
Vivado Design Suite Tutorial

Programming and Debugging

UG936 (v2019.2) December 10, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG936

Revision History
The following table shows the revision history for this document.

Section Revision Summary
12/10/2019 Version 2019.2

General updates. Updated for Vivado 2019.2

5/22/2019 Version 2019.1

General updates. Editorial updates only. No technical content changes.

Revision History

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Debugging in Vivado Tutorial..5
Objectives...5
Getting Started.. 6

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a
Design... 11
Step 1: Creating a Project with the Vivado New Project Wizard..11
Step 2: Synthesizing the Design.. 12
Step 3: Probing and Adding Debug IP..13
Step 4: Implementing and Generating Bitstream...21

Chapter 3: Lab 2: Using the HDL Instantiation Method to Debug
a Design... 22
Step 1: Creating a Project with the Vivado New Project Wizard..22
Step 2: Synthesize Implement and Generate Bitstream.. 24

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado
Design Suite...25
Step 1: Creating a Project with the Vivado New Project Wizard..26
Step 2: Synthesize, Implement, and Generate the Bitstream..30

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and
Vivado Design Suite to Debug a Design...32
Step 1: Create a Synplify Pro Project...32
Step 2: Synthesize the Synplify Project... 38
Step 3: Create DCPs for the Black Box Created in Synplify Pro... 39
Step 4: Create a Post Synthesis Project in Vivado IDE.. 39
Step 5: Add More Debug Nets to the Project...40
Step 6: Implementing the Design and Generating the Bitstream...................................... 43

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=3

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug
Hardware.. 44
Step 1: Verifying Operation of the Sine Wave Generator...44
Step 2: Debugging the Sine Wave Sequencer State Machine (Optional)...........................55

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes
Post Implementation... 73

Chapter 8: Lab 7: Debugging Designs Using the Incremental
Compile Flow...87
Procedure...87
Step 1: Opening the Example Design and Adding a Debug Core....................................... 87
Step 2: Compiling the Reference Design..91
Step 3: Create New Runs.. 92
Step 4: Making Incremental Debug Changes.. 94
Step 5: Running Incremental Compile..97
Conclusion..99

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug
Serial Links... 100
Design Description..100
Step 1: Creating, Customizing, and Generating an IBERT Design.................................... 101
Step 2: Adding an IBERT core to the Vivado Project... 102
Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design...............108
Step 4: Interact with the IBERT core using Serial I/O Analyzer... 110

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI
Transactions.. 126
Design Description..126
Step 1: Creating a new Vivado Project and Generating the IP Integrator Design with

JTAG-to-AXI and System ILA.. 127
Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core........ 140
Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.... 146

Appendix A: Additional Resources and Legal Notices........................... 150
Xilinx Resources...150
Documentation Navigator and Design Hubs.. 150
Please Read: Important Legal Notices... 151

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=4

Chapter 1

Debugging in Vivado Tutorial
This document contains a set of tutorials designed to help you debug complex FPGA designs.
The first four labs explain different kinds of debug flows that you can chose to use during the
course of debug. These labs introduce the Vivado® Design Suite debug methodology
recommended to debug your FPGA designs. The labs describe the steps involved in taking a
small RTL design and the multiple ways of inserting the Integrated Logic Analyzer (ILA) core to
help debug the design. The fifth lab is for debugging high-speed serial I/O links in the Vivado
tool. The sixth lab is for debugging JTAG-AXI transactions in the Vivado tool. The first four labs
converge at the same point when connected to a target hardware board.

Example RTL designs are used to illustrate overall integration flows between the Vivado logic
analyzer, ILA, and the Vivado Integrated Design Environment (IDE). To be successful using this
tutorial, you should have some basic knowledge of the Vivado tool flow.

TRAINING: Xilinx provides training courses that can help you learn more about the concepts presented in this
document. Use these links to explore related courses:

• Designing FPGAs Using the Vivado Design Suite 1

• Designing FPGAs Using the Vivado Design Suite 2

• Designing FPGAs Using the Vivado Design Suite 3

• Designing FPGAs Using the Vivado Design Suite 4

• Vivado Design Suite User Guide: Programming and Debugging (UG908)

Objectives
These tutorials:

• Show you how to take advantage of integrated Vivado® logic analyzer features in the Vivado
design environment that make the debug process faster and simpler.

• Provide specifics on how to use the Vivado IDE and the Vivado logic analyzer to debug
common problems in FPGA logic designs.

• Provide specifics on how to use the Vivado Serial I/O Analyzer to debug high-speed serial
links.

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 5Send Feedback

https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=5

After completing this tutorial, you will be able to:

• Validate and debug your design using the Vivado Integrated Design Environment (IDE) and the
Integrated Logic Analyzer (ILA) core.

• Understand how to create an RTL project, probe your design, insert an ILA core, and
implement the design in the Vivado IDE.

• Generate and customize an IP core netlist in the Vivado IDE.

• Debug the design using Vivado logic analyzer in real-time, and iterate the design using the
Vivado IDE and a KC705 Evaluation Kit Base Board that incorporates a Kintex®-7 device.

• Analyze high-speed serial links using the Serial I/O Analyzer.

Getting Started
Setup Requirements
Before you start this tutorial, make sure you have and understand the hardware and software
components needed to perform the labs included in this tutorial.

Software

Vivado® Design Suite 2019.2

Hardware

• Kintex®-7 FPGA KC705 Evaluation Kit Base Board

• Digilent Cable

• Two SMA (Sub-miniature version A) cables

Chapter 1: Debugging in Vivado Tutorial

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=6

Figure 1: KC705 Board Showing Key Components

Tutorial Design Components
Labs 1 through 4 include:

• A simple control state machine

• Three sine wave generators using AXI4-Stream interface, native DDS Compiler

• Common push buttons (GPIO_BUTTON)

• DIP switches (GPIO_SWITCH)

• LED displays (GPIO_LED) VIO Core (Lab 3 only)

• Pushbutton Switches: Serve as inputs to the de-bounce and control state machine circuits.
Pushing a button generates a high-to-low transition pulse. Each generated output pulse is
used as an input into the state machine.

• DIP Switch: Enables or disables a de-bounce circuit.

• De-bounce Circuit: In this example, when enabled, provides a clean pulse or transition from
high to low. Eliminates a series of spikes or glitches when a button is pressed and released.

• Sine Wave Sequencer State Machine: Captures and decodes input from the two push buttons.
Provides sine wave selection and indicator circuits, sequencing among 00, 01, 10, and 11 (zero
to three).

• LED Displays: GPIO_LED_0 and GPIO_LED_1 display selection status from the state machine
outputs, each of which represents a different sine wave frequency: high, medium, and low.

Chapter 1: Debugging in Vivado Tutorial

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=7

Lab 5 includes:

• An IBERT core

• A top-level wrapper that instantiates the IBERT core.

Board Support and Pinout Information
Table 1: Pinout Information for the KC705 Board

Pin Name Pin Location Description
CLK_N AD11 Clock

CLK_P AD12 Clock

GPIO_BUTTONS[0] AA12 Reset

GPIO_BUTTONS[1] AG5 Sine Wave Sequencer

GPIO_SWITCH Y28 De-bounce Circuit Selector

LEDS_n[0] AB8 Sine Wave Selection[0]

LEDS_n[1] AA8 Sine Wave Selection[1]

LEDS_n[2] AC9 Reserved

LEDS_n[3] AB9 Reserved

Design Files
1. In your C: drive, create a folder called /Vivado_Debug.

2. Download the Reference Design Files from the Xilinx website.

CAUTION! The tutorial and design files may be updated or modified between software releases. You can
download the latest version of the material from the Xilinx website.

3. Unzip the tutorial source file to the /Vivado_Debug folder. There are six labs that use
different methodologies for debugging your design. Select the appropriate lab and follow the
steps to complete them.

• Lab 1: This lab walks you through the steps of marking nets for debug in HDL as well as the
post-synthesis netlist (Netlist Insertion Method). Following are the required files:

• debounce.vhd

• fsm.vhd

• sinegen.vhd

• sinegen_demo.vhd

• sine_high/sine_high.xci

• sine_low/sine_low.xci

• sine_mid/sine_mid.xci

Chapter 1: Debugging in Vivado Tutorial

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 8Send Feedback

http://secure.xilinx.com/webreg/clickthrough.do?cid=aa2fb5ed-236f-4454-b45e-c0cc3f4e783f
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=8

• sinegen_demo_kc705.xdc

• Lab 2: This lab goes over the details of marking nets for debug in the source HDL (HDL
instantiation method) as well as instantiating an ILA core in the HDL. Following are the
required files:

• debounce.vhd

• fsm.vhd

• sinegen.vhd

• sinegen_demo_inst.vhd

• ila_0/ila_0.xci

• sine_high/sine_high.xci

• sine_low/sine_low.xci

• sine_mid/sine_mid.xci

• sinegen_demo_kc705.xdc

• Lab 3: You can test your design even if the hardware is not physically accessible, using a VIO
core. This lab walks you through the steps of instantiating and customizing a VIO core that
you will hook to the I/Os of the design. Following are the required files:

• debounce.vhd

• fsm.vhd

• sinegen.vhd

• sinegen_demo_inst_vio.vhd

• sine_high/sine_high.xci

• sine_low/sine_low.xci

• sine_mid/sine_mid.xci

• ila_0/ila_0.xci

• sinegen_demo_kc705.xdc

• Lab 4: Nets can also be marked for debug in a third-party synthesis tool using directives for
the synthesis tool. This lab walks you through the steps of marking nets for debug in the
Synplify tool and then using Vivado® to perform the rest of the debug. Following are the
required files:

• debounce.vhd

• fsm.vhd

• sign_high.dcp

• sign_low.dcp

Chapter 1: Debugging in Vivado Tutorial

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=9

• sine_mid.dcp

• sine_high.xci

• sine_low.xci

• sine_mid.xci

• sinegen.edn

• sinegen_synplify.vhd

• synplify_1.sdc

• synplify_1.fdc

• sinegen_demo_kc705.xdc

• Lab 5: Take designs created from Lab 1, Lab 2, Lab 3, and Lab 4 and load them onto the
KC705 board.

• Lab 6: Enhance post implementation debugging by using the ECO flow to replace debug
probes.

