
SDAccel Environment
Debugging Guide

UG1281 (v2019.1) May 22, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1281

Revision History
The following table shows the revision history for this document.

Section Revision Summary

05/22/2019 Version 2019.1

Entire document Minor editorial changes.

01/24/2019 Version 2018.3

Entire document Minor editorial changes.

12/05/2018 Version 2018.3

Defensive Programming Added an explanation of a defensive programming
technique.

Typical Errors Leading to Application Hangs Added a new section about the causes of application hangs.

Debugging a MicroBlaze Processor (RTL Kernels Only) Added a new section about how to enable MicroBlaze
debugging in RTL kernel block designs.

Connecting to a MicroBlaze Processor in an RTL Kernel over
XVC

New section.

Complete Command Line Debug Example Added a new example section to illustrate command line
debug.

10/02/2018 Version 2018.2.xdf

Throughout document Changed xbsak to xbutil.

07/02/2018 Version 2018.2

Entire document Minor editorial changes.

06/06/2018 Version 2018.2

General updates Initial Xilinx release.

Revision History

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction to Debugging in SDAccel.......................................4
SDAccel Execution Model... 4
SDAccel Build Process... 6
SDAccel Debug Flow Overview.. 9

Chapter 2: SDAccel Debug Features... 13
Defensive Programming.. 13
SDAccel Software Debug.. 13
Utilities for Hardware Debugging... 20
Hardware Debugging Using ChipScope...21

Chapter 3: Debug Techniques..26
Functional Verification (Software Emulation).. 26
Debugging in Hardware Emulation.. 30
System Verification and Hardware Debug... 33

Chapter 4: Examples..51
Complete Command Line Debug Example..51

Appendix A: Additional Resources and Legal Notices............................. 55
Documentation Navigator and Design Hubs...55
References..55
Please Read: Important Legal Notices... 56

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=3

Chapter 1

Introduction to Debugging in
SDAccel

This document is intended to introduce the debugging capabilities of the SDAccel™ environment.
The goal is to provide detailed instructions on how to analyze any failure encountered within the
SDAccel flow. If no tool problem is encountered and the behavior of the design is deemed
functionally correct, look for answers in the SDAccel Environment Profiling and Optimization Guide
(UG1207) to determine if the performance of the design can be further improved.

SDAccel Execution Model
In the SDAccel framework, an application program is split between a host application and
hardware accelerated kernels with a communication channel between them. The host
application, written in C/C++ and using API abstractions like OpenCL, runs on an x86 server
while hardware accelerated kernels run within the Xilinx FPGA. The API calls, managed by the
Xilinx runtime (XRT), are used to communicate with the hardware accelerators. Communication
between the host x86 machine and the accelerator board, including control and data transfers,
occurs across the PCIe bus. While control information is transferred between specific memory
locations in hardware, global memory is used to transfer data between the host application and
the kernels. Global memory is accessible by both the host processor and hardware accelerators,
while host memory is only accessible by the host application.

For instance, in a typical application, the host will first transfer data, to be operated on by the
kernel, from host memory into global memory. The kernel would subsequently operate on the
data, storing results back to the global memory. Upon kernel completion, the host would transfer
the results back into the host memory. Data transfers between the host and global memory
introduce latency which can be costly to the overall acceleration. To achieve acceleration in a real
system, the benefits achieved by hardware acceleration kernels must outweigh the extra latency
of the data transfers. The general structure of this acceleration platform is shown in the following
figure.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 4Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=4

Figure 1: Architecture of an SDAccel Application

Custom Application

OpenCL API

Xilinx Runtime (XRT)

Drivers

Custom Kernels

AXI Interfaces

Global Memory

DMA

x86 Host CPU FPGA Device

PCIe

X21835-103118

The FPGA hardware platform, on the right-hand side, contains the hardware accelerated kernels,
global memory, and the DMA to transfer. Kernels can have one or more global memory interfaces
and are programmable. The SDAccel execution model can be broken down into these steps:

1. The host application writes the data needed by a kernel into the global memory of the
attached device through the PCIe interface.

2. The host application programs the kernel with its input parameters.

3. The host application triggers the execution of the kernel function on the FPGA.

4. The kernel performs the required computation while reading and writing data from global
memory, as necessary.

5. The kernel writes data back to global memory and notifies the host that it has completed its
task.

6. The host application reads data back from global memory into the host memory and
continues processing as needed.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=5

The FPGA can accommodate multiple kernel instances at one time; this can occur between
different types of kernels or multiple instances of the same kernel. The XRT transparently
orchestrates the communication between the host application and the kernels in the accelerator.
The number of instances of a kernel is determined by compilation options.

SDAccel Build Process
The SDAccel environment offers all of the features of a standard software development
environment:

• Optimized compiler for host applications

• Cross-compilers for the FPGA

• Robust debugging environment to help identify and resolve issues in the code

• Performance profilers to identify bottlenecks and optimize the code

Within this environment, the build process uses a standard compilation and linking process for
both the software elements, and the hardware elements of the project. As shown in the following
figure, the host application is built through one process using standard GCC compiler, and the
FPGA binary is built through a separate process using the Xilinx xocc compiler.

Figure 2: Software/Hardware Build Process

X22015-112618

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=6

1. Host application build process using GCC:

• Each host application source file is compiled to an object file (.o).

• The object files (.o) are linked with the Xilinx SDAccel runtime shared library to create the
executable (.exe).

2. FPGA build process is highlighted in the following figure:

• Each kernel is independently compiled to a Xilinx object (.xo) file.

○ C/C++ and OpenCL C kernels are compiled for implementation on an FPGA using the
xocc compiler. This step leverages the Vivado® HLS compiler. Pragmas and attributes
supported by Vivado HLS can be used in C/C++ and OpenCL C kernel source code to
specify the desired kernel micro-architecture and control the result of the compilation
process.

○ RTL kernels are compiled using the package_xo utility. The RTL kernel wizard in the
SDAccel environment can be used to simplify this process.

• Regardless of kernel designed with RTL, OpenCL, or C/C++, the kernel .xo files are linked
with the hardware platform (shell) to create the FPGA binary (.xclbin). Important
architectural aspects are determined during the link step. In particular, this is where
connections from kernel ports to global memory banks are established and where the
number of instances for each kernel is specified.

○ When the build target is software or hardware emulation, as described below, xocc
generates simulation models of the device contents.

○ When the build target is the system (actual hardware), xocc generates the FPGA binary
for the device leveraging the Vivado Design Suite to run synthesis and implementation.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=7

Figure 3: FPGA Build Process

xocc -link Shell

.xclbin

OpenCL

xocc -c

.xo

C/C++

xocc -c

.xo

RTL

package_xo

.xo

X21155-111518

Note: The xocc compiler automatically uses the Vivado HLS and Vivado Design Suite tools to build the
kernels to run on the FPGA platform. It uses these tools with predefined settings which have proven to
provide good quality of results. Using the SDAccel environment and the xocc compiler does not require
knowledge of these tools; however, hardware-savvy developers can fully leverage these tools and use all
their available features to implement kernels.

Build Targets

The SDAccel tool build process generates the host application executable (.exe) and the FPGA
binary (.xclbin). The SDAccel build target defines the nature of FPGA binary generated by the
build process.

The SDAccel tool provides three different build targets, two emulation targets used for debug
and validation purposes, and the default hardware target used to generate the actual FPGA
binary:

• Software Emulation (sw_emu): Both the host application code and the kernel code are
compiled to run on the x86 processor. This allows iterative algorithm refinement through fast
build-and-run loops. This target is useful for identifying syntax errors, performing source-level
debugging of the kernel code running together with application, and verifying the behavior of
the system.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=8

• Hardware Emulation (hw_emu): The kernel code is compiled into a hardware model (RTL)
which is run in a dedicated simulator. This build and run loop takes longer but provides a
detailed, cycle-accurate, view of kernel activity. This target is useful for testing the
functionality of the logic that will go in the FPGA and for getting initial performance
estimates.

• System (hw): The kernel code is compiled into a hardware model (RTL) and is then
implemented on the FPGA device, resulting in a binary that will run on the actual FPGA.

SDAccel Debug Flow Overview
This section presents the general debug flow of the SDAccel environment by detailing the
general steps of a proven development process. This process allows you to focus rapidly on
potential errors in the design. This sets the baseline for developers indicating where to start if an
error occurs in their adopted development steps.

The debug flow described here assumes that an SDAccel platform board is installed and the
initial setup checks have passed. It is possible to configure the SDAccel environment to work
with custom hardware platforms that require a platform shell which defines the foundational
components of the board.

The SDAccel environment provides application-level debug features which allow the host code,
the kernel code, and the interactions between them to be efficiently debugged. The
recommended application-level debugging flow consists of three levels of debugging: software
emulation, hardware emulation, and hardware execution.

This three-tiered approach allows debugging of the host and kernel code and their interactions at
different levels of abstraction. Each of the execution models described below is supported
through the SDAccel IDE as well as through a batch flow using basic compile time and runtime
setup options.

