UltraFast Design Methodology Quick Reference Guide (UG1231)

INTRODUCTION

The UltraFast[™] Design Methodology is a set of best practices recommended by Xilinx to maximize productivity and reduce design iterations of complex systems, including embedded processor subsystems, analog and digital processing, high-speed connectivity, and network processing. See the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) for more information.

The UltraFast Design Methodology Checklist (XTP301) includes common questions that highlight typical areas where design decisions have downstream consequences and draws attention to potential problems that are often unknown or ignored. It provides easy access to related collateral. The checklist is available within the Xilinx Documentation Navigator tool (DocNav).

This quick reference guide highlights key design methodology steps to achieve quicker system integration and design implementation and to derive the greatest value from Xilinx[®] devices and tools. Pointers to related collateral are also provided. The main design tasks covered in this guide include:

- Board and Device Planning
- Design Entry and Implementation
- Top-Level Design Validation
- Design Analysis
- Design Closure

Refer to the UltraFast Design Methodology – System-Level Design Flow available within the Xilinx Documentation Navigator tool (DocNav) for pointers to all design hubs and specific collateral.

XILINX.

BOARD AND DEVICE PLANNING

PCB Designer

Examine Key Interfaces

and key interfaces

Follow PCB layout

recommendations

signed off by FPGA

Review the Schematic

Complete PCB Checklist

Check PDS, configuration,

Checklists

designer

review

Examine the PCB Layout

Perform the Memory

Interface and Transceiver

Ensure final FPGA pinout is

Validate part orientation

FPGA Designer

Analyze Device for Pinout

- Examine transceiver and bonded I/O locations
- Examine SSI technology I/O planning
- Validate part orientation and key interfaces

Define I/O Pinouts for Key Interfaces

- Create I/O planning projects
- Define and validate memory controllers, GTs, and PCIe[®] technology locations
- Establish a clocking skeleton
- Minimize floorplan distance between connected IP

Define Final Pinout

- Merge interface projects into a final I/O project
- Validate DRCs and SSN analysis
- Implement design to check clocking and I/O rules
- Use the final I/O project for production test

Estimate Power

- Determine power budget and thermal margin using Xilinx Power Estimator (XPE)
- Apply toggle rates using knowledge of prior designs

See Also:

UG949: Board and Device Planning Power Estimation and Optimization Design Hub I/O and Clock Planning Design Hub

DESIGN ENTRY AND IMPLEMENTATION

Logic Designer

Define a Good Design Hierarchy

- Define relevant hierarchies to help global placement and floorplanning
- Insert I/O and clock components near the top level
- Add registers at main hierarchical boundaries
- Generate IP and review target device utilization

Build and Validate RTL Submodules

- Ensure design adheres to RTL coding guidelines
- Add sufficient registers around DSP and memories
- Use control signals only when absolutely necessary
- Use synthesis attributes to control final logic mapping
- Create simple timing constraints to review estimated timing and address paths with too many logic levels
- Review synthesis log files, utilization report, and elaborated view to identify sub-optimal mapping
- Run Methodology and RTL checks and review issues
- Implement the submodule in out-of-context (OOC) mode to validate implemented performance
- Review utilization and power against original budget
 Simulate the design to validate functionality

Assemble and Validate Top-Level Design

- Synthesize the top-level RTL design and resolve all connectivity issues
- Review top-level utilization and clocking guidelines
- Create and validate top-level constraints
- Iterate the RTL and constraints to fix Methodology and DRC issues and meet timing
- Proceed to implementation

See Also:

UG949: Design Creation and Implementation Designing with IP Design Hub Using IP Integrator Design Hub Logic Synthesis Design Hub Applying Design Constraints Design Hub Implementation Design Hub

- and power supplies
 Validate I/O state before, during, and after configuration
 Manufacture and Test
 Verify the configuration sequence, power supplies,
- and I/O performance with the test I/O project

See Also:

UG949: Board and Device Planning PCB Design Checklist Memory Interface IP Design Checklists Schematic Design Checklists

UltraFast Design Methodology Quick Reference Guide (UG1231)