• Lab 7: Use the Incremental Compile flow to enable faster debugging flows. Using the results
from a previous implementation run, this flow allows you to make debug modifications and
rerun implementation.

• Lab 8: Debug high-speed serial I/O links using the Vivado Serial I/O Analyzer. This lab uses
the Vivado IP example design.

• Lab 9: Use Vivado ILA core to debug JTAG-to-AXI transactions. This lab uses the Vivado IP
example design.

Connecting the Boards and Cables
1. Connect the Digilent cable from the Digilent cable connector to a USB port on your

computer.

2. Connect the two SMA cables (for lab 5 only) as follows:

a. Connect one SMA cable from J19 (TXP) to J17 (RXP).

b. Connect the other SMA cable from J20 (TXN) to J66 (RXN).

The relative locations of SMA cables on the board are shown in Setup Requirements.

Chapter 1: Debugging in Vivado Tutorial

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=10

Chapter 2

Lab 1: Using the Netlist Insertion
Method to Debug a Design

In this lab, you will mark signals for debug in the source HDL as well as the post synthesis netlist.
Then you will create an Integrated Logic Analyzer (ILA) core and take the design through
implementation. Finally, you will use the Vivado® tool to connect to the KC705 target board and
debug your design with the Vivado Integrated Logic Analyzer.

Step 1: Creating a Project with the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.

2. In the Getting Started page, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_netlist and provide the project location
(C:/Vivado_Debug). Ensure that Create Project Subdirectory is selected and click Next.

4. In the Project Type page, specify the type of project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click the “+” sign, and then click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/lab1 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into project is selected.

6. Click Add.

7. In the Add Directories dialog box, navigate to the /src/lab1 directory.

8. Select sine_high, sine_low, and sine_mid directories and click Select.

9. Verify that the directories are added. Click Next.

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=11

10. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.

11. Navigate to /src/lab1 directory and select sinegen_demo_kc705.xdc. Click Next.

12. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform.
You can also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

13. Review the New Project Summary page. Verify that the data appears as expected, per the
steps above, and click Finish.

Note: It could take a moment for the project to initialize.

Step 2: Synthesizing the Design
1. In the Project Manager, click Settings as shown in the following figure.

IMPORTANT! As an optional step, in the Settings dialog box, select Synthesis from the left and change flatten
hierarchy to none. The reason for changing this setting to none is to prevent the synthesis tool from performing
any boundary optimizations for this tutorial.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=12

2. In the Vivado® Flow Navigator, expand the Synthesis drop-down list, and click Run Synthesis.
In the Launch Runs dialog box, accept all of the default settings (Launch runs on local host),
and click OK.

Note: When synthesis runs, a progress indicator appears, showing that synthesis is occurring. This
could take a few minutes.

3. In the Synthesis Completed dialog box, click Cancel as shown in the following figure. You will
implement the design later.

Step 3: Probing and Adding Debug IP
To add a Vivado® ILA core to the design, take advantage of the integrated flows between the
Vivado IDE and Vivado logic analyzer.

In this step, you will accomplish the following tasks:

• Add debug nets to the project.

• Run the Set Up Debug wizard.

• Implement and open the design.

• Generate the bitstream.

Adding Debug Nets to the Project
Following are some ways to add debug nets using the Vivado® IDE:

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=13

• Add MARK_DEBUG attribute to HDL files.

• VHDL:

attribute mark_debug : string;
attribute mark_debug of sine : signal is "true";
attribute mark_debug of sineSel : signal is "true";

• Verilog:

(* mark_debug = "true" *) wire sine;
(* mark_debug = "true" *) wire sineSel;

This method lets you probe signals at the HDL design level. This can prevent optimization that
might otherwise occur to that signal. It also lets you pick up the signal tagged for post
synthesis, so you can insert these signals into a debug core and observe the values on this
signal during FPGA operation. This method gives you the highest probability of preserving
HDL signal names after synthesis.

• Right-click and select Mark Debug or Unmark Debug on a synthesized netlist.

This method is flexible since it allows probing the synthesized netlist in the Vivado IDE and
allows you to add/remove MARK_DEBUG attributes at any hierarchy in the design. In
addition, this method does not require HDL source modification. However, there may be
situations where synthesis may not preserve the signals due to netlist optimization involving
absorption or merging of design structures.

• Use a Tcl prompt to set the MARK_DEBUG attribute on a synthesized netlist.

set_property mark_debug true [get_nets -hier [list {sine[*]}]]

This applies the MARK_DEBUG on the current, open netlist.

This method is flexible since you can turn MARK_DEBUG on and off by modifying the Tcl
command. In addition, this method does not require HDL source modification. However, there
may be situations where synthesis does not preserve the signals due to netlist optimization
involving absorption or merging of design structures.

In the following steps, you learn how to add debug nets to HDL files and the synthesized design
using Vivado IDE.

TIP: Before proceeding, make sure that the Flow Navigator on the left panel is enabled.

Use Ctrl-Q to toggle it off and on.

1. In the Flow Navigator under the Synthesis drop-down list, click Open Synthesized Design as
shown in the following figure.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=14

2. In the Window drop-down menu, select Debug. When the Debug window opens, click the
window if it is not already selected.

3. Expand the Unassigned Debug Nets folder. The following figure shows those debug nets that
were tagged with MARK_DEBUG attributes in sinegen_demo.vhd.

4. In the Netlist window, select the Netlist tab and expand Nets. Select the following nets for
debugging as shown in the following figure.

• GPIO_BUTTONS_IBUF[0] and GPIO_BUTTONS_IBUF[1] - Nets folder under the top-level
hierarchy

• sel(2) - Nets folder under the U_SINEGEN hierarchy

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=15

• sine(20)- Nets folder under the U_SINEGEN hierarchy

Note: These signals represent the significant behavior of this design and are used to verify and debug
the design in subsequent steps.

5. Right-click the selected nets and select Mark Debug as shown in the following figure.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=16

6. Next, mark nets for debug in the Tcl console. Mark nets “sine(20)” under the U_SINEGEN
hierarchy for debug by executing the following Tcl command.

set_property mark_debug true [get_nets -hier [list {sine[*]}]]

TIP: In the Debug window, you can see the unassigned nets you just selected. In the Netlist window, you can
also see the green bug icon next to each scalar or bus, which indicates that a net has the attribute mark_debug
= true as shown the following two figures.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=17

Running the Set Up Debug Wizard
1. From the Debug window tool bar or Tools drop-down menu, select Set Up Debug. The Set up

Debug wizard opens.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=18

2. When the Set up Debug wizard opens, click Next.

3. In the Nets to Debug page, shown in the following figure, ensure that all the nets have been
added for debug and click Next.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=19

4. In the ILA Core Options page, go to Trigger and Storage Settings section and select both
Capture Control and Advanced Trigger. Click Next.

5. In the Setup Debug Summary page, make sure that all the information is correct and as
expected. Click Finish.

Upon clicking Finish, the relevant XDC commands that insert the ILA core(s) are generated.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=20

Step 4: Implementing and Generating
Bitstream

1. In the Flow Navigator, under Program and Debug, click Generate Bitstream.

2. In the Save Project dialog box click Save. If a dialog box appears indicating this will cause the
Synthesis results to go out of date, click OK. This applies the MARK_DEBUG attributes on
the newly marked nets. You can see those constraints by inspecting the
sinegen_demo_kc705.xdc file.

3. When the No Implementation Results Available dialog box pops up, click Yes. In the Launch
Runs dialog box, accept all of the default settings (Launch runs on local host) and click OK.

4. When the bitstream generation completes, the Bitstream Generation Completed dialog box
pops up. Click OK.

5. In the dialog box asking to close synthesized design before opening implemented design.
Click Yes.

6. Examine the Timing Summary report to ensure that all the specified timing constraints are
met.

Proceed to Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to
complete the rest of the steps for debugging the design.

Chapter 2: Lab 1: Using the Netlist Insertion Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=21

Chapter 3

Lab 2: Using the HDL Instantiation
Method to Debug a Design

The HDL Instantiation method is one of the two methods supported in the Vivado® tool debug
probing. For this flow, you will generate an ILA IP using the Vivado IP Catalog and instantiate the
core in a design manually as you would with any other IP.

Step 1: Creating a Project with the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl and provide the project location
(C:/Vivado_Debug). Ensure that Create project subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click the “+” sign, and then click Add Directories.

c. In the Add Source Directories dialog box, navigate to the /src/lab2 directory, and
choose the sine_high, sine_low, sine_mid, and ila_0 directories. Click Select.

d. Verify that the directories are added, and Copy Sources into Project is selected.

e. Click the “+” sign, and then click Add File.

f. In the Add Source Files dialog box, navigate to the/src/lab2 directory and choose
debounce.vhd, fsn.vhd, sinegen.vhd, and sinegen_demo_inst.vhd files. Click
OK.

g. Verify that the sources and directories are added, and that Copy Sources into Project is
selected. Click Next.

Chapter 3: Lab 2: Using the HDL Instantiation Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=22

6. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.

7. Navigate to /src/lab1 directory and select sinegen_demo_kc705.xdc. Click Next.

8. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform.
You can also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the
steps above. Click Finish.

10. In the Sources window in Vivado IDE, expand sinegen_demo_inst to see the source files for
this lab. Note that ila_0 core has been added to the project.

11. Double-click the sinegen_demo_inst.vhd file, shown in the following figure to open it
and inspect the instantiation and port mapping of the ILA core in the HDL code.

Chapter 3: Lab 2: Using the HDL Instantiation Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=23

Step 2: Synthesize Implement and Generate
Bitstream

1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream.
This will synthesize, implement and generate a bitstream for the design.

2. The No Implementation Results Available dialog box appears. Click Yes. In the Launch Runs
dialog box, accept all of the default settings (Launch runs on local host) and click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box
appears. Open Implemented Design is selected by default. Click OK.

4. In the Design Timing Summary window, ensure that all timing constraints are met.

5. Proceed to Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware chapter to
complete the rest of this lab.

Chapter 3: Lab 2: Using the HDL Instantiation Method to Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=24

Chapter 4

Lab 3: Using a VIO Core to Debug a
Design in Vivado Design Suite

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive
internal FPGA signals in real time. The number and width of the input and output ports are
customizable in size to interface with the FPGA design. Because the VIO core is synchronous to
the design being monitored and/or driven, all design clock constraints that are applied to your
design are also applied to the components inside the VIO core. Run time interaction with this
core requires the use of the Vivado® tool's logic analyzer feature. The following figure is a block
diagram of the new VIO core.