Software Emulation
• Purpose: Algorithm verification

• Execution Model: During software emulation, all processes are running pure C/C++ models.
OpenCL kernel models are transformed to execute concurrently.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=9

Figure 4: Software Emulation

X22014-112618

Debug Server

GDB GDB

Kernel Code
 C++/OpenCL

Runtime

Standard System
Libraries

Host Code C++/
OpenCL

Verify that both the host and kernel code are functionally correct by running software emulation.
Because software emulation compiles and executes quickly, spend time here to iterate through
the code until the host and kernel code function correctly. Both hardware emulation and
hardware execution take more time to compile and execute.

Hardware Emulation
• Purpose: RTL debugging, finding protocol violations.

• Execution Model: During hardware emulation the host code is executed concurrently with a
simulation of the RTL model of the kernel, directly imported, or created through Vivado HLS
from the C/C++/OpenCL kernel code.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=10

Figure 5: Hardware Emulation

GDB

Host Code
C++/OpenCL

Standard System
Libraries

Runtime

Kernel Code
RTL

Xsim
+

TLM Interface Models

Debug Server

GDB

Kernel Code
C++/OpenCL

Viva
do H

LS

X21159-111418

Verify the host code and the kernel hardware implementation is correct by running hardware
emulation on a data set. Hardware emulation performs detailed verification using an accurate
model of the hardware (RTL) together with the host code C/OpenCL model. The hardware
emulation flow invokes the hardware simulator in the SDAccel environment to test the
functionality of the logic that is to be executed on the FPGA compute fabric. The interface
between the models is represented by a transaction-level model (TLM) to limit impact of
interface model on the overall execution time. The execution time for hardware emulation is
longer than for software emulation.

TIP: Xilinx recommends that you use small data sets for debug and validation.

During the hardware emulation stage you can optionally modify the kernel code to improve
performance. Iterate in hardware emulation until the functionality is correct and the estimated
kernel performance is sufficient. See SDAccel Environment Profiling and Optimization Guide
(UG1207) for more information.

Hardware Execution
• Purpose: Final verification of the complete system, finding protocol violations (hardware

hangs), and debugging system performance.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=11

• Execution Model: During hardware execution, the actual hardware platform is used to execute
the kernels. The difference between this debug configuration and the final compilation of the
kernel code is the inclusion of special hardware logic in the platform, such as ILA and VIO
debug cores, and AXI performance monitors for debug purposes.

Figure 6: Hardware Execution

GDB

Host Code
C++/OpenCL

Standard System
Libraries

Runtime

FPGA Board
+

FPGA
Containing Debug

XCLBIN

XBUTIL

Vivado® Hardware
Manager

Debug
XCLBIN

Hardware Debug Model

PCIe AXI

Debug
Enabled

Shell

RTL
Kernel

OpenCL
Kernel

C/C++
Kernel

SDx Debug Build

X21160-012819

At this stage, a system image (xclbin) is compiled and executed on the actual hardware
platform. Refer to the SDAccel Environment User Guide (UG1023) for more information on
generating the xclbin file. At this point, the kernels are confirmed to be executing correctly on
the actual FPGA hardware, and your focus can shift from debugging to performance tuning. See
the SDAccel Environment Profiling and Optimization Guide (UG1207).

Nevertheless, the hardware execution model might not be functional due to protocol issues, or
issues with the hardware configuration. Towards that end, the SDAccel environment provides
specific hardware debug capabilities which include ChipScope™ debug cores (such as System
ILAs), which can be viewed in Vivado hardware manager, with waveform analysis, kernel activity
reports, and memory access analysis to localize these critical hardware issues.

IMPORTANT! Debugging the kernel on the platform hardware requires additional logic to be incorporated into
the overall hardware model. This means that if hardware debugging is enabled, there is some impact on resource
use of the FPGA, as well as some impact on the kernel performance.

Chapter 1: Introduction to Debugging in SDAccel

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=12

Chapter 2

SDAccel Debug Features
In this chapter, different features of the SDAccel™ environment supporting debugging efforts are
examined. This chapter introduces the debugging tools available to analyze the project and
perform debugging. The next chapter illustrates debug techniques using the features described
here.

Defensive Programming
The SDAccel environment is capable of creating very efficient implementations. In some cases,
however, implementation issues can occur. One such case is if a write request is emitted before
there is enough data available in the process to complete the write transaction. This can cause
deadlock conditions when multiple concurrent kernels are affected by this issue and the write
request of a kernel depends on the input read being completed.

To avoid such situations, a conservative mode is available on the adapter. In principle, it delays
the write request until it has all of the data necessary to complete the write. This mode is
enabled during compilation by applying the following --xp option to the xocc compiler:

--xp param:compiler.axiDeadLockFree=yes

Because enabling this mode can impact performance, you might prefer to use this as a defensive
programming technique where this option is inserted during development and testing and then
removed during optimization. You might also want to add this option when the accelerator hangs
repeatedly.

SDAccel Software Debug
The SDAccel environment supports typical software-like debugging for the host as well as kernel
code. This flow is supported during software and hardware emulation and allows the use of break
points and the analysis of variables as commonly done during software debugging.

Note: The host code can still be debugged in this mode even when the actual hardware is executed.

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=13

IDE Debug Flow
The SDAccel integrated design environment (IDE) flow provides easy access to the debug
capabilities. Setting up an executable for debugging requires many steps when performed
manually. These steps are handled by the IDE when you use the IDE debug flow.

Note: The SDAccel debug flow relies on shell scripts during debugging. This requires that the setup files
such as .bashrc or .cshrc do not interfere with the SDAccel setup, such as the LD_LIBRARY_PATH.

Preparing the executable for debugging requires that you change the build configurations to
enable the application of debug flags. You can set these options through the Project Settings in
the SDx™ environment. There are two check boxes provided in the Options section for the
Active build configuration. One enables host debug builds while the other enables debugging of
the kernels. The checkboxes are named Host debug and Kernel debug respectively.

Figure 7: Software Project Settings Options

A more intuitive way to set these build options is through the context menu settings. To do this,
right-click on the build configuration in the Assistant view and select Settings. Alternatively, you
can double-click on the build configuration. The same two checkboxes are presented. While you
can enable host debug on all targets, kernel debug is only supported for software emulation and
hardware emulation build targets. This completes the setup; cleaning the build directory and
rebuilding the application ensure that the project is ready for running in the GDB debug
environment.

Running a GDB session from the IDE takes care of all the setup required. It automatically
manages the environment setup for hardware or software emulation. It configures the SDAccel
runtime to ensure debug support by the runtime environment, and manages the different
consoles required for the execution of the kernel model, the host model, and the debug server.

As a result, when initiating the debug session, the SDAccel environment asks to switch into the
debug perspective, which presents several windows to manage the different debug consoles and
source code windows.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=14

Figure 8: GDB Console

After starting the application, by default the application is stopped right at the beginning of the
main function body in the host code. As with any GDB graphical front end, you can now set
breakpoints and inspect variables in the host code. The SDAccel environment enables the same
capabilities for the accelerated kernel implementation in a transparent way.

Note: In hardware emulation, because the C/C++/OpenCL™ kernel code is translated for efficient
implementation, breakpoints cannot be placed on all statements. Mostly, untouched loops and functions
are available for breakpoints, and similarly only preserved variables can be accessed.

Related Information
Xilinx OpenCL Runtime GDB Extensions

Command Line Debug Flow
The command line debug flow in the SDAccel environment provides tools to debug the host and
kernel application running in all modes: software emulation, hardware emulation, or hardware
execution.

Note: The host code can be debugged using this feature in the hardware execution mode only.

There are four steps to debugging in the SDAccel environment using the command line flow:

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=15

1. General environment setup.

2. Prepare the host code for debug.

3. Prepare the kernel code for debug.

4. Launch GDB Standalone to debug.

IMPORTANT! The SDAccel environment supports host program debugging in all modes, but kernel debugging is
only supported in the emulation flows with gdb. In addition, more hardware-centric debugging support, such as
waveform analysis, is provided for the kernels.

General Environment Setup

Running software or hardware emulation requires first the tool setup followed by the selection of
the emulation mode.

1. To set up the tool environment and run the SDx tool, source the file below so that SDx
command settings are in the PATH:

• C Shell: source <SDX_INSTALL_DIR>/settings64.csh

• Bash: source <SDX_INSTALL_DIR>/settings64.sh

2. To set up the runtime environment reponsible for the interaction between the software and
hardware implementation, source the file below:

• C Shell: source /opt/xilinx/xrt/setup.csh

• Bash: source /opt/xilinx/xrt/setup.sh

Table 1: Select Emulation Mode

Environment Variable Value

XCL_EMULATION_MODE sw_emu or hw_emu
These environment settings are used by the runtime library to correctly
execute the desired emulation. This is required in addition to building the
executable for the specific emulation flow.

