing, not both.

The ap_bus interface can communicate with a bus bridge. The interface does not adhere to any
specific bus standard but is generic enough to be used with a bus bridge that in-turn arbitrates
with the system bus. The bus bridge must be able to cache all burst writes.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=83

Interface Synthesis and Structs

Structs on the interface are by default decomposed into their member elements and ports are
implemented separately for each member element. Each member element of the struct will be
implemented, in the absence of any INTERFACE directive.

Arrays of structs are implemented as multiple arrays, with a separate array for each member of
the struct.

The DATA_PACK optimization directive is used for packing all the elements of a struct into a
single wide vector. This allows all members of the struct to be read and written to
simultaneously. The member elements of the struct are placed into the vector in the order they
appear in the C code: the first element of the struct is aligned on the LSB of the vector and the
final element of the struct is aligned with the MSB of the vector. Any arrays in the struct are
partitioned into individual array elements and placed in the vector from lowest to highest, in
order.

Note: The DATA_PACK optimization does not support packing structs which contain other structs.

Care should be taken when using the DATA_PACK optimization on structs with large arrays. If an
array has 4096 elements of type int, this will result in a vector (and port) of width
4096*32=131072 bits. Vivado HLS can create this RTL design, however it is very unlikely that
logic synthesis will be able to route this during the FPGA implementation.

The single wide-vector created by using the DATA_PACK directive allows more data to be
accessed in a single clock cycle. This is the case when the struct contains an array. When data
can be accessed in a single clock cycle, Vivado HLS automatically unrolls any loops consuming
this data, if doing so improves the throughput. The loop can be fully or partially unrolled to create
enough hardware to consume the additional data in a single clock cycle. This feature is controlled
using the config_unroll command and the option tripcount_threshold. In the following
example, any loops with a tripcount of less than 16 will be automatically unrolled if doing so
improves the throughput.

config_unroll -tripcount_threshold 16

Note: Structs are only supported for the AXIM interface if the struct is packed using the DATA_PACK
optimization.

If a struct port using DATA_PACK is to be implemented with an AXI4 interface you may wish to
consider using the DATA_PACK -byte_pad option. The -byte_pad option is used to
automatically align the member elements to 8-bit boundaries. This alignment is sometimes
required by Xilinx IP. If an AXI4 port using DATA_PACK is to be implemented, refer to the
documentation for the Xilinx IP it will connect to and determine if byte alignment is required.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=84

For the following example code, the options for implementing a struct port are shown in the
following figure.

typedef struct{
 int12 A;
 int18 B[4];
 int6 C;
} my_data;

void foo(my_data *a)

• By default, the members are implemented as individual ports. The array has multiple ports
(data, addr, etc.)

• Using DATA_PACK results in a single wide port.

• Using DATA_PACK with struct_level byte padding aligns the entire struct to the next 8-
bit boundary.

• Using DATA_PACK with field_level byte padding aligns each struct member to the next
8-bit boundary.

• The maximum bit-width of any port or bus created by data packing is 8192 bits.

Figure 42: DATA_PACK -byte_pad Alignment Options

6-bit

B_addr AB_ce B_dataC

Struct Port Implementation

2-bit 1-bit 18-bit 12-bit

6-bit

B[3] AC

DATA_PACK optimization

18-bit

A89... Single packed vector [89:0]0

DATA_PACK optimization with byte_pad on the struct_level

A95... Single packed vector / port [95:0]0

DATA_PACK optimization with byte_pad on the field_level

18-bit

B[2] AB[1] B[0]B[3]

18-bit 18-bit 18-bit 12-bit

A119... Single packed vector / port [119:0]0

0

6-bit

0

4-bit

0

6-bit

0

6-bit

0

6-bit

X14292

B[2] B[1] B[0]

18-bit 18-bit 18-bit 12-bit

6-bit

B[3] AC

18-bit

B[2] B[1] B[0]

18-bit 18-bit 18-bit 12-bit

0

6-bit

6-bit

C0

6-bit

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=85

If a struct contains arrays, those arrays can be optimized using the ARRAY_PARTITION
directive to partition the array or the ARRAY_RESHAPE directive to partition the array and re-
combine the partitioned elements into a wider array. The DATA_PACK directive performs a
similar operation as ARRAY_RESHAPE and combines the reshaped array with the other
elements in the struct.

A struct cannot be optimized with DATA_PACK and then partitioned or reshaped. The
DATA_PACK, ARRAY_PARTITION, and ARRAY_RESHAPE directives are mutually exclusive.

Interface Synthesis and Multi-Access Pointers

Using pointers which are accessed multiple times can introduce unexpected behavior after
synthesis. In the following example pointer d_i is read four times and pointer d_o is written to
twice: the pointers perform multiple accesses.

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

After synthesis this code will result in an RTL design which reads the input port once and writes
to the output port once. As with any standard C compiler, Vivado HLS will optimize away the
redundant pointer accesses. To implement the above code with the “anticipated” 4 reads on d_i
and 2 writes to the d_o the pointers must be specified as volatile as shown in the next
example.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

Even this C code is problematic. Indeed, using a test bench, there is no way to supply anything
but a single value to d_i or verify any write to d_o other than the final write. Although multi-
access pointers are supported, it is highly recommended to implement the behavior required
using the hls::stream class. Details on the hls::stream class are in HLS Stream Library.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=86

Specifying Interfaces

Interface synthesis is controlled by the INTERFACE directive or by using a configuration setting.
To specify the interface mode on ports, select the port in the GUI Directives tab and right-click
the mouse to open the Vivado HLS Directive Editor as shown in the following figure.

Figure 43: Specifying Port Interfaces

In the Vivado HLS Directives Editor, set the following options:

• mode

Select the interface mode from the drop-down menu.

• register

If you select this option, all pass-by-value reads are performed in the first cycle of operation.
For output ports, the register option guarantees the output is registered. You can apply the
register option to any function in the design. For memory, FIFO, and AXI4 interfaces, the
register option has no effect.

• depth

This option specifies how many samples are provided to the design by the test bench and how
many output values the test bench must store. Use whichever number is greater.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=87

Note: For cases in which a pointer is read from or written to multiple times within a single transaction,
the depth option is required for C/RTL co-simulation. The depth option is not required for arrays or
when using the hls::stream construct. It is only required when using pointers on the interface.

If the depth option is set too small, the C/RTL co-simulation might deadlock as follows:

1. The input reads might stall waiting for data that the test bench cannot provide.

2. The output writes might stall when trying to write data, because the storage is full.

• port

This option is required. By default, Vivado HLS does not register ports.

Note: To specify a block-level I/O protocol, select the top-level function in the Vivado HLS GUI, and
specify the port as the function return.

• offset

This option is used for AXI4 interfaces.

To set the interface configuration, select Solution → Solution Settings → General → 
config_interface. You can use configuration settings to:

• Add a global clock enable to the RTL design.

• Remove dangling ports, such as those created by elements of a struct that are not used in the
design.

• Create RTL ports for any global variables.

Any C function can use global variables: those variables defined outside the scope of any
function. By default, global variables do not result in the creation of RTL ports: Vivado HLS
assumes the global variable is inside the final design. The config_interface configuration
setting expose_global instructs Vivado HLS to create a ports for global variables.

Interface Synthesis for SystemC

In general, interface synthesis is not supported for SystemC designs. The I/O ports for SystemC
designs are fully specified in the SC_MODULE interface and the behavior of the ports fully
described in the source code. Interface synthesis is provided to support:

• Memory block RAM interfaces

• AXI4-Stream interfaces

• AXI4-Lite interfaces

• AXI4 master interfaces

The processes for performing interface synthesis on a SystemC design is different from adding
the same interfaces to C or C++ designs.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=88

• Memory block RAM and AXI4 master interfaces require the SystemC data port is replaced
with a Vivado HLS port.

• AXI4-Stream and AXI4-Lite slave interfaces only require directives but there is a different
process for adding directives to a SystemC design.

Applying Interface Directives with SystemC

When adding directives as pragmas to SystemC source code, the pragma directives cannot be
added where the ports are specified in the SC_MODULE declaration, they must be added inside
a function called by the SC_MODULE.

When adding directives using the GUI:

• Open the C source code and directives tab.

• Select the function which requires a directive.

• Right-click with the mouse and the INTERFACE directive to the function.

The directives can be applied to any member function of the SC_MODULE, however it is a good
design practice to add them to the function where the variables are used.

Block RAM Memory Ports

Given a SystemC design with an array port on the interface:

SC_MODULE(my_design) {
//”RAM” Port
sc_uint<20> my_array[256];

The port my_array is synthesized into an internal block RAM, not a block RAM interface port.

Including the Vivado HLS header file ap_mem_if.h allows the same port to be specified as an
ap_mem_port<data_width, address_bits> port. The ap_mem_port data type is
synthesized into a standard block RAM interface with the specified data and address bus-widths
and using the ap_memory port protocol.

#include "ap_mem_if.h"
SC_MODULE(my_design) {
//”RAM” Port
ap_mem_port<sc_uint<20>,sc_uint<8>, 256> my_array;

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=89

When an ap_mem_port is added to a SystemC design, an associated ap_mem_chn must be
added to the SystemC test bench to drive the ap_mem_port. In the test bench, an ap_mem_chn
is defined and attached to the instance as shown:

#include "ap_mem_if.h"
ap_mem_chn<int,int, 68> bus_mem;

// Instantiate the top-level module
my_design U_dut (“U_dut”)
U_dut.my_array.bind(bus_mem);

The header file ap_mem_if.h is located in the include directory located in the Vivado HLS
installation area and must be included if simulation is performed outside Vivado HLS.

SystemC AXI4-Stream Interface

An AXI4-Stream interface can be added to any SystemC ports that are of the sc_fifo_in or
sc_fifo_out type. The following shows the top-level of a typical SystemC design. As is typical,
the SC_MODULE and ports are defined in a header file:

SC_MODULE(sc_FIFO_port)
{
 //Ports
 sc_in <bool> clock;
 sc_in <bool> reset;
 sc_in <bool> start;
 sc_out<bool> done;
 sc_fifo_out<int> dout;
 sc_fifo_in<int> din;

 //Variables
 int share_mem[100];
 bool write_done;

 //Process Declaration
 void Prc1();
 void Prc2();

 //Constructor
 SC_CTOR(sc_FIFO_port)
 {
 //Process Registration
 SC_CTHREAD(Prc1,clock.pos());
 reset_signal_is(reset,true);

 SC_CTHREAD(Prc2,clock.pos());
 reset_signal_is(reset,true);
 }
};

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=90

To create an AXI4-Stream interface the RESOURCE directive must be used to specify the ports
are connected an AXI4-Stream resource. For the example interface shown above, the directives
are shown added in the function called by the SC_MODULE: ports din and dout are specified
to have an AXI4-Stream resource.

#include "sc_FIFO_port.h"

void sc_FIFO_port::Prc1()
{
 //Initialization
 write_done = false;

 wait();
 while(true)
 {
 while (!start.read()) wait();
 write_done = false;

 for(int i=0;i<100; i++)
 share_mem[i] = i;

 write_done = true;
 wait();
 } //end of while(true)
}

void sc_FIFO_port::Prc2()
{
#pragma HLS resource core=AXI4Stream variable=din
#pragma HLS resource core=AXI4Stream variable=dout
 //Initialization
 done = false;

 wait();

 while(true)
 {
 while (!start.read()) wait();
 wait();
 while (!write_done) wait();
 for(int i=0;i<100; i++)
 {
 dout.write(share_mem[i]+din.read());
 }

 done = true;
 wait();
 } //end of while(true)
}

When the SystemC design is synthesized, it results in an RTL design with standard RTL FIFO

ports. When the design is packaged as IP using the Export RTL toolbar button , the output is a
design with an AXI4-Stream interfaces.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=91

SystemC AXI4-Lite Interface

An AXI4-Lite slave interface can be added to any SystemC ports of type sc_in or sc_out. The
following example shows the top-level of a typical SystemC design. In this case, as is typical, the
SC_MODULE and ports are defined in a header file:

SC_MODULE(sc_sequ_cthread){
 //Ports
 sc_in <bool> clk;
 sc_in <bool> reset;
 sc_in <bool> start;
 sc_in<sc_uint<16> > a;
 sc_in<bool> en;
 sc_out<sc_uint<16> > sum;
 sc_out<bool> vld;

 //Variables
 sc_uint<16> acc;

 //Process Declaration
 void accum();

 //Constructor
 SC_CTOR(sc_sequ_cthread){

 //Process Registration
 SC_CTHREAD(accum,clk.pos());
 reset_signal_is(reset,true);
 }
};

To create an AXI4-Lite interface the RESOURCE directive must be used to specify the ports are
connected to an AXI4-Lite resource. For the example interface shown above, the following
example shows how ports start, a, en, sum and vld are grouped into the same AXI4-Lite
interface slv0: all the ports are specified with the same bus_bundle name and are grouped
into the same AXI4-Lite interface.

#include "sc_sequ_cthread.h"

void sc_sequ_cthread::accum(){
//Group ports into AXI4 slave slv0
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0"
variable=start
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=a
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=en
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=sum
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=vld

 //Initialization
 acc=0;
 sum.write(0);
 vld.write(false);
 wait();

 // Process the data
 while(true) {
 // Wait for start
 wait();

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=92

 while (!start.read()) wait();

 // Read if valid input available
 if (en) {
 acc = acc + a.read();
 sum.write(acc);
 vld.write(true);
 } else {
 vld.write(false);
 }
 }

}

When the SystemC design is synthesized, it results in an RTL design with standard RTL ports.

When the design is packaged as IP using Export RTL toolbar button , the output is a design
with an AXI4-Lite interface.

SystemC AXI4 Master Interface

In most standard SystemC designs, you have no need to specify a port with the behavior of the
Vivado HLS ap_bus I/O protocol. However, if the design requires an AXI4 master bus interface
the ap_bus I/O protocol is required.

To specify an AXI4 master interface on a SystemC design:

• Use the Vivado HLS type AXI4M_bus_port to create an interface with the ap_bus I/O
protocol.

• Assign an AXI4M resource to the port.

The following example shows how an AXI4M_bus_port called bus_if is added to a SystemC
design.

• The header file AXI4_if.h must be added to the design.

• The port is defined as AXI4M_bus_port<type>, where type specifies the data type to be
used (in this example, an sc_fixed type is used).

Note: The data type used in the AXI4M_bus_port must be multiples of 8-bit. In addition, structs are not
supported for this data type.

#include "systemc.h"
#include "AXI4_if.h"
#include "tlm.h"
using namespace tlm;

#define DT sc_fixed<32, 8>

SC_MODULE(dut)
{
 //Ports
 sc_in<bool> clock; //clock input
 sc_in<bool> reset;
 sc_in<bool> start;

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=93

 sc_out<int> dout;
 AXI4M_bus_port<sc_fixed<32, 8> > bus_if;

 //Variables

 //Constructor
 SC_CTOR(dut)
 //:bus_if ("bus_if")
 {
 //Process Registration
 SC_CTHREAD(P1,clock.pos());
 reset_signal_is(reset,true);
 }
}

The following shows how the variable bus_if can be accessed in the SystemC function to
produce standard or burst read and write operations.

//Process Declaration
void P1() {
 //Initialization
 dout.write(10);
 int addr = 10;
 DT tmp[10];
 wait();
 while(1) {
 tmp[0]=10;
 tmp[1]=11;
 tmp[2]=12;

 while (!start.read()) wait();
 // Port read
 tmp[0] = bus_if->read(addr);

 // Port burst read
 bus_if->burst_read(addr,2,tmp);

 // Port write
 bus_if->write(addr, tmp);

 // Port burst write
 bus_if->burst_write(addr,2,tmp);

 dout.write(tmp[0].to_int());
 addr+=2;
 wait();
 }
}

When the port class AXI4M_bus_port is used in a design, it must have a matching HLS bus
interface channel hls_bus_chn<start_addr > in the test bench, as shown in the following
example:

#include <systemc.h>
#include "tlm.h"
using namespace tlm;

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=94

#include "hls_bus_if.h"
#include "AE_clock.h"
#include "driver.h"
#ifdef __RTL_SIMULATION__
#include "dut_rtl_wrapper.h"
#define dut dut_rtl_wrapper
#else
#include "dut.h"
#endif

int sc_main (int argc , char *argv[])
{
 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",
SC_DO_NOTHING);
 sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
 sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_,
SC_LOG);
 sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

 // hls_bus_chan<type>
 // bus_variable(“name”, start_addr, end_addr)
 //
 hls_bus_chn<sc_fixed<32, 8> > bus_mem("bus_mem",0,1024);

 sc_signal<bool> s_clk;
 sc_signal<bool> reset;
 sc_signal<bool> start;
 sc_signal<int> dout;

 AE_Clock U_AE_Clock("U_AE_Clock", 10);
 dut U_dut("U_dut");
 driver U_driver("U_driver");

 U_AE_Clock.reset(reset);
 U_AE_Clock.clk(s_clk);

 U_dut.clock(s_clk);
 U_dut.reset(reset);
 U_dut.start(start);
 U_dut.dout(dout);
 U_dut.bus_if(bus_mem);

 U_driver.clk(s_clk);
 U_driver.start(start);
 U_driver.dout(dout);

 int end_time = 8000;

 cout << "INFO: Simulating " << endl;

 // start simulation
 sc_start(end_time, SC_NS);

 return U_driver.ret;
};

The synthesized RTL design contains an interface with the ap_bus I/O protocol.

When the AXI4M_bus_port class is used, it results in an RTL design with an ap_bus interface.
When the design is packaged as IP using Export RTL the output is a design with an AXI4 master
port.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=95

Using AXI4 Interfaces

AXI4-Stream Interfaces

An AXI4-Stream interface can be applied to any input argument and any array or pointer output
argument. Since an AXI4-Stream interface transfers data in a sequential streaming manner it
cannot be used with arguments that are both read and written. An AXI4-Stream interface is
always sign-extended to the next byte. For example, a 12-bit data value is sign-extended to 16-
bit.

AXI4-Stream interfaces are always implemented as registered interfaces to ensure no
combinational feedback paths are created when multiple HLS IP blocks with AXI-Stream
interfaces are integrated into a larger design. For AXI-Stream interfaces, four types of register
modes are provided to control how the AXI-Stream interface registers are implemented.

• Forward: Only the TDATA and TVALID signals are registered.

• Reverse: Only the TREADY signal is registered.

• Both: All signals (TDATA, TREADY and TVALID) are registered. This is the default.

• Off: None of the port signals are registered.

The AXI-Stream side-channel signals are considered to be data signals and are registered
whenever TDATA is registered.

RECOMMENDED: When connecting HLS generated IP blocks with AXI4-Stream interfaces at least one
interface should be implemented as a registered interface or the blocks should be connected via an AXI4-
Stream Register Slice.

There are two basic ways to use an AXI4-Stream in your design.

• Use an AXI4-Stream without side-channels.

• Use an AXI4-Stream with side-channels.

This second use model provides additional functionality, allowing the optional side-channels
which are part of the AXI4-Stream standard, to be used directly in the C code.

AXI4-Stream Interfaces without Side-Channels

An AXI4-Stream is used without side-channels when the function argument does not contain any
AXI4 side-channel elements. The following example shown a design where the data type is a
standard C int type. In this example, both interfaces are implemented using an AXI4-Stream.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=96

 int i;

 for(i = 0; i < 50; i++){
 B[i] = A[i] + 5;
 }
}

After synthesis, both arguments are implemented with a data port and the standard AXI4-Stream
TVALID and TREADY protocol ports as shown in the following figure.

Figure 44: AXI4-Stream Interfaces Without Side-Channels

Multiple variables can be combined into the same AXI4-Stream interface by using a struct and
the DATA_PACK directive. If an argument to the top-level function is a struct, Vivado HLS by
default partitions the struct into separate elements and implements each member of the struct as
a separate port. However, the DATA_PACK directive may be used to pack the elements of a
struct into a single wide-vector, allowing all elements of the struct to be implemented in the
same AXI4-Stream interface.

AXI4-Stream Interfaces with Side-Channels

Side-channels are optional signals which are part of the AXI4-Stream standard. The side-channel
signals may be directly referenced and controlled in the C code using a struct, provided the
member elements of the struct match the names of the AXI4-Stream side-channel signals. The
AXI-Stream side-channel signals are considered data signals and are registered whenever TDATA
is registered. An example of this is provided with Vivado HLS. The Vivado HLS include
directory contains the file ap_axi_sdata.h. This header file contains the following structs:

#include "ap_int.h"
#include “ap_axi_sdata,h”

template<int D,int U,int TI,int TD>
struct ap_axis{
 ap_int<D> data;
 ap_uint<D/8> keep;
 ap_uint<D/8> strb;
 ap_uint<U> user;
 ap_uint<1> last;
 ap_uint<TI> id;
 ap_uint<TD> dest;
};

template<int D,int U,int TI,int TD>

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=97

struct ap_axiu{
 ap_uint<D> data;
 ap_uint<D/8> keep;
 ap_uint<D/8> strb;
 ap_uint<U> user;
 ap_uint<1> last;
 ap_uint<TI> id;
 ap_uint<TD> dest;
};

Both structs contain as top-level members, variables whose names match those of the optional
AXI4-Stream side-channel signals. Provided the struct contains elements with these names, there
is no requirement to use the header file provided. You can create your own user defined structs.
Since the structs shown above use ap_int types and templates, this header file is only for use in
C++ designs.

Note: The valid and ready signals are mandatory signals in an AXI4-Stream and will always be implemented
by Vivado HLS. These cannot be controlled using a struct.

The following example shows how the side-channels can be used directly in the C code and
implemented on the interface. In this example a signed 32-bit data type is used.

#include "ap_axi_sdata.h"

void example(ap_axis<32,2,5,6> A[50], ap_axis<32,2,5,6> B[50]){
//Map ports to Vivado HLS interfaces
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

 int i;

 for(i = 0; i < 50; i++){
 B[i].data = A[i].data.to_int() + 5;
 B[i].keep = A[i].keep;
 B[i].strb = A[i].strb;
 B[i].user = A[i].user;
 B[i].last = A[i].last;
 B[i].id = A[i].id;
 B[i].dest = A[i].dest;
 }
}

After synthesis, both arguments are implemented with data ports, the standard AXI4-Stream
TVALID and TREADY protocol ports and all of the optional ports described in the struct.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=98

Figure 45: AXI4-Stream Interfaces With Side-Channels

Packing Structs into AXI4-Stream Interfaces

There is a difference in the default synthesis behavior when using structs with AXI4-Stream
interfaces. The default synthesis behavior for struct is described in Interface Synthesis and
Structs.

When using AXI4-Stream interfaces without side-channels and the function argument is a struct:

• Vivado HLS automatically applies the DATA_PACK directive and all elements of the struct are
combined into a single wide-data vector. The interface is implemented as a single wide-data
vector with associated TVALID and TREADY signals.

• If the DATA_PACK directive is manually applied to the struct, all elements of the struct are
combined into a single wide-data vector and the AXI alignment options to the DATA_PACK
directive may be applied. The interface is implemented as a single wide-data vector with
associated TVALID and TREADY signals.

When using AXI4-Stream interfaces with side-channels, the function argument is itself a struct
(AXI-Stream struct). It can contain data which is itself a struct (data struct) along with the side-
channels:

• Vivado HLS automatically applies the DATA_PACK directive to the data struct and all elements
of the data struct are combined into a single wide-data vector. The interface is implemented
as a single wide-data vector with associated side-channels, TVALID and TREADY signals.

• If the DATA_PACK directive is manually applied to the data struct, all elements of the data
struct are combined into a single wide-data vector and the AXI alignment options to the
DATA_PACK directive may be applied. The interface is implement as a single wide-data vector
with associated side-channels, TVALID and TREADY signals.

• If the DATA_PACK directive is applied to AXI-Stream struct, the function argument, the data
struct and the side-channel signals are combined into a single wide-vector. The interface is
implemented as a single wide-data vector with TVALID and TREADY signals.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=99

AXI4-Lite Interface

You can use an AXI4-Lite interface to allow the design to be controlled by a CPU or
microcontroller. Using the Vivado HLS AXI4-Lite interface, you can:

• Group multiple ports into the same AXI4-Lite interface.

• Output C driver files for use with the code running on a processor.

Note: This provides a set of C application program interface (API) functions, which allows you to easily
control the hardware from the software. This is useful when the design is exported to the IP Catalog.

The following example shows how Vivado HLS implements multiple arguments, including the
function return, as an AXI4-Lite interface. Because each directive uses the same name for the
bundle option, each of the ports is grouped into the same AXI4-Lite interface.

void example(char *a, char *b, char *c)
{
#pragma HLS INTERFACE s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400
#pragma HLS INTERFACE ap_vld port=b

 *c += *a + *b;
}

Note: If you do not use the bundle option, Vivado HLS groups all arguments specified with an AXI4-Lite
interface into the same default bundle and automatically names the port.

You can also assign an I/O protocol to ports grouped into an AXI4-Lite interface. In the example
above, Vivado HLS implements port b as an ap_vld interface and groups port b into the AXI4-
Lite interface. As a result, the AXI4-Lite interface contains a register for the port b data, a register
for the output to acknowledge that port b was read, and a register for the port b input valid
signal.

Each time port b is read, Vivado HLS automatically clears the input valid register and resets the
register to logic 0. If the input valid register is not set to logic 1, the data in the b data register is
not considered valid, and the design stalls and waits for the valid register to be set.

RECOMMENDED: For ease of use during the operation of the design, Xilinx recommends that you do not
include additional I/O protocols in the ports grouped into an AXI4-Lite interface. However, Xilinx
recommends that you include the block-level I/O protocol associated with the return  port in the AXI4-
Lite interface.

You cannot assign arrays to an AXI4-Lite interface using the bram interface. You can only assign
arrays to an AXI4-Lite interface using the default ap_memory interface. You also cannot assign
any argument specified with ap_stable I/O protocol to an AXI4-Lite interface.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=100

Since the variables grouped into an AXI-Lite interface are function arguments, which themselves
cannot be assigned a default value in the C code, none of the registers in an AXI-Lite interface
may be assigned a default value. The registers can be implemented with a reset with the
config_rtl command, but they cannot be assigned any other default value.

By default, Vivado HLS automatically assigns the address for each port that is grouped into an
AXI4-Lite interface. Vivado HLS provides the assigned addresses in the C driver files. For more
information, see C Driver Files. To explicitly define the address, you can use the offset option,
as shown for argument c in the example above.

IMPORTANT! In an AXI4-Lite interface, Vivado HLS reserves addresses 0x0000 through 0x000C for the
block-level I/O protocol signals and interrupt controls.

After synthesis, Vivado HLS implements the ports in the AXI4-Lite port, as shown in the
following figure. Vivado HLS creates the interrupt port by including the function return in the
AXI4-Lite interface. You can program the interrupt through the AXI4-Lite interface. You can also
drive the interrupt from the following block-level protocols:

• ap_done: Indicates when the function completes all operations.

• ap_ready: Indicates when the function is ready for new input data.

You can program the interface using the C driver files.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=101

Figure 46: AXI4-Lite Slave Interfaces with Grouped RTL Ports

Control Clock and Reset in AXI4-Lite Interfaces

By default, Vivado HLS uses the same clock for the AXI4-Lite interface and the synthesized
design. Vivado HLS connects all registers in the AXI4-Lite interface to the clock used for the
synthesized logic (ap_clk).

Optionally, you can use the INTERFACE directive clock option to specify a separate clock for
each AXI4-Lite port. When connecting the clock to the AXI4-Lite interface, you must use the
following protocols:

• AXI4-Lite interface clock must be synchronous to the clock used for the synthesized logic
(ap_clk). That is, both clocks must be derived from the same master generator clock.

• AXI4-Lite interface clock frequency must be equal to or less than the frequency of the clock
used for the synthesized logic (ap_clk).

If you use the clock option with the interface directive, you only need to specify the clock
option on one function argument in each bundle. Vivado HLS implements all other function
arguments in the bundle with the same clock and reset. Vivado HLS names the generated reset
signal with the prefix ap_rst_ followed by the clock name. The generated reset signal is active
Low independent of the config_rtl command.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=102

The following example shows how Vivado HLS groups function arguments a and b into an AXI4-
Lite port with a clock named AXI_clk1 and an associated reset port.

// Default AXI-Lite interface implemented with independent clock called
AXI_clk1
#pragma HLS interface s_axilite port=a clock=AXI_clk1
#pragma HLS interface s_axilite port=b

In the following example, Vivado HLS groups function arguments c and d into AXI4-Lite port
CTRL1 with a separate clock called AXI_clk2 and an associated reset port.

// CTRL1 AXI-Lite bundle implemented with a separate clock (called AXI_clk2)
#pragma HLS interface s_axilite port=c bundle=CTRL1 clock=AXI_clk2
#pragma HLS interface s_axilite port=d bundle=CTRL1

C Driver Files

When an AXI4-Lite slave interface is implemented, a set of C driver files are automatically
created. These C driver files provide a set of APIs that can be integrated into any software
running on a CPU and used to communicate with the device via the AXI4-Lite slave interface.

The C driver files are created when the design is packaged as IP in the IP Catalog.

Driver files are created for standalone and Linux modes. In standalone mode the drivers are used
in the same way as any other Xilinx standalone drivers. In Linux mode, copy all the C files (.c) and
header files (.h) files into the software project.

The driver files and API functions derive their name from the top-level function for synthesis. In
the above example, the top-level function is called “example”. If the top-level function was
named “DUT” the name “example” would be replaced by “DUT” in the following description. The
driver files are created in the packaged IP (located in the impl directory inside the solution).

Table 9: C Driver Files for a Design Named example

File Path Usage Mode Description
data/example.mdd Standalone Driver definition file.

data/example.tcl Standalone Used by SDK to integrate the software
into an SDK project.

src/xexample_hw.h Both Defines address offsets for all internal
registers.

src/xexample.h Both API definitions

src/xexample.c Both Standard API implementations

src/xexample_sinit.c Standalone Initialization API implementations

src/xexample_linux.c Linux Initialization API implementations

src/Makefile Standalone Makefile

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=103

In file xexample.h, two structs are defined.

• XExample_Config: This is used to hold the configuration information (base address of each
AXI4-Lite slave interface) of the IP instance.

• XExample: This is used to hold the IP instance pointer. Most APIs take this instance pointer as
the first argument.

The standard API implementations are provided in files xexample.c, xexample_sinit.c,
xexample_linux.c, and provide functions to perform the following operations.

• Initialize the device

• Control the device and query its status

• Read/write to the registers

• Set up, monitor, and control the interrupts

The following table lists each of the API function provided in the C driver files.

Table 10: C Driver API Functions

API Function Description
XExample_Initialize This API will write value to InstancePtr which then can be

used in other APIs. It is recommended to call this API to
initialize a device except when an MMU is used in the
system.

XExample_CfgInitialize Initialize a device configuration. When a MMU is used in the
system, replace the base address in the XDut_Config
variable with virtual base address before calling this
function. Not for use on Linux systems.

XExample_LookupConfig Used to obtain the configuration information of the device
by ID. The configuration information contain the physical
base address. Not for user on Linux.

XExample_Release Release the uio device in linux. Delete the mappings by
munmap: the mapping will automatically be deleted if the
process terminated. Only for use on Linux systems.

XExample_Start Start the device. This function will assert the ap_start port
on the device. Available only if there is ap_start port on
the device.

XExample_IsDone Check if the device has finished the previous execution: this
function will return the value of the ap_done port on the
device. Available only if there is an ap_done port on the
device.

XExample_IsIdle Check if the device is in idle state: this function will return
the value of the ap_idle port. Available only if there is an
ap_idle port on the device.

XExample_IsReady Check if the device is ready for the next input: this function
will return the value of the ap_ready port. Available only if
there is an ap_ready port on the device.

XExample_Continue Assert port ap_continue. Available only if there is an
ap_continue port on the device.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=104

Table 10: C Driver API Functions (cont'd)

API Function Description
XExample_EnableAutoRestart Enables “auto restart” on device. When this is set the device

will automatically start the next transaction when the
current transaction completes.

XExample_DisableAutoRestart Disable the “auto restart” function.

XExample_Set_ARG Write a value to port ARG (a scalar argument of the top
function). Available only if ARG is input port.

XExample_Set_ARG_vld Assert port ARG_vld. Available only if ARG is an input port
and implemented with an ap_hs or ap_vld interface
protocol.

XExample_Set_ARG_ack Assert port ARG_ack. Available only if ARG is an output port
and implemented with an ap_hs or ap_ack interface
protocol.

XExample_Get_ARG Read a value from ARG. Only available if port ARG is an
output port on the device.

XExample_Get_ARG_vld Read a value from ARG_vld. Only available if port ARG is an
output port on the device and implemented with an ap_hs
or ap_vld interface protocol.

XExample_Get_ARG_ack Read a value from ARG_ack. Only available if port ARG is an
input port on the device and implemented with an ap_hs or
ap_ack interface protocol.

XExample_Get_ARG_BaseAddress Return the base address of the array inside the interface.
Only available when ARG is an array grouped into the AXI4-
Lite interface.

XExample_Get_ARG_HighAddress Return the address of the uppermost element of the array.
Only available when ARG is an array grouped into the AXI4-
Lite interface.

XExample_Get_ARG_TotalBytes Return the total number of bytes used to store the array.
Only available when ARG is an array grouped into the AXI4-
Lite interface.
If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

XExample_Get_ARG_BitWidth Return the bit width of each element in the array. Only
available when ARG is an array grouped into the AXI4-Lite
interface.
If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

XExample_Get_ARG_Depth Return the total number of elements in the array. Only
available when ARG is an array grouped into the AXI4-Lite
interface.
If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=105

Table 10: C Driver API Functions (cont'd)

API Function Description
XExample_Write_ARG_Words Write the length of a 32-bit word into the specified address

of the AXI4-Lite interface. This API requires the offset
address from BaseAddress and the length of the data to be
stored. Only available when ARG is an array grouped into
the AXI4-Lite interface.

XExample_Read_ARG_Words Read the length of a 32-bit word from the array. This API
requires the data target, the offset address from
BaseAddress, and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

XExample_Write_ARG_Bytes Write the length of bytes into the specified address of the
AXI4-Lite interface. This API requires the offset address from
BaseAddress and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

XExample_Read_ARG_Bytes Read the length of bytes from the array. This API requires
the data target, the offset address from BaseAddress, and
the length of data to be loaded. Only available when ARG is
an array grouped into the AXI4-Lite interface.

XExample_InterruptGlobalEnable Enable the interrupt output. Interrupt functions are
available only if there is ap_start.

XExample_InterruptGlobalDisable Disable the interrupt output.

XExample_InterruptEnable Enable the interrupt source. There may be at most 2
interrupt sources (source 0 for ap_done and source 1 for
ap_ready)

XExample_InterruptDisable Disable the interrupt source.

XExample_InterruptClear Clear the interrupt status.

XExample_InterruptGetEnabled Check which interrupt sources are enabled.

XExample_InterruptGetStatus Check which interrupt sources are triggered.

IMPORTANT! The C driver APIs always use an unsigned 32-bit type (U32). You might be required to cast
the data in the C code into the expected type.

C Driver Files and Float Types

C driver files always use a data 32-bit unsigned integer (U32) for data transfers. In the following
example, the function uses float type arguments a and r1. It sets the value of a and returns the
value of r1:

float caculate(float a, float *r1)
{
#pragma HLS INTERFACE ap_vld register port=r1
#pragma HLS INTERFACE s_axilite port=a
#pragma HLS INTERFACE s_axilite port=r1
#pragma HLS INTERFACE s_axilite port=return

 *r1 = 0.5f*a;
 return (a>0);
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=106

After synthesis, Vivado HLS groups all ports into the default AXI4-Lite interface and creates C
driver files. However, as shown in the following example, the driver files use type U32:

// API to set the value of A
void XCaculate_SetA(XCaculate *InstancePtr, u32 Data) {
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
 XCaculate_WriteReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCACULATE_HLS_PERIPH_BUS_ADDR_A_DATA, Data);
}

// API to get the value of R1
u32 XCaculate_GetR1(XCaculate *InstancePtr) {
 u32 Data;

 Xil_AssertNonvoid(InstancePtr != NULL);
 Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

 Data = XCaculate_ReadReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCACULATE_HLS_PERIPH_BUS_ADDR_R1_DATA);
 return Data;
}

If these functions work directly with float types, the write and read values are not consistent
with expected float type. When using these functions in software, you can use the following
casts in the code:

float a=3.0f,r1;
u32 ua,ur1;

// cast float “a” to type U32
XCaculate_SetA(&calculate,*((u32*)&a));
ur1=XCaculate_GetR1(&caculate);

// cast return type U32 to float type for “r1”
r1=*((float*)&ur1);

Controlling Hardware

The hardware header file xexample_hw.h (in this example) provides a complete list of the
memory mapped locations for the ports grouped into the AXI4-Lite slave interface.

// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/SC)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)
// others - reserved
// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved
// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_done)
// bit 1 - Channel 1 (ap_ready)

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=107

// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)
// others - reserved
// 0x10 : Data signal of a
// bit 7~0 - a[7:0] (Read/Write)
// others - reserved
// 0x14 : reserved
// 0x18 : Data signal of b
// bit 7~0 - b[7:0] (Read/Write)
// others - reserved
// 0x1c : reserved
// 0x20 : Data signal of c_i
// bit 7~0 - c_i[7:0] (Read/Write)
// others - reserved
// 0x24 : reserved
// 0x28 : Data signal of c_o
// bit 7~0 - c_o[7:0] (Read)
// others - reserved
// 0x2c : Control signal of c_o
// bit 0 - c_o_ap_vld (Read/COR)
// others - reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on
Handshake)

To correctly program the registers in the AXI4-Lite slave interface, there is some requirement to
understand how the hardware ports operate. The block will operate with the same port protocols
described in Interface Synthesis.

For example, to start the block operation the ap_start register must be set to 1. The device
will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface. When the block completes operation, the ap_done, ap_idle and
ap_ready registers will be set by the hardware output ports and the results for any output ports
grouped into the AXI4-Lite slave interface read from the appropriate register.

The implementation of function argument c in the example above also highlights the importance
of some understanding how the hardware ports are operate. Function argument c is both read
and written to, and is therefore implemented as separate input and output ports c_i and c_o, as
explained in Interface Synthesis.

The first recommended flow for programing the AXI4-Lite slave interface is for a one-time
execution of the function:

• Use the interrupt function to determine how you wish the interrupt to operate.

• Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_b, and XExample_Set_c_i.

• Set the ap_start bit to 1 using XExample_Start to start executing the function. This
register is self-clearing as noted in the header file above. After one transaction, the block will
suspend operation.

• Allow the function to execute. Address any interrupts which are generated.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=108

• Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o_vld, to confirm the data is valid, and XExample_Get_c_o.

Note: The registers in the AXI4-Lite slave interface obey the same I/O protocol as the ports. In this case,
the output valid is set to logic 1 to indicate if the data is valid.

• Repeat for the next transaction.

The second recommended flow is for continuous execution of the block. In this mode, the input
ports included in the AXI4-Lite slave interface should only be ports which perform configuration.
The block will typically run must faster than a CPU. If the block must wait for inputs, the block
will spend most of its time waiting:

• Use the interrupt function to determine how you wish the interrupt to operate.

• Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_a and XExample_Set_c_i.

• Set the auto-start function using API XExample_EnableAutoRestart

• Allow the function to execute. The individual port I/O protocols will synchronize the data
being processed through the block.

• Address any interrupts which are generated. The output registers could be accessed during
this operation but the data may change often.

• Use the API function XExample_DisableAutoRestart to prevent any more executions.

• Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o and XExample_Set_c_o_vld.

Controlling Software

The API functions can be used in the software running on the CPU to control the hardware block.
An overview of the process is:

• Create an instance of the HW instance

• Look Up the device configuration

• Initialize the Device

• Set the input parameters of the HLS block

• Start the device and read the results

An abstracted versions of this process is shown below. Complete examples of the software
control are provided in the Zynq-7000 SoC tutorials.

#include "xexample.h" // Device driver for HLS HW block
#include "xparameters.h"

// HLS HW instance
XExample HlsExample;
XExample_Config *ExamplePtr

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=109

int main() {
 int res_hw;

// Look Up the device configuration
 ExamplePtr = XExample_LookupConfig(XPAR_XEXAMPLE_0_DEVICE_ID);
 if (!ExamplePtr) {
 print("ERROR: Lookup of accelerator configuration failed.\n\r");
 return XST_FAILURE;
 }

// Initialize the Device
 status = XExample_CfgInitialize(&HlsExample, ExamplePtr);
 if (status != XST_SUCCESS) {
 print("ERROR: Could not initialize accelerator.\n\r");
 exit(-1);
 }

//Set the input parameters of the HLS block
 XExample_Set_a(&HlsExample, 42);
 XExample_Set_b(&HlsExample, 12);
 XExample_Set_c_i(&HlsExample, 1);

// Start the device and read the results
 XExample_Start(&HlsExample);
 do {
 res_hw = XExample_Get_c_o(&HlsExample);
 } while (XExample_Get_c_o(&HlsExample) == 0); // wait for valid data output
 print("Detected HLS peripheral complete. Result received.\n\r");
}

Customizing AXI4-Lite Slave Interfaces in IP Integrator

When an HLS RTL design using an AXI4-Lite slave interface is incorporated into a design in
Vivado IP Integrator, you can customize the block. From the block diagram in IP Integrator, select
the HLS block, right-click with the mouse button and select Customize Block.

The address width is by default configured to the minimum required size. Modify this to connect
to blocks with address sizes less than 32-bit.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=110

Figure 47: Customizing AXI4-Lite Slave Interfaces in IP Integrator

AXI4 Master Interface

You can use an AXI4 master interface on array or pointer/reference arguments, which Vivado
HLS implements in one of the following modes:

• Individual data transfers

• Burst mode data transfers

With individual data transfers, Vivado HLS reads or writes a single element of data for each
address. The following example shows a single read and single write operation. In this example,
Vivado HLS generates an address on the AXI interface to read a single data value and an address
to write a single data value. The interface transfers one data value per address.

void bus (int *d) {
 static int acc = 0;

 acc += *d;
 *d = acc;
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=111

With burst mode transfers, Vivado HLS reads or writes data using a single base address followed
by multiple sequential data samples, which makes this mode capable of higher data throughput.
Burst mode of operation is possible when you use the C memcpy function or a pipelined for
loop.

Note: The C memcpy function is only supported for synthesis when used to transfer data to or from a top-
level function argument specified with an AXI4 master interface.

The following example shows a copy of burst mode using the memcpy function. The top-level
function argument a is specified as an AXI4 master interface.

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return

//Port a is assigned to an AXI4 master interface

 int i;
 int buff[50];

//memcpy creates a burst access to memory
 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }

 memcpy((int *)a,buff,50*sizeof(int));
}

When this example is synthesized, it results in the interface shown in the following figure.

Note: In this figure, the AXI4 interfaces are collapsed.

Figure 48: AXI4 Interface

The following example shows the same code as the preceding example but uses a for loop to
copy the data out:

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return

//Port a is assigned to an AXI4 master interface

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=112

 int i;
 int buff[50];

//memcpy creates a burst access to memory
 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }

 for(i=0; i < 50; i++){
#pragma HLS PIPELINE
 a[i] = buff[i];
 }
}

When using a for loop to implement burst reads or writes, follow these requirements:

• Pipeline the loop

• Access addresses in increasing order

• Do not place accesses inside a conditional statement

• For nested loops, do not flatten loops, because this inhibits the burst operation

Note: Only one read and one write is allowed in a for loop unless the ports are bundled in different AXI
ports. The following example shows how to perform two reads in burst mode using different AXI
interfaces.

In the following example, Vivado HLS implements the port reads as burst transfers. Port a is
specified without using the bundle option and is implemented in the default AXI interface. Port
b is specified using a named bundle and is implemented in a separate AXI interface called
d2_port.

void example(volatile int *a, int *b){

#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE m_axi depth=50 port=b bundle=d2_port

 int i;
 int buff[50];

//copy data in
 for(i=0; i < 50; i++){
#pragma HLS PIPELINE
 buff[i] = a[i] + b[i];
 }
...
 }

Note: Structs are only supported for the AXIM interface if the struct is packed using the DATA_PACK
optimization.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=113

Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write. To
create the optimal AXI4 interface, the following options are provided in the INTERFACE directive
to specify the behavior of the bursts and optimize the efficiency of the AXI4 interface.

Some of these options use internal storage to buffer data and may have an impact on area and
resources:

• latency: Specifies the expected latency of the AXI4 interface, allowing the design to initiate
a bus request a number of cycles (latency) before the read or write is expected. If this figure it
too low, the design will be ready too soon and may stall waiting for the bus. If this figure is too
high, bus access may be granted but the bus may stall waiting on the design to start the
access.

• max_read_burst_length: Specifies the maximum number of data values read during a
burst transfer.

• num_read_outstanding: Specifies how many read requests can be made to the AXI4 bus,
without a response, before the design stalls. This implies internal storage in the design, a FIFO
of size: num_read_outstanding*max_read_burst_length*word_size.

• max_write_burst_length: Specifies the maximum number of data values written during a
burst transfer.

• num_write_outstanding: Specifies how many write requests can be made to the AXI4
bus, without a response, before the design stalls. This implies internal storage in the design, a
FIFO of size: num_read_outstanding*max_read_burst_length*word_size

The following example can be used to help explain these options:

 #pragma HLS interface m_axi port=input offset=slave bundle=gmem0
depth=1024*1024*16/(512/8)
 latency=100
 num_read_outstanding=32
 num_write_outstanding=32
 max_read_burst_length=16
 max_write_burst_length=16

The interface is specified as having a latency of 100. Vivado HLS seeks to schedule the request
for burst access 100 clock cycles before the design is ready to access the AXI4 bus. To further
improve bus efficiency, the options num_write_outstanding and num_read_outstanding
ensure the design contains enough buffering to store up to 32 read and write accesses. This
allows the design to continue processing until the bus requests are serviced. Finally, the options
max_read_burst_length and max_write_burst_length ensure the maximum burst size
is 16 and that the AXI4 interface does not hold the bus for longer than this.

These options allow the behavior of the AXI4 interface to be optimized for the system in which it
will operate. The efficiency of the operation does depend on these values being set accuracy.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=114

Creating an AXI4 Interface with 64-bit Address Capability

By default, Vivado HLS implements the AXI4 port with a 32-bit address bus. Optionally, you can
implement the AXI4 interface with a 64-bit address bus using the m_axi_addr64 interface
configuration option as follows:

1. Select Solution > Solution Settings.

2. In the Solution Settings dialog box, click the General category, and click Add.

3. In the Add Command dialog box, select config_interface, and enable m_axi_addr64.

IMPORTANT! When you select the m_axi_addr64 option, Vivado HLS implements all AXI4 interfaces in
the design with a 64-bit address bus.

Controlling the Address Offset in an AXI4 Interface

By default, the AXI4 master interface starts all read and write operations from address
0x00000000. For example, given the following code, the design reads data from addresses
0x00000000 to 0x000000c7 (50 32-bit words, gives 200 bytes), which represents 50 address
values. The design then writes data back to the same addresses.

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return bundle=AXILiteS

 int i;
 int buff[50];

 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }
 memcpy((int *)a,buff,50*sizeof(int));
}

To apply an address offset, use the -offset option with the INTERFACE directive, and specify
one of the following options:

• off: Does not apply an offset address. This is the default.

• direct: Adds a 32-bit port to the design for applying an address offset.

• slave: Adds a 32-bit register inside the AXI4-Lite interface for applying an address offset.

In the final RTL, Vivado HLS applies the address offset directly to any read or write address
generated by the AXI4 master interface. This allows the design to access any address location in
the system.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=115

If you use the slave option in an AXI interface, you must use an AXI4-Lite port on the design
interface. Xilinx recommends that you implement the AXI4-Lite interface using the following
pragma:

#pragma HLS INTERFACE s_axilite port=return

In addition, if you use the slave option and you used several AXI4-Lite interfaces, you must
ensure that the AXI master port offset register is bundled into the correct AXI4-Lite interface. In
the following example, port a is implemented as an AXI master interface with an offset and AXI4-
Lite interfaces called AXI_Lite_1 and AXI_Lite_2:

#pragma HLS INTERFACE m_axi port=a depth=50 offset=slave
#pragma HLS INTERFACE s_axilite port=return bundle=AXI_Lite_1
#pragma HLS INTERFACE s_axilite port=b bundle=AXI_Lite_2

The following INTERFACE directive is required to ensure that the offset register for port a is
bundled into the AXI4-Lite interface called AXI_Lite_1:

#pragma HLS INTERFACE s_axilite port=a bundle=AXI_Lite_1

Customizing AXI4 Master Interfaces in IP Integrator

When you incorporate an HLS RTL design that uses an AXI4 master interface into a design in the
Vivado IP Integrator, you can customize the block. From the block diagram in IP Integrator, select
the HLS block, right-click, and select Customize Block to customize any of the settings provided.
A complete description of the AXI4 parameters is provided in this link in the Vivado Design Suite:
AXI Reference Guide (UG1037).

The following figure shows the Re-Customize IP dialog box for the design shown below. This
design includes an AXI4-Lite port.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 116Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf;a=xAXI4AndAXI4LiteSignals
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=116

Figure 49: Customizing AXI4 Master Interfaces in IP Integrator

Managing Interfaces with SSI Technology Devices

Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). The connections between
SLRs use super long line (SSL) routes. SSL routes incur delays costs that are typically greater than
standard FPGA routing. To ensure designs operate at maximum performance, use the following
guidelines:

• Register all signals that cross between SLRs at both the SLR output and SLR input.

• You do not need to register a signal if it enters or exits an SLR via an I/O buffer.

• Ensure that the logic created by Vivado HLS fits within a single SLR.

Note: When you select an SSI technology device as the target technology, the utilization report includes
details on both the SLR usage and the total device usage.

If the logic is contained within a single SLR device, Vivado HLS provides a register_io option
to the config_interface command. This option provides a way to automatically register all
block inputs, outputs, or both. This option is only required for scalars. All array ports are
automatically registered.

The settings for the register_io option are:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=117

• off: None of the input or outputs are registered.

• scalar_in: All inputs are registered.

• scalar_out: All outputs are registered.

• scalar_all: All input and outputs are registered.

Note: Using the register_io option with block-level floorplanning of the RTL ensures that logic targeted
to an SSI technology device executes at the maximum clock rate.

Optimizing the Design
This section outlines the various optimizations and techniques you can use to direct Vivado HLS
to produce a micro-architecture that satisfies the desired performance and area goals.

The following table lists the optimization directives provided by Vivado HLS.

Table 11: Vivado HLS Optimization Directives

Directive Description
ALLOCATION Specify a limit for the number of operations, cores or functions used. This can force the

sharing or hardware resources and may increase latency

ARRAY_MAP Combines multiple smaller arrays into a single large array to help reduce block RAM
resources.

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks.

ARRAY_RESHAPE Reshape an array from one with many elements to one with greater word-width. Useful for
improving block RAM accesses without using more block RAM.

CLOCK For SystemC designs multiple named clocks can be specified using the create_clock
command and applied to individual SC_MODULEs using this directive.

DATA_PACK Packs the data fields of a struct into a single scalar with a wider word width.

DATAFLOW Enables task level pipelining, allowing functions and loops to execute concurrently. Used to
optimize throughouput and/or latency.

DEPENDENCE Used to provide additional information that can overcome loop-carried dependencies and
allow loops to be pipelined (or pipelined with lower intervals).

EXPRESSION_BALANCE Allows automatic expression balancing to be turned off.

FUNCTION_INSTANTIATE Allows different instances of the same function to be locally optimized.

INLINE Inlines a function, removing function hierarchy at this level. Used to enable logic
optimization across function boundaries and improve latency/interval by reducing function
call overhead.

INTERFACE Specifies how RTL ports are created from the function description.

LATENCY Allows a minimum and maximum latency constraint to be specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with improved latency.

LOOP_MERGE Merge consecutive loops to reduce overall latency, increase sharing and improve logic
optimization.

LOOP_TRIPCOUNT Used for loops which have variables bounds. Provides an estimate for the loop iteration
count. This has no impact on synthesis, only on reporting.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=118

Table 11: Vivado HLS Optimization Directives (cont'd)

Directive Description
OCCURRENCE Used when pipelining functions or loops, to specify that the code in a location is executed

at a lesser rate than the code in the enclosing function or loop.

PIPELINE Reduces the initiation interval by allowing the overlapped execution of operations within a
loop or function.

PROTOCOL This commands specifies a region of the code to be a protocol region. A protocol region can
be used to manually specify an interface protocol.

RESET This directive is used to add or remove reset on a specific state variable (global or static).

RESOURCE Specify that a specific library resource (core) is used to implement a variable (array,
arithmetic operation or function argument) in the RTL.

STREAM Specifies that a specific array is to be implemented as a FIFO or RAM memory channel
during dataflow optimization. When using hls::stream, the STREAM optimization directive is
used to override the configuration of the hls::stream.

TOP The top-level function for synthesis is specified in the project settings. This directive may be
used to specify any function as the top-level for synthesis. This then allows different
solutions within the same project to be specified as the top-level function for synthesis
without needing to create a new project.

UNROLL Unroll for-loops to create multiple instances of the loop body and its instructions that can
then be scheduled independently.

In addition to the optimization directives, Vivado HLS provides a number of configuration
settings. Configurations settings are used to change the default behavior of synthesis. The
configuration settings are shown in the following table.

Table 12: Vivado HLS Configurations

GUI Directive Description
Config Array Partition This configuration determines how arrays are partitioned, including global arrays and if the

partitioning impacts array ports.

Config Bind Determines the effort level to use during the synthesis binding phase and can be used to
globally minimize the number of operations used.

Config Compile Controls synthesis specific optimizations such as the automatic loop pipelining and floating
point math optimizations.

Config Dataflow This configuration specifies the default memory channel and FIFO depth in dataflow
optimization.

Config Interface This configuration controls I/O ports not associated with the top-level function arguments
and allows unused ports to be eliminated from the final RTL.

Config RTL Provides control over the output RTL including file and module naming, reset style and FSM
encoding.

Config Schedule Determines the effort level to use during the synthesis scheduling phase and the verbosity
of the output messages

Details on how to apply the optimizations and configurations is provided in Applying
Optimization Directives. The configurations are accessed using the menu Solution → Solution
Settings → General and selecting the configuration using the Add button.

The optimizations are presented in the context of how they are typically applied on a design.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=119

The Clock, Reset and RTL output are discussed together. The clock frequency along with the
target device is the primary constraint that drives optimization. Vivado HLS seeks to place as
many operations from the target device into each clock cycle. The reset style used in the final
RTL is controlled, along setting such as the FSM encoding style, using the config_rtl
configuration.

The primary optimizations for optimizing for throughput are presented together in the manner in
which they are typically used: pipeline the tasks to improve performance, improve the flow of
data between tasks, and optimize structures to improve address issues which may limit
performance.

Optimizing for latency uses the techniques of latency constraints and the removal of loop
transitions to reduce the number of clock cycles required to complete.

A focus on how operations are implemented - controlling the number of operations and how
those operations are implemented in hardware - is the principal technique for improving the area.

In addition to the pragmas and directives, Vivado HLS provides a way to integrate an existing
optimized RTL into the HLS design flow. See RTL Blackbox for more information.

Clock, Reset, and RTL Output

Specifying the Clock Frequency

For C and C++ designs only a single clock is supported. The same clock is applied to all functions
in the design.

For SystemC designs, each SC_MODULE may be specified with a different clock. To specify
multiple clocks in a SystemC design, use the -name option of the create_clock command to
create multiple named clocks and use the CLOCK directive or pragma to specify which function
contains the SC_MODULE to be synthesized with the specified clock. Each SC_MODULE can
only be synthesized using a single clock: clocks may be distributed through functions, such as
when multiple clocks are connected from the top-level ports to individual blocks, but each
SC_MODULE can only be sensitive to a single clock.

The clock period, in ns, is set in the Solutions > Solutions Setting. Vivado HLS uses the concept
of a clock uncertainty to provide a user defined timing margin. Using the clock frequency and
device target information Vivado HLS estimates the timing of operations in the design but it
cannot know the final component placement and net routing: these operations are performed by
logic synthesis of the output RTL. As such, Vivado HLS cannot know the exact delays.

To calculate the clock period used for synthesis, Vivado HLS subtracts the clock uncertainty from
the clock period, as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=120

Figure 50: Clock Period and Margin

Clock Period

Effective Clock Period
used by Vivado HLS

Clock Uncertainty

Margin for Logic
Synthesis and P&R

X14263-061318

This provides a user specified margin to ensure downstream processes, such as logic synthesis
and place & route, have enough timing margin to complete their operations. If the FPGA device is
mostly utilized the placement of cells and routing of nets to connect the cells might not be ideal
and might result in a design with larger than expected timing delays. For a situation such as this,
an increased timing margin ensures Vivado HLS does not create a design with too much logic
packed into each clock cycle and allows RTL synthesis to satisfy timing in cases with less than
ideal placement and routing options.

By default, the clock uncertainty is 12.5% of the cycle time. The value can be explicitly specified
beside the clock period.

Vivado HLS aims to satisfy all constraints: timing, throughput, latency. However, if a constraints
cannot be satisfied, Vivado HLS always outputs an RTL design.

If the timing constraints inferred by the clock period cannot be met Vivado HLS issues message
SCHED-644, as shown below, and creates a design with the best achievable performance.

@W [SCHED-644] Max operation delay (<operation_name> 2.39ns) exceeds the
effective
cycle time

Even if Vivado HLS cannot satisfy the timing requirements for a particular path, it still achieves
timing on all other paths. This behavior allows you to evaluate if higher optimization levels or
special handling of those failing paths by downstream logic syntheses can pull-in and ultimately
satisfy the timing.

IMPORTANT! It is important to review the constraint report after synthesis to determine if all constraints
is met: the fact that Vivado HLS produces an output design does not guarantee the design meets all
performance constraints. Review the “Performance Estimates” section of the design report.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=121

The option relax_ii_for_timing of the config_schedule command can be used to
change the default timing behavior. When this option is specified, Vivado HLS automatically
relaxes the II for any pipeline directive when it detects a path is failing to meet the clock period.
This option only applies to cases where the PIPELINE directive is specified without an II value
(and an II=1 is implied). If the II value is explicitly specified in the PIPELINE directive, the
relax_ii_for_timing option has no effect.

A design report is generated for each function in the hierarchy when synthesis completes and
can be viewed in the solution reports folder. The worse case timing for the entire design is
reported as the worst case in each function report. There is no need to review every report in the
hierarchy.

If the timing violations are too severe to be further optimized and corrected by downstream
processes, review the techniques for specifying an exact latency and specifying exact
implementation cores before considering a faster target technology.

Specifying the Reset

Typically the most important aspect of RTL configuration is selecting the reset behavior. When
discussing reset behavior it is important to understand the difference between initialization and
reset.

Initialization Behavior

In C, variables defined with the static qualifier and those defined in the global scope, are by
default initialized to zero. Optionally, these variables may be assigned a specific initial value. For
these type of variables, the initial value in the C code is assigned at compile time (at time zero)
and never again. In both cases, the same initial value is implemented in the RTL.

• During RTL simulation the variables are initialized with the same values as the C code.

• The same variables are initialized in the bitstream used to program the FPGA. When the
device powers up, the variables will start in their initialized state.

The variables start with the same initial state as the C code. However, there is no way to force a
return to this initial state. To return to their initial state the variables must be implemented with a
reset.

IMPORTANT! Top-level function arguments may be implemented in an AXI4-Lite interface. Since there is
no way to provide an initial value in C/C++ for function arguments, these variable cannot be initialized in
the RTL as doing so would create an RTL design with different functional behavior from the C/C++ code
which would fail to verify during C/RTL co-simulation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=122

Controlling the Reset Behavior

The reset port is used in an FPGA to return the registers and block RAM connected to the reset
port to an initial value any time the reset signal is applied. The presence and behavior of the RTL
reset port is controlled using the config_rtl configuration shown in the following figure. To
access this configuration, select Solution → Solution Settings → General → Add → config_rtl.

Figure 51: RTL Configurations

The reset settings include the ability to set the polarity of the reset and whether the reset is
synchronous or asynchronous but more importantly it controls, through the reset option, which
registers are reset when the reset signal is applied.

IMPORTANT! When AXI4 interfaces are used on a design the reset polarity is automatically changed to
active-Low irrespective of the setting in the config_rtl  configuration. This is required by the AXI4
standard.

The reset option has four settings:

• none: No reset is added to the design.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=123

• control: This is the default and ensures all control registers are reset. Control registers are
those used in state machines and to generate I/O protocol signals. This setting ensures the
design can immediately start its operation state.

• state: This option adds a reset to control registers (as in the control setting) plus any registers
or memories derived from static and global variables in the C code. This setting ensures static
and global variable initialized in the C code are reset to their initialized value after the reset is
applied.

• all: This adds a reset to all registers and memories in the design.

Finer grain control over reset is provided through the RESET directive. If a variable is a static or
global, the RESET directive is used to explicitly add a reset, or the variable can be removed from
those being reset by using the RESET directive’s off option. This can be particularly useful when
static or global arrays are present in the design.

IMPORTANT! Is is important when using the reset state  or all option to consider the effect on arrays.

Initializing and Resetting Arrays

Arrays are often defined as static variables, which implies all elements be initialized to zero, and
arrays are typically implemented as block RAM. When reset options state or all are used, it
forces all arrays implemented as block RAM to be returned to their initialized state after reset.
This may result in two very undesirable conditions in the RTL design:

• Unlike a power-up initialization, an explicit reset requires the RTL design iterate through each
address in the block RAM to set the value: this can take many clock cycles if N is large and
require more area resources to implement.

• A reset is added to every array in the design.

To prevent placing reset logic onto every such block RAM and incurring the cycle overhead to
reset all elements in the RAM:

• Use the default control reset mode and use the RESET directive to specify individual static
or global variables to be reset.

• Alternatively, use reset mode state and remove the reset from specific static or global
variables using the off option to the RESET directive.

RTL Output

Various characteristics of the RTL output by Vivado HLS can be controlled using the
config_rtl configuration shown in in the above figure.

• Specify the type of FSM encoding used in the RTL state machines.

• Add an arbitrary comment string, such as a copyright notice, to all RTL files using the -
header option.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=124

• Specify a unique name with the prefix option which is added to all RTL output file names.

• Force the RTL ports to use lower case names.

The default FSM coding is style is onehot. Other possible options are auto, binary, and gray.
If you select auto, Vivado HLS implements the style of encoding using the onehot default, but
Vivado Design Suite might extract and re-implement the FSM style during logic synthesis. If you
select any other encoding style (binary, onehot, gray), the encoding style cannot be re-
optimized by Xilinx logic synthesis tools.

The names of the RTL output files are derived from the name of the top-level function for
synthesis. If different RTL blocks are created from the same top-level function, the RTL files will
have the same name and cannot be combined in the same RTL project. The prefix option
allows RTL files generated from the same top-level function (and which by default have the same
name as the top-level function) to be easily combined in the same directory. The
lower_case_name option ensures the only lower case names are used in the output RTL. This
option ensures the IO protocol ports created by Vivado HLS, such as those for AXI interfaces, are
specified as s_axis_<port>_tdata in the final RTL rather than the default port name of
s_axis_<port>_TDATA.

Optimizing for Throughput
Use the following optimizations to improve throughput or reduce the initiation interval.

Function and Loop Pipelining

Pipelining allows operations to happen concurrently: each execution step does not have to
complete all operations before it begins the next operation. Pipelining is applied to functions and
loops. The throughput improvements in function pipelining are shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=125

Figure 52: Function Pipelining Behavior

void func(…) {

 op_Read;
 op_Compute;
 op_Write;

}

RD
CMP
WR

3 cycles

RD CMP WR RD CMP WR

1 cycle

RD CMP WR

2 cycles
RD CMP WR

2 cycles

(A) Without Function Pipelining (B) With Function Pipelining

X14269

Without pipelining, the function in the above example reads an input every 3 clock cycles and
outputs a value after 2 clock cycles. The function has an initiation interval (II) of 3 and a latency
of 3. With pipelining, for this example, a new input is read every cycle (II=1) with no change to
the output latency.

Loop pipelining allows the operations in a loop to be implemented in an overlapping manner. In
the following figure, (A) shows the default sequential operation where there are 3 clock cycles
between each input read (II=3), and it requires 8 clock cycles before the last output write is
performed.

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II=1)
and the final output is written after only 4 clock cycles: substantially improving both the II and
latency while using the same hardware resources.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=126

Figure 53: Loop Pipelining

void func(m,n,o) {

 for (i=2;i>=0;i--) {
 op_Read;
 op_Compute;
 op_Write;

 }
}

4 cycles

RD

3 cycles

8 cycles

1 cycle
RD CMP WR

RD CMP WR

RD CMP WR

(A) Without Loop Pipelining (B) With Loop Pipelining
X14277

CMP WR RD CMP WR RD CMP WR

Functions or loops are pipelined using the PIPELINE directive. The directive is specified in the
region that constitutes the function or loop body. The initiation interval defaults to 1 if not
specified but may be explicitly specified.

Pipelining is applied only to the specified region and not to the hierarchy below. However, all
loops in the hierarchy below are automatically unrolled. Any sub-functions in the hierarchy below
the specified function must be pipelined individually. If the sub-functions are pipelined, the
pipelined functions above it can take advantage of the pipeline performance. Conversely, any
sub-function below the pipelined top-level function that is not pipelined might be the limiting
factor in the performance of the pipeline.

There is a difference in how pipelined functions and loops behave.

• In the case of functions, the pipeline runs forever and never ends.

• In the case of loops, the pipeline executes until all iterations of the loop are completed.

This difference in behavior is summarized in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=127

Figure 54: Function and Loop Pipelining Behavior

Execute Function

Pipelined Function Pipelined Loop

Execute Next

Execute Next
Execute Loop Execute Next

Loop

Pipelined Function I/O Accesses Pipelined Loop I/O Accesses

X14302

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RD0 CMP WR0

RD1 CMP WR1

RD2 CMP WR2

RD0 CMP WR0

RD1 CMP

RD2

RD0 RD1 RD2 RDN

WR0 WR1 WR2 WRN

RD0 RD1 RD2 RDN

WR0 WR1 WR2 WRN WR0

RD0 RD1 RD2Bubble

Bubble

RDN CMP WRN

The difference in behavior impacts how inputs and outputs to the pipeline are processed. As
seen in the figure above, a pipelined function will continuously read new inputs and write new
outputs. By contrast, because a loop must first finish all operations in the loop before starting the
next loop, a pipelined loop causes a “bubble” in the data stream; that is, a point when no new
inputs are read as the loop completes the execution of the final iterations, and a point when no
new outputs are written as the loop starts new loop iterations.

Rewinding Pipelined Loops for Performance

To avoid issues shown in the previous figure, the PIPELINE pragma has an optional command
rewind. This command enables the overlap of the iterations of successive calls to the rewind
loop, when this loop is the outermost construct of the top function or of a dataflow process (and
the dataflow region is called multiple times).

The following figure shows the operation when the rewind option is used when pipelining a
loop. At the end of the loop iteration count, the loop starts to re-execute. While it generally re-
executes immediately, a delay is possible and is shown and described in the GUI.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=128

Figure 55: Loop Pipelining with Rewind Option

RD0 CMP WR0
RD1 CMP WR1

RD2 CMP WR2

Execute Loop

RDN CMP WRN

RD0 CMP WR0
RD1 CMP WR1

RD2 CMP WR2
RDN CMP WRN

Execute Next Loop

Loop:for(i=1;i<N;i++){
 op_Read;
 op_Compute;
 op_Write;
}

RD
CMP
WR

X14303

Note: If a loop is used around a DATAFLOW region, Vivado HLS automatically implements it to allow
successive iterations to overlap. See Exploiting Task Level Parallelism: Dataflow Optimization for more
information.

Flushing Pipelines

Pipelines continue to execute as long as data is available at the input of the pipeline. If there is no
data available to process, the pipeline will stall. This is shown in the following figure, where the
input data valid signal goes low to indicate there is no more data. Once there is new data
available to process, the pipeline will continue operation.

Figure 56: Loop Pipelining with Stall

RD0 CMP WR0
Input Data Valid

RD1 CMP

RD2

RDN CMP WRN

CMP

WR1

WR2

X14305

In some cases, it is desirable to have a pipeline that can be “emptied” or “flushed”. The flush
option is provided to perform this. When a pipeline is “flushed” the pipeline stops reading new
inputs when none are available (as determined by a data valid signal at the start of the pipeline)
but continues processing, shutting down each successive pipeline stage, until the final input has
been processed through to the output of the pipeline.

Automatic Loop Pipelining

The config_compile configuration enables loops to be pipelined automatically based on the
iteration count. This configuration is accessed through the menu Solution > Solution Settings >
General > Add > config_compile.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=129

The pipeline_loops option sets the iteration limit. All loops with an iteration count below
this limit are automatically pipelined. The default is 0: no automatic loop pipelining is performed.

Given the following example code:

for (y = 0; y < 480; y++) {
 for (x = 0; x < 640; x++) {
 for (i = 0; i < 5; i++) {
 // do something 5 times
 ...
 }
 }
}

If the pipeline_loops option is set to 6, the innermost for loop in the above code snippet
will be automatically pipelined. This is equivalent to the following code snippet:

for (y = 0; y < 480; y++) {
 for (x = 0; x < 640; x++) {
 for (i = 0; i < 5; i++) {
#pragma HLS PIPELINE II=1
 // do something 5 times
 ...
 }
 }
}

If there are loops in the design for which you do not want to use automatic pipelining, apply the
PIPELINE directive with the off option to that loop. The off option prevents automatic loop
pipelining.

IMPORTANT! Vivado HLS applies the config_compile pipeline_loops  option after performing
all user-specified directives. For example, if Vivado HLS applies a user-specified UNROLL directive to a
loop, the loop is first unrolled, and automatic loop pipelining cannot be applied.

Addressing Failure to Pipeline

When a function is pipelined, all loops in the hierarchy below are automatically unrolled. This is a
requirement for pipelining to proceed. If a loop has variable bounds it cannot be unrolled. This
will prevent the function from being pipelined.

Static Variables

Static variables are used to keep data between loop iterations, often resulting in registers in the
final implementation. If this is encountered in pipelined functions, vivado_hls might not be
able to optimize the design sufficiently, which would result in initiation intervals longer than
required.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=130

The following is a typical example of this situation:

function_foo()
{
 static bool change = 0
 if (condition_xyz){
 change = x; // store
 }
 y = change; // load
}

If vivado_hls cannot optimize this code, the stored operation requires a cycle and the load
operation requires an additional cycle. If this function is part of a pipeline, the pipeline has to be
implemented with a minimum initiation interval of 2 as the static change variable creates a loop-
carried dependency.

One way the user can avoid this is to rewrite the code, as shown in the following example. It
ensures that only a read or a write operation is present in each iteration of the loop, which
enables the design to be scheduled with II=1.

function_readstream()
{
 static bool change = 0
 bool change_temp = 0;
 if (condition_xyz)
 {
 change = x; // store
 change_temp = x;
 }
 else
 {
 change_temp = change; // load
 }
 y = change_temp;
}

Partitioning Arrays to Improve Pipelining

A common issue when pipelining functions is the following message:

INFO: [SCHED 204-61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p0 is 1, current
assignments:
WARNING: [SCHED 204-69] 'load' operation ('mem_load', bottleneck.c:62)
on array
'mem',
WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p1 is 1, current
assignments:
WARNING: [SCHED 204-69] 'load' operation ('mem_load_1',
bottleneck.c:62) on array
'mem',
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=131

In this example, Vivado HLS states it cannot reach the specified initiation interval (II) of 1
because it cannot schedule a load (read) operation (mem_load_2) onto the memory because of
limited memory ports. The above message notes that the resource limit for "core:RAM:mem:p0
is 1" which is used by the operation mem_load on line 62. The 2nd port of the block RAM also
only has 1 resource, which is also used by operation mem_load_1. Due to this memory port
contention, Vivado HLS reports a final II of 2 instead of the desired 1.

This issue is typically caused by arrays. Arrays are implemented as block RAM which only has a
maximum of two data ports. This can limit the throughput of a read/write (or load/store)
intensive algorithm. The bandwidth can be improved by splitting the array (a single block RAM
resource) into multiple smaller arrays (multiple block RAMs), effectively increasing the number of
ports.

Arrays are partitioned using the ARRAY_PARTITION directive. Vivado HLS provides three types
of array partitioning, as shown in the following figure. The three styles of partitioning are:

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

• complete: The default operation is to split the array into its individual elements. This
corresponds to resolving a memory into registers.

Figure 57: Array Partitioning

0 1 2 ... N-3 N-2 N-1

0 1 ... (N/2-1)

N/2 ... N-2 N-1

0 2 ... N-2

1 ... N-3 N-1

0
N-3

N-11
N-2

...
2

block

cyclic

complete

X14251

For block and cyclic partitioning the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used, that is, the array is divided into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the final
array has fewer elements.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=132

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code:

void foo (...) {
 int my_array[10][6][4];
 ...
}

The examples in the figure demonstrate how partitioning dimension 3 results in 4 separate arrays
and partitioning dimension 1 results in 10 separate arrays. If zero is specified as the dimension, all
dimensions are partitioned.

Figure 58: Partitioning Array Dimensions

my_array_0[10][6]
my_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

my_array[10][6][4] partition dimension 3

my_array[10][6][4] partition dimension 1

my_array[10][6][4] partition dimension 0 10x6x4 = 240 registers

X14304

Automatic Array Partitioning

The config_array_partition configuration determines how arrays are automatically
partitioned based on the number of elements. This configuration is accessed through the menu
Solution → Solution Settings → General → Add → config_array_partition.

The partition thresholds can be adjusted and partitioning can be fully automated with the
throughput_driven option. When the throughput_driven option is selected, Vivado HLS
automatically partitions arrays to achieve the specified throughput.

Dependencies with Vivado HLS

Vivado HLS constructs a hardware datapath that corresponds to the C source code.

When there is no pipeline directive, the execution is sequential so there are no dependencies to
take into account. But when the design has been pipelined, the tool needs to deal with the same
dependencies as found in processor architectures for the hardware that Vivado HLS generates.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=133

Typical cases of data dependencies or memory dependencies are when a read or a write occurs
after a previous read or write.

• A read-after-write (RAW), also called a true dependency, is when an instruction (and data it
reads/uses) depends on the result of a previous operation.

○ I1: t = a * b;

○ I2: c = t + 1;

The read in statement I2 depends on the write of t in statement I1. If the instructions are
reordered, it uses the previous value of t.

• A write-after-read (WAR), also called an anti-dependence, is when an instruction cannot
update a register or memory (by a write) before a previous instruction has read the data.

○ I1: b = t + a;

○ I2: t = 3;

The write in statement I2 cannot execute before statement I1, otherwise the result of b is
invalid.

• A write-after-write (WAW) is a dependence when a register or memory must be written in
specific order otherwise other instructions might be corrupted.

○ I1: t = a * b;

○ I2: c = t + 1;

○ I3: t = 1;

The write in statement I3 must happen after the write in statement I1. Otherwise, the
statement I2 result is incorrect.

• A read-after-read has no dependency as instructions can be freely reordered if the variable is
not declared as volatile. If it is, then the order of instructions has to be maintained.

For example, when a pipeline is generated, the tool needs to take care that a register or memory
location read at a later stage has not been modified by a previous write. This is a true
dependency or read-after-write (RAW) dependency. A specific example is:

int top(int a, int b) {
 int t,c;
I1: t = a * b;
I2: c = t + 1;
 return c;
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=134

Statement I2 cannot be evaluated before statement I1 completes because there is a
dependency on variable t. In hardware, if the multiplication takes 3 clock cycles, then I2 is
delayed for that amount of time. If the above function is pipelined, then VHLS detects this as a
true dependency and schedules the operations accordingly. It uses data forwarding optimization
to remove the RAW dependency, so that the function can operate at II =1.

Memory dependencies arise when the example applies to an array and not just variables.

int top(int a) {
 int r=1,rnext,m,i,out;
 static int mem[256];
L1: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II=1
I1: m = r * a; mem[i+1] = m; // line 7
I2: rnext = mem[i]; r = rnext; // line 8
 }
 return r;
}

In the above example, scheduling of loop L1 leads to a scheduling warning message:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 1,
distance = 1)
 between 'store' operation (top.cpp:7) of variable 'm', top.cpp:7 on array
'mem' and
'load' operation ('rnext', top.cpp:8) on array 'mem'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

There are no issues within the same iteration of the loop as you write an index and read another
one. The two instructions could execute at the same time, concurrently. However, observe the
read and writes over a few iterations:

// Iteration for i=0
I1: m = r * a; mem[1] = m; // line 7
I2: rnext = mem[0]; r = rnext; // line 8
// Iteration for i=1
I1: m = r * a; mem[2] = m; // line 7
I2: rnext = mem[1]; r = rnext; // line 8
// Iteration for i=2
I1: m = r * a; mem[3] = m; // line 7
I2: rnext = mem[2]; r = rnext; // line 8

When considering two successive iterations, the multiplication result m (with a latency = 2) from
statement I1 is written to a location that is read by statement I2 of the next iteration of the
loop into rnext. In this situation, there is a RAW dependence as the next loop iteration cannot
start reading mem[i] before the previous computation's write completes.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=135

Figure 59: Dependency Example

Note that if the clock frequency is increased, then the multiplier needs more pipeline stages and
increased latency. This will force II to increase as well.

Consider the following code, where the operations have been swapped, changing the
functionality.

int top(int a) {
 int r,m,i;
 static int mem[256];
L1: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II=1
I1: r = mem[i]; // line 7
I2: m = r * a , mem[i+1]=m; // line 8
 }
 return r;
}

The scheduling warning is:

INFO: [SCHED 204-61] Pipelining loop 'L1'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 1,
distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 2,
distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 3,

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=136

distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 4, Depth: 4.

Observe the continued read and writes over a few iterations:

Iteration with i=0
I1: r = mem[0]; // line 7
I2: m = r * a , mem[1]=m; // line 8
Iteration with i=1
I1: r = mem[1]; // line 7
I2: m = r * a , mem[2]=m; // line 8
Iteration with i=2
I1: r = mem[2]; // line 7
I2: m = r * a , mem[3]=m; // line 8

A longer II is needed because the RAW dependence is via reading r from mem[i], performing
the multiplication, and writing to mem[i+1].

Removing False Dependencies to Improve Loop Pipelining

False dependencies are dependencies that arise when the compiler is too conservative. These
dependencies do not exist in the real code, but cannot be determined by the compiler. These
dependencies can prevent loop pipelining.

The following example illustrates false dependencies. In this example, the read and write
accesses are to two different addresses in the same loop iteration. Both of these addresses are
dependent on the input data, and can point to any individual element of the hist array. Because
of this, Vivado HLS assumes that both of these accesses can access the same location. As a
result, it schedules the read and write operations to the array in alternating cycles, resulting in a
loop II of 2. However, the code shows that hist[old] and hist[val] can never access the
same location because they are in the else branch of the conditional if(old == val).

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) f
 int acc = 0;
 int i, val;
 int old = in[0];
 for(i = 0; i < INPUT SIZE; i++)
 {
 #pragma HLS PIPELINE II=1
 val = in[i];
 if(old == val)
 {
 acc = acc + 1;
 }
 else
 {
 hist[old] = acc;
 acc = hist[val] + 1;
 }

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=137

 old = val;
 }

 hist[old] = acc;

To overcome this deficiency, you can use the DEPENDENCE directive to provide Vivado HLS
with additional information about the dependencies.

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {
 int acc = 0;
 int i, val;
 int old = in[0];
 #pragma HLS DEPENDENCE variable=hist intra RAW false
 for(i = 0; i < INPUT SIZE; i++)
 {
 #pragma HLS PIPELINE II=1
 val = in[i];
 if(old == val)
 {
 acc = acc + 1;
 }
 else
 {
 hist[old] = acc;
 acc = hist[val] + 1;
 }

 old = val;
 }

 hist[old] = acc;

Note: Specifying a FALSE dependency, when in fact the dependency is not FALSE, can result in incorrect
hardware. Be sure dependencies are correct (TRUE or FALSE) before specifying them.

When specifying dependencies there are two main types:

• Inter: Specifies the dependency is between different iterations of the same loop.

If this is specified as FALSE it allows Vivado HLS to perform operations in parallel if the
pipelined or loop is unrolled or partially unrolled and prevents such concurrent operation
when specified as TRUE.

• Intra: Specifies dependence within the same iteration of a loop, for example an array being
accessed at the start and end of the same iteration.

When intra dependencies are specified as FALSE, Vivado HLS may move operations freely
within the loop, increasing their mobility and potentially improving performance or area.
When the dependency is specified as TRUE, the operations must be performed in the order
specified.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=138

Scalar Dependencies

Some scalar dependencies are much harder to resolve and often require changes to the source
code. A scalar data dependency could look like the following:

while (a != b) {
 if (a > b) a -= b;
 else b -= a;
 }

The next iteration of this loop cannot start until the current iteration has calculated the updated
the values of a and b, as shown in the following figure.

Figure 60: Scalar Dependency

!= > - != > -

X14288

If the result of the previous loop iteration must be available before the current iteration can
begin, loop pipelining is not possible. If Vivado HLS cannot pipeline with the specified initiation
interval, it increases the initiation internal. If it cannot pipeline at all, as shown by the above
example, it halts pipelining and proceeds to output a non-pipelined design.

Optimal Loop Unrolling to Improve Pipelining

By default, loops are kept rolled in Vivado HLS. These rolled loops generate a hardware resource
which is used by each iteration of the loop. While this creates a resource efficient block, it can
sometimes be a performance bottleneck.

Vivado HLS provides the ability to unroll or partially unroll for-loops using the UNROLL directive.

The following figure shows both the advantages of loop unrolling and the implications that must
be considered when unrolling loops. This example assumes the arrays a[i], b[i], and
c[i] are mapped to block RAMs. This example shows how easy it is to create many different
implementations by the simple application of loop unrolling.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=139

Figure 61: Loop Unrolling Details

void top(...) { ...
 for_mult:for (i=3;i>0;i--) {
 a[i] = b[i] * c[i];
 }
 ...
}

Read b[3]

*

Write a[3]

Rolled Loop

Read c[3]

Read b[2]

*

Write a[2]

Read c[2]

Read b[1]

*

Write a[1]

Read c[1]

Read b[0]

*

Write a[0]

Read c[0]

Read b[3]

*

Write a[3]

Read c[3]

Read b[1]

*

Write a[1]

Read c[1]

Partially Unrolled Loop

Read b[2]

Read c[2]

Read b[0]

Read c[0]

* *

Write a[2] Write a[0]

Read b[3]

*
Write a[3]

Read c[3]

Unrolled Loop

Read b[2]

Read c[2]

*

Write a[2]

Read b[1]

Read c[1]

Read b[0]

Read c[0]

*

*

Write a[1]

Write a[0]

X14278-040419

Iterations

O
pe

ra
tio

ns

• Rolled Loop: When the loop is rolled, each iteration is performed in separate clock cycles. This
implementation takes four clock cycles, only requires one multiplier and each block RAM can
be a single-port block RAM.

• Partially Unrolled Loop: In this example, the loop is partially unrolled by a factor of 2. This
implementation required two multipliers and dual-port RAMs to support two reads or writes
to each RAM in the same clock cycle. This implementation does however only take 2 clock
cycles to complete: half the initiation interval and half the latency of the rolled loop version.

• Unrolled loop: In the fully unrolled version all loop operation can be performed in a single
clock cycle. This implementation however requires four multipliers. More importantly, this
implementation requires the ability to perform 4 reads and 4 write operations in the same
clock cycle. Because a block RAM only has a maximum of two ports, this implementation
requires the arrays be partitioned.

To perform loop unrolling, you can apply the UNROLL directives to individual loops in the design.
Alternatively, you can apply the UNROLL directive to a function, which unrolls all loops within
the scope of the function.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=140

If a loop is completely unrolled, all operations will be performed in parallel if data dependencies
and resources allow. If operations in one iteration of the loop require the result from a previous
iteration, they cannot execute in parallel but will execute as soon as the data is available. A
completely unrolled and fully optimized loop will generally involve multiple copies of the logic in
the loop body.

The following example code demonstrates how loop unrolling can be used to create an optimized
design. In this example, the data is stored in the arrays as interleaved channels. If the loop is
pipelined with II=1, each channel is only read and written every 8th block cycle.

// Array Order : 0 1 2 3 4 5 6 7 8 9 10 etc. 16
etc...
// Sample Order: A0 B0 C0 D0 E0 F0 G0 H0 A1 B1 C2 etc. A2
etc...
// Output Order: A0 B0 C0 D0 E0 F0 G0 H0 A0+A1 B0+B1 C0+C2 etc. A0+A1+A2
etc...