Figure 2: VIO Block Diagram

This lab walks you through the steps of instantiating and configuring the VIO core. It walks you
through the steps of connecting the I/Os of the design to the VIO core. This way, you can debug
your design when you do not have access to the hardware or the hardware is remotely located.

The following ports are created:

• One four-bit PROBE_IN0 port. This has two bits to monitor the two-bit Sine Wave selector
outputs from the finite state machine (FSM) and other two bits to mimic the state of the other
two LEDs on the board. We will configure these four-bit signals as LEDs during run time to
mimic the LEDs displayed on the KC705 board.

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=25

• One two-bit PROBE_OUT0 port to drive the input buttons on the FSM. We will configure it so
one bit can be used as a toggle switch during run time to mimic PUSH_BUTTON switch SW3,
and the second bit will be used as PUSH_BUTTON switch SW6.

Step 1: Creating a Project with the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, add RTL source files and
constraints, and specify the target device.

1. Invoke Vivado IDE.

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl_vio and provide the project
location (C:/Vivado_Debug). Ensure that the Create project subdirectory is selected. Click
Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page:

a. Set Target Language to VHDL.

b. Click Add Files.

c. In the Add Source Files dialog box, navigate to the /src/lab3 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected.

6. Click the “+” sign, and then click Add Directories.

7. In the Add Source Directories dialog box, navigate to the /src/lab3 directory and choose
the sine_high, sine_low, sine_mid, and ila_0 directories. Click Select.

8. Verify that the directories are added and Copy sources into project is selected. Click Next.

9. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.

10. Navigate to the /src/lab3 directory and select sinegen_demo_kc705.xdc. Click Next.

11. In the Default Part page, specify the xc7k325tffg900-2 platform. You can also select Boards
and then select Kintex-7 KC705 Evaluation Platform. Click Next.

12. Review the New Project Summary page. Verify that the data appears as expected, in
accordance with the previous steps. Click Finish.

Note: It might take a moment for the project to initialize.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=26

13. In the Sources window in Vivado IDE, expand sinegen_demo_inst_vio to see the source
files for this lab. Note that the ila_0 core has been added to the project. However, vio_0 (the
VIO core) is missing.

14. Instantiate and configure this VIO core as follows. From the Flow Navigator, click IP Catalog,
expand Debug & Verification, then expand Debug, and double-click VIO. The Customize IP
dialog box opens.

15. On the General Options tab, leave the Component Name as its default value of vio_0, set
Input Probe Count to 1, Output Probe Count to 1, and select the Enable Input Probe Activity
Detectors check box.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=27

16. On the PROBE_IN Ports tab, set Probe Width to 4.

17. On the PROBE_OUT Ports tab, set Probe Width to 2 and Initial Value to 0x0.

18. Click OK to generate the IP. The Generate Output Products dialog box appears. Click
Generate. An additional dialog box may appear indicating that an out-of-context module run
has been launched, if so click OK.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=28

Output product generation should take less than a minute. At this point, you have finished
customizing the VIO. This core has already been instantiated in the top level design.

At this point, the Sources window should look as shown in the following figure.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=29

19. Double-click sinegen_demo_inst.vhd in the Sources window to open it, and inspect the
instantiation and port mapping of the ILA core in the HDL code.

Step 2: Synthesize, Implement, and Generate
the Bitstream

1. From the Program and Debug drop-down list in Flow Navigator, click Generate Bitstream.
This synthesizes, implements, and generates a bitstream for the design

2. The Missing Implementation Results dialog box appears. Click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box
appears. Open Implemented Design is selected by default. Click OK.

4. Inspect the Timing Summary report and make sure that all timing constraints have been met.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=30

5. Proceed to Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to
complete the rest of the steps for debugging the design. Then proceed to the Verifying the
VIO Core Activity (Only applicable to Lab 3) section in Lab 5 Step 2 to complete the rest of
this lab.

Chapter 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=31

Chapter 5

Lab 4: Using the Synplify Pro
Synthesis Tool and Vivado Design
Suite to Debug a Design

This simple tutorial shows how to do the following:

• Create a Synplify Pro project for the wave generator design.

• Mark nets for debug in the Synplify Pro constraints file as well as VHDL source files.

• Synthesize the Synplify Pro project to create an EDIF netlist.

• Create a Vivado® project based on the Synplify Pro netlist.

• Use the Vivado® IDE to setup and debug the design from the synthesized design using
Synplify Pro.

Step 1: Create a Synplify Pro Project
1. Launch Synplify Pro and select File → New.

2. Set File Type to Project File (Project) as highlighted in the following figure.

3. In the New File Name box, enter synplify_1.

4. Click OK.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=32

5. If you get a dialog box asking you to create a non-existing directory, click OK.

6. In the left panel of the Synplify Pro window, click Add File as shown in the following figure.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=33

7. In the Add Files to Project dialog box, change the Files of Type to HDL File. Navigate to
C:\Vivado_Debug\src\lab4, which shows all the VHDL source files needed for this lab.
Select the following three files by pressing the Ctrl key and clicking on them.

• debounce.vhd

• fsm.vhd

• sinegen_demo.vhd

8. Click Add.

9. In the same dialog box set Files of type to Constraints Files. This shows the synplify_1.sdc
file. Select the file and click Add as shown in the following figure.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=34

10. In the same dialog box, set Files of type to FPGA Constraint Files. This shows the
synplify_1.fdc file. Select the file and click Add as shown in the following figure. Click OK.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=35

11. Now, you need to set the implementation options.

12. Click Implementation Options in the Synplify Pro window as shown in the following figure.

13. This brings up the Implementation Options dialog box as shown in the following figure. In the
Device tab, set Technology to Xilinx Kintex7, Part to XC7K325T, Package to FFG900 and
Speed to -2. Leave all the other options at their default values. Click OK.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=36

14. You need to preserve the net names that you want to debug by putting attributes in the HDL
files. These attributes are already placed in the sinegen_demo.vhd, file of this tutorial.
Open the sinegen_demo.vhd file and inspect the lines shown.

15. You also can specify the MARK_DEBUG attributes in the source HDL files to mark the signals
for debug, as shown in the code snippet from singen_demo.vhd file.

16. The synplify_1.sdc file contains various kinds of constraints such as pin location, I/O
standard, and clock definition. The synplify_1.fdc file contains directives for the
compiler. Here is where the nets of interest to us that are marked for debug are located. The
attribute and the nets selected for debug are shown in the following figure.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=37

In the above constraints, sinegen has been defined as a black box by using the syn_black_box
attribute. Second, the syn_no_prune attribute has been used so that the I/Os of this block are
not optimized away. Finally, two nets, sine[20:0] and sel[1:0], have been assigned the
MARK_DEBUG attribute such that these two nets should show up in the synthesized design
in Vivado® IDE for further debugging. For further information on these attributes, please
refer to the Synplify Pro User Manual and Synplify Pro Reference Manual.

Step 2: Synthesize the Synplify Project
1. Before implementing the project, you need to set the name for the output netlist file. By

default, the name of the output netlist file is synplify_1.edf. To change the name of the
output file, type the following command at the Tcl command prompt:

%project -result_file "./rev_1/sinegen_demo.edf"

You will use this file in Vivado® IDE.

2. With all the settings in place, click the Run button in the left panel of the Synplify Pro window
to start synthesizing the design.

3. During synthesis, status messages appear in the Tcl Script tab. Warning messages are
expected, but there should not be any Error messages. To see detailed messages, click the
Messages tab in the bottom left-hand corner of the Synplify Pro console.

4. When synthesis completes, the output netlist is written to the file: rev_1/
sinegen_demo.edf

[Optional] To view the netlist select View → View Result File.

5. Click File → Save All to save the project, then click File → Exit.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=38

Step 3: Create DCPs for the Black Box Created
in Synplify Pro

The black box, sinegen, created in the Synplify Pro project, contains the Direct Digital Synthesizer
IP. You need to create a synthesized design for this block. To do this, create an RTL type project
in Vivado® IDE by following the steps outlined below.

1. Launch Vivado IDE.

2. Click Create Project. This opens up the New Project wizard. Click Next.

3. Under Project Name, set the project name to proj_synplify_netlist. Click Next.

4. Under Project Type, select RTL Project. Click Next.

5. Under Add Sources, click Add Files, navigate to the Vivado_Debug/src/lab4 folder and
select the sinegen.vhd file. Set Target Language to VHDL. Ensure that Copy sources into
project box is selected. Click Next.

6. Click Add Files, navigate to the Vivado_Debug/src/lab4 folder and select the
sine_high.xci, sine_low.xci, and sine_mid.xci files. Click Next.

7. Under Default Parts, select Boards and then select the Kintex-7 KC705 Evaluation Platform
and correct version for your hardware. Click Next.

8. Under New Project Summary, ensure that all the settings are correct. Click Finish.

9. Once the project has been created, in Vivado Flow Navigator, under the Project Manager
folder, click Settings. In the dialog box, in the left panel, click Synthesis. From the pull-down
menu on the right panel, set -flatten_hierarchy to none. Click OK.

10. In Vivado IDE Flow Navigator, under Synthesis Folder, click Run Synthesis.

11. When synthesis completes the Synthesis Completed dialog box appears. Select Open
Synthesized Design and click OK.

12. Click File → Exit in Vivado IDE. When the OK to exit dialog box pops up, click OK.

Step 4: Create a Post Synthesis Project in
Vivado IDE

1. Launch Vivado® IDE.

2. Click Create Project. This opens up the New Project wizard. Click Next.

3. Set the Project Name to proj_synplify. Click Next.

4. Under Project Type, select Post-synthesis Project. Click Next.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=39

5. Under Add Netlist Sources, click Add Files, navigate to the Vivado_Debug/synopsys/
rev_1 folder, and select sinegen_demo.edf. Click OK.

6. Add the netlist file created in the previous section. Click Add Files again, navigate to the
proj_synplify_netlist/proj_synplify_netlist.runs/synth1 folder and select
sinegen.dcp.