Preparing the Host Code

The host program needs to be compiled with debugging information generated in the executable
by adding the -g option to the xcpp command line option, as follows:

xcpp -g ...

TIP: Because xcpp is simply a wrapper around the system compiler (gcc), the -g option enables the compiler to
generate debug information.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=16

Preparing the Kernel

Kernel code can be debugged together with the host program in either software emulation or
hardware emulation. Debugging information needs to be generated first in the binary container
by passing the -g option to the xocc command line executable:

xocc -g -t [sw_emu | hw_emu | hw] ...

The –t (or -target) option is used to specify the compilation target as either software
emulation (sw_emu), hardware emulation (hw_emu), or hardware execution (hw).

In the software emulation flow, additional runtime checks can be performed for OpenCL based
kernels. The runtime checks include:

• Checking out-of-bound access made by kernel interface buffers (option: address)

• Checking uninitialized memory access initiated by kernel local to kernel (option: memory)

The options are enabled through the -–xp option and the param:compiler.fsanitize
directive, and need to be enabled during the link stage (-l) as shown in the following examples:

xocc -l –t sw_emu --xp param:compiler.fsanitize=address -o bin_kernel.xclbin
xocc -l –t sw_emu --xp param:compiler.fsanitize=memory -o bin_kernel.xclbin
xocc -l –t sw_emu --xp param:compiler.fsanitize=address,memory -o
bin_kernel.xclbin

When applied, the emulation run produces a debug log with emulation diagnostic messages such
as <project_dir>/Emulation-SW/<proj_name>-Default>/emulation_debug.log.

Launching GDB Host Code Debug

You can launch GDB standalone to debug the host program if the code is built with debug
information (built with the -g flag). This flow should also work while using a graphical front-end
for GDB, such as the Data Display Debugger (DDD) available from GNU. The following steps are
the instructions for launching GDB.

1. To set up the environment to run the SDx tool, source the file below so that SDx command
settings are in the PATH:

• C Shell: source <SDX_INSTALL_DIR>/settings64.csh

• Bash: source <SDX_INSTALL_DIR>/settings64.sh

2. To set up the runtime environment responsible for the interaction between the software and
hardware implementation, source the file below:

• C Shell: source /opt/xilinx/xrt/setup.csh

• Bash: source /opt/xilinx/xrt/setup.sh

3. Ensure that the environment variable XCL_EMULATION_MODE is set to the correct mode.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=17

4. The application debug feature must be enabled at runtime using an attribute in the
sdaccel.ini file. Create an sdaccel.ini file in the same directory as your host
executable, and include the following lines:

[Debug]
app_debug=true

This informs the runtime library that the kernel is debug enabled.

5. Start gdb through the Xilinx® wrapper:

xgdb --args host.exe test.xclbin

The xgdb wrapper performs the following setup steps under the hood:

• Launches GDB on the host program:

gdb --args host.exe test.xclbin

• Sets up the environment variables PYTHONHOME and PYTHONPATH to Python installation.
Currently, the gdb in the SDx environment expects Python 2.6 or Python 2.7. For
example, if the Python available on the machine is Python 2.6, set the environment as
shown (Bash shell shown):

export PYTHONHOME=/usr
export PYTHONPATH=/usr/lib64/python2.6/:/usr/lib64/python2.6/lib-
dynload/

• Sources the Python script in the GDB console to enable the Xilinx GDB extensions:

gdb> source ${XILINX_SDX}/scripts/appdebug.py

Launching Host and Kernel Debug

In software emulation, to better mimic the hardware being emulated, kernels are spawned off as
separate processes. If you are using GDB to debug the host code, breakpoints set on kernel lines
are not hit because the kernel code is not run within that process. To support the concurrent
debugging of the host code and the kernel code, the SDAccel environment provides a mechanism
to attach to spawned kernels through the use of sdx_server.

1. You must start three different terminals in the command line flow. In the first terminal, start
the sdx_server using the following command:

${XILINX_VIVADO}/bin/sdx_server --sdx-url

2. In a second terminal, run the host code in xgdb as described in Launching GDB Host Code
Debug.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=18

At this point, the first terminal running the sdx_server should provide a GDB listener
port NUM on standard out. Keep track of the number returned by the sdx_server as the
GDB listener port is used by GDB to debug the kernel process. When the GDB listener port
is printed, the spawned kernel process has attached to the sdx_server and is waiting for
commands from you. To control this process, you must start a new instance of GDB and
connect to the sdx_server.

IMPORTANT! If the sdx_server is running, then all spawned processes compiled for debug connect and wait
for control from you. If no GDB ever attaches or provides commands, the kernel code appears to hang.

3. In a third terminal, run the xgdb command, and at the GDB prompt, run the following
commands:

• For software emulation:

“file ${XILINX_SDX}/data/emulation/unified/cpu_em/generic_pcie/model/
genericpciemodel”

• For hardware emulation:

1. Locate the sdx_server temporary directory:/tmp/sdx/$uid.

2. Find the sdx_server process id (PID) containing the DWARF file of this debug
session.

3. At the gdb command line, run: file /tmp/sdx/$uid/$pid/NUM.DWARF.

• In either case, connect to the kernel process:

target remote :NUM

Where NUM is the number returned by the sdx_server as the GDB listener port.

TIP: When debugging software/hardware emulation kernels in the SDAccel IDE, these steps are handled
automatically and the kernel process is automatically attached, providing multiple contexts to debug both the
host code and kernel code simultaneously.

After these commands are executed, you can set breakpoints on your kernels as needed, run the
continue command, and debug your kernel code. When the all kernel invocations have
finished, the host code continues, and the sdx_server connection drops.

For both software and hardware emulation flows, there are restrictions with respect to the
accelerated kernel code debug interactions. Because this code is preprocessed in the software
emulation flow, and then translated in the hardware emulation flow into a hardware description
language (HDL) and simulated during debugging, it is not always possible to set breakpoints at all
locations. Especially with hardware emulation, only a limited number of breakpoints such as on
preserved loops and functions are supported. Nevertheless, this mode is useful for debugging the
kernel/host interface.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=19

Utilities for Hardware Debugging
In some cases, the normal SDAccel IDE and command line debug features are limited in their
ability to isolate an issue. This is especially true when the software or hardware appears not to
make any progress (hangs). These kinds of system issues are best analyzed with the help of the
utilities mentioned in this section.

Using the Linux dmesg Utility
Well-designed Linux kernels and modules report issues through the kernel ring buffer. This is also
true for SDAccel environment modules that allow you to debug the interaction with the
accelerator board on the lowest Linux level.

Note: This utility intended for use in hardware debug only.

TIP: In most cases, it is sufficient to work with the less verbose xbutil feature to localize a problem. Refer to
the SDx Command and Utility Reference Guide (UG1279) for more information on the xbutil command.

The dmesg utility is a Linux tool that lets you read the kernel ring buffer. The kernel ring buffer
holds kernel information messages in a circular buffer. A circular buffer of fixed size is used to
limit the resource requirements by overwriting the oldest entry with the next incoming message.

In the SDAccel tool, the xocl module and xclmgmt driver modules write informational
messages to the ring buffer. Thus, for an application hang or crash, or for that matter any
unexpected behavior (like being unable to program the bitstream, and so on), the dmesg tool
should be used to check the ring buffer.

The following image shows the layers of the software platform associated with the SDAccel
board platform.

Figure 9: Software Platform Layers

PCIe Configuration

HAL

XOCL XCLMGMT

ShellUSER PF MGMT PF

X20237-042519

To review messages from the Linux tool, you should first clear the ring buffer:

sudo dmesg -c

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=20

This flushes all messages from the ring buffer and make it easier to spot messages from the xocl
and xclmgmt. After that, start your application and run dmesg in another terminal.

sudo dmesg

The dmesg utility prints a record such as the following module reports:

In the example shown above, the AXI Firewall 2 has tripped, which is better examined using the
xbutil utility.

Using the Xilinx xbutil Utility
The Xilinx board utility (xbutil) is a powerful standalone command line utility that can be used
to debug lower level hardware/software interaction issues. A full description of this utility can be
found in the SDx Command and Utility Reference Guide (UG1279).

With respect to debugging, the following xbutil options are of special interest:

• query: Provides an overall status of an SDAccel environment platform.

• program: Downloads a binary (xclbin) to the programmable region of the Xilinx device.

• status: Extracts the status of the SDx environment Performance Monitors (spm) and the
Lightweight AXI Protocol Checkers (lapc).

Hardware Debugging Using ChipScope
After the final system image (xclbin) is generated and executed on the SDAccel environment
platform, the entire system including the host application running on the CPU, and the
accelerated kernels on the Xilinx FPGA, can be confirmed to be executing correctly on the actual
hardware. At this stage you can validate the functioning of the host code and kernel in the target
hardware, and debug any issues found. Some of the conditions that can be looked for or analyzed
are listed as follows:

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 21Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=21

• System hangs that could be due to protocol violations:

○ These violations can take down the entire system.

○ These violations can cause the kernel to get invalid data or to hang.