#define CHANNELS 8
#define SAMPLES 400
#define N CHANNELS * SAMPLES

void foo (dout_t d_out[N], din_t d_in[N]) {
 int i, rem;

 // Store accumulated data
 static dacc_t acc[CHANNELS];

 // Accumulate each channel
 For_Loop: for (i=0;i<N;i++) {
 rem=i%CHANNELS;
 acc[rem] = acc[rem] + d_in[i];
 d_out[i] = acc[rem];
 }
}

Partially unrolling the loop by a factor of 8 will allow each of the channels (every 8th sample) to
be processed in parallel (if the input and output arrays are also partitioned in a cyclic manner
to allow multiple accesses per clock cycle). If the loop is also pipelined with the rewind option,
this design will continuously process all 8 channels in parallel if called in a pipelined fashion (i.e.,
either at the top, or within a dataflow region).

void foo (dout_t d_out[N], din_t d_in[N]) {
#pragma HLS ARRAY_PARTITION variable=d_i cyclic factor=8 dim=1 partition
#pragma HLS ARRAY_PARTITION variable=d_o cyclic factor=8 dim=1 partition

 int i, rem;

 // Store accumulated data
 static dacc_t acc[CHANNELS];

 // Accumulate each channel
 For_Loop: for (i=0;i<N;i++) {
#pragma HLS PIPELINE rewind
#pragma HLS UNROLL factor=8

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=141

 rem=i%CHANNELS;
 acc[rem] = acc[rem] + d_in[i];
 d_out[i] = acc[rem];
 }
}

Partial loop unrolling does not require the unroll factor to be an integer multiple of the maximum
iteration count. Vivado HLS adds an exit checks to ensure partially unrolled loops are functionally
identical to the original loop. For example, given the following code:

for(int i = 0; i < N; i++) {
 a[i] = b[i] + c[i];
}

Loop unrolling by a factor of 2 effectively transforms the code to look like the following example
where the break construct is used to ensure the functionality remains the same:

for(int i = 0; i < N; i += 2) {
 a[i] = b[i] + c[i];
 if (i+1 >= N) break;
 a[i+1] = b[i+1] + c[i+1];
}

Because N is a variable, Vivado HLS may not be able to determine its maximum value (it could be
driven from an input port). If the unrolling factor, which is 2 in this case, is an integer factor of the
maximum iteration count N, the skip_exit_check option removes the exit check and
associated logic. The effect of unrolling can now be represented as:

for(int i = 0; i < N; i += 2) {
 a[i] = b[i] + c[i];
 a[i+1] = b[i+1] + c[i+1];
}

This helps minimize the area and simplify the control logic.

Exploiting Task Level Parallelism: Dataflow Optimization

The dataflow optimization is useful on a set of sequential tasks (e.g., functions and/or loops), as
shown in the following figure.

Figure 62: Sequential Functional Description

function_1 . . . function_N

TOP

in
in out

tmp tmp out
in out in out

X14290

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=142

The above figure shows a specific case of a chain of three tasks, but the communication structure
can be more complex than shown.

Using this series of sequential tasks, dataflow optimization creates an architecture of concurrent
processes, as shown below. Dataflow optimization is a powerful method for improving design
throughput and latency.

Figure 63: Parallel Process Architecture

X14282

TOP

Interface Process_1 Channel . . . Channel Process_N Interface

The following figure shows how dataflow optimization allows the execution of tasks to overlap,
increasing the overall throughput of the design and reducing latency.

In the following figure and example, (A) represents the case without the dataflow optimization.
The implementation requires 8 cycles before a new input can be processed by func_A and 8
cycles before an output is written by func_C.

For the same example, (B) represents the case when the dataflow optimization is applied.
func_A can begin processing a new input every 3 clock cycles (lower initiation interval) and it
now only requires 5 clocks to output a final value (shorter latency).

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=143

Figure 64: Dataflow Optimization

void top (a,b,c,d) {
 ...
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d)

 return d;
}

func_A
func_B
func_C

8 cycles

func_A func_B func_C

8 cycles

3 cycles

func_A
func_B

func_C

func_A
func_B

func_C

5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266

This type of parallelism cannot be achieved without incurring some overhead in hardware. When
a particular region, such as a function body or a loop body, is identified as a region to apply the
dataflow optimization, Vivado HLS analyzes the function or loop body and creates individual
channels that model the dataflow to store the results of each task in the dataflow region. These
channels can be simple FIFOs for scalar variables, or ping-pong (PIPO) buffers for non-scalar
variables like arrays. Each of these channels also contain signals to indicate when the FIFO or the
ping-pong buffer is full or empty. These signals represent a handshaking interface that is
completely data driven. By having individual FIFOs and/or ping-pong buffers, Vivado HLS frees
each task to execute at its own pace and the throughput is only limited by availability of the input
and output buffers. This allows for better interleaving of task execution than a normal pipelined
implementation but does so at the cost of additional FIFO or block RAM registers for the ping-
pong buffer. The preceding figure illustrates the structure that is realized for the dataflow region
for the same example in the following figure.

Figure 65: Structure Created During Dataflow Optimization

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=144

Dataflow optimization potentially improves performance over a statically pipelined solution. It
replaces the strict, centrally-controlled pipeline stall philosophy with more flexible and
distributed handshaking architecture using FIFOs and/or ping-pong buffers. Dataflow
optimization is not limited to a chain of processes, but can be used on any DAG structure. It can
produce two different forms of overlapping: within an iteration if processes are connected with
FIFOs, and across different iterations via PIPOs and FIFOs.

Canonical Forms

Vivado HLS transforms the region to apply the DATAFLOW optimization. Xilinx recommends
writing the code inside this region (referred to as the canonical region) using canonical forms.
There are two main canonical forms for the dataflow optimization:

1. The canonical form for a function where functions are not inlined.

void dataflow(Input0, Input1, Output0, Output1)
{
 #pragma HLS dataflow
 UserDataType C0, C1, C2;
 func1(read Input0, read Input1, write C0, write C1);
 func2(read C0, read C1, write C2);
 func3(read C2, write Output0, write Output1);
}

2. Dataflow inside a loop body.

For the for loop (where no function inside is inlined), the integral loop variable should have:

a. Initial value declared in the loop header and set to 0.

b. The loop condition is a positive numerical constant or constant function argument.

c. Increment by 1.

d. Dataflow pragma needs to be inside the loop.

void dataflow(Input0, Input1, Output0, Output1)
{
 for (int i = 0; i < N; i++)
 {
 #pragma HLS dataflow
 UserDataType C0, C1, C2;
 func1(read Input0, read Input1, write C0, write C1);
 func2(read C0, read C0, read C1, write C2);
 func3(read C2, write Output0, write Output1);
 }
}

Canonical Body

Inside the canonical region, the canonical body should follow these guidelines:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=145

1. Use a local, non-static scalar or array/pointer variable, or local static stream variable. A local
variable is declared inside the function body (for dataflow in a function) or loop body (for
dataflow inside a loop).

2. A sequence of function calls that pass data forward (with no feedback), from a function to
one that is lexically later, under the following conditions:

a. Variables (except scalar) can have only one reading process and one writing process.

b. Use write before read (producer before consumer) if you are using local variables, which
then become channels.

c. Use read before write (consumer before producer) if you are using function arguments.
Any intra-body anti-dependencies must be preserved by the design.

d. Function return type must be void.

e. No loop-carried dependencies among different processes via variables.

• Inside the canonical loop (i.e., values written by one iteration and read by a following
one).

• Among successive calls to the top function (i.e., inout argument written by one
iteration and read by the following iteration).

Dataflow Checking

Vivado HLS has a dataflow checker which, when enabled, checks the code to see if it is in the
recommended canonical form. Otherwise it will emit an error/warning message to the user. By
default this checker is set to warning. You can set the checker to error or disable it by
selecting off in the strict mode of the config_dataflow TCL command:

config_dataflow -strict_mode (off | error | warning)

Dataflow Optimization Limitations

The DATAFLOW optimization optimizes the flow of data between tasks (functions and loops),
and ideally pipelined functions and loops for maximum performance. It does not require these
tasks to be chained, one after the other, however there are some limitations in how the data is
transferred.

The following behaviors can prevent or limit the overlapping that Vivado® HLS can perform with
DATAFLOW optimization:

• Single-producer-consumer violations

• Bypassing tasks

• Feedback between tasks

• Conditional execution of tasks

• Loops with multiple exit conditions

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=146

IMPORTANT! If any of these coding styles are present, Vivado HLS issues a message describing the
situation.

Note: The dataflow viewer in the Analysis Perspective may be used to view the structure when the
DATAFLOW directive is applied.

Single-producer-consumer Violations

For Vivado HLS to perform the DATAFLOW optimization, all elements passed between tasks
must follow a single-producer-consumer model. Each variable must be driven from a single task
and only be consumed by a single task. In the following code example, temp1 fans out and is
consumed by both Loop2 and Loop3. This violates the single-producer-consumer model.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {

int temp1[N];
Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
}
Loop2: for(int j = 0; j < N; j++) {
 data_out1[j] = temp1[j] * 123;
}
Loop3: for(int k = 0; k < N; k++) {
 data_out2[k] = temp1[k] * 456;
}

}

A modified version of this code uses function Split to create a single-producer-consumer
design. In this case, data flows from Loop1 to function Split and then to Loop2 and Loop3.
The data now flows between all four tasks, and Vivado HLS can perform the DATAFLOW
optimization.

void Split (in[N], out1[N], out2[N]) {
// Duplicated data
 L1:for(int i=1;i<N;i++) {
 out1[i] = in[i];
 out2[i] = in[i];
 }
}
void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {

 int temp1[N], temp2[N]. temp3[N];
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 }
 Split(temp1, temp2, temp3);
 Loop2: for(int j = 0; j < N; j++) {
 data_out1[j] = temp2[j] * 123;
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out2[k] = temp3[k] * 456;
 }
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=147

Bypassing Tasks

In addition, data should generally flow from one task to another. If you bypass tasks, this can
reduce the performance of the DATAFLOW optimization. In the following example, Loop1
generates the values for temp1 and temp2. However, the next task, Loop2, only uses the value
of temp1. The value of temp2 is not consumed until after Loop2. Therefore, temp2 bypasses
the next task in the sequence, which can limit the performance of the DATAFLOW optimization.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {

 int temp1[N], temp2[N]. temp3[N];
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 temp2[i] = data_in[i] >> scale;
 }
 Loop2: for(int j = 0; j < N; j++) {
 temp3[j] = temp1[j] + 123;
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp2[k] + temp3[k];
 }
}

Because the loop iteration limits are all the same in this example, you can modify the code so
that Loop2 consumes temp2 and produces temp4 as follows. This ensures that the data flows
from one task to the next.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {

 int temp1[N], temp2[N]. temp3[N], temp4[N];
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 temp2[i] = data_in[i] >> scale;
 }
 Loop2: for(int j = 0; j < N; j++) {
 temp3[j] = temp1[j] + 123;
 temp4[j] = temp2[j];
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp4[k] + temp3[k];
 }
}

Feedback Between Tasks

Feedback occurs when the output from a task is consumed by a previous task in the DATAFLOW
region. Feedback between tasks is not permitted in a DATAFLOW region. When Vivado HLS
detects feedback, it issues a warning, depending on the situation, and might not perform the
DATAFLOW optimization.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=148

Conditional Execution of Tasks

The DATAFLOW optimization does not optimize tasks that are conditionally executed. The
following example highlights this limitation. In this example, the conditional execution of Loop1
and Loop2 prevents Vivado HLS from optimizing the data flow between these loops, because
the data does not flow from one loop into the next.

void foo(int data_in1[N], int data_out[N], int sel) {

 int temp1[N], temp2[N];

 if (sel) {
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * 123;
 temp2[i] = data_in[i];
 }
 } else {
 Loop2: for(int j = 0; j < N; j++) {
 temp1[j] = data_in[j] * 321;
 temp2[j] = data_in[j];
 }
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp1[k] * temp2[k];
 }
}

To ensure each loop is executed in all cases, you must transform the code as shown in the
following example. In this example, the conditional statement is moved into the first loop. Both
loops are always executed, and data always flows from one loop to the next.

void foo(int data_in[N], int data_out[N], int sel) {

 int temp1[N], temp2[N];

 Loop1: for(int i = 0; i < N; i++) {
 if (sel) {
 temp1[i] = data_in[i] * 123;
 } else {
 temp1[i] = data_in[i] * 321;
 }
 }
 Loop2: for(int j = 0; j < N; j++) {
 temp2[j] = data_in[j];
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp1[k] * temp2[k];
 }
}

Loops with Multiple Exit Conditions

Loops with multiple exit points cannot be used in a DATAFLOW region. In the following example,
Loop2 has three exit conditions:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=149

• An exit defined by the value of N; the loop will exit when k>=N.

• An exit defined by the break statement.

• An exit defined by the continue statement.

#include "ap_cint.h"
#define N 16

typedef int8 din_t;
typedef int15 dout_t;
typedef uint8 dsc_t;
typedef uint1 dsel_t;

void multi_exit(din_t data_in[N], dsc_t scale, dsel_t select, dout_t
data_out[N]) {
 dout_t temp1[N], temp2[N];
 int i,k;

 Loop1: for(i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 temp2[i] = data_in[i] >> scale;
 }

 Loop2: for(k = 0; k < N; k++) {
 switch(select) {
 case 0: data_out[k] = temp1[k] + temp2[k];
 case 1: continue;
 default: break;
 }
 }
}

Because a loop’s exit condition is always defined by the loop bounds, the use of break or
continue statements will prohibit the loop being used in a DATAFLOW region.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the DATAFLOW optimization to the loop, the sub-function, or inline the sub-function.

Note: std::complex cannot be directly used inside the DATAFLOW region. They should be defined as native
data types and type casted inside the producer.

#dataflow
float A[N][2];
prod(A, in);
cons(out,A);

Producer(std::complex &)
{

}

Configuring Dataflow Memory Channels

Vivado HLS implements channels between the tasks as either ping-pong or FIFO buffers,
depending on the access patterns of the producer and the consumer of the data:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=150

• For scalar, pointer, and reference parameters, Vivado HLS implements the channel as a FIFO.

• If the parameter (producer or consumer) is an array, Vivado HLS implements the channel as a
ping-pong buffer or a FIFO as follows:

○ If Vivado HLS determines the data is accessed in sequential order, Vivado HLS implements
the memory channel as a FIFO channel of depth 2.

○ If Vivado HLS is unable to determine that the data is accessed in sequential order or
determines the data is accessed in an arbitrary manner, Vivado HLS implements the
memory channel as a ping-pong buffer, that is, as two block RAMs each defined by the
maximum size of the consumer or producer array.

Note: A ping-pong buffer ensures that the channel always has the capacity to hold all samples
without a loss. However, this might be an overly conservative approach in some cases.

To explicitly specify the default channel used between tasks, use the config_dataflow
configuration. This configuration sets the default channel for all channels in a design. To reduce
the size of the memory used in the channel and allow for overlapping within an iteration, you can
use a FIFO. To explicitly set the depth (i.e., number of elements) in the FIFO, use the
-fifo_depth option.

Specifying the size of the FIFO channels overrides the default approach. If any task in the design
can produce or consume samples at a greater rate than the specified size of the FIFO, the FIFOs
might become empty (or full). In this case, the design halts operation, because it is unable to read
(or write). This might result in or lead to a stalled, deadlock state.

Note: If a deadlocked situation is created, you will only see this when executing C/RTL co-simulation or
when the block is used in a complete system.

When setting the depth of the FIFOs, Xilinx recommends initially setting the depth as the
maximum number data values transferred (e.g., the size of the array passed between tasks),
confirming the design passes C/RTL co-simulation, and then reducing the size of the FIFOs and
confirming C/RTL co-simulation still completes without issues. If RTL co-simulation fails, the size
of the FIFO is likely too small to prevent stalling or a deadlock situation.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=151

Specifying Arrays as Ping-Pong Buffers or FIFOs

All arrays are implemented by default as ping-pong to enable random access. These buffers can
also be sized if needed. For example, in some circumstances, such as when a task is being
bypassed, a performance degradation is possible. To mitigate this affect on performance, you can
give more slack to the producer and consumer by increasing the size of these buffers by using
the STREAM directive as shown below.

void top (...) {
#pragma HLS dataflow
 int A[1024];
#pragma HLS stream off variable=A depth=3

 producer(A, B, …); // producer writes A and B
 middle(B, C, ...); // middle reads B and writes C
 consumer(A, C, …); // consumer reads A and C

In the interface, arrays are automatically specified as streaming if an array on the top-level
function interface is set as interface type ap_fifo, axis or ap_hs, it is automatically set as
streaming.

Inside the design, all arrays must be specified as streaming using the STREAM directive if a FIFO
is desired for the implementation.

Note: When the STREAM directive is applied to an array, the resulting FIFO implemented in the hardware
contains as many elements as the array. The -depth option can be used to specify the size of the FIFO.

The STREAM directive is also used to change any arrays in a DATAFLOW region from the default
implementation specified by the config_dataflow configuration.

• If the config_dataflow default_channel is set as ping-pong, any array can be
implemented as a FIFO by applying the STREAM directive to the array.

Note: To use a FIFO implementation, the array must be accessed in a streaming manner.

• If the config_dataflow default_channel is set to FIFO or Vivado HLS has
automatically determined the data in a DATAFLOW region is accessed in a streaming manner,
any array can still be implemented as a ping-pong implementation by applying the STREAM
directive to the array with the -off option.

IMPORTANT! To preserve the accesses, it might be necessary to prevent compiler optimizations (dead
code elimination particularly) by using the volatile qualifier.

When an array in a DATAFLOW region is specified as streaming and implemented as a FIFO, the
FIFO is typically not required to hold the same number of elements as the original array. The
tasks in a DATAFLOW region consume each data sample as soon as it becomes available. The
config_dataflow command with the -fifo_depth option or the STREAM directive with
the -depth can be used to set the size of the FIFO to the minimum number of elements
required to ensure flow of data never stalls. If the -off option is selected, the -off option sets
the depth (number of blocks) of the ping-pong. The depth should be at least 2.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=152

Specifying Compiler-FIFO Depth

Start Propagation

The compiler might automatically create a start FIFO to propagate a start token to an internal
process. Such FIFOs can sometimes be a bottleneck for performance, in which case you can
increase the default size (fixed to 2) with the following command:

config_dataflow -start_fifo_depth <value>

If an unbounded slack between producer and consumer is needed, and internal processes can run
forever, fully and safely driven by their inputs or outputs (FIFOs or PIPOs), these start FIFOs can
be removed, at user's risk, locally for a given dataflow region with the pragma:

#pragma HLS DATAFLOW disable_start_propagation

Scalar Propagation

The compiler automatically propagates some scalars from C/C++ code through scalar FIFOs
between processes. Such FIFOs can sometimes be a bottleneck for performance or cause
deadlocks, in which case you can set the size (the default value is set to -fifo_depth) with the
following command:

config_dataflow -scalar_fifo_depth <value>

Stable Arrays

The stable pragma can be used to mark input or output variables of a dataflow region. Its effect is
to remove their corresponding synchronizations, assuming that the user guarantees this removal
is indeed correct.

void dataflow_region(int A[...], ...
#pragma HLS stable variable=A
#pragma HLS dataflow
 proc1(...);
 proc2(A, ...);

Without the stable pragma, and assuming that A is read by proc2, then proc2 would be part
of the initial synchronization (via ap_start), for the dataflow region where it is located. This
means that proc1 would not restart until proc2 is also ready to start again, which would
prevent dataflow iterations to be overlapped and induce a possible loss of performance. The
stable pragma indicates that this synchronization is not necessary to preserve correctness.

In the previous example, without the stable pragma, and assuming that A is read by proc2 as
proc2 is bypassing the tasks, there will be a performance loss.

With the stable pragma, the compiler assumes that:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=153

• if A is read by proc2, then the memory locations that are read will not be overwritten, by any
other process or calling context, while dataflow_region is being executed.

• if A is written by proc2, then the memory locations written will not be read, before their
definition, by any other process or calling context, while dataflow_region is being
executed.

A typical scenario is when the caller updates or reads these variables only when the dataflow
region has not started yet or has completed execution.

Using ap_ctrl_none Inside the Dataflow

The ap_ctrl_none block-level I/O protocol avoids the rigid synchronization scheme implied by
the ap_ctrl_hs and ap_ctrl_chain protocols. These protocols require that all processes in
the region are executed exactly the same number of times in order to better match the
C behavior.

However, there are situations where, for example, the intent is to have a faster process that
executes more frequently to distribute work to several slower ones.

For any dataflow region (except "dataflow-in-loop"), it is possible to specify

#pragma HLS interface ap_ctrl_none port=return

as long as all the following conditions are satisfied:

• The region and all the processes it contains communicates only via FIFOs (hls::stream,
streamed arrays, AXIS); that is, excluding memories.

• All the parents of the region, up to the top level design, must fit the following requirements:

○ They must be dataflow regions (excluding "dataflow-in-loop").

○ They must all specify ap_ctrl_none.

This means that none of the parents of a dataflow region with ap_ctrl_none in the hierarchy
can be:

• A sequential or pipelined FSM

• A dataflow region inside a for loop ("dataflow-in-loop")

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=154

The result of this pragma is that ap_ctrl_chain is not used to synchronize any of the
processes inside that region. They are executed or stalled based on the availability of data in their
input FIFOs and space in their output FIFOs. For example:

void region(...) {
#pragma HLS dataflow
#pragma HLS interface ap_ctrl_none port=return
 hls::stream<int> outStream1, outStream2;
 demux(inStream, outStream1, outStream2);
 worker1(outStream1, ...);
 worker2(outStream2,);

In this example, demux can be executed twice as frequently as worker1 and worker2. For
example, it can have II=1 while worker1 and worker2 can have II=2, and still achieving a global
II=1 behavior.

Note:

• Non-blocking reads may need to be used very carefully inside processes that are executed less
frequently to ensure that C simulation works.

• The pragma is applied to a region, not to the individual processes inside it.

• Deadlock detection must be disabled in co-simulation. This can be done with the
-disable_deadlock_detection option in cosim_design.

Optimizing for Latency

Using Latency Constraints

Vivado HLS supports the use of a latency constraint on any scope. Latency constraints are
specified using the LATENCY directive.

When a maximum and/or minimum LATENCY constraint is placed on a scope, Vivado HLS tries
to ensure all operations in the function complete within the range of clock cycles specified.

The latency directive applied to a loop specifies the required latency for a single iteration of the
loop: it specifies the latency for the loop body, as the following examples shows:

Loop_A: for (i=0; i<N; i++) {
#pragma HLS latency max=10
 ..Loop Body...
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=155

If the intention is to limit the total latency of all loop iterations, the latency directive should be
applied to a region that encompasses the entire loop, as in this example:

Region_All_Loop_A: {
#pragma HLS latency max=10
Loop_A: for (i=0; i<N; i++)
 {
 ..Loop Body...
 }
}

In this case, even if the loop is unrolled, the latency directive sets a maximum limit on all loop
operations.

If Vivado HLS cannot meet a maximum latency constraint it relaxes the latency constraint and
tries to achieve the best possible result.

If a minimum latency constraint is set and Vivado HLS can produce a design with a lower latency
than the minimum required it inserts dummy clock cycles to meet the minimum latency.

Merging Sequential Loops to Reduce Latency

All rolled loops imply and create at least one state in the design FSM. When there are multiple
sequential loops it can create additional unnecessary clock cycles and prevent further
optimizations.

The following figure shows a simple example where a seemingly intuitive coding style has a
negative impact on the performance of the RTL design.

Figure 66: Loop Directives

void top (a[4],b[4],c[4],d[4]...) {

 ...

 Add: for (i=3;i>=0;i--) {

 if (d[i])

 a[i] = b[i] + c[i];

 }

 Sub: for (i=3;i>=0;i--) {

 if (!d[i])

 a[i] = b[i] - c[i];

 }

 ...

}

(A) Without Loop
Merging

1

2

1 cycle

4 cycles

1 cycle

4 cycles

1 cycle

1 cycle

4 cycle

1 cycle

A

(B) With Loop
Merging

X14276

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=156

In the preceding figure, (A) shows how, by default, each rolled loop in the design creates at least
one state in the FSM. Moving between those states costs clock cycles: assuming each loop
iteration requires one clock cycle, it take a total of 11 cycles to execute both loops:

• 1 clock cycle to enter the ADD loop.

• 4 clock cycles to execute the add loop.

• 1 clock cycle to exit ADD and enter SUB.

• 4 clock cycles to execute the SUB loop.

• 1 clock cycle to exit the SUB loop.

• For a total of 11 clock cycles.

In this simple example it is obvious that an else branch in the ADD loop would also solve the
issue but in a more complex example it may be less obvious and the more intuitive coding style
may have greater advantages.

The LOOP_MERGE optimization directive is used to automatically merge loops. The
LOOP_MERGE directive will seek so to merge all loops within the scope it is placed. In the above
example, merging the loops creates a control structure similar to that shown in (B) in the
preceding figure, which requires only 6 clocks to complete.

Merging loops allows the logic within the loops to be optimized together. In the example above,
using a dual-port block RAM allows the add and subtraction operations to be performed in
parallel.

Currently, loop merging in Vivado HLS has the following restrictions:

• If loop bounds are all variables, they must have the same value.

• If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

• Loops with both variable bound and constant bound cannot be merged.

• The code between loops to be merged cannot have side effects: multiple execution of this
code should generate the same results (a=b is allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO accesses: merging would change the order
of the reads and writes from a FIFO: these must always occur in sequence.

Flattening Nested Loops to Improve Latency

In a similar manner to the consecutive loops discussed in the previous section, it requires
additional clock cycles to move between rolled nested loops. It requires one clock cycle to move
from an outer loop to an inner loop and from an inner loop to an outer loop.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=157

In the small example shown here, this implies 200 extra clock cycles to execute loop Outer.

void foo_top { a, b, c, d} {
 ...
 Outer: while(j<100)
 Inner: while(i<6) // 1 cycle to enter inner
 ...
 LOOP_BODY
 ...
 } // 1 cycle to exit inner
 }
 ...
}

Vivado HLS provides the set_directive_loop_flatten command to allow labeled perfect and semi-
perfect nested loops to be flattened, removing the need to re-code for optimal hardware
performance and reducing the number of cycles it takes to perform the operations in the loop.

• Perfect loop nest: Only the innermost loop has loop body content, there is no logic specified
between the loop statements and all the loop bounds are constant.

• Semi-perfect loop nest:: Only the innermost loop has loop body content, there is no logic
specified between the loop statements but the outermost loop bound can be a variable.

For imperfect loop nests, where the inner loop has variables bounds or the loop body is not
exclusively inside the inner loop, designers should try to restructure the code, or unroll the loops
in the loop body to create a perfect loop nest.

When the directive is applied to a set of nested loops it should be applied to the inner most loop
that contains the loop body.

set_directive_loop_flatten top/Inner

Loop flattening can also be performed using the directive tab in the GUI, either by applying it to
individual loops or applying it to all loops in a function by applying the directive at the function
level.

Optimizing for Area

Data Types and Bit-Widths

The bit-widths of the variables in the C function directly impact the size of the storage elements
and operators used in the RTL implementation. If a variables only requires 12-bits but is specified
as an integer type (32-bit) it will result in larger and slower 32-bit operators being used, reducing
the number of operations that can be performed in a clock cycle and potentially increasing
initiation interval and latency.

• Use the appropriate precision for the data types.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=158

• Confirm the size of any arrays that are to be implemented as RAMs or registers. The area
impact of any over-sized elements is wasteful in hardware resources.

• Pay special attention to multiplications, divisions, modulus or other complex arithmetic
operations. If these variables are larger than they need to be, they negatively impact both area
and performance.

Function Inlining

Function inlining removes the function hierarchy. A function is inlined using the INLINE directive.
Inlining a function may improve area by allowing the components within the function to be
better shared or optimized with the logic in the calling function. This type of function inlining is
also performed automatically by Vivado HLS. Small functions are automatically inlined.

Inlining allows functions sharing to be better controlled. For functions to be shared they must be
used within the same level of hierarchy. In this code example, function foo_top calls foo twice
and function foo_sub.

foo_sub (p, q) {
 int q1 = q + 10;
 foo(p1,q); // foo_3
 ...
}
void foo_top { a, b, c, d} {
 ...
 foo(a,b); //foo_1
 foo(a,c); //foo_2
 foo_sub(a,d);
 ...
}

Inlining function foo_sub and using the ALLOCATION directive to specify only 1 instance of
function foo is used, results in a design which only has one instance of function foo: one-third
the area of the example above.

foo_sub (p, q) {
#pragma HLS INLINE
 int q1 = q + 10;
 foo(p1,q); // foo_3
 ...
}
void foo_top { a, b, c, d} {
#pragma HLS ALLOCATION instances=foo limit=1 function
 ...
 foo(a,b); //foo_1
 foo(a,c); //foo_2
 foo_sub(a,d);
 ...
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=159

The INLINE directive optionally allows all functions below the specified function to be
recursively inlined by using the recursive option. If the recursive option is used on the top-
level function, all function hierarchy in the design is removed.

The INLINE off option can optionally be applied to functions to prevent them being inlined. This
option may be used to prevent Vivado HLS from automatically inlining a function.

The INLINE directive is a powerful way to substantially modify the structure of the code without
actually performing any modifications to the source code and provides a very powerful method
for architectural exploration.

Mapping Many Arrays into One Large Array

When there are many small arrays in the C Code, mapping them into a single larger array typically
reduces the number of block RAM required.

Each array is mapped into a block RAM or UltraRAM, when supported by the device. The basic
block RAM unit provide in an FPGA is 18K. If many small arrays do not use the full 18K, a better
use of the block RAM resources is map many of the small arrays into a larger array. If a block
RAM is larger than 18K, they are automatically mapped into multiple 18K units. In the synthesis
report, review Utilization Report > Details > Memory for a complete understanding of the block
RAMs in your design.

The ARRAY_MAP directive supports two ways of mapping small arrays into a larger one:

• Horizontal mapping: this corresponds to creating a new array by concatenating the original
arrays. Physically, this gets implemented as a single array with more elements.

• Vertical mapping: this corresponds to creating a new array by concatenating the original
words in the array. Physically, this gets implemented by a single array with a larger bit-width.

Horizontal Array Mapping

The following code example has two arrays that would result in two RAM components.

void foo (...) {
 int8 array1[M];
 int12 array2[N];
 ...
loop_1: for(i=0;i<M;i++) {
 array1[i] = ...;
 array2[i] = ...;
 ...
}
...
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=160

Arrays array1 and array2 can be combined into a single array, specified as array3 in the
following example:

void foo (...) {
 int8 array1[M];
 int12 array2[N];
#pragma HLS ARRAY_MAP variable=array1 instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=array2 instance=array3 horizontal
 ...
loop_1: for(i=0;i<M;i++) {
 array1[i] = ...;
 array2[i] = ...;
 ...
}
...
}

In this example, the ARRAY_MAP directive transforms the arrays as shown in the following
figure.

Figure 67: Horizontal Mapping

array1[M]

0 1 ... N-2 N-1array2[N]

array3[M+N]

Longer array
(horizontal expansion)

with more elements

0 1 ... M-2 M-1

X14274

0 1 ... M-2 M-1 0 1 ... N-2 N-1

When using horizontal mapping, the smaller arrays are mapped into a larger array. The mapping
starts at location 0 in the larger array and follows in the order the commands are specified. In the
Vivado HLS GUI, this is based on the order the arrays are specified using the menu commands. In
the Tcl environment, this is based on the order the commands are issued.

When you use the horizontal mapping shown in the following figure, the implementation in the
block RAM appears as shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=161

Figure 68: Memory for Horizontal Mapping

N-1

RAM1P

N-2

1

0

M-1

M-2

1

0

M+N-1

Addresses

0

MSB LSB
X14280

The offset option to the ARRAY_MAP directive is used to specify at which location
subsequent arrays are added when using the horizontal option. Repeating the previous
example, but reversing the order of the commands (specifying array2 then array1) and adding
an offset, as shown below:

void foo (...) {
 int8 array1[M];
 int12 array2[N];
#pragma HLS ARRAY_MAP variable=array2 instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=array1 instance=array3 horizontal offset=2
 ...
loop_1: for(i=0;i<M;i++) {
 array1[i] = ...;
 array2[i] = ...;
 ...
}
...
}

This results in the transformation shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=162

Figure 69: Horizontal Mapping with Offset

0 1 ... M-2 M-1

array1[M]

0 1 ... N-2 N-1array2[N]

0 1 ... N-2 N-1array3[N+2+M] O1 O2

Longer array
(horizontal expansion)

with more elements

Offset of 2 from the end
of array2 elements

0 1 ... M-2 M-1

X14273

After mapping, the newly formed array, array3 in the above examples, can be targeted into a
specific block RAM or UltraRAM by applying the RESOURCE directive to any of the variables
mapped into the new instance.

Although horizontal mapping can result in using less block RAM components and therefore
improve area, it does have an impact on the throughput and performance as there are now fewer
block RAM ports. To overcome this limitation, Vivado HLS also provides vertical mapping.

Mapping Vertical Arrays

In vertical mapping, arrays are concatenated by to produce an array with higher bit-
widths.Vertical mapping is applied using the vertical option to the INLINE directive. The following
figure shows how the same example as before transformed when vertical mapping mode is
applied.

void foo (...) {
 int8 array1[M];
 int12 array2[N];
#pragma HLS ARRAY_MAP variable=array2 instance=array3 vertical
#pragma HLS ARRAY_MAP variable=array1 instance=array3 vertical
 ...
loop_1: for(i=0;i<M;i++) {
 array1[i] = ...;
 array2[i] = ...;
 ...
}
...
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=163

Figure 70: Vertical Mapping

0array1[M] 1 M-2 M-1

0array2[N] 1 N-2 N-1

Vertical expansion
with more bits

0
array3[N]

1 N-2 N-1

0 1 M-2 M-1

X14312

MSB

LSB

In vertical mapping, the arrays are concatenated in the order specified by the command, with the
first arrays starting at the LSB and the last array specified ending at the MSB. After vertical
mapping the newly formed array, is implemented in a single block RAM component as shown in
the following figure.

N-1

RAM1P

N-2

1

0

N-1

Addresses

0

MSB LSB

M-1

M-2

1

0

X14281-061218

Array Mapping and Special Considerations

IMPORTANT! The object for an array transformation must be in the source code prior to any other
directives being applied.

To map elements from a partitioned array into a single array with horizontal mapping, the
individual elements of the array to be partitioned must be specified in the ARRAY_MAP
directive. For example, the following Tcl commands partition array accum and map the resulting
elements back together.

#pragma HLS array_partition variable=m_accum cyclic factor=2 dim=1
#pragma HLS array_partition variable=v_accum cyclic factor=2 dim=1
#pragma HLS array_map variable=m_accum[0] instance=_accum horizontal
#pragma HLS array_map variable=v_accum[0] instance=mv_accum horizontal
#pragma HLS array_map variable=m_accum[1] instance=mv_accum_1 horizontal
#pragma HLS array_map variable=v_accum[1] instance=mv_accum_1 horizontal

It is possible to map a global array. However, the resulting array instance is global and any local
arrays mapped onto this same array instance become global. When local arrays of different
functions get mapped onto the same target array, then the target array instance becomes global.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=164

Array function arguments may only be mapped if they are arguments to the same function.

Array Reshaping

The ARRAY_RESHAPE directive combines ARRAY_PARTITIONING with the vertical mode of
ARRAY_MAP and is used to reduce the number of block RAM while still allowing the beneficial
attributes of partitioning: parallel access to the data.

Given the following example code:

void foo (...) {
int array1[N];
int array2[N];
int array3[N];
#pragma HLS ARRAY_RESHAPE variable=array1 block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 cycle factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array3 complete dim=1
...
}

The ARRAY_RESHAPE directive transforms the arrays into the form shown in the following
figure.

Figure 71: Array Reshaping

0 1 2 ... N-3 N-2 N-1

N/2 ... N-2 N-1
0 1 ... (N/2-1)

1 ... N-3 N-1
0 2 ... N-2

block

cyclic

complete

X14307

0 1 2 ... N-3 N-2 N-1

0 1 2 ... N-3 N-2 N-1

array1[N]

array2[N]

array3[N] N-1
N-2
...
1
0

MSB
LSB

MSB
LSB

MSB

LSB

array4[N/2]

array5[N/2]

array6[1]

The ARRAY_RESHAPE directive allows more data to be accessed in a single clock cycle. In cases
where more data can be accessed in a single clock cycle, Vivado HLS may automatically unroll
any loops consuming this data, if doing so will improve the throughput. The loop can be fully or
partially unrolled to create enough hardware to consume the additional data in a single clock
cycle. This feature is controlled using the config_unroll command and the option
tripcount_threshold. In the following example, any loops with a tripcount of less than 16
will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=165

Function Instantiation

Function instantiation is an optimization technique that has the area benefits of maintaining the
function hierarchy but provides an additional powerful option: performing targeted local
optimizations on specific instances of a function. This can simplify the control logic around the
function call and potentially improve latency and throughput.

The FUNCTION_INSTANTIATE directive exploits the fact that some inputs to a function may be
a constant value when the function is called and uses this to both simplify the surrounding
control structures and produce smaller more optimized function blocks. This is best explained by
example.

Given the following code:

void foo_sub(bool mode){
#pragma HLS FUNCTION_INSTANTIATE variable=mode
if (mode) {
 // code segment 1
 } else {
 // code segment 2
 }
}

void foo(){
#pragma HLS FUNCTION_INSTANTIATE variable=select
foo_sub(true);
foo_sub(false);
}

It is clear that function foo_sub has been written to perform multiple but exclusive operations
(depending on whether mode is true or not). Each instance of function foo_sub is implemented
in an identical manner: this is great for function reuse and area optimization but means that the
control logic inside the function must be more complex.

The FUNCTION_INSTANTIATE optimization allows each instance to be independently
optimized, reducing the functionality and area. After FUNCTION_INSTANTIATE optimization,
the code above can effectively be transformed to have two separate functions, each optimized
for different possible values of mode, as shown:

void foo_sub1() {
 // code segment 1
}

void foo_sub1() {
 // code segment 2
}

void A(){
 B1();
 B2();
}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=166

If the function is used at different levels of hierarchy such that function sharing is difficult
without extensive inlining or code modifications, function instantiation can provide the best
means of improving area: many small locally optimized copies are better than many large copies
that cannot be shared.

Controlling Hardware Resources

During synthesis, Vivado HLS performs the following basic tasks:

• First, elaborates the C, C++ or SystemC source code into an internal database containing
operators.

The operators represent operations in the C code such as additions, multiplications, array
reads, and writes.

• Then, maps the operators on to cores which implement the hardware operations.

Cores are the specific hardware components used to create the design (such as adders,
multipliers, pipelined multipliers, and block RAM).

Control is provided over each of these steps, allowing you to control the hardware
implementation at a fine level of granularity.

Limiting the Number of Operators

Explicitly limiting the number of operators to reduce area may be required in some cases: the
default operation of Vivado HLS is to first maximize performance. Limiting the number of
operators in a design is a useful technique to reduce the area: it helps reduce area by forcing
sharing of the operations.

The ALLOCATION directive allows you to limit how many operators, or cores or functions are
used in a design. For example, if a design called foo has 317 multiplications but the FPGA only
has 256 multiplier resources (DSP48s). The ALLOCATION directive shown below directs Vivado
HLS to create a design with maximum of 256 multiplication (mul) operators:

dout_t array_arith (dio_t d[317]) {
 static int acc;
 int i;
#pragma HLS ALLOCATION instances=mul limit=256 operation

 for (i=0;i<317;i++) {
#pragma HLS UNROLL
 acc += acc * d[i];
 }
 rerun acc;
}

Note: If you specify an ALLOCATION limit that is greater than needed, Vivado HLS attempts to use the
number of resources specified by the limit, or the maximum necessary, which reduces the amount of
sharing.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=167

You can use the type option to specify if the ALLOCATION directives limits operations, cores, or
functions. The following table lists all the operations that can be controlled using the
ALLOCATION directive.

Table 14: Vivado HLS Operators

Operator Description
add Integer Addition

ashr Arithmetic Shift-Right

dadd Double-precision floating point addition

dcmp Double -precision floating point comparison

ddiv Double -precision floating point division

dmul Double -precision floating point multiplication

drecip Double -precision floating point reciprocal

drem Double -precision floating point remainder

drsqrt Double -precision floating point reciprocal square root

dsub Double -precision floating point subtraction

dsqrt Double -precision floating point square root

fadd Single-precision floating point addition

fcmp Single-precision floating point comparison

fdiv Single-precision floating point division

fmul Single-precision floating point multiplication

frecip Single-precision floating point reciprocal

frem Single-precision floating point remainder

frsqrt Single-precision floating point reciprocal square root

fsub Single-precision floating point subtraction

fsqrt Single-precision floating point square root

icmp Integer Compare

lshr Logical Shift-Right

mul Multiplication

sdiv Signed Divider

shl Shift-Left

srem Signed Remainder

sub Subtraction

udiv Unsigned Division

urem Unsigned Remainder

Globally Minimizing Operators

The ALLOCATION directive, like all directives, is specified inside a scope: a function, a loop or a
region. The config_bind configuration allows the operators to be minimized throughout the
entire design.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=168

The minimization of operators through the design is performed using the min_op option in the
config_bind configuration. An any of the operators listed in the previous table can be limited
in this fashion.

After the configuration is applied it applies to all synthesis operations performed in the solution:
if the solution is closed and re-opened the specified configuration still applies to any new
synthesis operations.

Any configurations applied with the config_bind configuration can be removed by using the
reset option or by using open_solution -reset to open the solution.

Controlling the Hardware Cores

When synthesis is performed, Vivado HLS uses the timing constraints specified by the clock, the
delays specified by the target device together with any directives specified by you, to determine
which core is used to implement the operators. For example, to implement a multiplier operation
Vivado HLS could use the combinational multiplier core or use a pipeline multiplier core.

The cores which are mapped to operators during synthesis can be limited in the same manner as
the operators. Instead of limiting the total number of multiplication operations, you can choose
to limit the number of combinational multiplier cores, forcing any remaining multiplications to be
performed using pipelined multipliers (or vice versa). This is performed by specifying the
ALLOCATION directive type option to be core.

The RESOURCE directive is used to explicitly specify which core to use for specific operations. In
the following example, a 2-stage pipelined multiplier is specified to implement the multiplication
for variable The following command informs Vivado HLS to use a 2-stage pipelined multiplier for
variable c. It is left to Vivado HLS which core to use for variable d.

int foo (int a, int b) {
 int c, d;
#pragma HLS RESOURCE variable=c latency=2
 c = a*b;
 d = a*c;

 return d;
}

In the following example, the RESOURCE directives specify that the add operation for variable
temp and is implemented using the AddSub_DSP core. This ensures that the operation is
implemented using a DSP48 primitive in the final design - by default, add operations are
implemented using LUTs.

void apint_arith(dinA_t inA, dinB_t inB,
 dout1_t *out1
) {

 dout2_t temp;
#pragma HLS RESOURCE variable=temp core=AddSub_DSP

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=169

 temp = inB + inA;
 *out1 = temp;

}

The list_core command is used to obtain details on the cores available in the library. The
list_core can only be used in the Tcl command interface and a device must be specified using
the set_part command. If a device has not been selected, the command does not have any
effect.

The -operation option of the list_core command lists all the cores in the library that can
be implemented with the specified operation.The following table lists the cores used to
implement standard RTL logic operations (such as add, multiply, and compare).

Table 15: Functional Cores

Core Description
AddSub This core is used to implement both adders and subtractors.

AddSubnS N-stage pipelined adder or subtractor. Vivado HLS determines how many
pipeline stages are required.

AddSub_DSP This core ensures that the add or sub operation is implemented using a DSP48
(Using the adder or subtractor inside the DSP48).

DivnS N-stage pipelined divider.

DSP48 Multiplications with bit-widths that allow implementation in a single DSP48
macrocell. This can include pipelined multiplications and multiplications grouped
with a pre-adder, post-adder, or both. This core can only be pipelined with a
maximum latency of 4. Values above 4 saturate at 4.

Mul Combinational multiplier with bit-widths that exceed the size of a standard
DSP48 macrocell.
Multipliers that can be implemented with a single DSP48 macrocell are mapped
to the DSP48 core.

MulnS N-stage pipelined multiplier with bit-widths that exceed the size of a standard
DSP48 macrocell.
Multiplications which are >= 10 bits are implemented on a DSP48 macro cell.
Multiplication lower than this limit are implemented using LUTs. Multipliers that
can be implemented with a single DSP48 macrocell are mapped to the DSP48
core.

Mul_LUT Multiplier implemented with LUTs.

Note: This only applies to C POD (plain old data) types. This cannot be used with
Vivado HLS types (ap_int, ap_fixed, etc).

In addition to the standard cores, the following floating point cores are used when the operation
uses floating-point types. Refer to the documentation for each device to determine if the
floating-point core is supported in the device.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=170

Table 16: Floating Point Cores

Core Description
FAddSub_nodsp Floating-point adder or subtractor implemented without any DSP48 primitives.

FAddSub_fulldsp Floating-point adder or subtractor implemented using only DSP48s primitives.

FDiv Floating-point divider.

FExp_nodsp Floating-point exponential operation implemented without any DSP48 primitives.

FExp_meddsp Floating-point exponential operation implemented with balance of DSP48
primitives.

FExp_fulldsp Floating-point exponential operation implemented with only DSP48 primitives.

FLog_nodsp Floating-point logarithmic operation implemented without any DSP48 primitives.

FLog_meddsp Floating-point logarithmic operation with balance of DSP48 primitives.

FLog_fulldsp Floating-point logarithmic operation with only DSP48 primitives.

FMul_nodsp Floating-point multiplier implemented without any DSP48 primitives.

FMul_meddsp Floating-point multiplier implemented with balance of DSP48 primitives.

FMul_fulldsp Floating-point multiplier implemented with only DSP48 primitives.

FMul_maxdsp Floating-point multiplier implemented the maximum number of DSP48
primitives.

FRSqrt_nodsp Floating-point reciprocal square root implemented without any DSP48 primitives.

FRSqrt_fulldsp Floating-point reciprocal square root implemented with only DSP48 primitives.

FRecip_nodsp Floating-point reciprocal implemented without any DSP48 primitives.

FRecip_fulldsp Floating-point reciprocal implemented with only DSP48 primitives.

FSqrt Floating-point square root.

DAddSub_nodsp Double precision floating-point adder or subtractor implemented without any
DSP48 primitives.

DAddSub_fulldsp Double precision floating-point adder or subtractor implemented using only
DSP48s primitives.

DDiv Double precision floating-point divider.

DExp_nodsp Double precision floating-point exponential operation implemented without any
DSP48 primitives.

DExp_meddsp Double precision floating-point exponential operation implemented with balance
of DSP48 primitives.

DExp_fulldsp Double precision floating-point exponential operation implemented with only
DSP48 primitives.

DLog_nodsp Double precision floating-point logarithmic operation implemented without any
DSP48 primitives.

DLog_meddsp Double precision floating-point logarithmic operation with balance of DSP48
primitives.

DLog_fulldsp Double precision floating-point logarithmic operation with only DSP48 primitives.

DMul_nodsp Double precision floating-point multiplier implemented without any DSP48
primitives.

DMul_meddsp Double precision floating-point multiplier implemented with a balance of DSP48
primitives.

DMul_fulldsp Double precision floating-point multiplier implemented with only DSP48
primitives.

DMul_maxdsp Double precision floating-point multiplier implemented with a maximum number
of DSP48 primitives.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=171

Table 16: Floating Point Cores (cont'd)

Core Description
DRSqrt Double precision floating-point reciprocal square root.

DRecip Double precision floating-point reciprocal.

DSqrt Double precision floating-point square root.

HAddSub_nodsp Half-precision floating-point adder or subtractor implemented without DSP48
primitives.

HDiv Half-precision floating-point divider.

HMul_nodsp Half-precision floating-point multiplier implemented without DSP48 primitives.

HMul_fulldsp Half-precision floating-point multiplier implemented with only DSP48 primitives.

HMul_maxdsp Half-precision floating-point multiplier implemented with a maximum number of
DSP48 primitives.

HSqrt Half-precision floating-point square root.

The following table lists the cores used to implement storage elements, such as registers or
memories.

Table 17: Storage Cores

Core Description
FIFO A FIFO. Vivado HLS determines whether to implement this in the RTL with a block

RAM or as distributed RAM.

FIFO_ BRAM A FIFO implemented with a block RAM.

FIFO_LUTRAM A FIFO implemented as distributed RAM.

FIFO_SRL A FIFO implemented as with an SRL.

RAM_1P A single-port RAM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or as distributed RAM.

RAM_1P_BRAM A single-port RAM implemented with a block RAM.

RAM_1P_LUTRAM A single-port RAM implemented as distributed RAM.

RAM_1P_URAM A single port RAM implemented using Ultra RAM.

RAM_2P A dual-port RAM that allows read operations on one port and both read and
write operations on the other port. Vivado HLS determines whether to
implement this in the RTL with a block RAM or as distributed RAM.

RAM_2P_BRAM A dual-port RAM implemented with a block RAM that allows read operations on
one port and both read and write operations on the other port.

RAM_2P_LUTRAM A dual-port RAM implemented as distributed RAM that allows read operations on
one port and both read and write operations on the other port.

RAM_2P_URAM A dual-port RAM implemented as a Ultra RAM that allows read operations on one
port and both read and write operations on the other port.

RAM_S2P_BRAM A dual-port RAM implemented with a block RAM that allows read operations on
one port and write operations on the other port.

RAM_S2P_LUTRAM A dual-port RAM implemented as distributed RAM that allows read operations on
one port and write operations on the other port.

RAM_S2P_URAM A dual-port RAM implemented with Ultra RAM that allows read operations on
one port and write operations on the other port.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=172

Table 17: Storage Cores (cont'd)

Core Description
RAM_T2P_BRAM A true dual-port RAM with support for both read and write on both ports

implemented with a block RAM.

RAM_T2P_URAM A true dual-port RAM with support for both read and write on both ports
implemented with Ultra RAM

ROM_1P A single-port ROM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or with LUTs.

ROM_1P_BRAM A single-port ROM implemented with a block RAM.

ROM_nP_BRAM A multi-port ROM implemented with a block RAM. Vivado HLS automatically
determines the number of ports.

ROM_1P_LUTRAM A single-port ROM implemented with distributed RAM.

ROM_nP_LUTRAM A multi-port ROM implemented with distributed RAM. Vivado HLS automatically
determines the number of ports.

ROM_2P A dual-port ROM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or as distributed ROM.

ROM_2P_BRAM A dual-port ROM implemented with a block RAM.

ROM_2P_LUTRAM A dual-port ROM implemented as distributed ROM.

The resource directives uses the assigned variable as the target for the resource. Given the code,
the RESOURCE directive specifies the multiplication for out1 is implemented with a 3-stage
pipelined multiplier.

void foo(...) {
#pragma HLS RESOURCE variable=out1 latency=3

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

If the assignment specifies multiple identical operators, the code must be modified to ensure
there is a single variable for each operator to be controlled. For example if only the first
multiplication in this example (inA * inB) is to be implemented with a pipelined multiplier:

 *out1 = inA * inB * inC;

The code should be changed to the following with the directive specified on the Result_tmp
variable:

#pragma HLS RESOURCE variable=Result_tmp latency=3
 Result_tmp = inA * inB;
 *out1 = Result_tmp * inC;

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=173

Globally Optimizing Hardware Cores

The config_bind configuration provides control over the binding process. The configuration
allows you to direct how much effort is spent when binding cores to operators. By default Vivado
HLS chooses cores which are the best balance between timing and area. The config_bind
influences which operators are used.

config_bind -effort [low | medium | high] -min_op <list>

The config_bind command can only be issued inside an active solution. The default run
strategies for the binding operation is medium.

• Low Effort: Spend less timing sharing, run time is faster but the final RTL may be larger. Useful
for cases when the designer knows there is little sharing possible or desirable and does not
wish to waste CPU cycles exploring possibilities.

• Medium Effort: The default, where Vivado HLS tries to share operations but endeavors to
finish in a reasonable time.

• High Effort: Try to maximize sharing and do not limit run time. Vivado HLS keeps trying until
all possible combinations of sharing is explored.

Optimizing Logic

Controlling Operator Pipelining

Vivado HLS automatically determines the level of pipelining to use for internal operations. You
can use the RESOURCE directive with the -latency option to explicitly specify the number of
pipeline stages and override the number determined by Vivado HLS.

RTL synthesis might use the additional pipeline registers to help improve timing issues that might
result after place and route. Registers added to the output of the operation typically help
improve timing in the output datapath. Registers added to the input of the operation typically
help improve timing in both the input datapath and the control logic from the FSM.

The rules for adding these additional pipeline stages are:

• If the latency is specified as 1 cycle more than the latency decided by Vivado HLS, Vivado HLS
adds new output registers to the output of the operation.

• If the latency is specified as 2 more than the latency decided by Vivado HLS, Vivado HLS adds
registers to the output of the operation and to the input side of the operation.

• If the latency is specified as 3 or more cycles than the latency decided by Vivado HLS, Vivado
HLS adds registers to the output of the operation and to the input side of the operation.
Vivado HLS automatically determines the location of any additional registers.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=174

You can use the config_core configuration to pipeline all instances of a specific core used in
the design that have the same pipeline depth. To set this configuration:

1. Select Solutions → Solution Settings.

2. In the Solution Settings dialog box, select the General category, and click Add.

3. In the Add Command dialog box, select the config_core command, and specify the
parameters.

For example, the following configuration specifies that all operations implemented with the
DSP48 core are pipelined with a latency of three, which is the maximum latency allowed by
this core:

config_core DSP48 -latency 3

The following configuration specifies that all block RAM implemented with the
RAM_1P_BRAM core are pipelined with a latency of three:

config_core RAM_1P_BRAM -latency 3

IMPORTANT! Vivado HLS only applies the core configuration to block RAM with an explicit RESOURCE
directive that specifies the core used to implemented the array. If an array is implemented using a default
core, the core configuration does not affect the block RAM.

Optimizing Logic Expressions

During synthesis several optimizations, such as strength reduction and bit-width minimization are
performed. Included in the list of automatic optimizations is expression balancing.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

• For integer operations expression balancing is on by default but may be disabled.

• For floating-point operations, expression balancing is off by default but may be enabled.

Given the highly sequential code using assignment operators such as += and *= in the following
example:

data_t foo_top (data_t a, data_t b, data_t c, data_t d)
{
 data_t sum;

 sum = 0;
 sum += a;
 sum += b;
 sum += c;
 sum += d;
 return sum;

}

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=175

Without expression balancing, and assuming each addition requires one clock cycle, the complete
computation for sum requires four clock cycles shown in the following figure.

Figure 72: Adder Tree

Cycle 1

Cycle 2

+

+

c

Cycle 3

Cycle 4 +

+

sum

b a

“0”

X14250-061318

d

However additions a+b and c+d can be executed in parallel allowing the latency to be reduced.
After balancing the computation completes in two clock cycles as shown in the following figure.
Expression balancing prohibits sharing and results in increased area.

Figure 73: Adder Tree After Balancing

Cycle 1

Cycle 2

+ +

+

b d

sum
X14249

a c

For integers, you can disable expression balancing using the EXPRESSION_BALANCE
optimization directive with the off option. By default, Vivado HLS does not perform the
EXPRESSION_BALANCE optimization for operations of type float or double. When
synthesizing float and double types, Vivado HLS maintains the order of operations performed
in the C code to ensure that the results are the same as the C simulation. For example, in the
following code example, all variables are of type float or double. The values of O1 and O2 are
not the same even though they appear to perform the same basic calculation.

A=B*C; A=B*F;
D=E*F; D=E*C;
O1=A*D O2=A*D;

This behavior is a function of the saturation and rounding in the C standard when performing
operation with types float or double. Therefore, Vivado HLS always maintains the exact order
of operations when variables of type float or double are present and does not perform
expression balancing by default.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=176

You can enable expression balancing with float and double types using the configuration
config_compile option as follows:

1. Select Solution > Solution Settings.

2. In the Solution Settings dialog box, click the General category, and click Add.

3. In the Add Command dialog box, select config_compile, and enable
unsafe_math_operations.

With this setting enabled, Vivado HLS might change the order of operations to produce a more
optimal design. However, the results of C/RTL cosimulation might differ from the C simulation.

The unsafe_math_operations feature also enables the no_signed_zeros optimization.
The no_signed_zeros optimization ensures that the following expressions used with float and
double types are identical:

x - 0.0 = x;
x + 0.0 = x;
0.0 - x = -x;
x - x = 0.0;
x*0.0 = 0.0;

Without the no_signed_zeros optimization the expressions above would not be equivalent
due to rounding. The optimization may be optionally used without expression balancing by
selecting only this option in the config_compile configuration.

TIP: When the unsafe_math_operations and no_signed_zero optimizations are used, the RTL
implementation will have different results than the C simulation. The test bench should be capable of
ignoring minor differences in the result: check for a range, do not perform an exact comparison.

Verifying the RTL
Post-synthesis verification is automated through the C/RTL co-simulation feature which reuses
the pre-synthesis C test bench to perform verification on the output RTL.

Automatically Verifying the RTL
C/RTL co-simulation uses the C test bench to automatically verify the RTL design. The
verification process consists of three phases, shown in the following figure.

• The C simulation is executed and the inputs to the top-level function, or the Device-Under-
Test (DUT), are saved as “input vectors”.

• The “input vectors” are used in an RTL simulation using the RTL created by Vivado HLS. The
outputs from the RTL are save as “output vectors”.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=177

• The “output vectors” from the RTL simulation are applied to C test bench, after the function
for synthesis, to verify the results are correct. The C test bench performs the verification of
the results.

The following messages are output by Vivado HLS to show the progress of the verification.

C simulation:

[SIM-14] Instrumenting C test bench (wrapc)
[SIM-302] Generating test vectors(wrapc)

At this stage, since the C simulation was executed, any messages written by the C test bench will
be output in console window or log file.

RTL simulation:

[SIM-333] Generating C post check test bench
[SIM-12] Generating RTL test bench
[SIM-323] Starting Verilog simulation (Issued when Verilog is the RTL
verified)
[SIM-322] Starting VHDL simulation (Issued when VHDL is the RTL verified)

At this stage, any messages from the RTL simulation are output in console window or log file.

C test bench results checking:

[SIM-316] Starting C post checking
[SIM-1000] C/RTL co-simulation finished: PASS (If test bench returns a 0)
[SIM-4] C/RTL co-simulation finished: FAIL (If the test bench returns non-
zero)

The importance of the C test bench in the C/RTL co-simulation flow is discussed below.

Figure 74: RTL Verification Flow

WrapC Simulation

Test Bench

DUT

RTL Simulation

AutoTB
TV In .dat

RTL Module

Post-Checking
Simulation

TV Out .dat

Result
Checking

Test Bench

Result
Checking

X14311

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=178

The following is required to use C/RTL co-simulation feature successfully:

• The test bench must be self-checking and return a value of 0 if the test passes or returns a
non-zero value if the test fails.

• The correct interface synthesis options must be selected.

• Any 3rd-party simulators must be available in the search path.

• Any arrays or structs on the design interface cannot use the optimization directives or
combinations of optimization directives listed in Unsupported Optimizations for Cosimulation.

Test Bench Requirements

To verify the RTL design produces the same results as the original C code, use a self-checking
test bench to execute the verification. The following code example shows the important features
of a self-checking test bench:

int main () {
 int ret=0;

 // Execute (DUT) Function

 // Write the output results to a file

 // Check the results
 ret = system("diff --brief -w output.dat output.golden.dat");

 if (ret != 0) {
 printf("Test failed !!!\n");
 ret=1;
 } else {
 printf("Test passed !\n");
 }

 return ret;
}

This self-checking test bench compares the results against known good results in the
output.golden.dat file.

There are many ways to perform this checking. This is just one example.

In the Vivado HLS design flow, the return value to function main() indicates the following:

• Zero: Results are correct.

• Non-zero value: Results are incorrect.

Note: The test bench can return any non-zero value. A complex test bench can return different values
depending on the type of difference or failure. If the test bench returns a non-zero value after C simulation
or C/RTL co-simulation, Vivado HLS reports an error and simulation fails.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=179

RECOMMENDED: Because the system environment (for example, Linux, Windows, or Tcl) interprets the
return value of the main() function, it is recommended that you constrain the return value to an 8-bit
range for portability and safety.

CAUTION! You are responsible for ensuring that the test bench checks the results. If the test bench does
not check the results but returns zero, Vivado HLS indicates that the simulation test passed even though
the results were not actually checked. Even if the output data is correct and valid, Vivado HLS reports a
simulation failure if the test bench does not return the value zero to function main().

Interface Synthesis Requirements

To use the C/RTL cosimulation feature to verify the RTL design, at least one of the following
conditions must be true:

• Top-level function must be synthesized using an ap_ctrl_hs or ap_ctrl_chain block-
level interface.

• Design must be purely combinational.

• Top-level function must have an initiation interval of 1.

• Interface must be all arrays that are streaming and implemented with ap_hs or axis
interface modes.

Note: The hls::stream variables are automatically implemented as ap_fifo interfaces.

If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)
designs with
array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

IMPORTANT! If the design is specified to use the block-level IO protocol ap_ctrl_none and the design
contains any hls::stream variables which employ non-blocking behavior, C/RTL co-simulation is not
guaranteed to complete.

If any top-level function argument is specified as an AXI-Lite interface, the function return must
also be specified as an AXI-Lite interface.

RTL Simulator Support

After ensuring that the preceding requirements are met, you can use C/RTL co-simulation to
verify the RTL design using Verilog or VHDL. The default simulation language is Verilog.
However, you can also specify VHDL. While the default simulator is Vivado Simulator (XSim), you
can use any of the following simulators to run C/RTL co-simulation:

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=180

• Vivado Simulator (XSim)

• ModelSim simulator

• VCS simulator

• NC-Sim simulator

• Riviera simulator

• Xcelium

IMPORTANT! To verify an RTL design using the third-party simulators (for example, ModelSim, VCS,
Riviera), you must include the executable to the simulator in the system search path, and the appropriate
license must be available. See the third-party vendor documentation for details on configuring these
simulators.

IMPORTANT! When verifying a SystemC design, you must select the ModelSim simulator and ensure it
includes C compiler capabilities with appropriate licensing.

Unsupported Optimizations for Cosimulation

The automatic RTL verification does not support cases where multiple transformations that are
performed upon arrays or arrays within structs on the interface.

In order for automatic verification to be performed, arrays on the function interface, or array
inside structs on the function interface, can use any of the following optimizations, but not two
or more:

• Vertical mapping on arrays of the same size

• Reshape

• Partition

• Data Pack on structs

Verification by C/RTL co-simulation cannot be performed when the following optimizations are
used on top-level function interface:

• Horizontal Mapping

• Vertical Mapping of arrays of different sizes

• Data Pack on structs containing other structs as members

• Conditional access on the AXIS with register slice enabled is not supported

• Mapping arrays to streams.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=181

Simulating IP Cores

When the design is implemented with floating-point cores, bit-accurate models of the floating-
point cores must be made available to the RTL simulator. This is automatically accomplished if
the RTL simulation is performed using Verilog and VHDL using the Xilinx Vivado Simulator.

For supported HDL 3rd-party simulators, the Xilinx floating point library must be pre-compiled
and added to the simulator libraries. The following example steps demonstrate how the floating
point library may be compiled in verilog for use with the VCS simulator:

1. Open Vivado (not Vivado HLS) and issue the following command in the Tcl console window:

compile_simlib -simulator vcs_mx -family all -language verilog

2. This command creates floating-point library in the current directory.

3. Refer to the Vivado console window for directory name, example ./rev3_1

This library may then be referred to from within Vivado HLS:

cosim_design -trace_level all -tool vcs -compiled_library_dir/
<path_to_compile_library>/rev3_1

Using C/RTL Co-Simulation
To perform C/RTL co-simulation from the GUI, click the C/RTL Cosimulation toolbar button .
This opens the simulation wizard window shown in the following figure.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=182

Figure 75: C/RTL Co-Simulation Wizard

Select the RTL that is simulated (Verilog or VHDL). The drop-down menu allows the simulator to
be selected.

Following are the options:

• Setup Only: This creates all the files (wrappers, adapters, and scripts) required to run the
simulation but does not execute the simulator. The simulation can be run in the command
shell from within the appropriate RTL simulation folder <solution_name>/sim/<RTL>.

• Dump Trace: This generates a trace file for every function, which is saved to the
<solution>/sim/<RTL> folder. The drop-down menu allows you to select which signals are
saved to the trace file. You can choose to trace all signals in the design, trace just the top-level
ports, or trace no signals. For details on using the trace file, see the documentation for the
selected RTL simulator.

• Optimizing Compile: This ensures a high level of optimization is used to compile the C test
bench. Using this option increases the compile time but the simulation executes faster.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=183

• Reduce Disk Space: The flow shown above saves the results for all transactions before
executing RTL simulation. In some cases, this can result in large data files. The
reduce_diskspace option can be used to execute one transaction at a time and reduce the
amount of disk space required for the file. If the function is executed N times in the C test
bench, the reduce_diskspace option ensure N separate RTL simulations are performed.
This causes the simulation to run slower.

• Compiled Library Location: This specifies the location of the compiled library for a third-party
RTL simulator.

If you are simulating with a third-party RTL simulator and the design uses IP, you must use an
RTL simulation model for the IP before performing RTL simulation. To create or obtain the RTL
simulation model, contact your IP provider.

• Input Arguments: This allows the specification of any arguments required by the test bench.

Executing RTL Simulation

Vivado HLS executes the RTL simulation in the project sub-directory: <SOLUTION>/sim/<RTL>

where

• SOLUTION is the name of the solution.

• RTL is the RTL type chosen for simulation.

Any files written by the C test bench during co-simulation and any trace files generated by the
simulator are written to this directory. For example, if the C test bench save the output results for
comparison, review the output file in this directory and compare it with the expected results.

Verification of Directives

C/RTL co-simulation automatically verifies aspects of the DEPENDENCE and DATAFLOW
directives.

If the DATAFLOW directive is used to pipeline tasks, it inserts channels between the tasks to
facilitate the flow of data between them. It is typical for the channels to be implemented with
FIFOs and the FIFO depth specified using the STREAM directive or the config_dataflow
command. If a FIFO depth is sized too small, the RTL simulation can stall. For example, if a FIFO
is specified with a depth of 2 but the producer task writes three values before any data values
are read by the consumer task, the FIFO blocks the producer. In some conditions this can cause
the entire design to stall.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=184

C/RTL co-simulation issues a message, as shown below, indicating the channel in the
DATAFLOW region is causing the RTL simulation to stall.

///
/
// ERROR!!! DEADLOCK DETECTED at 1292000 ns! SIMULATION WILL BE STOPPED! //
///
/
/////////////////////////
// Dependence cycle 1:
// (1): Process: hls_fft_1kxburst.fft_rank_rad2_nr_man_9_U0
// Channel: hls_fft_1kxburst.stage_chan_in1_0_V_s_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_1_V_s_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_0_V_1_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_1_V_1_U, FULL
// (2): Process: hls_fft_1kxburst.fft_rank_rad2_nr_man_6_U0
// Channel: hls_fft_1kxburst.stage_chan_in1_2_V_s_U, EMPTY
// Channel: hls_fft_1kxburst.stage_chan_in1_2_V_1_U, EMPTY
/////////////////////////////////
// Totally 1 cycles detected!
///

In this case, review the implementation of the channels between the tasks and ensure any FIFOs
are large enough to hold the data being generated.

In a similar manner, the RTL test bench is also configured to automatically confirm false
dependencies specified using the DEPENDENCE directive. This indicates the dependency is not
false and must be removed to achieve a functionally valid design.

Analyzing RTL Simulations

When the C/RTL cosimulation completes, the simulation report opens and shows the measured
latency and II. These results may differ from the values reported after HLS synthesis which are
based on the absolute shortest and longest paths through the design. The results provided after
C/RTL cosimulation show the actual values of latency and II for the given simulation data set
(and may change if different input stimuli is used).

In non-pipelined designs, C/RTL Cosimulation measures latency between ap_start and
ap_done signals. The II is 1 more than the latency, because the design reads new inputs 1 cycle
after all operations are complete. The design only starts the next transaction after the current
transaction is complete.

In pipelined designs, the design might read new inputs before the first transaction completes, and
there might be multiple ap_start and ap_ready signals before a transaction completes. In this
case, C/RTL cosimulation measures the latency as the number of cycles between data input
values and data output values. The II is the number of cycles between ap_ready signals, which
the design uses to requests new inputs.

Note: For pipelined designs, the II value for C/RTL cosimulation is only valid if the design is simulated for
multiple transactions.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=185

Optionally, you can review the waveform from C/RTL cosimulation using the Open Wave Viewer
toolbar button. To view RTL waveforms, you must select the following options before executing
C/RTL cosimulation:

• Verilog/VHDL Simulator Selection: Select Vivado Simulator. For Xilinx 7 series and later
devices, you can alternatively select Auto.

• Dump Trace: Select all or port.

When C/RTL cosimulation completes, the Open Wave Viewer toolbar button opens the RTL
waveforms in the Vivado IDE.

Note: When you open the Vivado IDE using this method, you can only use the waveform analysis features,
such as zoom, pan, and waveform radix.

Waveform Viewer

The Waveform Viewer visualizes all the processes inside a design. This visualization is divided
into two sections:

• HLS process summary

Contains a hierarchical representation of the activity report of all the processes. For example,
both the dataflow and sequential processes contained within the generated RTL.

• Dataflow analysis

Provides detailed activity information about the tasks inside the dataflow region.

Visualizing the active processes within the HLS design allows detailed profiling of process activity
and length within each activation of the top module. These visualization helps analyze individual
process performance as well as the overall concurrent execution of independent processes.

Processes dominating the overall execution have the highest potential to improve performance,
provided process execution time can be reduced. This visualization is available during co-
simulation for Vivado simulator. Enable it by selecting the Wave Debug option in the Co-
simulation Dialog window.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=186

Figure 76: Enabling Wave Debug

The viewer is divided into the following segments:

• HLS Process summary

○ DUT name: <name>

○ Function: <function name>

• Dataflow Analysis

○ DUT name: <name>

○ Function: <function name>

○ Dataflow/Pipeline Activity: This shows the number of parallel executions of the function
when implemented as a dataflow process.

○ Active Iterations: This shows the currently active iterations of the dataflow. The number of
rows is dynamically incremented to accommodate for the visualization of any concurrent
execution.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=187

○ StallNoContinue: This is a stall signal that tells if there were any output stalls experienced
by the dataflow processes (the function is done, but it has not received a continue from the
adjacent dataflow process).

○ RTL Signals: The underlying RTL control signals that interpret the transaction view of the
dataflow process

Figure 77: Waveform Viewer

Debugging C/RTL Cosimulation
When C/RTL cosimulation completes, Vivado HLS typically indicates that the simulations passed
and the functionality of the RTL design matches the initial C code. When the C/RTL cosimulation
fails, Vivado HLS issues the following message:

@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Following are the primary reasons for a C/RTL cosimulation failure:

• Incorrect environment setup

• Unsupported or incorrectly applied optimization directives

• Issues with the C test bench or the C source code

To debug a C/RTL cosimulation failure, run the checks described in the following sections. If you
are unable to resolve the C/RTL cosimulation failure, see Xilinx Support for support resources,
such as answers, documentation, downloads, and forums.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 188Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=188

Setting up the Environment

Check the environment setup as shown in the following table.

Table 18: Debugging Environment Setup

Questions Actions to Take
Are you using a third-party simulator? Ensure the path to the simulator executable is specified in

the system search path.
When using the Vivado simulator, you do not need to
specify a search path.

Are you running Linux? Ensure that your setup files (for example .cshrc
or .bashrc) do not have a change directory command.
When C/RTL cosimulation starts, it spawns a new shell
process. If there is a cd command in your setup files, it
causes the shell to run in a different location and eventually
C/RTL cosimulation fails.

Optimization Directives

Check the optimization directives as shown in the following table.

Table 19: Debugging Optimization Directives

Questions Actions to Take
Are you using the DEPENDENCE directive? Remove the DEPENDENCE directives from the design to see

if C/RTL cosimulation passes. If cosimulation passes, it likely
indicates that the TRUE or FALSE setting for the
DEPENDENCE directive is incorrect.

Does the design use volatile pointers on the top-level
interface?

Ensure the DEPTH option is specified on the INTERFACE
directive. When volatile pointers are used on the interface,
you must specify the number of read/writes performed on
the port in each transaction or each execution of the C
function.

Are you using FIFOs with the DATAFLOW optimization? Check to see if C/RTL cosimulation passes with the standard
ping-pong buffers.
Check to see if C/RTL cosimulation passes without
specifying the size for the FIFO channels. This ensures that
the channel defaults to the size of the array in the C code.
Reduce the size of the FIFO channels until C/RTL
cosimulation stalls. Stalling indicates a channel size that is
too small. Review your design to determine the optimal size
for the FIFOs. You can use the STREAM directive to specify
the size of individual FIFOs.

Are you using supported interfaces? Ensure you are using supported interface modes. For
details, see Interface Synthesis Requirements.

Are you applying multiple optimization directives to arrays
on the interface?

Ensure you are using optimizations that are designed to
work together. For details, see Unsupported Optimizations
for Cosimulation.

Are you using arrays on the interface that are mapped to
streams ?

To use interface-level streaming (the top-level function of
the DUT), use hls::stream.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=189

C Test Bench and C Source Code

Check the C test bench and C source code as shown in the following table.

Table 20: Debugging the C Test Bench and C Source Code

Questions Actions to Take
Does the C test bench check the results and return the value
0 (zero) if the results are correct?

Ensure the C test bench returns the value 0 for C/RTL
cosimulation. Even if the results are correct, the C/RTL
cosimulation feature reports a failure if the C test bench
fails to return the value 0.

Is the C test bench creating input data based on a random
number?

Change the test bench to use a fixed seed for any random
number generation. If the seed for random number
generation is based on a variable, such as a time-based
seed, the data used for simulation is different each time the
test bench is executed, and the results are different.

Are you using pointers on the top-level interface that are
accessed multiple times?

Use a volatile pointer for any pointer that is accessed
multiple times within a single transaction (one execution of
the C function). If you do not use a volatile pointer,
everything except the first read and last write is optimized
out to adhere to the C standard.

Does the C code contain undefined values or perform out-
of-bounds array accesses?

Confirm all arrays are correctly sized to match all accesses.
Loop bounds that exceed the size of the array are a
common source of issues (for example, N accesses for an
array sized at N-1).
Confirm that the results of the C simulation are as expected
and that output values were not assigned random data
values.
Consider using the industry-standard Valgrind application
outside of the Vivado HLS design environment to confirm
that the C code does not have undefined or out-of-bounds
issues.
It is possible for a C function to execute and complete even
if some variables are undefined or are out-of-bounds. In the
C simulation, undefined values are assigned a random
number. In the RTL simulation, undefined values are
assigned an unknown or X value.

Are you using floating-point math operations in the design? Check that the C test bench results are within an acceptable
error range instead of performing an exact comparison. For
some of the floating point math operations, the RTL
implementation is not identical to the C. For details, see
Verification and Math Functions.
Ensure that the RTL simulation models for the floating-point
cores are provided to the third-party simulator. For details,
see Simulating IP Cores.

Are you using Xilinx IP blocks and a third-party simulator? Ensure that the path to the Xilinx IP HDL models is provided
to the third-party simulator.

Are you using the hls::stream construct in the design that
changes the data rate (for example, decimation or
interpolation)?

Analyze the design and use the STREAM directive to
increase the size of the FIFOs used to implement the
hls::stream.
By default, an hls::stream is implemented as a FIFO with
a depth of 2. If the design results in an increase in the data
rate (for example, an interpolation operation), a default
FIFO size of 2 might be too small and cause the C/RTL
cosimulation to stall.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=190

Table 20: Debugging the C Test Bench and C Source Code (cont'd)

Questions Actions to Take
Are you using very large data sets in the simulation? Use the reduce_diskspace option when executing C/RTL

cosimulation. In this mode, Vivado HLS only executes 1
transaction at a time. The simulation might run marginally
slower, but this limits storage and system capacity issues.
The C/RTL cosimulation feature verifies all transaction at
one time. If the top-level function is called multiple times
(for example, to simulate multiple frames of video), the data
for the entire simulation input and output is stored on disk.
Depending on the machine setup and OS, this might cause
performance or execution issues.

Exporting the RTL Design
The final step in the Vivado HLS flow is to export the RTL design as a block of Intellectual
Property (IP) which can be used by other tools in the Xilinx design flow. The RTL design can be
packaged into the following output formats:

• IP Catalog formatted IP for use with the Vivado Design Suite

• System Generator for DSP IP for use with Vivado System Generator for DSP

• Synthesized Checkpoint (.dcp)

The following table shows the formats you can export with details about each.

Table 21: RTL Export Selections

Format Selection Subfolder Comments
IP Catalog ip Contains a ZIP file which can be added to the Vivado IP

Catalog. The ip folder also contains the contents of the ZIP
file (unzipped).
This option is not available for FPGA devices older than 7-
series or Zynq-7000 SoC.

System Generator for DSP sysgen This output can be added to the Vivado edition of System
Generator for DSP.
This option is not available for FPGA devices older than 7-
series or Zynq-7000 SoC.

Synthesized Checkpoint (.dcp) ip This option creates Vivado checkpoint files which can be
added directly into a design in the Vivado Design Suite.
This option requires RTL synthesis to be performed. When
this option is selected, the flow option with setting syn is
automatically selected.
The output includes an HDL wrapper you can use to
instantiate the IP into an HDL file.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=191

In addition to the packaged output formats, the RTL files are available as standalone files (not
part of a packaged format) in the verilog and vhdl directories located within the
implementation directory <project_name>/<solution_name>/impl.

In addition to the RTL files, these directories also contain project files for the Vivado Design
Suite. Opening the file project.xpr causes the design (Verilog or VHDL) to be opened in a Vivado
project where the design may be analyzed. If C/RTL Cosimulation was executed in the Vivado
HLS project, the C/RTL C/RTL Cosimulation files are available inside the Vivado project.

Synthesizing the RTL
When Vivado HLS reports on the results of synthesis, it provides an estimation of the results
expected after RTL synthesis: the expected clock frequency, the expected number of registers,
LUTs and block RAMs. These results are estimations because Vivado HLS cannot know what
exact optimizations RTL synthesis performs or what the actual routing delays will be, and hence
cannot know the final area and timing values.

Before exporting a design, you have the opportunity to execute logic synthesis and confirm the
accuracy of the estimates. The flow option shown the following figure invokes RTL synthesis
with the syn option or RTL synthesis and implementation with the impl option. during the
export process and synthesizes the RTL design to gates or the placed and routed implementation.

The RTL synthesis option is provided to confirm the reported estimates. In most cases, these RTL
results are not included in the packaged IP.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=192

Figure 78: Export RTL Dialog Box

For most export formats, the RTL synthesis is executed in the verilog or vhdl directories,
whichever HDL was chosen for RTL synthesis using the drop-down menu in the preceding figure,
but the results of RTL synthesis are not included in the packaged IP.

Note: Synthesized Checkpoint (.dcp), a design checkpoint, is always exported as synthesized RTL. The
flow option may be used to evaluate the results of synthesis or implementation, but the exported package
always contains a synthesized netlist.

Packaging IP Catalog Format
Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking

the Export RTL toolbar button .

Select the IP Catalog format in the Format Selection section.

The Configuration options allow the following identification tags to be embedded in the
exported package. These fields can be used to help identify the packaged RTL inside the Vivado
IP Catalog.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=193

The Configuration information is used to differentiate between multiple instances of the same
design when the design is loaded into the IP Catalog. For example, if an implementation is
packaged for the IP Catalog and then a new solution is created and packaged as IP, the new
solution by default has the same name and configuration information. If the new solution is also
added to the IP Catalog, the IP Catalog will identify it as an updated version of the same IP and
the last version added to the IP Catalog will be used.

An alternative method is to use the prefix option in the config_rtl configuration to rename
the output design and files with a unique prefix.

If no values are provided in the configuration setting the following values are used:

• Vendor: xilinx.com

• Library: hls

• Version: 1.0

• Description: An IP generated by Vivado HLS

• Display Name: This field is left blank by default

• Taxonomy: This field is left blank by default

After the packaging process is complete, the.zip file archive in directory <project_name>/
<solution_name>/impl/ip can be imported into the Vivado IP catalog and used in any Vivado
design (RTL or IP Integrator).

Software Driver Files

For designs that include AXI4-Lite slave interfaces, a set of software driver files is created during
the export process. These C driver files can be included in a SDK C project and used to access
the AXI4-Lite slave port.

The software driver files are written to directory <project_name>/<solution_name>/impl/ip/
drivers and are included in the package .zip archive. Refer to AXI4-Lite Interface for details on the
C driver files.

Exporting IP to System Generator
Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking

the Export RTL toolbar button .

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=194

Figure 79: Export RTL to System Generator

If post-place-and-route resource and timing statistic for the IP block are desired then select the
Flow option and select the desired RTL language.

Pressing OK generates the IP package. This package is written to the <project_name>/
<solution_name>/impl/sysgen directory. And contains everything need to import the design to
System Generator.

If the Flow option was selected, RTL synthesis is executed and the final timing and resources
reported but not included in the IP package. See the RTL synthesis section above for more details
on this process.

Importing the RTL into System Generator

A Vivado HLS generated System Generator package may be imported into System Generator
using the following steps:

1. Inside the System Generator design, right-click and use option XilinxBlockAdd to instantiate
new block.

2. Scroll down the list in dialog box and select Vivado HLS.

3. Double-click on the newly instantiated Vivado HLS block to open the Block Parameters
dialog box.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=195

4. Browse to the solution directory where the Vivado HLS block was exported. Using the
example, <project_name>/<solution_name>/impl/sysgen, browse to the <project_name>/
<solution_name> directory and select apply.

Optimizing Ports

If any top-level function arguments are transformed during the synthesis process into a
composite port, the type information for that port cannot be determined and included in the
System Generator IP block.

The implication for this limitation is that any design that uses the reshape, mapping or data
packing optimization on ports must have the port type information, for these composite ports,
manually specified in System Generator.

To manually specify the type information in System Generator, you should know how the
composite ports were created and then use slice and reinterpretation blocks inside System
Generator when connecting the Vivado HLS block to other blocks in the system.

For example:

• If three 8-bit in-out ports R, G and B are packed into a 24-bit input port (RGB_in) and a 24-bit
output port (RGB_out) ports.

After the IP block has been included in System Generator:

• The 24-bit input port (RGB_in) would need to be driven by a System Generator block that
correctly groups three 8-bit input signals (Rin, Gin and Bin) into a 24-bit input bus.

• The 24-bit output bus (RGB_out) would need to be correctly split into three 8-bit signals
(Rout, Bout and Gout).

See the System Generator documentation for details on how to use the slice and reinterpretation
blocks for connecting to composite type ports.

Exporting a Synthesized Checkpoint
Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking

the Export RTL toolbar button .

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=196

Figure 80: Export RTL to Synthesized Checkpoint

When the design is packaged as a design checkpoint IP, the design is first synthesized before
being packaged.

Selecting OK generates the design checkpoint package. This package is written to the
<project_name>/<solution_name>/impl/ip directory. The design checkpoint files can
be used in a Vivado Design Suite project in the same manner as any other design checkpoint.

Chapter 1: High-Level Synthesis

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=197

Chapter 2

High-Level Synthesis C Libraries
Vivado® HLS C libraries allow common hardware design constructs and function to be easily
modeled in C and synthesized to RTL. The following C libraries are provided with Vivado HLS:

• Arbitrary Precision Data Types Library

• HLS Stream Library

• HLS Math Library

• HLS Video Library

• HLS IP Library

• HLS Linear Algebra Library

• HLS DSP Library

You can use each of the C libraries in your design by including the library header file. These
header files are located in the include directory in the Vivado HLS installation area.

IMPORTANT! The header files for the Vivado HLS C libraries do not have to be in the include path if the
design is used in Vivado HLS. The paths to the library header files are automatically added.

Arbitrary Precision Data Types Library
C-based native data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL buses (corresponding
to hardware) support arbitrary lengths. HLS needs a mechanism to allow the specification of
arbitrary precision bit-width and not rely on the artificial boundaries of native C data types: if a
17-bit multiplier is required, you should not be forced to implement this with a 32-bit multiplier.

Vivado® HLS provides both integer and fixed-point arbitrary precision data types for C, C++ and
supports the arbitrary precision data types which are part of SystemC.

The advantage of arbitrary precision data types is that they allow the C code to be updated to
use variables with smaller bit-widths and then for the C simulation to be re-executed to validate
the functionality remains identical or acceptable.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=198

Related Information

Floats and Doubles

Using Arbitrary Precision Data Types
Vivado® HLS provides arbitrary precision integer data types that manage the value of the integer
numbers within the boundaries of the specified width, as shown in the following table.

Table 22: Integer Data Types

Language Integer Data Type Required Header
C [u]int<precision> (1024 bits) gcc #include “ap_cint.h”

C++ ap_[u]int<W> (1024 bits) #include “ap_int.h”

System C sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)

#include “systemc.h”

The header files define the arbitrary precision types are also provided with Vivado HLS as a
standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>.tgz, is provided in the include directory in the
Vivado HLS installation area.

Arbitrary Integer Precision Types with C

For the C language, the header file ap_cint.h defines the arbitrary precision integer data types
[u]int.

Note: The package xilinx_hls_lib_<release_number>.tgz does not include the C arbitrary
precision types defined in ap_cint.h. These types cannot be used with standard C compilers, only with
the Vivado HLS cpcc compiler.

To use arbitrary precision integer data types in a C function:

• Add header file ap_cint.h to the source code.

• Change the bit types to intN for signed types or uintN for unsigned types, where N is a bit
size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_cint.h"

void foo_top () {

 int9 var1; // 9-bit
 uint10 var2; // 10-bit unsigned

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=199

Arbitrary Integer Precision Types with C++

The header file ap_int.h defines the arbitrary precision integer data type for the C++
ap_[u]int data types. To use arbitrary precision integer data types in a C++ function:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> for signed types or ap_uint<N> for unsigned types,
where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_int.h"

void foo_top () {

 ap_int<9> var1; // 9-bit
 ap_uint<10> var2; // 10-bit unsigned

Arbitrary Precision Integer Types with SystemC

The arbitrary precision types used by SystemC are defined in the systemc.h header file that is
required to be included in all SystemC designs. The header file includes the SystemC sc_int<>,
sc_uint<>, sc_bigint<> and sc_biguint<> types.