Add the DCP files created for the sub-module IPs in the previous section. Click Add
Directories again, navigate to the proj_synplify_netlist/
proj_synplify_netlist.srcs/sources_1/ip folder and select the following:

• sine_high

• sine_mid

• sine_low

Click OK in the Add Source Files dialog box. In the Add Netlist Sources dialog box ensure that
Copy Sources into Project is selected. Click Next.

7. Click Add Files, navigate to the Vivado_Debug/src folder, and select the
sinegen_demo_kc705.xdc file. This file has the appropriate constraints needed for this
Vivado project. Click OK in the Add Constraints File dialog box. In the Add Constraints
(optional) dialog box ensure that Copy Constraints into Project is selected. Click Next.

8. Under Default Part, select Boards and then select Kintex-7 KC705 Evaluation Platform and
the right version number for your hardware. Click Next.

9. Under New Project Summary, ensure that all the settings are correct and click Finish.

10. In the Sources window, ensure sinegen_demo.edf is selected as the top module.

Step 5: Add More Debug Nets to the Project
1. In Vivado® IDE, in the Flow Navigator, select Open Synthesized Design from the Netlist

Analysis folder.

2. Select the Netlist tab in the Netlist window to expand Nets. Select the following nets for
debugging:

• GPIO_BUTTONS_c(2)

• sine (20)

After selecting all the specified nets, right-click the nets and click Mark Debug, as shown in
the following figure.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=40

3. You should be able to see all the nets that are marked for debug, as shown in the following
figure.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=41

Running the Set up Debug Wizard
1. Click the Set up Debug icon in the Debug window or select the Tools menu, and select Set up

Debug. The Set up Debug wizard opens.

2. Click through the wizard to create Vivado® logic analyzer debug cores, keeping the default
settings.

Note: In the Specify Nets to Debug dialog box, ensure that all the nets marked for debug have the
same clock domain.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=42

Step 6: Implementing the Design and
Generating the Bitstream

1. In the Flow Navigator, under the Program and Debug drop-down list, click Generate
Bitstream.

2. In the Save Project dialog box, click Save.

3. When the Bitstream generation finishes, the Bitstream Generation Completed dialog box
pops-up and Open Implemented Design is selected by default. Click OK.

4. If you get a dialog box asking to close the synthesized design before opening the
implemented design, click Yes.

5. Proceed to Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to
complete the rest of this lab.

Chapter 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to
Debug a Design

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=43

Chapter 6

Lab 5: Using the Vivado Logic
Analyzer to Debug Hardware

The final step in debugging is to connect to the hardware and debug your design using the
Integrated Logic Analyzer (ILA). Before continuing, make sure you have the KC705 hardware
plugged into a machine.

In this step, you learn:

• How to debug the design using the Vivado® logic analyzer.

• How to use the currently supported Tcl commands to communicate with your target board
(KC705).

• How to discover and correct a circuit problem by identifying unintended behaviors of the
push-button switch.

• Useful techniques for triggering and capturing design data.

Step 1: Verifying Operation of the Sine Wave
Generator

After doing some setup work, you will use Vivado logic analyzer to verify that the sine wave
generator is working correctly. Your two primary objectives are to verify that:

• All sine wave selections are correct.

• The selection logic works correctly.

Target Board and Server Set Up
• Connecting to the target board remotely: If you plan to connect remotely, you need to make

sure that the KC705 board is plugged into a machine and you are running an hw_server
application on that machine. If you plan to connect locally, skip steps 1-5 below and go
directly to the Connecting to the Target Board Locally section.

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows
system.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=44

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW11, De-bounce Enable) to the OFF position.

5. 5. Assuming you are connecting your KC705 board to a 64-bit Windows machine and you
will be running the hw_server from the network instead of your local drive, open a cmd
prompt and type the following:

<Xilinx_Install>\Vivado\2019.x\bin\hw_server

Leave this cmd prompt open while the hw_server is running. Note the machine name that
you are using, you will use this later when opening a connection to this instance of the
hw_server application.

• Connecting to the Target Board Locally: If you plan to connect locally, ensure that the KC705
board is plugged into a Windows machine and then perform the following steps:

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows
system.

2. Ensure that the board is plugged in and powered on.

3. Power cycle the board to clear the device.

4. Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Using the Vivado Integrated Logic Analyzer
1. In the Flow Navigator, under Program and Debug, select Open Hardware Manager.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=45

2. The Hardware Manager window opens. Click Open Target → Open New Target.

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if
the target is on the local machine) in the Connect to field. Click Next.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=46

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

5. If there is more than one target connected, you will see multiple entries in the Select
Hardware Target page. In this tutorial, there is only one target, as shown in the following
figure. Click Next.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=47

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=48

7. Wait for the connection to the hardware to complete. The dialog in following figure appears
while hardware is connecting.

After the connection to the hardware target is made, the Hardware window appears as in the
following figure.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device detected
in the JTAG chain.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=49

8. Next, program the XC7K325T device using the previously created .bit bitstream by right-
clicking the XC7K325T device and selecting Program Device as shown in the following
figure.

9. In the Program Device dialog box verify that the .bit and .ltx files are correct for the lab
that you are working on and click Program to program the device as shown in the following
figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=50

CAUTION! The file paths of the bitstream and debug probes to be programmed will be different for different
labs. Ensure that the relative paths are correct.

Note: Wait for the program device operation to complete. This may take few minutes.

10. Ensure that an ILA core was detected in the Hardware panel of the Debug view.

11. The Integrated Logic Analyzer dashboard opens, as shown in the following figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=51

Verifying Sine Wave Activity
1. In the Hardware window, click Run Trigger Immediate to trigger and capture data

immediately as shown in shown in the following figure.

2. In the Waveform window, verify that there is activity on the 20-bit sine signal as shown in
the following figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=52

Displaying the Sine Wave
1. Right-click U_SINEGEN/sine[19:0] signals, and select Waveform Style → Analog as shown in

the following figure.

CAUTION! The waveform does not look like a sine wave. This is because you must change the radix setting
from Hex to Signed Decimal, as described in the following subsection.

2. Right-click U_SINEGEN/sine[19:0] signals, and select Radix → Signed Decimal.

You should now be able to see the high frequency sine wave as shown in the following figure
instead of the square wave.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=53

Correcting Display of the Sine Wave
To view the mid, and low frequency output sine waves, perform the following steps:

1. Cycle the sine wave sequential circuit by pressing the GPIO_SW_E push button as shown in
the following figure.

2. Click Run Trigger Immediately again to see the new sine selected sine wave. You should see
the mid frequency as shown in the following figure. Notice that the sel signal also changed
from 0 to 1 as expected.

3. Repeat step 1 and 2 to view other sine wave outputs.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=54

Note: As you sequence through the sine wave selections, you may notice that the LEDs do not light up
in the expected order. You will debug this in the next section of this tutorial. For now, verify for each
LED selection, that the correct sine wave displays. Also, note that the signals in the Waveform window
have been re-arranged in the previous three figures.

Step 2: Debugging the Sine Wave Sequencer
State Machine (Optional)

As you corrected the sine wave display, the LEDs might not have lit up in sequence as you
pressed the Sine Wave Sequencer button. With each push of the button, there should be a single,
cycle-wide pulse on the GPIO_BUTTONS_re[1] signal. If there is more than one, the behavior
of the LEDs becomes irregular. In this section of the tutorial, use Vivado logic analyzer to probe
the sine wave sequencer state machine, and to view and repair the root cause of the problem.

Before starting the actual debug process, it is important to understand more about the sine wave
sequencer state machine.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=55

Sine Wave Sequencer State Machine Overview
The sine wave sequencer state machine selects one of the four sine waves to be driven onto the
sine signal at the top-level of the design. The state machine has one input and one output. The
following figure shows the schematic elements of the state machine. Refer to this diagram as you
read the following description and as you perform the steps to view and repair the state machine
glitch.

• The input is a scalar signal called “button”. When the button input equals “1”, the state
machine advances from one state to the next.

• The output is a 2-bit signal vector called “Y”, and it indicates which of the four sine wave
generators is selected.

The input signal button connects to the top-level signal GPIO_BUTTONS_re[1], which is a low-
to-high transition indicator on the Sine Wave Sequencer button. The output signal Y connects to
the top-level signal, sineSel, which selects the sine wave.

Figure 3: Sine Wave Sequence Button Schematic

Viewing the State Machine Glitch
You cannot troubleshoot the issue identified above by connecting a debug probe to the
GPIO_BUTTON [1] input signal itself. The GPIO_BUTTON [1] input signal is a PAD signal that is
not directly accessible from the FPGA fabric. Instead, you must trigger on low-to-high transitions
(rising edges) on the GPIO_BUTTON_IBUF signal, which is connected to the output of the input
buffer of the GPIO_BUTTON [1] input signal.

As described earlier, the glitch reveals itself as multiple low-to-high transitions on the
GPIO_BUTTONS_IBUF_1 signal, but it occurs intermittently. Because it could take several button
presses to detect it, you will now set up the Vivado logic analyzer tool to Repetitive Trigger Run
Mode. This setting makes it easier to repeat the button presses and look for the event in the
Waveform viewer.

1. Under the Settings tab for hw_ila_1, configure the following:

• Trigger Mode to BASIC_ONLY

• Capture Mode to BASIC

• Window Data Depth to 1024

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=56

• Trigger position to 512

• Press the + button in the Trigger Setup window and add probe GPIO_BUTTONS_IBUF_1.
Change the Value field to RX by selecting the value RX in the Value field, as shown in the
following figure.

CAUTION! For different labs the GPIO_BUTTONS_IBUF may show up differently or have a different name such
as button_in4_in. This may also show up as two individual bits or two bits lumped together in a bus. Ensure that
you are using bit 1 of this bus to set up your trigger condition. For example in case of a two-bit bus, you will set
the Value field in the Compare Value dialog box to RX.

2. Select Enable Auto Re-trigger mode on the ILA debug core as shown below.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=57

CAUTION! The ILA properties window may look slightly different for different labs.

When you issue a Run Trigger or a Run Trigger Immediate command after setting the Auto
Retrigger mode, the ILA core does the following repetitively until you disable the Auto
Retrigger mode option.

• Arms the trigger.

• Waits for the trigger.

• Uploads and displays waveforms.