○ It is hard to determine where or when these violations originated.

○ To debug this condition, you should use an ILA triggered off of the AXI protocol checker,
which needs to be configured on the SDAccel platform in use.

• Problems inside the RTL kernel:

○ These problems are sometimes caused by the implementation: timing issues, race
condition, and bad design constraint.

○ Functional bugs that hardware emulation did not show.

• Performance problems:

○ For example, the frames per second processing is not what you expect.

○ You can examine data beats and pipelining.

○ Using an ILA with trigger sequencer, you can examine the burst size, pipelining, and data
width to locate the bottleneck.

Checking the FPGA Board for Hardware Debug
Support
Supporting hardware debugging requires the platform to support several IP components, most
notably the Debug Bridge. Talk to your platform designer to determine if these components are
included in the platform shell. If a Xilinx platform is used, debug availability can be verified using
the platforminfo utility to query the platform. Debug capabilities are listed under the
chipscope_debug objects.

For example, to query the a platform for hardware debug support, the following platforminfo
command can be used. A response can be seen showing that the platform contains a user and
management debug network, and also supports debugging a MicroBlaze™ processor.

$ platforminfo --json="hardwarePlatform.extensions.chipscope_debug" --
platform xilinx_u200_xdma_201830_1
{
 "debug_networks": {
 "user": {
 "name": "User Debug Network",
 "pcie_pf": "1",
 "bar_number": "0",
 "axi_baseaddr": "0x000C0000",
 "supports_jtag_fallback": "false",
 "supports_microblaze_debug": "true",
 "is_user_visible": "true"
 },
 "mgmt": {

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=22

 "name": "Management Debug Network",
 "pcie_pf": "0",
 "bar_number": "0",
 "axi_baseaddr": "0x001C0000",
 "supports_jtag_fallback": "true",
 "supports_microblaze_debug": "true",
 "is_user_visible": "false"
 }
 }
}

Enabling ChipScope from the SDx IDE
The SDx IDE provides options to enable the ChipScope™ debug feature on all the interface ports
of the compute units in the design. When enabling this option on a compute unit, the SDAccel
environment compiler adds a System ILA debug core to monitor the interface ports of the
compute unit. This ensures that you can debug the interface signals on the SDAccel environment
platform hardware while the kernel is running. You can access this through the Settings command
by right-clicking on a kernel in the system build configuration in the Assistant window as shown
below.

Figure 10: SDx Assistant View

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=23

This brings up the Hardware Function Settings dialog box as shown in the following figure. You
can use the Debug and Profiling Settings table in this dialog box to enable the ChipScope Debug
checkbox for specific compute units of the kernel, which enables the monitoring of all the
interfaces/ports on the compute unit.

Figure 11: SDx Hardware Function Settings

TIP: Enabling the ChipScope Debug option on larger designs with multiple kernels and/or compute units can
result in overuse of the FPGA device resources. Xilinx recommends using the xocc --dk list_ports option
on the command line to determine the number and type of interfaces on the compute units. If you know which
ports need to be monitored for debug as the design runs in hardware, the recommended methodology is to use
the -–dk option documented in the following topic.

Command Line Flow
The full SDAccel kernel code compilation and linking command line flow can be found in the
SDAccel Environment User Guide (UG1023), Chapter 8. The following section covers the xocc
linker options that can be used to list the available kernel ports as well as enable the System
Integrated Logic Analyzer core on the selected ports. You should only use this flow if you are
already familiar with the steps to build an SDAccel kernel at the command line.

The System Integrated Logic Analyzer debug core provides transaction-level visibility into an
accelerated kernel or function running on hardware. AXI traffic of interest can also be captured
and viewed using the System ILA core. The ILA core can be instantiated in the overall hardware
of an existing RTL IP design to enable debugging features within that design, or it can be inserted
automatically by the compiler. The xocc compiler provides the --dk option to attach System
ILA cores at the interfaces to the kernels for debugging and performance monitoring purposes.

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=24

The -–dk option to enable ILA IP core insertion has the following syntax:

 --dk <[chipscope|list_ports]<:compute_unit_name><:interface_name>>

In general, the <interface_name> is optional. If not specified, all ports are expected to be
analyzed. The chipscope option requires the explicit name of the compute unit to be provided
for the <compute_unit_name> and <interface_name>. The list_ports option
generates a list of valid compute units and port combinations in the current design and must be
used after the kernel has been compiled.

Before using the --dk option, the kernel must be compiled into an .xo file. For a complete
description of each xocc command line option as well as the complete SDAccel command line
build flow, refer to the SDAccel Environment User Guide (UG1023).

The first command compiles the kernel source files into an .xo file:

xocc -c -k <kernel_name> --platform <platform> -o <kernel_xo_file>.xo
<kernel_source_files>

After the kernel has been compiled into an .xo file, --dk list_ports can be added to the
command line options used during the xocc linking process. This causes the xocc compiler to
print the list of valid compute units and port combinations. See the following example:

xocc -l --platform <platform> --nk
<kernel_name>:<compute_units>:<kernel_nameN> --dk list_ports
<kernel_xo_file>.xo

Finally, ChipScope debug can be enabled on the desired ports by replacing list_ports with
the appropriate --dk chipscope command:

xocc -l --platform <platform> --nk
<kernel_name>:<compute_units>:<kernel_nameN> --dk
chipscope:<compute_unit_name>:<interface_name> <kernel_xo_file>.xo

Note:

Multiple --dk option switches can be specified in a single command line to additively increase interface
monitoring capability.

Refer to the SDx Command and Utility Reference Guide (UG1279) for more information on any
xocc option. When the design is built, you can debug the design using the Vivado® hardware
manager as described in Vivado Design Suite User Guide: Programming and Debugging (UG908).

Chapter 2: SDAccel Debug Features

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=25

Chapter 3

Debug Techniques
This section closely examines different styles of debugging techniques. It classifies the different
approaches into software-based debugging techniques and hardware-oriented techniques. In the
software-based approaches, you are not required to fully understand the ultimate mapping of the
kernel code onto the FPGA. However, this concept can only be extended to a certain amount of
detail, at which point the more detailed hardware-based analysis is required.

The section is structured along the different debug stages in the SDAccel™ environment. It starts
with functional verification during software emulation (a purely software-based approach). Next
is hardware emulation, where the kernel code is converted into actual hardware representation
providing more details of the final implementation. Hardware debugging as well as software
debugging concepts can be applied during debugging in the hardware emulation stage. The last
stage is system verification, where the actual hardware is executed. In this stage, software
debugging concepts can only be applied to the host while the kernel must deploy hardware
debugging concepts.

Functional Verification (Software Emulation)
Functional verification is the process during which the software representing the system is
verified towards the ultimate implementation goal by ensuring that the software behaves as
intended on the given data. This is a very common task during software development and many
different concepts are available.

If your software does not perform as intended, you can use the debugger to identify the root
cause of the issue, or if necessary, dump datapoints during software execution. This section
introduces these concepts applied to an SDx™ environment project.

Using printf() to Debug Kernels
The simplest approach to debugging algorithms is to verify key data values throughout the
execution of the program. For application developers, printing checkpoint values in the code is a
tried and trusted way of identifying problems within the execution of a program. Because part of
the algorithm is now running on an FPGA, even this debugging technique requires additional
support.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=26

The SDAccel development environment supports the OpenCL™ printf() built-in function
within the kernels in all development flows: software emulation, hardware emulation, and
running the kernel in actual hardware. The following is an example of using printf() in the
kernel, and the output when the kernel is executed with global size of 8:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void hello_world(__global int *a)
{
 int idx = get_global_id(0);

 printf("Hello world from work item %d\n", idx);
 a[idx] = idx;
}

The output is as follows:

Hello world from work item 0
Hello world from work item 1
Hello world from work item 2
Hello world from work item 3
Hello world from work item 4
Hello world from work item 5
Hello world from work item 6
Hello world from work item 7

IMPORTANT! printf() messages are buffered in the global memory and unloaded when kernel execution is
completed. If printf() is used in multiple kernels, the order of the messages from each kernel display on the
host terminal is not certain. Please note, especially when running in hardware emulation and hardware, the
hardware buffer size might limit printf output capturing.

Note: This feature is only supported for OpenCL kernels in all development flows.

For C/C++ kernel models printf() is only supported during software emulation and should be
excluded from the Vivado® HLS synthesis step. In this case, any printf() statement should be
surrounded by the following compiler macros:

#ifndef __SYNTHESIS__
 printf("text");
#endif

GDB-Based Debugging
This section shows how host and kernel debugging can be performed with the help of GDB.
Because this flow should be familiar to software developers, this section focuses on the
extensions of host code debugging capabilities specifically for FPGAs, and the current status of
kernel-based hardware emulation support.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=27

Host Code Debugging

Except for the method of launching the debugging environment described in the previous
chapter, there is no difference between the SDAccel host code debugging and the commonly
used GDB application debugging flow and features.