Arbitrary Precision Fixed-Point Data Types

In Vivado HLS, it is important to use fixed-point data types, because the behavior of the C++/
SystemC simulations performed using fixed-point data types match that of the resulting
hardware created by synthesis. This allows you to analyze the effects of bit-accuracy,
quantization, and overflow with fast C-level simulation.

Vivado HLS offers arbitrary precision fixed-point data types for use with C++ and SystemC
functions as shown in the following table.

Table 23: Fixed-Point Data Types

Language Fixed-Point Data Type Required Header
C -- Not Applicable -- -- Not Applicable --

C++ ap_[u]fixed<W,I,Q,O,N> #include “ap_fixed.h”

System C sc_[u]fixed<W,I,Q,O,N> #define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”

These data types manage the value of real (non-integer) numbers within the boundaries of a
specified total width and integer width, as shown in the following figure.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=200

Figure 81: Fixed-Point Data Type

I-1 ... 1 0 -1 ... -B

MSB

Binary point
 W = I + B

LSB

X14268

Fixed-Point Identifier Summary

The following table provides a brief overview of operations supported by fixed-point types.

Table 24: Fixed-Point Identifier Summary

Identifier Description
W
I

Word length in bits: The number of bits used to represent the integer value (the number of bits above
the decimal point)

Q Quantization mode: This dictates the behavior when greater precision is generated than can be
defined by smallest fractional bit in the variable used to store the result.

SystemC Types ap_fixed Types Description

SC_RND AP_RND Round to plus infinity

SC_RND_ZERO AP_RND_ZERO Round to zero

SC_RND_MIN_INF AP_RND_MIN_INF Round to minus infinity

SC_RND_INF AP_RND_INF Round to infinity

SC_RND_CONV AP_RND_CONV Convergent rounding

SC_TRN AP_TRN Truncation to minus infinity
(default)

SC_TRN_ZERO AP_TRN_ZERO Truncation to zero

O Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.

SystemC Types ap_fixed Types Description

SC_SAT AP_SAT Saturation

SC_SAT_ZERO AP_SAT_ZERO Saturation to zero

SC_SAT_SYM AP_SAT_SYM Symmetrical saturation

SC_WRAP AP_WRAP Wrap around (default)

SC_WRAP_SM AP_WRAP_SM Sign magnitude wrap around

N This defines the number of saturation bits in overflow wrap modes.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=201

Example Using ap_fixed

In this example the Vivado HLS ap_fixed type is used to define an 18-bit variable with 6 bits
representing the numbers above the decimal point and 12-bits representing the value below the
decimal point. The variable is specified as signed, the quantization mode is set to round to plus
infinity and the default wrap-around mode is used for overflow.

#include <ap_fixed.h>
...
ap_fixed<18,6,AP_RND > my_type;
...

Example Using sc_fixed

In this sc_fixed example, a 22-bit variable is shown with 21 bits representing the numbers
above the decimal point: enabling only a minimum accuracy of 0.5. Rounding to zero is used,
such that any result less than 0.5 rounds to 0 and saturation is specified.

#define SC_INCLUDE_FX
#define SC_FX_EXCLUDE_OTHER
#include <systemc.h>
...
sc_fixed<22,21,SC_RND_ZERO,SC_SAT> my_type;
...

C Arbitrary Precision Integer Data Types
The native data types in C are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations support arbitrary bit-lengths. Vivado HLS provides arbitrary precision data types for C
to allow variables and operations in the C code to be specified with any arbitrary bit-widths: for
example, 6-bit, 17-bit, and 234-bit, up to 1024 bits.

Vivado HLS also provides arbitrary precision data types in C++ and supports the arbitrary
precision data types that are part of SystemC. These types are discussed in the respective C++
and SystemC coding.

Advantages of C Arbitrary Precision Data Types

The primary advantages of arbitrary precision data types are:

• Better quality hardware

If, for example, a 17-bit multiplier is required, you can use arbitrary precision types to require
exactly 17 bits in the calculation.

Without arbitrary precision data types, a multiplication such as 17 bits must be implemented
using 32-bit integer data types. This results in the multiplication being implemented with
multiple DSP48 components.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=202

• Accurate C simulation and analysis

Arbitrary precision data types in the C code allows the C simulation to be executed using
accurate bit-widths and for the C simulation to validate the functionality (and accuracy) of the
algorithm before synthesis.

For the C language, the header file ap_cint.h defines the arbitrary precision integer data types
[u]int#W. For example:

• int8 represents an 8-bit signed integer data type.

• uint234 represents a 234-bit unsigned integer type.

The ap_cint.h file is located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
Vivado HLS installation directory.

The code shown in the following example is a repeat of the Basic Arithmetic code example
shown in Standard Types. In both examples, the data types in the top-level function to be
synthesized are specified as dinA_t, dinB_t, etc.

#include "apint_arith.h"

void apint_arith(din_A inA, din_B inB, din_C inC, din_D inD,
 out_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

The real difference between the two examples is in how the data types are defined. To use
arbitrary precision integer data types in a C function:

• Add header file ap_cint.h to the source code.

• Change the native C types to arbitrary precision types: intN or uintN, where N is a bit size
from 1 to 1024.

The data types are defined in the header apint_arith.h. See the following example compared
with the Basic Arithmetic example in Standard Types:

• The input data types have been reduced to represent the maximum size of the real input data.
For example, 8-bit input inA is reduced to 6-bit input.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=203

• The output types have been refined to be more accurate. For example, out2 (the sum of inA
and inB) needs to be only 13-bit, not 32-bit.

#include <stdio.h>
#include ap_cint.h

// Previous data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;
//typedef long long dinD_t;
//typedef int dout1_t;
//typedef unsigned int dout2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef int6 dinA_t;
typedef int12 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;

typedef int18 dout1_t;
typedef uint13 dout2_t;
typedef int22 dout3_t;
typedef int6 dout4_t;

void apint_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t inD,dout1_t
*out1,dout2_t *out2,dout3_t *out3,dout4_t *out4);

Synthesizing the preceding example results in a design that is functionally identical to the Basic
Arithmetic example shown in Standard Types (given data in the range specified by the preceding
example). The final RTL design is smaller in area and has a faster clock speed, because smaller bit-
widths result in reduced logic.

The function must be compiled and validated before synthesis.

Validating Arbitrary Precision Types in C

To create arbitrary precision types, attributes are added to define the bit-sizes in file ap_cint.h.
Standard C compilers such as gcc compile the attributes used in the header file, but they do not
know what the attributes mean. This results in computations that do not reflect the bit-accurate
behavior of the code. For example, a 3-bit integer value with binary representation 100 is treated
by gcc (or any other third-party C compiler) as having a decimal value 4 and not -4.

Note: This issue is only present when using C arbitrary precision types. There are no such issues with C++
or SystemC arbitrary precision types.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=204

Vivado HLS solves this issue by automatically using its own built-in C compiler apcc, when it
recognizes arbitrary precision C types are being used. This compiler is gcc compatible but
correctly interprets arbitrary precision types and arithmetic. You can invoke the apcc compiler at
the command prompt by replacing “gcc” with “apcc”.

$ apcc -o foo_top foo_top.c tb_foo_top.c
$./foo_top

When arbitrary precision types are used in C, the design can no longer be analyzed using the
Vivado HLS C debugger. If it is necessary to debug the design, Xilinx recommends one of the
following methodologies:

• Use the printf or fprintf functions to output the data values for analysis.

• Replace the arbitrary precision types with native C types (int, char, short, etc). This approach
helps debug the operation of the algorithm itself but does not help when you must analyze
the bit-accurate results of the algorithm.

• Change the C function to C++ and use C++ arbitrary precision types for which there are no
debugger limitations.

Integer Promotion

Take care when the result of arbitrary precision operations crosses the native 8, 16, 32 and 64-
bit boundaries. In the following example, the intent is that two 18-bit values are multiplied and
the result stored in a 36-bit number:

#include "ap_cint.h"

int18 a,b;
int36 tmp;

tmp = a * b;

Integer promotion occurs when using this method. The result might not be as expected.

In integer promotion, the C compiler:

• Promotes the multiplication inputs to the native integer size (32-bit).

• Performs multiplication, which generates a 32-bit result.

• Assigns the result to the 36-bit variable tmp.

This results in the behavior and incorrect result shown in the following figure.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=205

Figure 82: Integer Promotion

0 0 0 0 0 0

65536

65536

42949672960

Result in Hex

1 0

0 0 1 0 0 0 00

0 0 1 0 0 0 00

0 0 0 0 0 0

Result “promoted” to 32-bit

tmp 0

a

b

Multiplication Result

0 0

0 0 0 0 0 0 00

+

0

0

X14232

Because Vivado HLS produces the same results as C simulation, Vivado HLS creates hardware in
which a 32-bit multiplier result is sign-extended to a 36-bit result.

To overcome the integer promotion issue, cast operator inputs to the output size. The following
example shows where the inputs to the multiplier are cast to 36-bit value before the
multiplication. This results in the correct (expected) results during C simulation and the expected
36-bit multiplication in the RTL.

The following example shows casting to avoid integer promotion.

#include "ap_cint.h"

typedef int18 din_t;
typedef int36 dout_t;

dout_t apint_promotion(din_t a,din_t b) {
 dout_t tmp;

 tmp = (dout_t)a * (dout_t)b;
 return tmp;
}

Casting to avoid integer promotion issue is required only when the result of an operation is
greater than the next native boundary (8, 16, 32, or 64). This behavior is more typical with
multipliers than with addition and subtraction operations.

There are no integer promotion issues when using C++ or SystemC arbitrary precision types.

C Arbitrary Precision Integer Types: Reference Information

C Arbitrary Precision Types provides information on:

• Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 64-bit).

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=206

• A description of Vivado HLS helper functions, such as printing, concatenating, bit-slicing and
range selection functions.

• A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

C++ Arbitrary Precision Integer Types
The native data types in C++ are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations support arbitrary bit-lengths.

Vivado HLS provides arbitrary precision data types for C++ to allow variables and operations in
the C++ code to be specified with any arbitrary bit-widths: 6-bit, 17-bit, 234-bit, up to 1024 bits.

TIP: The default maximum width allowed is 1024 bits. You can override this default by defining the macro
AP_INT_MAX_W  with a positive integer value less than or equal to 32768 before inclusion of the
ap_int.h  header file.

C++ supports use of the arbitrary precision types defined in the SystemC standard. Include the
SystemC header file systemc.h, and use SystemC data types.

Arbitrary precision data types have are two primary advantages over the native C++ types:

• Better quality hardware: If for example, a 17-bit multiplier is required, arbitrary precision types
can specify that exactly 17-bit are used in the calculation.

Without arbitrary precision data types, such a multiplication (17-bit) must be implemented
using 32-bit integer data types and result in the multiplication being implemented with
multiple DSP48 components.

• Accurate C++ simulation/analysis: Arbitrary precision data types in the C++ code allows the C
++ simulation to be performed using accurate bit-widths and for the C++ simulation to
validate the functionality (and accuracy) of the algorithm before synthesis.

The arbitrary precision types in C++ have none of the disadvantages of those in C:

• C++ arbitrary types can be compiled with standard C++ compilers (there is no C++ equivalent
of apcc).

• C++ arbitrary precision types do not suffer from Integer Promotion Issues.

It is not uncommon for users to change a file extension from .c to .cpp so the file can be
compiled as C++, where neither of these issues are present.

For the C++ language, the header file ap_int.h defines the arbitrary precision integer data
types ap_(u)int<W>. For example, ap_int<8> represents an 8-bit signed integer data type
and ap_uint<234> represents a 234-bit unsigned integer type.

The ap_int.h file is located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
Vivado HLS installation directory.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=207

The code shown in the following example is a repeat of the code shown in the Basic Arithmetic
example in Standard Types. In this example the data types in the top-level function to be
synthesized are specified as dinA_t, dinB_t ...

#include "cpp_ap_int_arith.h"

void cpp_ap_int_arith(din_A inA, din_B inB, din_C inC, din_D inD,
 dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

In this latest update to this example, the C++ arbitrary precision types are used:

• Add header file ap_int.h to the source code.

• Change the native C++ types to arbitrary precision types ap_int<N> or ap_uint<N>, where
N is a bit-size from 1 to 1024 (as noted above, this can be extended to 32K-bits if required).

The data types are defined in the header cpp_ap_int_arith.h.

Compared with the Basic Arithmetic example in Standard Types, the input data types have simply
been reduced to represent the maximum size of the real input data (for example, 8-bit input inA
is reduced to 6-bit input). The output types have been refined to be more accurate, for example,
out2, the sum of inA and inB, need only be 13-bit and not 32-bit.

The following example shows basic arithmetic with C++ arbitrary precision types.

#ifndef _CPP_AP_INT_ARITH_H_
#define _CPP_AP_INT_ARITH_H_

#include <stdio.h>
#include "ap_int.h"

#define N 9

// Old data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;
//typedef long long dinD_t;
//typedef int dout1_t;
//typedef unsigned int dout2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef ap_int<6> dinA_t;
typedef ap_int<12> dinB_t;
typedef ap_int<22> dinC_t;

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=208

typedef ap_int<33> dinD_t;

typedef ap_int<18> dout1_t;
typedef ap_uint<13> dout2_t;
typedef ap_int<22> dout3_t;
typedef ap_int<6> dout4_t;

void cpp_ap_int_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t inD,dout1_t
*out1,dout2_t *out2,dout3_t *out3,dout4_t *out4);

#endif

If C++ Arbitrary Precision Integer Types is synthesized, it results in a design that is functionally
identical to Standard Types and Advantages of C Arbitrary Precision Data Types. It keeps the test
bench as similar as possible to Advantages of C Arbitrary Precision Data Types, rather than use
the C++ cout operator to output the results to a file, the built-in ap_int method .to_int() is
used to convert the ap_int results to integer types used with the standard fprintf function.

fprintf(fp, %d*%d=%d; %d+%d=%d; %d/%d=%d; %d mod %d=%d;\n,
 inA.to_int(), inB.to_int(), out1.to_int(),
 inB.to_int(), inA.to_int(), out2.to_int(),
 inC.to_int(), inA.to_int(), out3.to_int(),
 inD.to_int(), inA.to_int(), out4.to_int());

C++ Arbitrary Precision Integer Types: Reference Information

For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_(u)int<N> arbitrary precision data types, see C++ Arbitrary Precision Types. This section
includes:

• Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

• A description of Vivado HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

• A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

C++ Arbitrary Precision Fixed-Point Types
C++ functions can take advantage of the arbitrary precision fixed-point types included with
Vivado HLS. The following figure summarizes the basic features of these fixed-point types:

• The word can be signed (ap_fixed) or unsigned (ap_ufixed).

• A word with of any arbitrary size W can be defined.

• The number of places above the decimal point I, also defines the number of decimal places in
the word, W-I (represented by B in the following figure).

• The type of rounding or quantization (Q) can be selected.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=209

• The overflow behavior (O and N) can be selected.

Figure 83: Arbitrary Precision Fixed-Point Types

I-1 ... 1 0 -1 ... -B

ap_[u]fixed<W,I,Q,O,N>

Binary point : W = I + B

X14233

TIP: The arbitrary precision fixed-point types can be used when header file ap_fixed.h  is included in
the code.

Arbitrary precision fixed-point types use more memory during C simulation. If using very large
arrays of ap_[u]fixed types, refer to the discussion of C simulation in Arrays.

The advantages of using fixed-point types are:

• They allow fractional number to be easily represented.

• When variables have a different number of integer and decimal place bits, the alignment of
the decimal point is handled.

• There are numerous options to handle how rounding should happen: when there are too few
decimal bits to represent the precision of the result.

• There are numerous options to handle how variables should overflow: when the result is
greater than the number of integer bits can represent.

These attributes are summarized by examining the code in the example below. First, the header
file ap_fixed.h is included. The ap_fixed types are then defined using the typedef
statement:

• A 10-bit input: 8-bit integer value with 2 decimal places.

• A 6-bit input: 3-bit integer value with 3 decimal places.

• A 22-bit variable for the accumulation: 17-bit integer value with 5 decimal places.

• A 36-bit variable for the result: 30-bit integer value with 6 decimal places.

The function contains no code to manage the alignment of the decimal point after operations are
performed. The alignment is done automatically.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=210

The following code sample shows ap_fixed type.

#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> din1_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;
typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp_ap_fixed(din1_t d_in1, din2_t d_in2) {

 static dint_t sum;
 sum += d_in1;
 return sum * d_in2;
}

Using ap_(u)fixed types, the C++ simulation is bit accurate. Fast simulation can validate the
algorithm and its accuracy. After synthesis, the RTL exhibits the identical bit-accurate behavior.

Arbitrary precision fixed-point types can be freely assigned literal values in the code. This is
shown in the test bench (see the example below) used with the example above, in which the
values of in1 and in2 are declared and assigned constant values.

When assigning literal values involving operators, the literal values must first be cast to
ap_(u)fixed types. Otherwise, the C compiler and Vivado HLS interpret the literal as an
integer or float/double type and may fail to find a suitable operator. As shown in the
following example, in the assignment of in1 = in1 + din1_t(0.25), the literal 0.25 is cast
to an ap_fixed type.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;
#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> din1_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;
typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp_ap_fixed(din1_t d_in1, din2_t d_in2);
int main()
 {
 ofstream result;
 din1_t in1 = 0.25;
 din2_t in2 = 2.125;
 dout_t output;
 int retval=0;

 result.open(result.dat);
 // Persistent manipulators
 result << right << fixed << setbase(10) << setprecision(15);

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=211

 for (int i = 0; i <= 250; i++)
 {
 output = cpp_ap_fixed(in1,in2);

 result << setw(10) << i;
 result << setw(20) << in1;
 result << setw(20) << in2;
 result << setw(20) << output;
 result << endl;

 in1 = in1 + din1_t(0.25);
 in2 = in2 - din2_t(0.125);
 }
 result.close();

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);
 }

 // Return 0 if the test passes
 return retval;
}

Fixed-Point Identifier Summary

The following table shows the quantization and overflow modes.

TIP: Quantization and overflow modes that do more than the default behavior of standard hardware
arithmetic (wrap and truncate) result in operators with more associated hardware. It costs logic (LUTs) to
implement the more advanced modes, such as round to minus infinity or saturate symmetrically.

Table 25: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits

I The number of bits used to represent the integer value (the number of bits above the decimal point)

Q Quantization mode dictates the behavior when greater precision is generated than can be defined by
smallest fractional bit in the variable used to store the result.

Mode Description

AP_RND Rounding to plus infinity

AP_RND_ZERO Rounding to zero

AP_RND_MIN_INF Rounding to minus infinity

AP_RND_INF Rounding to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity (default)

AP_TRN_ZERO Truncation to zero

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=212

Table 25: Fixed-Point Identifier Summary (cont'd)

Identifier Description
O Overflow mode dictates the behavior when more bits are generated than the variable to store the result

contains.

Mode Description

AP_SAT Saturation

AP_SAT_ZERO Saturation to zero

AP_SAT_SYM Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around

N The number of saturation bits in wrap modes.

C++ Arbitrary Precision Fixed-Point Types: Reference Information

For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_(u)fixed<N> arbitrary precision fixed-point data types, see C++ Arbitrary Precision Fixed-
Point Types. This section includes:

• Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

• A detailed description of the overflow and saturation modes.

• A description of Vivado HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

• A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

IMPORTANT! For the compiler to process, you must use the appropriate header files for the language.

HLS Stream Library
Streaming data is a type of data transfer in which data samples are sent in sequential order
starting from the first sample. Streaming requires no address management.

Modeling designs that use streaming data can be difficult in C. The approach of using pointers to
perform multiple read and/or write accesses can introduce issues, because there are implications
for the type qualifier and how the test bench is constructed.

Vivado HLS provides a C++ template class hls::stream<> for modeling streaming data
structures. The streams implemented with the hls::stream<> class have the following
attributes.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=213

• In the C code, an hls::stream<> behaves like a FIFO of infinite depth. There is no
requirement to define the size of an hls::stream<>.

• They are read from and written to sequentially. That is, after data is read from an
hls::stream<>, it cannot be read again.

• An hls::stream<> on the top-level interface is by default implemented with an ap_fifo
interface.

• An hls::stream<> internal to the design is implemented as a FIFO with a depth of 2. The
optimization directive STREAM is used to change this default size.

This section shows how the hls::stream<> class can more easily model designs with
streaming data. The topics in this section provide:

• An overview of modeling with streams and the RTL implementation of streams.

• Rules for global stream variables.

• How to use streams.

• Blocking reads and writes.

• Non-Blocking Reads and writes.

• Controlling the FIFO depth.

Note: The hls::stream class should always be passed between functions as a C++ reference argument.
For example, &my_stream.

IMPORTANT! The hls::stream  class is only used in C++ designs. Array of streams is not supported.

C Modeling and RTL Implementation
Streams are modeled as an infinite queue in software (and in the test bench during RTL co-
simulation). There is no need to specify any depth to simulate streams in C++. Streams can be
used inside functions and on the interface to functions. Internal streams may be passed as
function parameters.

Streams can be used only in C++ based designs. Each hls::stream<> object must be written
by a single process and read by a single process.

If an hls::stream is used on the top-level interface, it is by default implemented in the RTL as
a FIFO interface (ap_fifo) but may be optionally implemented as a handshake interface
(ap_hs) or an AXI-Stream interface (axis).

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=214

If an hls::stream is used inside the design function and synthesized into hardware, it is
implemented as a FIFO with a default depth of 2. In some cases, such as when interpolation is
used, the depth of the FIFO might have to be increased to ensure the FIFO can hold all the
elements produced by the hardware. Failure to ensure the FIFO is large enough to hold all the
data samples generated by the hardware can result in a stall in the design (seen in C/RTL co-
simulation and in the hardware implementation). The depth of the FIFO can be adjusted using
the STREAM directive with the depth option. An example of this is provided in the example
design hls_stream.

IMPORTANT! Ensure hls::stream  variables are correctly sized when used in the default non-
DATAFLOW regions.

If an hls::stream is used to transfer data between tasks (sub-functions or loops), you should
immediately consider implementing the tasks in a DATAFLOW region where data streams from
one task to the next. The default (non-DATAFLOW) behavior is to complete each task before
starting the next task, in which case the FIFOs used to implement the hls::stream variables
must be sized to ensure they are large enough to hold all the data samples generated by the
producer task. Failure to increase the size of the hls::stream variables results in the error
below:

ERROR: [XFORM 203-733] An internal stream xxxx.xxxx.V.user.V' with default
size is
used in a non-dataflow region, which may result in deadlock. Please
consider to
resize the stream using the directive 'set_directive_stream' or the 'HLS
stream'
pragma.

This error informs you that in a non-DATAFLOW region (the default FIFOs depth is 2) may not be
large enough to hold all the data samples written to the FIFO by the producer task.

Global and Local Streams

Streams may be defined either locally or globally. Local streams are always implemented as
internal FIFOs. Global streams can be implemented as internal FIFOs or ports:

• Globally-defined streams that are only read from, or only written to, are inferred as external
ports of the top-level RTL block.

• Globally-defined streams that are both read from and written to (in the hierarchy below the
top-level function) are implemented as internal FIFOs.

Streams defined in the global scope follow the same rules as any other global variables.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=215

Using HLS Streams
To use hls::stream<> objects, include the header file hls_stream.h. Streaming data
objects are defined by specifying the type and variable name. In this example, a 128-bit unsigned
integer type is defined and used to create a stream variable called my_wide_stream.

#include "ap_int.h"
#include "hls_stream.h"

typedef ap_uint<128> uint128_t; // 128-bit user defined type
hls::stream<uint128_t> my_wide_stream; // A stream declaration

Streams must use scoped naming. Xilinx recommends using the scoped hls:: naming shown in
the example above. However, if you want to use the hls namespace, you can rewrite the
preceding example as:

#include <ap_int.h>
#include <hls_stream.h>
using namespace hls;

typedef ap_uint<128> uint128_t; // 128-bit user defined type
stream<uint128_t> my_wide_stream; // hls:: no longer required

Given a stream specified as hls::stream<T>, the type T may be:

• Any C++ native data type

• A Vivado HLS arbitrary precision type (for example, ap_int<>, ap_ufixed<>)

• A user-defined struct containing either of the above types

Note: General user-defined classes (or structures) that contain methods (member functions) should not be
used as the type (T) for a stream variable.

Streams may be optionally named. Providing a name for the stream allows the name to be used in
reporting. For example, Vivado HLS automatically checks to ensure all elements from an input
stream are read during simulation. Given the following two streams:

stream<uint8_t> bytestr_in1;
stream<uint8_t> bytestr_in2("input_stream2");

Any warning on elements left in the streams are reported as follows, where it is clear which
message relates to bytetr_in2:

WARNING: Hls::stream 'hls::stream<unsigned char>.1' contains leftover data,
which
may result in RTL simulation hanging.
WARNING: Hls::stream 'input_stream2' contains leftover data, which may
result in RTL
simulation hanging.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=216

When streams are passed into and out of functions, they must be passed-by-reference as in the
following example:

 void stream_function (
 hls::stream<uint8_t> &strm_out,
 hls::stream<uint8_t> &strm_in,
 uint16_t strm_len
)

Vivado HLS supports both blocking and non-blocking access methods.

• Non-blocking accesses can be implemented only as FIFO interfaces.

• Streaming ports that are implemented as ap_fifo ports and that are defined with an AXI4-
Stream resource must not use non-blocking accesses.

A complete design example using streams is provided in the Vivado HLS examples. Refer to the
hls_stream example in the design examples available from the GUI welcome screen.

Blocking Reads and Writes

The basic accesses to an hls::stream<> object are blocking reads and writes. These are
accomplished using class methods. These methods stall (block) execution if a read is attempted
on an empty stream FIFO, a write is attempted to a full stream FIFO, or until a full handshake is
accomplished for a stream mapped to an ap_hs interface protocol.

A stall can be observed in C/RTL co-simulation as the continued execution of the simulator
without any progress in the transactions. The following shows a classic example of a stall
situation, where the RTL simulation time keeps increasing, but there is no progress in the inter or
intra transactions:

// RTL Simulation : "Inter-Transaction Progress" ["Intra-Transaction
Progress"] @
"Simulation Time"
///
//////
// RTL Simulation : 0 / 1 [0.00%] @ "110000"
// RTL Simulation : 0 / 1 [0.00%] @ "202000"
// RTL Simulation : 0 / 1 [0.00%] @ "404000"

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=217

Blocking Write Methods

In this example, the value of variable src_var is pushed into the stream.

// Usage of void write(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream.write(src_var);

The << operator is overloaded such that it may be used in a similar fashion to the stream
insertion operators for C++ stream (for example, iostreams and filestreams). The
hls::stream<> object to be written to is supplied as the left-hand side argument and the
value to be written as the right-hand side.

// Usage of void operator << (T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream << src_var;

Blocking Read Methods

This method reads from the head of the stream and assigns the values to the variable dst_var.

// Usage of void read(T &rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream.read(dst_var);

Alternatively, the next object in the stream can be read by assigning (using for example =, +=) the
stream to an object on the left-hand side:

// Usage of T read(void)

hls::stream<int> my_stream;

int dst_var = my_stream.read();

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=218

The '>>' operator is overloaded to allow use similar to the stream extraction operator for C++
stream (for example, iostreams and filestreams). The hls::stream is supplied as the LHS
argument and the destination variable the RHS.

// Usage of void operator >> (T & rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream >> dst_var;

Non-Blocking Reads and Writes

Non-blocking write and read methods are also provided. These allow execution to continue even
when a read is attempted on an empty stream or a write to a full stream.

These methods return a Boolean value indicating the status of the access (true if successful,
false otherwise). Additional methods are included for testing the status of an hls::stream<>
stream.

IMPORTANT! Non-blocking behavior is only supported on interfaces using the ap_fifo  protocol. More
specifically, the AXI-Stream standard and the Xilinx ap_hs  IO protocol do not support non-blocking
accesses.

During C simulation, streams have an infinite size. It is therefore not possible to validate with C
simulation if the stream is full. These methods can be verified only during RTL simulation when
the FIFO sizes are defined (either the default size of 1, or an arbitrary size defined with the
STREAM directive).

IMPORTANT! If the design is specified to use the block-level I/O protocol ap_ctrl_none and the design
contains any hls::stream variables that employ non-blocking behavior, C/RTL co-simulation is not
guaranteed to complete.

Non-Blocking Writes

This method attempts to push variable src_var into the stream my_stream, returning a
boolean true if successful. Otherwise, false is returned and the queue is unaffected.

// Usage of void write_nb(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

if (my_stream.write_nb(src_var)) {
 // Perform standard operations
 ...

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=219

} else {
 // Write did not occur
 return;
}

Fullness Test

bool full(void)

Returns true, if and only if the hls::stream<> object is full.

// Usage of bool full(void)

hls::stream<int> my_stream;
int src_var = 42;
bool stream_full;

stream_full = my_stream.full();

Non-Blocking Read

bool read_nb(T & rdata)

This method attempts to read a value from the stream, returning true if successful. Otherwise,
false is returned and the queue is unaffected.

// Usage of void read_nb(const T & wdata)

hls::stream<int> my_stream;
int dst_var;

if (my_stream.read_nb(dst_var)) {
 // Perform standard operations
 ...
} else {
 // Read did not occur
 return;
}

Emptiness Test

bool empty(void)

Returns true if the hls::stream<> is empty.

// Usage of bool empty(void)

hls::stream<int> my_stream;
int dst_var;
bool stream_empty;

stream_empty = my_stream.empty();

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=220

The following example shows how a combination of non-blocking accesses and full/empty tests
can provide error handling functionality when the RTL FIFOs are full or empty:

#include "hls_stream.h"
using namespace hls;

typedef struct {
 short data;
 bool valid;
 bool invert;
} input_interface;

bool invert(stream<input_interface>& in_data_1,
 stream<input_interface>& in_data_2,
 stream<short>& output
) {
 input_interface in;
 bool full_n;

// Read an input value or return
 if (!in_data_1.read_nb(in))
 if (!in_data_2.read_nb(in))
 return false;

// If the valid data is written, return not-full (full_n) as true
 if (in.valid) {
 if (in.invert)
 full_n = output.write_nb(~in.data);
 else
 full_n = output.write_nb(in.data);
 }
 return full_n;
}

Controlling the RTL FIFO Depth

For most designs using streaming data, the default RTL FIFO depth of 2 is sufficient. Streaming
data is generally processed one sample at a time.

For multirate designs in which the implementation requires a FIFO with a depth greater than 2,
you must determine (and set using the STREAM directive) the depth necessary for the RTL
simulation to complete. If the FIFO depth is insufficient, RTL co-simulation stalls.

Because stream objects cannot be viewed in the GUI directives pane, the STREAM directive
cannot be applied directly in that pane.

Right-click the function in which an hls::stream<> object is declared (or is used, or exists in
the argument list) to:

• Select the STREAM directive.

• Populate the variable field manually with name of the stream variable.

Alternatively, you can:

• Specify the STREAM directive manually in the directives.tcl file, or

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=221

• Add it as a pragma in source.

C/RTL Co-Simulation Support
The Vivado HLS C/RTL co-simulation feature does not support structures or classes containing
hls::stream<> members in the top-level interface. Vivado HLS supports these structures or
classes for synthesis.

typedef struct {
 hls::stream<uint8_t> a;
 hls::stream<uint16_t> b;
} strm_strct_t;

void dut_top(strm_strct_t indata, strm_strct_t outdata) { }

These restrictions apply to both top-level function arguments and globally declared objects. If
structs of streams are used for synthesis, the design must be verified using an external RTL
simulator and user-created HDL test bench. There are no such restrictions on hls::stream<>
objects with strictly internal linkage.

HLS Math Library
The Vivado HLS Math Library (hls_math.h) provides support for the synthesis of the standard
C (math.h) and C++ (cmath.h) libraries and is automatically used to specify the math
operations during synthesis. The support includes floating point (single-precision, double-
precision and half-precision) for all functions and fixed-point support for some functions.

The hls_math.h library can optionally be used in C++ source code in place of the standard C++
math library (cmath.h), but it cannot be used in C source code. Vivado HLS will use the
appropriate simulation implementation to avoid accuracy difference between C simulation and
C/RTL co-simulation.

HLS Math Library Accuracy
The HLS math functions are implemented as synthesizable bit-approximate functions from the
hls_math.h library. Bit-approximate HLS math library functions do not provide the same
accuracy as the standard C function. To achieve the desired result, the bit-approximate
implementation might use a different underlying algorithm than the standard C math library
version. The accuracy of the function is specified in terms of ULP (Unit of Least Precision). This
difference in accuracy has implications for both C simulation and C/RTL co-simulation.

The ULP difference is typically in the range of 1-4 ULP.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=222

• If the standard C math library is used in the C source code, there may be a difference between
the C simulation and the C/RTL co-simulation due to the fact that some functions exhibit a
ULP difference from the standard C math library.

• If the HLS math library is used in the C source code, there will be no difference between the C
simulation and the C/RTL co-simulation. A C simulation using the HLS math library, may
however differ from a C simulation using the standard C math library.

In addition, the following seven functions might show some differences, depending on the C
standard used to compile and run the C simulation:

• copysign

• fpclassify

• isinf

• isfinite

• isnan

• isnormal

• signbit

C90 mode

Only isinf, isnan, and copysign are usually provided by the system header files, and they
operate on doubles. In particular, copysign always returns a double result. This might result in
unexpected results after synthesis if it must be returned to a float, because a double-to-float
conversion block is introduced into the hardware.

C99 mode (-std=c99)

All seven functions are usually provided under the expectation that the system header files will
redirect them to __isnan(double) and __isnan(float). The usual GCC header files do not
redirect isnormal, but implement it in terms of fpclassify.

C++ Using math.h

All seven are provided by the system header files, and they operate on doubles.

copysign always returns a double result. This might cause unexpected results after synthesis if
it must be returned to a float, because a double-to-float conversion block is introduced into the
hardware.

C++ Using cmath

Similar to C99 mode(-std=c99), except that:

• The system header files are usually different.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=223

• The functions are properly overloaded for:

○ float(). snan(double)

○ isinf(double)

copysign and copysignf are handled as built-ins even when using namespace std;.

C++ Using cmath and namespace std

No issues. Xilinx recommends using the following for best results:

• -std=c99 for C

• -fno-builtin for C and C++

Note: To specify the C compile options, such as -std=c99, use the Tcl command add_files with the -
cflags option. Alternatively, use the Edit CFLAGs button in the Project Settings dialog box.

The HLS Math Library
The following functions are provided in the HLS math library. Each function supports half-
precision (type half), single-precision (type float) and double precision (type double).

IMPORTANT! For each function func  listed below, there is also an associated half-precision only
function named half_func  and single-precision only function named funcf  provided in the library.

When mixing half-precision, single-precision and double-precision data types, check for common
synthesis errors to prevent introducing type-conversion hardware in the final FPGA
implementation.

Trigonometric Functions

acos acospi asin asinpi
atan atan2 atan2pi cos
cospi sin sincos sinpi
tan tanpi

Hyperbolic Functions

acosh asinh atanh cosh
sinh tanh

Exponential Functions

exp exp10 exp2 expm1
frexp ldexp modf

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=224

Logarithmic Functions

ilogb log log10 log1p

Power Functions

cbrt hypot pow rsqrt
sqrt

Error Functions

erf erfc

Rounding Functions

ceil floor llrint llround
lrint lround nearbyint rint
round trunc

Remainder Functions

fmod remainder remquo

Floating-point

copysign nan nextafter nexttoward

Difference Functions

fdim fmax fmin maxmag
minmag

Other Functions

abs divide fabs fma
fract mad recip

Classification Functions

fpclassify isfinite isinf isnan
isnormal signbit

Comparison Functions

isgreater isgreaterequal isless islessequal
islessgreater isunordered

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=225

Relational Functions

all any bitselect isequal
isnotequal isordered select

Fixed-Point Math Functions
Fixed-point implementations are also provided for the following math functions.

All fixed-point math functions support ap_[u]fixed and ap_[u]int data types with following bit-
width specification,

1. ap_fixed<W,I> where I<=33 and W-I<=32

2. ap_ufixed<W,I> where I<=32 and W-I<=32

3. ap_int<I> where I<=33

4. ap_uint<I> where I<=32

Trigonometric Functions

cos sin tan acos asin atan atan2 sincos
cospi sinpi

Hyperbolic Functions

cosh sinh tanh acosh asinh atanh

Exponential Functions

exp frexp modf exp2 expm1

Logarithmic Functions

log log10 ilogb log1p

Power Functions

pow sqrt rsqrt cbrt hypot

Error Functions

erf erfc

Rounding Functions

ceil floor trunc round rint nearbyint

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=226

Floating Point

nextafter nexttoward

Difference Functions

erf erfc fdim fmax fmin maxmag minmag

Other Functions

fabs recip abs fract divide

Classification Functions

signbit

Comparison Functions

isgreater isgreaterequal isless islessequal islessgreater

Relational Functions

isequal isnotequal any all bitselect

The fixed-point type provides a slightly-less accurate version of the function value, but a smaller
and faster RTL implementation.

The methodology for implementing a math function with a fixed-point data types is:

1. Determine if a fixed-point implementation is supported.

2. Update the math functions to use ap_fixed types.

3. Perform C simulation to validate the design still operates with the required precision. The C
simulation is performed using the same bit-accurate types as the RTL implementation.

4. Synthesize the design.

For example, a fixed-point implementation of the function sin is specified by using fixed-point
types with the math function as follows:

#include "hls_math.h"
#include "ap_fixed.h"

ap_fixed<32,2> my_input, my_output;

my_input = 24.675;
my_output = sin(my_input);

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=227

When using fixed-point math functions, the result type must have the same width and integer
bits as the input.

Verification and Math Functions
If the standard C math library is used in the C source code, the C simulation results and the
C/RTL co-simulation results may be different: if any of the math functions in the source code
have an ULP difference from the standard C math library it may result in differences when the
RTL is simulated.

If the hls_math.h library is used in the C source code, the C simulation and C/RTL co-
simulation results are identical. However, the results of C simulation using hls_math.h are not
the same as those using the standard C libraries. The hls_math.h library simply ensures the C
simulation matches the C/RTL co-simulation results. In both cases, the same RTL implementation
is created. The following explains each of the possible options which are used to perform
verification when using math functions.

Verification Option 1: Standard Math Library and Verify Differences

In this option, the standard C math libraries are used in the source code. If any of the functions
synthesized do have exact accuracy the C/RTL co-simulation is different than the C simulation.
The following example highlights this approach.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

In this case, the results between C simulation and C/RTL co-simulation are different. Keep in
mind when comparing the outputs of simulation, any results written from the test bench are
written to the working directory where the simulation executes:

• C simulation: Folder <project>/<solution>/csim/build

• C/RTL co-simulation: Folder <project>/<solution>/sim/<RTL>

where <project> is the project folder, <solution> is the name of the solution folder and <RTL> is
the type of RTL verified (verilog or vhdl). The following figure shows a typical comparison of the
pre-synthesis results file on the left-hand side and the post-synthesis RTL results file on the right-
hand side. The output is shown in the third column.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=228

Figure 84: Pre-Synthesis and Post-Synthesis Simulation Differences

The results of pre-synthesis simulation and post-synthesis simulation differ by fractional
amounts. You must decide whether these fractional amounts are acceptable in the final RTL
implementation.

The recommended flow for handling these differences is using a test bench that checks the
results to ensure that they lie within an acceptable error range. This can be accomplished by
creating two versions of the same function, one for synthesis and one as a reference version. In
this example, only function cpp_math is synthesized.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

data_t cpp_math_sw(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=229

The test bench to verify the design compares the outputs of both functions to determine the
difference, using variable diff in the following example. During C simulation both functions
produce identical outputs. During C/RTL co-simulation function cpp_math produces different
results and the difference in results are checked.

int main() {
 data_t angle = 0.01;
 data_t output, exp_output, diff;
 int retval=0;

 for (data_t i = 0; i <= 250; i++) {
 output = cpp_math(angle);
 exp_output = cpp_math_sw(angle);

 // Check for differences
 diff = ((exp_output > output) ? exp_output - output : output -
exp_output);
 if (diff > 0.0000005) {
 printf("Difference %.10f exceeds tolerance at angle %.10f \n", diff,
angle);
 retval=1;
 }

 angle = angle + .1;
 }

 if (retval != 0) {
 printf("Test failed !!!\n");
 retval=1;
 } else {
 printf("Test passed !\n");
 }
 // Return 0 if the test passes
 return retval;
}

If the margin of difference is lowered to 0.00000005, this test bench highlights the margin of
error during C/RTL co-simulation:

Difference 0.0000000596 at angle 1.1100001335
Difference 0.0000000596 at angle 1.2100001574
Difference 0.0000000596 at angle 1.5100002289
Difference 0.0000000596 at angle 1.6100002527
etc..

When using the standard C math libraries (math.h and cmath.h) create a “smart” test bench to
verify any differences in accuracy are acceptable.

Verification Option 2: HLS Math Library and Validate Differences

An alternative verification option is to convert the source code to use the HLS math library. With
this option, there are no differences between the C simulation and C/RTL co-simulation results.
The following example shows how the code above is modified to use the hls_math.h library.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=230

Note: This option is only available in C++.

• Include the hls_math.h header file.

• Replace the math functions with the equivalent hls:: function.

#include <cmath>
#include "hls_math.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = hls::sinf(angle);
 data_t c = hls::cosf(angle);
 return hls::sqrtf(s*s+c*c);
}

Verification Option 3: HLS Math Library File and Validate
Differences

Including the HLS math library file lib_hlsm.cpp as a design file ensures Vivado HLS uses the
HLS math library for C simulation. This option is identical to option2 however it does not require
the C code to be modified.

The HLS math library file is located in the src directory in the Vivado HLS installation area.
Simply copy the file to your local folder and add the file as a standard design file.

Note: This option is only available in C++.

As with option 2, with this option there is now a difference between the C simulation results
using the HLS math library file and those previously obtained without adding this file. These
difference should be validated with C simulation using a “smart” test bench similar to option 1.

Common Synthesis Errors
The following are common use errors when synthesizing math functions. These are often (but not
exclusively) caused by converting C functions to C++ to take advantage of synthesis for math
functions.

C++ cmath.h

If the C++ cmath.h header file is used, the floating point functions (for example, sinf and
cosf) can be used. These result in 32-bit operations in hardware. The cmath.h header file also
overloads the standard functions (for example, sin and cos) so they can be used for float and
double types.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=231

C math.h

If the C math.h library is used, the single-precision functions (for example, sinf and cosf) are
required to synthesize 32-bit floating point operations. All standard function calls (for example,
sin and cos) result in doubles and 64-bit double-precision operations being synthesized.

Cautions

When converting C functions to C++ to take advantage of math.h support, be sure that the new
C++ code compiles correctly before synthesizing with Vivado HLS. For example, if sqrtf() is
used in the code with math.h, it requires the following code extern added to the C++ code to
support it:

#include <math.h>
extern “C” float sqrtf(float);

To avoid unnecessary hardware caused by type conversion, follow the warnings on mixing double
and float types discussed in Floats and Doubles.

HLS Video Library
IMPORTANT! The Vivado® HLS video libraries have been moved to the Xilinx® GitHub and can be found
here: https://github.com/Xilinx/xfopencv

HLS IP Libraries
Vivado HLS provides C++ libraries to implement a number of Xilinx IP blocks. The C libraries
allow the following Xilinx IP blocks to be directly inferred from the C++ source code ensuring a
high-quality implementation in the FPGA.

Table 26: HLS IP Libraries

Library Header File Description
hls_fft.h Allows the Xilinx LogiCORE IP FFT to be simulated in C and implemented

using the Xilinx LogiCORE block.

hls_ssrlib.h Allows a fully synthesizable Super Sample date Rate (SSR) FFT to process
multiple input samples for every clock cycle.

hls_fir.h Allows the Xilinx LogiCORE IP FIR to be simulated in C and implemented
using the Xilinx LogiCORE block.

hls_dds.h Allows the Xilinx LogiCORE IP DDS to be simulated in C and implemented
using the Xilinx LogiCORE block.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 232Send Feedback

https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=232

Table 26: HLS IP Libraries (cont'd)

Library Header File Description
ap_shift_reg.h Provides a C++ class to implement a shift register which is implemented

directly using a Xilinx SRL primitive.

FFT IP Library
The Xilinx FFT IP block can be called within a C++ design using the library hls_fft.h. This
section explains how the FFT can be configured in your C++ code.

RECOMMENDED: Xilinx highly recommends that you review the Fast Fourier Transform LogiCORE IP
Product Guide (PG109) for information on how to implement and use the features of the IP.

To use the FFT in your C++ code:

1. Include the hls_fft.h library in the code

2. Set the default parameters using the pre-defined struct hls::ip_fft::params_t

3. Define the run time configuration

4. Call the FFT function

5. Optionally, check the run time status

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

First, include the FFT library in the source code. This header file resides in the include directory in
the Vivado HLS installation area which is automatically searched when Vivado HLS executes.

#include "hls_fft.h"

Define the static parameters of the FFT. This includes such things as input width, number of
channels, type of architecture. which do not change dynamically. The FFT library includes a
parameterization struct hls::ip_fft::params_t, which can be used to initialize all static
parameters with default values.

In this example, the default values for output ordering and the widths of the configuration and
status ports are over-ridden using a user-defined struct param1 based on the pre-defined struct.

struct param1 : hls::ip_fft::params_t {
 static const unsigned ordering_opt = hls::ip_fft::natural_order;
 static const unsigned config_width = FFT_CONFIG_WIDTH;
 static const unsigned status_width = FFT_STATUS_WIDTH;
};

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 233Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=233

Define types and variables for both the run time configuration and run time status. These values
can be dynamic and are therefore defined as variables in the C code which can change and are
accessed through APIs.

typedef hls::ip_fft::config_t<param1> config_t;
typedef hls::ip_fft::status_t<param1> status_t;
config_t fft_config1;
status_t fft_status1;

Next, set the run time configuration. This example sets the direction of the FFT (Forward or
Inverse) based on the value of variable “direction” and also set the value of the scaling schedule.

fft_config1.setDir(direction);
fft_config1.setSch(0x2AB);

Call the FFT function using the HLS namespace with the defined static configuration (param1 in
this example). The function parameters are, in order, input data, output data, output status and
input configuration.

hls::fft<param1> (xn1, xk1, &fft_status1, &fft_config1);

Finally, check the output status. This example checks the overflow flag and stores the results in
variable “ovflo”.

 *ovflo = fft_status1->getOvflo();

Design examples using the FFT C library are provided in the Vivado HLS examples and can be
accessed using menu option Help → Welcome → Open Example Project → Design Examples → 
FFT.

FFT Static Parameters

The static parameters of the FFT define how the FFT is configured and specifies the fixed
parameters such as the size of the FFT, whether the size can be changed dynamically, whether
the implementation is pipelined or radix_4_burst_io.

The hls_fft.h header file defines a struct hls::ip_fft::params_t which can be used to
set default values for the static parameters. If the default values are to be used, the
parameterization struct can be used directly with the FFT function.

 hls::fft<hls::ip_fft::params_t >
 (xn1, xk1, &fft_status1, &fft_config1);

A more typical use is to change some of the parameters to non-default values. This is performed
by creating a new user-defined parameterization struct based on the default parameterization
struct and changing some of the default values.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=234

In the following example, a new user struct my_fft_config is defined with a new value for the
output ordering (changed to natural_order). All other static parameters to the FFT use the default
values.

struct my_fft_config : hls::ip_fft::params_t {
 static const unsigned ordering_opt = hls::ip_fft::natural_order;
};

hls::fft<my_fft_config >
 (xn1, xk1, &fft_status1, &fft_config1);

The values used for the parameterization struct hls::ip_fft::params_t are explained in
FFT Struct Parameters. The default values for the parameters and a list of possible values are
provided in FFT Struct Parameter Values .

RECOMMENDED: Xilinx highly recommends that you review the LogiCORE IP Fast Fourier Transform
Product Guide (PG109) for details on the parameters and the implication for their settings.

FFT Struct Parameters

Table 27: FFT Struct Parameters

Parameter Description
input_width Data input port width.

output_width Data output port width.

status_width Output status port width.

config_width Input configuration port width.

max_nfft The size of the FFT data set is specified as 1 << max_nfft.

has_nfft Determines if the size of the FFT can be run time
configurable.

channels Number of channels.

arch_opt The implementation architecture.

phase_factor_width Configure the internal phase factor precision.

ordering_opt The output ordering mode.

ovflo Enable overflow mode.

scaling_opt Define the scaling options.

rounding_opt Define the rounding modes.

mem_data Specify using block or distributed RAM for data memory.

mem_phase_factors Specify using block or distributed RAM for phase factors
memory.

mem_reorder Specify using block or distributed RAM for output reorder
memory.

stages_block_ram Defines the number of block RAM stages used in the
implementation.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 235Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=latest;d=pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=235

Table 27: FFT Struct Parameters (cont'd)

Parameter Description
mem_hybrid When block RAMs are specified for data, phase factor, or

reorder buffer, mem_hybrid specifies where or not to use a
hybrid of block and distributed RAMs to reduce block RAM
count in certain configurations.

complex_mult_type Defines the types of multiplier to use for complex
multiplications.

butterfly_type Defines the implementation used for the FFT butterfly.

When specifying parameter values which are not integer or boolean, the HLS FFT namespace
should be used.

For example, the possible values for parameter butterfly_type in the following table are
use_luts and use_xtremedsp_slices. The values used in the C program should be
butterfly_type = hls::ip_fft::use_luts and butterfly_type =
hls::ip_fft::use_xtremedsp_slices.

FFT Struct Parameter Values

The following table covers all features and functionality of the FFT IP. Features and functionality
not described in this table are not supported in the Vivado HLS implementation.

Table 28: FFT Struct Parameter Values

Parameter C Type Default Value Valid Values
input_width unsigned 16 8-34

output_width unsigned 16 input_width to (input_width +
max_nfft + 1)

status_width unsigned 8 Depends on FFT
configuration

config_width unsigned 16 Depends on FFT
configuration

max_nfft unsigned 10 3-16

has_nfft bool false True, False

channels unsigned 1 1-12

arch_opt unsigned pipelined_streaming_io automatically_select
pipelined_streaming_io
radix_4_burst_io
radix_2_burst_io
radix_2_lite_burst_io

phase_factor_width unsigned 16 8-34

ordering_opt unsigned bit_reversed_order bit_reversed_order
natural_order

ovflo bool true false
true

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=236

Table 28: FFT Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
scaling_opt unsigned scaled scaled

unscaled
block_floating_point

rounding_opt unsigned truncation truncation
convergent_rounding

mem_data unsigned block_ram block_ram
distributed_ram

mem_phase_factors unsigned block_ram block_ram
distributed_ram

mem_reorder unsigned block_ram block_ram
distributed_ram

stages_block_ram unsigned (max_nfft < 10) ? 0 :
(max_nfft - 9)

0-11

mem_hybrid bool false false
true

complex_mult_type unsigned use_mults_resources use_luts
use_mults_resources
use_mults_performance

butterfly_type unsigned use_luts use_luts
use_xtremedsp_slices

FFT Runtime Configuration and Status

The FFT supports runtime configuration and runtime status monitoring through the configuration
and status ports. These ports are defined as arguments to the FFT function, shown here as
variables fft_status1 and fft_config1:

hls::fft<param1> (xn1, xk1, &fft_status1, &fft_config1);

The runtime configuration and status can be accessed using the predefined structs from the FFT
C library:

• hls::ip_fft::config_t<param1>

• hls::ip_fft::status_t<param1>

Note: In both cases, the struct requires the name of the static parameterization struct, shown in these
examples as param1. Refer to the previous section for details on defining the static parameterization
struct.

The runtime configuration struct allows the following actions to be performed in the C code:

• Set the FFT length, if runtime configuration is enabled

• Set the FFT direction as forward or inverse

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=237

• Set the scaling schedule

The FFT length can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
// Set FFT length to 512 => log2(512) =>9
fft_config1-> setNfft(9);

IMPORTANT! The length specified during runtime cannot exceed the size defined by max_nfft  in the
static configuration.

The FFT direction can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
// Forward FFT
fft_config1->setDir(1);
// Inverse FFT
fft_config1->setDir(0);

The FFT scaling schedule can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
fft_config1->setSch(0x2AB);

The output status port can be accessed using the pre-defined struct to determine:

• If any overflow occurred during the FFT

• The value of the block exponent

The FFT overflow mode can be checked as follows:

typedef hls::ip_fft::status_t<param1> status_t;
status_t fft_status1;
// Check the overflow flag
bool *ovflo = fft_status1->getOvflo();

IMPORTANT! After each transaction completes, check the overflow status to confirm the correct
operation of the FFT.

And the block exponent value can be obtained using:

typedef hls::ip_fft::status_t<param1> status_t;
status_t fft_status1;
// Obtain the block exponent
unsigned int *blk_exp = fft_status1-> getBlkExp();

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=238

Using the FFT Function

The FFT function is defined in the HLS namespace and can be called as follows:

hls::fft<STATIC_PARAM> (
INPUT_DATA_ARRAY,
OUTPUT_DATA_ARRAY,
OUTPUT_STATUS,
INPUT_RUN_TIME_CONFIGURATION);

The STATIC_PARAM is the static parameterization struct that defines the static parameters for
the FFT.

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, the ports on the FFT RTL block will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FFT function in a region
using dataflow optimization (set_directive_dataflow), because this ensures the arrays are
implemented as streaming arrays. An alternative is to specify both arrays as streaming using the
set_directive_stream command.

IMPORTANT! The FFT cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FFT then use dataflow optimization on all
loops and functions in the region.

The data types for the arrays can be float or ap_fixed.

typedef float data_t;
complex<data_t> xn[FFT_LENGTH];
complex<data_t> xk[FFT_LENGTH];

To use fixed-point data types, the Vivado HLS arbitrary precision type ap_fixed should be used.

#include "ap_fixed.h"
typedef ap_fixed<FFT_INPUT_WIDTH,1> data_in_t;
typedef ap_fixed<FFT_OUTPUT_WIDTH,FFT_OUTPUT_WIDTH-FFT_INPUT_WIDTH+1>
data_out_t;
#include <complex>
typedef hls::x_complex<data_in_t> cmpxData;
typedef hls::x_complex<data_out_t> cmpxDataOut;

In both cases, the FFT should be parameterized with the same correct data sizes. In the case of
floating point data, the data widths will always be 32-bit and any other specified size will be
considered invalid.

IMPORTANT! The input and output width of the FFT can be configured to any arbitrary value within the
supported range. The variables which connect to the input and output parameters must be defined in
increments of 8-bit. For example, if the output width is configured as 33-bit, the output variable must be
defined as a 40-bit variable.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=239

The multichannel functionality of the FFT can be used by using two-dimensional arrays for the
input and output data. In this case, the array data should be configured with the first dimension
representing each channel and the second dimension representing the FFT data.

typedef float data_t;
static complex<data_t> xn[CHANNEL][FFT_LENGTH];
static complex<data_t> xk[CHANELL][FFT_LENGTH];

The FFT core consumes and produces data as interleaved channels (for example, ch0-data0, ch1-
data0, ch2-data0, etc, ch0-data1, ch1-data1, ch2-data2, etc.). Therefore, to stream the input or
output arrays of the FFT using the same sequential order that the data was read or written, you
must fill or empty the two-dimensional arrays for multiple channels by iterating through the
channel index first, as shown in the following example:

cmpxData in_fft[FFT_CHANNELS][FFT_LENGTH];
cmpxData out_fft[FFT_CHANNELS][FFT_LENGTH];

// Write to FFT Input Array
for (unsigned i = 0; i < FFT_LENGTH; i++) {
 for (unsigned j = 0; j < FFT_CHANNELS; ++j) {
 in_fft[j][i] = in.read().data;
 }
}

// Read from FFT Output Array
for (unsigned i = 0; i < FFT_LENGTH; i++) {
 for (unsigned j = 0; j < FFT_CHANNELS; ++j) {
 out.data = out_fft[j][i];

 }
}

Design examples using the FFT C library are provided in the Vivado HLS examples and can be
accessed using menu option Help → Welcome → Open Example Project → Design Examples → 
FFT.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=240

SSR FFT IP Library
Overview

Vivado HLS offers a fully synthesizable Super Sample data Rate (SSR) FFT with a systolic
architecture to process multiple input samples for every clock cycle. The number of samples
processed in parallel per cycle is denoted by the SSR factor. This FFT is implemented as a C++
templated function whose structure can be parametrized through template parameter which is a
C++ struct of type ssr_fft_default_params. A new structure can be defined by extending
default structure and over writing members constants as follows:

struct ssr_fft_fix_params:ssr_fft_default_params
{
 static const int N=1024;
 static const int R=4;
 static const scaling_mode_enum scaling_mode=SSR_FFT_GROW_TO_MAX_WIDTH;
 static const fft_output_order_enum output_data_order=SSR_FFT_NATURAL;
 static const int twiddle_table_word_length=18;
 static const int twiddle_table_intger_part_length=2;
};

The structure above defines:

• N: Size or length of transform

• R: The number of samples to be processed in parallel

• scaling_mode: The scaling mode as enumeration type

• output_data_order: Output data order which decided if data will be in natural order or digit
reversed transposed order

• twiddle_table_word_length: Defines total number of bits to be used for storing twiddle table
factors

• twiddle_table_intger_part_length: The number of integer bit used for storing integer part of
twiddles

The user defined C++ struct can be used as a template parameter when calling FFT as shown
below:

hls::ssr_fft::fft<ssr_fft_fix_params>(...);

Performance

The FFT throughput (initiation interval) can be calculated as L/R where R is the SSR value and L
is the number of samples to be transformed. The possible values for R (SSR values) are: 2,4,8,16.
These values allow for a Fmax range of 300-550 MHz when targeting the slowest of UltraScale+
speedgrade devices.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=241

Data Types

The FFT is based on fixed point data types (std::complex<ap_fixed<>>) which are used for
synthesis and implementation. It is otherwise possible to use floating points for simulation.

For the best results, limiting the data bit width to 27 bits (integer + fraction) as it maps directly
onto a single DSP block. Larger inputs can be used but may lead to slower Fmax and worse
utilization. Finally, note that the complex exponential/twiddle factor storage is on 18 bit (16F+2I
Bits). The selection of 18-bit is made keeping in view the multipliers available on DSP blocks on
Xilinx FPGAs which have 18x27 bit multipliers.

Managing the Data Bit Growth During the FFT Stages:

The FFT supports three different modes to manage bit growth between FFT stages. These three
modes can be used to allow bit growth in every stage, or use scaling in every stage without any
bit growth, or allow bit growth until 27 bits and then start using scaling. The detailed description
as follows:

• SSR_FFT_GROW_TO_MAX_WIDTH: When the scaling_mode constant in the parameter
structure is set to SSR_FFT_GROW_TO_MAX_WIDTH, it specifies growth from stage to stage,
starting from the first stage to a specified max bit width. The output bit width grows until 27
bits and then saturates. The output bit width grows by log2(R) bits in every stage, and then
maxes outs at 27 bits to keep the butterfly operation mapping to DSPs. This option is useful
when the initial input bit width is less than 27 bits.

• SSR_FFT_SCALE: When the scaling_mode constant in the parameter structure is set to
SSR_FFT_SCALE, it enables scaling on outputs in every stage. Output is scaled in every stage
and loses precision. An FFT with size L and Radix=SSR=R has logR(L) stages. This option is
useful when the input bit width is already close to 27 bits and it is required that output does
not grow beyond 27 bits to map multiplications to DSPs.

• SSR_FFT_NO_SCALE: When the scaling_mode constant in the parameter structure is set
to SSR_FFT_NO_SCALE, the bit growth is allowed in every stage and the output grows
unbounded by log2(R) in every stage. This setting can be useful when high precision is
required. However, if the output bit width grows beyond 27 bits, the multiplication might not
map to DSPs only, but also start using FPGA fabric logic in combination; this might worsen the
clock speed and resource utilization.

Recommended Flow for Using SSR FFT Fixed Point Configurations

SSR FFT supports multiple scaling modes and provides options to define input bit-widths and bit-
width required to store exponential values (sin/cos in look-up tables). The signal to noise ratio
that defines the quality of output signal depends on the choice of these different parameters and
also on the quantization scheme used for converting real valued continuous signal or float point
signal to fixed point. The range and the resolution of the signal, essentially the integer bits and
the fraction bits, should be selected carefully to have good signal-to-noise ratio (SNR) at the
output of the FFT. Following is the recommended flow for working with SSR FFT HLS IP.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=242

Start with Float Model of SSR FFT

Currently, SSR FFT can be used with ap_fixed<>, float, and double types. The following table list
the support for synthesis and simulation.

Table 29: SSR FFT Type Support

Type Supported for Synthesis Supported for Simulation
std::complex < ap_fixed <> > YES YES
std::complex<float> NO YES
std::complex<double> NO YES

The recommended starting point is to start with float/double inner type in std::complex<>
and verify the SNR against a reference model, such as the Matlab/Python/Octave/Simulink –
whichever modeling language or tools are used by generating golden test vectors. The
synthesizable version of the SSR FFT currently only supports ap_fixed<> inner type, so the next
step is to start experimenting with a fixed point model.

Fixed Point Modeling and Implementation

Starting with Fixed Point Model

Once working with fixed point model, the recommended scaling mode to start is
SSR_FFT_NO_SCALING. The input bit-widths should be selected as follows.

Create an initial fixed point model with type ap_fixed<WL, IL>. The overall input type is
std::complex <ap_fixed<WL, IL>, essentially storing real and imaginary parts of the
input.

The parts are:

• IL: Integer bits, selected based on the input range

• WL: Word Length= IL + FL, where FL is the Fraction Bit Width, selected based on input
resolution

In this case, SSR FFT internally does not use any scaling because of scaling mode selection;
therefore, no potential scaling errors will be seen at the output. With scaling mode set to no
scaling, you can experiment with other fixed point parameters such as integer bits and fraction
bits used to represent the input samples. The simplistic approach would be to select bits required
to represent the input based on the input range and resolution but depending on the other input
characteristic user can optimize these bit widths.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=243

Selecting Bit Widths for Inputs

The selection of input bit width depends on the input data characteristics and the required
resolution, and is a data-dependent choice essentially depending on range and resolution of the
test data. For simulation purposes, you can select an arbitrarily large number of bits for
representing integer and fraction bits. For implementation, you must make an optimal choice
keeping in mind the required SNR.

The recommended strategy is to do the following:

• Keep the scaling mode fixed to SSR_FFT_NO_SCALING.

• Modify the input bits for integer and fraction representation by observing the signal to noise
ratio at the output of SSR FFT.

• Reduce the bit widths such that the output SNR requirement is met by the minimum required
bits.

Once the SNR requirements are met, you can proceed to other fixed point optimizations, such as
bits required to store complex exponential tables and SSR FFT output scaling options.

Twiddle Factor or Sine/Cosine Lookup Table Quantization

You can change the number of bits used to quantize the sin/cos table (twiddle factors/complex
exponentials). The recommended setting is total 18 bits and 2 bits for the fraction. This setting
ensures that during multiplication, the twiddle/sin/cos input can map to the 18-bit input of the
DSP block in Xilinx® FPGAs. The model can synthesize and work for other large bit widths, but
performance might be worse because of multiplication operations not mapping to a single DSP
block and being implemented using multiple DSP blocks and/or FPGA fabric.

The twiddle factor width reduction can be useful when the initial setting for twiddle factor
storage is larger than 18 bits. By default, it is set to use 18 bits with 2 bits reserved for the signed
integer part. The 2 bits are essentially needed to accurately represent a -1 value in the table.

Choosing the Best Scaling Mode

After the choice for input bit width and twiddle factors is made with no scaling, which gives
acceptable SNR or root mean square (RMS) error at the output of fixed point SSR FFT, you can
start to experiment with the choice of scaling modes. Three different scaling modes are available
with SSR FFT. The recommended strategy is to start with SSR_FFT_NO_SCALING. If there is an
acceptable SNR/RMS error at the output, switch to SSR_FFT_GROW_TO_MAX_WIDTH. If there is
still an acceptable SNR/RMS error, switch to SSR_FFT_SCALE.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=244

SSR_FFT_NO_SCALING

This is the recommended mode to start with. It performs no scaling but the output bit width
grows in every stage by log2(R=SSR). For example, if the size of FFT is N=64 and SSR=R=4 is
selected, then SSR FFT has log4 (64) = 3 stages. If the input bit width is W, the output bit width is
W+3*2=W+6. Therefore, the output would have grown by logR(N)*log2(R) bits.

SSR_FFT_NO_SCALING preserves the accuracy of the computation, but at maximum hardware
cost. The SSR FFT computation is done in stages with one stage feeding the next stage, so
essentially it is chain of stages.

One of the downfalls of uncontrolled bit growth is that at some point, at a certain stage when
output widths of one stage increase beyond a limit where multiplication starts not to map to DSP
blocks on the FPGA, the design performance in terms of speed may fall considerably. For
example, for a given design with logR(N) * log2(R) + Input Bit Width(IL+FL) > max(DSP
Block Multiplier Inputs), you might consider using one of the other two available scaling
schemes. For Xilinx DSP48 blocks with 18x27 multipliers for FPGA devices with DSP48 blocks,
the condition will be logR(N) * log2(R) + Input Bit Width > 27.

SSR_FFT_GROW_TO_MAX_WIDTH

In this mode, a hybrid approach is used. Initially the bit growth is allowed if there is any room for
growth. If in the starting FFT stages, the output bit-widths are smaller than what can be mapped
to DSP blocks, it allows the bit growth. When the bit width grows beyond what can be mapped
to DSP blocks, it will start scaling the output.

SSR_FFT_SCALE

When you know that for a given FFT size N and SSR factor, the output will grow beyond a limit
which DSP multiplier blocks cannot handle on a given FPGA device, you have the option to set
the scaling on for every stage by selecting the SSR_FFT_SCALE option. This option scales the
output in every stage by right shifting the output by log2 (SSR=R) in every stage.

The recommended flow only provides a guideline for creating a fixed point model and discusses
options available for it in SSR FFT. Depending on the design SNR/RMS requirements the user is
required to carefully select all these parameters keeping in view different performance and
SNR/RMS requirements for given application.

SSR FFT IP Library Usage

The SSR FFT can be used in a C++ design using the library hls_ssr_lib.h library. This
section gives usage examples and explains some other interface level details for use in C++ based
HLS design.

To use the SSR FFT IP library:

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=245

1. Include the “hls_ssr_lib.h” header:

#include <hls_ssr_lib.h>

2. Define a C++ struct that extends ssr_fft_default_params:

struct ssr_fft_params:ssr_fft_default_params
{
 static const int N-SSR_FFT_L;
 static const int R=SSR_FFT_R;
 static const scaling_mode_enum
 scaling_mode=SSR_FFT_GROW_TO_MAX_WIDTH;

 static const fft_output_order_enum
 output_data_order=SSR_FFT_NATURAL;
 static const int twiddle_table_word_length=18;
 static const int twiddle_table_intger_part_length=2;

};

3. Call SSR FFT as follows:

hls::ssr_fft::fft<ssr_fft_params>(inD,outD);

where inD and outD are 2-dimensional complex arrays of ap_fixed, float or double type,
synthesis and simulation use is already explained in the previous table. The I/O arrays can be
declared as follows:

• Fixed Point Type: First define input type, then using type traits calculate output type
based on ssr_fft_params struct (output type calculation takes in consideration scaling
mode based bit-growth and input bit-widths)

 typedef std::complex< ap_fixed<16,8> > I_TYPE;
 typedef
hls::ssr_fft::ssr_fft_output_type<ssr_fft_params,I_TYPE>::t_ssr_fft_out
 O_TYPE;
 I_TYPE inD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];
 O_TYPE outD [R][L/R];

Here SSR_FFT_R: define SSR factor and SSR_FFT_L defines the size of FFT transform.

• Float/Double Type: First define double/float input type, then using type traits calculate
output type based on ssr_fft_params struct. For float types the output type
calculation will return the same type as input.

 typedef std::complex< float/double > I_TYPE;
 typedef
hls::ssr_fft::ssr_fft_output_type<ssr_fft_params,I_TYPE>::t_ssr_fft_out
 O_TYPE;
 I_TYPE inD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];
 O_TYPE outD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];

SSR FFT input Array Reading and Writing Considerations

After synthesis, SSR FFT HLS IP maps to a streaming block with FIFO interface at both the input
and output, as shown in the following figure:

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=246

Figure 85: SSR FFT HLS IP After Synthesis

Super Sample
Rate FFT

S0

S1

S2

S3

Sn

S0

S1

S2

S3

Sn

X22903-051619

During synthesis, HLS pragmas placed inside IP description will map the 2-dimensions inside the
I/O arrays to time and a wide-stream. It uses the HLS STREAM pragma for the second
dimension. For the first dimension, it uses pragmas for data packing, partitioning and reshaping
to create a single wide stream.

If input and output arrays are declared as the following:

 I_TYPE inD[R][L/R];
 O_TYPE outD[R][L/R];

The dimensions with size L/R will be mapped to time and dimension, with size R mapped to one
stream which is R-wide. This mapping places some constraints on how these arrays can be read
and written by consumers and producers while writing C++ design using SSR FFT. These
constraints stem from the physical mapping of array dimensions to time and parallel wide-
accesses. The read and write on SSR FFT I/O arrays can be performed as follows:

1. The input should be written in a nested loop as follows, with loop accessing the first
dimension to be the inner loop. The outer loop should access the time/2nd dimension:

 for(int t=0;t<L/R;t++)
 {
 for (int r=0; r <R : r++)
 {
 inD[r][t] = …… ;
 }
 }

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=247

2. The output should be read in a similar fashion as follows:

 for(int t=0;t<L/R;t++)
 {
 for (int r=0; r <R : r++)
 {
 ….. = outD[r][t] ;
 }
 }

3. If the SSR FFT IP is facing another HLS IP in the input chain or output chain, the inner loop
doing reading and writing should be unrolled.

SSR FFT Usage in Dataflow Region, Streaming Non-Streaming Connections

SSR FFT internally heavily relies on HLS dataflow optimization. The potential use case for SSR
FFT could interconnect with FFT input or output in two ways:

• Streaming Connection

• Non-Streaming Connections

Streaming Connection

In the case of streaming connection at the input, the scenario should look like as shown in the
following code snippet:

#pragma HLS DATAFLOW

 in_dummy_proc (..., fft_in);
 hls:ssr_fft::fft<ssr_fft_params>(fft_in, fft_out)
 out_dummy_proc(fft_out,)
 ...
 ...
 ...

The constraint for input producer is that it should produce a wide stream. The constraint for
output consumers is that it should consume a wide stream. These constraints are also described
in previous sections.

Non-Streaming Connection

The current version of the SSR FFT does not support non-streaming connection at the output
and input. However, it can be enabled by placing adapters at the input/output as required, which
can convert stream to different interfaces. For example, the following code snippet is an input
adapter that maps streaming interface to memory based interface:

template < type name TYPE, int R, int L >
void fft_input_adapter (TYPE inData[R][L/R], TYPE outDataStream[R][L/R])
{
#pragma HLS INLINE off
#pragma HLS DATA_PACK variable=inData
#pragma HLS ARRAY_RESHAPE variable=inData complete dim=1
 for(int t=0; t<L/R; t++)

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=248

 {
#pragma HLS PIPELINE II=1
 for (int r = 0; r< R; ++r)
 {
 outDataStream [r][t] = inData[r][t];
 }
 }
}

.

.

. // Usage of Adapter at input side:

#pragma HLS DATAFLOW
 in_proc_memory_based(...,in_data_mem_based)
 fft_input_adapter<TYPE_NAME,R,L>(in_data_mem_based,
fft_in_stream_based);
 hls:ssr_fft::fft<ssr_fft_params>(fft_in_stream_based,
fft_out_strema_based)
 out_dummy_proc(fft_out_stream_based,)
...
...
...

Note: The adapter for the output side can be constructed using a similar method.

FIR Filter IP Library
The Xilinx FIR IP block can be called within a C++ design using the library hls_fir.h. This
section explains how the FIR can be configured in your C++ code.

RECOMMENDED: Xilinx highly recommends that you review the FIR Compiler LogiCORE IP Product
Guide (PG149) for information on how to implement and use the features of the IP.

To use the FIR in your C++ code:

1. Include the hls_fir.h library in the code.

2. Set the static parameters using the pre-defined struct hls::ip_fir::params_t.

3. Call the FIR function.

4. Optionally, define a run time input configuration to modify some parameters dynamically.

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

First, include the FIR library in the source code. This header file resides in the include directory in
the Vivado HLS installation area. This directory is automatically searched when Vivado HLS
executes. There is no need to specify the path to this directory if compiling inside Vivado HLS.

#include "hls_fir.h"

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 249Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=249

Define the static parameters of the FIR. This includes such static attributes such as the input
width, the coefficients, the filter rate (single, decimation, hilbert). The FIR library includes a
parameterization struct hls::ip_fir::params_t which can be used to initialize all static
parameters with default values.

In this example, the coefficients are defined as residing in array coeff_vec and the default
values for the number of coefficients, the input width and the quantization mode are over-ridden
using a user a user-defined struct myconfig based on the pre-defined struct.

struct myconfig : hls::ip_fir::params_t {
static const double coeff_vec[sg_fir_srrc_coeffs_len];
 static const unsigned num_coeffs = sg_fir_srrc_coeffs_len;
 static const unsigned input_width = INPUT_WIDTH;
 static const unsigned quantization = hls::ip_fir::quantize_only;
};

Create an instance of the FIR function using the HLS namespace with the defined static
parameters (myconfig in this example) and then call the function with the run method to
execute the function. The function arguments are, in order, input data and output data.

static hls::FIR<param1> fir1;
fir1.run(fir_in, fir_out);

Optionally, a run time input configuration can be used. In some modes of the FIR, the data on
this input determines how the coefficients are used during interleaved channels or when
coefficient reloading is required. This configuration can be dynamic and is therefore defined as a
variable. For a complete description of which modes require this input configuration, refer to the
FIR Compiler LogiCORE IP Product Guide (PG149).

When the run time input configuration is used, the FIR function is called with three arguments:
input data, output data and input configuration.

// Define the configuration type
typedef ap_uint<8> config_t;
// Define the configuration variable
config_t fir_config = 8;
// Use the configuration in the FFT
static hls::FIR<param1> fir1;
fir1.run(fir_in, fir_out, &fir_config);

Design examples using the FIR C library are provided in the Vivado HLS examples and can be
accessed using menu option Help → Welcome → Open Example Project → Design Examples → 
FIR.

FIR Static Parameters

The static parameters of the FIR define how the FIR IP is parameterized and specifies non-
dynamic items such as the input and output widths, the number of fractional bits, the coefficient
values, the interpolation and decimation rates. Most of these configurations have default values:
there are no default values for the coefficients.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 250Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=250

The hls_fir.h header file defines a struct hls::ip_fir::params_t that can be used to
set the default values for most of the static parameters.

IMPORTANT! There are no defaults defined for the coefficients. Therefore, Xilinx does not recommend
using the pre-defined struct to directly initialize the FIR. A new user defined struct which specifies the
coefficients should always be used to perform the static parameterization.

In this example, a new user struct my_config is defined and with a new value for the
coefficients. The coefficients are specified as residing in array coeff_vec. All other parameters
to the FIR use the default values.

struct myconfig : hls::ip_fir::params_t {
 static const double coeff_vec[sg_fir_srrc_coeffs_len];
};
static hls::FIR<myconfig> fir1;
fir1.run(fir_in, fir_out);

FIR Static Parameters describes the parameters used for the parametrization struct
hls::ip_fir::params_t. FIR Struct Parameter Values provides the default values for the
parameters and a list of possible values.

RECOMMENDED: Xilinx highly recommends that you refer to the FIR Compiler LogiCORE IP Product
Guide (PG149) for details on the parameters and the implication for their settings.

FIR Struct Parameters

Table 30: FIR Struct Parameters

Parameter Description
input_width Data input port width

input_fractional_bits Number of fractional bits on the input port

output_width Data output port width

output_fractional_bits Number of fractional bits on the output port

coeff_width Bit-width of the coefficients

coeff_fractional_bits Number of fractional bits in the coefficients

num_coeffs Number of coefficients

coeff_sets Number of coefficient sets

input_length Number of samples in the input data

output_length Number of samples in the output data

num_channels Specify the number of channels of data to process

total_num_coeff Total number of coefficients

coeff_vec[total_num_coeff] The coefficient array

filter_type The type implementation used for the filter

rate_change Specifies integer or fractional rate changes

interp_rate The interpolation rate

decim_rate The decimation rate

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 251Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=251

Table 30: FIR Struct Parameters (cont'd)

Parameter Description
zero_pack_factor Number of zero coefficients used in interpolation

rate_specification Specify the rate as frequency or period

hardware_oversampling_rate Specify the rate of over-sampling

sample_period The hardware oversample period

sample_frequency The hardware oversample frequency

quantization The quantization method to be used

best_precision Enable or disable the best precision

coeff_structure The type of coefficient structure to be used

output_rounding_mode Type of rounding used on the output

filter_arch Selects a systolic or transposed architecture

optimization_goal Specify a speed or area goal for optimization

inter_column_pipe_length The pipeline length required between DSP columns

column_config Specifies the number of DSP48 column

config_method Specifies how the DSP48 columns are configured

coeff_padding Number of zero padding added to the front of the filter

When specifying parameter values that are not integer or boolean, the HLS FIR namespace
should be used.

For example the possible values for rate_change are shown in the following table to be
integer and fixed_fractional. The values used in the C program should be
rate_change = hls::ip_fir::integer and rate_change =
hls::ip_fir::fixed_fractional.

FIR Struct Parameter Values

The following table covers all features and functionality of the FIR IP. Features and functionality
not described in this table are not supported in the Vivado HLS implementation.

Table 31: FIR Struct Parameter Values

Parameter C Type Default Value Valid Values
input_width unsigned 16 No limitation

input_fractional_bits unsigned 0 Limited by size of
input_width

output_width unsigned 24 No limitation

output_fractional_bits unsigned 0 Limited by size of
output_width

coeff_width unsigned 16 No limitation

coeff_fractional_bits unsigned 0 Limited by size of
coeff_width

num_coeffs bool 21 Full

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=252

Table 31: FIR Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
coeff_sets unsigned 1 1-1024

input_length unsigned 21 No limitation

output_length unsigned 21 No limitation

num_channels unsigned 1 1-1024

total_num_coeff unsigned 21 num_coeffs * coeff_sets

coeff_vec[total_num_coeff] double array None Not applicable

filter_type unsigned single_rate single_rate, interpolation,
decimation, hilbert_filter,
interpolated

rate_change unsigned integer integer, fixed_fractional

interp_rate unsigned 1 1-1024

decim_rate unsigned 1 1-1024

zero_pack_factor unsigned 1 1-8

rate_specification unsigned period frequency, period

hardware_oversampling_rate unsigned 1 No Limitation

sample_period bool 1 No Limitation

sample_frequency unsigned 0.001 No Limitation

quantization unsigned integer_coefficients integer_coefficients,
quantize_only,
maximize_dynamic_range

best_precision unsigned false false
true

coeff_structure unsigned non_symmetric inferred, non_symmetric,
symmetric,
negative_symmetric,
half_band, hilbert

output_rounding_mode unsigned full_precision full_precision, truncate_lsbs,
non_symmetric_rounding_do
wn,
non_symmetric_rounding_up
,
symmetric_rounding_to_zero
,
symmetric_rounding_to_infin
ity,
convergent_rounding_to_eve
n,
convergent_rounding_to_odd

filter_arch unsigned systolic_multiply_accumulate systolic_multiply_accumulate,
transpose_multiply_accumul
ate

optimization_goal unsigned area area, speed

inter_column_pipe_length unsigned 4 1-16

column_config unsigned 1 Limited by number of
DSP48s used

config_method unsigned single single, by_channel

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=253

Table 31: FIR Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
coeff_padding bool false false

true

Using the FIR Function

The FIR function is defined in the HLS namespace and can be called as follows:

// Create an instance of the FIR
static hls::FIR<STATIC_PARAM> fir1;
// Execute the FIR instance fir1
fir1.run(INPUT_DATA_ARRAY, OUTPUT_DATA_ARRAY);

The STATIC_PARAM is the static parameterization struct that defines most static parameters for
the FIR.

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, these ports on the FIR IP will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FIR function in a region
using the dataflow optimization (set_directive_dataflow), because this ensures the arrays
are implemented as streaming arrays. An alternative is to specify both arrays as streaming using
the set_directive_stream command.

IMPORTANT! The FIR cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FIR then use dataflow optimization on all
loops and functions in the region.

The multichannel functionality of the FIR is supported through interleaving the data in a single
input and single output array.

• The size of the input array should be large enough to accommodate all samples: num_channels
* input_length.

• The output array size should be specified to contain all output samples: num_channels *
output_length.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=254

The following code example demonstrates, for two channels, how the data is interleaved. In this
example, the top-level function has two channels of input data (din_i, din_q) and two
channels of output data (dout_i, dout_q). Two functions, at the front-end (fe) and back-end
(be) are used to correctly order the data in the FIR input array and extract it from the FIR output
array.

void dummy_fe(din_t din_i[LENGTH], din_t din_q[LENGTH], din_t
out[FIR_LENGTH]) {
 for (unsigned i = 0; i < LENGTH; ++i) {
 out[2*i] = din_i[i];
 out[2*i + 1] = din_q[i];
 }
}
void dummy_be(dout_t in[FIR_LENGTH], dout_t dout_i[LENGTH], dout_t
dout_q[LENGTH]) {
 for(unsigned i = 0; i < LENGTH; ++i) {
 dout_i[i] = in[2*i];
 dout_q[i] = in[2*i+1];
 }
}
void fir_top(din_t din_i[LENGTH], din_t din_q[LENGTH],
 dout_t dout_i[LENGTH], dout_t dout_q[LENGTH]) {

 din_t fir_in[FIR_LENGTH];
 dout_t fir_out[FIR_LENGTH];
 static hls::FIR<myconfig> fir1;

 dummy_fe(din_i, din_q, fir_in);
 fir1.run(fir_in, fir_out);
 dummy_be(fir_out, dout_i, dout_q);
}

Optional FIR Runtime Configuration

In some modes of operation, the FIR requires an additional input to configure how the
coefficients are used. For a complete description of which modes require this input configuration,
refer to the FIR Compiler LogiCORE IP Product Guide (PG149).

This input configuration can be performed in the C code using a standard ap_int.h 8-bit data
type. In this example, the header file fir_top.h specifies the use of the FIR and ap_fixed
libraries, defines a number of the design parameter values and then defines some fixed-point
types based on these:

#include "ap_fixed.h"
#include "hls_fir.h"

const unsigned FIR_LENGTH = 21;
const unsigned INPUT_WIDTH = 16;
const unsigned INPUT_FRACTIONAL_BITS = 0;
const unsigned OUTPUT_WIDTH = 24;
const unsigned OUTPUT_FRACTIONAL_BITS = 0;
const unsigned COEFF_WIDTH = 16;
const unsigned COEFF_FRACTIONAL_BITS = 0;
const unsigned COEFF_NUM = 7;

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 255Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=255

const unsigned COEFF_SETS = 3;
const unsigned INPUT_LENGTH = FIR_LENGTH;
const unsigned OUTPUT_LENGTH = FIR_LENGTH;
const unsigned CHAN_NUM = 1;
typedef ap_fixed<INPUT_WIDTH, INPUT_WIDTH - INPUT_FRACTIONAL_BITS> s_data_t;
typedef ap_fixed<OUTPUT_WIDTH, OUTPUT_WIDTH - OUTPUT_FRACTIONAL_BITS>
m_data_t;
typedef ap_uint<8> config_t;

In the top-level code, the information in the header file is included, the static parameterization
struct is created using the same constant values used to specify the bit-widths, ensuring the C
code and FIR configuration match, and the coefficients are specified. At the top-level, an input
configuration, defined in the header file as 8-bit data, is passed into the FIR.

#include "fir_top.h"

struct param1 : hls::ip_fir::params_t {
 static const double coeff_vec[total_num_coeff];
 static const unsigned input_length = INPUT_LENGTH;
 static const unsigned output_length = OUTPUT_LENGTH;
 static const unsigned num_coeffs = COEFF_NUM;
 static const unsigned coeff_sets = COEFF_SETS;
};
const double param1::coeff_vec[total_num_coeff] =
 {6,0,-4,-3,5,6,-6,-13,7,44,64,44,7,-13,-6,6,5,-3,-4,0,6};

void dummy_fe(s_data_t in[INPUT_LENGTH], s_data_t out[INPUT_LENGTH],
 config_t* config_in, config_t* config_out)
{
 *config_out = *config_in;
 for(unsigned i = 0; i < INPUT_LENGTH; ++i)
 out[i] = in[i];
}

void dummy_be(m_data_t in[OUTPUT_LENGTH], m_data_t out[OUTPUT_LENGTH])
{
 for(unsigned i = 0; i < OUTPUT_LENGTH; ++i)
 out[i] = in[i];
}

// DUT
void fir_top(s_data_t in[INPUT_LENGTH],
 m_data_t out[OUTPUT_LENGTH],
 config_t* config)
{

 s_data_t fir_in[INPUT_LENGTH];
 m_data_t fir_out[OUTPUT_LENGTH];
 config_t fir_config;
 // Create struct for config
 static hls::FIR<param1> fir1;

 //==
// Dataflow process
 dummy_fe(in, fir_in, config, &fir_config);
 fir1.run(fir_in, fir_out, &fir_config);
 dummy_be(fir_out, out);
 //==
}

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=256

Design examples using the FIR C library are provided in the Vivado HLS examples and can be
accessed using menu option Help → Welcome → Open Example Project → Design Examples → 
FIR.