3. On the KC705 board, press the Sine Wave Sequencer button until you see multiple
transitions on the GPIO_BUTTONS_IBUF_1 signal (this could take 10 or more tries). This is a
visualization of the glitch that occurs on the input. An example of the glitch is shown in the
following two figures.

CAUTION! You may have to repeat the previous two steps repeatedly to see the glitch. Once you can see the
glitch, you may observe that the signal glitches are not at exactly the same location as shown in the figure
below.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=58

Fixing the Signal Glitch and Verifying the Correct
State Machine Behavior
The multiple transition glitch or “bounce” occurs because the mechanical button is making and
breaking electrical contact just as you press it. To eliminate this signal bounce, a “de-bouncer”
circuit is required.

1. Enable the de-bouncer circuit by setting DIP switch position on the KC705 board (labeled
De-bounce Enable in Figure 1: KC705 Board Showing Key Components) to the ON or UP
position.

2. Enable the Auto-Retrigger mode on the ILA debug core and click RunTrigger on the ILA core,
and

• Ensure that you no longer see multiple transitions on the GPIO_BUTTON_re[1] signal on a
single press of the Sine Wave Sequencer button.

• Verify that the state machine is working correctly by ensuring that the sineSel signal
transitions from 00 to 01 to 10 to 11 and back to 00 with each successive button press.

Verifying the VIO Core Activity (Only applicable to
Lab 3)
1. From the Program and Debug section in Flow Navigator, click Open Hardware Manager.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=59

The Hardware Manager window opens.

2. Click Open a new hardware target.

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if
the target is on the local machine) in the Connect to field.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=60

5. Ensure that you are connected to the right target by selecting the target from the Hardware
Targets page. If there is only one target, that target is selected by default. Click Next.

6. In the Set Hardware Target Properties page, click Next.

7. In the Open Hardware Target Summary page, verify that all the information is correct, and
click Finish.

8. Program the device by selecting and right-clicking the device in the Sources window and then
selecting Program Device.

9. In the Program Device dialog box, ensure that the bit file to be programmed is correct. Click
OK.

10. After the FPGA device is programmed, you see the VIO and the ILA core in the Hardware
window.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=61

You now have a debug dashboard for the ILA core as shown in the following figure.

11. Click Run Trigger Immediate to capture the data immediately.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=62

12. Make sure that there is activity on the sine [19:0] signal.

13. Select the sine signal in the Waveform window, right-click and select Waveform Style → 
Analog.

14. Select the sine signal in the Waveform window again, right-click and select Radix → Signed
Decimal. You should be able to see the sine wave in the Waveform window.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=63

15. Instead of using the GPIO_SW push button to cycle through each different sine wave output
frequency, you are going to use the virtual “push_button_vio” toggle switch from the VIO
core.

16. You can now customize the ILA dashboard options to include the VIO window. This allows
you to toggle the VIO output drivers and observe the impact on the ILA waveform window all
in one dashboard. Slide out the Dashboard Options window.

17. Add the VIO window to the ILA dashboard by selectinghw_vio_1.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=64

Note: The ILA dashboard now contains the VIO window as well.

18. Adjust the Trigger Setup – hw_ila_1 window and the hw_vio_1 window so that they are side
by side as shown in the following figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=65

19. In the hw_vio_1 window, select the “+” button, and select all the probes under hw_vio_1.

20. Click OK.

Note: The initial values of all the probes.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=66

21. Note the values on all probes in the hw_vio_1 window.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=67

22. Set the push_button_reset output probe by right-clicking push_button_reset and select
Toggle Button.

This will toggle the output driver from logic from ‘0’ to ‘1’ to ‘0’ as you click. It is similar to the
actual push button behavior, though there is no bouncing mechanical effect as with a real
push button switch.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=68

The Value field for push_button_reset is highlighted.

23. Click in the Value field to change its value to 1.

24. Follow the step above to change the push_button_vio to Toggle button as well.

25. Set these two bits of the “sineSel” input probe by right-clicking PROBE_IN0[0] and
PROBE_IN0[1] and selecting LED.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=69

26. In the Select LED Colors dialog box, pick the Low Value Color and the High Value Color of
the LEDs as you desire and click OK.

27. When finished, your VIO Probes window in the Hardware Manager should look similar to the
following figure.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=70

28. To cycle through each different sine wave output frequency using the virtual
“push_button_vio” from the VIO core, perform the following simple steps:

a. Toggle the value of the “push_button_vio” output driver from 0 to 1 to 0 by clicking on
the logic displayed under the Value column. You will notice the sineSel LEDs changed
accordingly – 0, 1, 2, 3, 0, etc…

b. Click Run Trigger for hw_ila_1 to capture and display the selected sine wave signal from
the previous step.

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=71

Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=72

Chapter 7

Lab 6: Using the ECO Flow to
Replace Debug Probes Post
Implementation

This simple tutorial shows you how to replace nets connected to an ILA core in a placed and
routed design checkpoint using the Vivado® Design Suite Engineering Change Order (ECO) flow.

Note: To learn more about using the ECO flow, refer to the Debugging Designs Post Implementation chapter
in the Vivado Design Suite User Guide: Programming and Debugging (UG908).

1. Open the Vivado® Design Suite, and select File → Open Checkpoint.

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 73Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=73

2. Open the routed checkpoint that you created in Chapter 3: Lab 2: Using the HDL
Instantiation Method to Debug a Design.

Change the layout in the Vivado Design Suite toolbar dropdown to ECO.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=74

Note: The Flow Navigator window now changes to ECO Navigator with a different set of options.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=75

3. In the ECO Navigator window, click Replace Debug Probes to bring up the Replace Debug
Probes dialog box. Note the Debug Hub and ILA cores in the design.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=76

IMPORTANT! Xilinx strongly recommends that you do not replace the clock nets associated with ILA and
Debug Hub cores.

4. In the Replace Debug Probes dialog box, highlight the probes whose nets you want to
change. In this lab we will replace the GPIO_BUTTONS_dly[0] net that is being probed.

5. Click the Edit Probes button to the right of the GPIO_BUTTONS_dly[0] probe net to bring up
the Choose Nets dialog box.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=77

6. In the Choose Nets dialog box, choose the U_DEBOUNCE_0/clear net to replace the existing
GPIO_BUTTONS_dly[0] probe net. Click OK.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=78

7. Type for “*clear net” in the Name field and Click Find. Notice the U_DEBOUNCE_0 net in the
Found nets area. Select U_DEBOUNCE_0/clear net using the “->” arrow and click OK. The
U_DEBOUNCE_0/clear net to replaces the existing GPIO_BUTTONS_dly[0] probe net.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=79

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=80

8. Now click OK in the Replace Debug Probes dialog. An additional dialog box may appear if the
nets were marked with DONT_TOUCH indicating that it must be removed to proceed. If so,
click Unset Property and Continue.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=81

IMPORTANT! Check the Tcl Console to ensure that there are no Warnings/Errors.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=82

9. Save your modifications to a new checkpoint. Use the Save Checkpoint As option in the ECO
Navigator to bring up the Save Checkpoint As dialog box. Specify a file name for the .dcp file
and click OK.

10. Click Write Debug Probes in the ECO Navigator. When the Write Debug Probes dialog
appears, click OK to generate a new .ltx file for the debug probes.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=83

11. Click Generate Bitstream in the ECO navigator. When the Generate Bitstream dialog appears,
change the bit file name to project_sinegen_demo_routed_debug_changes.bit in
the Bit File field and click OK to generate a new .bit file that reflects the debug probe
changes.

12. Connect to the Vivado Hardware Manager by selecting Open Hardware Manager in the ECO
Navigator.

13. Connect to the local hardware server by following the steps in the Target Board and Server
Set Up section in Chapter 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=84

Program the device using the .bit file and .ltx files that you created in the previous
steps.

14. Select Window → Debug Probes from the Vivado Design Suite toolbar. Ensure that the
probes that were replaced in step 8 and 9 above are reflected in the probes associated with
hw_ila_1.

15. Run the Trigger on the ILA. Ensure the probes that were replaced in step 8 and 9 above are
reflected in the Waveform window as well.

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=85

Chapter 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=86

Chapter 8

Lab 7: Debugging Designs Using
the Incremental Compile Flow

This lab introduces the Vivado® Incremental Compile Flow to add/edit/delete debug cores to an
earlier implementation of the design.

Procedure
This lab consists of five generalized steps followed by general instructions and supplementary
detailed steps that allow you to make choices based on your skill level as you progress through
the lab.

If you need help completing a general instruction, go to the detailed steps below it, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

The lab has five primary steps as follows:

1. Step 1: Opening the Example Design and Adding a Debug Core

2. Step 2: Compiling the Reference Design

3. Step 3: Create New Runs

4. Step 4: Making Incremental Debug Changes

5. Step 5: Running Incremental Compile

Step 1: Opening the Example Design and
Adding a Debug Core

1. Start Vivado IDE

Load Vivado IDE by doing one of the following:

• Double-click the Vivado IDE icon on the Windows desktop.

• Type vivado in a command terminal.

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=87

From the Getting Started page, click Open Example Project.

2. In the Open Example Project dialog box, click Next.

3. Select the CPU (Synthesized) design template, and click Next.

4. In the Project Name dialog box, specify the following:

• Project name: project_cpu_incremental

• Project location: <Project_Dir>

Click Next.