After gdb is launched, you can step through the host code in GDB and examine the C/C++/
OpenCL objects to verify that their contents are as expected at any point in the code.

However, as stated in the introduction especially in the case of hardware emulation, it is common
to look for issues regarding protocol synchronization between the host and the kernel. The
SDAccel environment provides special GDB extensions to examine the content of the OpenCL
runtime environment from the application host. These commands are described in more detail in
the next section.

Xilinx OpenCL Runtime GDB Extensions

The Xilinx OpenCL runtime Debug Environment introduces new GDB commands that give
visibility from the host application into the OpenCL runtime library.

Note: If you run GDB outside of the SDAccel environment, these commands need to be enabled as
described in Launching GDB Host Code Debug.

There are two kinds of commands which can be called from the gdb command line:

• Commands that give visibility into the OpenCL runtime data structures
(cl_command_queue, cl_event, and cl_mem). The arguments to xprint queue and
xprint mem are optional. The application debug environment keeps track of all the OpenCL
objects and automatically prints all valid queues and cl_mem objects if the argument is not
specified. In addition, the commands do a proper validation of supplied command queue,
event, and cl_mem arguments.

xprint queue [<cl_command_queue>]
xprint event <cl_event>
xprint mem [<cl_mem>]
xprint kernel
xprint all

• Commands that give visibility into the IP on the SDAccel platform. This functionality is only
available in the system flow (hardware execution) and not in any of the emulation flows.

xstatus all
xstatus --<ipname>

You can get help information about the commands by using help <command>.

A typical example for using these commands is if you are seeing the host application hang. In this
case, the host application is likely to be waiting for the command queue to finish or waiting on an
event list. Printing the command queue using the xprint command can tell you what events are
unfinished, letting you analyze the dependencies between the events.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=28

The output of both of these commands is automatically tracked when debugging with the
SDAccel IDE. In this case three tabs are provided next to the common tabs for Variables,
Breakpoints, and Registers in the left upper corner of the debug perspective. These are labeled
Command Queue, Memory Buffers, and Platform Debug, showing the output of xprint
queue, xprint mem, and xstatus respectively.

Note: The information presented in these views is only visible to the application developer while actually
debugging the host code. This is the reason why this debug technique is also applicable when actual
system execution (hardware) is performed.

GDB Kernel-Based Debugging

GDB kernel debugging is supported for the software emulation and hardware emulation flows.
When the GDB executable is connected to the kernel in the IDE or command line flows, you can
set breakpoints and query the content of variables in the kernel, similar to normal host code
debugging. This is fully supported in the software emulation flow because the kernel GDB
processes attach to the spawned software processes.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=29

However, during hardware emulation, the kernel source code is transformed into RTL, created by
Vivado HLS, and executed. As the RTL model is simulated, all transformations for performance
optimization and concurrent hardware execution are applied. For that reason, not all C/C++/
OpenCL lines can be uniquely mapped to the RTL code, and only limited breakpoints are
supported and at only specific variables can be queried. Today, the GDB tool therefore breaks on
the next possible line based on requested breakpoint statements and clearly states if variables
can not be queried based on the RTL transformations.

Related Information
Command Line Debug Flow

Debugging in Hardware Emulation
During hardware emulation, it is possible to deep dive into the implementation of the kernels.
The SDAccel environment allows you to perform typical hardware-like debugging in this mode as
well as some software-like GDB-based analysis on the hardware implementation.

GDB-Based Debugging
Debugging using a software-based GDB flow is fully supported during hardware emulation.
Except for the execution of the actual RTL code representing the kernel code, there is no
difference to the user because the GDB flow maps the RTL back into the source code
description. This limits the breakpoint and observability of the variables in some cases, because
during the RTL generation (HLS), variables and loops might have been dissolved.

For a detailed description of the debug feature itself please see the description in the Chapter 2:
SDAccel Debug Features chapter, and the extensions to GDB as presented in the GDB-Based
Debugging section.

Waveform-Based Kernel Debugging
The C/C++ and OpenCL kernel code is synthesized using Vivado High Level Synthesis (HLS) to
transform it into a Hardware Description Language (HDL) and later implement it onto the FPGA
(xclbin).

Another debugging approach is based on simulation waveforms. Hardware-centric algorithm
programmers are likely to be familiar with this approach. This waveform-based HDL debugging is
best supported by the SDAccel environment through the IDE flow during hardware emulation.

TIP: For most debugging, the HDL model does not need to be analyzed. Waveform debugging is considered an
advanced debugging capability.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=30

Run the Waveform-Based Kernel Debugging Flow

1. Start the SDx environment, and perform the regular setup.

2. Select Run → Debug Configurations to open the Debug Configurations.

3. On the Debug Configurations window, select the current launch configuration from the
OpenCL list, as shown in the following figure.

4. On the Main tab, two kernel debug options are displayed. Select both Use RTL waveform for
kernel debugging and Launch live waveform, and close the configuration window. A debug
session starts automatically. Selecting the Use RTL waveform for kernel debugging option
ensures that a simulation waveform database is generated, while the Launch live waveform
option spawns the Waveform viewer during the actual simulation, allowing you full control of
the simulation engines and waveform display.

If the live waveform viewer is activated, the waveform viewer automatically opens when
running the executable. By default, the waveform viewer shows all interface signals and the
following debug hierarchy:

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=31

• Memory Data Transfers: Shows data transfers from all compute units funnel through these
interfaces.

TIP: These interfaces could be a different bit width from the compute units. If so, then the burst lengths would be
different. For example, a burst of sixteen 32-bit words at a compute unit would be a burst of one 512-bit word at
the OCL master.

• Kernel <kernel name><workgroup size> Compute Unit<CU name>

○ CU Stalls (%): This section shows a summary of stalls for the entire compute unit (CU).
A bus of all lowest-level stall signals is created, and the bus is represented in the
waveform as a percentage (%) of those signals that are active at any point in time.

○ Data Transfers: This section shows the data transfers for all AXI masters on the CU.

○ User Functions: This section lists all of the functions within the hierarchy of the CU.

- Function: <function name>

- Dataflow/Pipeline Activity: This section shows the function-level loop dataflow/
pipeline signals for a CU.

- Function Stalls: This section lists the three stall signals within this function.

- Function I/O: This section lists the I/O for the function. These I/O are of protocol
-m_axi, ap_fifo, ap_memory, or ap_none.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=32

TIP: As with any waveform debugger, additional debug data of internal signals can be added by selecting the
instance of interest from the scope menu and the signals of interest from the object menu. Similarly, debug
controls such as HDL breakpoints, as well as HDL code lookup and waveform markers are supported. Refer to the
Vivado Design Suite User Guide: Logic Simulation (UG900) for more information on working with the waveform
viewer.

Enable Waveform Debugging through the XOCC Command Line

The waveform debugging process can also be enabled through the XOCC command line. Use the
following instructions to enable it:

1. Turn on debug code generation during kernel compilation.

xocc -g ...

2. Create an sdaccel.ini file in the same directory as the host executable with the contents
below:

[Emulation]
launch_waveform=batch

[Debug]
profile=true
timeline_trace=true
data_transfer_trace=fine

3. Execute hardware emulation. The hardware transaction data is collected in the file named
<hardware_platform>-<device_id>-<xclbin_name>.wdb. This file can directly be
opened through the SDAccel IDE.

TIP: If the launch_waveform option is set to gui in the emulation section: [Emulation]
launch_waveform=gui, a live waveform viewer is spawned during the execution of the hardware emulation.

System Verification and Hardware Debug
Application Hangs
This section discusses debugging issues related to the interaction of the host code and the
accelerated kernels. Problems with these interactions manifest as issues such as machine hangs
or application hangs. Although the GDB debug environment might help with isolating the errors
in some cases (xprint), such as hangs associated with specific kernels, these issues are best
debugged using the dmesg and xbutil commands as shown here.

If the process of hardware debugging does not resolve the problem, it is necessary to perform
hardware debugging using the ChipScope™ feature.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=33

Related Information
Utilities for Hardware Debugging
Debugging with ChipScope

AXI Firewall Trips

The AXI firewall should prevent host hangs. This is why Xilinx recommends the AXI Protocol
Firewall IP to be included in SDAccel environment platforms. When the firewall trips, one of the
first checks you perform should be to see if the host code and kernels are set up to use the same
memory banks. The following steps detail one of the simplest methods to perform this check.

1. Use xbutil to program the FPGA:

xbutil program -p <xclbin>

2. Run the xbutil query option to check memory topology:

xbutil query

In the following example, there is no memory bank associated with the kernels:

3. If the host code expects any DDR banks/PLRAMs to be used, this report should indicate an
issue. In this case, it is necessary to check kernel and host code expectations. If the host code
is using the Xilinx OpenCL extensions, it is necessary to check which DDR banks should be
used by the kernel. These should match the xocc -sp arguments provided.

Kernel Hangs due to AXI Violations

It is possible for the kernels to hang due to bad AXI transactions between the kernels and the
memory controller. To debug these issues, it is required to instrument the kernels.