DDS IP Library
You can use the Xilinx Direct Digital Synthesizer (DDS) IP block within a C++ design using the
hls_dds.h library. This section explains how to configure DDS IP in your C++ code.

RECOMMENDED: Xilinx highly recommends that you review the LogiCORE IP DDS Compiler Product
Guide (PG141) for information on how to implement and use the features of the IP.

IMPORTANT! The C IP implementation of the DDS IP core supports the fixed mode for the
Phase_Increment and Phase_Offset parameters and supports the none mode for Phase_Offset, but it does
not support programmable and streaming modes for these parameters.

To use the DDS in the C++ code:

1. Include the hls_dds.h library in the code.

2. Set the default parameters using the pre-defined struct hls::ip_dds::params_t.

3. Call the DDS function.

First, include the DDS library in the source code. This header file resides in the include directory
in the Vivado HLS installation area, which is automatically searched when Vivado HLS executes.

#include "hls_dds.h"

Define the static parameters of the DDS. For example, define the phase width, clock rate, and
phase and increment offsets. The DDS C library includes a parameterization struct
hls::ip_dds::params_t, which is used to initialize all static parameters with default values.
By redefining any of the values in this struct, you can customize the implementation.

The following example shows how to override the default values for the phase width, clock rate,
phase offset, and the number of channels using a user-defined struct param1, which is based on
the existing predefined struct hls::ip_dds::params_t:

struct param1 : hls::ip_dds::params_t {
 static const unsigned Phase_Width = PHASEWIDTH;
 static const double DDS_Clock_Rate = 25.0;
 static const double PINC[16];
 static const double POFF[16];
};

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 257Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=257

Create an instance of the DDS function using the HLS namespace with the defined static
parameters (for example, param1). Then, call the function with the run method to execute the
function. Following are the data and phase function arguments shown in order:

static hls::DDS<config1> dds1;
dds1.run(data_channel, phase_channel);

To access design examples that use the DDS C library, select Help → Welcome → Open Example
Project → Design Examples → DDS.

DDS Static Parameters

The static parameters of the DDS define how to configure the DDS, such as the clock rate, phase
interval, and modes. The hls_dds.h header file defines an hls::ip_dds::params_t struct,
which sets the default values for the static parameters. To use the default values, you can use the
parameterization struct directly with the DDS function.

static hls::DDS< hls::ip_dds::params_t > dds1;
dds1.run(data_channel, phase_channel);

The following table describes the parameters for the hls::ip_dds::params_t
parameterization struct.

RECOMMENDED: Xilinx highly recommends that you review the DDS Compiler LogiCORE IP Product
Guide (PG141) for details on the parameters and values.

Table 32: DDS Struct Parameters

Parameter Description
DDS_Clock_Rate Specifies the clock rate for the DDS output.

Channels Specifies the number of channels. The DDS and phase
generator can support up to 16 channels. The channels are
time-multiplexed, which reduces the effective clock
frequency per channel.

Mode_of_Operation Specifies one of the following operation modes:
Standard mode for use when the accumulated phase can be
truncated before it is used to access the SIN/COS LUT.
Rasterized mode for use when the desired frequencies and
system clock are related by a rational fraction.

Modulus Describes the relationship between the system clock
frequency and the desired frequencies.
Use this parameter in rasterized mode only.

Spurious_Free_Dynamic_Range Specifies the targeted purity of the tone produced by the
DDS.

Frequency_Resolution Specifies the minimum frequency resolution in Hz and
determines the Phase Width used by the phase
accumulator, including associated phase increment (PINC)
and phase offset (POFF) values.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 258Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=258

Table 32: DDS Struct Parameters (cont'd)

Parameter Description
Noise_Shaping Controls whether to use phase truncation, dithering, or

Taylor series correction.

Phase_Width Sets the width of the following:
PHASE_OUT field within m_axis_phase_tdata
Phase field within s_axis_phase_tdata when the DDS is
configured to be a SIN/COS LUT only
Phase accumulator
Associated phase increment and offset registers
Phase field in s_axis_config_tdata
For rasterized mode, the phase width is fixed as the number
of bits required to describe the valid input range [0,
Modulus-1], that is, log2 (Modulus-1) rounded up.

Output_Width Sets the width of SINE and COSINE fields within
m_axis_data_tdata. The SFDR provided by this parameter
depends on the selected Noise Shaping option.

Phase_Increment Selects the phase increment value.

Phase_Offset Selects the phase offset value.

Output_Selection Sets the output selection to SINE, COSINE, or both in the
m_axis_data_tdata bus.

Negative_Sine Negates the SINE field at run time.

Negative_Cosine Negates the COSINE field at run time.

Amplitude_Mode Sets the amplitude to full range or unit circle.

Memory_Type Controls the implementation of the SIN/COS LUT.

Optimization_Goal Controls whether the implementation decisions target
highest speed or lowest resource.

DSP48_Use Controls the implementation of the phase accumulator and
addition stages for phase offset, dither noise addition, or
both.

Latency_Configuration Sets the latency of the core to the optimum value based
upon the Optimization Goal.

Latency Specifies the manual latency value.

Output_Form Sets the output form to two’s complement or to sign and
magnitude. In general, the output of SINE and COSINE is in
two’s complement form. However, when quadrant
symmetry is used, the output form can be changed to sign
and magnitude.

PINC[XIP_DDS_CHANNELS_MAX] Sets the values for the phase increment for each output
channel.

POFF[XIP_DDS_CHANNELS_MAX] Sets the values for the phase offset for each output channel.

DDS Struct Parameter Values

The following table shows the possible values for the hls::ip_dds::params_t
parameterization struct parameters.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=259

Table 33: DDS Struct Parameter Values

Parameter C Type Default Value Valid Values
DDS_Clock_Rate double 20.0 Any double value

Channels unsigned 1 1 to 16

Mode_of_Operation unsigned XIP_DDS_MOO_CONVENTIO
NAL

XIP_DDS_MOO_CONVENTIO
NAL truncates the
accumulated phase.
XIP_DDS_MOO_RASTERIZED
selects rasterized mode.

Modulus unsigned 200 129 to 256

Spurious_Free_Dynamic_Ran
ge

double 20.0 18.0 to 150.0

Frequency_Resolution double 10.0 0.000000001 to 125000000

Noise_Shaping unsigned XIP_DDS_NS_NONE XIP_DDS_NS_NONE produces
phase truncation DDS.
XIP_DDS_NS_DITHER uses
phase dither to improve
SFDR at the expense of
increased noise floor.
XIP_DDS_NS_TAYLOR
interpolates sine/cosine
values using the otherwise
discarded bits from phase
truncation
XIP_DDS_NS_AUTO
automatically determines
noise-shaping.

Phase_Width unsigned 16 Must be an integer multiple
of 8

Output_Width unsigned 16 Must be an integer multiple
of 8

Phase_Increment unsigned XIP_DDS_PINCPOFF_FIXED XIP_DDS_PINCPOFF_FIXED
fixes PINC at generation
time, and PINC cannot be
changed at run time.
This is the only value
supported.

Phase_Offset unsigned XIP_DDS_PINCPOFF_NONE XIP_DDS_PINCPOFF_NONE
does not generate phase
offset.
XIP_DDS_PINCPOFF_FIXED
fixes POFF at generation
time, and POFF cannot be
changed at run time.

Output_Selection unsigned XIP_DDS_OUT_SIN_AND_COS XIP_DDS_OUT_SIN_ONLY
produces sine output only.
XIP_DDS_OUT_COS_ONLY
produces cosine output only.
XIP_DDS_OUT_SIN_AND_COS
produces both sin and
cosine output.

Negative_Sine unsigned XIP_DDS_ABSENT XIP_DDS_ABSENT produces
standard sine wave.
XIP_DDS_PRESENT negates
sine wave.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=260

Table 33: DDS Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
Negative_Cosine bool XIP_DDS_ABSENT XIP_DDS_ABSENT produces

standard sine wave.
XIP_DDS_PRESENT negates
sine wave.

Amplitude_Mode unsigned XIP_DDS_FULL_RANGE XIP_DDS_FULL_RANGE
normalizes amplitude to the
output width with the binary
point in the first place. For
example, an 8-bit output has
a binary amplitude of
100000000 - 10 giving values
between 01111110 and
11111110, which
corresponds to just less than
1 and just more than -1
respectively.
XIP_DDS_UNIT_CIRCLE
normalizes amplitude to half
full range, that is, values
range from 01000 .. (+0.5). to
110000 .. (-0.5).

Memory_Type unsigned XIP_DDS_MEM_AUTO XIP_DDS_MEM_AUTO selects
distributed ROM for small
cases where the table can be
contained in a single layer of
memory and selects block
ROM for larger cases.
XIP_DDS_MEM_BLOCK
always uses block RAM.
XIP_DDS_MEM_DIST always
uses distributed RAM.

Optimization_Goal unsigned XIP_DDS_OPTGOAL_AUTO XIP_DDS_OPTGOAL_AUTO
automatically selects the
optimization goal.
XIP_DDS_OPTGOAL_AREA
optimizes for area.
XIP_DDS_OPTGOAL_SPEED
optimizes for performance.

DSP48_Use unsigned XIP_DDS_DSP_MIN XIP_DDS_DSP_MIN
implements the phase
accumulator and the stages
for phase offset, dither noise
addition, or both in FPGA
logic.
XIP_DDS_DSP_MAX
implements the phase
accumulator and the phase
offset, dither noise addition,
or both using DSP slices. In
the case of single channel,
the DSP slice can also
provide the register to store
programmable phase
increment, phase offset, or
both and thereby, save
further fabric resources.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=261

Table 33: DDS Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
Latency_Configuration unsigned XIP_DDS_LATENCY_AUTO XIP_DDS_LATENCY_AUTO

automatically determines he
latency.
XIP_DDS_LATENCY_MANUAL
manually specifies the
latency using the Latency
option.

Latency unsigned 5 Any value

Output_Form unsigned XIP_DDS_OUTPUT_TWOS XIP_DDS_OUTPUT_TWOS
outputs two's complement.
XIP_DDS_OUTPUT_SIGN_MA
G outputs signed magnitude.

PINC[XIP_DDS_CHANNELS_M
AX]

unsigned array {0} Any value for the phase
increment for each channel

POFF[XIP_DDS_CHANNELS_M
AX]

unsigned array {0} Any value for the phase
offset for each channel

SRL IP Library
C code is written to satisfy several different requirements: reuse, readability, and performance.
Until now, it is unlikely that the C code was written to result in the most ideal hardware after
high-level synthesis.

Like the requirements for reuse, readability, and performance, certain coding techniques or pre-
defined constructs can ensure that the synthesis output results in more optimal hardware or to
better model hardware in C for easier validation of the algorithm.

Mapping Directly into SRL Resources

Many C algorithms sequentially shift data through arrays. They add a new value to the start of
the array, shift the existing data through array, and drop the oldest data value. This operation is
implemented in hardware as a shift register.

This most common way to implement a shift register from C into hardware is to completely
partition the array into individual elements, and allow the data dependencies between the
elements in the RTL to imply a shift register.

Logic synthesis typically implements the RTL shift register into a Xilinx SRL resource, which
efficiently implements shift registers. The issue is that sometimes logic synthesis does not
implement the RTL shift register using an SRL component:

• When data is accessed in the middle of the shift register, logic synthesis cannot directly infer
an SRL.

• Sometimes, even when the SRL is ideal, logic synthesis may implement the shift-resister in
flip-flops, due to other factors. (Logic synthesis is also a complex process).

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=262

Vivado HLS provides a C++ class (ap_shift_reg) to ensure that the shift register defined in the
C code is always implemented using an SRL resource. The ap_shift_reg class has two
methods to perform the various read and write accesses supported by an SRL component.

Read from the Shifter

The read method allows a specified location to be read from the shifter register.

The ap_shift_reg.h header file that defines the ap_shift_reg class is also included with
Vivado HLS as a standalone package. You have the right to use it in your own source code. The
package xilinx_hls_lib_<release_number>.tgz is located in the include directory in the Vivado HLS
installation area.

 // Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 2 of Sreg into var1
var1 = Sreg.read(2);

Read, Write, and Shift Data

A shift method allows a read, write, and shift operation to be performed.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 3 of Sreg into var1
// THEN shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3);

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=263

Read, Write, and Enable-Shift

The shift method also supports an enabled input, allowing the shift process to be controlled
and enabled by a variable.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1, In1;
bool En;

// Read location 3 of Sreg into var1
// THEN if En=1
// Shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3,En);

When using the ap_shift_reg class, Vivado HLS creates a unique RTL component for each
shifter. When logic synthesis is performed, this component is synthesized into an SRL resource.

HLS Linear Algebra Library
The HLS Linear Algebra Library provides a number of commonly used C++ linear algebra
functions. The functions in the HLS Linear Algebra Library all use two-dimensional arrays to
represent matrices and are listed in the following table.

Table 34: HLS Linear Algebra Library

Function Data Type Implementation Style
cholesky float

ap_fixed
x_complex<float>
x_complex<ap_fixed>

Synthesized

cholesky_inverse float
ap_fixed
x_complex<float>
x_complex<ap_fixed>

Synthesized

matrix_multiply float
ap_fixed
x_complex<float>
x_complex<ap_fixed>

Synthesized

qrf float
x_complex<float>

Synthesized

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=264

Table 34: HLS Linear Algebra Library (cont'd)

Function Data Type Implementation Style
qr_inverse float

x_complex<float>
Synthesized

svd float
x_complex<float>

Synthesized

The linear algebra functions all use two-dimensional arrays to represent matrices. All functions
support float (single precision) inputs, for real and complex data. A subset of the functions
support ap_fixed (fixed-point) inputs, for real and complex data. The precision and rounding
behavior of the ap_fixed types may be user defined, if desired.

Using the Linear Algebra Library
You can reference the HLS linear algebra functions using one of the following methods:

• Using scoped naming:

#include "hls_linear_algebra.h"

hls::cholesky(In_Array,Out_Array);

• Using the hls namespace:

#include "hls_linear_algebra.h"
using namespace hls; // Namespace specified after the header files

cholesky(In_Array,Out_Array);

Optimizing the Linear Algebra Functions
When using linear algebra functions, you must determine the level of optimization for the RTL
implementation. The level and type of optimization depend on how the C code is written and
how the Vivado HLS directives are applied to the C code.

To simplify the process of optimization, Vivado HLS provides the linear algebra library functions,
which include several C code architectures and embedded optimization directives. Using a C++
configuration class, you can select the C code to use and the optimization directives to apply.

Although the exact optimizations vary from function to function, the configuration class typically
allows you to specify the level of optimization for the RTL implementation as follows:

• Small: Lower resources and throughput

• Balanced: Compromise between resources and throughput

• Fast: Higher throughput at the expense of higher resources

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=265

Vivado HLS provides example projects that show how to use the configuration class for each
function in the linear algebra library. You can use these examples as templates to learn how to
configure Vivado HLS for each of the functions for a specific implementation target. Each
example provides a C++ source file with multiple C code architectures as different C++ functions.

Note: To identify the top-level C++ function, look for the TOP directive in the directives.tcl file or
the Vivado HLS GUI Directive tab.

You can open these examples from the Vivado HLS Welcome screen:

1. Click Open Example Project.

2. In the Examples dialog box, expand Design Examples → linear_algebra → 
implementation_targets.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by
selecting Help → Welcome.

To determine which optimization works best for your design, you can compare the performance
and utilization estimates for each solution using the Vivado HLS Compare Reports feature. To
compare the estimates, you must run synthesis for all of the project solutions by selecting
Solution → Run C Synthesis → All Solutions. Then, use the toolbar button.

Cholesky

Implementation Controls

The following table summarizes the key factors that influence resource utilization, function
throughput (initiation interval), and function latency. The values of Low, Medium, and High are
relative to the other key factors.

Table 35: Cholesky Key Factor Summary

Key Factor Value Resources Throughput Latency
Architecture
(ARCH)

0 Low Low High

1 Medium Medium Medium

2 High High Low

Inner loop pipelining
(INNER_II)

1 High High Low

>1 Low Low High

Inner loop unrolling
(UNROLL_FACTOR)

1 Low Low High

>1 High High Low

Key Factors

• Architecture

○ 0: Uses the lowest DSP utilization and lowest throughput.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=266

○ 1: Uses higher DSP utilization but minimized memory utilization with increased throughput.
This value does not support inner loop unrolling to further increase throughput.

○ 2: Uses highest DSP and memory utilization. This value supports inner loop unrolling to
improve overall throughput with a limited increase in DSP resources. This is the most
flexible architecture for design exploration.

• Inner loop pipelining

○ >1: For ARCH 2, enables Vivado HLS to resource share and reduce the DSP utilization.
When using complex floating-point data types, setting the value to 2 or 4 significantly
reduces DSP utilization.

• Inner loop unrolling

○ For ARCH 2, duplicates the hardware required to implement the loop processing by a
specified factor, executes the corresponding number of loop iterations in parallel, and
increases throughput but also increases DSP and memory utilization.

Specifications

You can specify all factors using a configuration class derived from the following
hls::cholesky_traits base class by redefining the appropriate class member:

struct MY_CONFIG :
hls::cholesky_traits<LOWER_TRIANGULAR,ROWS_COLS_A,MAT_IN_T,MAT_OUT_T>{
 static const int ARCH = 2;
 static const int INNER_II = 2;
 static const int UNROLL_FACTOR = 1;
};

The configuration class is supplied to the hls::cholesky_top function as a template
parameter as follows:

hls::cholesky_top<LOWER_TRIANGULAR,ROWS_COLS_A,MY_CONFIG,MAT_IN_T,MAT_OUT_T
>(A,L);

The hls::cholesky function uses the following default configuration:

hls::cholesky<LOWER_TRIANGULAR,ROWS_COLS_A,MAT_IN_T,MAT_OUT_T>(A,L);

Cholesky Inverse and QR Inverse

Implementation Controls

The following table summarizes the key factors that influence resource utilization, function
throughput (initiation interval), and function latency. The values of Low, Medium, and High are
relative to the other key factors.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=267

Table 36: Inverse Key Factor Summary

Key Factor Value Resources Throughput Latency
Sub-function
implementation target
(Cholesky/QRF and
matrix multiply)

Small Low Low High

Balanced Medium Medium Medium

Fast High High Low

Back substitution
inner and diagonal
loop pipelining

1 High High Low

>1 Low Low High

DATAFLOW directive Yes Medium High High

INLINE directive Yes Low Low High

Key Factors

Following is additional information about the key factors shown in the preceding table:

• Sub-function implementation

○ Utilizes the following sub-functions executed sequentially: Cholesky or QRF, back
substitution, and matrix multiply. The implementation selected for these sub-functions
determines the resource utilization and function throughput/latency of the Inverse
function.

• Back substitution inner and diagonal loop pipelining

○ >1: Enables Vivado HLS to resource share and reduce the DSP utilization.

• DATAFLOW directive

○ Pipelines sequential tasks, which increases the function throughput to an initiation interval
based on the maximum sub-function latency rather than the sum of the individual sub-
function latencies. The function throughput substantially increases along with an increase
in overall latency. Additional memory resources are required.

• INLINE directive

○ Removes the sub-function hierarchy and allows Vivado HLS to better share resources and
can reduce DSP and memory utilization.

TIP: You can adjust the resources and throughput of the Inverse functions to meet specific requirements by
combining the DATAFLOW directive with the appropriate sub-function implementations.

Specifications

The DATAFLOW directive is applied to the hls::cholesky_inverse_top or
hls::qr_inverse_top function as follows:

set_directive_dataflow "cholesky_inverse_top"

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=268

The INLINE directive is applied in the same manner:

set_directive_inline -recursive "cholesky_inverse_top"

You can specify the individual sub-function implementations using a configuration class derived
from the following hls::cholesky_inverse_traits or hls::qr_inverse_traits base
class by redefining the appropriate class member:

typedef hls::cholesky_inverse_traits<ROWS_COLS_A,
 MAT_IN_T,
 MAT_OUT_T> MY_DFLT_CFG;

struct MY_CONFIG : MY_DFLT_CFG {
 struct CHOLESKY_TRAITS :
 hls::cholesky_traits<false,
 ROWS_COLS_A,
 MAT_IN_T,
 MY_DFLT_CFG::CHOLESKY_OUT> {
 static const int ARCH = 1;
 };
 struct BACK_SUB_CONFIG :
 hls::back_substitute_traits<ROWS_COLS_A,
 MY_DFLT_CFG::CHOLESKY_OUT,
 MY_DFLT_CFG::BACK_SUBSTITUTE_OUT> {
 static const int INNER_II = 2;
 static const int DIAG_II = 2;
 };
 struct MULTIPLIER_CONFIG :
 hls::matrix_multiply_traits<hls::NoTranspose,
 hls::ConjugateTranspose,
 ROWS_COLS_A,
 ROWS_COLS_A,
 ROWS_COLS_A,
 ROWS_COLS_A,
 MY_DFLT_CFG::BACK_SUBSTITUTE_OUT,
 MAT_OUT_T> {
 static const int INNER_II = 2;
 };
};

The configuration class is supplied to the hls::cholesky_inverse_top or
hls::qr_inverse_top function as a template parameter as follows:

hls::cholesky_inverse_top<ROWS_COLS_A,MY_CONFIG,MAT_IN_T,MAT_OUT_T>(A,INVERS
E_A,inv
erse_OK);

The hls::cholesky_inverse or hls::qr_inverse function uses the following default
configuration:

hls::cholesky_inverse<ROWS_COLS_A,MAT_IN_T,MAT_OUT_T>(A,INVERSE_A,inverse_OK
);

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=269

Matrix Multiply

Implementation Controls

The following table summarizes the key factors that influence resource utilization, function
throughput (initiation interval), and function latency. The values of Low, Medium, and High are
relative to the other key factors.

Table 37: Matrix Multiply Key Factor Summary

Key Factor Value Resources Throughput Latency
Architecture
(ARCH)

2 (Floating Point) Low Low High

3 (Floating Point) High High Low

0 (Fixed Point) Low Low High

2 (Fixed Point) Medium Medium Medium

4 (Fixed Point) High High Low

Inner loop pipelining
(INNER_II)

1 High High Low

>1 Low Low High

Inner loop unrolling
(UNROLL_FACTOR)

1 Low Low High

>1 High High Low

Resource directive
(RESOURCE)

LUTRAM Medium N/A N/A

Key Factors

• Architecture

The ARCH key factor selects the architecture based on the implementation data type.

○ Floating-point data types

- 2: Ensures the inner accumulation loop achieves the maximum throughput with an II of
1. This value supports inner loop partial unrolling, which improves overall throughput
with a limited increase in DSP resources.

- 3: Implements a fully unrolled inner accumulation loop, which uses the highest number
of DSP resources and highest throughput.

○ Fixed-point data types

- 0: Uses the lowest resource utilization and lowest throughput.

- 2: Supports inner loop partial unrolling to improve overall throughput with a limited
increase in DSP resource.

- 4: Implements a fully unrolled inner accumulation loop, which uses the highest number
of DSP resources and highest throughput.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=270

• Inner loop pipelining

○ >1: When using complex floating-point data types, shares resources and reduces DSP
utilization. Setting the value to 2 or 4 significantly reduces DSP utilization.

• Inner loop unrolling

○ For ARCH 2, duplicates the hardware required to implement the loop processing by a
specified factor, executes the corresponding number of loop iterations in parallel, and
increases throughput but also increases DSP and memory utilization.

○ For ARCH 3 or 4, fully unrolls the accumulation loop.

• Resource directive

By default, Vivado HLS uses block RAM to implement arrays.

○ For ARCH 2, partially unrolling the accumulation loop results in Vivado HLS splitting the
sum_mult array across multiple block RAM.

○ When the partitioned size does not require using a block RAM, use the RESOURCE
directive to specify a LUTRAM.

Specifications

Except for the RESOURCE directive, you can specify all factors using a configuration class derived
from the following hls::matrix_multiply_traits base class by redefining the appropriate
class member:

struct MY_CONFIG: hls::matrix_multiply_traits<hls::NoTranspose,
 hls::NoTranspose,
 A_ROWS,
 A_COLS,
 B_ROWS,
 B_COLS,
 MATRIX_T,
 MATRIX_T>{
 static const int ARCH = 2;
 static const int INNER_II = 1;
 static const int UNROLL_FACTOR = 2;
};

The configuration class is supplied to the hls::matrix_multiply_top function as a
template parameter as follows:

hls::matrix_multiply_top<hls::NoTranspose,hls::NoTranspose,A_ROWS,A_COLS,B_R
OWS,B_C
OLS,C_ROWS,C_COLS,MY_CONFIG,MATRIX_T,MATRIX_T>(A,B,C);

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=271

The hls::matrix_multiply function uses the following default configuration:

hls::matrix_multiply<hls::NoTranspose,hls::NoTranspose,A_ROWS,A_COLS,B_ROWS,
B_COLS,
C_ROWS,C_COLS,MATRIX_T,MATRIX_T>(A,B,C);

If you select ARCH 2, the RESOURCE directive is applied to the sum_mult array in function
hls::matrix_multiply_alt2 as follows:

set_directive_resource -core RAM_S2P_LUTRAM "matrix_multiply_alt2" sum_mult

QRF

Implementation Controls

The following table summarizes the key factors that influence resource utilization, function
throughput (initiation interval), and function latency. The values of Low, Medium, and High are
relative to the other key factors.

Table 38: QRF Key Factor Summary

Key Factor Value Resources Throughput Latency
Q and R update loop
pipelining
(UPDATE_II)

2 High High Low

>2 Low Low High

Q and R update loop
unrolling
(UNROLL_FACTOR)

1 Low Low High

>1 High High Low

Rotation loop
pipelining
(CALC_ROT_II)

1 High High Low

>1 Low Low High

Key Factors

The following is additional information about the key factors in the preceding table:

• Q and R update loop pipelining

○ 2: Sets the minimum achievable initiation interval (II) of 2, which satisfies the Q and R
matrix array requirement of two writes every iteration of the update loop.

○ >2: Enables Vivado HLS to further resource share and reduce the DSP utilization. With
complex-floating point data types, setting the value to 4 or 8 significantly reduces DSP
utilization.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=272

• Q and R update loop unrolling

○ Duplicates the hardware required to implement the loop processing by a specified factor,
executes the corresponding number of loop iterations in parallel, and increases throughput
but also increases DSP and memory utilization.

• Rotation loop pipelining

○ Enables Vivado HLS to resource share and reduce the DSP utilization.

Specifications

You can specify all factors using a configuration class derived from the following
hls::qrf_traits base class by redefining the appropriate class member:

struct MY_CONFIG : hls::qrf_traits<A_ROWS,A_COLS,MAT_IN_T,MAT_OUT_T>{
 static const int CALC_ROT_II = 4;
 static const int UPDATE_II= 4;
 static const int UNROLL_FACTOR= 2;
};

The configuration class is supplied to the hls::qrf_top function as a template parameter as
follows:

hls::qrf_top<TRANSPOSED_Q,A_ROWS,A_COLS,MY_CONFIG,MAT_IN_T,MAT_OUT_T>(A,Q,R)
;

The hls::qrf function uses the following default configuration:

hls::qrf<TRANSPOSED_Q,A_ROWS,A_COLS,MAT_IN_T,MAT_OUT_T>(A,Q,R);

SVD

Implementation Controls

The following table summarizes the key factors that influence resource utilization, function
throughput (initiation interval), and function latency. The values of Low, Medium, and High are
relative to the other key factors.

Table 39: SVD Key Factor Summary

Key Factor Value Resources Throughput Latency
ALLOCATION directive
(vm2x1_base limit)

1 Low Low High

>1 High High Low

Off-diagonal loop
pipelining
(OFF_DIAG_II)

4 High High Low

>4 Low Low High

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=273

Table 39: SVD Key Factor Summary (cont'd)

Key Factor Value Resources Throughput Latency
Diagonal loop
pipelining
(DIAG_II)

1 High High Low

>1 Low Low High

Iterations
(NUM_SWEEP)

<10 N/A High Low

Reciprocal Square
Root operator

Combined operator Medium High Low

Key Factors

Following is additional information about the key factors in the preceding table:

• ALLOCATION directive

○ Limits the number of implemented 2x1 vector dot products. Vivado HLS schedules the
SVD function to use the specified number 2x1 vector dot product kernels.

Note: The SVD algorithm is computationally intensive, particularly for complex data types. The
ALLOCATION directive is the most effective method to balance resource utilization and throughput.

• Off-diagonal loop pipelining

○ 4: Sets the minimum achievable initiation interval (II) of 4, which satisfies the S, U, and V
array requirement of four writes every iteration of the off-diagonal loop.

○ >4: Enables Vivado HLS to further resource share and reduce the DSP utilization.

• Diagonal loop pipelining

○ >1: Enables Vivado HLS to resource share.

• Iterations

The SVD function uses the iterative two-sided Jacobi method.

○ 10: Sets the default number of iterations.

○ <10: Maximizes the function throughput by setting the minimum number of iterations that
meets the desired performance.

• Reciprocal Square Root operator

○ Ensures a much lower latency than the discrete operators.

Note: By default, Vivado HLS does not use the combined rsqrt operator but uses discrete divide
and sqrt operators. Selecting the -unsafe_math_optimizations compiler option enables the
use of the rsqrt operator.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=274

Specifications

You can apply the ALLOCATION directive to the hls::svd_pairs function in combination
with the INLINE directive as follows:

set_directive_inline -off "vm2x1_base"
set_directive_allocation -limit 1 -type function "svd_pairs" vm2x1_base

You can select the -unsafe_math_optimizations compiler option as follows:

config_compile -unsafe_math_optimizations

You can specify all other factors using a configuration class derived from the following
hls::svd_traits base class by redefining the appropriate class member:

struct MY_CONFIG : hls::svd_traits<A_ROWS,A_COLS,MATRIX_IN_T,MATRIX_OUT_T>{
 static const int NUM_SWEEPS = 6;
 static const int DIAG_II = 4;
 static const int OFF_DIAG_II = 4;
 };

The configuration class is supplied to the hls::svd_top function as a template parameter as
follows:

hls::svd_top<A_ROWS,A_COLS,MY_CONFIG,MATRIX_IN_T,MATRIX_OUT_T>(A,S,U,V);

The hls::svd function uses the following default configuration:

hls::svd<A_ROWS,A_COLS,MATRIX_IN_T,MATRIX_OUT_T>(A,S,U,V);

HLS DSP Library
The HLS DSP library contains building-block functions for DSP system modeling in C++ with an
emphasis on functions used in SDR applications. The following table shows the functions in the
HLS DSP library.

Table 40: HLS DSP Library

Function Data Type Implementation Style
atan2 input: std::complex< ap_fixed >

output: ap_ufixed
Synthesized

awgn input: ap_ufixed
output: ap_int

Synthesized

cmpy input: std::complex< ap_fixed >
output: std::complex< ap_fixed >

Synthesized

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=275

Table 40: HLS DSP Library (cont'd)

Function Data Type Implementation Style
convolution_encoder input: ap_uint

output: ap_uint
Synthesized

nco input: ap_uint
output: std::complex< ap_int >

Synthesized

sqrt input: ap_ufixed, ap_int
output: ap_ufixed, ap_int

Synthesized

viterbi_decoder input: ap_uint
output: ap_uint

Synthesized

Functions use the Vivado HLS fixed precision types ap_[u]int and ap_[u]fixed to describe
input and output data as needed. The functions have the minimum viable interface type to
maximize flexibility. For example, functions with a simple throughput model, such as one sample
out for one sample in, use pointer interfaces. Functions that perform a rate change, such as
viterbi_decoder, use the type hls::stream on the interfaces.

You can copy the existing library and make the interfaces more complex, such as creating
hls::streams for the pointer interfaces and AXI4-Stream interfaces for any function. However,
complex interfaces require more resources.

Vivado HLS provides most library elements as templated C++ classes, which are fully described in
the header file (hls_dsp.h) with constructor, destructor, and operator access functions.

Using the DSP Library
You can reference the DSP functions using one of the following methods:

• Using scoped naming:

#include <hls_dsp.h>
static hls::awgn<output_width> my_awgn(seed);
my_awgn(snr, noise);

• Using the hls namespace:

#include <hls_dsp.h>
using namespace hls;
static awgn<output_width> my_awgn(seed);
my_awgn(snr, noise);

Functions in the DSP Library include synthesis directives as pragmas in the source code, which
guide Vivado HLS in synthesizing the function to meet typical requirements. The functions are
optimized for maximal throughput, which is the most common use case. For example, arrays
might be completely partitioned to ensure that an Initiation Interval of 1 is achieved regardless of
template parameter configuration.

You can remove existing optimizations or apply additional optimizations as follows:

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=276

• To apply optimizations on the DSP functions, open the header file hls_dsp.h in the Vivado
HLS GUI, and do one of the following:

○ Press the Ctrl key and click #include “hls_dsp.h”

○ Use the Explorer Pane and navigate to the file using the Includes folder.

• To add or remove an optimization as a directive, open the header file in the Information pane,
and use the Directives tab.

Note: If you add the optimization as a pragma, Vivado HLS places the optimization in the library and
applies it every time you add the header to a design. File write permissions might be required to add the
optimization as a pragma.

TIP: If you want to modify a function to modify its RTL implementation, look for comments in the library
source code with the prefix TIP, which indicate where it might be useful to place a pragma or apply a
directive.

HLS SQL Library
The SQL library contains SQL building-block functions in C++. The following table shows the
functions in the HLS SQL Library.

Table 41: HLS SQL Library

Function Data Type Note
hls_alg::sha224 Input:

hls::stream<unsigned char>
Output:
hls::stream<unsigned char>

Implement SHA-224 algorithm from
SHA-2 family.

hls_alg::sha256 Input:
hls::stream<unsigned char>
unsigned long long
Output:
hls::stream<unsigned char>

Implement SHA-256 algorithm from
SHA-2 family.

hls_alg::sort Input:
hls::stream<T>
Output:
hls::stream<T>

Implement Bitonic sort algorithm.
T is data type.

Vivado HLS provides these library elements as templated C++ functions in hls_db namespace.
For a complete description of all SQL functions, see the HLS SQL Library Functions in Chapter 4.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=277

Using the SQL Library
You can reference the SQL functions using the following method:

#include <hls_alg.h>
hls_alg::sha256(in_stream, in_stream_depth, out_stream);

Functions in the SQL Library include synthesis directives as pragmas in the source code, which
guide Vivado HLS in synthesizing the function to meet typical requirements.

Chapter 2: High-Level Synthesis C Libraries

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=278

Chapter 3

High-Level Synthesis Coding Styles
This chapter explains how various constructs of C, C++, and SystemC are synthesized into an
FPGA hardware implementation.

IMPORTANT! The term "C code" as used in this guide refers to code written in C, C++, and SystemC,
unless otherwise specifically noted.

The coding examples in this guide are part of the Vivado® HLS release. Access the coding
examples using one of the following methods:

• From the Welcome screen, click Open Example Project.

Note: To view the Welcome screen at any time, select Help → Welcome.

• In the examples/coding directory in the Vivado HLS installation area.

Unsupported C Constructs
While Vivado® HLS supports a wide range of the C language, some constructs are not
synthesizable, or can result in errors further down the design flow. This section discusses areas in
which coding changes must be made for the function to be synthesized and implemented in a
device.

To be synthesized:

• The C function must contain the entire functionality of the design.

• None of the functionality can be performed by system calls to the operating system.

• The C constructs must be of a fixed or bounded size.

• The implementation of those constructs must be unambiguous.

System Calls
System calls cannot be synthesized because they are actions that relate to performing some task
upon the operating system in which the C program is running.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=279

Vivado® HLS ignores commonly-used system calls that display only data and that have no impact
on the execution of the algorithm, such as printf() and fprintf(stdout,). In general, calls
to the system cannot be synthesized and should be removed from the function before synthesis.
Other examples of such calls are getc(), time(), sleep(), all of which make calls to the
operating system.

Vivado HLS defines the macro __SYNTHESIS__ when synthesis is performed. This allows the
__SYNTHESIS__ macro to exclude non-synthesizable code from the design.

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C simulation or C RTL co-simulation.

CAUTION! You must not define or undefine the __SYNTHESIS__  macro in code or with compiler
options, otherwise compilation might fail.

In the following code example, the intermediate results from a sub-function are saved to a file on
the hard drive. The macro __SYNTHESIS__ is used to ensure the non-synthesizable files writes
are ignored during synthesis.

#include "hier_func4.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
#ifndef __SYNTHESIS__
 FILE *fp1; // The following code is ignored for synthesis
 char filename[255];
 sprintf(filename,Out_apb_%03d.dat,apb);
 fp1=fopen(filename,w);
 fprintf(fp1, %d \n, apb);
 fclose(fp1);
#endif
 shift_func(&apb,&amb,C,D);
}

The __SYNTHESIS__ macro is a convenient way to exclude non-synthesizable code without
removing the code itself from the C function. Using such a macro does mean that the C code for
simulation and the C code for synthesis are now different.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=280

CAUTION! If the __SYNTHESIS__  macro is used to change the functionality of the C code, it can result
in different results between C simulation and C synthesis. Errors in such code are inherently difficult to
debug. Do not use the __SYNTHESIS__ macro to change functionality.

Dynamic Memory Usage
Any system calls that manage memory allocation within the system, for example, malloc(),
alloc(), and free(), are using resources that exist in the memory of the operating system
and are created and released during run time: to be able to synthesize a hardware
implementation the design must be fully self-contained, specifying all required resources.

Memory allocation system calls must be removed from the design code before synthesis.
Because dynamic memory operations are used to define the functionality of the design, they
must be transformed into equivalent bounded representations. The following code example
shows how a design using malloc() can be transformed into a synthesizable version and
highlights two useful coding style techniques:

• The design does not use the __SYNTHESIS__ macro.

The user-defined macro NO_SYNTH is used to select between the synthesizable and non-
synthesizable versions. This ensures that the same code is simulated in C and synthesized in
Vivado® HLS.

• The pointers in the original design using malloc() do not need to be rewritten to work with
fixed sized elements.

Fixed sized resources can be created and the existing pointer can simply be made to point to
the fixed sized resource. This technique can prevent manual recoding of the existing design.

#include "malloc_removed.h"
#include <stdlib.h>
//#define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {

#ifdef NO_SYNTH
 long long *out_accum = malloc (sizeof(long long));
 int* array_local = malloc (64 * sizeof(int));
#else
 long long _out_accum;
 long long *out_accum = &_out_accum;
 int _array_local[64];
 int* array_local = &_array_local[0];
#endif
 int i,j;

 LOOP_SHIFT:for (i=0;i<N-1; i++) {
 if (i<width)
 *(array_local+i)=din[i];
 else
 *(array_local+i)=din[i]>>2;
 }

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=281

 *out_accum=0;
 LOOP_ACCUM:for (j=0;j<N-1; j++) {
 *out_accum += *(array_local+j);
 }

 return *out_accum;
}

Because the coding changes here impact the functionality of the design, Xilinx does not
recommend using the __SYNTHESIS__ macro. Xilinx recommends that you perform the
following steps:

1. Add the user-defined macro NO_SYNTH to the code and modify the code.

2. Enable macro NO_SYNTH, execute the C simulation, and save the results.

3. Disable the macro NO_SYNTH, and execute the C simulation to verify that the results are
identical.

4. Perform synthesis with the user-defined macro disabled.

This methodology ensures that the updated code is validated with C simulation and that the
identical code is then synthesized. As with restrictions on dynamic memory usage in C, Vivado
HLS does not support (for synthesis) C++ objects that are dynamically created or destroyed. This
includes dynamic polymorphism and dynamic virtual function calls.

The following code cannot be synthesized because it creates a new function at run time.

Class A {
public:
 virtual void bar() {â¦};
};

void fun(A* a) {
 a->bar();
}
A* a = 0;
if (base)
 a = new A();
else
 a = new B();

foo(a);

Pointer Limitations
General Pointer Casting

Vivado HLS does not support general pointer casting, but supports pointer casting between
native C types.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=282

Pointer Arrays

Vivado HLS supports pointer arrays for synthesis, provided that each pointer points to a scalar or
an array of scalars. Arrays of pointers cannot point to additional pointers.

Function Pointers

Function pointers are not supported.

Recursive Functions
Recursive functions cannot be synthesized. This applies to functions that can form endless
recursion, where endless:

unsigned foo (unsigned n)
{
 if (n == 0 || n == 1) return 1;
 return (foo(n-2) + foo(n-1));
}

Vivado® HLS does not support tail recursion in which there is a finite number of function calls.

unsigned foo (unsigned m, unsigned n)
{
 if (m == 0) return n;
 if (n == 0) return m;
 return foo(n, m%n);
}

In C++, templates can implement tail recursion. C++ is addressed next.

Standard Template Libraries

Many of the C++ Standard Template Libraries (STLs) contain function recursion and use dynamic
memory allocation. For this reason, the STLs cannot be synthesized. The solution with STLs is to
create a local function with identical functionality that does not exhibit these characteristics of
recursion, dynamic memory allocation or the dynamic creation and destruction of objects.

Note: Standard data types, such as std::complex, are supported for synthesis.

C Test Bench
The first step in the synthesis of any block is to validate that the C function is correct. This step is
performed by the test bench. Writing a good test bench can greatly increase your productivity.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=283

C functions execute in orders of magnitude faster than RTL simulations. Using C to develop and
validate the algorithm before synthesis is more productive than developing at the RTL.

• The key to taking advantage of C development times is to have a test bench that checks the
results of the function against known good results. Because the algorithm is known to be
correct, any code changes can be validated before synthesis.

• Vivado® HLS reuses the C test bench to verify the RTL design. No RTL test bench needs to be
created when using Vivado HLS. If the test bench checks the results from the top-level
function, the RTL can be verified by simulation.

Note: To provide input arguments to the test bench, select Project → Project Settings, click Simulation, and
use the Input Arguments option. The test bench must not require the execution of interactive user inputs.
The Vivado HLS GUI does not have a command console and cannot accept user inputs while the test
bench executes.

Xilinx recommends that you separate the top-level function for synthesis from the test bench,
and that you use header files. The following code example shows a design in which the function
hier_func calls two sub-functions:

• sumsub_func performs addition and subtraction.

• shift_func performs shift.

The data types are defined in the header file (hier_func.h), which is also described:

#include "hier_func.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
 shift_func(&apb,&amb,C,D);
}

The top-level function can contain multiple sub-functions. There can be only a single top-level
function for synthesis. To synthesize multiple functions, group them into a single top-level
function.

To synthesize function hier_func:

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=284

1. Add the file shown the example above to a Vivado HLS project as a design file.

2. Specify the top-level function as hier_func.

After synthesis:

• The arguments to the top-level function (A, B, C, and D in the example above) are synthesized
into RTL ports.

• The functions within the top-level (sumsub_func and shift_func in the example above)
are synthesized into hierarchical blocks.

The header file (hier_func.h) in the example above shows how to use macros and how
typedef statements can make the code more portable and readable. Later sections show how
the typedef statement allows the types and therefore the bit-widths of the variables to be
refined for both area and performance improvements in the final FPGA implementation.

#ifndef _HIER_FUNC_H_
#define _HIER_FUNC_H_

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D);

#endif

The header file in this example includes some definitions (such as NUM_TRANS) that are not
required in the design file. These definitions are used by the test bench which also includes the
same header file.

The following code example shows the test bench for the design shown in the first example.

#include "hier_func.h"

int main() {
 // Data storage
 int a[NUM_TRANS], b[NUM_TRANS];
 int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
 int c[NUM_TRANS], d[NUM_TRANS];

 //Function data (to/from function)
 int a_actual, b_actual;
 int c_actual, d_actual;

 // Misc
 int retval=0, i, i_trans, tmp;
 FILE *fp;

 // Load input data from files

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=285

 fp=fopen(tb_data/inA.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 a[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/inB.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 b[i] = tmp;
 }
 fclose(fp);

 // Execute the function multiple times (multiple transactions)
 for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

 //Apply next data values
 a_actual = a[i_trans];
 b_actual = b[i_trans];

 hier_func(a_actual, b_actual, &c_actual, &d_actual);

 //Store outputs
 c[i_trans] = c_actual;
 d[i_trans] = d_actual;
 }

 // Load expected output data from files
 fp=fopen(tb_data/outC.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 c_expected[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/outD.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 d_expected[i] = tmp;
 }
 fclose(fp);

 // Check outputs against expected
 for (i = 0; i < NUM_TRANS-1; ++i) {
 if(c[i] != c_expected[i]){
 retval = 1;
 }
 if(d[i] != d_expected[i]){
 retval = 1;
 }
 }

 // Print Results
 if(retval == 0){
 printf(*** *** *** *** \n);
 printf(Results are good \n);
 printf(*** *** *** *** \n);
 } else {
 printf(*** *** *** *** \n);
 printf(Mismatch: retval=%d \n, retval);
 printf(*** *** *** *** \n);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=286

 }

 // Return 0 if outputs are corre
 return retval;
}

Productive Test Benches
The test bench example highlights some of the attributes of a productive test bench, such as:

• The top-level function for synthesis (hier_func) is executed for multiple transactions, as
defined by macro NUM_TRANS. This execution allows many different data values to be applied
and verified. The test bench is only as good as the variety of tests it performs.

• The function outputs are compared against known good values. The known good values are
read from a file in this example, but can also be computed as part of the test bench.

• The return value of main() function is set to:

○ Zero: Results are correct.

○ Non-zero value: Results are incorrect.

Note: The test bench can return any non-zero value. A complex test bench can return different
values depending on the type of difference or failure. If the test bench returns a non-zero value after
C simulation or C/RTL co-simulation, Vivado® HLS reports an error and simulation fails.

RECOMMENDED: Because the system environment (for example, Linux, Windows, or Tcl) interprets the
return value of the main()  function, Xilinx recommends that you constrain the return value to an 8-bit
range for portability and safety.

CAUTION! You are responsible for ensuring that the test bench checks the results. If the test bench does
not check the results but returns zero, Vivado HLS indicates that the simulation test passed even though
the results were not actually checked. Even if the output data is correct and valid, Vivado HLS reports a
simulation failure if the test bench does not return the value zero to function main().

A test bench that exhibits these attributes quickly tests and validates any changes made to the C
functions before synthesis and is reusable at RTL, allowing easier verification of the RTL.

Design Files and Test Bench Files
Because Vivado® HLS reuses the C test bench for RTL verification, it requires that the test bench
and any associated files be denoted as test bench files when they are added to the Vivado HLS
project. Files associated with the test bench are any files that are:

• Accessed by the test bench

• Required for the test bench to operate correctly.

Examples of such files include the data files inA.dat and inB.dat in the test bench example.
You must add these to the Vivado HLS project as test bench files.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=287

The requirement for identifying test bench files in a Vivado HLS project does not require that the
design and test bench be in separate files (although separate files are recommended).

The same design from C Test Bench is repeated in the example below. The only difference is that
the top-level function is renamed hier_func2, to differentiate the examples.

Using the same header file and test bench (other than the change from hier_func to
hier_func2), the only changes required in Vivado HLS to synthesize function sumsub_func
as the top-level function are:

• Set sumsub_func as the top-level function in the Vivado HLS project.

• Add the file in the example below as both a design file and project file. The level above
sumsub_func (function hier_func2) is now part of the test bench. It must be included in
the RTL simulation.

Even though function sumsub_func is not explicitly instantiated inside the main() function,
the remainder of the functions (hier_func2 and shift_func) confirm that it is operating
correctly, and thus is part of the test bench.

#include "hier_func2.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func2(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
 shift_func(&apb,&amb,C,D);
}

Combining Test Bench and Design Files
You can also include the design and test bench into a single design file. The following example
has the same functionality as C Test Bench through C Test Bench, except that everything is
captured in a single file. Function hier_func is renamed hier_func3 to ensure that the
examples are unique.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=288

IMPORTANT! If the test bench and design are in a single file, you must add the file to a Vivado® HLS
project as both a design file and a test bench file.

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func3(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
 shift_func(&apb,&amb,C,D);
}

int main() {
 // Data storage
 int a[NUM_TRANS], b[NUM_TRANS];
 int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
 int c[NUM_TRANS], d[NUM_TRANS];

 //Function data (to/from function)
 int a_actual, b_actual;
 int c_actual, d_actual;

 // Misc
 int retval=0, i, i_trans, tmp;
 FILE *fp;
 // Load input data from files
 fp=fopen(tb_data/inA.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 a[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/inB.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 b[i] = tmp;
 }
 fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=289

 //Apply next data values
 a_actual = a[i_trans];
 b_actual = b[i_trans];

 hier_func3(a_actual, b_actual, &c_actual, &d_actual);

 //Store outputs
 c[i_trans] = c_actual;
 d[i_trans] = d_actual;
 }

 // Load expected output data from files
 fp=fopen(tb_data/outC.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 c_expected[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/outD.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 d_expected[i] = tmp;
 }
 fclose(fp);

 // Check outputs against expected
 for (i = 0; i < NUM_TRANS-1; ++i) {
 if(c[i] != c_expected[i]){
 retval = 1;
 }
 if(d[i] != d_expected[i]){
 retval = 1;
 }
 }

 // Print Results
 if(retval == 0){
 printf(*** *** *** *** \n);
 printf(Results are good \n);
 printf(*** *** *** *** \n);
 } else {
 printf(*** *** *** *** \n);
 printf(Mismatch: retval=%d \n, retval);
 printf(*** *** *** *** \n);
 }

 // Return 0 if outputs are correct
 return retval;
}

Functions
The top-level function becomes the top level of the RTL design after synthesis. Sub-functions are
synthesized into blocks in the RTL design.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=290

IMPORTANT! The top-level function cannot be a static function.

After synthesis, each function in the design has its own synthesis report and RTL HDL file
(Verilog and VHDL).

Inlining Functions
Sub-functions can optionally be inlined to merge their logic with the logic of the surrounding
function. While inlining functions can result in better optimizations, it can also increase run time.
More logic and more possibilities must be kept in memory and analyzed.

TIP: Vivado® HLS may perform automatic inlining of small functions. To disable automatic inlining of a
small function, set the inline  directive to off  for that function.

If a function is inlined, there is no report or separate RTL file for that function. The logic and
loops are merged with the function above it in the hierarchy.

Impact of Coding Style
The primary impact of a coding style on functions is on the function arguments and interface.

If the arguments to a function are sized accurately, Vivado® HLS can propagate this information
through the design. There is no need to create arbitrary precision types for every variable. In the
following example, two integers are multiplied, but only the bottom 24 bits are used for the
result.

#include "ap_cint.h"

int24 foo(int x, int y) {
 int tmp;

 tmp = (x * y);
 return tmp
}

When this code is synthesized, the result is a 32-bit multiplier with the output truncated to 24-
bit.

If the inputs are correctly sized to 12-bit types (int12) as shown in the following code example,
the final RTL uses a 24-bit multiplier.

#include "ap_cint.h"
typedef int12 din_t;
typedef int24 dout_t;

dout_t func_sized(din_t x, din_t y) {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=291

 int tmp;

 tmp = (x * y);
 return tmp
}

Using arbitrary precision types for the two function inputs is enough to ensure Vivado HLS
creates a design using a 24-bit multiplier. The 12-bit types are propagated through the design.
Xilinx recommends that you correctly size the arguments of all functions in the hierarchy.

In general, when variables are driven directly from the function interface, especially from the top-
level function interface, they can prevent some optimizations from taking place. A typical case of
this is when an input is used as the upper limit for a loop index.

RTL Blackbox
The RTL blackbox enables the integration of a pre-existing RTL IP into an HLS design, resulting in
a design that can be run through the HLS design flow. The RTL IP can be used in a sequential,
pipeline, or dataflow region. The following files are required for integrating the RTL IP into HLS:

1. Blackbox description file

2. RTL IP files

3. A C implementation of the RTL

To integrate the RTL IP into an HLS design:

1. Create a C implementation function of the RTL IP.

2. Call the C implementation function inside the HLS design.

3. Create a JSON file with the necessary fields. An example JSON file and information on the
format is provided in RTL Blackbox JSON File.

4. Add the JSON file to the script.tcl file using the add_files option.

add_files –blackbox my_file.json

5. Run HLS design flow; i.e., Csim, synthesis, and cosim.

Requirements and Limitations

• Inside HLS, the RTL blackbox support is limited to C++.

• Inside HLS, the RTL blackbox cannot connect to top-level interface I/O signals.

• Inside HLS, the RTL blackbox cannot serve as a DUT directly.

• Inside HLS, the RTL blackbox does not support struct or class type interfaces.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=292

• Inside HLS, the RTL blackbox supports the following interface protocols:

• hls::stream: The RTL blackbox IP supports the hls::stream interface. When this particular
data type is used in C, use a FIFO interface for this argument in the RTL blackbox IP.

• Array: The RTL blackbox IP supports RAM (arrays) interface. When this construct is used
in C, use one of these RAM interfaces for the corresponding argument in the
RTL blackbox IP:

• Single port RAM – RAM_1P

• Dual port RAM – RAM_T2P

• C scalars and input pointer: The RTL Blackbox IP supports C scalars and inputs pointers
only in sequential and pipeline region (not supported in a dataflow region). When this
construct is used in C, use wire in the RTL IP.

• Inout and out Pointers: The RTL blackbox IP supports inout and out pointers only in
sequential and pipeline region (not supported in a dataflow region). When using this
construct in C, the RTL IP should use ap_vld for output and ap_ovld for the inout
pointer.

• RTL IP files provided to HLS should be in Verilog (.v).

• RTL IP module must have a unique clock signal and a unique reset signal that is a positive level
high.

• RTL IP module must have a CE signal that is used to enable or stall the RTL IP.

• The RTL IP must use the ap_ctrl_chain protocol. See Block-Level I/O Protocols for more
information.

JSON file limitations:

• The c_function name field must be consistent with the C function model.

• The rtl_top_module_name must be consistent with the c_function_name.

• Unused c_parameters fields should be deleted from the template.

• Every c_parameter field should be associated with a rtl_port field.

Note: All other HLS design restrictions still apply when using the RTL blackbox.

JSON File Format

The following table describes the JSON file format:

Table 42: JSON File Format

Item Attribute Description
c_function_name The C++ function name for the blackbox

rtl_top_module_name The RTL function name for the blackbox

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=293

Table 42: JSON File Format (cont'd)

Item Attribute Description
c_files c_file Specifies the c file used for the blackbox module.

cflag Provides any compile option necessary for the
corresponding c file.

rtl_files Specifies the RTL files for the blackbox module.

c_parameters c_name Specifies the name of the argument used for the black
box C++ function.

c_port_direction The access direction for the corresponding c argument.

• in: Read only by blackbox C++ function.

• out: Write only by blackbox C++ function.

• inout: Will both read and write by blackbox C++
function.

RAM_type Specifies the RAM type to use if the corresponding C
argument uses the RTL 'RAM protocol. Two type of RAM
are used:

• RAM_1P: For 1 port RAM module

• RAM_T2P: For 2 port RAM module

Omit this attribute when the corresponding C argument
is not using RTL 'RAM' protocol.

rtl_ports Specifies the RTL port protocol signals for the
corresponding c argument. Five type of RTL port
protocols are used:

• wire: A C argument can be mapped to a wire if it
either uses a scalar's or pointer with input direction.

• ap_vld: A C argument can be mapped to a ap_vld if it
uses pointer with out direction.

• ap_ovld: A C argument can be mapped to a ap_ovld
if it use a pointer with an 'inout' direction.

• FIFO: A C argument can be mapped to a FIFO if it
uses a hls::stream datatype.

• RAM: A C argument can be mapped to a RAM if it
uses an array type. The array type supports inout
directions.

The above specified RTL port protocols have associated
control signals, which need to be specified in the JSON
file. See the following table for more details on the
usage.

c_return c_port_direction It must be out.

rtl_ports Specifies the corresponding RTL port name used in the
RTL blackbox IP.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=294

Table 42: JSON File Format (cont'd)

Item Attribute Description
rtl_common_signal module_clock The unique clock signal for RTL blackbox module.

module_reset Specifies the reset signal for RTL blackbox module. The
reset signal must be active high or positive valid.

module_clock_enable Specifies the clock enable signal for the RTL blackbox
module. The enable signal must be active high or
positive valid.

ap_ctrl_chain_protocol_idle The ap_idle signal in the ap_ctrl_chain protocol for
the RTL blackbox module.

ap_ctrl_chain_protocol_start The ap_start signal in the ap_ctrl_chain protocol
for the RTL blackbox module.

ap_ctrl_chain_protocol_ready The ap_ready signal in the ap_ctrl_chain protocol
for the RTL blackbox IP.

ap_ctrl_chain_protocol_done The 'ap_done' signal in the ap_ctrl_chain protocol for
blackbox RTL module.

ap_ctrl_chain_protocol_continue The ap_continue signal in the ap_ctrl_chain
protocol for RTL blackbox module.

rtl_performance latency Specifies the Latency of the RTL backbox module. It
must be a non-negative integer value. For Combinatorial
RTL IP specify 0, otherwise specify the exact latency of
the RTL module.

II Number of clock cycles before the function can accept
new input data. It must be non-negative integer value. 0
means the blackbox can not be pipelined. Otherwise, it
means the blackbox module is pipelined..

rtl_resource_usage FF Specifies the register utilization for the RTL blackbox
module.

LUT Specifies the LUT utilization for the RTL blackbox
module.

BRAM Specifies the block RAM utilization for the RTL blackbox
module.

URAM Specifies the URAM utilization for the RTL blackbox
module.

DSP Specifies the DSP utilization for the RTL blackbox
module.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=295

Table 43: RTL Port Protocols

RTL Port
Protocol RAM Type C Port Direction Attribute User-Defined

Name Notes

wire in data_read_in Specifies a user
defined name used in
the RTL blackbox IP.
As an example for
wire, if the RTL port
name is "flag" then
the JSON FILE format
is "data_read-in" :
"flag"

ap_vld out data_write_out

data_write_valid

ap_ovld inout data_read_in

data_write_out

data_write_valid

FIFO in FIFO_empty_flag Must be negative
valid.

FIFO_read_enable

FIFO_data_read_in

out FIFO_full_flag Must be negative
valid.

FIFO_write_enable

FIFO_data_write_out

RAM RAM_1P in RAM_address

RAM_clock_enable

RAM_data_read_in

out RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

inout RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_data_read_in

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=296

Table 43: RTL Port Protocols (cont'd)

RTL Port
Protocol RAM Type C Port Direction Attribute User-Defined

Name Notes

RAM RAM_T2P in RAM_address Specifies a user
defined name used in
the RTL blackbox IP.
As an example for
wire, if the RTL port
name is "flag" then
the JSON FILE format
is "data_read-in" :
"flag"

Signals with _snd
belong to the second
port of the RAM.
Signals without _snd
belong to the first
port.

RAM_clock_enable

RAM_data_read_in

RAM_address_snd

RAM_clock_enable_snd

RAM_data_read_in_snd

out RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_address_snd

RAM_clock_enable_snd

RAM_write_enable_snd

RAM_data_write_out_snd

inout RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_data_read_in

RAM_address_snd

RAM_clock_enable_snd

RAM_write_enable_snd

RAM_data_write_out_snd

RAM_data_read_in_snd

Note: The behavioral C-function model for the RTL blackbox must also adhere to the recommended HLS
coding styles.

Loops
Loops provide a very intuitive and concise way of capturing the behavior of an algorithm and are
used often in C code. Loops are very well supported by synthesis: loops can be pipelined,
unrolled, partially unrolled, merged, and flattened.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=297

The optimizations unroll, partially unroll, flatten, and merge effectively make changes to the loop
structure, as if the code was changed. These optimizations ensure limited coding changes are
required when optimizing loops. Some optimizations can be applied only in certain conditions.
Some coding changes might be required.

RECOMMENDED: Avoid use of global variables for loop index variables, as this can inhibit some
optimizations.

Variable Loop Bounds
Some of the optimizations that Vivado® HLS can apply are prevented when the loop has variable
bounds. In the following code example, the loop bounds are determined by variable width,
which is driven from a top-level input. In this case, the loop is considered to have variables
bounds, because Vivado HLS cannot know when the loop will complete.

#include "ap_cint.h"
#define N 32

typedef int8 din_t;
typedef int13 dout_t;
typedef uint5 dsel_t;

dout_t code028(din_t A[N], dsel_t width) {

 dout_t out_accum=0;
 dsel_t x;

 LOOP_X:for (x=0;x<width; x++) {
 out_accum += A[x];
 }

 return out_accum;
}

Attempting to optimize the design in the example above reveals the issues created by variable
loop bounds. The first issue with variable loop bounds is that they prevent Vivado HLS from
determining the latency of the loop. Vivado HLS can determine the latency to complete one
iteration of the loop, but because it cannot statically determine the exact value of variable width,
it does not know how many iterations are performed and thus cannot report the loop latency
(the number of cycles to completely execute every iteration of the loop).

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 298Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=298

When variable loop bounds are present, Vivado HLS reports the latency as a question mark (?)
instead of using exact values. The following shows the result after synthesis of the example
above.

+ Summary of overall latency (clock cycles):
 * Best-case latency: ?
 * Worst-case latency: ?
+ Summary of loop latency (clock cycles):
 + LOOP_X:
 * Trip count: ?
 * Latency: ?

Another issue with variable loop bounds is that the performance of the design is unknown. The
two ways to overcome this issue are as follows:

• Use the Tripcount directive. The details on this approach are explained here.

• Use an assert macro in the C code.

The tripcount directive allows a minimum and/or maximum tripcount to be specified for
the loop. The tripcount is the number of loop iterations. If a maximum tripcount of 32 is applied
to LOOP_X in the first example, the report is updated to the following:

+ Summary of overall latency (clock cycles):
 * Best-case latency: 2
 * Worst-case latency: 34
+ Summary of loop latency (clock cycles):
 + LOOP_X:
 * Trip count: 0 ~ 32
 * Latency: 0 ~ 32

Tripcount directive has no impact on the results of synthesis, only reporting. The user-provided
values for the Tripcount directive are used only for reporting. The Tripcount value allows Vivado
HLS to report number in the report, allowing the reports from different solutions to be compared.
To have this same loop-bound information used for synthesis, the C code must be updated.

Tripcount directives have no impact on the results of synthesis, only reporting.

The next steps in optimizing the first example for a lower initiation interval are:

• Unroll the loop and allow the accumulations to occur in parallel.

• Partition the array input, or the parallel accumulations are limited, by a single memory port.

If these optimizations are applied, the output from Vivado HLS highlights the most significant
issue with variable bound loops:

@W [XFORM-503] Cannot unroll loop 'LOOP_X' in function 'code028': cannot
completely
unroll a loop with a variable trip count.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=299

Because variable bounds loops cannot be unrolled, they not only prevent the unroll directive
being applied, they also prevent pipelining of the levels above the loop.

IMPORTANT! When a loop or function is pipelined, Vivado HLS unrolls all loops in the hierarchy below
the function or loop. If there is a loop with variable bounds in this hierarchy, it prevents pipelining.

The solution to loops with variable bounds is to make the number of loop iteration a fixed value
with conditional executions inside the loop. The code from the variable loop bounds example can
be rewritten as shown in the following code example. Here, the loop bounds are explicitly set to
the maximum value of variable width and the loop body is conditionally executed:

#include "ap_cint.h"
#define N 32

typedef int8 din_t;
typedef int13 dout_t;
typedef uint5 dsel_t;

dout_t loop_max_bounds(din_t A[N], dsel_t width) {

 dout_t out_accum=0;
 dsel_t x;

 LOOP_X:for (x=0;x<N; x++) {
 if (x<width) {
 out_accum += A[x];
 }
 }

 return out_accum;
}

The for-loop (LOOP_X) in the example above can be unrolled. Because the loop has fixed upper
bounds, Vivado HLS knows how much hardware to create. There are N(32) copies of the loop
body in the RTL design. Each copy of the loop body has conditional logic associated with it and is
executed depending on the value of variable width.

Loop Pipelining
When pipelining loops, the optimal balance between area and performance is typically found by
pipelining the innermost loop. This is also results in the fastest run time. The following code
example demonstrates the trade-offs when pipelining loops and functions.

#include "loop_pipeline.h"

dout_t loop_pipeline(din_t A[N]) {

 int i,j;
 static dout_t acc;

 LOOP_I:for(i=0; i < 20; i++){
 LOOP_J: for(j=0; j < 20; j++){

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=300

 acc += A[i] * j;
 }
 }

 return acc;
}

If the innermost (LOOP_J) is pipelined, there is one copy of LOOP_J in hardware, (a single
multiplier). Vivado® HLS automatically flattens the loops when possible, as in this case, and
effectively creates a new single loop of 20*20 iterations. Only one multiplier operation and one
array access need to be scheduled, then the loop iterations can be scheduled as a single loop-
body entity (20x20 loop iterations).

TIP: When a loop or function is pipelined, any loop in the hierarchy below the loop or function being
pipelined must be unrolled.

If the outer-loop (LOOP_I) is pipelined, inner-loop (LOOP_J) is unrolled creating 20 copies of the
loop body: 20 multipliers and 20 array accesses must now be scheduled. Then each iteration of
LOOP_I can be scheduled as a single entity.

If the top-level function is pipelined, both loops must be unrolled: 400 multipliers and 400 arrays
accessed must now be scheduled. It is very unlikely that Vivado HLS will produce a design with
400 multiplications because in most designs, data dependencies often prevent maximal
parallelism, for example, even if a dual-port RAM is used for A[N], the design can only access
two values of A[N] in any clock cycle.

The concept to appreciate when selecting at which level of the hierarchy to pipeline is to
understand that pipelining the innermost loop gives the smallest hardware with generally
acceptable throughput for most applications. Pipelining the upper levels of the hierarchy unrolls
all sub-loops and can create many more operations to schedule (which could impact run time and
memory capacity), but typically gives the highest performance design in terms of throughput and
latency.

To summarize the above options:

• Pipeline LOOP_J

Latency is approximately 400 cycles (20x20) and requires less than 100 LUTs and registers
(the I/O control and FSM are always present).

• Pipeline LOOP_I

Latency is approximately 20 cycles but requires a few hundred LUTs and registers. About 20
times the logic as first option, minus any logic optimizations that can be made.

• Pipeline function loop_pipeline

Latency is approximately 10 (20 dual-port accesses) but requires thousands of LUTs and
registers (about 400 times the logic of the first option minus any optimizations that can be
made).

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=301

Imperfect Nested Loops

When the inner loop of a loop hierarchy is pipelined, Vivado® HLS flattens the nested loops to
reduce latency and improve overall throughput by removing any cycles caused by loop
transitioning (the checks performed on the loop index when entering and exiting loops). Such
checks can result in a clock delay when transitioning from one loop to the next (entry and/or
exit).

Imperfect loop nests, or the inability to flatten loop them, results in additional clock cycles to
enter and exit the loops. When the design contains nested loops, analyze the results to ensure as
many nested loops as possible have been flattened: review the log file or look in the synthesis
report for cases, as shown above, where the loop labels have been merged (LOOP_I and LOOP_J
are now reported as LOOP_I_LOOP_J).

Loop Parallelism
Vivado® HLS schedules logic and functions are early as possible to reduce latency. To perform
this, it schedules as many logic operations and functions as possible in parallel. It does not
schedule loops to execute in parallel.

If the following code example is synthesized, loop SUM_X is scheduled and then loop SUM_Y is
scheduled: even though loop SUM_Y does not need to wait for loop SUM_X to complete before it
can begin its operation, it is scheduled after SUM_X.

#include "loop_sequential.h"

void loop_sequential(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
 dsel_t xlimit, dsel_t ylimit) {

 dout_t X_accum=0;
 dout_t Y_accum=0;
 int i,j;

 SUM_X:for (i=0;i<xlimit; i++) {
 X_accum += A[i];
 X[i] = X_accum;
}

 SUM_Y:for (i=0;i<ylimit; i++) {
 Y_accum += B[i];
 Y[i] = Y_accum;
 }
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=302

Because the loops have different bounds (xlimit and ylimit), they cannot be merged. By
placing the loops in separate functions, as shown in the following code example, the identical
functionality can be achieved and both loops (inside the functions), can be scheduled in parallel.

#include "loop_functions.h"

void sub_func(din_t I[N], dout_t O[N], dsel_t limit) {
 int i;
 dout_t accum=0;

 SUM:for (i=0;i<limit; i++) {
 accum += I[i];
 O[i] = accum;
 }

}

void loop_functions(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
 dsel_t xlimit, dsel_t ylimit) {

 sub_func(A,X,xlimit);
 sub_func(B,Y,ylimit);
}

If the previous example is synthesized, the latency is half the latency of the sequential loops
example because the loops (as functions) can now execute in parallel.

The dataflow optimization could also be used in the sequential loops example. The principle of
capturing loops in functions to exploit parallelism is presented here for cases in which dataflow
optimization cannot be used. For example, in a larger example, dataflow optimization is applied
to all loops and functions at the top-level and memories placed between every top-level loop and
function.

Loop Dependencies
Loop dependencies are data dependencies that prevent optimization of loops, typically
pipelining. They can be within a single iteration of a loop and or between different iteration of a
loop.

The easiest way to understand loop dependencies is to examine an extreme example. In the
following example, the result of the loop is used as the loop continuation or exit condition. Each
iteration of the loop must finish before the next can start.

 Minim_Loop: while (a != b) {
 if (a > b)
 a -= b;
 else
 b -= a;
 }

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=303

This loop cannot be pipelined. The next iteration of the loop cannot begin until the previous
iteration ends. Not all loop dependencies are as extreme as this, but this example highlights that
some operations cannot begin until some other operation has completed. The solution is to try
ensure the initial operation is performed as early as possible.

Loop dependencies can occur with any and all types of data. They are particularly common when
using arrays.

Unrolling Loops in C++ Classes
When loops are used in C++ classes, care should be taken to ensure the loop induction variable is
not a data member of the class as this prevents the loop for being unrolled.

In this example, loop induction variable k is a member of class foo_class.

template <typename T0, typename T1, typename T2, typename T3, int N>
class foo_class {
private:
 pe_mac<T0, T1, T2> mac;
public:
 T0 areg;
 T0 breg;
 T2 mreg;
 T1 preg;
 T0 shift[N];
 int k; // Class Member
 T0 shift_output;
 void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
 {
Function_label0:;
#pragma HLS inline off
 SRL:for (k = N-1; k >= 0; --k) {
#pragma HLS unroll // Loop will fail UNROLL
 if (k > 0)
 shift[k] = shift[k-1];
 else
 shift[k] = data;
 }

 *dataOut = shift_output;
 shift_output = shift[N-1];
 }

 *pcout = mac.exec1(shift[4*col], coeff, pcin);
};

For Vivado® HLS to be able to unroll the loop as specified by the UNROLL pragma directive, the
code should be rewritten to remove k as a class member.

template <typename T0, typename T1, typename T2, typename T3, int N>
class foo_class {
private:
 pe_mac<T0, T1, T2> mac;
public:

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=304

 T0 areg;
 T0 breg;
 T2 mreg;
 T1 preg;
 T0 shift[N];
 T0 shift_output;
 void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
 {
Function_label0:;
 int k; // Local variable
#pragma HLS inline off
 SRL:for (k = N-1; k >= 0; --k) {
#pragma HLS unroll // Loop will unroll
 if (k > 0)
 shift[k] = shift[k-1];
 else
 shift[k] = data;
 }

 *dataOut = shift_output;
 shift_output = shift[N-1];
 }

 *pcout = mac.exec1(shift[4*col], coeff, pcin);
};

Arrays
Before discussing how the coding style can impact the implementation of arrays after synthesis it
is worthwhile discussing a situation where arrays can introduce issues even before synthesis is
performed, for example, during C simulation.

If you specify a very large array, it might cause C simulation to run out of memory and fail, as
shown in the following example:

#include "ap_cint.h"

 int i, acc;
 // Use an arbitrary precision type
 int32 la0[10000000], la1[10000000];

 for (i=0 ; i < 10000000; i++) {
 acc = acc + la0[i] + la1[i];
 }

The simulation might fail by running out of memory, because the array is placed on the stack that
exists in memory rather than the heap that is managed by the OS and can use local disk space to
grow.

This might mean the design runs out of memory when running and certain issues might make this
issue more likely:

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=305

• On PCs, the available memory is often less than large Linux boxes and there might be less
memory available.

• Using arbitrary precision types, as shown above, could make this issue worse as they require
more memory than standard C types.

• Using the more complex fixed-point arbitrary precision types found in C++ and SystemC might
make the issue even more likely as they require even more memory.

The standard way to improve memory resources in C/C++ code development is to increase the
size of the stack using the linker options such as the following option which explicitly sets the
stack size -Wl,--stack,10485760. This can be applied in Vivado® HLS by going to Project
Settings → Simulation → Linker flags, or it can also be provided as options to the Tcl commands:

csim_design -ldflags {-Wl,--stack,10485760}
cosim_design -ldflags {-Wl,--stack,10485760}

In some cases, the machine may not have enough available memory and increasing the stack size
does not help.

A solution is to use dynamic memory allocation for simulation but a fixed sized array for
synthesis, as shown in the next example. This means that the memory required for this is
allocated on the heap, managed by the OS, and which can use local disk space to grow.

A change such as this to the code is not ideal, because the code simulated and the code
synthesized are now different, but this might sometimes be the only way to move the design
process forward. If this is done, be sure that the C test bench covers all aspects of accessing the
array. The RTL simulation performed by cosim_design will verify that the memory accesses
are correct.

#include "ap_cint.h"

 int i, acc;
#ifdef __SYNTHESIS__
 // Use an arbitrary precision type & array for synthesis
 int32 la0[10000000], la1[10000000];
#else
 // Use an arbitrary precision type & dynamic memory for simulation
 int32 *la0 = malloc(10000000 * sizeof(int32));
 int32 *la1 = malloc(10000000 * sizeof(int32));
#endif
 for (i=0 ; i < 10000000; i++) {
 acc = acc + la0[i] + la1[i];
 }

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C simulation or C RTL co-simulation.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=306

Arrays are typically implemented as a memory (RAM, ROM or FIFO) after synthesis. Arrays on
the top-level function interface are synthesized as RTL ports that access a memory outside.
Internal to the design, arrays sized less than 1024 will be synthesized as SRL. Arrays sized greater
than 1024 will be synthesized into block RAM, LUTRAM, UltraRAM depending on the
optimization settings.

Like loops, arrays are an intuitive coding construct and so they are often found in C programs.
Also like loops, Vivado HLS includes optimizations and directives that can be applied to optimize
their implementation in RTL without any need to modify the code.

Cases in which arrays can create issues in the RTL include:

• Array accesses can often create bottlenecks to performance. When implemented as a
memory, the number of memory ports limits access to the data. Array initialization, if not
performed carefully, can result in undesirably long reset and initialization in the RTL.

• Some care must be taken to ensure arrays that only require read accesses are implemented as
ROMs in the RTL.

Vivado HLS supports arrays of pointers. Each pointer can point only to a scalar or an array of
scalars.

Note: Arrays must be sized. For example, sized arrays are supported, for example: Array[10];. However,
unsized arrays are not supported, for example: Array[];.

Array Accesses and Performance
The following code example shows a case in which accesses to an array can limit performance in
the final RTL design. In this example, there are three accesses to the array mem[N] to create a
summed result.

#include "array_mem_bottleneck.h"

dout_t array_mem_bottleneck(din_t mem[N]) {

 dout_t sum=0;
 int i;

 SUM_LOOP:for(i=2;i<N;++i)
 sum += mem[i] + mem[i-1] + mem[i-2];

 return sum;
}

During synthesis, the array is implemented as a RAM. If the RAM is specified as a single-port
RAM it is impossible to pipeline loop SUM_LOOP to process a new loop iteration every clock
cycle.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 307Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=307

Trying to pipeline SUM_LOOP with an initiation interval of 1 results in the following message
(after failing to achieve a throughput of 1, Vivado® HLS relaxes the constraint):

INFO: [SCHED 61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

The issue here is that the single-port RAM has only a single data port: only one read (and one
write) can be performed in each clock cycle.

• SUM_LOOP Cycle1: read mem[i];

• SUM_LOOP Cycle2: read mem[i-1], sum values;

• SUM_LOOP Cycle3: read mem[i-2], sum values;

A dual-port RAM could be used, but this allows only two accesses per clock cycle. Three reads
are required to calculate the value of sum, and so three accesses per clock cycle are required to
pipeline the loop with an new iteration every clock cycle.

CAUTION! Arrays implemented as memory or memory ports can often become bottlenecks to
performance.

The code in the example above can be rewritten as shown in the following code example to allow
the code to be pipelined with a throughput of 1. In the following code example, by performing
pre-reads and manually pipelining the data accesses, there is only one array read specified in
each iteration of the loop. This ensures that only a single-port RAM is required to achieve the
performance.

#include "array_mem_perform.h"

dout_t array_mem_perform(din_t mem[N]) {

 din_t tmp0, tmp1, tmp2;
 dout_t sum=0;
 int i;

 tmp0 = mem[0];
 tmp1 = mem[1];
 SUM_LOOP:for (i = 2; i < N; i++) {
 tmp2 = mem[i];
 sum += tmp2 + tmp1 + tmp0;
 tmp0 = tmp1;
 tmp1 = tmp2;
 }

 return sum;
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=308

Vivado HLS includes optimization directives for changing how arrays are implemented and
accessed. It is typically the case that directives can be used, and changes to the code are not
required. Arrays can be partitioned into blocks or into their individual elements. In some cases,
Vivado HLS partitions arrays into individual elements. This is controllable using the configuration
settings for auto-partitioning.

When an array is partitioned into multiple blocks, the single array is implemented as multiple RTL
RAM blocks. When partitioned into elements, each element is implemented as a register in the
RTL. In both cases, partitioning allows more elements to be accessed in parallel and can help with
performance; the design trade-off is between performance and the number of RAMs or registers
required to achieve it.

FIFO Accesses

A special care of arrays accesses are when arrays are implemented as FIFOs. This is often the
case when dataflow optimization is used.

Accesses to a FIFO must be in sequential order starting from location zero. In addition, if an array
is read in multiple locations, the code must strictly enforce the order of the FIFO accesses. It is
often the case that arrays with multiple fanout cannot be implemented as FIFOs without
additional code to enforce the order of the accesses.

Arrays on the Interface
Vivado® HLS synthesizes arrays into memory elements by default. When you use an array as an
argument to the top-level function, Vivado HLS assumes the following:

• Memory is off-chip.

Vivado HLS synthesizes interface ports to access the memory.

• Memory is standard block RAM with a latency of 1.

The data is ready one clock cycle after the address is supplied.

To configure how Vivado HLS creates these ports:

• Specify the interface as a RAM or FIFO interface using the INTERFACE directive.

• Specify the RAM as a single or dual-port RAM using the RESOURCE directive.

• Specify the RAM latency using the RESOURCE directive.

• Use array optimization directives (Array_Partition, Array_Map, or Array_Reshape) to
reconfigure the structure of the array and therefore, the number of I/O ports.

TIP: Because access to the data is limited through a memory (RAM or FIFO) port, arrays on the interface
can create a performance bottleneck. Typically, you can overcome these bottlenecks using directives.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=309

Arrays must be sized when using arrays in synthesizable code. If, for example, the declaration
d_i[4] in Array Interfaces is changed to d_i[], Vivado HLS issues a message that the design
cannot be synthesized:

@E [SYNCHK-61] array_RAM.c:52: unsupported memory access on variable 'd_i'
which is (or contains) an array with unknown size at compile time.

Array Interfaces

The resource directive can explicitly specify which type of RAM is used, and therefore which
RAM ports are created (single-port or dual-port). If no resource is specified, Vivado® HLS uses:

• A single-port RAM by default.

• A dual-port RAM if it reduces the initiation interval or reduces latency.

The partition, map, and reshape directives can re-configure arrays on the interface. Arrays
can be partitioned into multiple smaller arrays, each implemented with its own interface. This
includes the ability to partition every element of the array into its own scalar element. On the
function interface, this results in a unique port for every element in the array. This provides
maximum parallel access, but creates many more ports and might introduce routing issues in the
hierarchy above.

Similarly, smaller arrays can be combined into a single larger array, resulting in a single interface.
While this might map better to an off-chip block RAM, it might also introduce a performance
bottleneck. These trade-offs can be made using Vivado HLS optimization directives and do not
impact coding.

By default, the array arguments in the function shown in the following code example are
synthesized into a single-port RAM interface.

#include "array_RAM.h"

void array_RAM (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
 int i;

 For_Loop: for (i=0;i<4;i++) {
 d_o[i] = d_i[idx[i]];
 }

}

A single-port RAM interface is used because the for-loop ensures that only one element can
be read and written in each clock cycle. There is no advantage in using a dual-port RAM
interface.

If the for-loop is unrolled, Vivado HLS uses a dual-port. Doing so allows multiple elements to be
read at the same time and improves the initiation interval. The type of RAM interface can be
explicitly set by applying the resource directive.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 310Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=310

Issues related to arrays on the interface are typically related to throughput. They can be handled
with optimization directives. For example, if the arrays in the example above are partitioned into
individual elements and the for-loop unrolled, all four elements in each array are accessed
simultaneously.

You can also use the RESOURCE directive to specify the latency of the RAM. This allows Vivado
HLS to model external SRAMs with a latency of greater than 1 at the interface.

FIFO Interfaces

Vivado® HLS allows array arguments to be implemented as FIFO ports in the RTL. If a FIFO ports
is to be used, be sure that the accesses to and from the array are sequential. Vivado HLS
determines whether the accesses are sequential.

Table 44: Vivado HLS Analysis of Sequential Access

Accesses Sequential? Vivado HLS Action
Yes Implements the FIFO port.

No
1. Issues an error message.

2. Halts synthesis.

Indeterminate
1. Issues a warning.

2. Implements the FIFO port.

Note: If the accesses are in fact not sequential, there is an RTL simulation mismatch.

The following code example shows a case in which Vivado HLS cannot determine whether the
accesses are sequential. In this example, both d_i and d_o are specified to be implemented with
a FIFO interface during synthesis.

#include "array_FIFO.h"

void array_FIFO (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
 int i;
#pragma HLS INTERFACE ap_fifo port=d_i
#pragma HLS INTERFACE ap_fifo port=d_o
 // Breaks FIFO interface d_o[3] = d_i[2];
 For_Loop: for (i=0;i<4;i++) {
 d_o[i] = d_i[idx[i]];
 }
}

In this case, the behavior of variable idx determines whether or not a FIFO interface can be
successfully created.

• If idx is incremented sequentially, a FIFO interface can be created.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=311

• If random values are used for idx, a FIFO interface fails when implemented in RTL.

Because this interface might not work, Vivado HLS issues a message during synthesis and creates
a FIFO interface.

@W [XFORM-124] Array 'd_i': may have improper streaming access(es).

If the //Breaks FIFO interface comment in the example above is removed, Vivado HLS
can determine that the accesses to the arrays are not sequential, and it halts with an error
message if a FIFO interface is specified.

Note: FIFO ports cannot be synthesized for arrays that are read from and written to. Separate input and
output arrays (as in the example above) must be created.

The following general rules apply to arrays that are implemented with a streaming interface
(instead of a FIFO interface):

• The array must be written and read in only one loop or function. This can be transformed into
a point-to-point connection that matches the characteristics of FIFO links.

• The array reads must be in the same order as the array write. Because random access is not
supported for FIFO channels, the array must be used in the program following first in, first out
semantics.

• The index used to read and write from the FIFO must be analyzable at compile time. Array
addressing based on runtime computations cannot be analyzed for FIFO semantics and
prevent the tool from converting an array into a FIFO.

Code changes are generally not required to implement or optimize arrays in the top-level
interface. The only time arrays on the interface may need coding changes is when the array is
part of a struct.

Array Initialization
RECOMMENDED: Although not a requirement, Xilinx recommends specifying arrays that are to be
implemented as memories with the static qualifier. This not only ensures that Vivado® HLS implements the
array with a memory in the RTL; it also allows the initialization behavior of static types to be used.

In the following code, an array is initialized with a set of values. Each time the function is
executed, array coeff is assigned these values. After synthesis, each time the design executes
the RAM that implements coeff is loaded with these values. For a single-port RAM this would
take eight clock cycles. For an array of 1024, it would of course take 1024 clock cycles, during
which time no operations depending on coeff could occur.

int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=312

The following code uses the static qualifier to define array coeff. The array is initialized with
the specified values at start of execution. Each time the function is executed, array coeff
remembers its values from the previous execution. A static array behaves in C code as a memory
does in RTL.

static int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

In addition, if the variable has the static qualifier, Vivado HLS initializes the variable in the RTL
design and in the FPGA bitstream. This removes the need for multiple clock cycles to initialize
the memory and ensures that initializing large memories is not an operational overhead.

The RTL configuration command can specify if static variables return to their initial state after a
reset is applied (not the default). If a memory is to be returned to its initial state after a reset
operation, this incurs an operational overhead and requires multiple cycles to reset the values.
Each value must be written into each memory address.

Implementing ROMs

Vivado® HLS does not require that an array be specified with the static qualifier to synthesize
a memory or the const qualifier to infer that the memory should be a ROM. Vivado HLS
analyzes the design and attempts to create the most optimal hardware.

Xilinx highly recommends using the static qualifier for arrays that are intended to be memories.
As noted in Array Initialization, a static type behaves in an almost identical manner as a memory
in RTL.

The const qualifier is also recommended when arrays are only read, because Vivado HLS cannot
always infer that a ROM should be used by analysis of the design. The general rule for the
automatic inference of a ROM is that a local, static (non-global) array is written to before being
read. The following practices in the code can help infer a ROM:

• Initialize the array as early as possible in the function that uses it.

• Group writes together.

• Do not interleave array(ROM) initialization writes with non-initialization code.

• Do not store different values to the same array element (group all writes together in the code).

• Element value computation must not depend on any non-constant (at compile-time) design
variables, other than the initialization loop counter variable.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=313

If complex assignments are used to initialize a ROM (for example, functions from the math.h
library), placing the array initialization into a separate function allows a ROM to be inferred. In
the following example, array sin_table[256] is inferred as a memory and implemented as a
ROM after RTL synthesis.