TOP-LEVEL CONSTRAINTS VALIDATION

Baseline the Design

- Validate timing closure feasibility early in the design process after most blocks and key IP are available
- Specify essential constraints only:
- Use all IP constraints
- Define realistic primary and generated clocks
- Define all clock domain crossing constraints
- Add multicycle paths where required
- Do not use I/O constraints at this stage
- Ensure path requirements are reasonable
- Validate WNS ≈ 0.0 ns using report_timing_summary at each stage of the flow:
- After synthesis
- Before placement
- Before and after routing
- Address timing violations early in the flow
- Fix QoR issues in RTL and synthesis for the biggest impact

Validate Timing Constraints

- Run report_timing_summary or check_timing to ensure all clocks are defined and all registers, input ports, and output ports are constrained
- Run report_methodology and address all TIMING* and XDC* issues
- Run report_clock_interaction to ensure each clock pair is safely timed with reasonable path requirements
- Run report_cdc to verify all asynchronous clock domain crossing paths are properly constrained and use safe synchronization circuitry
- Run report_exceptions to identify timing exceptions that overlap, are ignored, or are inefficient
- Ensure all Critical Warnings are resolved when the design is loaded and constraints are applied

See Also:

UG949: Design Closure

- Checking That Your Design is Properly Constrained
- Baselining The Design

Applying Design Constraints Design Hub Timing Closure and Design Analysis Design Hub

DESIGN ANALYSIS AND CLOSURE

Identify Timing Violation Root Causes

- Try report_qor_suggestions for automated analysis and timing closure recommendations
- Use report_timing_summary or report_design_analysis to find the root cause
- For setup paths, check for high datapath delay due to:
- Large cell delay (7 series > 25%, UltraScale devices > 50%)
- Large net delay (7 series > 75%, UltraScale devices > 50%)
- For hold paths, check for hold requirement > 0 ns
- Check for high clock skew (> 500 ps), high clock uncertainty (> 200 ps), or both

Reduce Logic Delay

- Modify RTL to use parallel or efficient operators
- Add pipeline registers and use synthesis retiming
- Add registers on DSP or block RAM outputs
- Use LUT_REMAP to collapse small LUTs in the longest path
- Pull registers out of the SRL on the SRL input, output, or both
 Remove KEEP/DONT TOUCH/MARK DEBUG

Reduce Net Delay

- Review and adjust floorplan constraints
- Optimize high fanout nets
- Address congestion if level > 4 is reported in:
- report_design_analysis placer congestion table
- Initial estimated router congestion in log file

Reduce Clock Skew

- Use parallel buffers instead of cascaded buffers
- Use CLOCK_DELAY_GROUP between synchronous clocks originating from the same input or PLL
 - Add timing exceptions between asynchronous clocks

Reduce Clock Uncertainty

- Optimize MMCM settings
- Divide clocks with BUFGCE_DIV in UltraScale[™] devices

See Also:

UG949: Design Closure

- Understanding Timing Reports
- Identifying Timing Violations Root Cause
- Timing Closure and Design Analysis Design Hub

INALISIS AND CLOSURE

Reduce Control Sets

- Avoid MAX_FANOUT on control signals
- Increase synthesis control set threshold
- Merge equivalent control signals with opt_design

Optimize High Fanout Nets

- Use hierarchy-based register replication in RTL
- Use opt_design -merge_equivalent_drivers
 -hier_fanout_limit for replication efficiency
- Promote to global clocking if not critical
- Force replication with phys_opt_design

Address Congestion

- Lower device utilization and balance SLR utilization
- Try placer directives AltSpreadLogic* or SSI_Spread*
- Identify congested modules with report design analysis -complexity -congestion
- For congested modules, use the AlternateRoutability block-level synthesis strategy, reduce MUXF*/CARRY* with opt_design, or use the CELL_BLOAT_FACTOR property
- Use global clocking for high fanout nets in congested regions
- Reuse DSP and block RAM placement from previous implementations with low congestion

Tune the Compilation Flow

- Try several place_design directives
- Use block-level synthesis strategies for an optimal netlist
- Overconstrain critical clocks during placement and physical optimization with set_clock_uncertainty
- Use incremental compile after minor design modifications to preserve QoR and improve runtime

Analyze and Optimize Power

- Constrain activity, environment, and process
- Try power_opt to reduce power consumption
- Maximize use of block RAM cascading

See Also:

UG949: Implementation and Design Closure

- Analyzing and Resolving Timing Violations
- Applying Common Timing Closure Techniques
- Implementation Design Hub
- Timing Closure and Design Analysis Design Hub