1. The SDAccel environment provides two options for instrumentation to be applied during
XOCC linking (-l). Both of these add hardware to your implementation, and based on
utilization it might be necessary to limit instrumentation.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=34

a. Add Lightweight AXI Protocol Checkers (lapc). These protocol checkers are added using
the -–dk option. The following syntax is used:

 --dk <[protocol|list_ports]<:compute_unit_name><:interface_name>>

In general, the <interface_name> is optional. If not specified, all ports are expected to
be analyzed. The protocol option is used to define the protocol checkers to be
inserted. This option can accept a special keyword, all, for <compute_unit_name>
and/or <interface_name>. The list_ports option generates a list of valid compute
units and port combinations in the current design.

Note: Multiple --dk option switches can be specified in a single command line to additively add
interface monitoring capability.

b. Adding SDx environment Performance Monitors (spm) enables the listing of detailed
communication statistics (counters). Although this is most useful for performance
analysis, it provides insight during debugging on pending port activities. The Performance
Monitors are added using the profile_kernel option. The basic syntax for
profile_kernel option is:

--profile_kernel data:<krnl_name|all>:<cu_name|all>:<intrfc_name|
all>:<counters|all>

Three fields are required to determine the precise interface to which the performance
monitor is applied. However, if resource use is not an issue, the keyword all enables you
to apply the monitoring to all existing kernels, compute units, and interfaces with a single
option. Otherwise, you can specify the kernel_name, cu_name, and
interface_name explicitly to limit instrumentation.

The last option, <counters|all>, allows you to restrict the information gathering to
just counters for large designs, while all (default) includes the collection of actual
trace information.

Note: Multiple --profile_kernel option switches can be specified in a single command line to
additively add performance monitoring capability.

--profile_kernel data:kernel1:cu1:m_axi_gmem0
--profile_kernel data:kernel1:cu1:m_axi_gmem1
--profile_kernel data:kernel2:cu2:m_axi_gmem

2. When the application is rebuilt, rerun the host application using the xclbin with the added
SPM IP and LAPC IP.

3. When the application hangs, you can use xbutil status to check for any errors or
anomalies.

4. Check the SPM output:

• Run xbutil status --spm a couple of times to check if any counters are moving. If
they are moving then the kernels are active.

TIP: Testing SPM output is also supported through GDB debugging using the command extension xstatus
spm.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=35

• If the counters are stagnant, the outstanding counts greater than zero might mean some
AXI transactions are hung.

5. Check the LAPC output:

• Run xbutil status --lapc to check if there are any AXI violations.

TIP: Testing LAPC output is also supported through GDB debugging using the command extension xstatus
lapc.

• If there are any AXI violations, it implies that there are problems in the kernel
implementation.

Host Application Hangs when Accessing Memory

Application hangs can also be caused by incomplete DMA transfers initiated from the host code.
This does not necessarily mean that the host code is wrong; it might also be that the kernels have
issued illegal transactions and locked up the AXI.

1. If the platform has an AXI firewall, such as in the SDAccel platforms, it is likely to trip. The
driver issues a SIGBUS error, kills the application, and resets the device. You can check this
by running xbutil query. The following figure shows such an error in the firewall status:

TIP: If the firewall has not tripped, the Linux tool, dmesg, can provide additional insight.

2. When you know that the firewall has tripped, it is important to determine the cause of the
DMA timeout. The issue could be an illegal DMA transfer, or kernel misbehavior. However, a
side effect of the AXI firewall tripping is that the health check functionality in the driver
resets the board after killing the application; any information on the device that might help
with debugging the root cause is lost. To debug this problem, you can disable the health
check thread in the xclmgmt kernel module to capture the error. This uses common Unix
kernel tools in the following sequence:

a. sudo modinfo xclmgmt: This command lists the current configuration of the module
and indicates if the health_check parameter is on or off. It also returns the path to the
xclmgmt module.

b. sudo rmmod xclmgmt: This removes and therefore disables the xclmgmt kernel
module.

c. sudo insmod <path to module>/xclmgmt.ko health_check=0: This reinstalls
the xclmgmt kernel module with the health check disabled.

TIP: The path to this module is reported in the output of the call to modinfo.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=36

3. With the health check disabled, rerun the application. You can use the kernel instrumentation
to isolate this issue as previously described.

Related Information
Kernel Hangs due to AXI Violations
Using the Linux dmesg Utility

Typical Errors Leading to Application Hangs

The user errors that typically create application hangs are listed below:

• Read-before-write in 5.0+ shells causes an MIG ECC (Memory Interface Generator error
correction code) error. This is typically a user error. For example, this error might occur when a
kernel is expected to write 4KB of data in DDR, but it produces only 1KB of data, and you
then try to transfer the full 4KB of data to the host. It can also happen if you supply a 1KB
buffer to a kernel, but the kernel tries to read 4KB of data.

• An ECC read-before-write error also occurs if no data has been written to a memory location
since the last bitstream download which results in MIG initialization, but a read request is
made for that same memory location. ECC errors stall the affected MIG because kernels are
usually not able to handle this error. This can manifest in two different ways:

1. The CU might hang or stall because it cannot handle this error while reading or writing to
or from the affected MIG. The xbutil query shows that the CU is stuck in a BUSY state
and is not making progress.

2. The AXI Firewall might trip if a PCIe® DMA request is made to the affected MIG, because
the DMA engine is unable to complete the request. AXI Firewall trips result in the Linux
kernel driver killing all processes which have opened the device node with the SIGBUS
signal. The xbutil query shows if an AXI Firewall has indeed tripped, and includes a
timestamp.

If the above hang does not occur, the host code might not read back the correct data. This
incorrect data is typically 0s, and is located in the last part of the data. It is important to review
the host code carefully. One common example is compression, where the size of the
compressed data is not known up front, and an application might try to migrate more data to
the host than was produced by the kernel.

Debugging with ChipScope
You can use the ChipScope debugging environment and the Vivado hardware manager to help
you debug your host application and kernels quickly and more effectively. In order to do this, at
least one of the following must be true:

• Your SDAccel application project has been instrumented with debug cores, using the --dk
compiler switch (as described in Hardware Debugging Using ChipScope).

• The RTL kernels used in your project must have been instantiated with debug cores (as
described in Adding Debug IP to RTL Kernels).

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=37

These tools enable a wide range of capabilities from logic to system level debug while your kernel
is running in hardware.

Note: Debugging on the kernel platform requires additional logic to be incorporated into the overall
hardware model, which might have an impact on resource use and kernel performance.

Running XVC and HW Servers

The following steps are required to run the XVC (Xilinx Virtual Cable) and HW servers, host
applications, and finally trigger and arm the debug cores in Vivado hardware manager.

1. Add debug IP to the kernel.

2. Instrument the host application to pause at appropriate point in the host execution where
you want to debug. See Debugging through the Host Application.

3. Set up the environment for hardware debug. You can do this manually, or by using a script
that automates this for you. The following steps are described in Manual Setup for Hardware
Debug and Automated Setup for Hardware Debug:

a. Run the required XVC and HW servers.

b. Execute the host application and pause at the appropriate point in the host execution to
enable setup of ILA triggers.

c. Open Vivado hardware manager and connect to the XVC server.

d. Set up ILA trigger conditions for the design.

e. Continue with host application.

f. Inspect results in the Vivado hardware manager.

g. Rerun iteratively from step b (above) as required.

Adding Debug IP to RTL Kernels

IMPORTANT! This debug technique requires familiarity with the Vivado Design Suite, and RTL design.

You need to instantiate debug cores like the Integrated Logic Analyzer (ILA) and Virtual Input/
Output (VIO) in your RTL kernel code to debug the kernel logic. From within the Vivado Design
Suite, edit the RTL kernel to instantiate an ILA IP customization, or a VIO IP, into the RTL code,
similar to using any other IP in Vivado IDE. Refer to the Vivado Design Suite User Guide:
Programming and Debugging (UG908) to learn more about using the ILA or other debug cores in
the RTL Insertion flow and to learn about using the HDL generate statement technique to
enable/disable debug core generation.

TIP: The best time to add debug cores to your RTL kernel is when you create it. Refer to the Debugging section in
the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) for more information.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 38Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=38

You can also add the ILA debug core using a Tcl script from within an open Vivado project as
shown in the following code example:

create_ip -name ila -vendor xilinx.com -library ip -version 6.2 -
module_name ila_0
set_property -dict [list CONFIG.C_PROBE6_WIDTH {32} CONFIG.C_PROBE3_WIDTH
{64} \
CONFIG.C_NUM_OF_PROBES {7} CONFIG.C_EN_STRG_QUAL {1}
CONFIG.C_INPUT_PIPE_STAGES {2} \
CONFIG.C_ADV_TRIGGER {true} CONFIG.ALL_PROBE_SAME_MU_CNT {4}
CONFIG.C_PROBE6_MU_CNT {4} \
CONFIG.C_PROBE5_MU_CNT {4} CONFIG.C_PROBE4_MU_CNT {4}
CONFIG.C_PROBE3_MU_CNT {4} \
CONFIG.C_PROBE2_MU_CNT {4} CONFIG.C_PROBE1_MU_CNT {4}
CONFIG.C_PROBE0_MU_CNT {4}] [get_ips ila_0]

The following is an example of an ILA debug core instantiated into the RTL kernel source file of
the RTL Kernel Debug example design on GitHub. The ILA monitors the output of the
combinatorial adder as specified in the src/hdl/krnl_vadd_rtl_int.sv file.