#include "array_ROM_math_init.h"
#include <math.h>

void init_sin_table(din1_t sin_table[256])
{
 int i;
 for (i = 0; i < 256; i++) {
 dint_t real_val = sin(M_PI * (dint_t)(i - 128) / 256.0);
 sin_table[i] = (din1_t)(32768.0 * real_val);
 }
}

dout_t array_ROM_math_init(din1_t inval, din2_t idx)
{
 short sin_table[256];
 init_sin_table(sin_table);
 return (int)inval * (int)sin_table[idx];
}

TIP: Because the result of the sin()  function results in constant values, no core is required in the RTL
design to implement the sin()  function.

Data Types
The data types used in a C function compiled into an executable impact the accuracy of the
result and the memory requirements, and can impact the performance.

• A 32-bit integer int data type can hold more data and therefore provide more precision than
an 8-bit char type, but it requires more storage.

• If 64-bit long long types are used on a 32-bit system, the run time is impacted because it
typically requires multiple accesses to read and write those values.

Similarly, when the C function is to be synthesized to an RTL implementation, the types impact
the precision, the area, and the performance of the RTL design. The data types used for variables
determine the size of the operators required and therefore the area and performance of the RTL.

Vivado HLS supports the synthesis of all standard C types, including exact-width integer types.

• (unsigned) char, (unsigned) short, (unsigned) int

• (unsigned) long, (unsigned) long long

• (unsigned) intN_t (where N is 8,16,32 and 64, as defined in stdint.h)

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=314

• float, double

Exact-width integers types are useful for ensuring designs are portable across all types of system.

The C standard dictates Integer type (unsigned)long is implemented as 64 bits on 64-bit
operating systems and as 32 bits on 32-bit operating systems. Synthesis matches this behavior
and produces different sized operators, and therefore different RTL designs, depending on the
type of operating system on which Vivado HLS is run. On Windows OS, Microsoft defines type
long as 32-bit, regardless of the OS.

• Use data type (unsigned)int or (unsigned)int32_t instead of type
(unsigned)long for 32-bit.

• Use data type (unsigned)long long or (unsigned)int64_t instead of type
(unsigned)long for 64-bit.

Note: The C/C++ compile option -m32 may be used to specify that the code is compiled for C simulation
and synthesized to the specification of a 32-bit architecture. This ensures the long data type is
implemented as a 32-bit value. This option is applied using the -CFLAGS option to the add_files
command.

Xilinx highly recommends defining the data types for all variables in a common header file, which
can be included in all source files.

• During the course of a typical Vivado HLS project, some of the data types might be refined,
for example to reduce their size and allow a more efficient hardware implementation.

• One of the benefits of working at a higher level of abstraction is the ability to quickly create
new design implementations. The same files typically are used in later projects but might use
different (smaller or larger or more accurate) data types.

Both of these tasks are more easily achieved when the data types can be changed in a single
location: the alternative is to edit multiple files.

IMPORTANT! When using macros in header files, always use unique names. For example, if a macro
named _TYPES_H is defined in your header file, it is likely that such a common name might be defined in
other system files, and it might enable or disable some other code, causing unforeseen side-effects.

Standard Types
The following code example shows some basic arithmetic operations being performed.

#include "types_standard.h"

void types_standard(din_A inA, din_B inB, din_C inC, din_D inD,
 dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=315

 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

The data types in the example above are defined in the header file types_standard.h shown
in the following code example. They show how the following types can be used:

• Standard signed types

• Unsigned types

• Exact-width integer types (with the inclusion of header file stdint.h)

#include <stdio.h>
#include <stdint.h>

#define N 9

typedef char din_A;
typedef short din_B;
typedef int din_C;
typedef long long din_D;

typedef int dout_1;
typedef unsigned char dout_2;
typedef int32_t dout_3;
typedef int64_t dout_4;

void types_standard(din_A inA,din_B inB,din_C inC,din_D inD,dout_1

*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

These different types result in the following operator and port sizes after synthesis:

• The multiplier used to calculate result out1 is a 24-bit multiplier. An 8-bit char type
multiplied by a 16-bit short type requires a 24-bit multiplier. The result is sign-extended to
32-bit to match the output port width.

• The adder used for out2 is 8-bit. Because the output is an 8-bit unsigned char type, only
the bottom 8-bits of inB (a 16-bit short) are added to 8-bit char type inA.

• For output out3 (32-bit exact width type), 8-bit char type inA is sign-extended to 32-bit
value and a 32-bit division operation is performed with the 32-bit (int type) inC input.

• A 64-bit modulus operation is performed using the 64-bit long long type inD and 8-bit
char type inA sign-extended to 64-bit, to create a 64-bit output result out4.

As the result of out1 indicates, Vivado HLS uses the smallest operator it can and extends the
result to match the required output bit-width. For result out2, even though one of the inputs is
16-bit, an 8-bit adder can be used because only an 8-bit output is required. As the results for
out3 and out4 show, if all bits are required, a full sized operator is synthesized.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=316

Floats and Doubles

Vivado HLS supports float and double types for synthesis. Both data types are synthesized
with IEEE-754 standard compliance.

• Single-precision 32 bit

○ 24-bit fraction

○ 8-bit exponent

• Double-precision 64 bit

○ 53-bit fraction

○ 11-bit exponent

RECOMMENDED: When using floating-point data types, Xilinx highly recommends that you review
Floating-Point Design with Vivado HLS (XAPP599)

In addition to using floats and doubles for standard arithmetic operations (such as +, -, *) floats
and doubles are commonly used with the math.h (and cmath.h for C++). This section discusses
support for standard operators.

The following code example shows the header file used with Standard Types updated to define
the data types to be double and float types.

#include <stdio.h>
#include <stdint.h>
#include <math.h>

#define N 9

typedef double din_A;
typedef double din_B;
typedef double din_C;
typedef float din_D;

typedef double dout_1;
typedef double dout_2;
typedef double dout_3;
typedef float dout_4;

void types_float_double(din_A inA,din_B inB,din_C inC,din_D inD,dout_1
*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

This updated header file is used with the following code example where a sqrtf() function is
used.

#include "types_float_double.h"

void types_float_double(
 din_A inA,
 din_B inB,

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 317Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp599-floating-point-vivado-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=317

 din_C inC,
 din_D inD,
 dout_1 *out1,
 dout_2 *out2,
 dout_3 *out3,
 dout_4 *out4
) {

 // Basic arithmetic & math.h sqrtf()
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = sqrtf(inD);

}

When the example above is synthesized, it results in 64-bit double-precision multiplier, adder,
and divider operators. These operators are implemented by the appropriate floating-point Xilinx®

IP catalog cores.

The square-root function used sqrtf() is implemented using a 32-bit single-precision floating-
point core.

If the double-precision square-root function sqrt() was used, it would result in additional logic
to cast to and from the 32-bit single-precision float types used for inD and out4: sqrt() is a
double-precision (double) function, while sqrtf() is a single precision (float) function.

In C functions, be careful when mixing float and double types as float-to-double and double-to-
float conversion units are inferred in the hardware.

float foo_f = 3.1459;
float var_f = sqrt(foo_f);

The above code results in the following hardware:

wire(foo_t)
-> Float-to-Double Converter unit
-> Double-Precision Square Root unit
-> Double-to-Float Converter unit
-> wire (var_f)

Using a sqrtf() function:

• Removes the need for the type converters in hardware.

• Saves area.

• Improves timing.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=318

When synthesizing float and double types, Vivado HLS maintains the order of operations
performed in the C code to ensure that the results are the same as the C simulation. Due to
saturation and truncation, the following are not guaranteed to be the same in single and double
precision operations:

 A=B*C; A=B*F;
 D=E*F; D=E*C;
 O1=A*D O2=A*D;

With float and double types, O1 and O2 are not guaranteed to be the same.

TIP: In some cases (design dependent), optimizations such as unrolling or partial unrolling of loops, might
not be able to take full advantage of parallel computations as Vivado HLS maintains the strict order of the
operations when synthesizing float and double types.

For C++ designs, Vivado HLS provides a bit-approximate implementation of the most commonly
used math functions.

Arbitrary Precision Data Types

Vivado HLS provides arbitrary precision data types as described in Floats and Doubles.

Composite Data Types
Vivado HLS supports composite data types for synthesis:

• struct

• enum

• union

Structs

When structs are used as arguments to the top-level function, the ports created by synthesis are
a direct reflection of the struct members. Scalar members are implemented as standard scalar
ports and arrays are implemented, by default, as memory ports.

In this design example, struct data_t is defined in the header file shown in the following
code example. This struct has two data members:

• An unsigned vector A of type short (16-bit).

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=319

• An array B of four unsigned char types (8-bit).

typedef struct {
 unsigned short A;
 unsigned char B[4];
 } data_t;

data_t struct_port(data_t i_val, data_t *i_pt, data_t *o_pt);

• In the following code example, the struct is used as both a pass-by-value argument (from
i_val to the return of o_val) and as a pointer (*i_pt to *o_pt).

#include "struct_port.h"

data_t struct_port(
 data_t i_val,
 data_t *i_pt,
 data_t *o_pt
) {

 data_t o_val;
 int i;

 // Transfer pass-by-value structs
 o_val.A = i_val.A+2;
 for (i=0;i<4;i++) {
 o_val.B[i] = i_val.B[i]+2;
 }

 // Transfer pointer structs
 o_pt->A = i_pt->A+3;
 for (i=0;i<4;i++) {
 o_pt->B[i] = i_pt->B[i]+3;
 }

 return o_val;
}

All function arguments and the function return are synthesized into ports as follows:

• Struct element A results in a 16-bit port.

• Struct element B results in a RAM port, accessing 4 elements.

There are no limitations in the size or complexity of structs that can be synthesized by Vivado
HLS. There can be as many array dimensions and as many members in a struct as required. The
only limitation with the implementation of structs occurs when arrays are to be implemented as
streaming (such as a FIFO interface). In this case, follow the same general rules that apply to
arrays on the interface (FIFO Interfaces).

The elements on a struct can be packed into a single vector by the data packing optimization. For
more information, see the set_directive_data_pack command on performing this
optimization. Additionally, unused elements of a struct can be removed from the interface by the
-trim_dangling_ports option of the config_interface command.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=320

Enumerated Types

The header file in the following code example defines some enum types and uses them in a
struct. The struct is used in turn in another struct. This allows an intuitive description of a
complex type to be captured.

The following code example shows how a complex define (MAD_NSBSAMPLES) statement can be
specified and synthesized.

#include <stdio.h>

enum mad_layer {
 MAD_LAYER_I = 1,
 MAD_LAYER_II = 2,
 MAD_LAYER_III = 3
};

enum mad_mode {
 MAD_MODE_SINGLE_CHANNEL = 0,
 MAD_MODE_DUAL_CHANNEL = 1,
 MAD_MODE_JOINT_STEREO = 2,
 MAD_MODE_STEREO = 3
};

enum mad_emphasis {
 MAD_EMPHASIS_NONE = 0,
 MAD_EMPHASIS_50_15_US = 1,
 MAD_EMPHASIS_CCITT_J_17 = 3
};

typedef signed int mad_fixed_t;

typedef struct mad_header {
 enum mad_layer layer;
 enum mad_mode mode;
 int mode_extension;
 enum mad_emphasis emphasis;

 unsigned long long bitrate;
 unsigned int samplerate;

 unsigned short crc_check;
 unsigned short crc_target;

 int flags;
 int private_bits;

} header_t;

typedef struct mad_frame {
 header_t header;
 int options;
 mad_fixed_t sbsample[2][36][32];
} frame_t;

define MAD_NSBSAMPLES(header) \
 ((header)->layer == MAD_LAYER_I ? 12 : \

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=321

 (((header)->layer == MAD_LAYER_III && \
 ((header)->flags & 17)) ? 18 : 36))

void types_composite(frame_t *frame);

The struct and enum types defined in the previous example are used in the following example.
If the enum is used in an argument to the top-level function, it is synthesized as a 32-bit value to
comply with the standard C compilation behavior. If the enum types are internal to the design,
Vivado HLS optimizes them down to the only the required number of bits.

The following code example shows how printf statements are ignored during synthesis.

#include "types_composite.h"

void types_composite(frame_t *frame)
{
 if (frame->header.mode != MAD_MODE_SINGLE_CHANNEL) {
 unsigned int ns, s, sb;
 mad_fixed_t left, right;

 ns = MAD_NSBSAMPLES(&frame->header);
 printf("Samples from header %d \n", ns);

 for (s = 0; s < ns; ++s) {
 for (sb = 0; sb < 32; ++sb) {
 left = frame->sbsample[0][s][sb];
 right = frame->sbsample[1][s][sb];
 frame->sbsample[0][s][sb] = (left + right) / 2;
 }
 }
 frame->header.mode = MAD_MODE_SINGLE_CHANNEL;
 }
}

Unions

In the following code example, a union is created with a double and a struct. Unlike C
compilation, synthesis does not guarantee using the same memory (in the case of synthesis,
registers) for all fields in the union. Vivado HLS perform the optimization that provides the most
optimal hardware.

#include "types_union.h"

dout_t types_union(din_t N, dinfp_t F)
{
 union {
 struct {int a; int b; } intval;
 double fpval;
 } intfp;
 unsigned long long one, exp;

 // Set a floating-point value in union intfp
 intfp.fpval = F;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=322

 // Slice out lower bits and add to shifted input
 one = intfp.intval.a;
 exp = (N & 0x7FF);

 return ((exp << 52) + one) & (0x7fffffffffffffffLL);
}

Vivado HLS does not support the following:

• Unions on the top-level function interface.

• Pointer reinterpretation for synthesis. Therefore, a union cannot hold pointers to different
types or to arrays of different types.

• Access to a union through another variable. Using the same union as the previous example,
the following is not supported:

for (int i = 0; i < 6; ++i)
if (i<3)
 A[i] = intfp.intval.a + B[i];
 else
 A[i] = intfp.intval.b + B[i];
}

• However, it can be explicitly re-coded as:

 A[0] = intfp.intval.a + B[0];
 A[1] = intfp.intval.a + B[1];
 A[2] = intfp.intval.a + B[2];
 A[3] = intfp.intval.b + B[3];
 A[4] = intfp.intval.b + B[4];
 A[5] = intfp.intval.b + B[5];

The synthesis of unions does not support casting between native C types and user-defined
types.

Often with VHLS designs, unions are used to convert the raw bits from one data type to another
data type. Generally, this raw bit conversion is needed when using floating point values at the
top-level port interface. For one example, see below:

typedef float T;
unsigned int value; // the "input" of the conversion
T myhalfvalue; // the "output" of the conversion
union
{
 unsigned int as_uint32;
 T as_floatingpoint;
} my_converter;
my_converter.as_uint32 = value;
myhalfvalue = my_converter. as_floatingpoint;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=323

This type of code is fine for float C data types and with modification, it is also fine for double
data types. Changing the typedef and the int to short will not work for half data types,
however, because half is a class and cannot be used in a union. Instead, the following code can be
used:

typedef half T;
short value;
T myhalfvalue = static_cast<T>(value);

Similarly, the conversion the other way around uses value=static_cast<ap_uint<16>
>(myhalfvalue) or static_cast< unsigned short >(myhalfvalue).

ap_fixed<16,4> afix = 1.5;
ap_fixed<20,6> bfix = 1.25;
half ahlf = afix.to_half();
half bhlf = bfix.to_half();

Another method is to use the helper class fp_struct<half> to make conversions using the
methods data() or to_int(). Use the header file hls/utils/x_hls_utils.h.

Type Qualifiers

The type qualifiers can directly impact the hardware created by high-level synthesis. In general,
the qualifiers influence the synthesis results in a predictable manner, as discussed below. Vivado
HLS is limited only by the interpretation of the qualifier as it affects functional behavior and can
perform optimizations to create a more optimal hardware design. Examples of this are shown
after an overview of each qualifier.

Volatile

The volatile qualifier impacts how many reads or writes are performed in the RTL when
pointers are accessed multiple times on function interfaces. Although the volatile qualifier
impacts this behavior in all functions in the hierarchy, the impact of the volatile qualifier is
primarily discussed in the section on top-level interfaces.

Arbitrary precision types do not support the volatile qualifier for arithmetic operations. Any
arbitrary precision data types using the volatile qualifier must be assigned to a non-volatile data
type before being used in arithmetic expression.

Related Information

Understanding Volatile Data

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=324

Statics

Static types in a function hold their value between function calls. The equivalent behavior in a
hardware design is a registered variable (a flip-flop or memory). If a variable is required to be a
static type for the C function to execute correctly, it will certainly be a register in the final RTL
design. The value must be maintained across invocations of the function and design.

It is not true that only static types result in a register after synthesis. Vivado HLS determines
which variables are required to be implemented as registers in the RTL design. For example, if a
variable assignment must be held over multiple cycles, Vivado HLS creates a register to hold the
value, even if the original variable in the C function was not a static type.

Vivado HLS obeys the initialization behavior of statics and assigns the value to zero (or any
explicitly initialized value) to the register during initialization. This means that the static
variable is initialized in the RTL code and in the FPGA bitstream. It does not mean that the
variable is re-initialized each time the reset signal is.

See the RTL configuration (config_rtl command) to determine how static initialization values
are implemented with regard to the system reset.

Const

A const type specifies that the value of the variable is never updated. The variable is read but
never written to and therefore must be initialized. For most const variables, this typically means
that they are reduced to constants in the RTL design. Vivado HLS performs constant propagation
and removes any unnecessary hardware).

In the case of arrays, the const variable is implemented as a ROM in the final RTL design (in the
absence of any auto-partitioning performed by Vivado HLS on small arrays). Arrays specified with
the const qualifier are (like statics) initialized in the RTL and in the FPGA bitstream. There is no
need to reset them, because they are never written to.

Vivado HLS Optimizations

The following code example shows a case in which Vivado HLS implements a ROM even though
the array is not specified with a static or const qualifier. This highlights how Vivado HLS
analyzes the design and determines the most optimal implementation. The qualifiers, or lack of
them, influence but do not dictate the final RTL.

#include "array_ROM.h"

dout_t array_ROM(din1_t inval, din2_t idx)
{
 din1_t lookup_table[256];
 dint_t i;

 for (i = 0; i < 256; i++) {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=325

 lookup_table[i] = 256 * (i - 128);
 }

 return (dout_t)inval * (dout_t)lookup_table[idx];
}

In the case of the previous example, Vivado HLS is able to determine that the implementation is
best served by having the variable lookup_table as a memory element in the final RTL.

Global Variables
Global variables can be freely used in the code and are fully synthesizable. By default, global
variables are not exposed as ports on the RTL interface.

The following code example shows the default synthesis behavior of global variables. It uses
three global variables. Although this example uses arrays, Vivado HLS supports all types of global
variables.

• Values are read from array Ain.

• Array Aint is used to transform and pass values from Ain to Aout.

• The outputs are written to array Aout.

din_t Ain[N];
din_t Aint[N];
dout_t Aout[N/2];

void types_global(din1_t idx) {
 int i,lidx;

 // Move elements in the input array
 for (i=0; i<N; ++i) {
 lidx=i;
 if(lidx+idx>N-1)
 lidx=i-N;
 Aint[lidx] = Ain[lidx+idx] + Ain[lidx];
 }

 // Sum to half the elements
 for (i=0; i<(N/2); i++) {
 Aout[i] = (Aint[i] + Aint[i+1])/2;
 }

}

By default, after synthesis, the only port on the RTL design is port idx. Global variables are not
exposed as RTL ports by default. In the default case:

• Array Ain is an internal RAM that is read from.

• Array Aout is an internal RAM that is written to.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=326

Exposing Global Variables as I/O Ports

While global variables are not exposed as I/O ports by default, they can be exposed as I/O ports
by the using the expose_global option. The expose_global option in the interface
configuration can expose all global variables as ports on the RTL interface. The interface
configuration can be set by:

• Solution Settings →  General, or

• The config_interface Tcl command

When global variables are exposed using the interface configuration, all global variables in the
design are exposed as I/O ports, including those that are accessed exclusively inside the design.

Finally, if any global variable is specified with the static qualifier, it cannot be synthesized to an
I/O port.

In summary, while Vivado HLS supports global variables for synthesis, Xilinx does not
recommend a coding style that uses global variables extensively.

Pointers
Pointers are used extensively in C code and are well-supported for synthesis. When using
pointers, be careful in the following cases:

• When pointers are accessed (read or written) multiple times in the same function.

• When using arrays of pointers, each pointer must point to a scalar or a scalar array (not
another pointer).

• Pointer casting is supported only when casting between standard C types, as shown.

The following code example shows synthesis support for pointers that point to multiple objects.

#include "pointer_multi.h"

dout_t pointer_multi (sel_t sel, din_t pos) {
 static const dout_t a[8] = {1, 2, 3, 4, 5, 6, 7, 8};
 static const dout_t b[8] = {8, 7, 6, 5, 4, 3, 2, 1};

 dout_t* ptr;
 if (sel)
 ptr = a;
 else
 ptr = b;

 return ptr[pos];
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=327

Vivado HLS supports pointers to pointers for synthesis but does not support them on the top-
level interface, that is, as argument to the top-level function. If you use a pointer to pointer in
multiple functions, Vivado HLS inlines all functions that use the pointer to pointer. Inlining
multiple functions can increase run time.

#include "pointer_double.h"

data_t sub(data_t ptr[10], data_t size, data_t**flagPtr)
{
 data_t x, i;

 x = 0;
 // Sum x if AND of local index and pointer to pointer index is true
 for(i=0; i<size; ++i)
 if (**flagPtr & i)
 x += *(ptr+i);
 return x;
}

data_t pointer_double(data_t pos, data_t x, data_t* flag)
{
 data_t array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 data_t* ptrFlag;
 data_t i;

 ptrFlag = flag;

 // Write x into index position pos
 if (pos >=0 & pos < 10)
 *(array+pos) = x;

 // Pass same index (as pos) as pointer to another function
 return sub(array, 10, &ptrFlag);
}

Arrays of pointers can also be synthesized. See the following code example in which an array of
pointers is used to store the start location of the second dimension of a global array. The pointers
in an array of pointers can point only to a scalar or to an array of scalars. They cannot point to
other pointers.

#include "pointer_array.h"

data_t A[N][10];

data_t pointer_array(data_t B[N*10]) {
 data_t i,j;
 data_t sum1;

 // Array of pointers
 data_t* PtrA[N];

 // Store global array locations in temp pointer array
 for (i=0; i<N; ++i)
 PtrA[i] = &(A[i][0]);

 // Copy input array using pointers
 for(i=0; i<N; ++i)

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=328

 for(j=0; j<10; ++j)
 *(PtrA[i]+j) = B[i*10 + j];

 // Sum input array
 sum1 = 0;
 for(i=0; i<N; ++i)
 for(j=0; j<10; ++j)
 sum1 += *(PtrA[i] + j);

 return sum1;
}

Pointer casting is supported for synthesis if native C types are used. In the following code
example, type int is cast to type char.

#define N 1024

typedef int data_t;
typedef char dint_t;

data_t pointer_cast_native (data_t index, data_t A[N]) {
 dint_t* ptr;
 data_t i =0, result = 0;
 ptr = (dint_t*)(&A[index]);

 // Sum from the indexed value as a different type
 for (i = 0; i < 4*(N/10); ++i) {
 result += *ptr;
 ptr+=1;
 }
 return result;
}

Vivado HLS does not support pointer casting between general types. For example, if a
(struct) composite type of signed values is created, the pointer cannot be cast to assign
unsigned values.

struct {
 short first;
 short second;
} pair;

// Not supported for synthesis
(unsigned)(&pair) = -1U;

In such cases, the values must be assigned using the native types.

struct {
 short first;
 short second;
} pair;

// Assigned value
pair.first = -1U;
pair.second = -1U;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=329

Pointers on the Interface

Pointers can be used as arguments to the top-level function. It is important to understand how
pointers are implemented during synthesis, because they can sometimes cause issues in
achieving the desired RTL interface and design after synthesis.

Basic Pointers

A function with basic pointers on the top-level interface, such as shown in the following code
example, produces no issues for Vivado HLS. The pointer can be synthesized to either a simple
wire interface or an interface protocol using handshakes.

TIP: To be synthesized as a FIFO interface, a pointer must be read-only or write-only.

#include "pointer_basic.h"

void pointer_basic (dio_t *d) {
 static dio_t acc = 0;

 acc += *d;
 *d = acc;
}

The pointer on the interface is read or written only once per function call. The test bench shown
in the following code example.

#include "pointer_basic.h"

int main () {
 dio_t d;
 int i, retval=0;
 FILE *fp;

 // Save the results to a file
 fp=fopen(result.dat,w);
 printf(Din Dout\n, i, d);

 // Create input data
 // Call the function to operate on the data
 for (i=0;i<4;i++) {
 d = i;
 pointer_basic(&d);
 fprintf(fp, %d \n, d);
 printf(%d %d\n, i, d);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed!!!\n);
 retval=1;
 } else {
 printf(Test passed!\n);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=330

 }

 // Return 0 if the test
 return retval;
}

C and RTL simulation verify the correct operation (although not all possible cases) with this
simple data set:

Din Dout
 0 0
 1 1
 2 3
 3 6
Test passed!

Pointer Arithmetic

Introducing pointer arithmetic limits the possible interfaces that can be synthesized in RTL. The
following code example shows the same code, but in this instance simple pointer arithmetic is
used to accumulate the data values (starting from the second value).

#include "pointer_arith.h"

void pointer_arith (dio_t *d) {
 static int acc = 0;
 int i;

 for (i=0;i<4;i++) {
 acc += *(d+i+1);
 *(d+i) = acc;
 }
}

The following code example shows the test bench that supports this example. Because the loop
to perform the accumulations is now inside function pointer_arith, the test bench populates
the address space specified by array d[5] with the appropriate values.

#include "pointer_arith.h"

int main () {
 dio_t d[5], ref[5];
 int i, retval=0;
 FILE *fp;

 // Create input data
 for (i=0;i<5;i++) {
 d[i] = i;
 ref[i] = i;
 }

 // Call the function to operate on the data
 pointer_arith(d);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=331

 // Save the results to a file
 fp=fopen(result.dat,w);
 printf(Din Dout\n, i, d);
 for (i=0;i<4;i++) {
 fprintf(fp, %d \n, d[i]);
 printf(%d %d\n, ref[i], d[i]);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed!!!\n);
 retval=1;
 } else {
 printf(Test passed!\n);
 }

 // Return 0 if the test
 return retval;
}

When simulated, this results in the following output:

Din Dout
 0 1
 1 3
 2 6
 3 10
Test passed!

The pointer arithmetic does not access the pointer data in sequence. Wire, handshake, or FIFO
interfaces have no way of accessing data out of order:

• A wire interface reads data when the design is ready to consume the data or write the data
when the data is ready.

• Handshake and FIFO interfaces read and write when the control signals permit the operation
to proceed.

In both cases, the data must arrive (and is written) in order, starting from element zero. In the
Interface with Pointer Arithmetic example, the code states the first data value read is from index
1 (i starts at 0, 0+1=1). This is the second element from array d[5] in the test bench.

When this is implemented in hardware, some form of data indexing is required. Vivado HLS does
not support this with wire, handshake, or FIFO interfaces. The code in the Interface with Pointer
Arithmetic example can be synthesized only with an ap_bus interface. This interface supplies an
address with which to index the data when the data is accessed (read or write).

Alternatively, the code must be modified with an array on the interface instead of a pointer, as in
the following example. This can be implemented in synthesis with a RAM (ap_memory) interface.
This interface can index the data with an address and can perform out-of-order, or non-
sequential, accesses.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=332

Wire, handshake, or FIFO interfaces can be used only on streaming data. It cannot be used in
conjunction with pointer arithmetic (unless it indexes the data starting at zero and then proceeds
sequentially).

#include "array_arith.h"

void array_arith (dio_t d[5]) {
 static int acc = 0;
 int i;

 for (i=0;i<4;i++) {
 acc += d[i+1];
 d[i] = acc;
 }
}

Multi-Access Pointer Interfaces: Streaming Data

Designs that use pointers in the argument list of the top-level function need special
consideration when multiple accesses are performed using pointers. Multiple accesses occur
when a pointer is read from or written to multiple times in the same function.

• You must use the volatile qualifier on any function argument accessed multiple times.

• On the top-level function, any such argument must have the number of accesses on the port
interface specified if you are verifying the RTL using co-simulation within Vivado HLS.

• Be sure to validate the C before synthesis to confirm the intent and that the C model is
correct.

If modeling the design requires that an function argument be accessed multiple times, Xilinx
recommends that you model the design using streams. Use streams to ensure that you do not
encounter the issues discussed in this section. The designs in the following table use the Coding
Examples.

Table 45: Example Design Scenarios

Example Design Shows
pointer_stream_bad Why the volatile qualifier is required when accessing

pointers multiple times within the same function.
pointer_stream_better Why any design with such pointers on the top-level interface

should be verified with a C test bench to ensure that the
intended behavior is correctly modeled.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=333

In the following code example, input pointer d_i is read from four times and output d_o is
written to twice, with the intent that the accesses are implemented by FIFO interfaces (streaming
data into and out of the final RTL implementation).

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

The test bench to verify this design is shown in the following code example.

#include "pointer_stream_bad.h"

int main () {
 din_t d_i;
 dout_t d_o;
 int retval=0;
 FILE *fp;

 // Open a file for the output results
 fp=fopen(result.dat,w);

 // Call the function to operate on the data
 for (d_i=0;d_i<4;d_i++) {
 pointer_stream_bad(&d_o,&d_i);
 fprintf(fp, %d %d\n, d_i, d_o);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);
 }

 // Return 0 if the test
 return retval;
}

Understanding Volatile Data

The code in the Multi-Access Pointer Interface example is written with intent that input pointer
d_i and output pointer d_o are implemented in RTL as FIFO (or handshake) interfaces to ensure
that:

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=334

• Upstream producer blocks supply new data each time a read is performed on RTL port d_i.

• Downstream consumer blocks accept new data each time there is a write to RTL port d_o.

When this code is compiled by standard C compilers, the multiple accesses to each pointer is
reduced to a single access. As far as the compiler is concerned, there is no indication that the
data on d_i changes during the execution of the function and only the final write to d_o is
relevant. The other writes are overwritten by the time the function completes.

Vivado HLS matches the behavior of the gcc compiler and optimizes these reads and writes into
a single read operation and a single write operation. When the RTL is examined, there is only a
single read and write operation on each port.

The fundamental issue with this design is that the test bench and design do not adequately
model how you expect the RTL ports to be implemented:

• You expect RTL ports that read and write multiple times during a transaction (and can stream
the data in and out).

• The test bench supplies only a single input value and returns only a single output value. A C
simulation of Multi-Access Pointer Interfaces: Streaming Data shows the following results,
which demonstrates that each input is being accumulated four times. The same value is being
read once and accumulated each time. It is not four separate reads.

Din Dout
0 0
1 4
2 8
3 12

• To make this design read and write to the RTL ports multiple times, use a volatile qualifier.
See the following code example.

The volatile qualifier tells the C compiler (and Vivado HLS) to make no assumptions about
the pointer accesses. That is, the data is volatile and might change.

TIP: Do not optimize pointer accesses.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=335

The example above simulates the same as Multi-Access Pointer Interfaces: Streaming Data,
but the volatile qualifier:

• Prevents pointer access optimizations.

• Results in an RTL design that performs the expected four reads on input port d_i and two
writes to output port d_o.

Even if the volatile keyword is used, this coding style (accessing a pointer multiple times) still
has an issue in that the function and test bench do not adequately model multiple distinct reads
and writes.

In this case, four reads are performed, but the same data is read four times. There are two
separate writes, each with the correct data, but the test bench captures data only for the final
write.

Note: To see the intermediate accesses, enable cosim_design to create a trace file during RTL simulation
and view the trace file in the appropriate viewer.

The Multi-Access Volatile Pointer Interface example above can be implemented with wire
interfaces. If a FIFO interface is specified, Vivado HLS creates an RTL test bench to stream new
data on each read. Because no new data is available from the test bench, the RTL fails to verify.
The test bench does not correctly model the reads and writes.

Modeling Streaming Data Interfaces

Unlike software, the concurrent nature of hardware systems allows them to take advantage of
streaming data. Data is continuously supplied to the design and the design continuously outputs
data. An RTL design can accept new data before the design has finished processing the existing
data.

As Understanding Volatile Data shows, modeling streaming data in software is non-trivial,
especially when writing software to model an existing hardware implementation (where the
concurrent/streaming nature already exists and needs to be modeled).

There are several possible approaches:

• Add the volatile qualifier as shown in the Multi-Access Volatile Pointer Interface example.
The test bench does not model unique reads and writes, and RTL simulation using the original
C test bench might fail, but viewing the trace file waveforms shows that the correct reads and
writes are being performed.

• Modify the code to model explicit unique reads and writes. See the following example.

• Modify the code to using a streaming data type. A streaming data type allows hardware using
streaming data to be accurately modeled.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=336

The following code example has been updated to ensure that it reads four unique values from
the test bench and write two unique values. Because the pointer accesses are sequential and
start at location zero, a streaming interface type can be used during synthesis.

#include "pointer_stream_good.h"

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *(d_i+1);
 *d_o = acc;
 acc += *(d_i+2);
 acc += *(d_i+3);
 *(d_o+1) = acc;
}

The test bench is updated to model the fact that the function reads four unique values in each
transaction. This new test bench models only a single transaction. To model multiple
transactions, the input data set must be increased and the function called multiple times.

#include "pointer_stream_good.h"

int main () {
 din_t d_i[4];
 dout_t d_o[4];
 int i, retval=0;
 FILE *fp;

 // Create input data
 for (i=0;i<4;i++) {
 d_i[i] = i;
 }

 // Call the function to operate on the data
 pointer_stream_good(d_o,d_i);

 // Save the results to a file
 fp=fopen(result.dat,w);
 for (i=0;i<4;i++) {
 if (i<2)
 fprintf(fp, %d %d\n, d_i[i], d_o[i]);
 else
 fprintf(fp, %d \n, d_i[i]);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=337

 }

 // Return 0 if the test
 return retval;
}

The test bench validates the algorithm with the following results, showing that:

• There are two outputs from a single transaction.

• The outputs are an accumulation of the first two input reads, plus an accumulation of the next
two input reads and the previous accumulation.

Din Dout
0 1
1 6
2
3

• The final issue to be aware of when pointers are accessed multiple time at the function
interface is RTL simulation modeling.

Multi-Access Pointers and RTL Simulation

When pointers on the interface are accessed multiple times, to read or write, Vivado HLS cannot
determine from the function interface how many reads or writes are performed. Neither of the
arguments in the function interface informs Vivado HLS how many values are read or written.

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i)

Unless the interface informs Vivado HLS how many values are required (for example, the
maximum size of an array), Vivado HLS assumes a single value and creates C/RTL co-simulation
for only a single input and a single output.

If the RTL ports are actually reading or writing multiple values, the RTL co-simulation stalls. RTL
co-simulation models the producer and consumer blocks that are connected to the RTL design. If
it requires more than a single value, the RTL design stalls when trying to read or write more than
one value (because there is currently no value to read or no space to write).

When multi-access pointers are used at the interface, Vivado HLS must be informed of the
maximum number of reads or writes on the interface. When specifying the interface, use the
depth option on the INTERFACE directive as shown in the following figure.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=338

Figure 86: Vivado HLS Directive Editor with Depth Option

In the above example, argument or port d_i is set to have a FIFO interface with a depth of four.
This ensures RTL co-simulation provides enough values to correctly verify the RTL.

C Builtin Functions
Vivado HLS supports the following C bultin functions:

• __builtin_clz(unsigned int x): Returns the number of leading 0-bits in x, starting at
the most significant bit position. If x is 0, the result is undefined.

• __builtin_ctz(unsigned int x): Returns the number of trailing 0-bits in x, starting at
the least significant bit position. If x is 0, the result is undefined.

The following example shows these functions may be used. This example returns the sum of the
number of leading zeros in in0 and training zeros in in1:

int foo (int in0, int in1) {
 int ldz0 = __builtin_clz(in0);
 int ldz1 = __builtin_ctz(in1);
 return (ldz0 + ldz1);
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=339

Hardware Efficient C Code
When C code is compiled for a CPU, the complier transforms and optimizes the C code into a set
of CPU machine instructions. In many cases, the developers work is done at this stage. If
however, there is a need for performance the developer will seek to perform some or all of the
following:

• Understand if any additional optimizations can be performed by the compiler.

• Seek to better understand the processor architecture and modify the code to take advantage
of any architecture specific behaviors (for example, reducing conditional branching to improve
instruction pipelining)

• Modify the C code to use CPU-specific intrinsics to perform key operations in parallel. (for
example, Arm NEON intrinsics)

The same methodology applies to code written for a DSP or a GPU, and when using an FPGA: an
FPGA device is simply another target.

C code synthesized by Vivado HLS will execute on an FPGA and provide the same functionality
as the C simulation. In some cases, the developers work is done at this stage.

Typically however, an FPGA is selected to implement the C code due to the superior
performance of the FPGA device - the massively parallel architecture of an FPGA allows it to
perform operations much faster than the inherently sequential operations of a processor - and
users typically wish to take advantage of that performance.

The focus here is on understanding the impact of the C code on the results which can be
achieved and how modifications to the C code can be used to extract the maximum advantage
from the first three items in this list.

Typical C Code for a Convolution Function
A standard convolution function applied to an image is used here to demonstrate how the C
code can negatively impact the performance which is possible from an FPGA. In this example, a
horizontal and then vertical convolution is performed on the data. Since the data at edge of the
image lies outside the convolution windows, the final step is to address the data around the
border.

The algorithm structure can be summarized as follows:

template<typename T, int K>
static void convolution_orig(
 int width,
 int height,
 const T *src,
 T *dst,

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=340

 const T *hcoeff,
const T *vcoeff) {

T local[MAX_IMG_ROWS*MAX_IMG_COLS];

// Horizontal convolution
HconvH:for(int col = 0; col < height; col++){
 HconvWfor(int row = border_width; row < width - border_width; row++){
 Hconv:for(int i = - border_width; i <= border_width; i++){
 }
 }
// Vertical convolution
VconvH:for(int col = border_width; col < height - border_width; col++){
 VconvW:for(int row = 0; row < width; row++){
 Vconv:for(int i = - border_width; i <= border_width; i++){
 }
 }
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){
}
Side_Border:for(int col = border_width; col < height - border_width; col++){
}
Bottom_Border:for(int col = height - border_width; col < height; col++){
}
}

Horizontal Convolution

The first step in this is to perform the convolution in the horizontal direction as shown in the
following figure.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=341

Figure 87: Horizontal Convolution

First Output Second Output Final Output

src

Hsamp

local

Hcoeff

Hsamp

Hcoeff

Hsamp

Hcoeff

X14296

The convolution is performed using K samples of data and K convolution coefficients. In the
figure above, K is shown as 5 however the value of K is defined in the code. To perform the
convolution, a minimum of K data samples are required. The convolution window cannot start at
the first pixel, since the window would need to include pixels which are outside the image.

By performing a symmetric convolution, the first K data samples from input src can be
convolved with the horizontal coefficients and the first output calculated. To calculate the second
output, the next set of K data samples are used. This calculation proceeds along each row until
the final output is written.

The final result is a smaller image, shown above in blue. The pixels along the vertical border are
addressed later.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=342

The C code for performing this operation is shown below.

const int conv_size = K;
const int border_width = int(conv_size / 2);

#ifndef __SYNTHESIS__
 T * const local = new T[MAX_IMG_ROWS*MAX_IMG_COLS];
#else // Static storage allocation for HLS, dynamic otherwise
 T local[MAX_IMG_ROWS*MAX_IMG_COLS];
#endif

Clear_Local:for(int i = 0; i < height * width; i++){
 local[i]=0;
}
// Horizontal convolution
HconvH:for(int col = 0; col < height; col++){
 HconvWfor(int row = border_width; row < width - border_width; row++){
 int pixel = col * width + row;
 Hconv:for(int i = - border_width; i <= border_width; i++){
 local[pixel] += src[pixel + i] * hcoeff[i + border_width];
 }
 }
}

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the test
bench, because it is not obeyed by C simulation or C RTL co-simulation.

The code is straight forward and intuitive. There are already however some issues with this C
code and three which will negatively impact the quality of the hardware results.

The first issue is the requirement for two separate storage requirements. The results are stored in
an internal local array. This requires an array of HEIGHT*WIDTH which for a standard video
image of 1920*1080 will hold 2,073,600 vales. On some Windows systems, it is not uncommon
for this amount of local storage to create issues. The data for a local array is placed on the stack
and not the heap which is managed by the OS.

A useful way to avoid such issues is to use the __SYNTHESIS__ macro. This macro is
automatically defined when synthesis is executed. The code shown above will use the dynamic
memory allocation during C simulation to avoid any compilation issues and only use the static
storage during synthesis. A downside of using this macro is the code verified by C simulation is
not the same code which is synthesized. In this case however, the code is not complex and the
behavior will be the same.

The first issue for the quality of the FPGA implementation is the array local. Since this is an
array it will be implemented using internal FPGA block RAM. This is a very large memory to
implement inside the FPGA. It may require a larger and more costly FPGA device. The use of
block RAM can be minimized by using the DATAFLOW optimization and streaming the data
through small efficient FIFOs, but this will require the data to be used in a streaming manner.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=343

The next issue is the initialization for array local. The loop Clear_Local is used to set the
values in array local to zero. Even if this loop is pipelined, this operation will require
approximately 2 million clock cycles (HEIGHT*WIDTH) to implement. This same initialization of
the data could be performed using a temporary variable inside loop HConv to initialize the
accumulation before the write.

Finally, the throughput of the data is limited by the data access pattern.

• For the first output, the first K values are read from the input.

• To calculate the second output, the same K-1 values are re-read through the data input port.

• This process of re-reading the data is repeated for the entire image.

One of the keys to a high-performance FPGA is to minimize the access to and from the top-level
function arguments. The top-level function arguments become the data ports on the RTL block.
With the code shown above, the data cannot be streamed directly from a processor using a DMA
operation, since the data is required to be re-read time and again. Re-reading inputs also limits
the rate at which the FPGA can process samples.

Vertical Convolution

The next step is to perform the vertical convolution shown in the following figure.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=344

Figure 88: Vertical Convolution

First Output Second Output Final Output

local

Vsamp

dst

Vcoeff

Vsamp

Vcoeff

Vsamp

Vconv

X14299

The process for the vertical convolution is similar to the horizontal convolution. A set of K data
samples is required to convolve with the convolution coefficients, Vcoeff in this case. After the
first output is created using the first K samples in the vertical direction, the next set K values are
used to create the second output. The process continues down through each column until the
final output is created.

After the vertical convolution, the image is now smaller then the source image src due to both
the horizontal and vertical border effect.

The code for performing these operations is:

Clear_Dst:for(int i = 0; i < height * width; i++){
 dst[i]=0;
}
// Vertical convolution
VconvH:for(int col = border_width; col < height - border_width; col++){

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=345

 VconvW:for(int row = 0; row < width; row++){
 int pixel = col * width + row;
 Vconv:for(int i = - border_width; i <= border_width; i++){
 int offset = i * width;
 dst[pixel] += local[pixel + offset] * vcoeff[i + border_width];
 }
 }
}

This code highlights similar issues to those already discussed with the horizontal convolution
code.

• Many clock cycles are spent to set the values in the output image dst to zero. In this case,
approximately another 2 million cycles for a 1920*1080 image size.

• There are multiple accesses per pixel to re-read data stored in array local.

• There are multiple writes per pixel to the output array/port dst.

Another issue with the code above is the access pattern into array local. The algorithm requires
the data on row K to be available to perform the first calculation. Processing data down the rows
before proceeding to the next column requires the entire image to be stored locally. In addition,
because the data is not streamed out of array local, a FIFO cannot be used to implement the
memory channels created by DATAFLOW optimization. If DATAFLOW optimization is used on
this design, this memory channel requires a ping-pong buffer: this doubles the memory
requirements for the implementation to approximately 4 million data samples all stored locally on
the FPGA.

Border Pixels

The final step in performing the convolution is to create the data around the border. These pixels
can be created by simply re-using the nearest pixel in the convolved output. The following figures
shows how this is achieved.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=346

Figure 89: Convolution Border Samples

Top Left Top Row Top Right

Left and Right Edges Bottom Left and Bottom Row Bottom Right

dst

dst

X14294

The border region is populated with the nearest valid value. The following code performs the
operations shown in the figure.

int border_width_offset = border_width * width;
int border_height_offset = (height - border_width - 1) * width;
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){
 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + border_width];
 }
 for(int row = border_width; row < width - border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + row];
 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + width - border_width - 1];
 }
}

Side_Border:for(int col = border_width; col < height - border_width; col++){

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=347

 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[offset + border_width];
 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[offset + width - border_width - 1];
 }
}

Bottom_Border:for(int col = height - border_width; col < height; col++){
 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + border_width];
 }
 for(int row = border_width; row < width - border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + row];
 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + width - border_width - 1];
 }
}

The code suffers from the same repeated access for data. The data stored outside the FPGA in
array dst must now be available to be read as input data re-read multiple time. Even in the first
loop, dst[border_width_offset + border_width] is read multiple times but the values
of border_width_offset and border_width do not change.

The final aspect where this coding style negatively impact the performance and quality of the
FPGA implementation is the structure of how the different conditions is address. A for-loop
processes the operations for each condition: top-left, top-row, etc. The optimization choice here
is to:

Pipelining the top-level loops, (Top_Border, Side_Border, Bottom_Border) is not possible
in this case because some of the sub-loops have variable bounds (based on the value of input
width). In this case you must pipeline the sub-loops and execute each set of pipelined loops
serially.

The question of whether to pipeline the top-level loop and unroll the sub-loops or pipeline the
sub-loops individually is determined by the loop limits and how many resources are available on
the FPGA device. If the top-level loop limit is small, unroll the loops to replicate the hardware and
meet performance. If the top-level loop limit is large, pipeline the lower level loops and lose some
performance by executing them sequentially in a loop (Top_Border, Side_Border,
Bottom_Border).

As shown in this review of a standard convolution algorithm, the following coding styles
negatively impact the performance and size of the FPGA implementation:

• Setting default values in arrays costs clock cycles and performance.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=348

• Multiple accesses to read and then re-read data costs clock cycles and performance.

• Accessing data in an arbitrary or random access manner requires the data to be stored locally
in arrays and costs resources.

Ensuring the Continuous Flow of Data and Data
Reuse
The key to implementing the convolution example reviewed in the previous section as a high-
performance design with minimal resources is to consider how the FPGA implementation will be
used in the overall system. The ideal behavior is to have the data samples constantly flow
through the FPGA.

• Maximize the flow of data through the system. Refrain from using any coding techniques or
algorithm behavior which limits the flow of data.

• Maximize the reuse of data. Use local caches to ensure there are no requirements to re-read
data and the incoming data can keep flowing.

The first step is to ensure you perform optimal I/O operations into and out of the FPGA. The
convolution algorithm is performed on an image. When data from an image is produced and
consumed, it is transferred in a standard raster-scan manner as shown in the following figure.

Figure 90: Raster Scan Order

Width

Height

X14298

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=349

If the data is transferred from the CPU or system memory to the FPGA it will typically be
transferred in this streaming manner. The data transferred from the FPGA back to the system
should also be performed in this manner.

Using HLS Streams for Streaming Data

One of the first enhancements which can be made to the earlier code is to use the HLS stream
construct, typically referred to as an hls::stream. An hls::stream object can be used to store data
samples in the same manner as an array. The data in an hls::stream can only be accessed
sequentially. In the C code, the hls::stream behaves like a FIFO of infinite depth.

Code written using hls::streams will generally create designs in an FPGA which have high-
performance and use few resources because an hls::stream enforces a coding style which is ideal
for implementation in an FPGA.

Multiple reads of the same data from an hls::stream are impossible. Once the data has been read
from an hls::stream it no longer exists in the stream. This helps remove this coding practice.

If the data from an hls::stream is required again, it must be cached. This is another good practice
when writing code to be synthesized on an FPGA.

The hls::stream forces the C code to be developed in a manner which ideal for an FPGA
implementation.

When an hls::stream is synthesized it is automatically implemented as a FIFO channel which is 1
element deep. This is the ideal hardware for connecting pipelined tasks.

There is no requirement to use hls::streams and the same implementation can be performed
using arrays in the C code. The hls::stream construct does help enforce good coding practices.

With an hls::stream construct the outline of the new optimized code is as follows:

template<typename T, int K>
static void convolution_strm(
int width,
int height,
hls::stream<T> &src,
hls::stream<T> &dst,
const T *hcoeff,
const T *vcoeff)
{

hls::stream<T> hconv("hconv");
hls::stream<T> vconv("vconv");
// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS);
assert(width < MAX_IMG_COLS);
assert(vconv_xlim < MAX_IMG_COLS - (K - 1));

// Horizontal convolution
HConvH:for(int col = 0; col < height; col++) {
 HConvW:for(int row = 0; row < width; row++) {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=350

 HConv:for(int i = 0; i < K; i++) {
 }
 }
}
// Vertical convolution
VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++) {
 VConv:for(int i = 0; i < K; i++) {
 }
}

Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 }
}

Some noticeable differences compared to the earlier code are:

• The input and output data is now modelled as hls::streams.

• Instead of a single local array of size HEIGHT*WDITH there are two internal hls::streams used
to save the output of the horizontal and vertical convolutions.

In addition, some assert statements are used to specify the maximize of loop bounds. This is a
good coding style which allows HLS to automatically report on the latencies of variable bounded
loops and optimize the loop bounds.

Horizontal Convolution

To perform the calculation in a more efficient manner for FPGA implementation, the horizontal
convolution is computed as shown in the following figure.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=351

Figure 91: Streaming Horizontal Convolution

First Calculation First Output Final Output

src

Hwin

hconv

Hconv

Hsamp

Hconv

Hsamp

Hconv

X14297

Using an hls::stream enforces the good algorithm practice of forcing you to start by reading the
first sample first, as opposed to performing a random access into data. The algorithm must use
the K previous samples to compute the convolution result, it therefore copies the sample into a
temporary cache hwin. For the first calculation there are not enough values in hwin to compute
a result, so no output values are written.

The algorithm keeps reading input samples a caching them into hwin. Each time is reads a new
sample, it pushes an unneeded sample out of hwin. The first time an output value can be written
is after the Kth input has been read. Now an output value can be written.

The algorithm proceeds in this manner along the rows until the final sample has been read. At
point, only the last K samples are stored in hwin: all that is required to compute the convolution.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=352

The code to perform these operations is shown below.

// Horizontal convolution
 HConvW:for(int row = 0; row < width; row++) {
 HconvW:for(int row = border_width; row < width - border_width; row++){
 T in_val = src.read();
 T out_val = 0;
 HConv:for(int i = 0; i < K; i++) {
 hwin[i] = i < K - 1 ? hwin[i + 1] : in_val;
 out_val += hwin[i] * hcoeff[i];
 }
 if (row >= K - 1)
 hconv << out_val;
 }
}

An interesting point to note in the code above is use of the temporary variable out_val to
perform the convolution calculation. This variable is set to zero before the calculation is
performed, negating the need to spend 2 million clocks cycle to reset the values, as in the
pervious example.

Throughout the entire process, the samples in the src input are processed in a raster-streaming
manner. Every sample is read in turn. The outputs from the task are either discarded or used, but
the task keeps constantly computing. This represents a difference from code written to perform
on a CPU.

In a CPU architecture, conditional or branch operations are often avoided. When the program
needs to branch it loses any instructions stored in the CPU fetch pipeline. In an FPGA
architecture, a separate path already exists in the hardware for each conditional branch and there
is no performance penalty associated with branching inside a pipelined task. It is simply a case of
selecting which branch to use.

The outputs are stored in the hls::stream hconv for use by the vertical convolution loop.

Vertical Convolution

The vertical convolution represents a challenge to the streaming data model preferred by an
FPGA. The data must be accessed by column but you do not wish to store the entire image. The
solution is to use line buffers, as shown in the following figure.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=353

Figure 92: Streaming Vertical Convolution

First Calculation First Output Final Output

hconv

vconv

Vconv Vconv Vconv

X14300

Once again, the samples are read in a streaming manner, this time from the hls::stream hconv.
The algorithm requires at least K-1 lines of data before it can process the first sample. All the
calculations performed before this are discarded.

A line buffer allows K-1 lines of data to be stored. Each time a new sample is read, another
sample is pushed out the line buffer. An interesting point to note here is that the newest sample
is used in the calculation and then the sample is stored into the line buffer and the old sample
ejected out. This ensure only K-1 lines are required to be cached, rather than K lines. Although a
line buffer does require multiple lines to be stored locally, the convolution kernel size K is always
much less than the 1080 lines in a full video image.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=354

The first calculation can be performed when the first sample on the Kth line is read. The
algorithm then proceeds to output values until the final pixel is read.

// Vertical convolution
VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++) {
#pragma HLS DEPENDENCE variable=linebuf inter false
#pragma HLS PIPELINE
 T in_val = hconv.read();
 T out_val = 0;
 VConv:for(int i = 0; i < K; i++) {
 T vwin_val = i < K - 1 ? linebuf[i][row] : in_val;
 out_val += vwin_val * vcoeff[i];
 if (i > 0)
 linebuf[i - 1][row] = vwin_val;
 }
 if (col >= K - 1)
 vconv << out_val;
 }
}

The code above once again process all the samples in the design in a streaming manner. The task
is constantly running. The use of the hls::stream construct forces you to cache the data locally.
This is an ideal strategy when targeting an FPGA.

Border Pixels

The final step in the algorithm is to replicate the edge pixels into the border region. Once again,
to ensure the constant flow or data and data reuse the algorithm makes use of an hls::stream and
caching.

The following figure shows how the border samples are aligned into the image.

• Each sample is read from the vconv output from the vertical convolution.

• The sample is then cached as one of 4 possible pixel types.

• The sample is then written to the output stream.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=355

Figure 93: Streaming Border Samples

First Output Middle Output Final Output

vconv

Left Edge Border

dst

Right Edge Raw Pixel

Left Edge Border

Right Edge Raw Pixel

Left Edge Border

Right Edge Raw Pixel

Border

Raw Pixel

Border

R
ight E

dge

L
eft E

dge

X14295

The code for determining the location of the border pixels is:

Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 T pix_in, l_edge_pix, r_edge_pix, pix_out;
#pragma HLS PIPELINE
 if (i == 0 || (i > border_width && i < height - border_width)) {
 if (j < width - (K - 1)) {
 pix_in = vconv.read();
 borderbuf[j] = pix_in;
 }
 if (j == 0) {
 l_edge_pix = pix_in;
 }
 if (j == width - K) {
 r_edge_pix = pix_in;
 }
 }
 if (j <= border_width) {
 pix_out = l_edge_pix;
 } else if (j >= width - border_width - 1) {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=356

 pix_out = r_edge_pix;
 } else {
 pix_out = borderbuf[j - border_width];
 }
 dst << pix_out;
 }
 }
}

A notable difference with this new code is the extensive use of conditionals inside the tasks. This
allows the task, once it is pipelined, to continuously process data and the result of the
conditionals does not impact the execution of the pipeline: the result will impact the output
values but the pipeline with keep processing so long as input samples are available.

The final code for this FPGA-friendly algorithm has the following optimization directives used.

template<typename T, int K>
static void convolution_strm(
int width,
int height,
hls::stream<T> &src,
hls::stream<T> &dst,
const T *hcoeff,
const T *vcoeff)
{
#pragma HLS DATAFLOW
#pragma HLS ARRAY_PARTITION variable=linebuf dim=1 complete

hls::stream<T> hconv("hconv");
hls::stream<T> vconv("vconv");
// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS);
assert(width < MAX_IMG_COLS);
assert(vconv_xlim < MAX_IMG_COLS - (K - 1));

// Horizontal convolution
HConvH:for(int col = 0; col < height; col++) {
 HConvW:for(int row = 0; row < width; row++) {
#pragma HLS PIPELINE
 HConv:for(int i = 0; i < K; i++) {
 }
 }
}
// Vertical convolution
VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++) {
#pragma HLS PIPELINE
#pragma HLS DEPENDENCE variable=linebuf inter false
 VConv:for(int i = 0; i < K; i++) {
 }
}

Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
#pragma HLS PIPELINE
 }
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=357

Each of the tasks are pipelined at the sample level. The line buffer is full partitioned into registers
to ensure there are no read or write limitations due to insufficient block RAM ports. The line
buffer also requires a dependence directive. All of the tasks execute in a dataflow region which
will ensure the tasks run concurrently. The hls::streams are automatically implemented as FIFOs
with 1 element.

Summary of C for Efficient Hardware

Minimize data input reads. Once data has been read into the block it can easily feed many parallel
paths but the input ports can be bottlenecks to performance. Read data once and use a local
cache if the data must be reused.

Minimize accesses to arrays, especially large arrays. Arrays are implemented in block RAM which
like I/O ports only have a limited number of ports and can be bottlenecks to performance. Arrays
can be partitioned into smaller arrays and even individual registers but partitioning large arrays
will result in many registers being used. Use small localized caches to hold results such as
accumulations and then write the final result to the array.

Seek to perform conditional branching inside pipelined tasks rather than conditionally execute
tasks, even pipelined tasks. Conditionals will be implemented as separate paths in the pipeline.
Allowing the data from one task to flow into with the conditional performed inside the next task
will result in a higher performing system.

Minimize output writes for the same reason as input reads: ports are bottlenecks. Replicating
addition ports simply pushes the issue further out into the system.

For C code which processes data in a streaming manner, consider using hls::streams as these will
enforce good coding practices. It is much more productive to design an algorithm in C which will
result in a high-performance FPGA implementation than debug why the FPGA is not operating at
the performance required.

C++ Classes and Templates
C++ classes are fully supported for synthesis with Vivado HLS. The top-level for synthesis must
be a function. A class cannot be the top-level for synthesis. To synthesize a class member
function, instantiate the class itself into function. Do not simply instantiate the top-level class
into the test bench. The following code example shows how class CFir (defined in the header
file discussed next) is instantiated in the top-level function cpp_FIR and used to implement an
FIR filter.

#include "cpp_FIR.h"

// Top-level function with class instantiated
data_t cpp_FIR(data_t x)

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=358

 {
 static CFir<coef_t, data_t, acc_t> fir1;

 cout << fir1;

 return fir1(x);
 }

IMPORTANT! Classes and class member functions cannot be the top-level for synthesis. Instantiate the
class in a top-level function.

Before examining the class used to implement the design in the C++ FIR Filter example above, it
is worth noting Vivado HLS ignores the standard output stream cout during synthesis. When
synthesized, Vivado HLS issues the following warnings:

INFO [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
INFO [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
INFO [SYNCHK-101] Discarding unsynthesizable system call: 'std::operator<<
<std::char_traits<char> >' (cpp_FIR.h:110)

The following code example shows the header file cpp_FIR.h, including the definition of class
CFir and its associated member functions. In this example the operator member functions ()
and << are overloaded operators, which are respectively used to execute the main algorithm and
used with cout to format the data for display during C simulation.

#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define N 85

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

// Class CFir definition
template<class coef_T, class data_T, class acc_T>
class CFir {
 protected:
 static const coef_T c[N];
 data_T shift_reg[N-1];
 private:
 public:
 data_T operator()(data_T x);
 template<class coef_TT, class data_TT, class acc_TT>
 friend ostream&
 operator<<(ostream& o, const CFir<coef_TT, data_TT, acc_TT> &f);
};

// Load FIR coefficients
template<class coef_T, class data_T, class acc_T>

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=359

const coef_T CFir<coef_T, data_T, acc_T>::c[N] = {
 #include "cpp_FIR.h"
};

// FIR main algorithm
template<class coef_T, class data_T, class acc_T>
data_T CFir<coef_T, data_T, acc_T>::operator()(data_T x) {
 int i;
 acc_t acc = 0;
 data_t m;

 loop: for (i = N-1; i >= 0; i--) {
 if (i == 0) {
 m = x;
 shift_reg[0] = x;
 } else {
 m = shift_reg[i-1];
 if (i != (N-1))
 shift_reg[i] = shift_reg[i - 1];
 }
 acc += m * c[i];
 }
 return acc;
}

// Operator for displaying results
template<class coef_T, class data_T, class acc_T>
ostream& operator<<(ostream& o, const CFir<coef_T, data_T, acc_T> &f) {
 for (int i = 0; i < (sizeof(f.shift_reg)/sizeof(data_T)); i++) {
 o << shift_reg[<< i <<]= << f.shift_reg[i] << endl;
 }
 o << ______________ << endl;
 return o;
}

data_t cpp_FIR(data_t x);

The test bench in the C++ FIR Filter example is shown in the following code example and
demonstrates how top-level function cpp_FIR is called and validated. This example highlights
some of the important attributes of a good test bench for Vivado HLS synthesis:

• The output results are checked against known good values.

• The test bench returns 0 if the results are confirmed to be correct.

#include "cpp_FIR.h"

int main() {
 ofstream result;
 data_t output;
 int retval=0;

 // Open a file to saves the results
 result.open(result.dat);

 // Apply stimuli, call the top-level function and saves the results
 for (int i = 0; i <= 250; i++)
 {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=360

 output = cpp_FIR(i);

 result << setw(10) << i;
 result << setw(20) << output;
 result << endl;

 }
 result.close();

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);
 }

 // Return 0 if the test
 return retval;
}

C++ Test Bench for cpp_FIR

To apply directives to objects defined in a class:

1. Open the file where the class is defined (typically a header file).

2. Apply the directive using the Directives tab.

As with functions, all instances of a class have the same optimizations applied to them.

Global Variables and Classes
Xilinx does not recommend using global variables in classes. They can prevent some
optimizations from occurring. In the following code example, a class is used to create the
component for a filter (class polyd_cell is used as a component that performs shift, multiply
and accumulate operations).

typedef long long acc_t;
typedef int mult_t;
typedef char data_t;
typedef char coef_t;

#define TAPS 3
#define PHASES 4
#define DATA_SAMPLES 256
#define CELL_SAMPLES 12

// Use k on line 73 static int k;

template <typename T0, typename T1, typename T2, typename T3, int N>
class polyd_cell {
private:
public:
 T0 areg;
 T0 breg;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=361

 T2 mreg;
 T1 preg;
 T0 shift[N];
 int k; //line 73
 T0 shift_output;
 void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
 {
 Function_label0:;

 if (col==0) {
 SHIFT:for (k = N-1; k >= 0; --k) {
 if (k > 0)
 shift[k] = shift[k-1];
 else
 shift[k] = data;
 }
 *dataOut = shift_output;
 shift_output = shift[N-1];
 }
 *pcout = (shift[4*col]* coeff) + pcin;

 }
};

// Top-level function with class instantiated
void cpp_class_data (
 acc_t *dataOut,
 coef_t coeff1[PHASES][TAPS],
 coef_t coeff2[PHASES][TAPS],
 data_t dataIn[DATA_SAMPLES],
 int row
) {

 acc_t pcin0 = 0;
 acc_t pcout0, pcout1;
 data_t dout0, dout1;
 int col;
 static acc_t accum=0;
 static int sample_count = 0;
 static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_cell0;
 static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_cell1;

 COL:for (col = 0; col <= TAPS-1; ++col) {

 polyd_cell0.exec(&pcout0,&dout0,pcin0,coeff1[row]
[col],dataIn[sample_count],

col);

 polyd_cell1.exec(&pcout1,&dout1,pcout0,coeff2[row][col],dout0,col);

 if ((row==0) && (col==2)) {
 *dataOut = accum;
 accum = pcout1;
 } else {
 accum = pcout1 + accum;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=362

 }

 }
 sample_count++;
}

Within class polyd_cell there is a loop SHIFT used to shift data. If the loop index k used in
loop SHIFT was removed and replaced with the global index for k (shown earlier in the example,
but commented static int k), Vivado HLS is unable to pipeline any loop or function in which
class polyd_cell was used. Vivado HLS would issue the following message:

@W [XFORM-503] Cannot unroll loop 'SHIFT' in function 'polyd_cell<char,
long long,
int, char, 12>::exec' completely: variable loop bound.

Using local non-global variables for loop indexing ensures that Vivado HLS can perform all
optimizations.

Templates
Vivado HLS supports the use of templates in C++ for synthesis. Vivado HLS does not support
templates for the top-level function.

IMPORTANT! The top-level function cannot be a template.

Using Templates to Create Unique Instances

A static variable in a template function is duplicated for each different value of the template
arguments.

template<int NC, int K>
void startK(int* dout) {
 static int acc=0;
 acc += K;
 *dout = acc;
}

void foo(int* dout) {
 startK<0,1> (dout);
}

void goo(int* dout) {
 startK<1,1> (dout);
}

int main() {
 int dout0,dout1;
 for (int i=0;i<10;i++) {
 foo(&dout0);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=363

 goo(&dout1);
 cout <<"dout0/1 = "<<dout0<<" / "<<dout1<<endl;
 }
 return 0;
}

Using Templates for Recursion

Templates can also be used implement a form of recursion that is not supported in standard C
synthesis (Recursive Functions).

The following code example shows a case in which a templatized struct is used to implement a
tail-recursion Fibonacci algorithm. The key to performing synthesis is that a termination class is
used to implement the final call in the recursion, where a template size of one is used.

//Tail recursive call
template<data_t N> struct fibon_s {
 template<typename T>
 static T fibon_f(T a, T b) {
 return fibon_s<N-1>::fibon_f(b, (a+b));
 }
};

// Termination condition
template<> struct fibon_s<1> {
 template<typename T>
 static T fibon_f(T a, T b) {
 return b;
 }
};

void cpp_template(data_t a, data_t b, data_t &dout){
 dout = fibon_s<FIB_N>::fibon_f(a,b);
}

Assertions
The assert macro in C is supported for synthesis when used to assert range information. For
example, the upper limit of variables and loop-bounds.

When variable loop bounds are present, Vivado HLS cannot determine the latency for all
iterations of the loop and reports the latency with a question mark. The Tripcount directive can
inform Vivado HLS of the loop bounds, but this information is only used for reporting purposes
and does not impact the result of synthesis (the same sized hardware is created, with or without
the Tripcount directive).

The following code example shows how assertions can inform Vivado HLS about the maximum
range of variables, and how those assertions are used to produce more optimal hardware.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=364

Before using assertions, the header file that defines the assert macro must be included. In this
example, this is included in the header file.

#ifndef _loop_sequential_assert_H_
#define _loop_sequential_assert_H_

#include <stdio.h>
#include <assert.h>
#include ap_cint.h
#define N 32

typedef int8 din_t;
typedef int13 dout_t;
typedef uint8 dsel_t;

void loop_sequential_assert(din_t A[N], din_t B[N], dout_t X[N], dout_t
Y[N], dsel_t
xlimit, dsel_t ylimit);

#endif

In the main code two assert statements are placed before each of the loops.

 assert(xlimit<32);
 ...
 assert(ylimit<16);
 ...

These assertions:

• Guarantee that if the assertion is false and the value is greater than that stated, the C
simulation will fail. This also highlights why it is important to simulate the C code before
synthesis: confirm the design is valid before synthesis.

• Inform Vivado HLS that the range of this variable will not exceed this value and this fact can
optimize the variables size in the RTL and in this case, the loop iteration count.

The following code example shows these assertions.

#include "loop_sequential_assert.h"

void loop_sequential_assert(din_t A[N], din_t B[N], dout_t X[N], dout_t
Y[N], dsel_t
xlimit, dsel_t ylimit) {

 dout_t X_accum=0;
 dout_t Y_accum=0;
 int i,j;

 assert(xlimit<32);
 SUM_X:for (i=0;i<=xlimit; i++) {
 X_accum += A[i];
 X[i] = X_accum;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=365

 }

 assert(ylimit<16);
 SUM_Y:for (i=0;i<=ylimit; i++) {
 Y_accum += B[i];
 Y[i] = Y_accum;
 }
}

Except for the assert macros, this code is the same as that shown in Loop Parallelism. There are
two important differences in the synthesis report after synthesis.

Without the assert macros, the report is as follows, showing that the loop tripcount can vary
from 1 to 256 because the variables for the loop-bounds are of data type d_sel that is an 8-bit
variable.

* Loop Latency:
 +----------+-----------+----------+
 |Target II |Trip Count |Pipelined |
 +----------+-----------+----------+
 |- SUM_X |1 ~ 256 |no |
 |- SUM_Y |1 ~ 256 |no |
 +----------+-----------+----------+

In the version with the assert macros, the report shows the loops SUM_X and SUM_Y reported
Tripcount of 32 and 16. Because the assertions assert that the values will never be greater than
32 and 16, Vivado HLS can use this in the reporting.

* Loop Latency:
 +----------+-----------+----------+
 |Target II |Trip Count |Pipelined |
 +----------+-----------+----------+
 |- SUM_X |1 ~ 32 |no |
 |- SUM_Y |1 ~ 16 |no |
 +----------+-----------+----------+

In addition, and unlike using the Tripcount directive, the assert statements can provide more
optimal hardware. In the case without assertions, the final hardware uses variables and counters
that are sized for a maximum of 256 loop iterations.

* Expression:
 +----------+------------------------+-------+---+----+
 |Operation |Variable Name |DSP48E |FF |LUT |
 +----------+------------------------+-------+---+----+
 |+ |X_accum_1_fu_182_p2 |0 |0 |13 |
 |+ |Y_accum_1_fu_209_p2 |0 |0 |13 |
 |+ |indvar_next6_fu_158_p2 |0 |0 |9 |
 |+ |indvar_next_fu_194_p2 |0 |0 |9 |
 |+ |tmp1_fu_172_p2 |0 |0 |9 |
 |+ |tmp_fu_147_p2 |0 |0 |9 |

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=366

 |icmp |exitcond1_fu_189_p2 |0 |0 |9 |
 |icmp |exitcond_fu_153_p2 |0 |0 |9 |
 +----------+------------------------+-------+---+----+
 |Total | |0 |0 |80 |
 +----------+------------------------+-------+---+----+

The code which asserts the variable ranges are smaller than the maximum possible range results
in a smaller RTL design.

* Expression:
 +----------+------------------------+-------+---+----+
 |Operation |Variable Name |DSP48E |FF |LUT |
 +----------+------------------------+-------+---+----+
 |+ |X_accum_1_fu_176_p2 |0 |0 |13 |
 |+ |Y_accum_1_fu_207_p2 |0 |0 |13 |
 |+ |i_2_fu_158_p2 |0 |0 |6 |
 |+ |i_3_fu_192_p2 |0 |0 |5 |
 |icmp |tmp_2_fu_153_p2 |0 |0 |7 |
 |icmp |tmp_9_fu_187_p2 |0 |0 |6 |
 +----------+------------------------+-------+---+----+
 |Total | |0 |0 |50 |
 +----------+------------------------+-------+---+----+

Assertions can indicate the range of any variable in the design. It is important to execute a C
simulation that covers all possible cases when using assertions. This will confirm that the
assertions that Vivado HLS uses are valid.

SystemC Synthesis
Vivado HLS supports SystemC (IEEE standard 1666), a C++ class library used to model hardware.
The library is available at the Accellera website (www.accellera.org). For synthesis, Vivado HLS
supports the SystemC Synthesizable Subset (Draft 1.3) for SystemC version 2.1.

This section provides information on the synthesis of SystemC functions with Vivado HLS. This
information is in addition to the information in the earlier chapters, C for Synthesis and C++ for
Synthesis. Xilinx recommends that you read those chapters to fully understand the basic rules of
coding for synthesis.

IMPORTANT! As with C and C++ designs, the top-level function for synthesis must be a function below
the top-level for C compilation sc_main() . The sc_main()  function cannot be the top-level function
for synthesis.

Design Modeling
The top-level for synthesis must be an SC_MODULE. Designs can be synthesized if modeled using
the SystemC constructor processes SC_METHOD, SC_CTHREAD and the SC_HAS_PROCESS
marco or if SC_MODULES are instantiated inside other SC_MODULES.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 367Send Feedback

http://www.accellera.org/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=367

The top-level SC_MODULE in the design cannot be a template. Templates can be used only on
submodules.

The module constructor can only define or instantiate modules. It cannot contain any
functionality.

An SC_MODULE cannot be defined inside another SC_MODULE. (Although they can be
instantiated, as discussed later).

Using SC_ MODULE

Hierarchical modules definitions are not supported. When a module is defined inside another
module (the first SC_ MODULE example below), it must be converted into a version in which the
modules are not nested (the second SC_ MODULE example below).

SC_MODULE(nested1)
{
 SC_MODULE(nested2)
 {
 sc_in<int> in0;
 sc_out<int> out0;
 SC_CTOR(nested2)
 {
 SC_METHOD(process);
 sensitive<<in0;
 }
 void process()
 {
 int var =10;
 out0.write(in0.read()+var);
 }
 };

 sc_in<int> in0;
 sc_out<int> out0;
 nested2 nd;
 SC_CTOR(nested1)
 :nd(nested2)
 {
 nd.in0(in0);
 nd.out0(out0);
 }
};

SC_MODULE(nested2)
{
 sc_in<int> in0;
 sc_out<int> out0;
 SC_CTOR(nested2)
 {
 SC_METHOD(process);
 sensitive<<in0;
 }
 void process()
 {

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=368

 int var =10;
 out0.write(in0.read()+var);
 }
};

SC_MODULE(nested1)
{
 sc_in<int> in0;
 sc_out<int> out0;
 nested2 nd;
 SC_CTOR(nested1)
 :nd(nested2)
 {
 nd.in0(in0);
 nd.out0(out0);
 }
};

In addition, an SC_MODULE cannot be derived from another SC_MODULE as in the following
example:

SC_MODULE(BASE)
{
 sc_in<bool> clock; //clock input
 sc_in<bool> reset;
 SC_CTOR(BASE) {}

};

class DUT: public BASE
{
public:
 sc_in<bool> start;
 sc_in<sc_uint<8> > din;
 â¦
};

RECOMMENDED: Define the module constructor inside the module.

Cases such as the following first SC_ MODULE example should be transformed as shown in the
second SC_ MODULE example below.

SC_MODULE(dut) {
 sc_in<int> in0;
 sc_out<int>out0;
 SC_HAS_PROCESS(dut);
 dut(sc_module_name nm);
 ...
};

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=369

dut::dut(sc_module_name nm)
{
 SC_METHOD(process);
 sensitive<<in0;
}

SC_MODULE(dut) {
 sc_in<int> in0;
 sc_out<int>out0;

 SC_HAS_PROCESS(dut);
 dut(sc_module_name nm)
 :sc_module(nm)
 {
 SC_METHOD(process);
 sensitive<<in0;
 }
 â¦
};

Vivado HLS does not support SC_THREADs for synthesis.

Using SC_METHOD

The following code example shows the header file (sc_combo_method.h) for a small
combinational design modeled using an SC_METHOD to model a half-adder. The top-level design
name (c_combo_method) is specified in the SC_MODULE.

#include <systemc.h>

SC_MODULE(sc_combo_method){
 //Ports
 sc_in<sc_uint<1> > a,b;
 sc_out<sc_uint<1> > sum,carry;

 //Process Declaration
 void half_adder();

 //Constructor
 SC_CTOR(sc_combo_method){

 //Process Registration
 SC_METHOD(half_adder);
 sensitive<<a<<b;
 }
};

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=370

The design has two single-bit input ports (a and b). The SC_METHOD is sensitive to any changes
in the state of either input port and executes function half_adder. The function half_adder
is specified in the file sc_combo_method.cpp shown in the following code example. It
calculates the value for output port carry.

#include "sc_combo_method.h"

void sc_combo_method::half_adder(){
 bool s,c;
 s=a.read() ^ b.read();
 c=a.read() & b.read();
 sum.write(s);
 carry.write(c);

#ifndef __SYNTHESIS__
 cout << Sum is << a << ^ << b << = << s << : <<
sc_time_stamp() <<endl;
 cout << Car is << a << & << b << = << c << : <<
sc_time_stamp() <<endl;
#endif

Note: The example above shows how any cout statements used to display values during C simulation can
be protected from synthesis using the __SYNTHESIS__ macro.

Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C simulation or C RTL co-simulation.

The following code example shows the test bench for the previous example. This test bench
displays several important attributes required when using Vivado HLS.

#ifdef __RTL_SIMULATION__
#include "sc_combo_method_rtl_wrapper.h"
#define sc_combo_method sc_combo_method_RTL_wrapper
#else
#include "sc_combo_method.h"
#endif
#include "tb_init.h"
#include "tb_driver.h"

int sc_main (int argc , char *argv[])
{
sc_report_handler::set_actions(/IEEE_Std_1666/deprecated, SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

 sc_signal<bool> s_reset;
 sc_signal<sc_uint<1> > s_a;
 sc_signal<sc_uint<1> > s_b;
 sc_signal<sc_uint<1> > s_sum;
 sc_signal<sc_uint<1> > s_carry;

 // Create a 10ns period clock signal
 sc_clock s_clk(s_clk,10,SC_NS);

 tb_init U_tb_init(U_tb_init);
 sc_combo_method U_dut(U_dut);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=371

 tb_driver U_tb_driver(U_tb_driver);

 // Generate a clock and reset to drive the sim
 U_tb_init.clk(s_clk);
 U_tb_init.reset(s_reset);

 // Connect the DUT
 U_dut.a(s_a);
 U_dut.b(s_b);
 U_dut.sum(s_sum);
 U_dut.carry(s_carry);

 // Drive stimuli from dat* ports
 // Capture results at out* ports
 U_tb_driver.clk(s_clk);
 U_tb_driver.reset(s_reset);
 U_tb_driver.dat_a(s_a);
 U_tb_driver.dat_b(s_b);
 U_tb_driver.out_sum(s_sum);
 U_tb_driver.out_carry(s_carry);

 // Sim for 200
 int end_time = 200;

 cout << INFO: Simulating << endl;

 // start simulation
 sc_start(end_time, SC_NS);

 if (U_tb_driver.retval != 0) {
 printf(Test failed !!!\n);
 } else {
 printf(Test passed !\n);
 }
 return U_tb_driver.retval;
};

To perform RTL simulation using the cosim_design feature in Vivado HLS, the test bench must
contain the macros shown at the top of the example above. For a design named DUT, the
following must be used, where DUT is replaced with the actual design name.

#ifdef __RTL_SIMULATION__
#include "DUT_rtl_wrapper.h"
#define DUT DUT_RTL_wrapper
#else
#include "DUT.h" //Original unmodified code
#endif

You must add this to the test bench in which the design header file is included. Otherwise,
cosim_design RTL simulation fails.

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=372

RECOMMENDED: Add the report handler functions shown in the example above to all SystemC test
bench files used with Vivado HLS.

sc_report_handler::set_actions(/IEEE_Std_1666/deprecated, SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

These settings prevent the printing of extraneous messages during RTL simulation.

The most important of these messages are the warnings:

Warning: (W212) sc_logic value 'X' cannot be converted to bool

The adapters placed around the synthesized design start with unknown (X) values. Not all
SystemC types support unknown (X) values. This warning is issued when unknown (X) values are
applied to types that do not support unknown (X) values, typically before the stimuli is applied
from the test bench and can generally be ignored.

Finally, the test bench in the example above performs checking on the results.

Returns a value of zero if the results are correct. In this case, the results are verified inside
function tb_driver but the return value is checked and returned in the top-level test bench.

if (U_tb_driver.retval != 0) {
 printf(Test failed !!!\n);
 } else {
 printf(Test passed !\n);
 }
 return U_tb_driver.retval;

Instantiating SC_MODULES

Hierarchical instantiations of SC_MODULEs can be synthesized, as shown in the following code
example In this code example, the two instances of the half-adder design (sc_combo_method)
from Using SC_METHOD are instantiated to create a full-adder design.

#include <systemc.h>
#include "sc_combo_method.h"

SC_MODULE(sc_hier_inst){
 //Ports
 sc_in<sc_uint<1> > a, b, carry_in;
 sc_out<sc_uint<1> > sum, carry_out;

 //Variables
 sc_signal<sc_uint<1> > carry1, sum_int, carry2;

 //Process Declaration
 void full_adder();

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=373

 //Half-Adder Instances
 sc_combo_method U_1, U_2;

 //Constructor
 SC_CTOR(sc_hier_inst)
 :U_1(U_1)
 ,U_2(U_2)
 {
 // Half-adder inst 1
 U_1.a(a);
 U_1.b(b);
 U_1.sum(sum_int);
 U_1.carry(carry1);

 // Half-adder inst 2
 U_2.a(sum_int);
 U_2.b(carry_in);
 U_2.sum(sum);
 U_2.carry(carry2);

 //Process Registration
 SC_METHOD(full_adder);
 sensitive<<carry1<<carry2;
 }
};

The function full_adder is used to create the logic for the carry_out signal, as shown in the
following code example.

#include "sc_hier_inst.h"

void sc_hier_inst::full_adder(){
 carry_out= carry1.read() | carry2.read();

}

Using SC_CTHREAD

The constructor process SC_CTHREAD is used to model clocked processes (threads) and is the
primary way to model sequential designs. The following code example shows a case that
highlights the primary attributes of a sequential design.

• The data has associated handshake signals, allowing it to operate with the same test bench
before and after synthesis.

• An SC_CTHREAD sensitive on the clock is used to model when the function is executed.

• The SC_CTHREAD supports reset behavior.

#include <systemc.h>

SC_MODULE(sc_sequ_cthread){
 //Ports
 sc_in <bool> clk;
 sc_in <bool> reset;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=374

 sc_in <bool> start;
 sc_in<sc_uint<16> > a;
 sc_in<bool> en;
 sc_out<sc_uint<16> > sum;
 sc_out<bool> vld;

 //Variables
 sc_uint<16> acc;

 //Process Declaration
 void accum();

 //Constructor
 SC_CTOR(sc_sequ_cthread){

 //Process Registration
 SC_CTHREAD(accum,clk.pos());
 reset_signal_is(reset,true);
 }
};

• Function accum is shown in the following code example. This example demonstrates:

• The core modeling process is an infinite while() loop with a wait() statement inside it.

• Any initialization of the variables is performed before the infinite while() loop. This code is
executed when reset is recognized by the SC_CTHREAD.

• The data reads and writes are qualified by handshake protocols.

#include "sc_sequ_cthread.h"

void sc_sequ_cthread::accum(){

 //Initialization
 acc=0;
 sum.write(0);
 vld.write(false);
 wait();

 // Process the data
 while(true) {
 // Wait for start
 while (!start.read()) wait();

 // Read if valid input available
 if (en) {
 acc = acc + a.read();
 sum.write(acc);
 vld.write(true);
 } else {
 vld.write(false);
 }
 wait();
 }

}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=375

Synthesis of Loops

When coding with loops, you must account for the Vivado HLS SystemC scheduling rule in which
Vivado HLS always synthesizes a loop by starting in a new state. For example, given the following
design:

Note: Only a minimum amount of code is shown for this example.

sc_in<bool> start;
sc_in<bool> enable;

process code:
 unsigned count = 0;
 while (!start.read()) wait();
 for(int i=0;i<100; i++)
 {
 if(enable.read()) count++;
 wait();
 }

And the following test bench stimuli:

start = true;
enable=true;
wait(1);
start = false;
wait(99);
enable=false;

This design executes during C simulation and samples the enable signal. Then, count reaches
100. After synthesis, the SystemC loop scheduling rule requires the loop to start with a new state
and any operations in the loop to be scheduled after this point. For example, the following code
shows a wait statement called First Loop Clock:

sc_in<bool> start;
sc_in<bool> enable;

process code:
 unsigned count = 0;
 while (!start.read()) wait();
 for(int i=0;i<100; i++)
 {
 wait(); //First Loop Clock
 if(enable.read()) count++;
 wait();
 }

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=376

After the initial clock samples the start signal, there is a 2 clock cycle delay before the new clock
samples the enable signal for the first time. This new clock occurs at the same time as the
second clock in the test bench, which is the first clock in the series of 99 clocks. On the third test
bench clock, which is the second clock in the series of 99 clocks, the clock samples the enable
signal for the first time. In this case, the RTL design only counts to 99 before enable is set to
false.

RECOMMENDED: When coding loops in SystemC, Xilinx highly recommends that you place the wait() 
statement as the first item in a loop.

In the following example, the wait() statement is the first clock or state in the synthesized
loop:

sc_in<bool> start;
sc_in<bool> enable;

process code:
 unsigned count = 0;
 while (!start.read()) wait();
 for(int i=0;i<100; i++)
 {
 wait(); // Put the 'wait()' at the beginning of the loop
 if(enable.read()) count++;
 }

Synthesis with Multiple Clocks

Unlike C and C++ synthesis, SystemC supports designs with multiple clocks. In a multiple clock
design, the functionality associated with each clock must be captured in an SC_CTHREAD.

The following code example shows a design with two clocks (clock and clock2).

• One clock is used to activate an SC_CTHREAD executing function Prc1.

• The other clock is used to activate an SC_CTHREAD executing function Prc2.

After synthesis, all the sequential logic associated with function Prc1 is clocked by clock, while
clock2 drives all the sequential logic of function Prc2.

#includesystemc.h
#includetlm.h
using namespace tlm;

SC_MODULE(sc_multi_clock)
{
 //Ports
 sc_in <bool> clock;
 sc_in <bool> clock2;
 sc_in <bool> reset;
 sc_in <bool> start;
 sc_out<bool> done;
 sc_fifo_out<int> dout;
 sc_fifo_in<int> din;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=377

 //Variables
 int share_mem[100];
 bool write_done;

 //Process Declaration
 void Prc1();
 void Prc2();

 //Constructor
 SC_CTOR(sc_multi_clock)
 {
 //Process Registration
 SC_CTHREAD(Prc1,clock.pos());
 reset_signal_is(reset,true);

 SC_CTHREAD(Prc2,clock2.pos());
 reset_signal_is(reset,true);
 }
};

Communication Channels

Communication between threads, methods, and modules (which themselves contain threads and
methods) should only be performed using channels. Do not use simple variables for
communication between threads.