5. In the Default Part screen, select xc7k70tfbg676-2 and click Next.

6. The New Project Summary screen appears, displaying project details. Reviewed these and
click Finish.

7. When Vivado IDE opens with the default view, open the Synthesized design.

8. In the Netlist window, select the set of signals specified below in the cpuEngine hierarchy
and apply the MARK_DEBUG property by right-clicking and selecting Mark Debug from the
dialog.

cpuEngine/dcqmem_dat_qmem[*],
cpuEngine/dcpu_dat_qmem[*],
cpuEngine/dcqmem_adr_qmem[*],
cpuEngine/du_dsr[*],
cpuEngine/dvr0__0[*],
cpuEngine/du_dsr[*],
cpuEngine/dcqmem_sel_qmem[*]

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=88

Alternatively use can use the Tcl command below to set the MARK_DEBUG property on the
signals specified.

set_property mark_debug true [get_nets [list {cpuEngine/
dcqmem_dat_qmem[*]}
 {cpuEngine/dcpu_dat_qmem[*]} {cpuEngine/dcqmem_adr_qmem[*]}
{cpuEngine/du_dsr[*]} {cpuEngine/dvr0__0[*]} {cpuEngine/du_dsr[*]}
{cpuEngine/dcqmem_sel_qmem[*]}]]

9. In the Flow Navigator, click Set Up Debug to invoke the Set Up Debug wizard.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=89

10. When the Set Up Debug Wizard appears, click Next.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=90

11. When ILA Core Options screen appears, click Next again.

12. When Set Up Debug Summary screen appears, ensure that 1 debug core is created and click
Finish.

13. Check the Debug widow to ensure that u_ila_0 core has been inserted into the design.

14. Save the new debug XDC commands by selecting File → Constraints → Save or clicking the
Save Constraints button.

Step 2: Compiling the Reference Design
The following are the steps to run implementation on the reference design.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=91

1. From the Flow Navigator, select Run Implementation.

2. After implementation finishes, the Implementation Complete dialog box opens. Click Cancel.

3. In a project-based design, the Vivado® Design Suite saves intermediate implementation
results as design checkpoints in the implementation runs directory. You will use one of the
saved design checkpoints from the implementation in the incremental compile flow.

TIP: When you re-run implementation, the previous results will be deleted. Save the intermediate
implementation results to a new directory or create a new implementation run for your incremental compile to
preserve the reference implementation run directory.

4. In the Design Runs window, right click impl_1 and select Open Run Directory from the popup
menu. This opens the run directory in a file browser as seen in the figure below. The run
directory contains the routed checkpoint (top_routed.dcp) to be used later for the
incremental compile flow. The location of the implementation run directory is a property of
the run.

5. Get the location of the current run directory in the Tcl Console by typing:

get_property DIRECTORY [current_run]

This returns the path to the current run directory that contains the design checkpoint. You
can use this Tcl command, and the DIRECTORY property, to locate the DCP files needed for
the incremental compile flow.

Step 3: Create New Runs
In this step, you define new synthesis and implementation runs to preserve the results of the
current runs. Then you make debug related changes to the design and rerun synthesis and
implementation. If you do not create new runs, Vivado overwrites the current results.

1. From the Vivado tool bar, select Flow → Create Runs to invoke the Create New Runs wizard.

2. In the Create New Runs screen, click Next.

3. The Configure Implementation Runs screen opens, as shown in the figure below. Select the
Make Active check box, and click Next.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=92

4. From the Launch Options window, select Do not launch now and click Next.

5. In the Create New Runs Summary screen, click Finish to create the new runs.

The Design Runs window displays the new active runs in bold.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=93

Step 4: Making Incremental Debug Changes
In this step, to add/delete/edit debug cores, you need to reopen the synthesized netlist. Make
debug related changes to the design using the Set Up Debug wizard.

1. If you have closed the synthesized netlist, go back to the synthesized design using the Flow
Navigator.

2. For this tutorial, assume that you now need to debug some other nets in addition to the ones
already being debugged. However, you want to reuse the previous place and route results. So
now, you will debug the nets fftEngine/fifo_out[*]

3. Apply the MARK_DEBUG property to this bus in the netlist window.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=94

4. Click Set Up Debug to invoke the Set Up Debug wizard in the Flow Navigator.

5. In the Existing Debug Nets tab, select Continue debugging 110 nets connected to existing
debug cores.

6. Click Next to debug the new unassigned debug nets.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=95

7. Click Next and ensure the new nets are in the list of Nets to Debug.

8. Click Next and ensure that two debug cores are created and click Finish.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=96

9. Save the new debug XDC commands by clicking the Save Constraints button or selecting
File →  Constraints →  Save from the main Vivado toolbar.

Step 5: Running Incremental Compile
In the previous steps, you have updated the design with debug changes. You could run
implementation on the new netlist, to place and route the design and work to meet the timing
requirements. However, with only minor changes between this iteration and the last, the
incremental compile flow lets you reuse the bulk of your prior debug, placement and routing
efforts. This can greatly reduce the time it takes to meet timing on design iterations. For more
information, refer to Vivado Design Suite User Guide: Implementation (UG904).

1. Start by defining the design checkpoint (DCP) file to use as the reference design for the
incremental compile flow. This is the design from which the Vivado Design Suite draws
placement and routing data.

2. In the Design Runs window, right-click the impl_2 run and select Set Incremental
Implementation from the popup menu. The Set Incremental Implemenation dialog box opens.

3. Select Automatically use the checkpoint from the previous run.

4. Click OK. This information is stored in the INCREMENTAL_CHECKPOINT property of the
selected run. Setting this property tells the Vivado Design Suite to run the incremental
compile flow during implementation.

5. You can check this property on the current run using the following Tcl command:

get_property INCREMENTAL_CHECKPOINT [current_run]

This returns the full path to the top_routed.dcp checkpoint.

TIP: To disable Incremental Compile for the current run, clear the INCREMENTAL_CHECKPOINT property. This
can be done using the Set Incremental Compile dialog box, or by editing the property directly through the
Properties window of the design run, or through the reset_property command.

6. From the Flow Navigator, select Run Implementation.

This runs implementation on the current run, using thetop_routed.dcp file as the
reference design for the incremental compile flow. When the run is finished, the
Implementation Completed dialog box opens.

7. Select Open Implemented Design and click OK. As shown in the following figure, the Design
Runs window shows the elapsed time for implementation run impl_2 versus impl_1.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 97Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=97

Note: This is an extremely small design. The advantages of the incremental compile flow are greater
and significant with larger, more complex designs.

8. Select the Reports tab in the Results window area and under Place Design, double-click
Incremental Reuse Report as shown in the following figure.

The Incremental Reuse Report opens in the Vivado IDE text editor. This report shows the
percentage of reused Cells, Ports, and Nets. A higher percentage indicates more effective
reuse of placement and routing from the incremental checkpoint.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=98

In the report, fully reused nets indicate that the entire routing of the nets is reused from the
reference design. Partially reused nets indicate that some of the routing of the nets reuses
routing from the reference design. Some segments re-route due to changed cells, changed
cell placements, or both. Non-reused nets indicate that the net in the current design was not
matched in the reference design.

Conclusion
This concludes the lab. You can close the current project and exit the Vivado IDE.

In this lab, you learned how to run the Incremental Compile Debug flow, using a checkpoint from
a previously implemented design. You inserted a new debug core using the Set Up Debug wizard
on the synthesized netlist. You examined the similarity between a reference design checkpoint
and the current design by examining the Incremental Reuse Report.

Chapter 8: Lab 7: Debugging Designs Using the Incremental Compile Flow

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=99

Chapter 9

Lab 8: Using the Vivado Serial
Analyzer to Debug Serial Links

The Serial I/O analyzer is used to interact with IBERT debug IP cores contained in a design. It is
used to debug and verify issues in high speed serial I/O links.

The Serial I/O Analyzer has several benefits:

• Tight integration with Vivado® IDE.

• Ability to script during netlist customization/generation and serial hardware debug.

• Common interface with the Vivado Integrated Logic Analyzer (ILA).

The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (IBERT) core for 7 series FPGA
GTX transceivers is designed for evaluating and monitoring the GTX transceivers. This core
includes pattern generators and checkers that are implemented in FPGA logic, and provides
access to ports and the dynamic reconfiguration port attributes of the GTX transceivers.
Communication logic is also included to allow the design to be run time accessible through JTAG.

In the course of this tutorial, you:

• Create, customize, and generate an Integrated Bit Error Ratio Tester (IBERT) core design using
the Vivado tool.

• Interact with the design using Serial I/O Analyzer. This includes connecting to the target
KC705 board, configuring the device, and interacting with the IBERT/Transceiver IP cores.

• Perform a sweep test to optimize your transceiver channel and to plot data using the IBERT
sweep plot GUI feature.

Design Description
You can customize the IBERT core and use it to evaluate and monitor the functionality of
transceivers for a variety of Xilinx® devices. The focus for this tutorial is on Kintex®-7 GTX
transceivers. Accordingly, the KC705 target board is used for this tutorial.

The following figure shows a block diagram of the interface between the IBERT Kintex-7 GTX
core interfaces with Kintex-7 transceivers.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=100

• DRP Interface and GTX Port Registers: IBERT provides you with the flexibility to change GTX
transceiver ports and attributes. Dynamic reconfiguration port (DRP) logic is included, which
allows the runtime software to monitor and change any attribute in any of the GTX
transceivers included in the IBERT core. When applicable, readable and writable registers are
also included. These are connected to the ports of the GTX transceiver. All are accessible at
run time using the Vivado® logic analyzer.

• Pattern Generator: Each GTX transceiver enabled in the IBERT design has both a pattern
generator and a pattern checker. The pattern generator sends data out through the
transmitter.

• Error Detector: Each GTX transceiver enabled in the IBERT design has both a pattern
generator and a pattern checker. The pattern checker takes the data coming in through the
receiver and checks it against an internally generated pattern.

Figure 4: IBERT Design Flow

Step 1: Creating, Customizing, and Generating
an IBERT Design

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=101

2. In the Quick Start screen, click Create Project to start the New Project wizard, and click Next.

3. In the Project Name page, name the new project ibert_tutorial and provide the project
location (C:/ibert_tutorial). Ensure that Create Project Subdirectory is selected. Click
Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.

5. In the Add Sources page, click Next.

6. In the Add Existing IP page, click Next.

7. In the Add Constraints page, click Next.

8. In the Default Part page, select Boards and then select Kintex-7 KC705 Evaluation Platform.
Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the
steps above. Click Finish.

Note: It might take a moment for the project to initialize.

Step 2: Adding an IBERT core to the Vivado
Project

1. In the Flow Navigator click IP Catalog.

The IP Catalog opens.

2. In the search field of the IP Catalog type IBERT, to display the IBERT 7 series GTX IP.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=102

3. Double-click IBERT 7 series GTX IP. This brings up the customization GUI for the IBERT.

4. In the Customize IP dialog box, choose the following options in the Protocol Definition tab:

a. Type the name of the component in the Component Name field. In this case, leave the
name as the default name, ibert_7series_gtx_0.

b. Ensure that the Silicon Version is selected as General ES/Production.

c. Ensure that the Number of Protocols option is set to 1.

d. Change the LineRate (Gb/s) to 8.

e. Change DataWidth to 40.

f. Change Refclk (MHz) to 125.

g. Ensure that the Quad Count is set to 2.

h. Ensure Quad PLL box is selected.