 // ILA monitoring combinatorial adder
 ila_0 i_ila_0 (
 .clk(ap_clk), // input wire clk
 .probe0(areset), // input wire [0:0] probe0
 .probe1(rd_fifo_tvalid_n), // input wire [0:0] probe1
 .probe2(rd_fifo_tready), // input wire [0:0] probe2
 .probe3(rd_fifo_tdata), // input wire [63:0] probe3
 .probe4(adder_tvalid), // input wire [0:0] probe4
 .probe5(adder_tready_n), // input wire [0:0] probe5
 .probe6(adder_tdata) // input wire [31:0] probe6
);

After the RTL kernel has been instrumented for debug with the appropriate debug cores, you can
analyze the hardware in the Vivado hardware manager features as described in the previous
topic.

Debugging through the Host Application

To debug the host application working with the kernel code running on the SDAccel platform, the
application host code must be modified to ensure that you can set up the ILA trigger conditions
after the kernel has been programmed into the device, but before starting the kernel.

Pausing a C++ Host Application

The following code example is from the src/host.cpp code from the RTL Kernel example on
GitHub:

....
 std::string binaryFile = xcl::find_binary_file(device_name,"vadd");

 cl::Program::Binaries bins = xcl::import_binary_file(binaryFile);
 devices.resize(1);
 cl::Program program(context, devices, bins);
 cl::Kernel krnl_vadd(program,"krnl_vadd_rtl");

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 39Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/rtl_kernel/rtl_vadd_hw_debug
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/rtl_kernel/rtl_vadd_hw_debug
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=39

 wait_for_enter("\nPress ENTER to continue after setting up ILA
trigger...");

 //Allocate Buffer in Global Memory
 std::vector<cl::Memory> inBufVec, outBufVec;
 cl::Buffer buffer_r1(context,CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
 vector_size_bytes, source_input1.data());
 ...

 //Copy input data to device global memory
 q.enqueueMigrateMemObjects(inBufVec,0/* 0 means from host*/);

 //Set the Kernel Arguments
 ...

 //Launch the Kernel
 q.enqueueTask(krnl_vadd);

The addition of the conditional if (interactive) test and the use of the wait_for_enter
function pause the host application to give the ILA time to set up the required triggers and
prepare to capture data from the kernel. After the Vivado hardware manager is set up and
configured properly, you can press Enter to continue running the host application.

Pausing the Host Application Using GDB

Instead of making changes to the host application to pause before a kernel execution, you can
run a GDB session from the SDx IDE. You can then set a breakpoint prior to the kernel execution
in the host application. When the breakpoint is reached, you can set up the debug ILA triggers in
Vivado hardware manager, arm the trigger, and then resume the kernel execution in GDB.

Automated Setup for Hardware Debug
Note: A full SDx environment install is required to complete the following task. See the SDAccel
Environment Release Notes, Installation, and Licensing Guide (UG1238) for more information about
installation.

1. Set up your SDx environment by sourcing the appropriate settings64.sh/.csh file found
in your SDx install area.

2. Start xvc_pcie and hw_server apps using the sdx_debug_hw script.

sdx_debug_hw --xvc_pcie /dev/xvc_pub.m1025 --hw_server
launching xvc_pcie...
xvc_pcie -d /dev/xvc_pub.m1025 -s TCP::10200
launching hw_server...
hw_server -sTCP::3121

Note: The /dev/xvc_* character device will differ depending on the platform. In this example, the
character device is /dev/xvc_pub.m1025, though on your system it is likely to differ.

3. In the SDx IDE, modify the host code to include a pause statement after the kernel has been
created/downloaded and before the kernel execution is started, then recompile the host
program.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 40Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=40

• For C++ host code, add a pause after the creation of the cl::Kernel object. The
following snippet is from the Vector Add template design C++ host code:

• For C-language host code, add a pause after the clCreateKernel() function call:

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=41

4. Run your modified host program.

vadd_test.exe ./binary_container_1.xclbin
Loading: './binary_container_1.xclbin'
Pausing to allow you to arm ILA trigger. Hit enter here to resume host
program...

5. Launch Vivado Design Suite using the sdx_debug_hw script located in your SDAccel
installation directory.

> sdx_debug_hw --vivado --host xcoltlab40 --ltx_file ../workspace/
vadd_test/System/pfm_top_wrapper.ltx

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=42

The command window displays the following:

launching vivado... ['vivado', '-source', 'sdx_hw_debug.tcl', '-
tclargs', '/tmp/sdx_tmp/project_1/project_1.xpr', 'workspace/vadd_test/
System/pfm_top_wrapper.ltx', 'xcoltlab40', '10200', '3121']

****** Vivado v2018.2 (64-bit)
 **** SW Build 2245749 on Wed May 30 12:36:19 MDT 2018
 **** IP Build 2245576 on Wed May 30 15:12:50 MDT 2018
 ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

start_gui

6. In Vivado Design Suite, run the ILA trigger.

7. Press Enter to un-pause the host program.

vadd_test.exe ./binary_container_1.xclbin
Loading: './binary_container_1.xclbin'
Pausing to allow you to arm ILA trigger. Hit enter here to resume host
program...

TEST PASSED

8. In the Vivado Design Suite, see the interface transactions on the kernel compute unit slave
control interface in the Waveform view.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=43

Manual Setup for Hardware Debug

Manually Starting Debug Servers

Note: The following steps are also applicable when using Nimbix and other cloud platforms.

There are two steps required to start the debug servers prior to debugging the design in Vivado
hardware manager.

1. Source the SDx environment setup script, settings64.csh or settings64.sh, and
launch the xvc_pcie server. The filename passed to xvc_pcie must match the character
driver file installed with the kernel device driver.

>xvc_pcie -d /dev/xvc_pub.m1025

Note: The xvc_pcie server has many useful command line options. You can issue xvc_pcie -help
to obtain the full list of available options.

2. Start the XVC server on port 10201 and the hw_server on port 3121.

>hw_server "set auto-open-servers xilinx-xvc:localhost:10201" -e "set
always-open-jtag 1"

Starting Debug Servers on an Amazon F1 Instance

Instructions to start the debug servers on an Amazon F1 instance can be found here: https://
github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md

Debugging Designs using Vivado Hardware Manager

Traditionally, a physical JTAG connection is used to debug FPGAs. The SDAccel platforms have
leveraged XVC for a debug flow that enables debug in the cloud. To take advantage of this
capability, SDAccel enables running the XVC server. The XVC server is an implementation of
Xilinx Virtual Cable (XVC) protocol, which allows the Vivado Design Suite to connect to a local or
remote target FPGA for debug, using standard Xilinx debug cores like the Integrated Logic
Analyzer IP (ILA), or the Virtual Input/Output IP (VIO), and others.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 44Send Feedback

https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=44

The Vivado hardware manager (Vivado Design Suite or Vivado Lab Edition) can be running on the
target instance or it can be running remotely on a different host. The TCP port on which the XVC
server is listening must be accessible to the host running Vivado hardware manager. To connect
the Vivado hardware manager to XVC server on the target, the following steps should be
followed on the machine hosting the Vivado tools:

1. Launch the Vivado Lab Edition, or the full Vivado Design Suite.

2. Select Open Hardware Manager from the Tasks menu, as shown in the following figure.

3. Connect to the Vivado tools hw_server, specifying a local or remote connection, and the
Host name and Port, as shown below.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=45

4. Connect to the target instance Virtual JTAG XVC server.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=46

5. Select the debug bridge instance from the Hardware window of the Vivado hardware
manager.

6. In the Hardware Device Properties window select the appropriate probes file for your design
by clicking the icon next to the Probes file entry, selecting the file, and clicking OK. This
refreshes the hardware device, and it should now show the debug cores present in your
design.

TIP: The probes file (.ltx) is written out during the implementation of the kernel by the Vivado tool, if the kernel
has debug cores as specified in Hardware Debugging Using ChipScope.

7. The Vivado hardware manager can now be used to debug the kernels running on the SDAccel
platform. Refer to the Vivado Design Suite User Guide: Programming and Debugging (UG908) for
more information on working with the Vivado hardware manager.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=47

Debugging a MicroBlaze Processor (RTL Kernels
Only)
Note: This technique requires familiarity with the Vivado Design Suite, RTL design, the MicroBlaze™
processor, and standard MicroBlaze debugging techniques.