Xilinx recommends using sc_buffer or sc_signal to communicate between different
processes (thread, method). sc_fifo and tlm_fifo can be used when multiple values may be
written before the first is read.

For sc_fifo and tlm_fifo, the following methods are supported for synthesis:

• Non-blocking read/write

• Blocking read/write

• num_available()/num_free()

• nb_can_put()/nb_can_get()

Top-Level SystemC Ports
The ports in a SystemC design are specified in the source code. Unlike C and C++ functions, in
SystemC Vivado HLS performs interface synthesis only on supported memory interfaces.

All ports on the top-level interface must be one of the following types:

• sc_in_clk

• sc_in

• sc_out

• sc_inout

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=378

• sc_fifo_in

• sc_fifo_out

• ap_mem_if

• AXI4M_bus_port

Except for the supported memory interfaces, all handshaking between the design and the test
bench must be explicitly modeled in the SystemC function. The supported memory interfaces
are:

• sc_fifo_in

• sc_fifo_out

• ap_mem_if

Vivado HLS might add additional clock cycles to a SystemC design if required to meet timing.
Because the number of clock cycles after synthesis might be different, SystemC designs should
handshake all data transfers with the test bench.

Vivado HLS does not support transaction level modeling using TLM 2.0 and event-based
modeling for synthesis.

SystemC Interface Synthesis

In general, Vivado HLS does not perform interface synthesis on SystemC. It does support
interface synthesis for some memory interfaces, such as RAM and FIFO ports.

RAM Port Synthesis

Unlike the synthesis of C and C++, Vivado HLS does not transform array ports into RTL RAM
ports. In the following SystemC code, you must use Vivado HLS directives to partition the array
ports into individual elements.

Otherwise, this example code cannot be synthesized:

SC_MODULE(dut)
{
 sc_in<T> in0[N];
 sc_out<T>out0[N];

 ...
 SC_CTOR(dut)
 {
 ...
 }
};

RAM Port Synthesis Coding Example

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=379

The directives to partition these arrays into individual elements are:

set_directive_array_partition dut in0 -type complete
set_directive_array_partition dut out0 -type complete

If N is a large number, this results in many individual scalar ports on the RTL interface.

The following code example shows how a RAM interface can be modeled in SystemC simulation
and fully synthesized by Vivado HLS. In this code example, the arrays are replaced by
ap_mem_if types that can synthesized into RAM ports.

• To use ap_mem_port types, the header file ap_mem_if.h from the include/ap_sysc
directory in the Vivado HLS installation area must be included.

Note: Inside the Vivado HLS environment, the directory include/ap_sysc is included.

• The arrays for din and dout are replaced by ap_mem_port types. The fields are explained
below the code example.

#includesystemc.h
#include "ap_mem_if.h"

SC_MODULE(sc_RAM_port)
{
 //Ports
 sc_in <bool> clock;
 sc_in <bool> reset;
 sc_in <bool> start;
 sc_out<bool> done;
 //sc_out<int> dout[100];
 //sc_in<int> din[100];
 ap_mem_port<int, int, 100, RAM_2P> dout;
 ap_mem_port<int, int, 100, RAM_2P> din;

 //Variables
 int share_mem[100];
 sc_signal<bool> write_done;

 //Process Declaration
 void Prc1();
 void Prc2();

 //Constructor
 SC_CTOR(sc_RAM_port)
 : dout (dout),
 din (din)
 {
 //Process Registration
 SC_CTHREAD(Prc1,clock.pos());
 reset_signal_is(reset,true);

 SC_CTHREAD(Prc2,clock.pos());
 reset_signal_is(reset,true);
 }
};

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=380

• The format of the ap_mem_port type is:

ap_mem_port (<data_type>, < address_type>, <number_of_elements>,
<Mem_Target>)

• The data_type is the type used for the stored data elements. In the example above, these
are standard int types.

• The address_type is the type used for the address bus. This type should have enough data
bits to address all elements in the array, or C simulation fails.

• The number_of_elements specifies the number of elements in the array being modeled.

• The Mem_Target specifies the memory to which this port will connect and therefore
determines the I/O ports on the final RTL. For a list of the available targets, see the following
table.

The memory targets described in the following table influence both the ports created by
synthesis and how the operations are scheduled in the design. For example, a dual-port RAM:

• Results in twice as many I/O ports as a single-port RAM.

• May allow internal operations to be scheduled in parallel (provided that code constructs, such
as loops and data dependencies, allow it).

Table 46: System C ap_mem_port Memory Targets

Target RAM Description
RAM_1P A single-port RAM
RAM_2P A dual-port RAM
RAM_T2P A true dual-port RAM, with support for both read and write

on both the input and output side
ROM_1P A single-port ROM
ROM_2P A dual-port ROM

After the ap_mem_port has been defined on the interface, the variables are accessed in the
code in the same manner as any other arrays:

dout[i] = share_mem[i] + din[i];

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=381

The test bench to support the example above is shown in the following code example. The
ap_mem_port type must be supported by an ap_mem_chn type in the test bench. The
ap_mem_chn type is defined in the header file ap_mem_if.h and supports the same fields as
ap_mem_port.

#ifdef __RTL_SIMULATION__
#include "sc_RAM_port_rtl_wrapper.h"
#define sc_RAM_port sc_RAM_port_RTL_wrapper
#else
#include "sc_RAM_port.h"
#endif
#include "tb_init.h"
#include "tb_driver.h"
#include "ap_mem_if.h"

int sc_main (int argc , char *argv[])
{
 sc_report_handler::set_actions(/IEEE_Std_1666/deprecated, SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

 sc_signal<bool> s_reset;
 sc_signal<bool> s_start;
 sc_signal<bool> s_done;
 ap_mem_chn<int,int, 100, RAM_2P> dout;
 ap_mem_chn<int,int, 100, RAM_2P> din;

 // Create a 10ns period clock signal
 sc_clock s_clk(s_clk,10,SC_NS);

 tb_init U_tb_init(U_tb_init);
 sc_RAM_port U_dut(U_dut);
 tb_driver U_tb_driver(U_tb_driver);

 // Generate a clock and reset to drive the sim
 U_tb_init.clk(s_clk);
 U_tb_init.reset(s_reset);
 U_tb_init.done(s_done);
 U_tb_init.start(s_start);

 // Connect the DUT
 U_dut.clock(s_clk);
 U_dut.reset(s_reset);
 U_dut.done(s_done);
 U_dut.start(s_start);
 U_dut.dout(dout);
 U_dut.din(din);

 // Drive inputs and Capture outputs
 U_tb_driver.clk(s_clk);
 U_tb_driver.reset(s_reset);
 U_tb_driver.start(s_start);
 U_tb_driver.done(s_done);
 U_tb_driver.dout(dout);
 U_tb_driver.din(din);

 // Sim
 int end_time = 1100;

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=382

 cout << INFO: Simulating << endl;

 // start simulation
 sc_start(end_time, SC_NS);

 if (U_tb_driver.retval != 0) {
 printf(Test failed !!!\n);
 } else {
 printf(Test passed !\n);
 }
 return U_tb_driver.retval;
};

FIFO Port Synthesis

FIFO ports on the top-level interface can be synthesized directly from the standard SystemC
sc_fifo_in and sc_fifo_out ports. For an example of using FIFO ports on the interface, see
the following code example.

After synthesis, each FIFO port has a data port and associated FIFO control signals.

• Inputs have empty and read ports.

• Outputs have full and write ports.

By using FIFO ports, the handshake required to synchronize data transfers is added in the RTL
test bench.

#includesystemc.h
#includetlm.h
using namespace tlm;

SC_MODULE(sc_FIFO_port)
{
 //Ports
 sc_in <bool> clock;
 sc_in <bool> reset;
 sc_in <bool> start;
 sc_out<bool> done;
 sc_fifo_out<int> dout;
 sc_fifo_in<int> din;

 //Variables
 int share_mem[100];
 bool write_done;

 //Process Declaration
 void Prc1();
 void Prc2();

 //Constructor
 SC_CTOR(sc_FIFO_port)
 {
 //Process Registration
 SC_CTHREAD(Prc1,clock.pos());
 reset_signal_is(reset,true);

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=383

 SC_CTHREAD(Prc2,clock.pos());
 reset_signal_is(reset,true);
 }
};

Unsupported SystemC Constructs

Modules and Constructors

• An SC_MODULE cannot be nested inside another SC_MODULE.

• An SC_MODULE cannot be derived from another SC_MODULE.

• Vivado HLS does not support SC_THREAD.

• Vivado HLS supports the clocked version SC_CTHREAD.

Instantiating Modules

An SC_MODULE cannot be instantiated using new. The code (SC_MODULE(TOP) shown in the
following example must be transformed as shown in the example below it.

{
 sc_in<T> din;
 sc_out<T> dout;

 M1 *t0;

 SC_CTOR(TOP){
 t0 = new M1(t0);
 t0->din(din);
 t0->dout(dout);
 }
}

SC_MODULE(TOP)
{
 sc_in<T> din;
 sc_out<T> dout;

 M1 t0;

 SC_CTOR(TOP)
 : t0("t0")
 {
 t0.din(din);
 t0.dout(dout);
 }
}

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=384

Module Constructors

Only name parameters can be used with module constructors. Passing on variable temp of type
int is not allowed. See the following example.

SC_MODULE(dut) {
 sc_in<int> in0;
 sc_out<int>out0;
 int var;
 SC_HAS_PROCESS(dut);
 dut(sc_module_name nm, int temp)
:sc_module(nm),var(temp)
 { ... }
};

Module Constructors Code Example

Virtual Functions

Vivado HLS does not support virtual functions. Because the following code uses a virtual
function, it cannot be synthesized.

SC_MODULE(DUT)
{
 sc_in<int> in0;
 sc_out<int>out0;

 virtual int foo(int var1)
 {
 return var1+10;
 }

 void process()
 {
 int var=foo(in0.read());
 out0.write(var);
 }
 ...
};

Top-Level Interface Ports

Vivado HLS does not support reading an sc_out port. The following code is not supported due
to the read on out0.

SC_MODULE(DUT)
{
 sc_in<T> in0;
 sc_out<T>out0;
 ...
 void process()

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=385

 {
 int var=in0.read()+out0.read();
 out0.write(var);
 }
};

Chapter 3: High-Level Synthesis Coding Styles

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=386

Chapter 4

High-Level Synthesis Reference
Guide

Command Reference
add_files
Description

Adds design source files to the current project.

The tool searches the current directory for any header files included in the design source. To use
header files stored in other directories, use the -cflags option to add those directories to the
search path.

Syntax

add_files [OPTIONS] <src_files>

• <src_files> lists source files with the description of the design.

Options

-tb

Specifies any files used as part of the design test bench.

These files are not synthesized. They are used when post-synthesis verification is executed by
the cosim_design command.

This option does not allow design files to be included in the list of source files. Use a separate
add_files command to add design files and test bench files.

-cflags <string>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=387

A string with any desired GCC compilation options.

-blackbox <file_name.json>

Specify the JSON file to be used for RTL blackbox. The information in this file is used by the HLS
compiler during synthesizing and running C and co-simulation. See RTL Blackbox for more
information.

- csimflags <string>

A string with any desired simulation compilation options. Flags specified with this option are only
applied to simulation compilation, which includes C simulation and RTL co-simulation, not
synthesis compilation. This option does not impact the -cflags option.

Pragma

There is no pragma equivalent.

Examples

Add three design files to the project.

add_files a.cpp
add_files b.cpp
add_files c.cpp

Add multiple files with a single command line.

add_files "a.cpp b.cpp c.cpp"

Add a SystemC file with compiler flags to enable macro USE_RANDOM and specify an additional
search path, subdirectory ./lib_functions, for header files.

add_files top.cpp -cflags "-DUSE_RANDOM -I./lib_functions"

Use the-tb option to add test bench files to the project. This example adds multiple files with a
single command, including:

• The test bench a_test.cpp

• All data files read by the test bench:

○ input_stimuli.dat

○ out.gold.dat

add_files -tb "a_test.cpp input_stimuli.dat out.gold.dat"

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=388

If the test bench data files in the previous example are stored in a separate directory (for
example test_data), the directory can be added to the project in place of the individual data
files.

add_files -tb a_test.cpp
add_files -tb test_data

close_project
Description

Closes the current project. The project is no longer active in the Vivado® HLS session.

The close_project command:

• Prevents you from entering any project-specific or solution-specific commands.

• Is not required. Opening or creating a new project closes the current project.

Syntax

close_project

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

close_project

• Closes the current project.

• Saves all results.

close_solution
Description

Closes the current solution. The current solution is no longer active in the Vivado HLS session.

The close_solution command:

• Prevents you from entering any solution-specific commands.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=389

• Is not required. Opening or creating a new solution closes the current solution.

Syntax

close_solution

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

close_solution

• Closes the current project.

• Saves all results.

config_array_partition
Description

Specifies the default behavior for array partitioning.

Syntax

config_array_partition [OPTIONS]

Options

-auto_partition_threshold <int>

Sets the threshold for partitioning arrays (including those without constant indexing).

Arrays with fewer elements than the specified threshold limit are partitioned into individual
elements, unless interface or core specification is applied on the array. The default is 4.

-auto_promotion_threshold <int>

Sets the threshold for partitioning arrays with constant-indexing.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=390

Arrays with fewer elements than the specified threshold limit, and that have constant-indexing
(the indexing is not variable), are partitioned into individual elements. The default is 64.

-include_extern_globals

Includes external global arrays from throughput driven auto-partitioning.

-include_ports

Enables auto-partitioning of I/O arrays.

This reduces an array I/O port into multiple ports. Each port is the size of the individual array
elements.

-maximum_size <int>

Specifies the maximum size for partitioning an array.

-scalarize_all

Partitions all arrays in the design into their individual elements.

-throughput_driven

Enables auto-partitioning of arrays based on the throughput.

Vivado HLS determines whether partitioning the array into individual elements allows it to meet
any specified throughput requirements.

Pragma

There is no pragma equivalent.

Examples

Partitions all arrays in the design with less than 12 elements (but not global arrays) into individual
elements.

_config_array_partition -auto_partition_threshold 12 -
_include_extern_globals_

Instructs Vivado HLS to determine which arrays to partition (including arrays on the function
interface) to improve throughput.

config_array_partition -throughput_driven -include_ports

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=391

Partitions all arrays in the design (including global arrays) into individual elements.

config_array_partition -scalarize_all

config_bind
Description

Sets the default options for micro-architecture binding.

Binding is the process in which operators (such as addition, multiplication, and shift) are mapped
to specific RTL implementations. For example, a mult operation implemented as a combinational
or pipelined RTL multiplier.

Syntax

config_bind [OPTIONS]

Options

-effort (low|medium|high)

The optimizing effort level controls the trade-off between run time and optimization.

• The default is Medium effort.

• A Low effort optimization improves the run time and might be useful for cases in which little
optimization is possible. For example, when all if-else statements have mutually exclusive
operators in each branch and no operator sharing can be achieved.

• A High effort optimization results in increased run time, but typically gives better results.

-min_op <string>

Minimizes the number of instances of a particular operator. If there are multiple such operators
in the code, they are shared onto the fewest number of RTL resources (cores).

The following operators can be specified as arguments:

• add - Addition

• sub - Subtraction

• mul - Multiplication

• icmp - Integer Compare

• sdiv - Signed Division

• udiv - Unsigned Division

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=392

• srem - Signed Remainder

• urem - Unsigned Remainder

• lshr - Logical Shift-Right

• ashr - Arithmetic Shift-Right

• shl - Shift-Left

Pragma

There is no pragma equivalent.

Examples

Instructs Vivado HLS to:

• Spend more effort in the binding process.

• Try more options for implementing the operators.

• Try to produce a design with better resource usage.

config_bind -effort high

Minimizes the number of multiplication operators, resulting in RTL with the fewest number of
multipliers.

config_bind -min_op mul

config_compile
Description

Configures the default behavior of front-end compiling.

Syntax

config_compile [OPTIONS]

Options

-ignore_long_run_time

Skips the long runtime warning caused by lots of loads or store instructions.

-name_max_length <threshold>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=393

Specifies the maximum length of the function names. If the length of the name is higher than the
threshold, the last part of the name is truncated. The default is 80.

-no_signed_zeros

Ignores the signedness of floating-point zero so that the compiler can perform aggressive
optimizations on floating-point operations. The default is off.

Note: Using this option might change the result of any floating point calculations and result in a mismatch
in C/RTL co-simulation. Please ensure your test bench is tolerant of differences and checks for a margin of
difference, not exact values. Refer to the cpp_math example in Table 1-6 in Coding Examples for an
example of using margins and tolerance in the test bench.

-pipeline_loops <threshold>

Specifies the lower threshold used when pipelining loops automatically. The default is no
automatic loop pipelining.

If the option is applied, the innermost loop with a tripcount higher than the threshold is
pipelined, or if the tripcount of the innermost loop is less than or equal to the threshold, its
parent loop is pipelined. If the innermost loop has no parent loop, the innermost loop is pipelined
regardless of its tripcount.

The higher the threshold, the more likely it is that the parent loop is pipelined and the run time is
increased.

-unsafe_math_optimizations

Ignores the signedness of floating-point zero and enables associative floating-point operations so
that compiler can perform aggressive optimizations on floating-point operations. The default is
off.

Note: Using this option might change the result of any floating point calculations and result in a mismatch
in C/RTL co-simulation. Please ensure your test bench is tolerant of differences and checks for a margin of
difference, not exact values. Refer to the cpp_math example in Table 1-6 in Coding Examples for an
example of using margins and tolerance in the test bench.

Pragma

There is no pragma equivalent.

Examples

Pipeline the innermost loop with a tripcount higher than 30, or pipeline the parent loop of the
innermost loop when its tripcount is less than or equal 30:

config_compile -pipeline_loops 30

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=394

Ignore the signedness of floating-point zero:

config_compile -no_signed_zeros

Ignore the signedness of floating-point zero and enable the associative floating-point operations:

config_compile -unsafe_math_optimizations

config_core
Description

This globally configures the specified core.

Syntax

config_core [OPTIONS] <core>

Options

• <core> <string>

Specify the name of the core.

• -latency <int>

Specify the new default latency of core to be used during scheduling.

Pragma

There is no pragma equivalent of the config_core command.

Examples

Change the default latency of core DSP48.

config_core DSP48 -latency 4

config_dataflow
Description

• Specifies the default behavior of dataflow pipelining (implemented by the
set_directive_dataflow command).

• Allows you to specify the default channel memory type and depth.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=395

Syntax

config_dataflow [OPTIONS]

Options

-default_channel [fifo|pingpong]

By default, a RAM memory, configured in pingpong fashion, is used to buffer the data between
functions or loops when dataflow pipelining is used. When streaming data is used (that is, the
data is always read and written in consecutive order), a FIFO memory is more efficient and can be
selected as the default memory type.

TIP: Set arrays to streaming using the set_directive_stream  command to perform FIFO accesses.

-fifo_depth <integer>

Specifies the default depth of the FIFOs. The default depth is 2.

This option has no effect when ping-pong memories are used. If not specified, the default depth
is 2, or if this is an array converted into a FIFO, the default size is the size of the original array. In
some cases, this might be too conservative and introduce FIFOs that are larger than necessary.
Use this option when you know that the FIFOs are larger than required.

CAUTION! Be careful when using this option. Insufficient FIFO depth might lead to deadlock situations.

-scalar_fifo_depth

Specifies the minimum for scalar propagation FIFO.

Through scalar propagation, the compiler converts the scalar from C code into FIFOs. The
minimal sizes of these FIFOs can be set with -start_fifo_depth. If this option is not provided, then
the value of -fifo_depth is used.

-start_fifo_depth

Specifies the minimum depth of start propagation FIFOs.

This option is only valid when the channel between the producer and consumer is a FIFO. This
option uses the same default value as the-fifo_depth option, which is 2. Such FIFOs can
sometimes cause deadlocks, in which case you can use this option to increase the depth of the
FIFO.

Pragma

There is no pragma equivalent.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=396

Examples

Changes the default channel from pingpong memories to FIFOs.

config_dataflow -default_channel

Changes the default channel from pingpong memories to FIFOs with a depth of 6.

config_dataflow -default_channel fifo -fifo_depth 6

CAUTION! If the design implementation requires a FIFO with greater than six elements, this setting results
in a design that fails RTL verification. Be careful when using this option, because it is a user override.

config_export
Description

Configures options for export_design which can either run downstream tools or package a
Vivado IP or Vitis project XO.

Syntax

config_export [OPTIONS]

Options

-description <string>

Provides a description for the generated IP Catalog IP.

-display_name

Provides a display name for the generated IP.

-flow (syn|impl)

Obtains more accurate timing and utilization data for the specified HDL using RTL synthesis. The
option syn performs RTL synthesis and the option impl performs both RTL synthesis and
implementation, including a detailed place and route of the synthesized gates. In the Vivado HLS
GUI, these options appear as checkboxes labeled Vivado Synthesis and Vivado Synthesis, place
and route stage, respectively.

-format (ipcatalog|sysgen|syn_dcp)

Specifies the format to package the IP. The supported formats are:

• sysgen

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=397

In a format accepted by System Generator for DSP for Xilinx Design Suite (7 series devices
only)

• ip_catalog

In format suitable for adding to the Xilinx IP Catalog (default for 7 series devices)

• syn_dcp

Synthesized checkpoint file for Vivado Design Suite. If this option is used, RTL synthesis is
automatically executed.

-sdx_tcl

Provides a IP name for the generated IP.

-library

Specifies the library name for the generated IP catalog IP.

-rtl (verilog |VHDL)

Selects which HDL is used when the -flow option is executed. If not specified, verilog is the
default language.

-vitis_tcl

Controls the location of the output TCL file.

-taxonomy

This option is used for packaging the IP.

-vendor

Specifies the vendor string for the generated IP catalog IP.

-version

Specifies the version string for the generated IP catalog.

-vivado_ip_cache <path-to-ip-cache>

Path to IP cache added to an OOC Vivado project. Reduces the runtime of RTL synthesis if it hits
the cache. The default is none.

-vivado_impl_strategy {default|<strategy>}

Controls the implementation strategy used within the export_design -evaluate Vivado
run.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=398

The value of this option should be either default or the name of a valid Vivado implementation
strategy.

-vivado_phys_opt {none|place|route|all}

Controls if physical optimizations are enabled within the export_design -evaluate Vivado
run.

Valid values for this option are:

• none: No physical optimizations will be enabled

• place: Runs after placement. This is the default.

• route: Runs after routing.

• all: Runs after both place and route.

-vivado_synth_design_args {args...}

The default is -directive sdx_optimization_effort_high.

The value of this option is passed to synth_design within the export_design -evaluate
Vivado synthesis run.

-vivado_synth_strategy {default|<strategy>}

Controls the synthesis strategy used within the export_design -evaluate Vivado run.

The value of this option should be either default or the name of a valid Vivado synthesis
strategy.

-vivado_report_level

This option creates utilizations and timing reports. The default mode is set to 0

• 0: Creates utilization and timing reports after both synthesis and place and route.

• 1: Creates utilization, timing, and analysis reports after both synthesis and place and route.

• 2: Creates utilization, timing, analysis, and failfast reports after both synthesis and place and
route.

Pragma

There is no pragma equivalent.

Examples

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=399

config_interface
Description

Specifies the default interface option used to implement the RTL port of each function during
interface synthesis.

Syntax

config_interface [OPTIONS]

Options

-clock_enable

Adds a clock-enable port (ap_ce) to the design.

The clock enable prevents all clock operations when it is active-Low. It disables all sequential
operations

-expose_global

Exposes global variables as I/O ports.

If a variable is created as a global, but all read and write accesses are local to the design, the
resource is created in the design. There is no need for an I/O port in the RTL.

RECOMMENDED: If you expect the global variable to be an external source or destination outside the
RTL block, create ports using this option.

-m_axi_addr64

Globally enables 64-bit addressing for all M_AXI ports in the design.

-m_axi_offset (off|direct|slave)

Globally controls the offset ports of all M_AXI interfaces in the design.

• off (default)

No offset port generated.

• direct

Generates a scalar input offset port.

• slave

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=400

Generates an offset port and automatically maps it to an AXI4-Lite slave.

-register_io (off|scalar_in|scalar_out|scalar_all)

Globally controls turning on registers for all inputs/outputs on the top function. The default is
off.

-trim_dangling_port

Overrides the default behavior for interfaces based on a struct.

By default, all members of an unpacked struct at the block interface become RTL ports regardless
of whether they are used or not by the design block. Setting this switch to on removes all
interface ports that are not used in some way by the block generated.

Pragma

There is no pragma equivalent.

Examples

• Exposes global variables as I/O ports.

• Adds a clock enable port.

config_interface -expose_global -clock_enable

config_rtl
Description

Configures various attributes of the output RTL, the type of reset used, and the encoding of the
state machines. It also allows you to use specific identification in the RTL.

By default, these options are applied to the top-level design and all RTL blocks within the design.
You can optionally specify a specific RTL model.

Syntax

config_rtl [OPTIONS] <model_name>

Options

-header <string>

Places the contents of file <string> at the top (as comments) of all output RTL and simulation
files.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=401

TIP: Use this option to ensure that the output RTL files contain user specified identification.

-auto_prefix

Specifies the top level function name as the prefix value. This option is ignored if config_rtl
-prefix is also specified.

-prefix <string>

Specifies a prefix to be added to all RTL entity/module names.

-enable_maxiConservative

This mode tells the AXI master to not issue write request before there is enough data in the write
channel buffer.

-reset (none|control|state|all)

Variables initialized in the C code are always initialized to the same value in the RTL and
therefore in the bitstream. This initialization is performed only at power-on. It is not repeated
when a reset is applied to the design.

The setting applied with the -reset option determines how registers and memories are reset.

• none

No reset is added to the design.

• control (default)

Resets control registers, such as those used in state machines and those used to generate I/O
protocol signals.

• state

Resets control registers and registers or memories derived from static or global variables in
the C code. Any static or global variable initialized in the C code is reset to its initialized value.

• all

Resets all registers and memories in the design. Any static or global variable initialized in the C
code is reset to its initialized value.

-reset_async

Causes all registers to use a asynchronous reset.

If this option is not specified, a synchronous reset is used.

-reset_level (low|high)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=402

Allows the polarity of the reset signal to be either active-Low or active-High.

The default is High.

-encoding (binary|onehot|gray)

Specifies the encoding style used by the state machine of the design.

The default is onehot.

With auto encoding, Vivado HLS determines the style of encoding. However, the Xilinx logic
synthesis tool within Vivado can extract and re-implement the FSM style during logic synthesis. If
any other encoding style is selected, the encoding style cannot be re-optimized by the Xilinx logic
synthesis tool.

Pragma

There is no pragma equivalent.

Examples

Configures the output RTL to have all registers reset with an asynchronous active-Low reset.

config_rtl -reset all -reset_async -reset_level low

Adds the contents of my_message.txt as a comment to all RTL output files.

config_rtl -header my_mesage.txt

config_schedule
Description

Configures the default type of scheduling performed by Vivado HLS.

Syntax

config_schedule [OPTIONS]

Options

-effort (high|medium|low)

Specifies the effort used during scheduling operations.

• The default is Medium effort.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=403

• A Low effort optimization improves the run time and might be useful when there are few
choices for the design implementation.

• A High effort optimization results in increased run time, but typically provides better results.

-verbose

Prints out the critical path when scheduling fails to satisfy any directives or constraints.

-relax_ii_for_timing

This option allows scheduling to relax the II on a pipelined loop or function in order to satisfy
timing requirements. In general, scheduling might create a design that fails to meet timing,
allowing logic synthesis to be used to ensure the timing requirements are met. This option
informs scheduling to always meet timing and relax the throughput target (II) in order to ensure
the design meets its timing requirements.

Pragma

There is no pragma equivalent.

Examples

Changes the default schedule effort to Low to reduce run time.

config_schedule -effort low

config_sdx
Description

Runs the tool's compiler in either HLS or XOCC mode.

Syntax

config_sdx [OPTIONS]

Options

-target (none|xocc|sds)

• none

Runs the tool in HLS stand-alone mode.

• xocc

Runs the tool in XOCC mode, which enables the XOCC specific checks.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=404

• sds

Configures HLS to generate a Vivado IP for use in the SDSoC flow.

config_unroll
Description

Automatically unroll loops based on the loop index limit (or tripcount).

Syntax

config_unroll -tripcount_threshold <value>

Options

-tripcount_threshold

All loops which have fewer iterations than the specified value are automatically unrolled.

Example

The following command ensures all loops which have fewer than 18 iterations are automatically
unrolled during scheduling.

config_unroll -tripcount_threshold 18

cosim_design
Description

Executes post-synthesis co-simulation of the synthesized RTL with the original C-based test
bench.

To specify the files for the test bench run the following command:

add_files -tb

The simulation is run in subdirectory sim/<HDL> of the active solution,

• <HDL> is specified by the -rtl option.

For a design to be verified with cosim_design:

• The design must use interface mode ap_ctrl_hs.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=405

• Each output port must use one of the following interface modes:

○ ap_vld

○ ap_ovld

○ ap_hs

○ ap_memory

○ ap_fifo

○ ap_bus

The interface modes use a write valid signal to specify when an output is written.

Syntax

cosim_design [OPTIONS]

Options

-argv <string>

The <string> is passed onto the main C function.

Specifies the argument list for the behavioral test bench.

-compiled_library_dir <string>

Specifies the compiled library directory during simulation with third-party simulators. The
<string> is the path name to the compiled library directory.

-coverage

Enables the coverage feature during simulation with the VCS simulator.

-disable_deadlock_detection

Disables the deadlock detection feature in co-simulation.

-ignore_init <integer>

Disables comparison checking for the first <integer> number of clock cycles.

This is useful when it is known that the RTL will initially start with unknown ('hX) values.

-ldflags <string>

Specifies the options passed to the linker for co-simulation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=406

This option is typically used to pass include path information or library information for the C test
bench.

-O

Enables optimize compilation of the C test bench and RTL wrapper.

-reduce_diskspace

This option enables disk space saving flow. It helps to reduce disk space used during simulation,
but with possibly larger run time and memory usage.

-rtl (vhdl|verilog)

Specifies which RTL to use for C/RTL co-simulation. The default is Verilog. You can use the -
tool option to select the HDL simulator. The default is xsim.

-setup

Creates all simulation files created in the sim/<HDL> directory of the active solution. The
simulation is not executed.

-tool (*auto*|vcs|modelsim|riviera|isim|xsim|ncsim|xceilum)

Specifies the simulator to use to co-simulate the RTL with the C test bench.

-trace_level (*none*|all|port)

Determines the level of trace file output that is performed.

Determines the level of waveform tracing during C/RTL co-simulation. Option 'all' results in all
port and signal waveforms being saved to the trace file, and option 'port' only saves waveform
traces for the top-level ports. The trace file is saved in the “sim/<RTL>” directory of the current
solution when the simulation executes. The <RTL> directory depends on the selection used with
the -rtl option: verilog or vhdl.

The default is none.

Without optimization, cosim_design compiles the test bench as quickly as possible.

Enable optimization to improve the run time performance, if possible, at the expense of
compilation time. Although the resulting executable might potentially run much faster, the run
time improvements are design-dependent. Optimizing for run time might require large amounts
of memory for large functions.

-wave_debug

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=407

Enables the visualization of all processes in the generated RTL, as in the dataflow and sequential
processes. This is only supported when using Vivado Simulator for co-simulation.

Pragma

There is no pragma equivalent.

Examples

Performs verification using the Vivado Simulator:

cosim_design

Uses the VCS simulator to verify the Verilog RTL and enable saving of the waveform trace file:

cosim_design -tool VCS -rtl verilog -coverage -trace_level all

Verifies the VHDL RTL using ModelSim. Values 5 and 1 are passed to the test bench function and
used in the RTL verification:

cosim_design -tool modelsim -rtl vhdl -argv "5 1"

create_clock
Description

Creates a virtual clock for the current solution.

The command can be executed only in the context of an active solution. The clock period is a
constraint that drives optimization (chaining as many operations as feasible in the given clock
period).

C and C++ designs support only a single clock. For SystemC designs, you can create multiple
named clocks and apply them to different SC_MODULEs using the set_directive_clock
command.

Syntax

create_clock -period <number> [OPTIONS]

Options

-name <string>

Specifies the clock name.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=408

If no name is given, a default name is used.

-period <number>

Specifies the clock period in ns or MHz.

• If no units are specified, ns is assumed.

• If no period is specified, a default period of 10 ns is used.

Pragma

There is no pragma equivalent.

Examples

Species a clock period of 50 ns.

create_clock -period 50

Uses the default period of 10 ns to specify the clock.

create_clock

For a SystemC designs, multiple named clocks can be created and applied using
set_directive_clock.

create_clock -period 15 fast_clk
create_clock -period 60 slow_clk

Specifies clock frequency in MHz.

create_clock -period 100MHz

csim_design
Description

Compiles and runs pre-synthesis C simulation using the provided C test bench.

To specify the files for the test bench, use add_file -tb. The simulation working directory is
csim inside the active solution.

Syntax

csim_design [OPTIONS]

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=409

Options

-o

Enables optimizing compilation.

By default, compilation is performed in debug mode to enable debugging.

-argv <string>

Specifies the argument list for the C test bench.

The <string> is passed on the <main> function in the C test bench.

-clean

Enables a clean build.

Without this option, csim_design compiles incrementally.

-ldflags <string>

Specifies the options passed to the linker for C simulation.

This option is typically used to pass on library information for the C test bench and design.

-compiler (*gcc*)

This option selects the compiler used for C simulation. The default compiler is gcc (g++ for C++).

-mflags <string>

Specifies the options passed to the compiler for C simulation.

This option is typically used to speed up compilation.

-setup

Creates the C simulation binary in the csim directory of the active solution. Simulation is not
executed.

Pragma

There is no pragma equivalent.

Examples

Compiles and runs C simulation:

csim_design

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=410

Compiles source design and test bench to generate the simulation binary. Does not execute the
binary. To run the simulation, execute run.sh in the csim/build directory of the active
solution:

csim_design -O -setup

csynth_design
Description

Synthesizes the Vivado HLS database for the active solution.

The command can be executed only in the context of an active solution. The elaborated design in
the database is scheduled and mapped onto RTL, based on any constraints that are set.

Syntax

csynth_design

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

Runs Vivado HLS on the top-level design.

csynth_design

delete_project
Description

Deletes the directory associated with the project.

The delete_project command checks the corresponding project directory <project> to
ensure that it is a valid Vivado HLS project before deleting it. If no directory <project> exists in
the current work directory, the command has no effect.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 411Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=411

Syntax

delete_project <project>

• <project> is the project name.

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

Deletes Project_1 by removing the directory Project_1 and all its contents.

delete_project Project_1

delete_solution
Syntax

delete_solution <solution>

• <solution> is the solution to be deleted.

Description

Removes a solution from an active project, and deletes the <solution> subdirectory from the
project directory.

If the solution does not exist in the project directory, the command has no effect.

Pragma

There is no pragma equivalent.

Examples

Deletes solution Solution_1 from the active project by removing the subdirectory
Solution_1 from the active project directory.

delete_solution Solution_1

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 412Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=412

export_design
Description

Exports and packages the synthesized design in RTL as an IP for downstream tools.

Supported IP formats are:

• Vivado IP catalog

• DCP format

• System Generator

The packaged design is under the impl directory of the active solution in one of the following
subdirectories:

• ip

• sysgen

Syntax

export_design [OPTIONS]

Options

-flow (syn|impl)

Obtains more accurate timing and utilization data for the specified HDL using RTL synthesis.
Option syn perform RTL synthesis and option impl performs both RTL synthesis and
implementation (detailed place & route of the synthesized gates).

In the Vivado HLS GUI, these options appear as checkboxes labeled Vivado Synthesis and
Vivado Synthesis, place and route stage, respectively.

-format (sysgen|ip_catalog|syn_dcp)

Specifies the format to package the IP.

The supported formats are:

• sysgen

In a format accepted by System Generator for DSP for Vivado Design Suite (Xilinx 7 series
devices only)

• ip_catalog

In format suitable for adding to the Vivado IP Catalog (default for Xilinx 7 series devices)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 413Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=413

• syn_dcp

Synthesized checkpoint file for the Vivado Design Suite. If this option is used, RTL synthesis is
automatically executed.

-rtl (verilog|vhdl)

Selects which HDL is used when the -flow option is executed. If not specified, verilog is the
default language.

-xo <path-to-output-xo>

Specifies the direct output for the XO file.

Pragma

There is no pragma equivalent.

Examples

Exports RTL for System Generator:

export_design -format sysgen

Exports RTL in IP catalog. Evaluates the VHDL to obtain better timing and utilization data (using
the Vivado tools):

export_design -flow syn -rtl vhdl -format ip_catalog

help
Description

• When used without any <cmd> as an argument, lists all Vivado HLS Tcl commands.

• When used with a Vivado HLS Tcl command as an argument, provides information on the
specified command.

For legal Vivado HLS commands, auto-completion using the tab key is active when typing the
command argument.

Syntax

help [OPTIONS] <cmd>

• <cmd> is the command to display help on.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=414

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

Displays help for all commands and directives.

help

Displays help for the add_files command.

help add_files

list_core
Description

Lists all the cores in the currently loaded library.

Cores are the components used to implement operations in the output RTL (such as adders,
multipliers, and memories).

After elaboration, the operations in the RTL are represented as operators in the internal
database. During scheduling, operators are mapped to cores from the library to implement the
RTL design. Multiple operators can be mapped on the same instance of a core, sharing the same
RTL resource.

The list_core command allows the available operators and cores to be listed by using the
relevant option:

• Operation

Shows which cores in the library can implement each operation.

• Type

Lists the available cores by type, for example those that implement functional operations, or
those that implement memory or storage operations.

If no options are specified, the command lists all cores in the library.

TIP: Use the information provided by the list_core  command with the
set_directive_resource  command to implement specific operations onto specific cores.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=415

Syntax

list_core [OPTIONS]

Options

-operation (opers)

Lists the cores in the library that can implement the specified operation. The operations are:

• add - Addition

• sub - Subtraction

• mul - Multiplication

• udiv - Unsigned Division

• urem - Unsigned Remainder (Modulus operator)

• srem - Signed Remainder (Modulus operator)

• icmp - Integer Compare

• shl - Shift-Left

• lshr - Logical Shift-Right

• ashr - Arithmetic Shift-Right

• mux - Multiplexor

• load - Memory Read

• store - Memory Write

• fiforead - FIFO Read

• fifowrite - FIFO Write

• fifonbread - Non-Blocking FIFO Read

• fifonbwrite - Non-Blocking FIFO Write

-type (functional_unit|storage|connector|adapter|ip_block)

Lists cores only of the specified type.

• Function Units

Cores that implement standard RTL operations (such as add, multiply, or compare)

• Storage

Cores that implement storage elements such as registers or memories.

• Connectors

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=416

Cores used to implement connectivity within the design, including direct connections and
streaming storage elements.

• Adapter

Cores that implement interfaces used to connect the top-level design when IP is generated.
These interfaces are implemented in the RTL wrapper used in the IP generation flow (Xilinx EDK).

• IP Blocks

Any IP cores that you added.

Pragma

There is no pragma equivalent.

Examples

Lists all cores in the currently loaded libraries that can implement an add operation.

list_core -operation add

Lists all available memory (storage) cores in the library.

list_core -type storage

TIP: Use the set_directive_resource command to implement an array using one of the available memories.

list_part
Description

• If a family is specified, returns the supported device families or supported parts for that family.

• If no family is specified, returns all supported families.

TIP: To return parts of a family, specify one of the supported families that was listed when no family was
specified when the command was run.

Syntax

list_part [OPTIONS]

Pragma

There is no pragma equivalent.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 417Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=417

Examples

Returns all supported families.

list_part

Returns all supported Virtex®-6 parts.

list_part virtex6

open_project
Description

Opens an existing project or creates a new one.

There can only be one project active at any given time in a Vivado HLS session. A project can
contain multiple solutions.

To close a project:

• Use the close_project command, or

• Start another project with the open_project command.

Use the delete_project command to completely delete the project directory (removing it
from the disk) and any solutions associated it.

Syntax

open_project [OPTIONS] <project>

• <project> is the project name.

Options

-reset

• Resets the project by removing any project data that already exists.

• Removes any previous project information on design source files, header file search paths, and
the top level function. The associated solution directories and files are kept, but might now
have invalid results.

The delete_project command accomplishes the same as the -reset option and removes all
solution data).

RECOMMENDED: Use this option when executing Vivado HLS with Tcl scripts. Otherwise, each new
add_files  command adds additional files to the existing data.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=418

Pragma

There is no pragma equivalent.

Examples

Opens a new or existing project named Project_1.

open_project Project_1

Opens a project and removes any existing data.

open_project -reset Project_2

RECOMMENDED: Use this method with Tcl scripts to prevent adding source or library files to the existing
project data.

open_solution
Description

Opens an existing solution or creates a new one in the currently active project.

CAUTION! Attempting to open or create a solution when there is no active project results in an error.
There can only be one solution active at any given time in a Vivado HLS session.

Each solution is managed in a subdirectory of the current project directory. A new solution is
created if the solution does not yet exist in the current work directory.

To close a solution:

• Run the close_solution command, or

• Open another solution with the open_solution command.

Use the delete_solution command to remove them from the project and delete the
corresponding subdirectory.

Syntax

open_solution [OPTIONS] <solution>

• <solution> is the solution name.

Options

-reset

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=419

• Resets the solution data if the solution already exists. Any previous solution information on
libraries, constraints, and directives is removed.

• Removes synthesis, verification, and implementation.

Pragma

There is no pragma equivalent.

Examples

Opens a new or existing solution in the active project named Solution_1.

open_solution Solution_1

Opens a solution in the active project. Removes any existing data.

open_solution -reset Solution_2

RECOMMENDED: Use this method with Tcl scripts to prevent adding to the existing solution data.

set_clock_uncertainty
Description

Sets a margin on the clock period defined by create_clock.

The margin is subtracted from the clock period to create an effective clock period. If the clock
uncertainty is not defined in ns or as a percentage, it defaults to 12.5% of the clock period.

Vivado HLS optimizes the design based on the effective clock period, providing a margin for
downstream tools to account for logic synthesis and routing. The command can be executed only
in the context of an active solution. Vivado HLS still uses the specified clock period in all output
files for verification and implementation.

For SystemC designs in which multiple named clocks are specified by the create_clock
command, you can specify a different clock uncertainty on each named clock by specifying the
named clock.

Syntax

set_clock_uncertainty <uncertainty> <clock_list>

• <uncertainty> is a value, specified in ns, representing how much of the clock period is
used as a margin.

• <clock_list> a list of clocks to which the uncertainty is applied. If none is provided, it is
applied to all clocks.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=420

Pragma

There is no pragma equivalent.

Examples

Specifies an uncertainty or margin of 0.5 ns on the clock. This effectively reduces the clock
period that Vivado HLS can use by 0.5 ns.

set_clock_uncertainty 0.5

In this SystemC example, creates two clock domains. A different clock uncertainty is specified on
each domain.

create_clock -period 15 fast_clk
create_clock -period 60 slow_clk
set_clock_uncertainty 0.5 fast_clock
set_clock_uncertainty 1.5 slow_clock

TIP: SystemC designs support multiple clocks. Use the set_directive_clock  command to apply the
clock to the appropriate function.

set_directive_allocation
Description

Specifies instance restrictions for resource allocation.

This defines, and can limit, the number of RTL instances used to implement specific functions or
operations. For example, if the C source has four instances of a function foo_sub, the
set_directive_allocation command can ensure that there is only one instance of
foo_sub in the final RTL. All four instances are implemented using the same RTL block.

Syntax

set_directive_allocation [OPTIONS] <location> <instances>

• <location> is the location string in the format function[/label].

• <instances> is a function or operator.

The function can be any function in the original C code that has not been either inlined by the
set_directive_inline command or inlined automatically by Vivado HLS.

The list of operators is as follows (provided there is an instance of such an operation in the C
source code):

• add: Addition

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=421

• sub: Subtraction

• mul: Multiplication

• icmp: Integer Compare

• sdiv: Signed Division

• udiv: Unsigned Division

• srem: Signed Remainder

• urem: Unsigned Remainder

• lshr: Logical Shift-Right

• shl: Shift-Left

Options

-limit <integer>

Sets a maximum limit on the number of instances (of the type defined by the -type option) to
be used in the RTL design.

-type [function|operation]

The instance type can be function (default) or operation.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS allocation \
 instances=<Instance Name List> \
 limit=<Integer Value> \
 <operation, function>

Examples

Given a design foo_top with multiple instances of function foo, limits the number of instances
of foo in the RTL to 2.

set_directive_allocation -limit 2 -type function foo_top foo
#pragma HLS allocation instances=foo limit=2 function

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 422Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=422

Limits the number of multipliers used in the implementation of My_func to 1. This limit does not
apply to any multipliers that might reside in sub-functions of My_func. To limit the multipliers
used in the implementation of any sub-functions, specify an allocation directive on the sub-
functions or inline the sub-function into function My_func.

set_directive_allocation -limit 1 -type operation My_func mul
#pragma HLS allocation instances=mul limit=1 operation

set_directive_array_map
Description

Maps a smaller array into a larger array.

Designers typically use the set_directive_array_map command (with the same -instance
target) to map multiple smaller arrays into a single larger array. This larger array can then be
targeted to a single larger memory (RAM or FIFO) resource.

Use the -mode option to determine whether the new target is a concatenation of:

• Elements (horizontal mapping), or

• Bit-widths (vertical mapping)

The arrays are concatenated in the order the set_directive_array_map commands are
issued starting at:

• Target element zero in horizontal mapping

• Bit zero in vertical mapping.

Syntax

set_directive_array_map [OPTIONS] <location> <array>

<location> is the location (in the format function[/label]) which contains the array variable,
and <variable> is the array variable to be mapped into the new target array instance.

Options

-instance <string>

Specifies the new array instance name where the current array variable is to be mapped.

-mode (horizontal|vertical)

• Horizontal mapping (the default) concatenates the arrays to form a target with more elements.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=423

• Vertical mapping concatenates the array to form a target with longer words.

-offset <integer>

IMPORTANT! For horizontal mapping only.

Specifies an integer value indicating the absolute offset in the target instance for current
mapping operation. For example:

• Element 0 of the array variable maps to element <int> of the new target.

• Other elements map to <int+1>, <int+2>... of the new target.

If the value is not specified, Vivado HLS calculates the required offset automatically to avoid any
overlap. Example: concatenating the arrays starting at the next unused element in the target.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS array_map \
 variable=<variable> \
 instance=<instance> \
 <horizontal, vertical> \
 offset=<int>

Examples

These commands map arrays A[10] and B[15] in function foo into a single new array AB[25].

• Element AB[0] will be the same as A[0].

• Element AB[10] will be the same as B[0] (because no -offset option is used).

• The bit-width of array AB[25] will be the maximum bit-width of A[10] or B[15].

set_directive_array_map -instance AB -mode horizontal foo A
set_directive_array_map -instance AB -mode horizontal foo B
#pragma HLS array_map variable=A instance=AB horizontal
#pragma HLS array_map variable=B instance=AB horizontal

Concatenates arrays C and D into a new array CD with same number of bits as C and D
combined. The number of elements in CD is the maximum of C or D

set_directive_array_map -instance CD -mode vertical foo C
set_directive_array_map -instance CD -mode vertical foo D
#pragma HLS array_map variable=C instance=CD vertical
#pragma HLS array_map variable=D instance=CD vertical

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=424

set_directive_array_partition
Description

Partitions an array into smaller arrays or individual elements.

This partitioning:

• Results in RTL with multiple small memories or multiple registers instead of one large memory.

• Effectively increases the amount of read and write ports for the storage.

• Potentially improves the throughput of the design.

• Requires more memory instances or registers.

Syntax

set_directive_array_partition [OPTIONS] <location> <array>

• <location> is the location (in the format function[/label]) which contains the array variable.

• <array> is the array variable to be partitioned.

Options

-dim <integer>

Note: Relevant for multi-dimensional arrays only.

Specifies which dimension of the array is to be partitioned.

• If a value of 0 is used, all dimensions are partitioned with the specified options.

• Any other value partitions only that dimension. For example, if a value 1 is used, only the first
dimension is partitioned.

-factor <integer>

Note: Relevant for type block or cyclic partitioning only.

Specifies the number of smaller arrays that are to be created.

-type (block|cyclic|complete)

• block partitioning creates smaller arrays from consecutive blocks of the original array. This
effectively splits the array into N equal blocks where N is the integer defined by the -factor
option.

• cyclic partitioning creates smaller arrays by interleaving elements from the original array.
For example, if -factor 3 is used:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=425

○ Element 0 is assigned to the first new array

○ Element 1 is assigned to the second new array.

○ Element 2 is assigned to the third new array.

○ Element 3 is assigned to the first new array again.

• complete partitioning decomposes the array into individual elements. For a one-dimensional
array, this corresponds to resolving a memory into individual registers. For multi-dimensional
arrays, specify the partitioning of each dimension, or use -dim 0 to partition all dimensions.

The default is complete.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS array_partition \
 variable=<variable> \
 <block, cyclic, complete> \
 factor=<int> \
 dim=<int>

Examples

Partitions array AB[13] in function foo into four arrays. Because four is not an integer factor of
13:

• Three arrays have three elements.

• One array has four elements (AB[9:12]).

set_directive_array_partition -type block -factor 4 foo AB
#pragma HLS array_partition variable=AB block factor=4

Partitions array AB[6][4] in function foo into two arrays, each of dimension [6][2].

set_directive_array_partition -type block -factor 2 -dim 2 foo AB
#pragma HLS array_partition variable=AB block factor=2 dim=2

Partitions all dimensions of AB[4][10][6] in function foo into individual elements.

set_directive_array_partition -type complete -dim 0 foo AB
#pragma HLS array_partition variable=AB complete dim=0

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=426

set_directive_array_reshape
Description

Combines array partitioning with vertical array mapping to create a single new array with fewer
elements but wider words.

The set_directive_array_reshape command:

1. Splits the array into multiple arrays (in an identical manner as
set_directive_array_partition)

2. Automatically recombine the arrays vertically (as per set_directive_array_map -type
vertical) to create a new array with wider words.

Syntax

set_directive_array_reshape [OPTIONS] <location> <array>

• <location> is the location (in the format function[/label]) that contains the array variable.

• <array> is the array variable to be reshaped.

Options

-dim <integer>integer>

Note: Relevant for multi-dimensional arrays only.

Specifies which dimension of the array is to be reshaped.

• If value = 0, all dimensions are partitioned with the specified options.

• Any other value partitions only that dimension. For example, if value =1, only the first
dimension is partitioned.

-factor <integer>

Note: Relevant for type block or cyclic reshaping only.

Specifies the number of temporary smaller arrays to be created.

-type (block|cyclic|complete)

• block reshaping creates smaller arrays from consecutive blocks of the original array. This
effectively splits the array into N equal blocks where N is the integer defined by the -factor
option and then combines the N blocks into a single array with word-width*N. The default is
complete.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=427

• cyclic reshaping creates smaller arrays by interleaving elements from the original array. For
example, if -factor 3 is used, element 0 is assigned to the first new array, element 1 to the
second new array, element 2 is assigned to the third new array, and then element 3 is assigned
to the first new array again. The final array is a vertical concatenation (word concatenation, to
create longer words) of the new arrays into a single array.

• complete reshaping decomposes the array into temporary individual elements and then
recombines them into an array with a wider word. For a one-dimension array this is equivalent
to creating a very-wide register (if the original array was N elements of M bits, the result is a
register with N*M bits).

-object

Note: Relevant for container arrays only.

Applies reshape on the objects within the container. If the option is specified, all dimensions of
the objects will be reshaped, but all dimensions of the container will be kept.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS array_reshape \
 variable=<variable> \
 <block, cyclic, complete> \
 factor=<int> \
 dim=<int>

Examples

Reshapes 8-bit array AB[17] in function foo, into a new 32-bit array with five elements.

Because four is not an integer factor of 13:

• AB[17] is in the lower eight bits of the fifth element.

• The remainder of the fifth element is unused.

set_directive_array_reshape -type block -factor 4 foo AB
#pragma HLS array_reshape variable=AB block factor=4

Partitions array AB[6][4] in function foo, into a new array of dimension [6][2], in which
dimension 2 is twice the width.

set_directive_array_reshape -type block -factor 2 -dim 2 foo AB
#pragma HLS array_reshape variable=AB block factor=2 dim=2

Reshapes 8-bit array AB[4][2][2] in function foo into a new single element array (a register),
4*2*2*8(=128)-bits wide.

set_directive_array_reshape -type complete -dim 0 foo AB
#pragma HLS array_reshape variable=AB complete dim=0

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=428

set_directive_clock
Description

Applies the named clock to the specified function.

C and C++ designs support only a single clock. The clock period specified by create_clock is
applied to all functions in the design.

SystemC designs support multiple clocks. Multiple named clocks can be specified using the
create_clock command and applied to individual SC_MODULEs using the
set_directive_clock command. Each SC_MODULE is synthesized using a single clock.

Syntax

set_directive_clock <location> <domain>

• <location> is the function where the named clock is to be applied.

• <domain> is the clock name as specified by the -name option of the create_clock
command.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS clock domain=<string>

Examples

Assume a SystemC design in which:

• Top-level foo_top has clocks ports fast_clock and slow_clock.

• It uses only fast_clock within its function.

• Sub-block foo uses only slow_clock.

In that case, the commands shown below:

• Create both clocks.

• Apply fast_clock to foo_top.

• Apply slow_clock to sub-block foo.

create_clock -period 15 fast_clk
create_clock -period 60 slow_clk
set_directive_clock foo_top fast_clock
set_directive_clock foo slow_clock
#pragma HLS clock domain=fast_clock
#pragma HLS clock domain=slow_clock

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=429

Note: There is no pragma equivalent of create_clock.

set_directive_dataflow
Description

Specifies that dataflow optimization be performed on the functions or loops, improving the
concurrency of the RTL implementation.

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources (such as set_directive_allocation), Vivado HLS seeks to minimize latency
and improve concurrency.

Data dependencies can limit this. For example, functions or loops that access arrays must finish
all read/write accesses to the arrays before they complete. This prevents the next function or
loop that consumes the data from starting operation.

It is possible for the operations in a function or loop to start operation before the previous
function or loop completes all its operations.

When dataflow optimization is specified, Vivado HLS:

• Analyzes the dataflow between sequential functions or loops.

• Seeks to create channels (based on pingpong RAMs or FIFOs) that allow consumer functions
or loops to start operation before the producer functions or loops have completed.

This allows functions or loops to operate in parallel, which in turn:

• Decreases the latency

• Improves the throughput of the RTL design

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, Vivado HLS attempts to minimize the initiation interval and start operation as soon
as data is available.

Syntax

set_directive_dataflow <location>

• <location> is the location (in the format function[/label]) at which dataflow optimization is
to be performed.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS dataflow

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=430

Examples

Specifies dataflow optimization within function foo.

set_directive_dataflow foo
#pragma HLS dataflow

set_directive_data_pack
Description

Packs the data fields of a struct into a single scalar with a wider word width.

Any arrays declared inside the struct are completely partitioned and reshaped into a wide scalar
and packed with other scalar fields.

The bit alignment of the resulting new wide-word can be inferred from the declaration order of
the struct fields. The first field takes the least significant sector of the word and so forth until all
fields are mapped.

Note: The DATA_PACK optimization does not support packing structs which contain other structs.

Syntax

set_directive_data_pack [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the variable which
will be packed.

• <variable> is the variable to be packed.

Options

-instance <string>

Specifies the name of resultant variable after packing. If none is provided, the input variable is
used.

-byte_pad (struct_level|field_level)

Specify whether to pack data on 8-bit boundary:

• struct_level: Pack the struct first, then pack it on 8-bits boundary.

• field_level: Pack each individual field on 8-bits boundary first, then pack the struct.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=431

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS data_pack variable=<variable> instance=<string>

Examples

Packs struct array AB[17] with three 8-bit field fields (typedef struct {unsigned char R, G, B;}
pixel) in function foo, into a new 17 element array of 24 bits.

set_directive_data_pack foo AB
#pragma HLS data_pack variable=AB

Packs struct pointer AB with three 8-bit fields (typedef struct {unsigned char R, G, B;} pixel) in
function foo, into a new 24-bit pointer.

set_directive_data_pack foo AB
#pragma HLS data_pack variable=AB

set_directive_dependence
Description

Vivado HLS detects dependencies:

• Within loops (loop-independent dependency), or

• Between different iterations of a loop (loop-carry dependency).

These dependencies impact when operations can be scheduled, especially during function and
loop pipelining.

• Loop-independent dependence

The same element is accessed in the same loop iteration.

for (i=0;i<N;i++) {
 A[i]=x;
 y=A[i];
}

• Loop-carry dependence

The same element is accessed in a different loop iteration.

for (i=0;i<N;i++) {
 A[i]=A[i-1]*2;
}

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=432

Under certain circumstances such as variable dependent array indexing or when an external
requirement needs enforced (for example, two inputs are never the same index) the dependence
analysis might be too conservative. The set_directive_dependence command allows you
to explicitly specify the dependence and resolve a false dependence.

Syntax

set_directive_dependence [OPTIONS] <location>

• <location> is the location (in the format function[/label]) at which the dependence is to be
specified.

Options

-class (array|pointer)

Specifies a class of variables in which the dependence needs clarification. This is mutually
exclusive with the option -variable.

-dependent (true|false)

Specifies whether a dependence needs to be enforced (true) or removed (false). The default is
true.

-direction (RAW|WAR|WAW)

Note: Relevant for loop-carry dependencies only.

Specifies the direction for a dependence:

• RAW (Read-After-Write - true dependence)

The write instruction uses a value used by the read instruction.

• WAR (Write-After-Read - anti dependence)

The read instruction gets a value that is overwritten by the write instruction.

• WAW (Write-After-Write - output dependence)

Two write instructions write to the same location, in a certain order.

-distance <integer>

Note: Relevant only for loop-carry dependencies where -dependent is set to true.

Specifies the inter-iteration distance for array access.

-type (intra|inter)

Specifies whether the dependence is:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=433

• Within the same loop iteration (intra), or

• Between different loop iterations (inter) (default).

-variable <variable>

Specifies the specific variable to consider for the dependence directive. Mutually exclusive with
the option -class.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS dependence \
 variable=<variable> \
 <array, pointer> \
 <inter, intra> \
 <RAW, WAR, WAW> \
 distance=<int> \
 <false, true>

All the options in the pragma are mandatory. If you do not specify the inter/intra or false/true,
the behavior defaults to:

#pragma HLS DEPENDENCE variable=xxx inter false

Examples

Removes the dependence between Var1 in the same iterations of loop_1 in function foo.

set_directive_dependence -variable Var1 -type intra \
-dependent false foo/loop_1
#pragma HLS dependence variable=Var1 intra false

The dependence on all arrays in loop_2 of function foo informs Vivado HLS that all reads must
happen after writes in the same loop iteration.

set_directive_dependence -class array -type intra \
-dependent true -direction RAW foo/loop_2
#pragma HLS dependence array inter RAW true

set_directive_expression_balance
Description

Sometimes a C-based specification is written with a sequence of operations. This can result in a
lengthy chain of operations in RTL. With a small clock period, this can increase the design
latency.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=434

By default, Vivado HLS rearranges the operations through associative and commutative
properties. This rearrangement creates a balanced tree that can shorten the chain, potentially
reducing latency at the cost of extra hardware.

The set_directive_expression_balance command allows this expression balancing to
be turned off or on within with a specified scope.

Syntax

set_directive_expression_balance [OPTIONS] <location>

• <location> is the location (in the format function[/label]) where the balancing should be
enabled or disabled.

Options

-off

Turns off expression balancing at this location.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS expression_balance <off>

Examples

Disables expression balancing within function My_Func.

set_directive_expression_balance -off My_Func
#pragma HLS expression_balance off

Explicitly enables expression balancing in function My_Func2.

set_directive_expression_balance My_Func2
#pragma HLS expression_balance

set_directive_function_instantiate
Description

By default:

• Functions remain as separate hierarchy blocks in the RTL.

• All instances of a function, at the same level of hierarchy, uses the same RTL implementation
(block).

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=435

The set_directive_function_instantiate command is used to create a unique RTL
implementation for each instance of a function, allowing each instance to be optimized.

By default, the following code results in a single RTL implementation of function foo_sub for all
three instances.

char foo_sub(char inval, char incr)
{
 return inval + incr;
}
void foo(char inval1, char inval2, char inval3,
 char *outval1, char *outval2, char * outval3)
{
 *outval1 = foo_sub(inval1, 1);
 *outval2 = foo_sub(inval2, 2);
 *outval3 = foo_sub(inval3, 3);
}

Using the directive as shown in the example section below results in three versions of function
foo_sub, each independently optimized for variable incr.

Syntax

set_directive_function_instantiate <location> <variable>

• <location> is the location (in the format function[/label]) where the instances of a function
are to be made unique.

• variable <string> specifies which function argument <string> is to be specified as
constant.

Options

This command has no options.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS function_instantiate variable=<variable>

Examples

For the example code shown above, the following Tcl (or pragma placed in function foo_sub)
allows each instance of function foo_sub to be independently optimized with respect to input
incr.

set_directive_function_instantiate foo_sub incr
#pragma HLS function_instantiate variable=incr

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=436

set_directive_inline
Description

Removes a function as a separate entity in the hierarchy. After inlining, the function is dissolved
and no longer appears as a separate level of hierarchy.

In some cases, inlining a function allows operations within the function to be shared and
optimized more effectively with surrounding operations. An inlined function cannot be shared.
This can increase area.

By default, inlining is only performed on the next level of function hierarchy.

Syntax

set_directive_inline [OPTIONS] <location>

• <location> is the location (in the format function[/label]) where inlining is to be performed.

Options

-off

Disables function inlining to prevent particular functions from being inlined. For example, if the -
recursive option is used in a caller function, this option can prevent a particular called
function from being inlined when all others are.

-recursive

By default, only one level of function inlining is performed. The functions within the specified
function are not inlined. The -recursive option inlines all functions recursively down the
hierarchy.

-region

All functions in the specified region are to be inlined.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS inline <region | recursive | off>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=437

Examples

Inlines all functions in foo_top (but not any lower level functions).

set_directive_inline -region foo_top
#pragma HLS inline region

Inlines only function foo_sub1.

set_directive_inline foo_sub1
#pragma HLS inline

Inline all functions in foo_top, recursively down the hierarchy, except function foo_sub2. The
first pragma is placed in function foo_top. The second pragma is placed in function foo_sub2.

set_directive_inline -region -recursive foo_top
set_directive_inline -off foo_sub2
#pragma HLS inline region recursive
#pragma HLS inline off

set_directive_interface
Description

Specifies how RTL ports are created from the function description during interface synthesis.

The ports in the RTL implementation are derived from:

• Any function-level protocol that is specified.

• Function arguments

• Global variables (accessed by the top-level function and defined outside its scope)

Function-level handshakes:

• Control when the function starts operation.

• Indicate when function operation:

○ Ends

○ Is idle

○ Is ready for new inputs

The implementation of a function-level protocol:

• Is controlled by modes ap_ctrl_none, ap_ctrl_hs or ap_ctrl_chain.

• Requires only the top-level function name.

Note: Specify the function return for the pragma.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 438Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=438

Each function argument can be specified to have its own I/O protocol (such as valid handshake
or acknowledge handshake).

If a global variable is accessed, but all read and write operations are local to the design, the
resource is created in the design. There is no need for an I/O port in the RTL. If however, the
global variable is expected to be an external source or destination, specify its interface in a
similar manner as standard function arguments. See the examples below.

When set_directive_interface is used on sub-functions, only the -register option can
be used. The -mode option is not supported on sub-functions.

Syntax

set_directive_interface [OPTIONS] <location> <port>

• <location> is the location (in the format function[/label]) where the function interface or
registered output is to be specified.

• <port> is the parameter (function argument or global variable) for which the interface has to
be synthesized. This is not required when modes ap_ctrl_none or ap_ctrl_hs are used.

Options

-bundle <string>: Groups function arguments into AXI ports. By default, Vivado HLS groups
all function arguments specified as an AXI4-Lite interface into a single AXI4-Lite port. Similarly,
Vivado HLS groups all function arguments specified as an AXI4 interface into a single AXI4 port.
The -bundle option explicitly groups all function arguments with the same <string> into the
same interface port and names the RTL port <string>.

-mode (ap_none|ap_stable|ap_vld|ap_ack|ap_hs|ap_ovld|ap_fifo| ap_bus|
ap_memory|bram|axis|s_axilite|m_axi|ap_ctrl_none|ap_ctrl_hs |ap_ctrl_chain)

Following is a summary of how Vivado HLS implements the -mode options. For detailed
descriptions, see Interface Synthesis Reference.

• ap_none: No protocol. The interface is a data port.

• ap_stable: No protocol. The interface is a data port. Vivado HLS assumes the data port is
always stable after reset, which allows internal optimizations to remove unnecessary registers.

• ap_vld: Implements the data port with an associated valid port to indicate when the data
is valid for reading or writing.

• ap_ack: Implements the data port with an associated acknowledge port to acknowledge
that the data was read or written.

• ap_hs: Implements the data port with associated valid and acknowledge ports to provide
a two-way handshake to indicate when the data is valid for reading and writing and to
acknowledge that the data was read or written.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=439

• ap_ovld: Implements the output data port with an associated valid port to indicate when
the data is valid for reading or writing.

Note: Vivado HLS implements the input argument or the input half of any read/write arguments with
mode ap_none.

• ap_fifo: Implements the port with a standard FIFO interface using data input and output
ports with associated active-Low FIFO empty and full ports.

Note: You can only use this interface on read arguments or write arguments. The ap_fifo mode does
not support bidirectional read/write arguments.

• ap_bus: Implements pointer and pass-by-reference ports as a bus interface.

• ap_memory: Implements array arguments as a standard RAM interface. If you use the RTL
design in Vivado IP integrator, the memory interface appears as discrete ports.

• bram: Implements array arguments as a standard RAM interface. If you use the RTL design in
Vivado IP integrator, the memory interface appears as a single port.

• axis: Implements all ports as an AXI4-Stream interface.

• s_axilite: Implements all ports as an AXI4-Lite interface. Vivado HLS produces an
associated set of C driver files during the Export RTL process.

• m_axi: Implements all ports as an AXI4 interface. You can use the config_interface
command to specify either 32-bit (default) or 64-bit address ports and to control any address
offset.

• ap_ctrl_none: No block-level I/O protocol.

Note: Using the ap_ctrl_none mode might prevent the design from being verified using the C/RTL
co-simulation feature.

• ap_ctrl_hs: Implements a set of block-level control ports to start the design operation
and to indicate when the design is idle, done, and ready for new input data.

Note: The ap_ctrl_hs mode is the default block-level I/O protocol.

• ap_ctrl_chain: Implements a set of block-level control ports to start the design
operation, continue operation, and indicate when the design is idle, done, and ready for
new input data.

-name <string>: This option is used to rename the port based on your own specification.
The generated RTL port will use this name

-depth: Specifies the maximum number of samples for the test bench to process. This setting
indicates the maximum size of the FIFO needed in the verification adapter that Vivado HLS
creates for RTL co-simulation. This option is required for pointer interfaces using ap_fifo or
ap_bus modes.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=440

-register: Registers the signal and any relevant protocol signals and instructs the signals to
persist until at least the last cycle of the function execution. This option applies to the following
scalar interfaces for the top-level function:

• ap_none

• ap_ack

• ap_vld

• ap_ovld

• ap_hs

• ap_fifo

-register_mode (both|forward|reverse|off): This option specifies if registers are
placed on the forward path (TDATA and TVALID), the reserve path (TREADY), on both paths
(TDATA, TVALID, and TREADY), or if none of the ports signals are to be registered (off). The
default is both. AXI-Stream side-channel signals are considered to be data signals and are
registered whenever the TDATA is registered.

-offset <string>: Controls the address offset in AXI4-Lite and AXI4 interfaces. In an AXI4-
Lite interface, <string> specifies the address in the register map. In an AXI interface,
<string> specifies the following:

• off: Do not generate an offset port.

• direct: Generate a scalar input offset port.

• slave: Generate an offset port and automatically map it to an AXI4-Lite slave interface.

-clock <string>: By default, the AXI-Lite interface clock is the same clock as the system
clock. This option is used to set specify a separate clock for an AXI-Lite interface. If the -bundle
option is used to group multiple top-level function arguments into a single AXI-Lite interface, the
clock option need only be specified on one of bundle members.

- latency <value>: This option can be used on ap_memory and AXIM interfaces.

• In an ap_memory interface, the interface option specifies the read latency of the RAM
resource driving the interface. By default, a read operation of 1 clock cycle is used. This option
allows an external RAM with more than 1 clock cylce of read latency to be modeled.

• In an AXIM interface, this option specifies the expected latency of the AXI4 interface, allowing
the design to initiate a bus request <value> number of cycles (latency) before the read or write
is expected. If this figure it too low, the design will be ready too soon and may stall waiting for
the bus. If this figure is too high, bus access may be idle waiting on the design to start the
access.

-max_read_burst_length: For use with the AXIM interface, this option specifies the
maximum number of data values read during a burst transfer.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=441

-max_write_burst_length: For use with the AXIM interface, this option specifies the
maximum number of data values written during a burst transfer.

-num_read_outstanding: For use with the AXIM interface, this option specifies how many
read requests can be made to the AXI4 bus, without a response, before the design stalls. This
implies internal storage in the design, and a FIFO of size:

num_read_outstanding*max_read_burst_length*word_size.

-num_write_outstanding: For use with the AXIM interface, this option specifies how many
write requests can be made to the AXI4 bus, without a response, before the design stalls. This
implies internal storage in the design, and a FIFO of size:

num_read_outstanding*max_read_burst_length*word_size

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS interface <mode> register port=<string>

Examples

Turns off function-level handshakes for function foo.

set_directive_interface -mode ap_ctrl_none foo
#pragma HLS interface ap_ctrl_none port=return

Argument InData in function foo is specified to have a ap_vld interface and the input should
be registered.

set_directive_interface -mode ap_vld -register foo InData
#pragma HLS interface ap_vld register port=InData

Exposes global variable lookup_table used in function foo as a port on the RTL design, with
an ap_memory interface.

set_directive_interface -mode ap_memory foo look_table

set_directive_latency
Description

Specifies a maximum or minimum latency value, or both, on a function, loop, or region.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=442

Vivado HLS always aims for minimum latency. The behavior of Vivado HLS when minimum and
maximum latency values are specified is as follows:

• Latency is less than the minimum.

If Vivado HLS can achieve less than the minimum specified latency, it extends the latency to
the specified value, potentially increasing sharing.

• Latency is greater than the minimum.

The constraint is satisfied. No further optimizations are performed.

• Latency is less than the maximum.

The constraint is satisfied. No further optimizations are performed.

• Latency is greater than the maximum.

If Vivado HLS cannot schedule within the maximum limit, it increases effort to achieve the
specified constraint. If it still fails to meet the maximum latency, it issues a warning. Vivado
HLS then produces a design with the smallest achievable latency.

Syntax

set_directive_latency [OPTIONS] <location>

• <location> is the location (function, loop or region) (in the format function[/label]) to be
constrained.

Options

-max <integer>

Specifies the maximum latency.

-min <integer>

Specifies the minimum latency.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS latency \
 min=<int> \
 max=<int>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 443Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=443

Examples

Function foo is specified to have a minimum latency of 4 and a maximum latency of 8.

set_directive_latency -min=4 -max=8 foo
#pragma HLS latency min=4 max=8

In function foo, loop loop_row is specified to have a maximum latency of 12. Place the pragma
in the loop body.

set_directive_latency -max=12 foo/loop_row
#pragma HLS latency max=12

set_directive_loop_flatten
Description

Flattens nested loops into a single loop hierarchy.

In the RTL implementation, it costs a clock cycle to move between loops in the loop hierarchy.
Flattening nested loops allows them to be optimized as a single loop. This saves clock cycles,
potentially allowing for greater optimization of the loop body logic.

RECOMMENDED: Apply this directive to the inner-most loop in the loop hierarchy. Only perfect and
semi-perfect loops can be flattened in this manner.

• Perfect loop nests

○ Only the innermost loop has loop body content.

○ There is no logic specified between the loop statements.

○ All loop bounds are constant.

• Semi-perfect loop nests

○ Only the innermost loop has loop body content.

○ There is no logic specified between the loop statements.

○ The outermost loop bound can be a variable.

• Imperfect loop nests

When the inner loop has variables bounds (or the loop body is not exclusively inside the inner
loop), try to restructure the code, or unroll the loops in the loop body to create a perfect loop
nest.

Syntax

set_directive_loop_flatten [OPTIONS] <location>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 444Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=444

• <location> is the location (inner-most loop), in the format function[/label].

Options

-off

Prevents flattening from taking place.

Can prevent some loops from being flattened while all others in the specified location are
flattened.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS loop_flatten off

Examples

Flattens loop_1 in function foo and all (perfect or semi-perfect) loops above it in the loop
hierarchy, into a single loop. Place the pragma in the body of loop_1.

set_directive_loop_flatten foo/loop_1
#pragma HLS loop_flatten

Prevents loop flattening in loop_2 of function foo. Place the pragma in the body of loop_2.

set_directive_loop_flatten -off foo/loop_2
#pragma HLS loop_flatten off

set_directive_loop_merge
Description

Merges all loops into a single loop.

Merging loops:

• Reduces the number of clock cycles required in the RTL to transition between the loop-body
implementations.

• Allows the loops be implemented in parallel (if possible).

The rules for loop merging are:

• If the loop bounds are variables, they must have the same value (number of iterations).

• If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=445

• Loops with both variable bound and constant bound cannot be merged.

• The code between loops to be merged cannot have side effects. Multiple execution of this
code should generate the same results.

○ a=b is allowed

○ a=a+1 is not allowed.

• Loops cannot be merged when they contain FIFO reads. Merging changes the order of the
reads. Reads from a FIFO or FIFO interface must always be in sequence.

Syntax

set_directive_loop_merge <location>

• <location> is the location (in the format function[/label]) at which the loops reside.

Options

-force

Forces loops to be merged even when Vivado HLS issues a warning. You must assure that the
merged loop will function correctly.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS loop_merge force

Examples

Merges all consecutive loops in function foo into a single loop.

set_directive_loop_merge foo
#pragma HLS loop_merge

All loops inside loop_2 of function foo (but not loop_2 itself) are merged by using the -
force option. Place the pragma in the body of loop_2.

set_directive_loop_merge -force foo/loop_2
#pragma HLS loop_merge force

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=446

set_directive_loop_tripcount
Description

The loop tripcount is the total number of iterations performed by a loop. Vivado HLS reports the
total latency of each loop (the number of cycles to execute all iterations of the loop). This loop
latency is therefore a function of the tripcount (number of loop iterations).

The tripcount can be a constant value. It may depend on the value of variables used in the loop
expression (for example, x<y) or control statements used inside the loop.

Vivado HLS cannot determine the tripcount in some cases. These cases include, for example,
those in which the variables used to determine the tripcount are:

• Input arguments, or

• Variables calculated by dynamic operation

In those cases, the loop latency might be unknown.

To help with the design analysis that drives optimization, the
set_directive_loop_tripcount command allows you to specify minimum and maximum
tripcounts for a loop. This allows you to see how the loop latency contributes to the total design
latency in the reports.

Syntax

set_directive_loop_tripcount [OPTIONS] <location>

• <location> is the location of the loop (in the format function[/label]) at which the tripcount
is specified.

Options

-avg <integer>

Specifies the average number of iterations.

-max <integer>

Specifies the maximum number of iterations.

-min <integer>

Specifies the minimum number of iterations.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 447Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=447

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS loop_tripcount \
 min=<int> \
 max=<int>

Examples

loop_1 in function foo is specified to have:

• A minimum tripcount of 12

• A maximum tripcount of 16

set_directive_loop_tripcount -min 12 -max 16 -avg 14 foo/loop_1
#pragma HLS loop_tripcount min=12 max=16 avg=14

set_directive_occurrence
Description

When pipelining functions or loops, specifies that the code in a location is executed at a lesser
rate than the code in the enclosing function or loop.

This allows the code that is executed at the lesser rate to be pipelined at a slower rate, and
potentially shared within the top-level pipeline. For example:

• A loop iterates N times.

• Part of the loop is protected by a conditional statement and only executes M times, where N is
an integer multiple of M.

• The code protected by the conditional is said to have an occurrence of N/M.

If N is pipelined with an initiation interval II, any function or loops protected by the conditional
statement:

• May be pipelined with a higher initiation interval than II.

Note:

At a slower rate. This code is not executed as often.

• Can potentially be shared better within the enclosing higher rate pipeline.

Identifying a region with an occurrence allows the functions and loops in this region to be
pipelined with an initiation interval that is slower than the enclosing function or loop.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=448

Syntax

set_directive_occurrence [OPTIONS] <location>

• <location> specifies the location with a slower rate of execution.

Options

-cycle <int>

Specifies the occurrence N/M where:

• N is the number of times the enclosing function or loop is executed

• M is the number of times the conditional region is executed.

N must be an integer multiple of M.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS occurrence cycle=<int>

Examples

Region Cond_Region in function foo has an occurrence of 4. It executes at a rate four times
slower than the code that encompasses it.

set_directive_occurrence -cycle 4 foo/Cond_Region
#pragma HLS occurrence cycle=4

set_directive_pipeline
Description

Specifies the details for:

• Function pipelining

• Loop pipelining

A pipelined function or loop can process new inputs every N clock cycles, where N is the
initiation interval (II). The default initiation interval is 1, which processes a new input every
clock cycle, or it can be specified by the -II option.

If Vivado HLS cannot create a design with the specified II, it:

• Issues a warning.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 449Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=449

• Creates a design with the lowest possible II.

You can then analyze this design with the warning message to determine what steps must be
taken to create a design that satisfies the required initiation interval.

Syntax

set_directive_pipeline [OPTIONS] <location>

where

• <location> is the location (in the format function[/label]) to be pipelined.

Options

-II <integer>

Specifies the desired initiation interval for the pipeline.

Vivado HLS tries to meet this request. Based on data dependencies, the actual result might have
a larger II.

-enable_flush

Implements a pipeline which will flush and empty if the data valid at the input of the pipeline
goes inactive. This feature is only supported for pipelined functions: it is not supported for
pipelined loops.

-rewind

Note: Applicable only to a loop.

Enables rewinding. Rewinding enables continuous loop pipelining, with no pause between one
loop iteration ending and the next starting.

Rewinding is effective only if there is one single loop (or a perfect loop nest) inside the top-level
function. The code segment before the loop:

• Is considered as initialization.

• Is executed only once in the pipeline.

• Cannot contain any conditional operations (if-else).

-off

Turns off pipeline for a specific loop or function. This can be used when config_compile -
pipeline_loops is used to globally pipeline loops. This option prevents a specific loop from
being pipelined.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=450

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS pipeline \
 II=<int> \
 enable_flush \

Examples

Function foo is pipelined with an initiation interval of 1.

set_directive_pipeline foo
#pragma HLS pipeline

set_directive_reset
Description

Adds or removes resets for specific state variables (global or static).

Syntax

set_directive_reset [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) at which the variable is defined.

• <variable> is the variable to which the directive is applied.

Options

-off

• If -off is specified, reset is not generated for the specified variable.

• If -off is not specified, reset is generated for the specified variable.

Pragma

Place the pragma in the C source within the boundaries of the variable life cycle.

#pragma HLS reset variable=a off

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 451Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=451

Examples

Adds reset to variable static int a in function foo even when the global reset setting is
none or control.

set_directive_reset foo a
#pragma HLS reset variable=a

Removes reset from variable static int a in function foo even when the global reset setting
is state or all.

set_directive_reset -off foo a
#pragma HLS reset variable=a off

set_directive_resource
Description

Specifies the resource (core) to implement a variable in the RTL. The variable can be any of the
following:

• array

• arithmetic operation

• function argument

Vivado HLS implements the operations in the code using hardware cores. When multiple cores in
the library can implement the operation, you can specify which core to use with the
set_directive_resource command. To generate a list of cores, use the list_core
command. If no resource is specified, Vivado HLS determines the resource to use.

To specify which memory element in the library to use to implement an array, use the
set_directive_resource command. For example, this allows you to control whether the
array is implemented as a single or a dual-port RAM. This usage is important for arrays on the
top-level function interface, because the memory associated with the array determines the ports
in the RTL.

You can use the -latency option to specify the latency of the core. For block RAMs on the
interface, the -latency option allows you to model off-chip, non-standard SRAMs at the
interface, for example to support an SRAM with a latency of 2 or 3. For internal operations, the -
latency option allows the operation to be implemented using more pipelined stages. These
additional pipeline stages can help resolve timing issues during RTL synthesis.

IMPORTANT! To use the -latency  option, the operation must have an available multi-stage core.
Vivado HLS provides a multi-stage core for all basic arithmetic operations (add, subtract, multiply and
divide), all floating-point operations, and all block RAMs.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 452Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=452

RECOMMENDED: For best results, Xilinx recommends that you use -std=c99  for C and -fno-
builtin  for C and C++. To specify the C compile options, such as -std=c99 , use the Tcl command
add_files  with the -cflags  option. Alternatively, use the Edit CFLAGs button in the Project Settings
dialog box.

Syntax

set_directive_resource -core <string> <location> <variable>

• <location> is the location (in the format function[/label]) at which the variable can be
found.

• <variable> is the variable.

Options

-core <string>

Specifies the core, as defined in the technology library.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS resource \
 variable=<variable> \
 core=<core>
 latency=<latency>

Examples

Variable coeffs[128] is an argument to top-level function foo_top. This directive specifies
that coeffs be implemented with core RAM_1P from the library. The ports created in the RTL
to access the values of coeffs are those defined in the core RAM_1P.

set_directive_resource -core RAM_1P foo_top coeffs
#pragma HLS resource variable=coeffs core=RAM_1P

Given code Result=A*B in function foo, specifies the multiplication be implemented with two-
stage pipelined multiplier core.

set_directive_resource -latency 2 foo Result
#pragma HLS RESOURCE variable=Result latency=2

To implement memory using URAM:

#pragma HLS RESOURCE variable=array core=RAM_1P_URAM uram

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 453Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=453

set_directive_stable
Description

The stable pragma is used to indicate that a variable, input or output of a dataflow region, can be
ignored when generating the synchronizations at entry and exit of a dataflow region.

Syntax

set_directive_stable <location> <variable>

• <location> is the function name or loop name where the directive is to be constrained.

• <variable> is the name of the array to be constrained.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS stable variable=A

Examples

In the following example, without the stable pragma, proc1 and proc2 would be synchronized
to acknowledge the reading of their inputs (including A). With the stable pragma, A is no longer
considered as an input that needs synchronization.

void dataflow_region(int A[...], int B[…] ...
#pragma HLS stable variable=A
#pragma HLS dataflow
 proc1(...);
 proc2(A, ...);

set_directive_stream
Description

By default, array variables are implemented as RAM:

• Top-level function array parameters are implemented as a RAM interface port.

• General arrays are implemented as RAMs for read-write access.

• In sub-functions involved in dataflow optimizations, the array arguments are implemented
using a RAM pingpong buffer channel.

• Arrays involved in loop-based dataflow optimizations are implemented as a RAM pingpong
buffer channel.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 454Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=454

If the data stored in the array is consumed or produced in a sequential manner, a more efficient
communication mechanism is to use streaming data, where FIFOs are used instead of RAMs.

When an argument of the top-level function is specified as interface type ap_fifo, the array is
automatically implemented as streaming.

IMPORTANT! To preserve the accesses, it might be necessary to prevent compiler optimizations (in
particular dead code elimination) by using the volatile qualifier.

Syntax

set_directive_stream [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the array variable.

• <variable> is the array variable to be implemented as a FIFO.

Options

-depth <integer>

Note: Relevant only for array streaming in dataflow channels.

By default, the depth of the FIFO implemented in the RTL is the same size as the array specified
in the C code. This options allows you to modify the size of the FIFO.

When the array is implemented in a DATAFLOW region, it is common to the use the -depth
option to reduce the size of the FIFO. For example, in a DATAFLOW region where all loops and
functions are processing data at a rate of II=1, there is no need for a large FIFO because data is
produced and consumed in each clock cycle. In this case, the -depth option may be used to
reduce the FIFO size to 2 to substantially reduce the area of the RTL design.

This same functionality is provided for all arrays in a DATAFLOW region using the
config_dataflow command with the -depth option. The -depth option used with
set_directive_stream overrides the default specified using config_dataflow.

-dim <int>

Specifies the dimension of the array to be streamed. The default is dimension 1. For a one
dimensional array, set the dim to 1. For a two dimensional array set the dim to 2.

Dimension can only be specified for a stream internal to the design between a consumer and
producer model inside a dataflow region. It cannot be applied to the streams at the design
interface.

-off

Note: Relevant only for array streaming in dataflow channels.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 455Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=455

The config_dataflow -default_channel fifo command globally implies a
set_directive_stream on all arrays in the design. This option allows streaming to be turned
off on a specific array (and default back to using a RAM pingpong buffer based channel).