5. Under the Protocol Selection tab, update the following selections:

a. For GTX Location QUAD_117, in the Protocol Selected column, click the pull-down menu
and select Custom 1 / 8 Gbps. This should automatically populate Refclk Selection to
MGTREFCLK0 117 and TXUSRCLK Source to Channel 0.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=103

b. For GTX Location QUAD_118, do the following:

i. In the Protocol Selected column, click the pull-down menu and select Custom 1 / 8
Gbps.

ii. In the Refclk Selection column, change the value to MGTREFCLK0 117.

iii. In the TXUSRCLK Source column, change the value to Channel 0.

6. Click the Clock Settings tab and make the following changes for both QUAD_117 and
QUAD_118:

a. Leave the Source column at its default value of External.

b. Change the I/O Standard column to DIFF SSTL15.

c. Change the P Package Pin to AD12.

d. Change the N Package Pin to AD11.

e. Leave the Frequency (MHz) at its default value of 200.00.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=104

7. Click the Summary tab and ensure that the content matches the following figure, then click
OK.

8. When the Generate Output Products dialog box opens, click Generate.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=105

9. In the Sources window, right-click the IP, and select Open IP Example Design.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=106

10. In the Open IP Example Design dialog box, and specify the location of your project directory.
Ensure that the Overwrite existing example project is selected and click OK.

Note: This opens a new instance of Vivado® IDE with the new example design opened.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=107

Step 3: Synthesize, Implement and Generate
Bitstream for the IBERT design

1. In the newly opened instance of Vivado IDE, click Generate Bitstream in the Flow Navigator.
When the No Implementation Results Available dialog box appears. Click Yes.

When the bitstream generation is complete, the Bitstream Generation Completed dialog box
opens.

2. Select Open Hardware Manager, and click OK.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=108

3. The Hardware Manager window appears as shown in the following figure.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=109

Step 4: Interact with the IBERT core using
Serial I/O Analyzer

In this tutorial step, you connect to the KC705 target board, program the bitstream created in the
previous step, and then use the Serial I/O Analyzer to interact with the IBERT design that you
created in Step 1. You perform some analysis using various input patterns and loopback modes,
while observing the bit error count.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=110

1. Click Open New Target. When the Open Hardware Target wizard opens, click Next.

2. In the Connect to field, choose Local server. Click Next.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=111

3. In the Select Hardware Target page, and click Next.

There is only one target board in this case to connect to, so that the default is selected.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=112

4. In the Open Hardware Target Summary page, review the options that you selected. Click
Finish.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=113

5. The Hardware window in Vivado IDE should show the status of the target FPGA on the
KC705 board.

6. Select XC7K325T_0(0) in the Hardware window, right-click and select Program Device.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=114

7. The Program Device dialog box opens. Make sure that the correct .bit file is selected, and
click Program.

8. The Hardware window now shows the IBERT IP that you customized and implemented from
the previous steps. It contains two QUADS each of which has four GTX transceivers. These
components of the IBERT were detected while scanning the device after downloading the
bitstream. If you do not see the QUADS then select the XC7K325 device, right-click and
select Refresh Device.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=115

9. Next, create links for all eight transceivers. Vivado Serial I/O analyzer is a link-based analyzer,
which allows users to link between any transmitter and receiver GTs within the IBERT design.
For this tutorial, simply link the TX and RX of the same channel. To create a link, right-click
the IBERT Core in the Hardware window and click Create Links.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=116

The Create Links dialog box opens.

10. Ensure the first transceiver pairs (MGT_X0Y8/TX and MGT_X0Y8/RX) are selected.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=117

11. Click the “+” button add a new link. In the Link group description field, type Link Group SMA.
Select the Internal Loopback check box.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=118

For the first link group, call this Link Group SMA as this is the only transceiver channel that is
linked through the SMA cables. The new link shows up in the Links window.

12. Click Create Link again to create link groups for the rest of the transceiver pairs. To do this
ensure that the transceiver pairs are selected, and click the + sign icon (add new link)
repeatedly, until all the links have been added to the new link group called Link Group
Internal Loopback. Click OK.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=119

13. After the links have been created, they are added to the Links window as shown.

The status of the links indicate an 8.0 Gbps line rate.

For more information about the different columns of the Links windows, see the Vivado
Design Suite User Guide: Programming and Debugging (UG908).

14. Change the GT properties of the rest of the transceivers as described above.

15. Next, create a 2D scan. Click Create Scan in the Links window.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 120Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=120

The Create Scan dialog box opens. In this dialog box, you can change the various scan
properties. In this case, leave everything to its default value and click OK. For more
information on the scan properties, see Vivado Design Suite User Guide: Programming and
Debugging (UG908).

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 121Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=121

The Scan Plot window opens as shown in the following figure.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=122

The 2D Scan Plot is a heat map of the BER value.

You can also perform a Sweep test on the links that you created earlier.

16. In the Links window, highlight Link 0 under the Link called Link Group SMA, right-click and
select Create Sweep.

17. The Create Sweep dialog box opens, as shown below. Various properties for the Sweep test
can be changed in this dialog box. Leave all the values to its default state and click OK.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=123

Because here are four different Sweep Properties and each of these properties has three
different values (as seen in the Values to Sweep column), a total number of 81 sweep tests
are carried out. The Scans window shows the results of all the scans that have been done for
the selected link.

CAUTION! Since there are 81 scans to be done, it could be a few minutes before all the scans are complete.

To see the results of any of the scans that have been performed, highlight the scan, right-
click, and select Display Scan Plots.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=124

The Scan Plots window opens showing the details of the scan performed.

Chapter 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=125

Chapter 10

Lab 9: Using the Vivado ILA Core to
Debug JTAG-AXI Transactions

This lab illustrates how to insert an ILA core into the JTAG to AXI Master IP core example design,
using the ILA's advanced trigger and capture capabilities.

What is the JTAG to AXI Master IP core?

The LogiCORE™LogiCORE IP JTAG-AXI core is a customizable core that can generate AXI
transactions and drive AXI signals internal to the FPGA at run-time. This supports all memory-
mapped AXI interfaces (except AXI4-Stream) and Lite protocol and can be selected using a
parameter. The width of the AXI data bus is customizable. This IP can drive any AXI4-Lite or
Memory-Mapped Slave directly. It can also be connected as master to the interconnect. Run-time
interaction with this core requires the use of the Vivado® logic analyzer feature.

Key Features

• AXI4 master interface

• Option to select AXI4 and AXI4-Lite interfaces

• User controllable AXI read and write enable

• User Selectable AXI data width: 32 and 64

• Vivado Integrated Logic Analyzer Tcl Console interface to interact with hardware

Additional Documentation

JTAG to AXI Master LogiCORE IP Product Guide (PG174) contains additional information

Design Description
This section has three steps as follows:

1. Creating a simple design in IP integrator that includes a System ILA and JTAG-to-AXI master.

2. Programming the Kintex®-7 FPGA KC705 Evaluation Kit Base Board and interacting with the
JTAG to AXI Master IP core.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=126

3. Using the ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.

Step 1: Creating a new Vivado Project and
Generating the IP Integrator Design with
JTAG-to-AXI and System ILA

To create a project, use the New Project wizard to name the project, add RTL source files and
constraints, and specify the target device.

1. Invoke the Vivado® IDE

2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project jtag_2_axi_tutorial and provide the
project location (C:/jtag_2_axi_tutorial). Ensure that Create Project Subdirectory is
selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Ensure that Do
not specify sources at this time is checked. Click Next.

5. In the Default Part page, choose Boards and choose the Kintex-7 KC705 Evaluation
Platform. Click Next.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=127

6. In the New Project Summary page, click Finish.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=128

7. In the leftmost panel of the Flow Navigator under Project Manager, click Create Block
Diagram. A dialog box appears that allows you to specify a block diagram name. You can
choose to specify a custom name or take the default. Click OK.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=129

8. In the far right of the window is an empty block diagram design window labeled Diagram.
Click the + sign in the middle of the pane or the + toolbar button to bring up a search
window. In the Search field, type “JTAG to AXI” and double-click it to add the JTAG to AXI
Master to the block diagram.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=130

9. The JTAG to AXI Master core appears on the IP integrator canvas. Double-click the core to
view the Customization dialog. Review the available settings and click OK to accept the
default core settings.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=131

10. Following the same process from the previous step, add the additional IP to the block
diagram: AXI BRAM controller and Block Memory Generator. This creates a design using a
simple AXI infrastructure to create AXI transactions that demonstrate the debugging
capabilities of the System ILA core.

11. Before continuing, you need to customize AXI BRAM Controller and Block Memory
Generator. Begin by locating the AXI BRAM Controller in the block diagram canvas and
double-clicking on it. This invokes the Customization Dialog for the IP. Locate the Number of
BRAM interfaces and set the value to 1. Click OK.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=132

12. Next, locate the Block Memory Generator in the block diagram and double-click as in the
previous step to invoke the Customization dialog. Clear Enable Safety Circuit check box. Click
OK.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=133

13. At this point the design should look like the following figure.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=134

14. Notice the green banner indicating that Designer Assistance is available at the top of the
block diagram canvas. Click the Run Connection Automation button on this banner. When
the Connection Automation window appears, click the radio button for All Automation, then
click OK.

15. Notice, that the Clocking Wizard and Processor System Reset as well as an AXI
SmartConnect are auto-inserted into the design. Also, take note that the Clocking Wizard
clock and reset inputs are not connected and the Run Connection Automation banner
persists. These inputs will be connected to physical input ports on the FPGA, wired to
buttons on the KC705 board though customization of the Clocking Wizard.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=135

16. Invoke the Customization Dialog for the Clocking Wizard by double-clicking the IP in the
block diagram canvas. When the dialog appears, set CLKIN_1 to sys_diff_clk and
EXT_RESET¬_IN to reset. Click OK.

Note: It is not necessary to add constraints for these ports because the project has been generated
using an evaluation board as the target and the IP allows the constraint information to be selected
with the sys diff clk.