Note: If the -off option is selected, the -depth option sets the depth (number of blocks) of the ping-
pong. The depth should be at least 2.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS stream
 variable=<variable> \
 off \
 depth=<int>

Examples

Specifies array A[10] in function foo to be streaming, and implemented as a FIFO.

set_directive_stream foo A
#pragma HLS STREAM variable=A

Array B in named loop loop_1 of function foo is set to streaming with a FIFO depth of 12. In
this case, place the pragma inside loop_1.

set_directive_stream -depth 12 foo/loop_1 B
#pragma HLS STREAM variable=B depth=12

Array C has streaming disabled. It is assumed enabled by config_dataflow in this example.

set_directive_stream -off foo C
#pragma HLS STREAM variable=C off

set_directive_top
Description

Attaches a name to a function, which can then be used for the set_top command.

This is typically used to synthesize member functions of a class in C++.

RECOMMENDED: Specify the directive in an active solution. Use the set_top  command with the new
name.

Syntax

set_directive_top [OPTIONS] <location>

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=456

• <location> is the function to be renamed.

Options

-name <string>

Specifies the name to be used by the set_top command.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS top \
 name=<string>

Examples

Function foo_long_name is renamed to DESIGN_TOP, which is then specified as the top-level.
If the pragma is placed in the code, the set_top command must still be issued in the top-level
specified in the GUI project settings.

set_directive_top -name DESIGN_TOP foo_long_name
#pragma HLS top name=DESIGN_TOP
set_top DESIGN_TOP

set_directive_unroll
Description

Transforms loops by creating multiples copies of the loop body.

A loop is executed for the number of iterations specified by the loop induction variable. The
number of iterations may also be impacted by logic inside the loop body (for example, break or
modifications to any loop exit variable). The loop is implemented in the RTL by a block of logic
representing the loop body, which is executed for the same number of iterations.

The set_directive_unroll command allows the loop to be fully unrolled. Unrolling the loop
creates as many copies of the loop body in the RTL as there are loop iterations, or partially
unrolled by a factor N, creating N copies of the loop body and adjusting the loop iteration
accordingly.

If the factor N used for partial unrolling is not an integer multiple of the original loop iteration
count, the original exit condition must be checked after each unrolled fragment of the loop body.

To unroll a loop completely, the loop bounds must be known at compile time. This is not required
for partial unrolling.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 457Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=457

Syntax

set_directive_unroll [OPTIONS] <location>

• <location> is the location of the loop (in the format function[/label]) to be unrolled.

Options

-factor <integer>

Specifies a non-zero integer indicating that partial unrolling is requested.

The loop body is repeated this number of times. The iteration information is adjusted
accordingly.

-region

Unrolls all loops within a loop without unrolling the enclosing loop itself.

Consider the following example:

• Loop loop_1 contains multiple loops at the same level of loop hierarchy (loops loop_2 and
loop_3).

• A named loop (such as loop_1) is also a region or location in the code.

• A section of code is enclosed by braces { }.

• If the unroll directive is specified on location <function>/loop_1, it unrolls loop_1.

The -region option specifies that the directive be applied only to the loops enclosing the
named region. This results in:

• loop_1 is left rolled.

• All loops inside loop_1 (loop_2 and loop_3) are unrolled.

-skip_exit_check

Effective only if a factor is specified (partial unrolling).

• Fixed bounds

No exit condition check is performed if the iteration count is a multiple of the factor.

If the iteration count is not an integer multiple of the factor, the tool:

• Prevents unrolling.

• Issues a warning that the exit check must be performed to proceed.

• Variable bounds

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 458Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=458

The exit condition check is removed. You must ensure that:

○ The variable bounds is an integer multiple of the factor.

○ No exit check is in fact required.

Pragma

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS unroll \
 skip_exit_check \
 factor=<int> \
 region

Examples

Unrolls loop L1 in function foo. Place the pragma in the body of loop L1.

set_directive_unroll foo/L1
#pragma HLS unroll

Specifies an unroll factor of 4 on loop L2 of function foo. Removes the exit check. Place the
pragma in the body of loop L2.

set_directive_unroll -skip_exit_check -factor 4 foo/L2
#pragma HLS unroll skip_exit_check factor=4

Unrolls all loops inside loop L3 in function foo, but not loop L3 itself. The -region option
specifies the location be considered an enclosing region and not a loop label.

set_directive_unroll -region foo/L3
#pragma HLS unroll region

set_part
Description

Sets a target device for the current solution.

The command can be executed only in the context of an active solution.

Syntax

set_part <device_specification>

• <device_specification> is a device specification that sets the target device for Vivado
HLS synthesis and implementation.

• <device_family> is the device family name, which uses the default device in the family.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 459Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=459

• <device><package><speed_grade> is the target device name including device, package,
and speed-grade information.

Options

This command has no options.

Pragma

There is no pragma equivalent.

Examples

The FPGA libraries provided with Vivado HLS can be added to the current solution by providing
the device family name as shown below. In this case, the default device, package, and speed-
grade specified in the Vivado HLS FPGA library for this device family are used.

set_part virtex7

The FPGA libraries provided with Vivado HLS can optionally specify the specific device with
package and speed-grade information.

set_part xc6vlx240tff1156-1

set_top
Description

Defines the top-level function to be synthesized.

Any functions called from this function will also be part of the design.

Syntax

set_top <top>

• <top> is the function to be synthesized.

Options

This command has no options.

Pragma

There is no pragma equivalent.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 460Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=460

Examples

Sets the top-level function as foo_top.

set_top foo_top

GUI Reference
This reference section explains how to use, control and customize the Vivado HLS GUI.

Monitoring Variables
You can view the values of variables and expressions directly in the Debug perspective. The
following figure shows how you can monitor the value of individual variables.

Figure 94: Monitoring Variables

You can monitor the value of expressions using the Expressions tab.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=461

Figure 95: Monitoring Expressions

Resolving Header File Information
By default, the Vivado HLS GUI continually parses all header files to resolve coding references.
The GUI highlights unresolved references, as shown in the following figure:

• Left sidebar: Highlights undefined references in the current view.

• Right sidebar: Highlights unresolved references throughout the file.

Figure 96: Index C Files

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 462Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=462

IMPORTANT! It is important to remove undefined references in the code before performing C simulation
or synthesis. To check for undefined references, see the annotations in the code viewer that indicate a
variable or value is unknown or cannot be defined. Undefined references do not appear in the directives
window.

Undefined references occur when code defined in a header file (.h or .hpp extension) cannot be
resolved. The primary causes of undefined references are:

• The code was recently added to the file.

If the code is new, ensure the header file is saved. After saving the header file, Vivado HLS
automatically indexes the header files and updates the coding references.

• The header file is not in the search path.

Ensure the header file is included in the C code using an include statement, the location to
the header file is in the search path, and the header file is in the same directory as the C files
added to the project.

Note: To explicitly add the search path, select Solution → Solution Settings, click Synthesis or
Simulation, and use the Edit CFLAGs button. For more information, see Creating a New Synthesis
Project.

• Automatic indexing is disabled.

Ensure that Vivado HLS is parsing all header files automatically. Select Project > Project
Settings to open the Project Settings dialog box. Click General, and make sure Disable Parsing
All Header Files is deselected, as shown in the following figure. This might result in a reduced
GUI response time, because Vivado HLS uses CPU cycles to automatically check the header
files.

Note: To manually force Vivado HLS to index all C files, click the Index C files toolbar button .

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 463Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=463

Figure 97: Controlling Header File Parsing

Resolving Comments in the Source Code
In some localizations, non-English comments in the source file appears as strange characters. This
can be corrected by:

1. Selecting the project in the Explorer Pane.

2. Right-click and select the appropriate language encoding using Properties > Resource. In the
section titled Text File Encoding select Other and choose appropriate encoding from the
drop-down menu.

Customizing the GUI Behavior
In some cases the default setting of the Vivado HLS GUI prevents certain information from being
shown or the defaults that are not suitable for you. This sections explains how the following can
be customized:

• Console window buffer size.

• Default key behaviors.

Customizing the Console Window

The console windows displays the messages issued during operations such as synthesize and
verification.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 464Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=464

The default buffer size for this windows is 80,000 characters and can be changed, or the limit can
be removed, to ensure all messages can be reviewed, by using menu Window → Preferences → 
Run/Debug → Console.

Customizing the Key Behavior

The behavior of the GUI can be customized using the menu Windows → Preferences and new
user-defined tool settings saved.

The default setting for the key combination Ctrl+Tab, is to make the active tab in the Information
Pane toggle between the source code and the header file. This is changed to make the Ctrl+Tab
combination make each tab in turn the active tab.

• In the Preferences menu, sub-menu General → Keys allows the Command value Toggle
Source/Header to be selected and the CTRL-TAB combination removed by using the Unbind
Command key.

• Selecting Next Tab in the Command column, placing the cursor in the Binding dialog box and
pressing the Ctrl key and then the Tab key, that causes the operation Ctrl+Tab to be
associated with making the next tab active.

A find-next hot key can be implemented by using the Microsoft Visual Studio scheme. This can
be performed using the menu Window → Preference → General → Keys and replace the
Default scheme with the Microsoft Visual Studio scheme.

Reviewing the sub-menus in the Preferences menu allows every aspect of the GUI environment
to be customized to ensure the highest levels of productivity.

Interface Synthesis Reference
This reference section explains each of the Vivado HLS interface protocol modes.

Block-Level I/O Protocols
Vivado HLS uses the interface types ap_ctrl_none, ap_ctrl_hs, and ap_ctrl_chain to
specify whether the RTL is implemented with block-level handshake signals. Block-level
handshake signals specify the following:

• When the design can start to perform the operation

• When the operation ends

• When the design is idle and ready for new inputs

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 465Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=465

You can specify these block-level I/O protocols on the function or the function return. If the C
code does not return a value, you can still specify the block-level I/O protocol on the function
return. If the C code uses a function return, Vivado HLS creates an output port ap_return for
the return value.

The ap_ctrl_hs block-level I/O protocol is the default. The following figure shows the
resulting RTL ports and behavior when Vivado HLS implements ap_ctrl_hs on a function. In
this example, the function returns a value using the return statement, and Vivado HLS creates
the ap_return output port in the RTL design. If a function return statement is not included in
the C code, this port is not created.

Figure 98: Example ap_ctrl_hs Interface

#include “adders.h”
int adders(int in1, int in2, int in3) {

 int sum;
 sum = in1 + in2 + in3;
 return sum;
}

adders
in1

In2

In3

ap_start

ap_return

ap_ready

ap_done

ap_idle

X14267

The ap_ctrl_chain interface mode is similar to ap_ctrl_hs but provides an additional input
signal ap_continue to apply back pressure. Xilinx recommends using the ap_ctrl_chain
block-level I/O protocol when chaining Vivado HLS blocks together.

ap_ctrl_none

If you specify the ap_ctrl_none block-level I/O protocol, the handshake signal ports
(ap_start, ap_idle, ap_ready, and ap_done) shown in Block-Level I/O Protocols are not
created. If you do not specify block-level I/O protocols on the design, you must adhere to the
conditions described in Interface Synthesis Requirements when using C/RTL cosimulation to
verify the RTL design.

ap_ctrl_hs

The following figure shows the behavior of the block-level handshake signals created by the
ap_ctrl_hs I/O protocol for a non-pipelined design.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 466Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=466

Figure 99: Behavior of ap_ctrl_hs Interface

After reset, the following occurs:

1. The block waits for ap_start to go High before it begins operation.

2. Output ap_idle goes Low immediately to indicate the design is no longer idle.

3. The ap_start signal must remain High until ap_ready goes High. Once ap_ready goes
High:

• If ap_start remains High the design will start the next transaction.

• If ap_start is taken Low, the design will complete the current transaction and halt
operation.

4. Data can be read on the input ports.

Note: The input ports can use a port-level I/O protocol that is independent of this block-level I/O
protocol. For details, see Port-Level I/O Protocols.

5. Data can be written to the output ports.

Note: The output ports can use a port-level I/O protocol that is independent of this block-level I/O
protocol. For details, see Port-Level I/O Protocols.

6. Output ap_done goes High when the block completes operation.

Note: If there is an ap_return port, the data on this port is valid when ap_done is High. Therefore,
the ap_done signal also indicates when the data on output ap_return is valid.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 467Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=467

7. When the design is ready to accept new inputs, the ap_ready signal goes High. Following is
additional information about the ap_ready signal:

• The ap_ready signal is inactive until the design starts operation.

• In non-pipelined designs, the ap_ready signal is asserted at the same time as ap_done.

• In pipelined designs, the ap_ready signal might go High at any cycle after ap_start is
sampled High. This depends on how the design is pipelined.

• If the ap_start signal is Low when ap_ready is High, the design executes until
ap_done is High and then stops operation.

• If the ap_start signal is High when ap_ready is High, the next transaction starts
immediately, and the design continues to operate.

8. The ap_idle signal indicates when the design is idle and not operating. Following is
additional information about the ap_idle signal:

• If the ap_start signal is Low when ap_ready is High, the design stops operation, and
the ap_idle signal goes High one cycle after ap_done.

• If the ap_start signal is High when ap_ready is High, the design continues to operate,
and the ap_idle signal remains Low.

ap_ctrl_chain

The ap_ctrl_chain block-level I/O protocol is similar to the ap_ctrl_hs protocol but
provides an additional input port named ap_continue. An active High ap_continue signal
indicates that the downstream block that consumes the output data is ready for new data inputs.
If the downstream block is not able to consume new data inputs, the ap_continue signal is
Low, which prevents upstream blocks from generating additional data.

The ap_ready port of the downstream block can directly drive the ap_continue port.
Following is additional information about the ap_continue port:

• If the ap_continue signal is High when ap_done is High, the design continues operating.
The behavior of the other block-level I/O signals is identical to those described in the
ap_ctrl_hs block-level I/O protocol.

• If the ap_continue signal is Low when ap_done is High, the design stops operating, the
ap_done signal remains High, and data remains valid on the ap_return port if the
ap_return port is present.

In the following figure, the first transaction completes, and the second transaction starts
immediately because ap_continue is High when ap_done is High. However, the design halts
at the end of the second transaction until ap_continue is asserted High.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 468Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=468

Figure 100: Behavior of ap_ctrl_chain Interface

Port-Level I/O Protocols
ap_none

The ap_none port-level I/O protocol is the simplest interface type and has no other signals
associated with it. Neither the input nor output data signals have associated control ports that
indicate when data is read or written. The only ports in the RTL design are those specified in the
source code.

An ap_none interface does not require additional hardware overhead. However, the ap_none
interface does requires the following:

• Producer blocks to do one of the following:

○ Provide data to the input port at the correct time

○ Hold data for the length of a transaction until the design completes

• Consumer blocks to read output ports at the correct time

Note: The ap_none interface cannot be used with array arguments.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=469

ap_stable

Like ap_none, the ap_stable port-level I/O protocol does not add any interface control ports
to the design. The ap_stable type is typically used for data that can change but remains stable
during normal operation, such as ports that provide configuration data. The ap_stable type
informs Vivado HLS of the following:

• The data applied to the port remains stable during normal operation but is not a constant
value that can be optimized.

• The fanout from this port is not required to be registered.

Note: The ap_stable type can only be applied to input ports. When applied to inout ports, only the input
of the port is considered stable.

ap_hs (ap_ack, ap_vld, and ap_ovld)

The ap_hs port-level I/O protocol provides the greatest flexibility in the development process,
allowing both bottom-up and top-down design flows. Two-way handshakes safely perform all
intra-block communication, and manual intervention or assumptions are not required for correct
operation. The ap_hs port-level I/O protocol provides the following signals:

• Data port

• Acknowledge signal to indicate when data is consumed

• Valid signal to indicate when data is read

The following figure shows how an ap_hs interface behaves for both an input and output port.
In this example, the input port is named in, and the output port is named out.

Note: The control signals names are based on the original port name. For example, the valid port for data
input in is named in_vld.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=470

Figure 101: Behavior of ap_hs Interface

For inputs, the following occurs:

• After start is applied, the block begins normal operation.

• If the design is ready for input data but the input valid is Low, the design stalls and waits for
the input valid to be asserted to indicate a new input value is present.

Note: The preceding figure shows this behavior. In this example, the design is ready to read data input in
on clock cycle 4 and stalls waiting for the input valid before reading the data.

• When the input valid is asserted High, an output acknowledge is asserted High to indicate the
data was read.

For outputs, the following occurs:

• After start is applied, the block begins normal operation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=471

• When an output port is written to, its associated output valid signal is simultaneously asserted
to indicate valid data is present on the port.

• If the associated input acknowledge is Low, the design stalls and waits for the input
acknowledge to be asserted.

• When the input acknowledge is asserted, the output valid is deasserted on the next clock
edge.

ap_ack

The ap_ack port-level I/O protocol is a subset of the ap_hs interface type. The ap_ack port-
level I/O protocol provides the following signals:

• Data port

• Acknowledge signal to indicate when data is consumed

○ For input arguments, the design generates an output acknowledge that is active-High in
the cycle the input is read.

○ For output arguments, Vivado HLS implements an input acknowledge port to confirm the
output was read.

Note: After a write operation, the design stalls and waits until the input acknowledge is asserted High,
which indicates the output was read by a consumer block. However, there is no associated output port
to indicate when the data can be consumed.

CAUTION! You cannot use C/RTL cosimulation to verify designs that use ap_ack  on an output port.

ap_vld

The ap_vld is a subset of the ap_hs interface type. The ap_vld port-level I/O protocol
provides the following signals:

• Data port

• Valid signal to indicate when data is read

○ For input arguments, the design reads the data port as soon as the valid is active. Even if
the design is not ready to read new data, the design samples the data port and holds the
data internally until needed.

○ For output arguments, Vivado HLS implements an output valid port to indicate when the
data on the output port is valid.

ap_ovld

The ap_ovld is a subset of the ap_hs interface type. The ap_ovld port-level I/O protocol
provides the following signals:

• Data port

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=472

• Valid signal to indicate when data is read

○ For input arguments and the input half of inout arguments, the design defaults to type
ap_none.

○ For output arguments and the output half of inout arguments, the design implements type
ap_vld.

ap_memory, bram

The ap_memory and bram interface port-level I/O protocols are used to implement array
arguments. This type of port-level I/O protocol can communicate with memory elements (for
example, RAMs and ROMs) when the implementation requires random accesses to the memory
address locations.

Note: If you only need sequential access to the memory element, use the ap_fifo interface instead. The
ap_fifo interface reduces the hardware overhead, because address generation is not performed.

The ap_memory and bram interface port-level I/O protocols are identical. The only difference is
the way Vivado IP integrator shows the blocks:

• The ap_memory interface appears as discrete ports.

• The bram interface appears as a single, grouped port. In IP integrator, you can use a single
connection to create connections to all ports.

When using an ap_memory interface, specify the array targets using the RESOURCE directive. If
no target is specified for the arrays, Vivado HLS determines whether to use a single or dual-port
RAM interface.

TIP: Before running synthesis, ensure array arguments are targeted to the correct memory type using the
RESOURCE directive. Re-synthesizing with corrected memories can result in a different schedule and RTL.

The following figure shows an array named d specified as a single-port block RAM. The port
names are based on the C function argument. For example, if the C argument is d, the chip-
enable is d_ce, and the input data is d_q0 based on the output/q port of the BRAM.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=473

Figure 102: Behavior of ap_memory Interface

After reset, the following occurs:

• After start is applied, the block begins normal operation.

• Reads are performed by applying an address on the output address ports while asserting the
output signal d_ce.

Note: For a default block RAM, the design expects the input data d_q0 to be available in the next clock
cycle. You can use the RESOURCE directive to indicate the RAM has a longer read latency.

• Write operations are performed by asserting output ports d_ce and d_we while
simultaneously applying the address and output data d_d0.

ap_fifo

When an output port is written to, its associated output valid signal interface is the most
hardware-efficient approach when the design requires access to a memory element and the
access is always performed in a sequential manner, that is, no random access is required. The
ap_fifo port-level I/O protocol supports the following:

• Allows the port to be connected to a FIFO

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=474

• Enables complete, two-way empty-full communication

• Works for arrays, pointers, and pass-by-reference argument types

Note: Functions that can use an ap_fifo interface often use pointers and might access the same variable
multiple times. To understand the importance of the volatile qualifier when using this coding style, see
Multi-Access Pointer Interfaces: Streaming Data.

In the following example, in1 is a pointer that accesses the current address, then two addresses
above the current address, and finally one address below.

void foo(int* in1, ...) {
 int data1, data2, data3;
 ...
 data1= *in1;
 data2= *(in1+2);
 data3= *(in1-1);
 ...
}

If in1 is specified as an ap_fifo interface, Vivado HLS checks the accesses, determines the
accesses are not in sequential order, issues an error, and halts. To read from non-sequential
address locations, use an ap_memory or bram interface.

You cannot specify an ap_fifo interface on an argument that is both read from and written to.
You can only specify an ap_fifo interface on an input or an output argument. A design with
input argument in and output argument out specified as ap_fifo interfaces behaves as shown
in the following figure.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=475

Figure 103: Behavior of ap_fifo Interface

For inputs, the following occurs:

• After start is applied, the block begins normal operation.

• If the input port is ready to be read but the FIFO is empty as indicated by input port
in_empty_n Low, the design stalls and waits for data to become available.

• When the FIFO contains data as indicated by input port in_empty_n High, an output
acknowledge in_read is asserted High to indicate the data was read in this cycle.

For outputs, the following occurs:

• After start is applied, the block begins normal operation.

• If an output port is ready to be written to but the FIFO is full as indicated by out_full_n
Low, the data is placed on the output port but the design stalls and waits for the space to
become available in the FIFO.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 476Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=476

• When space becomes available in the FIFO as indicated by out_full_n High, the output
acknowledge signal out_write is asserted to indicate the output data is valid.

• If the top-level function or the top-level loop is pipelined using the -rewind option, Vivado
HLS creates an additional output port with the suffix _lwr. When the last write to the FIFO
interface completes, the _lwr port goes active-High.

ap_bus

An ap_bus interface can communicate with a bus bridge. Because the ap_bus interface does
not follow specific bus standards, you can use this interface with a bus bridge that communicates
with the system bus. The bus bridge must be able to cache all burst writes.

Note: Functions that can use an ap_bus interface use pointers and might access the same variable
multiple times. To understand the importance of the volatile qualifier when using this coding style, see
Multi-Access Pointer Interfaces: Streaming Data.

You can use an ap_bus interface in the following ways:

• Standard Mode: This mode performs individual read and write operations, specifying the
address of each.

• Burst Mode: This mode performs data transfers if the C function memcpy is used in the C
source code. In burst mode, the interface indicates the base address and the size of the
transfer. The data samples are then transferred in consecutive cycles.

Note: Arrays accessed by the memcpy function cannot be partitioned into registers.

The following example shows the behavior for read and write operations in standard mode when
an ap_bus interface is applied to argument d.

void foo (int *d) {
 static int acc = 0;
 int i;

 for (i=0;i<4;i++) {
 acc += d[i+1];
 d[i] = acc;
 }
}

The following example shows the behavior when the C memcpy function and burst mode are
used.

void bus (int *d) {
 int buf1[4], buf2[4];
 int i;

 memcpy(buf1,d,4*sizeof(int));

 for (i=0;i<4;i++) {

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=477

 buf2[i] = buf1[3-i];
 }

 memcpy(d,buf2,4*sizeof(int));
}

Figure 104: Behavior of ap_bus Interface: Standard Read

After reset, the following occurs:

• After start, the block begins normal operation.

• If a read must be performed but there is no data in the bus bridge FIFO, indicated by
d_rsp_empty_n Low, the following occurs:

○ Output port d_req_write is asserted with port d_req_din deasserted to indicate a
read operation.

○ The address is output.

○ The design stalls and waits for data to become available.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 478Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=478

• When data becomes available for reading the output signal, d_rsp_read is immediately
asserted and data is read at the next clock edge.

• If a read must be performed and data is available in the bus bridge FIFO, indicated by
d_rsp_empty_n High, the following occurs:

○ Output port d_req_write is asserted and port d_req_din is deasserted to indicate a
read operation.

○ The address is output.

○ Output signal d_rsp_read is asserted in the next clock cycle and data is read at the next
clock edge.

Figure 105: Behavior of ap_bus Interface: Standard Write

After reset, the following occurs:

• After start, the block begins normal operation.

• If a write must be performed but there is no space in the bus bridge FIFO, indicated by
d_req_full_n Low, the following occurs:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=479

○ The address and data are output.

○ The design stalls and waits for space to become available.

• When space becomes available for writing, the following occurs:

○ Output ports d_req_write and d_req_din are asserted to indicate a write operation.

○ The output signal d_req_din is immediately asserted to indicate the data is valid at the
next clock edge.

• If a write must be performed and space is available in the bus bridge FIFO, indicated by
d_req_full_n High, the following occurs:

○ Output ports d_req_write and d_req_din are asserted to indicate a write operation.

○ The address and data are output.

○ The output signal d_req_din is asserted to indicate the data is valid at the next clock
edge.

Figure 106: Behavior of ap_bus Interface: Burst Read

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 480Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=480

After reset, the following occurs:

• After start, the block begins normal operation.

• If a read must be performed but there is no data in the bus bridge FIFO, indicated by
d_rsp_empty_n Low, the following occurs:

○ Output port d_req_write is asserted with port d_req_din deasserted to indicate a
read operation.

○ The base address for the transfer and the size are output.

○ The design stalls and waits for data to become available.

• When data becomes available for reading the output signal, d_rsp_read is immediately
asserted and data is read at the next N clock edges, where N is the value on output port size.

• If the bus bridge FIFO runs empty of values, the data transfers stop immediately and wait until
data is available before continuing.

Figure 107: Behavior of ap_bus Interface: Burst Write

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 481Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=481

After reset, the following occurs:

• After start, the block begins normal operation.

• If a write must be performed but there is no space in the bus bridge FIFO, indicated by
d_req_full_n Low, the following occurs:

○ The base address, transfer size, and data are output.

○ The design stalls and waits for space to become available.

• When space becomes available for writing, the following occurs:

○ Output ports d_req_write and d_req_din are asserted to indicate a write operation.

○ The output signal d_req_din is immediately asserted to indicate the data is valid at the
next clock edge.

○ Output signal d_req_din is immediately deasserted if the FIFO becomes full and
reasserted when space is available.

○ The transfer stops after N data values are transferred, where N is the value on the size
output port.

• If a write must be performed and space is available in the bus bridge FIFO, indicated by
d_rsp_full_n High, transfer begins and the design stalls and waits until the FIFO is full.

axis

The axis mode specifies an AXI4-Stream I/O protocol. For a complete description of the AXI4-
Stream interface, including timing and ports, see the Vivado Design Suite: AXI Reference Guide
(UG1037). For information on using the full capabilities of this I/O protocol, see Using AXI4
Interfaces.

s_axilite

The s_axilite mode specifies an AXI4-Lite slave I/O protocol. For a complete description of
the AXI4-Lite slave interface, including timing and ports, see the Vivado Design Suite: AXI
Reference Guide (UG1037). For information on using the full capabilities of this I/O protocol, see
Using AXI4 Interfaces.

m_axi

The m_axi mode specifies an AXI4 master I/O protocol. For a complete description of the AXI4
master interface including timing and ports, see the Vivado Design Suite: AXI Reference Guide
(UG1037). For information on using the full capabilities of this I/O protocol, see Using AXI4
Interfaces.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 482Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=482

AXI4-Lite Slave C Driver Reference
When an AXI4-Lite slave interface is added to the design, a set of C driver files are automatically
created. These C driver files provide a set of APIs that can be integrated into any software
running on a CPU and used to communicate with the device using the AXI4-Lite interface.

The API functions derive their name from the top-level function for synthesis. This reference
section assumes the top-level function is called DUT. The following table lists each of the API
function provided in the C driver files.

Table 47: C Driver API Functions

API Function Description
XDut_Initialize This API will write value to InstancePtr which then can be used in other APIs. Xilinx

recommends calling this API to initialize a device except when an MMU is used in the
system.

XDut_CfgInitialize Initialize a device configuration. When a MMU is used in the system, replace the base
address in the XDut_Config variable with virtual base address before calling this function.
Not for use on Linux systems.

XDut_LookupConfig Used to obtain the configuration information of the device by ID. The configuration
information contain the physical base address. Not for use on Linux.

XDut_Release Release the uio device in linux. Delete the mappings by munmap: the mapping will
automatically be deleted if the process terminated. Only for use on Linux systems.

XDut_Start Start the device. This function will assert the ap_start port on the device. Available only if
there is ap_start port on the device.

XDut_IsDone Check if the device has finished the previous execution: this function will return the value of
the ap_done port on the device. Available only if there is an ap_done port on the device.

XDut_IsIdle Check if the device is in idle state: this function will return the value of the ap_idle port.
Available only if there is an ap_idle port on the device.

XDut_IsReady Check if the device is ready for the next input: this function will return the value of the
ap_ready port. Available only if there is an ap_ready port on the device.

XDut_Continue Assert port ap_continue. Available only if there is an ap_continue port on the device.

XDut_EnableAutoRestart Enables “auto restart” on device. When this is set the device will automatically start the
next transaction when the current transaction completes.

XDut_DisableAutoRestart Disable the “auto restart” function.

XDut_Set_ARG Write a value to port ARG (a scalar argument of the top function). Available only if ARG is
input port.

XDut_Set_ARG_vld Assert port ARG_vld. Available only if ARG is an input port and implemented with an ap_hs
or ap_vld interface protocol.

XDut_Set_ARG_ack Assert port ARG_ack. Available only if ARG is an output port and implemented with an ap_hs
or ap_ack interface protocol.

XDut_Get_ARG Read a value from ARG. Only available if port ARG is an output port on the device.

XDut_Get_ARg_vld Read a value from ARG_vld. Only available if port ARG is an output port on the device and
implemented with an ap_hs or ap_vld interface protocol.

XDut_Get_ARg_ack Read a value from ARG_ack. Only available if port ARG is an input port on the device and
implemented with an ap_hs or ap_ack interface protocol.

XDut_Get_ARG_BaseAddress Return the base address of the array inside the interface. Only available when ARG is an
array grouped into the AXI4-Lite interface.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 483Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=483

Table 47: C Driver API Functions (cont'd)

API Function Description
XDut_Get_ARG_HighAddress Return the address of the uppermost element of the array. Only available when ARG is an

array grouped into the AXI4-Lite interface.

XDut_Get_ARG_TotalBytes Return the total number of bytes used to store the array. Only available when ARG is an
array grouped into the AXI4-Lite interface.
If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into
the 32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-
bit, Vivado HLS stores each element over multiple consecutive addresses.

XDut_Get_ARG_BitWidth Return the bit width of each element in the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.
If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into
the 32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-
bit, Vivado HLS stores each element over multiple consecutive addresses.

XDut_Get_ARG_Depth Return the total number of elements in the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.
If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into
the 32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-
bit, Vivado HLS stores each element over multiple consecutive addresses.

XDut_Write_ARG_Words Write the length of a 32-bit word into the specified address of the AXI4-Lite interface. This
API requires the offset address from BaseAddress and the length of the data to be stored.
Only available when ARG is an array grouped into the AXI4-Lite interface.

XDut_Read_ARG_Words Read the length of a 32-bit word from the array. This API requires the data target, the offset
address from BaseAddress, and the length of the data to be stored. Only available when
ARG is an array grouped into the AXI4-Lite interface.

XDut_Write_ARG_Bytes Write the length of bytes into the specified address of the AXI4-Lite interface. This API
requires the offset address from BaseAddress and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite interface.

XDut_Read_ARG_Bytes Read the length of bytes from the array. This API requires the data target, the offset
address from BaseAddress, and the length of data to be loaded. Only available when ARG is
an array grouped into the AXI4-Lite interface.

XDut_InterruptGlobalEnable Enable the interrupt output. Interrupt functions are available only if there is ap_start.

XDut_InterruptGlobalDisable Disable the interrupt output.

XDut_InterruptEnable Enable the interrupt source. There may be at most 2 interrupt sources (source 0 for
ap_done and source 1 for ap_ready)

XDut_InterruptDisable Disable the interrupt source.

XDut_InterruptClear Clear the interrupt status.

XDut_InterruptGetEnabled Check which interrupt sources are enabled.

XDut_InterruptGetStatus Check which interrupt sources are triggered.

The details on the API functions are provided below.

XDut_Initialize
Synopsis

int XDut_Initialize(XDut *InstancePtr, u16 DeviceId);

int XDut_Initialize(XDut *InstancePtr, const char* InstanceName);

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 484Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=484

Description

int XDut_Initialize(XDut *InstancePtr, u16 DeviceId): For use on standalone systems, initialize a
device. This API will write a proper value to InstancePtr which then can be used in other APIs.
Xilinx recommends calling this API to initialize a device except when an MMU is used in the
system, in which case refer to function XDut_CfgInitialize.

int XDut_Initialize(XDut *InstancePtr, const char* InstanceName): For use on Linux systems,
initialize a specifically named uio device. Create up to 5 memory mappings and assign the slave
base addresses by mmap, utilizing the uio device information in sysfs.

• InstancePtr: A pointer to the device instance.

• DeviceId: Device ID as defined in xparameters.h.

• InstanceName: The name of the uio device.

• Return: XST_SUCCESS indicates success, otherwise fail.

XDut_CfgInitialize
Synopsis

XDut_CfgInitializeint XDut_CfgInitialize(XDut *InstancePtr, XDut_Config *ConfigPtr);

Description

Initialize a device when an MMU is used in the system. In such a case the effective address of the
AXI4-Lite slave is different from that defined in xparameters.h and API is required to initialize the
device.

• InstancePtr: A pointer to the device instance.

• DeviceId: A pointer to a XDut_Config.

• Return: XST_SUCCESS indicates success, otherwise fail.

XDut_LookupConfig
Synopsis

XDut_Config* XDut_LookupConfig(u16 DeviceId);

Description

This function is used to obtain the configuration information of the device by ID.

• DeviceId: Device ID as defined in xparameters.h.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 485Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=485

• Return: A pointer to a XDut_LookupConfig variable that holds the configuration information
of the device whose ID is DeviceId. NULL if no matching DeviceId is found.

XDut_Release
Synopsis

int XDut_Release(XDut *InstancePtr);

Description

Release the uio device. Delete the mappings by munmap. (The mapping will automatically be
deleted if the process terminated)

• InstanceName: The name of the uio device.

• Return: XST_SUCCESS indicates success, otherwise fail.

XDut_Start
Synopsis

void XDut_Start(XDut *InstancePtr);

Description

Start the device. This function will assert the ap_start port on the device. Available only if
there is ap_start port on the device.

• InstancePtr: A pointer to the device instance.

XDut_IsDone
Synopsis

void XDut_IsDone(XDut *InstancePtr);

Description

Check if the device has finished the previous execution: this function will return the value of the
ap_done port on the device. Available only if there is an ap_done port on the device.

• InstancePtr: A pointer to the device instance.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 486Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=486

XDut_IsIdle
Synopsis

void XDut_IsIdle(XDut *InstancePtr);

Description

Check if the device is in idle state: this function will return the value of the ap_idle port. Available
only if there is an ap_idle port on the device.

• InstancePtr: A pointer to the device instance.

XDut_IsReady
Synopsis

void XDut_IsReady(XDut *InstancePtr);

Description

Check if the device is ready for the next input: this function will return the value of the ap_ready
port. Available only if there is an ap_ready port on the device.

• InstancePtr: A pointer to the device instance.

XDut_Continue
Synopsis

void XExample_Continue(XExample *InstancePtr);

Description

Assert port ap_continue. Available only if there is an ap_continue port on the device.

• InstancePtr: A pointer to the device instance.

XDut_EnableAutoRestart
Synopsis

void XDut_EnableAutoRestart(XDut *InstancePtr);

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 487Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=487

Description

Enables “auto restart” on device. When this is enabled,

• Port ap_start will be asserted as soon as ap_done is asserted by the device and the device will
auto-start the next transaction.

• Alternatively, if the block-level I/O protocol ap_ctrl_chain is implemented on the device, the
next transaction will auto-restart (ap_start will be asserted) when ap_ready is asserted by the
device and if ap_continue is asserted when ap_done is asserted by the device.

Available only if there is an ap_start port.

• InstancePtr: A pointer to the device instance.

XDut_DisableAutoRestart
Synopsis

void XDut_DisableAutoRestart(XDut *InstancePtr);

Description

Disable the “auto restart” function. Available only if there is an ap_start port.

• InstancePtr: A pointer to the device instance.

XDut_Set_ARG
Synopsis

void XDut_Set_ARG(XDut *InstancePtr, u32 Data);

Description

Write a value to port ARG (a scalar argument of the top-level function). Available only if ARG is
an input port.

• InstancePtr: A pointer to the device instance.

• Data: Value to write.

XDut_Set_ARG_vld
Synopsis

void XDut_Set_ARG_vld(XDut *InstancePtr);

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 488Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=488

Description

Assert port ARG_vld. Available only if ARG is an input port and implemented with an ap_hs or
ap_vld interface protocol.

• InstancePtr: A pointer to the device instance.

XDut_Set_ARG_ack
Synopsis

void XDut_Set_ARG_ack(XDut *InstancePtr);

Description

Assert port ARG_ack. Available only if ARG is an output port and implemented with an ap_hs or
ap_ack interface protocol.

• InstancePtr: A pointer to the device instance.

XDut_Get_ARG
Synopsis

u32 XDut_Get_ARG(XDut *InstancePtr);

Description

Read a value from ARG. Only available if port ARG is an output port on the device.

• InstancePtr: A pointer to the device instance.

Return: Value of ARG.

XDut_Get_ARG_vld
Synopsis

u32 XDut_Get_ARG_vld(XDut *InstancePtr);

Description

Read a value from ARG_vld. Only available if port ARG is an output port on the device and
implemented with an ap_hs or ap_vld interface protocol.

• InstancePtr: A pointer to the device instance.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 489Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=489

Return: Value of ARG_vld.

XDut_Get_ARG_ack
Synopsis

u32 XDut_Get_ARG_ack(XDut *InstancePtr);

Description

Read a value from ARG_ack Only available if port ARG is an input port on the device and
implemented with an ap_hs or ap_ack interface protocol.

• InstancePtr: A pointer to the device instance.

Return: Value of ARG_ack.

XDut_Get_ARG_BaseAddress
Synopsis

u32 XDut_Get_ARG_BaseAddress(XDut *InstancePtr);

Description

Return the base address of the array inside the interface. Only available when ARG is an array
grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

Return: Base address of the array.

XDut_Get_ARG_HighAddress
Synopsis

u32 XDut_Get_ARG_HighAddress(XDut *InstancePtr);

Description

Return the address of the uppermost element of the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

Return: Address of the uppermost element of the array.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 490Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=490

XDut_Get_ARG_TotalBytes
Synopsis

u32 XDut_Get_ARG_TotalBytes(XDut *InstancePtr);

Description

Return the total number of bytes used to store the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into the
32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit,
Vivado HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Return: The total number of bytes used to store the array.

XDut_Get_ARG_BitWidth
Synopsis

u32 XDut_Get_ARG_BitWidth(XDut *InstancePtr);

Description

Return the bit width of each element in the array. Only available when ARG is an array grouped
into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into the
32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit,
Vivado HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Return: The bit-width of each element in the array.

XDut_Get_ARG_Depth
Synopsis

u32 XDut_Get_ARG_Depth(XDut *InstancePtr);

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 491Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=491

Description

Return the total number of elements in the array. Only available when ARG is an array grouped
into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vivado HLS groups multiple elements into the
32-bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit,
Vivado HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Return: The total number of elements in the array.

XDut_Write_ARG_Words
Synopsis

u32 XDut_Write_ARG_Words(XDut *InstancePtr, int offset, int *data, int length);

Description

Write the length of a 32-bit word into the specified address of the AXI4-Lite interface. This API
requires the offset address from BaseAddress and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the AXI4-Lite interface.

• data: A pointer to the data value to be stored.

• length: The length of the data to be stored.

Return: Write length of data from the specified address.

XDut_Read_ARG_Words
Synopsis

u32 XDut_Read_ARG_Words(XDut *InstancePtr, int offset, int *data, int length);

Description

Read the length of a 32-bit word from the array. This API requires the data target, the offset
address from BaseAddress, and the length of the data to be stored. Only available when ARG is
an array grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 492Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=492

• offset: The address in the ARG.

• data: A pointer to the data buffer.

• length: The length of the data to be stored.

Return: Read length of data from the specified address.

XDut_Write_ARG_Bytes
Synopsis

u32 XDut_Write_ARG_Bytes(XDut *InstancePtr, int offset, char *data, int length);

Description

Write the length of bytes into the specified address of the AXI4-Lite interface. This API requires
the offset address from BaseAddress and the length of the data to be stored. Only available
when ARG is an array grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the ARG.

• data: A pointer to the data value to be stored.

• length: The length of data to be stored.

Return: Write length of data from the specified address.

XDut_Read_ARG_Bytes
Synopsis

u32 XDut_Read_ARG_Bytes(XDut *InstancePtr, int offset, char *data, int length);

Description

Read the length of bytes from the array. This API requires the data target, the offset address from
BaseAddress, and the length of data to be loaded. Only available when ARG is an array grouped
into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the ARG.

• data: A pointer to the data buffer.

• length: The length of data to be loaded.

Return: Read length of data from the specified address.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 493Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=493

XDut_InterruptGlobalEnable
Synopsis

void XDut_InterruptGlobalEnable(XDut *InstancePtr);

Description

Enable the interrupt output. Interrupt functions are available only if there is ap_start.

• InstancePtr: A pointer to the device instance.

XDut_InterruptGlobalDisable
Synopsis

void XDut_InterruptGlobalDisable(XDut *InstancePtr);

Description

Disable the interrupt output.

• InstancePtr: A pointer to the device instance.

XDut_InterruptEnable
Synopsis

void XDut_InterruptEnable(XDut *InstancePtr, u32 Mask);

Description

Enable the interrupt source. There may be at most 2 interrupt sources (source 0 for ap_done and
source 1 for ap_ready).

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

○ Bit n = 1: enable interrupt source n.

○ Bit n = 0: no change.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 494Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=494

XDut_InterruptDisable
Synopsis

void XDut_InterruptDisable(XDut *InstancePtr, u32 Mask);

Description

Disable the interrupt source.

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

○ Bit n = 1: disable interrupt source n.

○ Bit n = 0: no change.

XDut_InterruptClear
Synopsis

void XDut_InterruptClear(XDut *InstancePtr, u32 Mask);

Description

Clear the interrupt status.

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

○ Bit n = 1: toggle interrupt status n.

○ Bit n = 0: no change.

XDut_InterruptGetEnabled
Synopsis

u32 XDut_InterruptGetEnabled(XDut *InstancePtr);

Description

Check which interrupt sources are enabled.

• InstancePtr: A pointer to the device instance.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=495

• Return: Bit mask.

○ Bit n = 1: enabled.

○ Bit n = 0: disabled.

XDut_InterruptGetStatus
Synopsis

u32 XDut_InterruptGetStatus(XDut *InstancePtr);

Description

Check which interrupt sources are triggered.

• InstancePtr: A pointer to the device instance.

• Return: Bit mask.

○ Bit n = 1: triggered.

○ Bit n = 0: not triggered.

HLS Video Functions Library
IMPORTANT! The Vivado® HLS video libraries have been moved to the Xilinx® GitHub and can be found
here: https://github.com/Xilinx/xfopencv

HLS Linear Algebra Library Functions
This section explains the Vivado HLS linear algebra processing functions.

matrix_multiply

Synopsis

template<
class TransposeFormA,
class TransposeFormB,
int RowsA,
int ColsA,
int RowsB,
int ColsB,
int RowsC,

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 496Send Feedback

https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=496

int ColsC,
typename InputType,
typename OutputType>
void matrix_multiply(
 const InputType A[RowsA][ColsA],
 const InputType B[RowsB][ColsB],
 OutputType C[RowsC][ColsC]);

Description

C=AB

• Computes the product of two matrices, returning a third matrix.

• Optional transposition (and conjugate transposition for complex data types) of input matrices.

• Alternative architecture provided for unrolled floating-point implementations.

Parameters

Table 48: Parameters

Parameter Description
TransposeFormA Transpose requirement for matrix A; NoTranspose,

Transpose, ConjugateTranspose.

TransposeFormB Transpose requirement for matrix B; NoTranspose,
Transpose, ConjugateTranspose.

RowsA Number of rows in matrix A

ColsA Number of columns in matrix A

RowsB Number of rows in matrix B

ColsB Number of columns in matrix B

RowsC Number of rows in matrix C

ColsC Number of columns in matrix C

InputType Input data type

OutputType Output data type

The function will throw an assertion and fail to compile, or synthesize, if ColsA != RowsB. The
transpose requirements for A and B are resolved before check is made.

Arguments

Table 49: Arguments

Argument Description
A First input matrix

B Second input matrix

C AB product output matrix

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=497

Return Values

• Not applicable (void function)

Supported Data Types

• ap_fixed

• float

• x_complex<ap_fixed>

• x_complex<float>

Input Data Assumptions

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

cholesky

Synopsis

template<
bool LowerTriangularL,
int RowsColsA,
typename InputType,
typename OutputType>
int cholesky(
const InputType A[RowsColsA][RowsColsA],
OutputType L[RowsColsA][RowsColsA])

Description

A=LL*

• Computes the Cholesky decomposition of input matrix A, returning matrix L.

• Output matrix L may be upper triangular or lower triangular based on parameter
LowerTriangularL.

• Elements in the unused portion of matrix L are set to zero.

Parameters

Table 50: Parameters

Parameter Description
RowsColsA Row and column dimension of input and output matrices

LowerTriangularL Selects whether lower triangular or upper triangular output
is desired

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=498

Table 50: Parameters (cont'd)

Parameter Description
InputType Input data type

OutputType Output data type

Arguments

Table 51: Arguments

Argument Description
A Hermitian/symmetric positive definite input matrix

L Lower or upper triangular output matrix

Return Values

• 0 = success

• 1 = failure. The function attempted to find the square root of a negative number, that is, the
input matrix A was not Hermitian/symmetric positive definite.

Supported Data Types

• ap_fixed

• float

• x_complex<ap_fixed>

• x_complex<float>

Input Data Assumptions

• The function assumes that the input matrix is symmetric positive definite (Hermitian positive
definite for complex-valued inputs).

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

qrf

Synopsis

template<
bool TransposeQ,
int RowsA,
int ColsA,
typename InputType,

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=499

typename OutputType>
void qrf(
const InputType A[RowsA][ColsA],
OutputType Q[RowsA][RowsA],
OutputType R[RowsA][ColsA])

Description

A=QR

• Computes the full QR factorization (QR decomposition) of input matrix A, producing
orthogonal output matrix Q and upper-triangular matrix R.

• Output matrix Q may be optionally transposed based on parameter TransposeQ.

• Lower triangular elements of output matrix R are not zeroed.

• The thin (also known as economy) QR decomposition is not implemented.

Parameters

Table 52: Parameters

Parameter Description
TransposeQ Selects whether Q matrix should be transposed or not.

RowsA Number of rows in input matrix A

ColsA Number of columns in input matrix A

InputType Input data type

OutputType Output data type

• The function will fail to compile, or synthesize, if RowsA < ColsA.

Arguments

Table 53: Arguments

Argument Description
A Input matrix

Q Orthogonal output matrix

R Upper triangular output matrix

Return Values

• Not applicable (void function)

Supported Data Types

• float

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=500

• x_complex<float>

Input Data Assumptions

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

cholesky_inverse

Synopsis

template <
 int RowsColsA,
 typename InputType,
 typename OutputType>
 void cholesky_inverse(const InputType A[RowsColsA][RowsColsA],
 OutputType InverseA[RowsColsA][RowsColsA],
 int& cholesky_success)

Description

AA-1 = I

• Computes the inverse of symmetric positive definite input matrix A by the Cholesky
decomposition method, producing matrix InverseA.

Parameters

Table 54: Parameters

Parameter Description
RowsColsA Row and column dimension of input and output matrices

InputType Input data type

OutputType Output data type

Arguments

Table 55: Arguments

Argument Description
A Square Hermitian/symmetric positive definite input matrix

InverseA Inverse of input matrix

cholesky_success 0 = success
1 = failure. The Cholesky function attempted to find the
square root of a negative number. The input matrix A was
not symmetric positive definite.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 501Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=501

Return Values

• Not applicable (void function)

Supported Data Types

• ap_fixed

• float

• x_complex<ap_fixed>

• x_complex<float>

Input Data Assumptions

• The function assumes that the input matrix is symmetric positive definite (Hermitian positive
definite for complex-valued inputs).

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

qr_inverse

Synopsis

template <
 int RowsColsA,
 typename InputType,
 typename OutputType>
 void qr_inverse(const InputType A[RowsColsA][RowsColsA],
 OutputType InverseA[RowsColsA][RowsColsA],
 int& A_singular)

Description

AA-1=I

• Computes the inverse of input matrix A by the QR factorization method, producing matrix
InverseA.

Parameters

Table 56: Parameters

Parameter Description
RowsColsA Row and column dimension of input and output matrices.

InputType Input data type

OutputType Output data type

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 502Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=502

Arguments

Table 57: Arguments

Argument Description
A Input matrix A

InverseA Inverse of input matrix

A_singular 0 = success
1 = matrix A is singular

Return Values

• Not applicable (void function)

Supported Data Types

• float

• x_complex<float>

Input Data Assumptions

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

svd

Synopsis

template<
int RowsA,
int ColsA,
typename InputType,
typename OutputType>
void svd(
const InputType A[RowsA][ColsA],
OutputType S[RowsA][ColsA],
OutputType U[RowsA][RowsA],
OutputType V[ColsA][ColsA])

Description

A=USV*

• Computes the singular value decomposition of input matrix A, producing matrices U, S and V.

• Supports only square matrix.

• Implemented using the iterative two-sided Jacobi method.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 503Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=503

Parameters

Table 58: Parameters

Parameter Description
RowsA Row dimension

ColsA Column dimension

InputType Input data type

OutputType Output data type

• The function will throw an assertion and fail to compile, or synthesize, if RowsA != ColsA.

Arguments

Table 59: Arguments

Argument Description
A Input matrix

S Singular values of input matrix

U Left singular vectors of input matrix

V Right singular vectors of input matrix

Return Values

• Not applicable (void function)

Supported Data Types

• float

• x_complex<float>

Input Data Assumptions

• For floating point types, subnormal input values are not supported. If used, the synthesized
hardware will flush these to zero, and behavior will differ versus software simulation.

Examples

The examples provide a basic test-bench and demonstrate how to parameterize and instantiate
each Linear Algebra function. One or more examples for each function are available in the Vivado
HLS examples directory:

<VIVADO_HLS>/examples/design/linear_algebra

Each example contains the following files:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=504

• <example>.cpp: Top-level synthesis wrapper instantiating the library function.

• <example>.h: Header file defining matrix size, data type and, where applicable, architecture
selection.

• <example>_tb.cpp: Basic test-bench instantiating top-level synthesis wrapper.

• run_hls.tcl: Tcl commands to set up the example Vivado HLS project:

vivado_hls -f run_hls.tcl

• directives.tcl: (Optional) Additional Tcl commands applying optimization/implementation
directives.

HLS DSP Library Functions
The HLS DSP library contains building block functions for DSP system modeling in C++ with an
emphasis on functions used in SDR applications.

HLS DSP Functions
This section explains the Vivado HLS DSP processing functions.

awgn

Synopsis

template<
 int OutputWidth>
class awgn {
public:
 typedef ap_ufixed<8,4, AP_RND, AP_SAT> t_ input_scale;
 static const int LFSR_SECTION_WIDTH = 32;
 static const int NUM_NOISE_GENS = 4;
 static const int LFSR_WIDTH = LFSR_SECTION_WIDTH*NUM_NOISE_GENS;
 void awgn(ap_uint<LFSR_WIDTH> seed);
 void ~awgn();
 void operator()(t_input_scale &snr,
 ap_int<OutputWidth> &noise);

Description

• Outputs Gaussian noise of a magnitude determined by input signal-to-noise ratio (SNR). 0 dB
for a BPSK signal results in a bit error rate (BER) of approximately 7%. This is because for
Eb/N0 = 0, Eb = 1, but N0 / 2 = noise power for a BPSK channel, resulting in noise variance
half that of the signal variance. For more information, see the AWGN page (https://
www.mathworks.com/help/comm/ug/awgn-channel.html) on the MathWorks website.

• The SNR input represents signal-to-noise ratio in decibels in the range [0.0 to 16.0) in steps of
1/16 of a decibel.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 505Send Feedback

https://www.mathworks.com/help/comm/ug/awgn-channel.html
https://www.mathworks.com/help/comm/ug/awgn-channel.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=505

• If the noise value exceeds that which can be described by the configuration, it saturates at the
maximum positive or negative value appropriately.

• The function uses multiple individual noise generators that are summed, which takes
advantage of the central limit theorem, to create the output value. By default, these multiple
generators are pipelined and unrolled, because the expected target application is for high-rate
BER testing where a high clock rate and therefore, an Initiation Interval of 1 is expected.

Parameters

Table 60: Parameters

Template Parameter Description
OutputWidth The number of bits in the output value. The SNR specifies

the magnitude of noise relative to a soft BPSK signal with
values 01000 and 11000
Range 8 to 32 bits.

Table 61: Constructor Argument

Argument Description
seed The seed value for the LFSRs within the noise generators.

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 62: Arguments

Argument Description
snr Signal-to-noise ratio input

noise Output noise

Return Values

• Not applicable (void function)

Supported Base Data Types

• Input

○ ap_ufixed

See definition of typedef t_ input_scale in header file hls_awgn.h for details.

• Output

○ ap_int

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 506Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=506

Input Data Assumptions

• None

nco

Synopsis

template<
 int AccumWidth,
 int PhaseAngleWidth,
 int SuperSampleRate,
 int OutputWidth,
 class DualOutputCmpyImpl,
 class SingleOutputCmpyImpl,
 class SingleOutputNegCmpyImpl>
class nco {
public:
 void nco(const ap_uint<AccumWidth> InitPinc,
 const ap_uint<AccumWidth> InitPoff);
 void ~nco();
 void operator()(
 stream< ap_uint<AccumWidth> > &pinc,
 stream< ap_uint<AccumWidth> > &poff,
 stream< t_nco_output_data<SuperSampleRate,OutputWidth> >
 &outputData
);

Description

• Performs a numerically controlled oscillator (NCO) function.

• Supports super sample rate (SSR), where the sample rate exceeds the clock rate, so multiple
parallel data samples must be output on each clock cycle.

• When in SSR mode, a change to phase increment (pinc) prompts an internal interrupt. This
does not cause a disturbance to the output samples unless two or more changes to pinc occur
less than N cycles apart where N is SuperSampleRate/2 +1.

Parameters

Table 63: Parameters

Template Parameter Description
AccumWidth Number of bits in the phase accumulator. This determines

the precision of the frequency that can be synthesized.
Range 4 to 48.

PhaseAngleWidth Number of bits used in the sin/cos lookup directly. Larger
values give more accurate output at the expense of lookup
table size. Range 4 to 16.

SuperSampleRate Number of output samples per clock cycle. Range 1 to 16.

OutputWidth Width of each output (sine and cosine). Range 4 to 32.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=507

Table 63: Parameters (cont'd)

Template Parameter Description
DualOutputCmpyImpl Select whether to implement dual-output complex

multipliers with 5-multiplier (5 DSP48) or 4-multiplier (6
DSP48) architecture using classes
NcoDualOutputCmpyFiveMult or
NcoDualOutputCmpyFourMult. See hls_nco.h for details.

SingleOutputCmpyImpl Select whether to implement single-output complex
multipliers with 3-multiplier (3 DSP48) or 4-multiplier (4
DSP48) architecture using classes
NcoSingleOutputCmpyThreeMult or
NcoSingleOutputCmpyFourMult. See hls_nco.h for details.

SingleOutputNegCmpyImpl Select whether to implement single-output negated
complex multipliers with 3-multiplier (3 DSP48) or 4-
multiplier (4 DSP48) architecture using classes
NcoSingleOutputCmpyThreeMult or
NcoSingleOutputCmpyFourMult. See hls_nco.h for details.

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 64: Arguments

Argument Description
pinc Pinc is Phase Increment. The phase of the output advances

by pinc/2AccumWidth *2π each sample.

poff Poff is Phase Offset. This is added to the accumulated
phase. The phase of the output is offset by poff/2AccumWidth

*2π.

outputData Sine and cosine output. The magnitude of the output
components is approximately cos(ϕ)*2OutputWidth-1 and
sin(ϕ)*2OutputWidth-1, where ϕ is the phase described by the
phase accumulator, appropriately offset by poff.

Return Values

• Not applicable (void function)

Supported Base Data Types

• Input

○ ap_uint

• Output

○ std::complex< ap_int >

See definition of struct t_nco_output_data in hls_nco.h for details.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 508Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=508

Input Data Assumptions

• None

convolution_encoder

Synopsis

template<
 int OutputWidth,
 bool Punctured,
 bool DualOutput,
 int InputRate,
 int OutputRate,
 int ConstraintLength,
 int PunctureCode0,
 int PunctureCode1,
 int ConvolutionCode0,
 int ConvolutionCode1,
 int ConvolutionCode2,
 int ConvolutionCode3,
 int ConvolutionCode4,
 int ConvolutionCode5,
 int ConvolutionCode6>
class convolution_encoder {
public:
 convolution_encoder();
 ~convolution_encoder();
 void operator()(stream< ap_uint<1> > &inputData,
 stream< ap_uint<OutputWidth> > &outputData);

Description

• Performs convolutional encoding of an input data stream based on user-defined convolution
codes and constraint length

• Optional puncturing of data

• Optional dual channel output

Parameters

Table 65: Parameters

Template Parameter Description
OutputWidth Defines number of bits in the output bus. 1 bit when

Punctured=true and DualOutput=false, 2 bits when
DualOutput=true, else OutputRate bits.

Punctured When true, enables puncturing of data.

DualOutput When true, enables dual outputs with punctured data.

InputRate Defines numerator of code rate.

OutputRate Defines denominator of code rate.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 509Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=509

Table 65: Parameters (cont'd)

Template Parameter Description
ConstraintLength The constraint length, K, is the number of registers in the

encoder plus one.

PunctureCode0 When Punctured=true, puncture code for output 0. Length
(in binary) must equal the puncture input rate. Total
number of 1s in both PunctureCode parameters equals the
output rate.

PunctureCode1 When Punctured=true, puncture code for output 1. Length
(in binary) must equal the puncture input rate. Total
number of 1s in both PunctureCode parameters equals the
output rate.

ConvolutionCode0 Convolution code for rates 1/2 to 1/7.
Length (in binary) for all convolution codes (if used) must
equal the constraint length value.

ConvolutionCode1 Convolution code for rates 1/2 to 1/7.

ConvolutionCode2 Convolution code for rates 1/3 to 1/7.

ConvolutionCode3 Convolution code for rates 1/4 to 1/7.

ConvolutionCode4 Convolution code for rates 1/5 to 1/7.

ConvolutionCode5 Convolution code for rates 1/6 to 1/7.

ConvolutionCode6 Convolution code for rate 1/7.

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 66: Arguments

Argument Description
inputData Single-bit data stream to be encoded.

outputData Encoded data stream. OutputRate-bits wide unless
Punctured=true (1-bit wide) or DualOutput=true (2-bits
wide).

Return Values

• Not applicable (void function)

Supported Base Data Types

• ap_uint

Input Data Assumptions

• None

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 510Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=510

viterbi_decoder

Synopsis

template<
 int ConstraintLength,
 int TracebackLength,
 bool HasEraseInput,
 bool SoftData,
 int InputDataWidth,
 int SoftDataFormat,
 int OutputRate,
 int ConvolutionCode0,
 int ConvolutionCode1,
 int ConvolutionCode2,
 int ConvolutionCode3,
 int ConvolutionCode4,
 int ConvolutionCode5,
 int ConvolutionCode6>
class viterbi_decoder {
public:
 viterbi_decoder();
 ~viterbi_decoder();
 void operator()(stream<
viterbi_decoder_input<OutputRate,InputDataWidth,HasEraseInput> > &inputData,
 stream< ap_uint<1> > &outputData)

Description

• Performs Viterbi decoding of a convolutionally encoded data stream

• Supports hard or soft data

• Supports offset binary and signed magnitude soft data formats

• Supports erasures (puncturing)

Parameters

Table 67: Parameters

Template Parameter Description
ConstraintLength The constraint length, K. Supported range is 3 to 9.

TracebackLength Number of states to trace back through the trellis during
decoding. Use at least 6x ConstraintLength, or at least 12x
ConstraintLength for punctured codes.

HasEraseInput When true, an Erase input is present on the core to flag
erasures (null symbols) in a punctured code.

SoftData When true, the function accepts soft (multi-bit) input data.

InputDataWidth Specifies width of the input data. Set to 1 for hard data and
3-5 for soft data.

SoftDataFormat Specifies soft data formatting. 0 -> Signed Magnitude, 1 ->
Offset Binary.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=511

Table 67: Parameters (cont'd)

Template Parameter Description
OutputRate Specifies output rate of the matching convolution encoder.

Determines number of inputs buses for decoder.

ConvolutionCode0 Convolution code for rates 1/2 to 1/7.
Length (in binary) for all convolution codes (if used) must
equal the constraint length value.

ConvolutionCode1 Convolution code for rates 1/2 to 1/7.

ConvolutionCode2 Convolution code for rates 1/3 to 1/7.

ConvolutionCode3 Convolution code for rates 1/4 to 1/7.

ConvolutionCode4 Convolution code for rates 1/5 to 1/7.

ConvolutionCode5 Convolution code for rates 1/6 to 1/7.

ConvolutionCode6 Convolution code for rate 1/7.

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 68: Arguments

Argument Description
inputData Convolution-encoded data stream with accompanying Erase

signals if a punctured code is used. Data bus is
OutputRate*InputDataWidth-bits wide. Erase bus is
OutputRate bits wide.

outputData Decoded single-bit data stream.

Return Values

• Not applicable (void function)

Supported Base Data Types

• Input

○ ap_uint

See definition of struct viterbi_decoder_input in hls_viterbi_decoder.h for details.

• Output

○ ap_uint

Input Data Assumptions

• None

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 512Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=512

atan2

Synopsis

template <
 int PhaseFormat,
 int InputWidth,
 int OutputWidth,
 int RoundMode>
void atan2(const typename atan2_input<InputWidth>::cartesian &x,
 typename atan2_output<OutputWidth>::phase &atanX)

Description

• CORDIC-based fixed-point implementation of two-argument arctangent

• Configurable input and output widths

• Configurable phase format

• Configurable rounding mode

Parameters

Table 69: Parameters

Template Parameter Description
PhaseFormat Selects whether the phase is expressed in radians or scaled

radians (π * 1 radian).

InputWidth Defines overall input data width.

OutputWidth Defines overall output data width.

RoundMode Selects the rounding mode to apply to the output data:
0=Truncate
1=Round-to-positive-infinity
2=Round-to-positive-and-negative-infinity
3=Round-to-nearest-even

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 70: Arguments

Argument Description
x Input data with two integer bits and InputWidth-2 fractional

bits in the range [-1,1].

atanX Four quadrant arctangent of x with three integer bits and
OutputWidth-3 fractional bits in the range [-1,1].

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=513

Return Values

• Not applicable (void function)

Supported Base Data Types

• Input

○ std::complex<ap_fixed>

See definitions of struct cordic_inputs in hls_cordic_functions.h and struct atan2_input in
hls_atan2_cordic.h for details.

• Output

○ ap_fixed

See definitions of struct cordic_outputs in hls_cordic_functions.h and struct atan2_output
in hls_atan2_cordic.h for details.

Input Data Assumptions

• None

sqrt

Synopsis

template <
 int DataFormat,
 int InputWidth,
 int OutputWidth,
 int RoundMode>
void sqrt(const typename sqrt_input<InputWidth, DataFormat>::in &x,
 typename sqrt_output<OutputWidth, DataFormat>::out &sqrtX)

Description

• CORDIC-based fixed-point implementation of square root

• Unsigned fractional or unsigned integer data formats supported

• Configurable rounding mode

Parameters

Table 71: Parameters

Template Parameter Description
DataFormat Selects between unsigned fraction (with integer width of 1

bit) and unsigned integer formats.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=514

Table 71: Parameters (cont'd)

Template Parameter Description
InputWidth Defines overall input data width.

OutputWidth Defines overall output data width.

RoundMode Selects the rounding mode to apply to the output data:
0=Truncate
1=Round-to-positive-infinity
2=round-to-positive-and-negative-infinity 3=Round-to-
nearest-even

Note: Parameters are checked during C simulation to verify that the template parameter configuration is
legal.

Arguments

Table 72: Arguments

Argument Description
x Input data.

sqrtX Square root of input data.

Return Values

• Not applicable (void function)

Supported Base Data Types

• Input

○ ap_ufixed

○ ap_uint

See definitions of struct cordic_inputs in hls_cordic_functions.h and struct sqrt_input in
hls_sqrt_cordic.h for details.

• Output

○ ap_ufixed

○ ap_uint

See definitions of struct cordic_inputs in hls_cordic_functions.h and struct sqrt_input in
hls_sqrt_cordic.h for details.

Input Data Assumptions

• None

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 515Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=515

cmpy

Synopsis

• Scalar Interface

template <
 class Architecture,
 int W1, int I1, ap_q_mode Q1, ap_o_mode O1, int N1,
 int W2, int I2, ap_q_mode Q2, ap_o_mode O2, int N2>
void cmpy (const ap_fixed<W1, I1, Q1, O1, N1> &ar,
 const ap_fixed<W1, I1, Q1, O1, N1> &ai,
 const ap_fixed<W1, I1, Q1, O1, N1> &br,
 const ap_fixed<W1, I1, Q1, O1, N1> &bi,
 ap_fixed<W2, I2, Q2, O2, N2> &pr,
 ap_fixed<W2, I2, Q2, O2, N2> &pi);

• std::complex interface

template <
 class Architecture,
 int W1, int I1, ap_q_mode Q1, ap_o_mode O1, int N1,
 int W2, int I2, ap_q_mode Q2, ap_o_mode O2, int N2>
void cmpy (const std::complex< ap_fixed<W1, I1, Q1, O1, N1> > &a,
 const std::complex< ap_fixed<W1, I1, Q1, O1, N1> > &b,
 std::complex< ap_fixed<W2, I2, Q2, O2, N2> > &p);

Description

• Performs fixed-point complex multiplication

• Implements either three-multiplier or four-multiplier structure

• Supports scalar or std::complex interfaces

Parameters

Table 73: Parameters

Template Parameter Description
Architecture Selects between three-multiplier and four-multiplier

architectures. Specify using structs CmpyThreeMult or
CmpyFourMult.

W1, I1, Q1, O1, N1 Fixed-point parameters for multiplicand and multiplier.

W2, I2, Q2, O2, N2 Fixed-point parameters for product.

Arguments

Table 74: Scalar Interface Arguments

Argument Description
ar Multiplicand real component

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=516

Table 74: Scalar Interface Arguments (cont'd)

Argument Description
ai Multiplicand imaginary component

br Multiplier real component

bi Multiplier imaginary component

pr Product real component

pi Product imaginary component

Table 75: std::complex Interface Arguments

Argument Description
a Multiplicand

b Multiplier

p Product

Return Values

• Not applicable (void function)

Supported Base Data Types

• ap_fixed

• std::complex<ap_fixed>

Input Data Assumptions

• None

HLS DSP Design Examples
The Vivado HLS DSP design examples provide a basic test bench and demonstrate how to
parameterize and instantiate each function. The design examples provide one or more examples
for each function.

To open the Vivado HLS design examples from the Welcome Page, click Open Example Project.
In the Examples wizard, select a design from the Design Examples → dsp folder.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by
selecting Help → Welcome.

You can also open the design examples directly from the Vivado Design Suite installation area:
Vivado_HLS\2018.x\examples\design\dsp.

Each example contains the following files:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=517

• <example>.cpp: Top-level synthesis wrapper that instantiates the library class.

• <example>.h: Header file that defines parameter values.

• <example>_tb.cpp: Basic test bench that exercises the top-level synthesis wrapper.

• run_hls.tcl: Tcl commands to set up the example Vivado HLS project:

vivado_hls -f run_hls.tcl

Note: Some of the design examples also include a directives.tcl file, which provides additional Tcl
commands for applying optimization and implementation directives.

HLS SQL Library Functions
This section explains the Vivado HLS SQL Library functions.

hls_alg::sha224

Synopsis

namespace hls_alg {
template <typename msg_T, typename hash_T>
void sha224(hls::stream<msg_T>& msg_strm, uint64_t len,
hls::stream<hash_T>&
hash_strm);
}

Description

• Computes the SHA-224 hash value of the input message.

• Message length is specified in number of bytes.

• Serval alternative output stream widths are provided.

Parameters

Table 76: hls_alg::sha224 Parameters

Parameter Description
msg_T Input stream data type.

hash_T Output stream data type.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 518Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=518

Arguments

Table 77: hls_alg::sha224 Arguments

Argument Description
msg_strm Input message stream.

len Length of message in byte.

hash_strm Output hash stream.
The caller should read this stream 28 or 7 times respectively
to obtain a full 224-bit message when hash_T is an unsigned
char or unsigned int.

Return Values

• Not applicable (void function)

Supported Data Types

• msg_T: unsigned char.

• hash_T: unsigned char, unsigned int and ap_uint<224>.

Input Data Assumptions

• It is assumed that msg_strm contains enough data for len bytes, otherwise the function will
block.

hls_alg::sha256

Synopsis

namespace hls_alg {
template <typename msg_T, typename hash_T>
void sha256(hls::stream<msg_T>& msg_strm, uint64_t len,
hls::stream<hash_T>&
hash_strm);
}

Description

• Computes the SHA-256 hash value of the input message.

• Message length is specified in number of bytes.

• Serval alternative output stream widths are provided.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 519Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=519

Parameters

Table 78: hls_alg::sha256 Parameters

Parameter Description
msg_T Input stream data type.

hash_T Output stream data type.

Arguments

Table 79: hls_alg::sha256 Arguments

Argument Description
msg_strm Input message stream.

len Length of message in byte.

hash_strm Output hash stream.
The caller should read this stream 32 or 8 times respectively
to obtain a full 256-bit message when hash_T is unsigned
char or unsigned int.

Return Values

• Not applicable (void function)

Supported Data Types

• msg_T: unsigned char.

• hash_T: unsigned char, unsigned int and ap_uint<256>.

Input Data Assumptions

• It is assumed that msg_strm contains enough data for len bytes, otherwise the function will
block.

hls_alg::sort

Synopsis

namespace hls_alg {
template <typename T, uint64_t len>
void sort(hls::stream<T>& input, hls::stream<T>& output);
}

Description

• Sort input vector in hls::stream form.

• Length of vector is template parameter len.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 520Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=520

Parameters

Table 80: hls_alg::sort

Parameter Description
T Stream data type.

len Length of vector in stream form, should be power of 2.

Arguments

Table 81: hls_alg::sort

Argument Description
input Input stream

output Output stream

Return Values

• Not applicable (void function)

Supported Data Types

• T: Class with definition of the operator <

• len: Power of 2.

C Arbitrary Precision Types
This section discusses:

• The Arbitrary Precision (AP) types provided for C language designs by Vivado HLS.

• The associated functions for C int#w types.

Compiling [u]int#W Types
To use the [u]int#W types, you must include the ap_cint.h header file in all source files that
reference [u]int#W variables.

When compiling software models that use these types, it may be necessary to specify the
location of the Vivado HLS header files, for example, by adding the “-I/<HLS_HOME>/
include” option for gcc compilation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 521Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=521

Declaring/Defining [u]int#W Variables
There are separate signed and unsigned C types, respectively:

• int#W

• uint#W

where

• #W specifies the total width of the variable being declared.

User-defined types may be created with the C/C++ ‘typedef’ statement as shown in the
following examples:

include "ap_cint.h" // use [u]int#W types

typedef uint128 uint128_t; // 128-bit user defined type
int96 my_wide_var; // a global variable declaration

The maximum width allowed is 1024 bits.

Initialization and Assignment from Constants
(Literals)
A [u]int#W variable can be initialized with the same integer constants that are supported for
the native integer data types. The constants are zero or sign extended to the full width of the
[u]int#W variable.

#include "ap_cint.h"

uint15 a = 0;
uint52 b = 1234567890U;
uint52 c = 0o12345670UL;
uint96 d = 0x123456789ABCDEFULL;

For bit-widths greater than 64-bit, the following functions can be used.

apint_string2bits()

This section also discusses use of the related functions:

• apint_string2bits_bin()

• apint_string2bits_oct()

• apint_string2bits_hex()

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 522Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=522

These functions convert a constant character string of digits, specified within the constraints of
the radix (decimal, binary, octal, hexadecimal), into the corresponding value with the given bit-
width N. For any radix, the number can be preceded with the minus sign to indicate a negative
value.

int#W apint_string2bits[_radix](const char*, int N)

This is used to construct integer constants with values that are larger than those already
permitted by the C language. While smaller values also work, they are easier to specify with
existing C language constant value constructs.

#include <stdio.h>
#include "ap_cint.h"

int128 a;

// Set a to the value hex 00000000000000000123456789ABCDF0
a = apint_string2bits_hex(“-123456789ABCDEF”,128);

Values can also be assigned directly from a character string.

apint_vstring2bits()

This function converts a character string of digits, specified within the constraints of the
hexadecimal radix, into the corresponding value with the given bit-width N. The number can be
preceded with the minus sign to indicate a negative value.

This is used to construct integer constants with values that are larger than those already
permitted by the C language. The function is typically used in a test bench to read information
from a file.

Given file test.dat contains the following data:

123456789ABCDEF
-123456789ABCDEF
-5

The function, used in the test bench, supplies the following values:

#include <stdio.h>
#include "ap_cint.h"

typedef data_t;

int128 test (
 int128 t a
) {
 return a+1;
}

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 523Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=523

int main () {
 FILE *fp;
 char vstring[33];

 fp = fopen(test.dat,r);

 while (fscanf(fp,%s,vstring)==1) {

 // Supply function “test” with the following values
 // 00000000000000000123456789ABCDF0
 // FFFFFFFFFFFFFFFFFEDCBA9876543212
 // FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC

 test(apint_vstring2bits_hex(vstring,128));
 printf(\n);
 }

 fclose(fp);
 return 0;
}

Support for Console I/O (Printing)
A [u]int#W variable can be printed with the same conversion specifiers that are supported for
the native integer data types. Only the bits that fit according to the conversion specifier are
printed:

#include "ap_cint.h"

uint164 c = 0x123456789ABCDEFULL;

printf(d%40d\n,c); // Signed integer in decimal format
// d -1985229329
printf(hd%40hd\n,c); // Short integer
// hd -12817
printf(ld%40ld\n,c); // Long integer
// ld 81985529216486895
printf(lld%40lld\n,c); // Long long integer
// lld 81985529216486895

printf(u%40u\n,c); // Unsigned integer in decimal format
// u 2309737967
printf(hu%40hu\n,c);
// hu 52719
printf(lu%40lu\n,c);
// lu 81985529216486895
printf(llu%40llu\n,c);
// llu 81985529216486895

printf(o%40o\n,c); // Unsigned integer in octal format
// o 21152746757
printf(ho%40ho\n,c);
// ho 146757
printf(lo%40lo\n,c);
// lo 4432126361152746757
printf(llo%40llo\n,c);
// llo 4432126361152746757

printf(x%40x\n,c); // Unsigned integer in hexadecimal format [0-9a-f]

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 524Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=524

// x 89abcdef
printf(hx%40hx\n,c);
// hx cdef
printf(lx%40lx\n,c);
// lx 123456789abcdef
printf(llx%40llx\n,c);
// llx 123456789abcdef

printf(X%40X\n,c); // Unsigned integer in hexadecimal format [0-9A-F]
// X 89ABCDEF
}

As with initialization and assignment to [u]int#W variables, features support printing values
that require more than 64 bits to represent.

apint_print()

This is used to print integers with values that are larger than those already permitted by the C
language. This function prints a value to stdout, interpreted according to the radix (2, 8, 10, 16).

void apint_print(int#N value, int radix)

The following example shows the results when apint_printf() is used:

#include <stdio.h>
#include "ap_cint.h"

int65 Var1 = 44;

apint_print(Var1,2);
//000101100
apint_print(Var1,8); // 0000000000000000000054
apint_print(Var1,10); // 44
apint_print(Var1,16); // 0000000000000002C

apint_fprint()

This is used to print integers with values that are bigger than those already permitted by the C
language. This function prints a value to a file, interpreted according to the radix (2, 8, 10, 16).

void apint_fprint(FILE* file, int#N value, int radix)

Expressions Involving [u]int#W types
Variables of [u]int#W types may generally be used freely in expressions involving any C
operators. Some behaviors may seem unexpected and require detailed explanation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 525Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=525

Zero- and Sign-Extension on Assignment from Narrower to Wider Variables

When assigning the value of a narrower bit-width signed variable to a wider one, the value is
sign-extended to the width of the destination variable, regardless of its signedness.

Similarly, an unsigned source variable is zero-extended before assignment.

Explicit casting of the source variable might be necessary to ensure expected behavior on
assignment.

Truncation on Assignment of Wider to Narrower Variables

Assigning a wider source variables value to a narrower one leads to truncation of the value. All
bits beyond the most significant bit (MSB) position of the destination variable are lost.

There is no special handling of the sign information during truncation, which may lead to
unexpected behavior. Explicit casting may help avoid this unexpected behavior.

Binary Arithmetic Operators

In general, any valid operation that may be done on a native C integer data type is supported for
[u]int#w types.

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision
arithmetic. All of the following operators take either two operands of [u]int#W or one
[u]int#W type and one C/C++ fundamental integer data type, for example, char, short, int.

The width and signedness of the resulting value is determined by the width and signedness of
the operands, before sign-extension, zero-padding or truncation are applied based on the width
of the destination variable (or expression). Details of the return value are described for each
operator.

When expressions contain a mix of ap_[u]int and C/C++ fundamental integer types, the C++
types assume the following widths:

• char: 8-bits

• short: 16-bits

• int: 32-bits

• long: 32-bits

• long long: 64-bits

Addition

[u]int#W::RType [u]int#W::operator + ([u]int#W op)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 526Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=526

Produces the sum of two ap_[u]int or one ap_[u]int and a C/C++ integer type.

The width of the sum value is:

• One bit more than the wider of the two operands

• Two bits if and only if the wider is unsigned and the narrower is signed

The sum is treated as signed if either (or both) of the operands is of a signed type.

Subtraction

[u]int#W::RType [u]int#W::operator - ([u]int#W op)

• Produces the difference of two integers.

• The width of the difference value is:

○ One bit more than the wider of the two operands

○ Two bits if and only if the wider is unsigned and the narrower signed

• This applies before assignment, at which point it is sign-extended, zero-padded, or truncated
based on the width of the destination variable.

• The difference is treated as signed regardless of the signedness of the operands.

Multiplication

[u]int#W::RType [u]int#W::operator * ([u]int#W op)

• Returns the product of two integer values.

• The width of the product is the sum of the widths of the operands.

• The product is treated as a signed type if either of the operands is of a signed type.

Division

[u]int#W::RType [u]int#W::operator / ([u]int#W op)

• Returns the quotient of two integer values.

• The width of the quotient is the width of the dividend if the divisor is an unsigned type;
otherwise it is the width of the dividend plus one.

• The quotient is treated as a signed type if either of the operands is of a signed type.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 527Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=527

Modulus

[u]int#W::RType [u]int#W::operator % ([u]int#W op)

• Returns the modulus, or remainder of integer division, for two integer values.

• The width of the modulus is the minimum of the widths of the operands, if they are both of
the same signedness; if the divisor is an unsigned type and the dividend is signed then the
width is that of the divisor plus one.

• The quotient is treated as having the same signedness as the dividend.

Bitwise Logical Operators

The bitwise logical operators all return a value with a width that is the maximum of the widths of
the two operands. They are treated as unsigned if and only if both operands are unsigned.
Otherwise it is of a signed type.

Sign-extension (or zero-padding) may occur, based on the signedness of the expression, not the
destination variable.

Bitwise OR

[u]int#W::RType [u]int#W::operator | ([u]int#W op)

Returns the bitwise OR of the two operands.

Bitwise AND

[u]int#W::RType [u]int#W::operator & ([u]int#W op)

Returns the bitwise AND of the two operands.

Bitwise XOR

[u]int#W::RType [u]int#W::operator ^ ([u]int#W op)

Returns the bitwise XOR of the two operands.

Shift Operators

Each shift operator comes in two versions, one for unsigned right-hand side (RHS) operands and
one for signed RHS.

A negative value supplied to the signed RHS versions reverses the shift operations direction, that
is, a shift by the absolute value of the RHS operand in the opposite direction occurs.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 528Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=528

The shift operators return a value with the same width as the left-hand side (LHS) operand. As
with C/C++, if the LHS operand of a shift-right is a signed type, the sign bit is copied into the
most significant bit positions, maintaining the sign of the LHS operand.

Unsigned Integer Shift Right

[u]int#W [u]int#W::operator >>(ap_uint<int_W2> op)

Integer Shift Right

[u]int#W [u]int#W::operator >>(ap_int<int_W2> op)

Unsigned Integer Shift Left

[u]int#W [u]int#W::operator <<(ap_uint<int_W2> op)

Integer Shift Left

[u]int#W [u]int#W::operator <<(ap_int<int_W2> op)

CAUTION! When assigning the result of a shift-left operator to a wider destination variable, some (or all)
information may be lost. Xilinx recommends that you explicitly cast the shift expression to the destination
type to avoid unexpected behavior.

Compound Assignment Operators

Vivado HLS supports compound assignment operators:

• *=

• /=

• %=

• +=

• -=

• <<=

• >>=

• &=

• ^=

• =

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 529Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=529

The RHS expression is first evaluated then supplied as the RHS operand to the base operator.
The result is assigned back to the LHS variable. The expression sizing, signedness, and potential
sign-extension or truncation rules apply as discussed above for the relevant operations.

Relational Operators

Vivado HLS supports all relational operators. They return a Boolean value based on the result of
the comparison. Variables of ap_[u]int types may be compared to C/C++ fundamental integer
types with these operators.

Equality

bool [u]int#W::operator == ([u]int#W op)

Inequality

bool [u]int#W::operator != ([u]int#W op)

Less than

bool [u]int#W::operator < ([u]int#W op)

Greater than

bool [u]int#W::operator > ([u]int#W op)

Less than or equal to

bool [u]int#W::operator <= ([u]int#W op)

Greater than or equal to

bool [u]int#W::operator >= ([u]int#W op)

Bit-Level Operation: Support Function
The [u]int#W types allow variables to be expressed with bit-level accuracy. It is often desirable
with hardware algorithms to perform bit-level operations. Vivado HLS provides the following
functions to enable this.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 530Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=530

Bit Manipulation

The following methods are included to facilitate common bit-level operations on the value stored
in ap_[u]int type variables.

Length

apint_bitwidthof()

int apint_bitwidthof(type_or_value)

Returns an integer value that provides the number of bits in an arbitrary precision integer value.
It can be used with a type or a value.

int5 Var1, Res1;

Var1= -1;
Res1 = apint_bitwidthof(Var1); // Res1 is assigned 5
Res1 = apint_bitwidthof(int7); // Res1 is assigned 7

Concatenation

apint_concatenate()

int#(N+M) apint_concatenate(int#N first, int#M second)

Concatenates two [u]int#W variables. The width of the returned value is the sum of the widths
of the operands.

The High and Low arguments are placed in the higher and lower order bits of the result
respectively.

RECOMMENDED: To avoid unexpected results, explicitly cast C native types (including integer literals) to
an appropriate [u]int#W  type before concatenating.

Bit Selection

apint_get_bit()

int apint_get_bit(int#N source, int index)

Selects one bit from an arbitrary precision integer value and returns it.

The source must be an [u]int#W type. The index argument must be an int value. It specifies
the index of the bit to select. The least significant bit has index 0. The highest permissible index is
one less than the bit-width of this [u]int#W.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=531

Set Bit Value

apint_set_bit()

int#N apint_set_bit(int#N source, int index, int value)

• Sets the specified bit, index, of the [u]int#W instance source to the value specified (zero or
one).

Range Selection

apint_get_range()

int#N apint_get_range(int#N source, int high, int low)

• Returns the value represented by the range of bits specified by the arguments.

• The High argument specifies the most significant bit (MSB) position of the range.

• THE Low argument specifies the least significant bit (LSB) position of the range.

• The LSB of the source variable is in position 0. If the High argument has a value less than
Low, the bits are returned in reverse order.

Set Range Value

apint_set_range()

int#N apint_set_range(int#N source, int high, int low, int#M part)

• Sets the source specified bits between High and Low to the value of the part.

Bit Reduction

AND Reduce

apint_and_reduce()

int apint_and_reduce(int#N value)

• Applies the AND operation on all bits in the value.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 532Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=532

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

int5 Var1, Res1;

Var1= -1;
Res1 = apint_and_reduce(Var1); // Res1 is assigned 1

Var1= 1;
Res1 = apint_and_reduce(Var1); // Res1 is assigned 0

• Equivalent to comparing to -1. It returns a 1 if it matches. It returns a 0 if it does not match.
Another interpretation is to check that all bits are one.

OR Reduce

apint_or_reduce()

int apint_or_reduce(int#N value)

• Applies the OR operation on all bits in the value.

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

• Equivalent to comparing to 0, and return a 0 if it matches, 1 otherwise.

int5 Var1, Res1;

Var1= 1;
Res1 = apint_or_reduce(Var1); // Res1 is assigned 1

Var1= 0;
Res1 = apint_or_reduce(Var1); // Res1 is assigned 0

XOR Reduce

apint_xor_reduce()

int apint_xor_reduce(int#N value)

• Applies the XOR operation on all bits in the value.

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

• Equivalent to counting the ones in the word. This operation:

○ Returns 0 if there is an even number.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 533Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=533

○ Returns 1 if there is an odd number (even parity).

int5 Var1, Res1;

Var1= 0;
Res1 = apint_xor_reduce(Var1); // Res1 is assigned 0

Var1= 1;
Res1 = apint_xor_reduce(Var1); // Res1 is assigned 1

NAND Reduce

apint_nand_reduce()

int apint_nand_reduce(int#N value)

• Applies the NAND operation on all bits in the value.

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

• Equivalent to comparing this value against -1 (all ones) and returning false if it matches, true
otherwise.

int5 Var1, Res1;

Var1= 1;
Res1 = apint_nand_reduce(Var1); // Res1 is assigned 1

Var1= -1;
Res1 = apint_nand_reduce(Var1); // Res1 is assigned 0

NOR Reduce

apint_nor_reduce()

int apint_nor_reduce(int#N value)

• Applies the NOR operation on all bits in the value.

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

• Equivalent to comparing this value against 0 (all zeros) and returning true if it matches, false
otherwise.

int5 Var1, Res1;

Var1= 0;
Res1 = apint_nor_reduce(Var1); // Res1 is assigned 1

Var1= 1;
Res1 = apint_nor_reduce(Var1); // Res1 is assigned 0

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 534Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=534

XNOR Reduce

apint_xnor_reduce()

int apint_xnor_reduce(int#N value)

• Applies the XNOR operation on all bits in the value.

• Returns the resulting single bit as an integer value (which can be cast onto a bool).

• Equivalent to counting the ones in the word.

• This operation:

○ Returns 0 if there is an odd number.

○ Returns 1 if there is an even number (odd parity).

int5 Var1, Res1;

Var1= 0;
Res1 = apint_xnor_reduce(Var1); // Res1 is assigned 1

Var1= 1;
Res1 = apint_xnor_reduce(Var1); // Res1 is assigned 0

C++ Arbitrary Precision Types
Vivado HLS provides a C++ template class, ap_[u]int<>, that implements arbitrary precision
(or bit-accurate) integer data types with consistent, bit-accurate behavior between software and
hardware modeling.

This class provides all arithmetic, bitwise, logical and relational operators allowed for native C
integer types. In addition, this class provides methods to handle some useful hardware
operations, such as allowing initialization and conversion of variables of widths greater than 64
bits. Details for all operators and class methods are discussed below.

Compiling ap_[u]int<> Types
To use the ap_[u]int<> classes, you must include the ap_int.h header file in all source files
that reference ap_[u]int<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vivado HLS header files, for example by adding the -I/<HLS_HOME>/include
option for g++ compilation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 535Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=535

Declaring/Defining ap_[u] Variables
There are separate signed and unsigned classes:

• ap_int<int_W> (signed)

• ap_uint<int_W> (unsigned)

The template parameter int_W specifies the total width of the variable being declared.

User-defined types may be created with the C/C++ typedef statement as shown in the
following examples:

include "ap_int.h"// use ap_[u]fixed<> types

typedef ap_uint<128> uint128_t; // 128-bit user defined type
ap_int<96> my_wide_var; // a global variable declaration

The default maximum width allowed is 1024 bits. This default may be overridden by defining the
macro AP_INT_MAX_W with a positive integer value less than or equal to 32768 before inclusion
of the ap_int.h header file.

CAUTION! Setting the value of AP_INT_MAX_W  too High may cause slow software compile and run
times.

Following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_int.h"

ap_int<4096> very_wide_var;

Initialization and Assignment from Constants
(Literals)
The class constructor and assignment operator overloads, allows initialization of and assignment
to ap_[u]fixed<> variables using standard C/C++ integer literals.

This method of assigning values to ap_[u]fixed<> variables is subject to the limitations of C+
+ and the system upon which the software will run. This typically leads to a 64-bit limit on
integer literals (for example, for those LL or ULL suffixes).

To allow assignment of values wider than 64-bits, the ap_[u]fixed<> classes provide
constructors that allow initialization from a string of arbitrary length (less than or equal to the
width of the variable).

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 536Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=536

By default, the string provided is interpreted as a hexadecimal value as long as it contains only
valid hexadecimal digits (that is, 0-9 and a-f). To assign a value from such a string, an explicit C++
style cast of the string to the appropriate type must be made.

Following are examples of initialization and assignments, including for values greater than 64-bit,
are:

ap_int<42> a_42b_var(-1424692392255LL); // long long decimal format
a_42b_var = 0x14BB648B13FLL; // hexadecimal format

a_42b_var = -1; // negative int literal sign-extended to full width

ap_uint<96> wide_var(“76543210fedcba9876543210”, 16); // Greater than 64-bit
wide_var = ap_int<96>(“0123456789abcdef01234567”, 16);

Note: To avoid unexpected behavior during co-simulation, do not initialize ap_uint<N> a ={0}.

The ap_[u]<> constructor may be explicitly instructed to interpret the string as representing
the number in radix 2, 8, 10, or 16 formats. This is accomplished by adding the appropriate radix
value as a second parameter to the constructor call.

A compilation error occurs if the string literal contains any characters that are invalid as digits for
the radix specified.

The following examples use different radix formats:

ap_int<6> a_6bit_var(“101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“40”, 8); // 32d in octal format
a_6bit_var = ap_int<6>(“55”, 10); // decimal format
a_6bit_var = ap_int<6>(“2A”, 16); // 42d in hexadecimal format

a_6bit_var = ap_int<6>(“42”, 2); // COMPILE-TIME ERROR! “42” is not binary

The radix of the number encoded in the string can also be inferred by the constructor, when it is
prefixed with a zero (0) followed by one of the following characters: “b”, “o” or “x”. The prefixes
“0b”, “0o” and “0x” correspond to binary, octal and hexadecimal formats respectively.

The following examples use alternate initializer string formats:

ap_int<6> a_6bit_var(“0b101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“0o40”, 8); // 32d in octal format
a_6bit_var = ap_int<6>(“0x2A”, 16); // 42d in hexidecimal format

a_6bit_var = ap_int<6>(“0b42”, 2); // COMPILE-TIME ERROR! “42” is not binary

If the bit-width is greater than 53-bits, the ap_[u]fixed value must be initialized with a string,
for example:

 ap_ufixed<72,10> Val(“2460508560057040035.375”);

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 537Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=537

Support for Console I/O (Printing)
As with initialization and assignment to ap_[u]fixed<> variables, Vivado HLS supports
printing values that require more than 64-bits to represent.

Using the C++ Standard Output Stream

The easiest way to output any value stored in an ap_[u]int variable is to use the C++ standard
output stream:

std::cout (#include <iostream> or <iostream.h>)

The stream insertion operator (<<) is overloaded to correctly output the full range of values
possible for any given ap_[u]fixed variable. The following stream manipulators are also
supported:

• dec (decimal)

• hex (hexadecimal)

• oct (octal)

These allow formatting of the value as indicated.

The following example uses cout to print values:

#include <iostream.h>
// Alternative: #include <iostream>

ap_ufixed<72> Val(“10fedcba9876543210”);

cout << Val << endl; // Yields: “313512663723845890576”
cout << hex << val << endl; // Yields: “10fedcba9876543210”
cout << oct << val << endl; // Yields: “41773345651416625031020”

Using the Standard C Library

You can also use the standard C library (#include <stdio.h>) to print out values larger than
64-bits:

1. Convert the value to a C++ std::string using the ap_[u]fixed classes method
to_string().

2. Convert the result to a null-terminated C character string using the std::string class
method c_str().

Optional Argument One (Specifying the Radix)

You can pass the ap[u]int::to_string() method an optional argument specifying the radix
of the numerical format desired. The valid radix argument values are:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 538Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=538

• 2 (binary) (default)

• 8 (octal)

• 10 (decimal)

• 16 (hexadecimal)

Optional Argument Two (Printing as Signed Values)

A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean. The default value is false,
causing the non-decimal formats to be printed as unsigned values.

The following examples use printf to print values:

ap_int<72> Val(“80fedcba9876543210”);

printf(“%s\n”, Val.to_string().c_str()); // => “80FEDCBA9876543210”
printf(“%s\n”, Val.to_string(10).c_str()); // => “-2342818482890329542128”
printf(“%s\n”, Val.to_string(8).c_str()); // => “401773345651416625031020”
printf(“%s\n”, Val.to_string(16, true).c_str()); // => “-7F0123456789ABCDF0”

Expressions Involving ap_[u]<> types
Variables of ap_[u]<> types may generally be used freely in expressions involving C/C++
operators. Some behaviors may be unexpected. These are discussed in detail below.

Zero- and Sign-Extension on Assignment From Narrower to Wider Variables

When assigning the value of a narrower bit-width signed (ap_int<>) variable to a wider one,
the value is sign-extended to the width of the destination variable, regardless of its signedness.

Similarly, an unsigned source variable is zero-extended before assignment.

Explicit casting of the source variable may be necessary to ensure expected behavior on
assignment. See the following example:

ap_uint<10> Result;

ap_int<7> Val1 = 0x7f;
ap_uint<6> Val2 = 0x3f;

Result = Val1; // Yields: 0x3ff (sign-extended)
Result = Val2; // Yields: 0x03f (zero-padded)

Result = ap_uint<7>(Val1); // Yields: 0x07f (zero-padded)
Result = ap_int<6>(Val2); // Yields: 0x3ff (sign-extended)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 539Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=539

Truncation on Assignment of Wider to Narrower Variables

Assigning the value of a wider source variable to a narrower one leads to truncation of the value.
All bits beyond the most significant bit (MSB) position of the destination variable are lost.

There is no special handling of the sign information during truncation. This may lead to
unexpected behavior. Explicit casting may help avoid this unexpected behavior.

Class Methods and Operators
The ap_[u]int types do not support implicit conversion from wide ap_[u]int (>64bits) to
builtin C/C++ integer types. For example, the following code example return s1, because the
implicit cast from ap_int[65] to bool in the if-statement returns a 0.

 bool nonzero(ap_uint<65> data) {
 return data; // This leads to implicit truncation to 64b int
 }

 int main() {
 if (nonzero((ap_uint<65>)1 << 64)) {
 return 0;
 }
 printf(FAIL\n);
 return 1;
 }

To convert wide ap_[u]int types to built-in integers, use the explicit conversion functions
included with the ap_[u]int types:

• to_int()

• to_long()

• to_bool()

In general, any valid operation that can be done on a native C/C++ integer data type is supported
using operator overloading for ap_[u]int types.

In addition to these overloaded operators, some class specific operators and methods are
included to ease bit-level operations.

Binary Arithmetic Operators

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision
arithmetic. These operators take either:

• Two operands of ap_[u]int, or

• One ap_[u]int type and one C/C++ fundamental integer data type

For example:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 540Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=540

• char

• short

• int

The width and signedness of the resulting value is determined by the width and signedness of
the operands, before sign-extension, zero-padding or truncation are applied based on the width
of the destination variable (or expression). Details of the return value are described for each
operator.

When expressions contain a mix of ap_[u]int and C/C++ fundamental integer types, the C++
types assume the following widths:

• char (8-bits)

• short (16-bits)

• int (32-bits)

• long (32-bits)

• long long (64-bits)

Addition

ap_(u)int::RType ap_(u)int::operator + (ap_(u)int op)

Returns the sum of:

• Two ap_[u]int, or

• One ap_[u]int and a C/C++ integer type

The width of the sum value is:

• One bit more than the wider of the two operands, or

• Two bits if and only if the wider is unsigned and the narrower is signed

The sum is treated as signed if either (or both) of the operands is of a signed type.

Subtraction

ap_(u)int::RType ap_(u)int::operator - (ap_(u)int op)

Returns the difference of two integers.

The width of the difference value is:

• One bit more than the wider of the two operands, or

• Two bits if and only if the wider is unsigned and the narrower signed

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 541Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=541

This is true before assignment, at which point it is sign-extended, zero-padded, or truncated
based on the width of the destination variable.

The difference is treated as signed regardless of the signedness of the operands.

Multiplication

ap_(u)int::RType ap_(u)int::operator * (ap_(u)int op)

Returns the product of two integer values.

The width of the product is the sum of the widths of the operands.

The product is treated as a signed type if either of the operands is of a signed type.

Division

ap_(u)int::RType ap_(u)int::operator / (ap_(u)int op)

Returns the quotient of two integer values.

The width of the quotient is the width of the dividend if the divisor is an unsigned type.
Otherwise, it is the width of the dividend plus one.

The quotient is treated as a signed type if either of the operands is of a signed type.

Modulus

ap_(u)int::RType ap_(u)int::operator % (ap_(u)int op)

Returns the modulus, or remainder of integer division, for two integer values.

The width of the modulus is the minimum of the widths of the operands, if they are both of the
same signedness.

If the divisor is an unsigned type and the dividend is signed, then the width is that of the divisor
plus one.

The quotient is treated as having the same signedness as the dividend.

IMPORTANT! Vivado HLS synthesis of the modulus (%) operator will lead to lead to instantiation of
appropriately parameterized Xilinx LogiCORE divider cores in the generated RTL.

Following are examples of arithmetic operators:

ap_uint<71> Rslt;

ap_uint<42> Val1 = 5;
ap_int<23> Val2 = -8;

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 542Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=542

Rslt = Val1 + Val2; // Yields: -3 (43 bits) sign-extended to 71 bits
Rslt = Val1 - Val2; // Yields: +3 sign extended to 71 bits
Rslt = Val1 * Val2; // Yields: -40 (65 bits) sign extended to 71 bits
Rslt = 50 / Val2; // Yields: -6 (33 bits) sign extended to 71 bits
Rslt = 50 % Val2; // Yields: +2 (23 bits) sign extended to 71 bits

Bitwise Logical Operators

The bitwise logical operators all return a value with a width that is the maximum of the widths of
the two operands. It is treated as unsigned if and only if both operands are unsigned. Otherwise,
it is of a signed type.

Sign-extension (or zero-padding) may occur, based on the signedness of the expression, not the
destination variable.

Bitwise OR

ap_(u)int::RType ap_(u)int::operator | (ap_(u)int op)

Returns the bitwise OR of the two operands.

Bitwise AND

ap_(u)int::RType ap_(u)int::operator & (ap_(u)int op)

Returns the bitwise AND of the two operands.

Bitwise XOR

ap_(u)int::RType ap_(u)int::operator ^ (ap_(u)int op)

Returns the bitwise XOR of the two operands.

Unary Operators

Addition

ap_(u)int ap_(u)int::operator + ()

Returns the self copy of the ap_[u]int operand.

Subtraction

ap_(u)int::RType ap_(u)int::operator - ()

Returns the following:

• The negated value of the operand with the same width if it is a signed type, or

• Its width plus one if it is unsigned.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 543Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=543

The return value is always a signed type.

Bitwise Inverse

ap_(u)int::RType ap_(u)int::operator ~ ()

Returns the bitwise-NOT of the operand with the same width and signedness.

Logical Invert

bool ap_(u)int::operator ! ()

Returns a Boolean false value if and only if the operand is not equal to zero (0).

Returns a Boolean true value if the operand is equal to zero (0).

Ternary Operators

When you use the ternary operator with the standard C int type, you must explicitly cast from
one type to the other to ensure that both results have the same type. For example:

// Integer type is cast to ap_int type
ap_int<32> testc3(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?ap_int<32>(a):b;
}
// ap_int type is cast to an integer type
ap_int<32> testc4(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?a+1:(int)b;
}
// Integer type is cast to ap_int type
ap_int<32> testc5(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?ap_int<33>(a):b+1;
}

Shift Operators

Each shift operator comes in two versions:

• One version for unsigned right-hand side (RHS) operands

• One version for signed right-hand side (RHS) operands

A negative value supplied to the signed RHS versions reverses the shift operations direction.
That is, a shift by the absolute value of the RHS operand in the opposite direction occurs.

The shift operators return a value with the same width as the left-hand side (LHS) operand. As
with C/C++, if the LHS operand of a shift-right is a signed type, the sign bit is copied into the
most significant bit positions, maintaining the sign of the LHS operand.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 544Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=544

Unsigned Integer Shift Right

ap_(u)int ap_(u)int::operator << (ap_uint<int_W2> op)

Integer Shift Right

ap_(u)int ap_(u)int::operator << (ap_int<int_W2> op)

Unsigned Integer Shift Left

ap_(u)int ap_(u)int::operator >> (ap_uint<int_W2> op)

Integer Shift Left

ap_(u)int ap_(u)int::operator >> (ap_int<int_W2> op)

CAUTION! When assigning the result of a shift-left operator to a wider destination variable, some or all
information may be lost. Xilinx recommends that you explicitly cast the shift expression to the destination
type to avoid unexpected behavior.

Following are examples of shift operations:

ap_uint<13> Rslt;

ap_uint<7> Val1 = 0x41;

Rslt = Val1 << 6; // Yields: 0x0040, i.e. msb of Val1 is lost
Rslt = ap_uint<13>(Val1) << 6; // Yields: 0x1040, no info lost

ap_int<7> Val2 = -63;
Rslt = Val2 >> 4; //Yields: 0x1ffc, sign is maintained and extended

Compound Assignment Operators

Vivado HLS supports compound assignment operators:

• *=

• /=

• %=

• +=

• -=

• <<=

• >>=

• &=

• ^=

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 545Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=545

• |=

The RHS expression is first evaluated then supplied as the RHS operand to the base operator, the
result of which is assigned back to the LHS variable. The expression sizing, signedness, and
potential sign-extension or truncation rules apply as discussed above for the relevant operations.

ap_uint<10> Val1 = 630;
ap_int<3> Val2 = -3;
ap_uint<5> Val3 = 27;

Val1 += Val2 - Val3; // Yields: 600 and is equivalent to:

// Val1 = ap_uint<10>(ap_int<11>(Val1) +
// ap_int<11>((ap_int<6>(Val2) -
// ap_int<6>(Val3))));

Increment and Decrement Operators

The increment and decrement operators are provided. All return a value of the same width as the
operand and which is unsigned if and only if both operands are of unsigned types and signed
otherwise.

Pre-Increment

ap_(u)int& ap_(u)int::operator ++ ()

Returns the incremented value of the operand.

Assigns the incremented value to the operand.

Post-Increment

const ap_(u)int ap_(u)int::operator ++ (int)

Returns the value of the operand before assignment of the incremented value to the operand
variable.

Pre-Decrement

ap_(u)int& ap_(u)int::operator -- ()

Returns the decremented value of, as well as assigning the decremented value to, the operand.

Post-Decrement

const ap_(u)int ap_(u)int::operator -- (int)

Returns the value of the operand before assignment of the decremented value to the operand
variable.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 546Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=546

Relational Operators

Vivado HLS supports all relational operators. They return a Boolean value based on the result of
the comparison. You can compare variables of ap_[u]int types to C/C++ fundamental integer
types with these operators.

Equality

bool ap_(u)int::operator == (ap_(u)int op)

Inequality

bool ap_(u)int::operator != (ap_(u)int op)

Less than

bool ap_(u)int::operator < (ap_(u)int op)

Greater than

bool ap_(u)int::operator > (ap_(u)int op)

Less than or equal to

bool ap_(u)int::operator <= (ap_(u)int op)

Greater than or equal to

bool ap_(u)int::operator >= (ap_(u)int op)

Other Class Methods, Operators, and Data Members
The following sections discuss other class methods, operators, and data members.

Bit-Level Operations

The following methods facilitate common bit-level operations on the value stored in ap_[u]int
type variables.

Length

int ap_(u)int::length ()

Returns an integer value providing the total number of bits in the ap_[u]int variable.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 547Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=547

Concatenation

ap_concat_ref ap_(u)int::concat (ap_(u)int low)
ap_concat_ref ap_(u)int::operator , (ap_(u)int high, ap_(u)int low)

Concatenates two ap_[u]int variables, the width of the returned value is the sum of the
widths of the operands.

The High and Low arguments are placed in the higher and lower order bits of the result
respectively; the concat() method places the argument in the lower order bits.

When using the overloaded comma operator, the parentheses are required. The comma operator
version may also appear on the LHS of assignment.

RECOMMENDED: To avoid unexpected results, explicitly cast C/C++ native types (including integer
literals) to an appropriate ap_[u]int  type before concatenating.

ap_uint<10> Rslt;

ap_int<3> Val1 = -3;
ap_int<7> Val2 = 54;

Rslt = (Val2, Val1); // Yields: 0x1B5
Rslt = Val1.concat(Val2); // Yields: 0x2B6
(Val1, Val2) = 0xAB; // Yields: Val1 == 1, Val2 == 43

Bit Selection

ap_bit_ref ap_(u)int::operator [] (int bit)

Selects one bit from an arbitrary precision integer value and returns it.

The returned value is a reference value that can set or clear the corresponding bit in this
ap_[u]int.

The bit argument must be an int value. It specifies the index of the bit to select. The least
significant bit has index 0. The highest permissible index is one less than the bit-width of this
ap_[u]int.

The result type ap_bit_ref represents the reference to one bit of this ap_[u]int instance
specified by bit.

Range Selection

ap_range_ref ap_(u)int::range (unsigned Hi, unsigned Lo)
ap_range_ref ap_(u)int::operator () (unsigned Hi, unsigned Lo)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 548Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=548

Returns the value represented by the range of bits specified by the arguments.

The Hi argument specifies the most significant bit (MSB) position of the range, and Lo specifies
the least significant bit (LSB).

The LSB of the source variable is in position 0. If the Hi argument has a value less than Lo, the
bits are returned in reverse order.

ap_uint<4> Rslt;

ap_uint<8> Val1 = 0x5f;
ap_uint<8> Val2 = 0xaa;

Rslt = Val1.range(3, 0); // Yields: 0xF
Val1(3,0) = Val2(3, 0); // Yields: 0x5A
Val1(3,0) = Val2(4, 1); // Yields: 0x55
Rslt = Val1.range(4, 7); // Yields: 0xA; bit-reversed!

AND reduce

bool ap_(u)int::and_reduce ()

• Applies the AND operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to comparing this value against -1 (all ones) and returning true if it matches,
false otherwise.

OR reduce

bool ap_(u)int::or_reduce ()

• Applies the OR operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to comparing this value against 0 (all zeros) and returning false if it matches,
true otherwise.

XOR reduce

bool ap_(u)int::xor_reduce ()

• Applies the XOR operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to counting the number of 1 bits in this value and returning false if the count is
even or true if the count is odd.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 549Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=549

NAND reduce

bool ap_(u)int::nand_reduce ()

• Applies the NAND operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to comparing this value against -1 (all ones) and returning false if it matches,
true otherwise.

NOR reduce

bool ap_int::nor_reduce ()

• Applies the NOR operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to comparing this value against 0 (all zeros) and returning true if it matches,
false otherwise.

XNOR reduce

bool ap_(u)int::xnor_reduce ()

• Applies the XNOR operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to counting the number of 1 bits in this value and returning true if the count is
even or false if the count is odd.

Bit Reduction Method Examples

ap_uint<8> Val = 0xaa;

bool t = Val.and_reduce(); // Yields: false
t = Val.or_reduce(); // Yields: true
t = Val.xor_reduce(); // Yields: false
t = Val.nand_reduce(); // Yields: true
t = Val.nor_reduce(); // Yields: false
t = Val.xnor_reduce(); // Yields: true

Bit Reverse

void ap_(u)int::reverse ()

Reverses the contents of ap_[u]int instance:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 550Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=550

• The LSB becomes the MSB.

• The MSB becomes the LSB.

Reverse Method Example

ap_uint<8> Val = 0x12;

Val.reverse(); // Yields: 0x48

Test Bit Value

bool ap_(u)int::test (unsigned i)

Checks whether specified bit of ap_(u)int instance is 1.

Returns true if Yes, false if No.

Test Method Example

ap_uint<8> Val = 0x12;
bool t = Val.test(5); // Yields: true

Set Bit Value

void ap_(u)int::set (unsigned i, bool v)
void ap_(u)int::set_bit (unsigned i, bool v)

Sets the specified bit of the ap_(u)int instance to the value of integer V.

Set Bit (to 1)

void ap_(u)int::set (unsigned i)

Sets the specified bit of the ap_(u)int instance to the value 1 (one).

Clear Bit (to 0)

void ap_(u)int:: clear(unsigned i)

Sets the specified bit of the ap_(u)int instance to the value 0 (zero).

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=551

Invert Bit

void ap_(u)int:: invert(unsigned i)

Inverts the bit specified in the function argument of the ap_(u)int instance. The specified bit
becomes 0 if its original value is 1 and vice versa.

Example of bit set, clear and invert bit methods:

ap_uint<8> Val = 0x12;
Val.set(0, 1); // Yields: 0x13
Val.set_bit(4, false); // Yields: 0x03
Val.set(7); // Yields: 0x83
Val.clear(1); // Yields: 0x81
Val.invert(4); // Yields: 0x91

Rotate Right

void ap_(u)int:: rrotate(unsigned n)

Rotates the ap_(u)int instance n places to right.

Rotate Left

void ap_(u)int:: lrotate(unsigned n)

Rotates the ap_(u)int instance n places to left.

ap_uint<8> Val = 0x12;

Val.rrotate(3); // Yields: 0x42
Val.lrotate(6); // Yields: 0x90

Bitwise NOT

void ap_(u)int:: b_not()

• Complements every bit of the ap_(u)int instance.

ap_uint<8> Val = 0x12;

Val.b_not(); // Yields: 0xED

Bitwise NOT Example

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 552Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=552

Test Sign

bool ap_int:: sign()

• Checks whether the ap_(u)int instance is negative.

• Returns true if negative.

• Returns false if positive.

Explicit Conversion Methods

To C/C++ “(u)int”

int ap_(u)int::to_int ()
unsigned ap_(u)int::to_uint ()

• Returns native C/C++ (32-bit on most systems) integers with the value contained in the
ap_[u]int.

• Truncation occurs if the value is greater than can be represented by an [unsigned] int.

To C/C++ 64-bit “(u)int”

long long ap_(u)int::to_int64 ()
unsigned long long ap_(u)int::to_uint64 ()

• Returns native C/C++ 64-bit integers with the value contained in the ap_[u]int.

• Truncation occurs if the value is greater than can be represented by an [unsigned] int.

To C/C++ “double”

double ap_(u)int::to_double ()

• Returns a native C/C++ double 64-bit floating point representation of the value contained in
the ap_[u]int.

• If the ap_[u]int is wider than 53 bits (the number of bits in the mantissa of a double), the
resulting double may not have the exact value expected.

RECOMMENDED: Xilinx recommends that you explicitly call member functions instead of using C-style
cast to convert ap_[u]int  to other data types.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 553Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=553

Sizeof

The standard C++ sizeof() function should not be used with ap_[u]int or other classes or
instance of object. The ap_int<> data type is a class and sizeof returns the storage used by
that class or instance object. sizeof(ap_int<N>) always returns the number of bytes used.
For example:

 sizeof(ap_int<127>)=16
 sizeof(ap_int<128>)=16
 sizeof(ap_int<129>)=24
 sizeof(ap_int<130>)=24

Compile Time Access to Data Type Attributes

The ap_[u]int<> types are provided with a static member that allows the size of the variables
to be determined at compile time. The data type is provided with the static const member
width, which is automatically assigned the width of the data type:

static const int width = _AP_W;

You can use the width data member to extract the data width of an existing ap_[u]int<>
data type to create another ap_[u]int<> data type at compile time. The following example
shows how the size of variable Res is defined as 1-bit greater than variables Val1 and Val2:

// Definition of basic data type
#define INPUT_DATA_WIDTH 8
typedef ap_int<INPUT_DATA_WIDTH> data_t;
// Definition of variables
data_t Val1, Val2;
// Res is automatically sized at compile-time to be 1-bit greater than data
type
data_t
ap_int<data_t::width+1> Res = Val1 + Val2;

This ensures that Vivado HLS correctly models the bit-growth caused by the addition even if you
update the value of INPUT_DATA_WIDTH for data_t.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 554Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=554

C++ Arbitrary Precision Fixed-Point Types
Vivado HLS supports fixed-point types that allow fractional arithmetic to be easily handled. The
advantage of fixed-point arithmetic is shown in the following example.

ap_fixed<11, 6> Var1 = 22.96875; // 11-bit signed word, 5 fractional bits
ap_ufixed<12,11> Var2 = 512.5; // 12-bit word, 1 fractional bit
ap_fixed<16,11> Res1; // 16-bit signed word, 5 fractional bits

Res1 = Var1 + Var2; // Result is 535.46875

Even though Var1 and Var2 have different precisions, the fixed-point type ensures that the
decimal point is correctly aligned before the operation (an addition in this case), is performed.
You are not required to perform any operations in the C code to align the decimal point.

The type used to store the result of any fixed-point arithmetic operation must be large enough
(in both the integer and fractional bits) to store the full result.

If this is not the case, the ap_fixed type performs:

• overflow handling (when the result has more MSBs than the assigned type supports)

• quantization (or rounding, when the result has fewer LSBs than the assigned type supports)

The ap_[u]fixed type provides various options on how the overflow and quantization are
performed. The options are discussed below.

ap_[u]fixed Representation
In ap[u]fixed types, a fixed-point value is represented as a sequence of bits with a specified
position for the binary point.

• Bits to the left of the binary point represent the integer part of the value.

• Bits to the right of the binary point represent the fractional part of the value.

ap_[u]fixed type is defined as follows:

ap_[u]fixed<int W,
 int I,
 ap_q_mode Q,
 ap_o_mode O,
 ap_sat_bits N>;

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 555Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=555

Quantization Modes
Rounding to plus infinity AP_RND
Rounding to zero AP_RND_ZERO
Rounding to minus infinity AP_RND_MIN_INF
Rounding to infinity AP_RND_INF
Convergent rounding AP_RND_CONV
Truncation AP_TRN
Truncation to zero AP_TRN_ZERO

AP_RND

• Round the value to the nearest representable value for the specific ap_[u]fixed type.

ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_RND_ZERO

• Round the value to the nearest representable value.

• Round towards zero.

○ For positive values, delete the redundant bits.

○ For negative values, add the least significant bits to get the nearest representable value.

ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_RND_MIN_INF

• Round the value to the nearest representable value.

• Round towards minus infinity.

○ For positive values, delete the redundant bits.

○ For negative values, add the least significant bits.

ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_INF

• Round the value to the nearest representable value.

• The rounding depends on the least significant bit.

○ For positive values, if the least significant bit is set, round towards plus infinity. Otherwise,
round towards minus infinity.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 556Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=556

○ For negative values, if the least significant bit is set, round towards minus infinity.
Otherwise, round towards plus infinity.

ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_CONV

• Round the value to the nearest representable value.

• The rounding depends on the least significant bit.

○ If least significant bit is set, round towards plus infinity.

○ Otherwise, round towards minus infinity.

ap_fixed<3, 2, AP_RND_CONV, AP_SAT> UAPFixed4 = 0.75; // Yields: 1.0
ap_fixed<3, 2, AP_RND_CONV, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_TRN

• Always round the value towards minus infinity.

ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_TRN_ZERO

Round the value to:

• For positive values, the rounding is the same as mode AP_TRN.

• For negative values, round towards zero.

ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

Overflow Modes
Saturation AP_SAT
Saturation to zero AP_SAT_ZERO
Symmetrical saturation AP_SAT_SYM
Wrap-around AP_WRAP
Sign magnitude wrap-around AP_WRAP_SM

AP_SAT

Saturate the value.

• To the maximum value in case of overflow.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 557Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=557

• To the negative maximum value in case of negative overflow.

ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 7.0
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: -8.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 15.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: 0.0

AP_SAT_ZERO

Force the value to zero in case of overflow, or negative overflow.

ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0
ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0

AP_SAT_SYM

Saturate the value:

• To the maximum value in case of overflow.

• To the minimum value in case of negative overflow.

○ Negative maximum for signed ap_fixed types

○ Zero for unsigned ap_ufixed types

ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 7.0
ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: -7.0
ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 15.0
ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: 0.0

AP_WRAP

Wrap the value around in case of overflow.

ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 31.0; // Yields: -1.0
ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: -3.0
ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 19.0; // Yields: 3.0
ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: 13.0

If the value of N is set to zero (the default overflow mode):

• All MSB bits outside the range are deleted.

• For unsigned numbers. After the maximum it wraps around to zero.

• For signed numbers. After the maximum, it wraps to the minimum values.

If N>0:

• When N > 0, N MSB bits are saturated or set to 1.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 558Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=558

• The sign bit is retained, so positive numbers remain positive and negative numbers remain
negative.

• The bits that are not saturated are copied starting from the LSB side.

AP_WRAP_SM

The value should be sign-magnitude wrapped around.

ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = 19.0; // Yields: -4.0
ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = -19.0; // Yields: 2.0

If the value of N is set to zero (the default overflow mode):

• This mode uses sign magnitude wrapping.

• Sign bit set to the value of the least significant deleted bit.

• If the most significant remaining bit is different from the original MSB, all the remaining bits
are inverted.

• If MSBs are same, the other bits are copied over.

1. Delete redundant MSBs.

2. The new sign bit is the least significant bit of the deleted bits. 0 in this case.

3. Compare the new sign bit with the sign of the new value.

• If different, invert all the numbers. They are different in this case.

If N>0:

• Uses sign magnitude saturation

• N MSBs are saturated to 1.

• Behaves similar to a case in which N = 0, except that positive numbers stay positive and
negative numbers stay negative.

Compiling ap_[u]fixed<> Types
To use the ap_[u]fixed<> classes, you must include the ap_fixed.h header file in all
source files that reference ap_[u]fixed<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vivado HLS header files, for example by adding the “-I/<HLS_HOME>/
include” option for g++ compilation.

Declaring and Defining ap_[u]fixed<> Variables
There are separate signed and unsigned classes:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=559

• ap_fixed<W,I> (signed)

• ap_ufixed<W,I> (unsigned)

You can create user-defined types with the C/C++ typedef statement:

#include "ap_fixed.h" // use ap_[u]fixed<> types

typedef ap_ufixed<128,32> uint128_t; // 128-bit user defined type,
 // 32 integer bits

User-Defined Types Examples

Initialization and Assignment from Constants
(Literals)
You can initialize ap_[u]fixed variable with normal floating point constants of the usual C/C+
+ width:

• 32 bits for type float

• 64 bits for type double

That is, typically, a floating point value that is single precision type or in the form of double
precision.

Note that the value assigned to the fixed-point variable will be limited by the precision of the
constant. Use string initialization as described in Initialization and Assignment from Constants
(Literals) to ensure that all bits of the fixed-point variable are populated according to the
precision described by the string.

#include <ap_fixed.h>

ap_ufixed<30, 15> my15BitInt = 3.1415;
ap_fixed<42, 23> my42BitInt = -1158.987;
ap_ufixed<99, 40> = 287432.0382911;
ap_fixed<36,30> = -0x123.456p-1;

The ap_[u]fixed types do not support initialization if they are used in an array of std::complex
types.

typedef ap_fixed<DIN_W, 1, AP_TRN, AP_SAT> coeff_t; // MUST have IW >= 1
std::complex<coeff_t> twid_rom[REAL_SZ/2] = {{ 1, -0 },{ 0.9,-0.006 }, etc.}

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 560Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=560

The initialization values must first be cast to std::complex:

typedef ap_fixed<DIN_W, 1, AP_TRN, AP_SAT> coeff_t; // MUST have IW >= 1
std::complex<coeff_t> twid_rom[REAL_SZ/2] = {std::complex<coeff_t>(1,
-0),
std::complex<coeff_t>(0.9,-0.006),etc.}

Support for Console I/O (Printing)
As with initialization and assignment to ap_[u]fixed<> variables, Vivado HLS supports
printing values that require more than 64 bits to represent.

The easiest way to output any value stored in an ap_[u]fixed variable is to use the C++
standard output stream, std::cout (#include <iostream> or <iostream.h>). The
stream insertion operator, “<<“, is overloaded to correctly output the full range of values possible
for any given ap_[u]fixed variable. The following stream manipulators are also supported,
allowing formatting of the value as shown.

• dec (decimal)

• hex (hexadecimal)

• oct (octal)

#include <iostream.h>
// Alternative: #include <iostream>

ap_fixed<6,3, AP_RND, AP_WRAP> Val = 3.25;

cout << Val << endl; // Yields: 3.25

Using the Standard C Library

You can also use the standard C library (#include <stdio.h>) to print out values larger than
64-bits:

1. Convert the value to a C++ std::string using the ap_[u]fixed classes method
to_string().

2. Convert the result to a null-terminated C character string using the std::string class
method c_str().

Optional Argument One (Specifying the Radix)

You can pass the ap[u]int::to_string() method an optional argument specifying the radix
of the numerical format desired. The valid radix argument values are:

• 2 (binary)

• 8 (octal

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 561Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=561

• 10 (decimal)

• 16 (hexadecimal) (default)

Optional Argument Two (Printing as Signed Values)

A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean. The default value is false,
causing the non-decimal formats to be printed as unsigned values.

ap_fixed<6,3, AP_RND, AP_WRAP> Val = 3.25;

printf("%s \n", in2.to_string().c_str()); // Yields: 0b011.010
printf("%s \n", in2.to_string(10).c_str()); //Yields: 3.25

The ap_[u]fixed types are supported by the following C++ manipulator functions:

• setprecision

• setw

• setfill

The setprecision manipulator sets the decimal precision to be used. It takes one parameter f as
the value of decimal precision, where n specifies the maximum number of meaningful digits to
display in total (counting both those before and those after the decimal point).

The default value of f is 6, which is consistent with native C float type.

ap_fixed<64, 32> f =3.14159;
cout << setprecision (5) << f << endl;
cout << setprecision (9) << f << endl;
f = 123456;
cout << setprecision (5) << f << endl;

The example above displays the following results where the printed results are rounded when the
actual precision exceeds the specified precision:

 3.1416
 3.14159
 1.2346e+05

The setw manipulator:

• Sets the number of characters to be used for the field width.

• Takes one parameter w as the value of the width

where

○ w determines the minimum number of characters to be written in some output
representation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 562Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=562

If the standard width of the representation is shorter than the field width, the representation is
padded with fill characters. Fill characters are controlled by the setfill manipulator which takes
one parameter f as the padding character.

For example, given:

 ap_fixed<65,32> aa = 123456;
 int precision = 5;
 cout<<setprecision(precision)<<setw(13)<<setfill('T')<<a<<endl;

The output is:

 TTT1.2346e+05

Expressions Involving ap_[u]fixed<> types
Arbitrary precision fixed-point values can participate in expressions that use any operators
supported by C/C++. After an arbitrary precision fixed-point type or variable is defined, their
usage is the same as for any floating point type or variable in the C/C++ languages.

Observe the following caveats:

• Zero and Sign Extensions

All values of smaller bit-width are zero or sign-extended depending on the sign of the source
value. You may need to insert casts to obtain alternative signs when assigning smaller bit-
widths to larger.

• Truncations

Truncation occurs when you assign an arbitrary precision fixed-point of larger bit-width than
the destination variable.

Class Methods, Operators, and Data Members
In general, any valid operation that can be done on a native C/C++ integer data type is supported
(using operator overloading) for ap_[u]fixed types. In addition to these overloaded operators,
some class specific operators and methods are included to ease bit-level operations.

Binary Arithmetic Operators

Addition

ap_[u]fixed::RType ap_[u]fixed::operator + (ap_[u]fixed op)

Adds an arbitrary precision fixed-point with a given operand op.

The operands can be any of the following integer types:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 563Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=563

• ap_[u]fixed

• ap_[u]int

• C/C++

The result type ap_[u]fixed::RType depends on the type information of the two operands.

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1.125;
ap_fixed<75, 62> Val2 = 6721.35595703125;

Result = Val1 + Val2; //Yields 6722.480957

Because Val2 has the larger bit-width on both integer part and fraction part, the result type has
the same bit-width and plus one to be able to store all possible result values.

Specifying the data's width controls resources by using the power functions, as shown below. In
similar cases, Xilinx recommends specifying the width of the stored result instead of specifying
the width of fixed point operations.

ap_ufixed<16,6> x=5;
ap_ufixed<16,7>y=hl::rsqrt<16,6>(x+x);

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - (ap_[u]fixed op)

Subtracts an arbitrary precision fixed-point with a given operand op.

The result type ap_[u]fixed::RType depends on the type information of the two operands.

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val2 - Val1; // Yields 6720.23057

Because Val2 has the larger bit-width on both integer part and fraction part, the result type has
the same bit-width and plus one to be able to store all possible result values.

Multiplication

ap_[u]fixed::RType ap_[u]fixed::operator * (ap_[u]fixed op)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 564Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=564

Multiplies an arbitrary precision fixed-point with a given operand op.

ap_fixed<80, 64> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 * Val2; // Yields 7561.525452

This shows the multiplication of Val1 and Val2. The result type is the sum of their integer part
bit-width and their fraction part bit width.

Division

ap_[u]fixed::RType ap_[u]fixed::operator / (ap_[u]fixed op)

Divides an arbitrary precision fixed-point by a given operand op.

ap_fixed<84, 66> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Val2 / Val1; // Yields 5974.538628

This shows the division of Val1 and Val2. To preserve enough precision:

• The integer bit-width of the result type is sum of the integer bit-width of Val2 and the
fraction bit-width of Val1.

• The fraction bit-width of the result type is equal to the fraction bit-width of Val2.

Bitwise Logical Operators

Bitwise OR

ap_[u]fixed::RType ap_[u]fixed::operator | (ap_[u]fixed op)

Applies a bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 | Val2; // Yields 6271.480957

Bitwise AND

ap_[u]fixed::RType ap_[u]fixed::operator & (ap_[u]fixed op)

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 565Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=565

Applies a bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 & Val2; // Yields 1.00000

Bitwise XOR

ap_[u]fixed::RType ap_[u]fixed::operator ^ (ap_[u]fixed op)

Applies an xor bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 ^ Val2; // Yields 6720.480957

Increment and Decrement Operators

Pre-Increment

ap_[u]fixed ap_[u]fixed::operator ++ ()

This operator function prefix increases an arbitrary precision fixed-point variable by 1.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ++Val1; // Yields 6.125000

Post-Increment

ap_[u]fixed ap_[u]fixed::operator ++ (int)

This operator function postfix:

• Increases an arbitrary precision fixed-point variable by 1.

• Returns the original val of this arbitrary precision fixed-point.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1++; // Yields 5.125000

Pre-Decrement

ap_[u]fixed ap_[u]fixed::operator -- ()

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=566

This operator function prefix decreases this arbitrary precision fixed-point variable by 1.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = --Val1; // Yields 4.125000

Post-Decrement

ap_[u]fixed ap_[u]fixed::operator -- (int)

This operator function postfix:

• Decreases this arbitrary precision fixed-point variable by 1.

• Returns the original val of this arbitrary precision fixed-point.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1--; // Yields 5.125000

Unary Operators

Addition

ap_[u]fixed ap_[u]fixed::operator + ()

Returns a self copy of an arbitrary precision fixed-point variable.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = +Val1; // Yields 5.125000

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - ()

Returns a negative value of an arbitrary precision fixed-point variable.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = -Val1; // Yields -5.125000

Equality Zero

bool ap_[u]fixed::operator ! ()

This operator function:

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=567

• Compares an arbitrary precision fixed-point variable with 0,

• Returns the result.

bool Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = !Val1; // Yields false

Bitwise Inverse

ap_[u]fixed::RType ap_[u]fixed::operator ~ ()

Returns a bitwise complement of an arbitrary precision fixed-point variable.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ~Val1; // Yields -5.25

Shift Operators

Unsigned Shift Left

ap_[u]fixed ap_[u]fixed::operator << (ap_uint<_W2> op)

This operator function:

• Shifts left by a given integer operand.

• Returns the result.

The operand can be a C/C++ integer type:

• char

• short

• int

• long

The return type of the shift left operation is the same width as the type being shifted.

Note: Shift does not support overflow or quantization modes.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val << sh; // Yields -10.5

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=568

The bit-width of the result is (W = 25, I = 15). Because the shift left operation result type is
same as the type of Val:

• The high order two bits of Val are shifted out.

• The result is -10.5.

If a result of 21.5 is required, Val must be cast to ap_fixed<10, 7> first -- for example,
ap_ufixed<10, 7>(Val).

Signed Shift Left

ap_[u]fixed ap_[u]fixed::operator << (ap_int<_W2> op)

This operator:

• Shifts left by a given integer operand.

• Returns the result.

The shift direction depends on whether the operand is positive or negative.

• If the operand is positive, a shift right is performed.

• If the operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type:

• char

• short

• int

• long

The return type of the shift right operation is the same width as the type being shifted.

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val << sh; // Shift left, yields -10.25

Sh = -2;
Result = Val << sh; // Shift right, yields 1.25

Unsigned Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_uint<_W2> op)

This operator function:

• Shifts right by a given integer operand.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=569

• Returns the result.

The operand can be a C/C++ integer type:

• char

• short

• int

• long

The return type of the shift right operation is the same width as the type being shifted.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val >> sh; // Yields 1.25

If it is necessary to preserve all significant bits, extend fraction part bit-width of the Val first, for
example ap_fixed<10, 5>(Val).

Signed Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_int<_W2> op)

This operator:

• Shifts right by a given integer operand.

• Returns the result.

The shift direction depends on whether operand is positive or negative.

• If the operand is positive, a shift right performed.

• If operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift right operation is the same width as type being shifted. For example:

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val >> sh; // Shift right, yields 1.25

Sh = -2;
Result = Val >> sh; // Shift left, yields -10.5

1.25

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 570Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=570

Relational Operators

Equality

bool ap_[u]fixed::operator == (ap_[u]fixed op)

This operator compares the arbitrary precision fixed-point variable with a given operand.

Returns true if they are equal and false if they are not equal.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types. For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 == Val2; // Yields true
Result = Val1 == Val3; // Yields false

Inequality

bool ap_[u]fixed::operator != (ap_[u]fixed op)

This operator compares this arbitrary precision fixed-point variable with a given operand.

Returns true if they are not equal and false if they are equal.

The type of operand op can be:

• ap_[u]fixed

• ap_int

• C or C++ integer types

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 != Val2; // Yields false
Result = Val1 != Val3; // Yields true

Greater than or equal to

bool ap_[u]fixed::operator >= (ap_[u]fixed op)

This operator compares a variable with a given operand.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 571Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=571

Returns true if they are equal or if the variable is greater than the operator and false
otherwise.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 >= Val2; // Yields true
Result = Val1 >= Val3; // Yields false

Less than or equal to

bool ap_[u]fixed::operator <= (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is equal to or less
than the operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 <= Val2; // Yields true
Result = Val1 <= Val3; // Yields true

Greater than

bool ap_[u]fixed::operator > (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is greater than the
operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=572

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 > Val2; // Yields false
Result = Val1 > Val3; // Yields false

Less than

bool ap_[u]fixed::operator < (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is less than the
operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types. For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 < Val2; // Yields false
Result = Val1 < Val3; // Yields true

Bit Operator

Bit-Select and Set

af_bit_ref ap_[u]fixed::operator [] (int bit)

This operator selects one bit from an arbitrary precision fixed-point value and returns it.

The returned value is a reference value that can set or clear the corresponding bit in the
ap_[u]fixed variable. The bit argument must be an integer value and it specifies the index of
the bit to select. The least significant bit has index 0. The highest permissible index is one less
than the bit-width of this ap_[u]fixed variable.

The result type is af_bit_ref with a value of either 0 or 1. For example:

ap_int<8, 5> Value = 1.375;

Value[3]; // Yields 1
Value[4]; // Yields 0

Value[2] = 1; // Yields 1.875
Value[3] = 0; // Yields 0.875

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 573Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=573

Bit Range

af_range_ref af_(u)fixed::range (unsigned Hi, unsigned Lo)
af_range_ref af_(u)fixed::operator [] (unsigned Hi, unsigned Lo)

This operation is similar to bit-select operator [] except that it operates on a range of bits instead
of a single bit.

It selects a group of bits from the arbitrary precision fixed-point variable. The Hi argument
provides the upper range of bits to be selected. The Lo argument provides the lowest bit to be
selected. If Lo is larger than Hi the bits selected are returned in the reverse order.

The return type af_range_ref represents a reference in the range of the ap_[u]fixed
variable specified by Hi and Lo. For example:

ap_uint<4> Result = 0;
ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(3, 0); // Yields: 0x5
Value(3, 0) = Repl(3, 0); // Yields: -1.5

// when Lo > Hi, return the reverse bits string
Result = Value.range(0, 3); // Yields: 0xA

Range Select

af_range_ref af_(u)fixed::range ()
af_range_ref af_(u)fixed::operator []

This operation is the special case of the range select operator []. It selects all bits from this
arbitrary precision fixed-point value in the normal order.

The return type af_range_ref represents a reference to the range specified by Hi = W - 1 and Lo =
0. For example:

ap_uint<4> Result = 0;

ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(); // Yields: 0x5
Value() = Repl(3, 0); // Yields: -1.5

Length

int ap_[u]fixed::length ()

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=574

This function returns an integer value that provides the number of bits in an arbitrary precision
fixed-point value. It can be used with a type or a value. For example:

ap_ufixed<128, 64> My128APFixed;

int bitwidth = My128APFixed.length(); // Yields 128

Explicit Conversion Methods

Fixed to Double

double ap_[u]fixed::to_double ()

This member function returns this fixed-point value in form of IEEE double precision format. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
double Result;

Result = MyAPFixed.to_double(); // Yields 333.789

Fixed to Float

float ap_[u]fixed::to_float()

This member function returns this fixed-point value in form of IEEE float precision format. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
float Result;

Result = MyAPFixed.to_float(); // Yields 333.789

Fixed to Half-Precision Floating Point

half ap_[u]fixed::to_half()

This member function return this fixed-point value in form of HLS half-precision (16-bit) float
precision format. For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
half Result;

Result = MyAPFixed.to_half(); // Yields 333.789

Fixed to ap_int

ap_int ap_[u]fixed::to_ap_int ()

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 575Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=575

This member function explicitly converts this fixed-point value to ap_int that captures all
integer bits (fraction bits are truncated). For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
ap_uint<77> Result;

Result = MyAPFixed.to_ap_int(); //Yields 333

Fixed to Integer

int ap_[u]fixed::to_int ()
unsigned ap_[u]fixed::to_uint ()
ap_slong ap_[u]fixed::to_int64 ()
ap_ulong ap_[u]fixed::to_uint64 ()

This member function explicitly converts this fixed-point value to C built-in integer types. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
unsigned int Result;

Result = MyAPFixed.to_uint(); //Yields 333

unsigned long long Result;
Result = MyAPFixed.to_uint64(); //Yields 333

RECOMMENDED: Xilinx recommends that you explicitly call member functions instead of using C-style
cast to convert ap_[u]fixed  to other data types.

Compile Time Access to Data Type Attributes

The ap_[u]fixed<> types are provided with several static members that allow the size and
configuration of data types to be determined at compile time. The data type is provided with the
static const members: width, iwidth, qmode and omode:

static const int width = _AP_W;
static const int iwidth = _AP_I;
static const ap_q_mode qmode = _AP_Q;
static const ap_o_mode omode = _AP_O;

You can use these data members to extract the following information from any existing
ap_[u]fixed<> data type:

• width: The width of the data type.

• iwidth: The width of the integer part of the data type.

• qmode: The quantization mode of the data type.

• omode: The overflow mode of the data type.

For example, you can use these data members to extract the data width of an existing
ap_[u]fixed<> data type to create another ap_[u]fixed<> data type at compile time.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 576Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=576

The following example shows how the size of variable Res is automatically defined as 1-bit
greater than variables Val1 and Val2 with the same quantization modes:

// Definition of basic data type
#define INPUT_DATA_WIDTH 12
#define IN_INTG_WIDTH 6
#define IN_QMODE AP_RND_ZERO
#define IN_OMODE AP_WRAP
typedef ap_fixed<INPUT_DATA_WIDTH, IN_INTG_WIDTH, IN_QMODE, IN_OMODE>
data_t;
// Definition of variables
data_t Val1, Val2;
// Res is automatically sized at run-time to be 1-bit greater than
INPUT_DATA_WIDTH
// The bit growth in Res will be in the integer bits
ap_int<data_t::width+1, data_t::iwidth+1, data_t::qmode, data_t::omode> Res
= Val1 +
Val2;

This ensures that Vivado HLS correctly models the bit-growth caused by the addition even if you
update the value of INPUT_DATA_WIDTH, IN_INTG_WIDTH, or the quantization modes for
data_t.

Comparison of SystemC and Vivado HLS Types
The Vivado HLS types are similar and compatible the SystemC types in virtually all cases and
code written using the Vivado HLS types can generally be migrated to a SystemC design and
vice-versa.

There are some differences in the behavior between Vivado HLS types and SystemC types.
These differences are discussed in this section and cover the following topics.

• Default constructor

• Integer division

• Integer modulus

• Negative shifts

• Over-left shift

• Range operation

• Fixed-point division

• Fixed-point right-shift

• Fixed-point left-shift

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 577Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=577

Default Constructor
In SystemC, the constructor for the following types initializes the values to zero before execution
of the program:

• sc_[u]int

• sc_[u]bigint

• sc_[u]fixed

The following Vivado HLS types are not initialized by the constructor:

• ap_[u]int

• ap_[u]fixed

Vivado HLS bit-accurate data types:

• ap_[u]int

No default initialization

• ap_[u]fixed

No default initialization

SystemC bit-accurate data types:

• sc_[u]int

Default initialization to 0

• sc_big[u]int

Default initialization to 0

• sc_[u]fixed

Default initialization to 0

CAUTION! When migrating SystemC types to Vivado HLS types, be sure that no variables are read or
used in conditionals until they are written to.

SystemC designs can be started showing all outputs with a default value of zero, whether or not
the output has been written to. The same variables expressed as Vivado HLS types remain
unknown until written to.

Integer Division
When using integer division, Vivado HLS types are consistent with sc_big[u]int types but
behave differently than sc_[u]int types. The following figure shows an example.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 578Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=578

Figure 108: Integer Division Differences

#include “ap_int.h”

ap_uint<15>dividend = 32757;
ap_int<15>divisor = -2;
ap_int<21>ret = dividend/divisor;

ap_(u)int

dividend

divisor

ret

7 F F F

7 F F E

1 F C 0 0 1
/

32767

-2

-16383

#include “systemc.h”

sc_biguint<15>dividend = 32757;
sc_bigint<15>divisor = -2;
sc_bigint<21>ret = dividend/divisor;

sc_big(u)int

dividend

divisor

ret

7 F F F

7 F F E

1 F C 0 0 1
/

32767

-2

-16383

#include “systemc.h”

sc_uint<15>dividend = 32757;
sc_int<15>divisor = -2;
sc_int<21>ret = dividend/divisor;

sc_(u)int

dividend

divisor

ret

7 F F F

7 F F E

0 0 0 0 0 0
/

32767

-2

0

= =/

X14224

The SystemC sc_int type returns a zero value when an unsigned integer is divided by a
negative signed integer. The Vivado HLS types, such as the SystemC sc_bigint type, represent
the negative result.

Integer Modulus
When using the modulus operator, Vivado HLS types are consistent with sc_big[u]int types,
but behave differently than sc_[u]int types. The following figure shows an example.

Figure 109: Integer Modules Differences

#include “ap_int.h”

ap_uint<15>dividend = 18;
ap_int<15>divisor = -5;
ap_int<21>ret = dividend%divisor;

ap_(u)int

dividend

divisor

ret

0 0 1 2

7 F F B

0 0 0 0 0 3
%

18

-5

3

#include “systemc.h”

sc_biguint<15>dividend = 18;
sc_bigint<15>divisor = -5;
sc_bigint<21>ret = dividend%divisor;

sc_big(u)int

dividend

divisor

ret

0 0 1 2

7 F F B

0 0 0 0 0 3
%

18

-5

3

#include “systemc.h”

sc_uint<15>dividend = 18;
sc_int<15>divisor = -5;
sc_int<21>ret = dividend%divisor;

sc_(u)int

dividend

divisor

ret

0 0 1 2

7 F F B

0 0 0 0 1 2
%

18

-5

18

= =/

X14225

The SystemC sc_int type returns the value of the dividend of a modulus operation when:

• The dividend is an unsigned integer, and

• The divisor is a negative signed integer.

The Vivado HLS types (such as the SystemC sc_bigint type) returns the positive result of the
modulus operation.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 579Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=579

Negative Shifts
When the value of a shift operation is a negative number, Vivado HLS ap_[u]int types shift
the value in the opposite direction. For example, it returns a left-shift for a right-shift operation).

The SystemC types sc_[u]int and sc_big[u]int behave differently in this case. The
following figure shows an example of this operation for both Vivado HLS and SystemC types.

Figure 110: Negative Shift Differences

X14226

#include “ap_int.h”

ap_uint<15>op = 24;
ap_int<15>shift = -2;
ap_int<21>ret = op>>shift;

ap_(u)int

op

shift

ret

0 0 1 8

7 F F E

0 0 0 0 6 0
>>

24

-2

96

#include “systemc.h”

sc_biguint<15>op = 24;
sc_bigint<15>shift = -2;
sc_bigint<21>ret = op>>shift;

sc_big(u)int

0 0 1 8

7 F F E

0 0 0 0 1 8

24

-2

24

#include “systemc.h”

sc_uint<15>op = 24;
sc_int<15>shift = -2;
sc_int<21>ret = op>>shift;

sc_(u)int

0 0 1 8

7 F F E

0 0 0 0 0 0

24

-2

0

=/=/

op

shift

ret
>>

op

shift

ret
>>

The following table summarizes the negative shift differences.

Table 82: Negative Shift Differences Summary

Type Action
ap_[u]int Shifts in the opposite direction.
sc_[u]int Returns a zero
sc_big[u]int Does not shift

Over-Shift Left
When a shift operation is performed and the result overflows the input variable but not the
output or assigned variable, Vivado HLS types and SystemC types behave differently.

• Vivado HLS ap_[u]int shifts the value and then assigns meaning to the upper bits that are
lost (or overflowed).

• Both SystemC sc_big(u)int and sc_(u)int types assign the result and then shift,
preserving the upper bits.

• The following figure shows an example of this operation for both Vivado HLS and SystemC
types.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 580Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=580

Figure 111: Over-Shift Left Differences

#include “ap_int.h”

ap_uint<15>op = 0x7234;
ap_int<15>shift = 4;
ap_int<21>ret = op<<shift;

ap_(u)int

op

shift

ret

7 2 3 4

0 0 0 4

0 0 2 3 4 0
<<

29236

4

9024

#include “systemc.h”

sc_biguint<15>op = 0x7234;
sc_bigint<15>shift = 4;
sc_bigint<21>ret = op<<shift;

sc_big(u)int

7 2 3 4

0 0 0 4

0 7 2 3 4 0

29236

4

467776

#include “systemc.h”

sc_uint<15>op = 0x7234;
sc_int<15>shift = 4;
sc_int<21>ret = op<<shift;

sc_(u)int

7 2 3 4

0 0 0 4

0 7 2 3 4 0

29236

4

467776

==/

op

shift

ret
<<

op

shift

ret
<<

X14227

Range Operation
There are differences in behavior when the range operation is used and the size of the range is
different between the source and destination. The following figure shows an example of this
operation for both Vivado HLS and SystemC types. See the summary below.

Figure 112: Range Operation Differences

#include “systemc.h”

sc_uint<64>repl = 0xABCDEFLL;
sc_int<64>value = 0x12345678LL;
value.range(43,8)=repl.range(23,8);

ap_(u)int

repl

value

value

#include “systemc.h”

sc_uint<64>repl = 0xABCDEFLL;
sc_int<64>value = 0x12345678LL;
value.range(43,8)=repl.range(23,8);

sc_big(u)int

#include “systemc.h”

sc_uint<64>repl = 0xABCDEFLL;
sc_int<64>value = 0x12345678LL;
value.range(43,8)=repl.range(23,8);

sc_(u)int=/ =/

0000 0000 00AB CDEF

0000 0000 1234 5678

0000 0000 00AB CD78

repl

value

value

0000 0000 00AB CDEF

0000 0000 1234 5678

0000 0000 12AB CD78

repl

value

value

0000 0000 00AB CDEF

0000 0000 1234 5678

0000 0000 00AB CD78

Types ap_(u)int and sc_(u)int behave the same

X14228

• Vivado HLS ap_[u]int types and SystemC sc_big[u]int types replace the specified
range and extend to fill the target range with zeros.

• SystemC sc_big[u]int types update only with the range of the source.

Division and Fixed-Point Types
When performing division with fixed-point type variables of different sizes, there is a difference
in how the fractional values are assigned between Vivado HLS types and SystemC types.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 581Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=581

For ap_[u]fixed types, the fraction is no greater than that of the dividend. SystemC
sc_[u]fixed types retain the fractional precision on divide. The fractional part can be retained
when using the ap_[u]fixed type by casting to the new variable width before assignment.

The following figure shows an example of this operation for both Vivado HLS and SystemC types.

Figure 113: Fixed-Point Division Differences

#include “ap_fixed.h”

ap_fixed<3,3> dividend=2;
ap_fixed<4,4> divisor=4;
ap_fixed<4,2> ret=dividend/divisor;
//casting required to keep precision
ap_fixed<4,2> ret2=ap_fixed<4,2>(dividend)/divisor;

ap_(u)fixed

0 0 0 0 0 0

sc_(u)fixed

dividend

divisor

ret

ret2

=/

0 0 0 0 1 0

0 1 0 0

0 1 0 0

2.0

4.0

0

0.5

0 0 0 0 1 0

dividend

divisor

ret

0 1 0 0

0 1 0 0

2.0

4.0

0.5

#include “systemc.h”
#define SC_INCLUDE_FX

sc_fixed<3,3> dividend=2;
sc_fixed<4,4> divisor=4;
sc_fixed<4,2> ret=dividend/divisor;

X14229

Right Shift and Fixed-Point Types
Vivado HLS and SystemC behave differently when a right-shift operation is performed

• With Vivado HLS fixed-point types, the shift is performed and then the value is assigned.

• With SystemC fixed-point types, the value is assigned and then the shift is performed.

When the result is a fixed-point type with more fractional bits, the SystemC type preserves the
additional accuracy.

The following figure shows an example of this operation for both Vivado HLS and SystemC types.

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 582Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=582

Figure 114: Fixed-Point Differences with Right-Shift

#include “ap_fixed.h”

ap_fixed<5,3,AP_RND,AP_SAT> val=3.75
ap_fixed<5,3,AP_RND,AP_SAT> res=val>>2;
ap_fixed<7,3,AP_RND,AP_SAT> res2=val>>2;

ap_(u)fixed sc_(u)fixed=/
#include “systemc.h”
#define SC_INCLUDE_FX

sc_fixed<5,3 AP_RND,AP_SAT> val=3.75
sc_fixed<5,3,AP_RND,AP_SAT> res=val>>2;
sc_fixed<7,3,AP_RND,AP_SAT> res2=val>>2;

0 0 0 1 1 0

val

res

res2

1 1 1 1

0 0 0 1

3.75

0.75

0.75

0

1

0 0 0 0 1 1 1

val

res

res2

1 1 1 1

0 0 0 1

3.75

0.75

0.9375

0

1

1

X14230

The type of quantization mode does not affect the result of the ap_[u]fixed right-shift. Xilinx
recommends that you assign to the size of the result type before the shift operation.

Left Shift and Fixed-Point Types
When performing a left-shift operation with ap_[u]fixed types, the operand is sign-extended,
then shifted and then assigned. The SystemC sc_[u]fixed types assign and then shift. In this
case, the Vivado HLS types preserve any sign-intention.

The following figure shows an example of this operation for both Vivado HLS and SystemC types.

Figure 115: Fixed-Point Differences with Left-Shift

#include “ap_fixed.h”

ap_fixed<5,3,AP_RND,AP_SAT> val=3.75
ap_fixed<5,3,AP_RND,AP_SAT> res=val<<2;
ap_fixed<7,5,AP_RND,AP_SAT> res2=val<<2;

ap_(u)fixed sc_(u)fixed=/
#include “systemc.h”
#define SC_INCLUDE_FX

ap_fixed<5,3,AP_RND,AP_SAT> val=3.75
ap_fixed<5,3,AP_RND,AP_SAT> res=val<<2;
ap_fixed<7,5,AP_RND,AP_SAT> res2=val<<2;

1 1 1 1 1 0

val

res

res2

1 1 1 1

1 1 1 0

3.75

-1

-1

0

0

0 0 1 1 1 1 0

val

res

res2

1 1 1 1

0 1 1 1

3.75

3.75

15

0

1

0

X14231

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 583Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=583

RTL Blackbox JSON File
JSON File Example

This section provides details on manually writing the JSON file required for the RTL blackbox.
The following is an example of a JSON file:

{
"c_function_name" : "foo",
"rtl_top_module_name" : "foo",
"c_files" :
 [
 {
 "c_file" : "../../a/top.cpp",
 "cflag" : ""
 },
 {
 "c_file" : "xx.cpp",
 "cflag" : "-D KF"
 }
],
"rtl_files" : [
 "../../foo.v",
 "xx.v"
],
"c_parameters" : [{
 "c_name" : "a",
 "c_port_direction" : "in",
 "rtl_ports" : {
 "data_read_in" : "a"
 }
 },
 {
 "c_name" : "b",
 "c_port_direction" : "in",
 "rtl_ports" : {
 "data_read_in" : "b"
 }
 },
 {
 "c_name" : "c",
 "c_port_direction" : "out",
 "rtl_ports" : {
 "data_write_out" : "c",
 "data_write_valid" : "c_ap_vld"
 }
 },
 {
 "c_name" : "d",
 "c_port_direction" : "inout",
 "rtl_ports" : {
 "data_read_in" : "d_i",
 "data_write_out" : "d_o",
 "data_write_valid" : "d_o_ap_vld"
 }
 },
 {
 "c_name" : "e",
 "c_port_direction" : "in",

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 584Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=584

 "rtl_ports" : {
 "FIFO_empty_flag" : "e_empty_n",
 "FIFO_read_enable" : "e_read",
 "FIFO_data_read_in" : "e"
 }
 },
 {
 "c_name" : "f",
 "c_port_direction" : "out",
 "rtl_ports" : {
 "FIFO_full_flag" : "f_full_n",
 "FIFO_write_enable" : "f_write",
 "FIFO_data_write_out" : "f"
 }
 },
 {
 "c_name" : "g",
 "c_port_direction" : "in",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "g_address0",
 "RAM_clock_enable" : "g_ce0",
 "RAM_data_read_in" : "g_q0"
 }
 },
 {
 "c_name" : "h",
 "c_port_direction" : "out",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "h_address0",
 "RAM_clock_enable" : "h_ce0",
 "RAM_write_enable" : "h_we0",
 "RAM_data_write_out" : "h_d0"
 }
 },
 {
 "c_name" : "i",
 "c_port_direction" : "inout",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "i_address0",
 "RAM_clock_enable" : "i_ce0",
 "RAM_write_enable" : "i_we0",
 "RAM_data_write_out" : "i_d0",
 "RAM_data_read_in" : "i_q0"
 }
 },
 {
 "c_name" : "j",
 "c_port_direction" : "in",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "j_address0",
 "RAM_clock_enable" : "j_ce0",
 "RAM_data_read_in" : "j_q0",
 "RAM_address_snd" : "j_address1",
 "RAM_clock_enable_snd" : "j_ce1",
 "RAM_data_read_in_snd" : "j_q1"
 }
 },
 {
 "c_name" : "k",

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 585Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=585

 "c_port_direction" : "out",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "k_address0",
 "RAM_clock_enable" : "k_ce0",
 "RAM_write_enable" : "k_we0",
 "RAM_data_write_out" : "k_d0",
 "RAM_address_snd" : "k_address1",
 "RAM_clock_enable_snd" : "k_ce1",
 "RAM_write_enable_snd" : "k_we1",
 "RAM_data_write_out_snd" : "k_d1"
 }
 },
 {
 "c_name" : "l",
 "c_port_direction" : "inout",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "l_address0",
 "RAM_clock_enable" : "l_ce0",
 "RAM_write_enable" : "l_we0",
 "RAM_data_write_out" : "l_d0",
 "RAM_data_read_in" : "l_q0",
 "RAM_address_snd" : "l_address1",
 "RAM_clock_enable_snd" : "l_ce1",
 "RAM_write_enable_snd" : "l_we1",
 "RAM_data_write_out_snd" : "l_d1",
 "RAM_data_read_in_snd" : "l_q1"
 }
 }],
"c_return" : {
 "c_port_direction" : "out",
 "rtl_ports" : {
 "data_write_out" : "ap_return"
 }
 },
"rtl_common_signal" : {
 "module_clock" : "ap_clk",
 "module_reset" : "ap_rst",
 "module_clock_enable" : "ap_ce",
 "ap_ctrl_chain_protocol_idle" : "ap_idle",
 "ap_ctrl_chain_protocol_start" : "ap_start",
 "ap_ctrl_chain_protocol_ready" : "ap_ready",
 "ap_ctrl_chain_protocol_done" : "ap_done",
 "ap_ctrl_chain_protocol_continue" : "ap_continue"
 },
"rtl_performance" : {
 "latency" : "6",
 "II" : "2"
 },
"rtl_resource_usage" : {
 "FF" : "0",
 "LUT" : "0",
 "BRAM" : "0",
 "URAM" : "0",
 "DSP" : "0"
 }
}

Chapter 4: High-Level Synthesis Reference Guide

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 586Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=586

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

Appendix A: Additional Resources and Legal Notices

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 587Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=587

2. Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

4. Floating-Point Design with Vivado HLS (XAPP599)

5. LogiCORE IP Fast Fourier Transform Product Guide (PG109)

6. LogiCORE IP FIR Compiler Product Guide (PG149)

7. LogiCORE IP DDS Compiler Product Guide (PG141)

8. Vivado Design Suite: AXI Reference Guide (UG1037)

9. Accelerating OpenCV Applications with Zynq-7000 SoC Using Vivado HLS Video Libraries
(XAPP1167)

10. UltraFast High-Level Productivity Design Methodology Guide (UG1197)

11.Option Summary page on the GCC website (gcc.gnu.org/onlinedocs/gcc/Option-
Summary.html)

12. Accellera website (http://www.accellera.org/)

13. AWGN page on the MathWorks website (http://www.mathworks.com/help/comm/ug/awgn-
channel.html)

14. Vivado® Design Suite Documentation

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Appendix A: Additional Resources and Legal Notices

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 588Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp599-floating-point-vivado-hls.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=latest;d=pg109-xfft.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=v7_2;d=pg149-fir-compiler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=v6_0;d=pg141-dds-compiler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1167.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://www.accellera.org/
http://www.mathworks.com/help/comm/ug/awgn-channel.html
http://www.mathworks.com/help/comm/ug/awgn-channel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=588

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used
under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali,
and MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks
are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG902 (v2020.1) May 4, 2021 www.xilinx.com
High-Level Synthesis 589Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.1&docPage=589

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: High-Level Synthesis
	High-Level Synthesis Benefits
	High-Level Synthesis Basics
	Scheduling and Binding Example
	Extracting Control Logic and Implementing I/O Ports Example
	Performance Metrics Example

	Understanding Vivado HLS
	Inputs and Outputs
	Test Bench, Language Support, and C Libraries
	Test Bench
	Language Support
	C Libraries

	Synthesis, Optimization, and Analysis
	Optimization
	Analysis

	RTL Verification
	RTL Export

	Using Vivado HLS
	Creating a New Synthesis Project
	Simulating the C Code
	Reviewing the C Simulation Output

	Synthesizing the C Code
	Creating an Initial Solution
	Reviewing the Output of C Synthesis
	Analyzing the Results of C Synthesis
	Synthesis Reports
	Analysis Perspective
	Schedule Viewer
	Dataflow Viewer

	Creating a New Solution
	Applying Optimization Directives
	Using Tcl Commands or Embedded Pragmas
	Pragma Validation
	Applying Optimization Directives to Global Variables
	Applying Optimization Directives to Class Objects
	Applying Optimization Directives to Templates
	Using #Define with Pragma Directives
	Failure to Satisfy Optimization Directives

	Verifying the RTL is Correct
	Reviewing the Output of C/RTL Co-Simulation

	Packaging the IP
	Reviewing the Output of IP Packaging

	Archiving the Project
	Using the Command Prompt and Tcl Interface
	Improving Runtime and Capacity
	Design Examples and References
	Tutorials
	Design Examples
	Coding Examples

	Data Types for Efficient Hardware
	Advantages of Hardware Efficient Data Types
	Overview of Arbitrary Precision Integer Data Types
	Overview of Arbitrary Precision Fixed-Point Data Types

	Managing Interfaces
	Interface Synthesis
	Interface Synthesis Overview
	Clock and Reset Ports
	Block-Level Interface Protocol
	Port-Level Interface Protocol

	Interface Synthesis I/O Protocols
	Block-Level Interface Protocols
	Port-Level Interface Protocols: AXI4 Interfaces
	Port-Level Interface Protocols: No I/O Protocol
	Port-Level Interface Protocols: Wire Handshakes
	Port-Level Interface Protocols: Memory Interfaces

	Interface Synthesis and Structs
	Interface Synthesis and Multi-Access Pointers
	Specifying Interfaces
	Interface Synthesis for SystemC
	Applying Interface Directives with SystemC
	Block RAM Memory Ports
	SystemC AXI4-Stream Interface
	SystemC AXI4-Lite Interface
	SystemC AXI4 Master Interface

	Using AXI4 Interfaces
	AXI4-Stream Interfaces
	AXI4-Stream Interfaces without Side-Channels
	AXI4-Stream Interfaces with Side-Channels
	Packing Structs into AXI4-Stream Interfaces

	AXI4-Lite Interface
	Control Clock and Reset in AXI4-Lite Interfaces
	C Driver Files
	C Driver Files and Float Types
	Controlling Hardware
	Controlling Software
	Customizing AXI4-Lite Slave Interfaces in IP Integrator

	AXI4 Master Interface
	Controlling AXI4 Burst Behavior
	Creating an AXI4 Interface with 64-bit Address Capability
	Controlling the Address Offset in an AXI4 Interface
	Customizing AXI4 Master Interfaces in IP Integrator

	Managing Interfaces with SSI Technology Devices

	Optimizing the Design
	Clock, Reset, and RTL Output
	Specifying the Clock Frequency
	Specifying the Reset
	Initialization Behavior
	Controlling the Reset Behavior
	Initializing and Resetting Arrays

	RTL Output

	Optimizing for Throughput
	Function and Loop Pipelining
	Rewinding Pipelined Loops for Performance
	Flushing Pipelines
	Automatic Loop Pipelining
	Addressing Failure to Pipeline
	Static Variables

	Partitioning Arrays to Improve Pipelining
	Automatic Array Partitioning

	Dependencies with Vivado HLS
	Removing False Dependencies to Improve Loop Pipelining
	Scalar Dependencies
	Optimal Loop Unrolling to Improve Pipelining
	Exploiting Task Level Parallelism: Dataflow Optimization
	Canonical Forms
	Canonical Body
	Dataflow Checking
	Dataflow Optimization Limitations
	Configuring Dataflow Memory Channels
	Specifying Arrays as Ping-Pong Buffers or FIFOs
	Specifying Compiler-FIFO Depth
	Stable Arrays
	Using ap_ctrl_none Inside the Dataflow

	Optimizing for Latency
	Using Latency Constraints
	Merging Sequential Loops to Reduce Latency
	Flattening Nested Loops to Improve Latency

	Optimizing for Area
	Data Types and Bit-Widths
	Function Inlining
	Mapping Many Arrays into One Large Array
	Horizontal Array Mapping
	Mapping Vertical Arrays

	Array Mapping and Special Considerations
	Array Reshaping
	Function Instantiation
	Controlling Hardware Resources
	Limiting the Number of Operators
	Globally Minimizing Operators
	Controlling the Hardware Cores
	Globally Optimizing Hardware Cores

	Optimizing Logic
	Controlling Operator Pipelining
	Optimizing Logic Expressions

	Verifying the RTL
	Automatically Verifying the RTL
	Test Bench Requirements
	Interface Synthesis Requirements
	RTL Simulator Support
	Unsupported Optimizations for Cosimulation
	Simulating IP Cores

	Using C/RTL Co-Simulation
	Executing RTL Simulation
	Verification of Directives
	Analyzing RTL Simulations
	Waveform Viewer

	Debugging C/RTL Cosimulation
	Setting up the Environment
	Optimization Directives
	C Test Bench and C Source Code

	Exporting the RTL Design
	Synthesizing the RTL
	Packaging IP Catalog Format
	Exporting IP to System Generator
	Exporting a Synthesized Checkpoint

	Ch. 2: High-Level Synthesis C Libraries
	Arbitrary Precision Data Types Library
	Using Arbitrary Precision Data Types
	Arbitrary Integer Precision Types with C
	Arbitrary Integer Precision Types with C++
	Arbitrary Precision Integer Types with SystemC
	Arbitrary Precision Fixed-Point Data Types
	Fixed-Point Identifier Summary
	Example Using ap_fixed
	Example Using sc_fixed

	C Arbitrary Precision Integer Data Types
	Advantages of C Arbitrary Precision Data Types
	Validating Arbitrary Precision Types in C
	Integer Promotion

	C Arbitrary Precision Integer Types: Reference Information

	C++ Arbitrary Precision Integer Types
	C++ Arbitrary Precision Integer Types: Reference Information

	C++ Arbitrary Precision Fixed-Point Types
	Fixed-Point Identifier Summary
	C++ Arbitrary Precision Fixed-Point Types: Reference Information

	HLS Stream Library
	C Modeling and RTL Implementation
	Global and Local Streams

	Using HLS Streams
	Blocking Reads and Writes
	Blocking Write Methods
	Blocking Read Methods

	Non-Blocking Reads and Writes
	Non-Blocking Writes
	Fullness Test
	Non-Blocking Read
	Emptiness Test

	Controlling the RTL FIFO Depth

	C/RTL Co-Simulation Support

	HLS Math Library
	HLS Math Library Accuracy
	The HLS Math Library
	Fixed-Point Math Functions
	Verification and Math Functions
	Verification Option 1: Standard Math Library and Verify Differences
	Verification Option 2: HLS Math Library and Validate Differences
	Verification Option 3: HLS Math Library File and Validate Differences

	Common Synthesis Errors

	HLS Video Library
	HLS IP Libraries
	FFT IP Library
	FFT Static Parameters
	FFT Struct Parameters
	FFT Struct Parameter Values

	FFT Runtime Configuration and Status
	Using the FFT Function

	SSR FFT IP Library
	Recommended Flow for Using SSR FFT Fixed Point Configurations
	Fixed Point Modeling and Implementation
	Starting with Fixed Point Model
	Selecting Bit Widths for Inputs
	Twiddle Factor or Sine/Cosine Lookup Table Quantization
	Choosing the Best Scaling Mode

	SSR FFT IP Library Usage
	SSR FFT input Array Reading and Writing Considerations
	SSR FFT Usage in Dataflow Region, Streaming Non-Streaming Connections

	FIR Filter IP Library
	FIR Static Parameters
	FIR Struct Parameters
	FIR Struct Parameter Values

	Using the FIR Function
	Optional FIR Runtime Configuration

	DDS IP Library
	DDS Static Parameters
	DDS Struct Parameter Values

	SRL IP Library
	Mapping Directly into SRL Resources
	Read from the Shifter
	Read, Write, and Shift Data
	Read, Write, and Enable-Shift

	HLS Linear Algebra Library
	Using the Linear Algebra Library
	Optimizing the Linear Algebra Functions
	Cholesky
	Implementation Controls
	Key Factors
	Specifications

	Cholesky Inverse and QR Inverse
	Implementation Controls
	Key Factors
	Specifications

	Matrix Multiply
	Implementation Controls
	Key Factors
	Specifications

	QRF
	Implementation Controls
	Key Factors
	Specifications

	SVD
	Implementation Controls
	Key Factors
	Specifications

	HLS DSP Library
	Using the DSP Library

	HLS SQL Library
	Using the SQL Library

	Ch. 3: High-Level Synthesis Coding Styles
	Unsupported C Constructs
	System Calls
	Dynamic Memory Usage
	Pointer Limitations
	Recursive Functions
	Standard Template Libraries

	C Test Bench
	Productive Test Benches
	Design Files and Test Bench Files
	Combining Test Bench and Design Files

	Functions
	Inlining Functions
	Impact of Coding Style

	RTL Blackbox
	Loops
	Variable Loop Bounds
	Loop Pipelining
	Imperfect Nested Loops

	Loop Parallelism
	Loop Dependencies
	Unrolling Loops in C++ Classes

	Arrays
	Array Accesses and Performance
	FIFO Accesses

	Arrays on the Interface
	Array Interfaces
	FIFO Interfaces

	Array Initialization
	Implementing ROMs

	Data Types
	Standard Types
	Floats and Doubles

	Composite Data Types
	Structs
	Enumerated Types
	Unions
	Type Qualifiers
	Volatile
	Statics
	Const
	Vivado HLS Optimizations

	Global Variables
	Exposing Global Variables as I/O Ports

	Pointers
	Pointers on the Interface
	Basic Pointers
	Pointer Arithmetic
	Multi-Access Pointer Interfaces: Streaming Data
	Understanding Volatile Data
	Modeling Streaming Data Interfaces
	Multi-Access Pointers and RTL Simulation

	C Builtin Functions
	Hardware Efficient C Code
	Typical C Code for a Convolution Function
	Horizontal Convolution
	Vertical Convolution
	Border Pixels

	Ensuring the Continuous Flow of Data and Data Reuse
	Using HLS Streams for Streaming Data
	Horizontal Convolution
	Vertical Convolution
	Border Pixels
	Summary of C for Efficient Hardware

	C++ Classes and Templates
	Global Variables and Classes
	Templates
	Using Templates to Create Unique Instances

	Assertions
	SystemC Synthesis
	Design Modeling
	Using SC_ MODULE
	Using SC_METHOD
	Instantiating SC_MODULES
	Using SC_CTHREAD
	Synthesis of Loops
	Synthesis with Multiple Clocks

	Communication Channels

	Top-Level SystemC Ports
	SystemC Interface Synthesis
	RAM Port Synthesis
	FIFO Port Synthesis

	Unsupported SystemC Constructs
	Modules and Constructors
	Instantiating Modules
	Module Constructors

	Virtual Functions
	Top-Level Interface Ports

	Ch. 4: High-Level Synthesis Reference Guide
	Command Reference
	add_files
	close_project
	close_solution
	config_array_partition
	config_bind
	config_compile
	config_core
	config_dataflow
	config_export
	config_interface
	config_rtl
	config_schedule
	config_sdx
	config_unroll
	cosim_design
	create_clock
	csim_design
	csynth_design
	delete_project
	delete_solution
	export_design
	help
	list_core
	list_part
	open_project
	open_solution
	set_clock_uncertainty
	set_directive_allocation
	set_directive_array_map
	set_directive_array_partition
	set_directive_array_reshape
	set_directive_clock
	set_directive_dataflow
	set_directive_data_pack
	set_directive_dependence
	set_directive_expression_balance
	set_directive_function_instantiate
	set_directive_inline
	set_directive_interface
	set_directive_latency
	set_directive_loop_flatten
	set_directive_loop_merge
	set_directive_loop_tripcount
	set_directive_occurrence
	set_directive_pipeline
	set_directive_reset
	set_directive_resource
	set_directive_stable
	set_directive_stream
	set_directive_top
	set_directive_unroll
	set_part
	set_top

	GUI Reference
	Monitoring Variables
	Resolving Header File Information
	Resolving Comments in the Source Code
	Customizing the GUI Behavior

	Interface Synthesis Reference
	Block-Level I/O Protocols
	Port-Level I/O Protocols

	AXI4-Lite Slave C Driver Reference
	XDut_Initialize
	XDut_CfgInitialize
	XDut_LookupConfig
	XDut_Release
	XDut_Start
	XDut_IsDone
	XDut_IsIdle
	XDut_IsReady
	XDut_Continue
	XDut_EnableAutoRestart
	XDut_DisableAutoRestart
	XDut_Set_ARG
	XDut_Set_ARG_vld
	XDut_Set_ARG_ack
	XDut_Get_ARG
	XDut_Get_ARG_vld
	XDut_Get_ARG_ack
	XDut_Get_ARG_BaseAddress
	XDut_Get_ARG_HighAddress
	XDut_Get_ARG_TotalBytes
	XDut_Get_ARG_BitWidth
	XDut_Get_ARG_Depth
	XDut_Write_ARG_Words
	XDut_Read_ARG_Words
	XDut_Write_ARG_Bytes
	XDut_Read_ARG_Bytes
	XDut_InterruptGlobalEnable
	XDut_InterruptGlobalDisable
	XDut_InterruptEnable
	XDut_InterruptDisable
	XDut_InterruptClear
	XDut_InterruptGetEnabled
	XDut_InterruptGetStatus

	HLS Video Functions Library
	HLS Linear Algebra Library Functions
	HLS DSP Library Functions
	HLS DSP Functions
	HLS DSP Design Examples

	HLS SQL Library Functions
	C Arbitrary Precision Types
	Compiling [u]int#W Types
	Declaring/Defining [u]int#W Variables
	Initialization and Assignment from Constants (Literals)
	Support for Console I/O (Printing)
	Expressions Involving [u]int#W types
	Bit-Level Operation: Support Function

	C++ Arbitrary Precision Types
	Compiling ap_[u]int<> Types
	Declaring/Defining ap_[u] Variables
	Initialization and Assignment from Constants (Literals)
	Support for Console I/O (Printing)
	Expressions Involving ap_[u]<> types
	Class Methods and Operators
	Other Class Methods, Operators, and Data Members

	C++ Arbitrary Precision Fixed-Point Types
	ap_[u]fixed Representation
	Quantization Modes
	Overflow Modes
	Compiling ap_[u]fixed<> Types
	Declaring and Defining ap_[u]fixed<> Variables
	Initialization and Assignment from Constants (Literals)
	Support for Console I/O (Printing)
	Expressions Involving ap_[u]fixed<> types
	Class Methods, Operators, and Data Members

	Comparison of SystemC and Vivado HLS Types
	Default Constructor
	Integer Division
	Integer Modulus
	Negative Shifts
	Over-Shift Left
	Range Operation
	Division and Fixed-Point Types
	Right Shift and Fixed-Point Types
	Left Shift and Fixed-Point Types

	RTL Blackbox JSON File

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