17. Just as before, locate the green banner indicating that Designer Assistance is Available and
click Run Connection Automation. When the Run Connection Automation dialog appears
select the button for All Automation. Click OK.

18. Now, sys_diff_clk and reset are connected to external ports. Examine the connectivity of
the design and notice that it might be necessary to monitor AXI transactions between the
JTAG to AXI master and the AXI BRAM Controller slave. This is possible if a System ILA is
added to probe the AXI bus between the AXI BRAM Controller and the JTAG to AXI master.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=136

19. To add a System ILA to the design, click the Add IP (+) button as in previous steps. Search for
System ILA, and double click to add it to the block diagram. When it appears in the block
diagram canvas, double-click on it to invoke the Customization Dialog. Ensure that both
Capture Control and Advanced Trigger are selected. Also, set the Number of Comparators to
the value 3. Click OK.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=137

20. Now, make a connection between the System ILA SLOT_0_AXI port and the S_AXI port on
the AXI BRAM Controller. Do this by clicking on the SLOT_0_AXI port and clicking again on
the S_AXI port on the AXI BRAM Controller.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=138

21. When the Run Connection Automation banner appears, click it and select All Automation.
Then click OK. Notice that the clk and resetn ports on the System ILA are connected to the
AXI clock and the AXI reset.

22. In the upper left side of the Vivado IDE, click File → Save Block Design. Select File → Close
Block Design in the same menu to close the block design.

23. In the sources window, right-click on design_1 block design and select Create HDL Wrapper.
Allow Vivado IDE to manage the wrapper, and click OK.

24. In the Flow Navigator on the left side of the Vivado IDE, click Generate Bitstream.

25. Click OK to implement the design.

26. Wait until the Vivado Status window shows write_bitstream complete.

27. In the Bitstream Generation Completed dialog, select Open Hardware Manager, and click
OK.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=139

Step 2: Program the KC705 Board and Interact
with the JTAG to AXI Master Core

1. Connect your KC705 board's USB-JTAG interface to a machine that has Vivado® IDE and
cable drivers installed and power up the board.

2. The Hardware Manager window opens. Click Open New Target. The Open New Hardware
Target dialog opens.

3. In the Connect to field choose Local server, and click Next.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=140

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

4. If there is more than one target connected to the hardware server, you see multiple entries in
the Select Hardware Target page. In this tutorial, there is only one target as shown in the
following figure. Leave these settings at their default values, and click Next.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=141

5. Leave these settings at their default values as shown. Click Next.

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=142

Wait for the connection to the hardware to complete. After the connection to the hardware
target is made, the Hardware dialog shown in the following figure opens.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device that was
detected in the JTAG chain.

7. Next, program the previously created XC7K325T device using the .bit bitstream file by
right-clicking the XC7K325T device, and selecting Program Device as shown in the following
figure.

8. In the Program Device dialog verify that the .bit file is correct for the lab that you are
working on. Click Program to program the device.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=143

Note: Wait for the program device operation to complete. This may take few minutes.

9. Verify that the JTAG to AXI Master and ILA cores are detected by locating the hw_axi_1 and
hw_ila_1 instances in the Hardware Manager window.

10. You can communicate with the JTAG to AXI Master core via Tcl commands only. You can
issue AXI read and write transactions using the run_hw_axi command. However, before
issuing these transactions, it is important to reset the JTAG to AXI Master core. Because the
aresetn input port of the jtag_axi_0 core instance is not connected to anything, you need to
use the following Tcl commands to reset the core:

reset_hw_axi [get_hw_axis hw_axi_1]

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=144

11. The next step is to create a 4-word AXI burst transaction to write to the first four locations of
the BRAM:

set wt [create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -
address C0000000 -len 128 -data {44444444_33333333_22222222_11111111}]

where:

• write_txn is the name of the transaction.

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object.

• -address C0000000 is the start address.

• -len 128 sets the AXI burst length to 128 words

• -data {44444444_33333333_22222222_11111111} is the data to be written.

Note: The data direction is MSB to the left (i.e., address 3) and LSB to the right (i.e., address 0). Also
note that the data will be repeated from the LSB to the MSB to fill up the entire burst.

12. The next step is to set up a 128-word AXI burst transaction to read the contents of the first
four locations of the AXI-BRAM core:

set rt [create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -
address C0000000 -len 128]

where:

• read_txn is the name of the transaction.

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object.

• -address C0000000 is the start address.

• -len 128 sets the AXI burst length to 4 words.

13. After creating the transaction, you can run it as a write transaction using the run_hw_axi
command:

run_hw_axi $wt

This command should return the following:

INFO: [Labtools 27-147] : WRITE DATA is :
44444444333333332222222211111111…

14. After creating the transaction, you can run it as a read transaction using the run_hw_axi
command:

run_hw_axi $rt

This command should return the following:

INFO: [Labtools 27-147] : READ DATA is :
44444444333333332222222211111111…

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=145

Step 3: Using ILA Advanced Trigger Feature to
Trigger on an AXI Read Transaction

1. In the ILA – hw_ila_1 dashboard, locate the Trigger Mode Settings area and set Trigger mode
to ADVANCED_ONLY.

2. In the Capture Mode Settings area, set the Trigger position to 512.

3. In the Trigger State Machine area click the Create new trigger state machine link.

4. In the New Trigger State Machine File dialog box, set the name of the state machine script to
txns.tsm.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=146

5. A basic template of the trigger state machine script is displayed in the Trigger State Machine
gadget. Expand the trigger state machine gadget in the ILA dashboard. Copy the script below
after line 17 of the state machine script and save the file.

The "wait_for_arvalid" state is used to detect the start
of the read address phase of the AXI transaction which
is indicated by the axi_arvalid signal equal to '1'
#
state wait_for_arvalid:
 if (design_1_i/system_ila_0/U0/net_slot_0_axi_arvalid == 1'b1) then
 goto wait_for_rready;
 else
 goto wait_for_arvalid;
 endif
#
The "wait_for_rready" state is used to detect the start
of the read data phase of the AXI transaction which
is indicated by the axi_rready signal equal to '1'
#
state wait_for_rready:
 if (design_1_i/system_ila_0/U0/net_slot_0_axi_rready == 1'b1) then
 goto wait_for_rlast;
 else
 goto wait_for_rready;
 endif

#
The "wait_for_rlast" state is used to detect the end
of the read data phase of the AXI transaction which
is indicated by the axi_rlast signal equal to '1'.
Once the end of the data phase is detected, the ILA core
will trigger.
#
state wait_for_rlast:
 if (design_1_i/system_ila_0/U0/net_slot_0_axi_rlast == 1'b1) then
 trigger;
 else
 goto wait_for_rlast;
 endif

Note: Use the state machine to detect the various phases of an AXI read transaction:

• Beginning of the read address phase.

• Beginning of the read data phase.

• End of the read data phase.

6. Arm the trigger of the ILA by right-clicking the hw_ila_1 core in the Hardware Manager
window and selecting Run Trigger.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=147

7. In the Trigger Capture Status window, note that the ILA core is waiting for the trigger to
occur, and that the trigger state machine is in the wait_for_a_valid state. Note that the pre-
trigger capture of 512 samples has completed successfully:

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=148

8. In the Tcl console, run the read transaction that you set up in the previous section of this
tutorial.

run_hw_axi $rt

Note: The ILA core has triggered and the trigger mark is on the sample where the axi_rlast signal is
equal to '1', just as the trigger state machine program intended.

Chapter 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=149

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix A: Additional Resources and Legal Notices

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 150Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=150

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

Appendix A: Additional Resources and Legal Notices

UG936 (v2019.2) December 10, 2019 www.xilinx.com
Programming and Debugging 151Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2019.2&docPage=151

	Vivado Design Suite Tutorial
	Revision History
	Table of Contents
	Ch. 1: Debugging in Vivado Tutorial
	Objectives
	Getting Started
	Setup Requirements
	Tutorial Design Components
	Board Support and Pinout Information
	Design Files
	Connecting the Boards and Cables

	Ch. 2: Lab 1: Using the Netlist Insertion Method to Debug a Design
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesizing the Design
	Step 3: Probing and Adding Debug IP
	Adding Debug Nets to the Project
	Running the Set Up Debug Wizard

	Step 4: Implementing and Generating Bitstream

	Ch. 3: Lab 2: Using the HDL Instantiation Method to Debug a Design
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize Implement and Generate Bitstream

	Ch. 4: Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize, Implement, and Generate the Bitstream

	Ch. 5: Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a Design
	Step 1: Create a Synplify Pro Project
	Step 2: Synthesize the Synplify Project
	Step 3: Create DCPs for the Black Box Created in Synplify Pro
	Step 4: Create a Post Synthesis Project in Vivado IDE
	Step 5: Add More Debug Nets to the Project
	Running the Set up Debug Wizard

	Step 6: Implementing the Design and Generating the Bitstream

	Ch. 6: Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
	Step 1: Verifying Operation of the Sine Wave Generator
	Target Board and Server Set Up
	Using the Vivado Integrated Logic Analyzer
	Verifying Sine Wave Activity
	Displaying the Sine Wave
	Correcting Display of the Sine Wave

	Step 2: Debugging the Sine Wave Sequencer State Machine (Optional)
	Sine Wave Sequencer State Machine Overview
	Viewing the State Machine Glitch
	Fixing the Signal Glitch and Verifying the Correct State Machine Behavior
	Verifying the VIO Core Activity (Only applicable to Lab 3)

	Ch. 7: Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
	Ch. 8: Lab 7: Debugging Designs Using the Incremental Compile Flow
	Procedure
	Step 1: Opening the Example Design and Adding a Debug Core
	Step 2: Compiling the Reference Design
	Step 3: Create New Runs
	Step 4: Making Incremental Debug Changes
	Step 5: Running Incremental Compile
	Conclusion

	Ch. 9: Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
	Design Description
	Step 1: Creating, Customizing, and Generating an IBERT Design
	Step 2: Adding an IBERT core to the Vivado Project
	Step 3: Synthesize, Implement and Generate Bitstream for the IBERT design
	Step 4: Interact with the IBERT core using Serial I/O Analyzer

	Ch. 10: Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
	Design Description
	Step 1: Creating a new Vivado Project and Generating the IP Integrator Design with JTAG-to-AXI and System ILA
	Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core
	Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