In RTL kernel block designs, a MicroBlaze processor is included under the control hierarchy. To
debug the software applications running on the MicroBlaze processor, a MicroBlaze Debug
Module (MDM) can optionally be included in the RTL kernel block design, allowing standard
MicroBlaze debugging techniques to take place over XVC. To enable MicroBlaze debugging, both
of the following must be true:

• The SDAccel environment platform must support MicroBlaze debugging over XVC.

• The RTL kernel must contain a MicroBlaze processor and MicroBlaze Debug Module (MDM).

The following platforms support hardware debug of a MicroBlaze processor:

• xilinx_u200_xdma_201830_1

• xilinx_u250_xdma_201830_1

• xilinx_vcu1525_xdma_201830_1

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=48

MicroBlaze debugging can optionally be enabled in the RTL Kernel Wizard user interface. When
generating the RTL kernel, if the platform supports MicroBlaze debug, a checkbox appears in the
wizard allowing the feature to be enabled. When this box is checked, the optional MicroBlaze
Debug Module (MDM) is included in the control block of the RTL kernel. The following steps
detail how to enable MicroBlaze debug on your RTL kernel during the generation of the kernel.

1. Launch the RTL Kernel Wizard by clicking Xilinx → RTL Kernel Wizard. When the RTL Kernel
Wizard launches, click Next.

2. On the General Settings page, select Block Design as the kernel type, and check the box to
Enable MicroBlaze Debug, as seen in the following figure:

Connecting to a MicroBlaze Processor in an RTL
Kernel over XVC
When the RTL kernel has been generated with MicroBlaze debug and an .xclbin binary has
been created, you can connect to the MicroBlaze processor embedded in the kernel while it is
running in hardware to view hardware registers and perform standard MicroBlaze debugging
techniques.

1. Set up your environment by sourcing the appropriate settings64.sh/.csh file found in
your install area.

2. Start the xvc_pcie and hw_server apps using the sdx_debug_hw script, as shown in the
following example:

sdx_debug_hw --xvc_pcie /dev/xvc_pub.m1025 --hw_server
launching xvc_pcie...
xvc_pcie -d /dev/xvc_pub.m1025 -s TCP::10200
launching hw_server...
hw_server -sTCP::3121

Note: The /dev/xvc_* character device differs depending on the platform. In this example, the
character device is /dev/xvc_pub.m1025, though on your system it is likely to differ.

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=49

3. Launch the Xilinx Software Command Line Tool (XSCT):

$ xsct

****** Xilinx Software Commandline Tool (XSCT) v2018.3
 **** SW Build 2373407 on Thu Oct 25 21:12:35 MDT 2018
 ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.

xsct%

4. Connect to the hardware server and XVC server to list the available targets:

xsct% connect -url tcp:localhost:3121 -xvc-url tcp:localhost:10200
tcfchan#0
xsct% targets
 1 debug_bridge
 2 00000000
 3 Legacy Debug Hub
 4 MicroBlaze Debug Module at USER1.1.2.2
 5 MicroBlaze #0 (Running)
xsct%

Note: While this example uses a both a local hardware server and local XVC server, this is not a
requirement. If you wish to use XSCT on a remote machine, replace localhost in the above example
with the IP address or host name of the host on which sdx_debug_hw is running.

5. As can be seen, the MicroBlaze processor is listed as target number 5. It can be connected to
by issuing the targets -set command. Listing the targets again shows that the MicroBlaze
processor has been selected as the active target:

xsct% targets -set 5
xsct% targets
 1 debug_bridge
 2 00000000
 3 Legacy Debug Hub
 4 MicroBlaze Debug Module at USER1.1.2.2
 5* MicroBlaze #0 (Running)

6. At this point, standard MicroBlaze debugging techniques can be applied as described in the
MicroBlaze Processor Reference Guide (UG984). For example, to list the contents of the
MicroBlaze registers, rrd can be issued:

xsct% rrd
 r0: 0000000000000000 r1: 00000000000115e8 r2: 0000000000010960
 r3: 0000000000000006 r4: 0000000000000006 r5: 0000000000000000
 r6: 0000000000000000 r7: 0000000000000000 r8: 0000000000000000
 r9: 0000000000000000 r10: 0000000000000000 r11: 0000000000000000
r12: 0000000000000000 r13: 0000000000010a60 r14: 0000000000000000
r15: 0000000000010348 r16: 0000000000000000 r17: 0000000000000000
r18: 00000000ffffffff r19: 00000000000115e8 r20: 0000000000000000
r21: 0000000000000000 r22: 0000000000000000 r23: 0000000000000000
r24: 0000000000000000 r25: 0000000000000000 r26: 0000000000000000
r27: 0000000000000000 r28: 0000000000000000 r29: 0000000000000000
r30: 0000000000000000 r31: 0000000000000000 pc: 00000000000106bc
msr: 00000010 ear: 0000000000000010 esr: 00000010
btr: 0000000000000010 edr: 00000010 dcr: 00000009
dsr: 21010000

xsct%

Chapter 3: Debug Techniques

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=50

Chapter 4

Examples
This chapter presents examples to illustrate particular debug techniques and flows.

Complete Command Line Debug Example
To get familiar with the command line flow in the SDx™ environment, take the IDCT example
available from the Xilinx GitHub repository and compile it manually (no makefile) for debugging.

1. In a terminal, set up your environment by sourcing the SDx environment setting file to build
the accelerated application:

• C Shell: source <SDX_INSTALL_DIR>/settings64.csh

• Bash: source <SDX_INSTALL_DIR>/settings64.sh

Starting from 2018.3, debugging requires you to source the runtime environment, which is
installed separately:

• C Shell: source /opt/xilinx/xrt/setup.sh

• Bash: source /opt/xilinx/xrt/setup.sh

2. Clone the complete SDAccel Examples GitHub repository to acquire the example code:

git clone https://github.com/Xilinx/SDAccel_Examples.git

This creates an SDAccel_Examples directory which includes the IDCT example. Move into
the example directory:

cd SDAccel_Examples/vision/idct/

The host code is fully contained in src/idct.cpp and the kernel code is part of src/
krnl_idct.cpp.

3. Compile the kernel software, using the option -t sw_emu to specify compilation for
software emulation. In general, no additional options are required for hardware emulation,
except for changing the -t option to hw_emu.

a. The next step is to compile the kernel object file for debugging. The kernel is compiled
using the xocc compiler:

xocc -g -c -k krnl_idct -t sw_emu --platform <DEVICE> -o krnl_idct.xo
src/krnl_idct.cpp

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 51Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/vision/idct
https://github.com/Xilinx/SDAccel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=51

The -g option ensures that the code is compiled for debugging. The -c option instructs
the compilation of the kernel, which is implemented by the krnl_idct function (-k).
The target sw_emu (-t) determines that the output of this compilation is used for
software emulation. The output of the compilation is intended to run on the <DEVICE>
specified through --platform option. The generated Xilinx object file is called
krnl_idct.xo and is specified with the -o option. The file to be compiled is the last
argument.

b. Link the kernel object file. Linking allows multiple kernels to be combined, and provides
the means to specify implementation directives. The following is the example link line for
the IDCT:

xocc -g -l -t sw_emu --platform <DEVICE> --xp
"prop:solution.hls_pre_tcl=src/hls_config.tcl" --sp
krnl_idct_1.m_axi_gmem0:bank0 --sp krnl_idct_1.m_axi_gmem1:bank0 --sp
krnl_idct_1.m_axi_gmem2:bank1 --nk krnl_idct:1 -o krnl_idct.xclbin
krnl_idct.xo

Similarly to the compile line, the -g option is provided for debugging followed by the -l
option to instruct xocc to perform object linking. The target and platform need to be
presented again and need to be aligned with the compile step. The provided --xp option
is an example of how to control the downstream tools such as HLS with arguments (in
most cases, this is not required).

The --sp option is used to specify port bindings to specific DDR banks and PLRAMs. For
optimization purposes, it is good to consider port binding for any larger designs. Each
port can be bound individually to a DDR/PLRAM, and you are required to adhere to this
same binding in the host code when allocating buffers.

The --nk option is used to specify multiple instances of a kernel. In this case, only one
instance of krnl_idct is implemented in the final bitstream. The name of the bitstream
is defined by the -o option before the different kernel object files are listed as the last
argument.

4. Compile and link the host code for debugging. The host code is compiled with the GNU
compiler chain, although it is wrapped under xcpp. Thus, separate compile and linking phases
can also be performed. The host compilation is completely independent of the final target.

a. Compile host code C++ files:

xcpp -c -I${XILINX_XRT}/include -g -o idct.o src/idct.cpp

The -c option specifies a compile-only run, which creates an object file. The name of the
object file is specified by the -o option. The -I option is using the runtime environment
variable XILINX_XRT to specify the location of the common header files used by the
host code. The -g option states that a debug compile is initiated. The final argument is
the source file to be compiled in this step.

Chapter 4: Examples

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=52

b. Link the object files:

xcpp -g -lOpenCL -lpthread -lrt -lstdc++ -L${XILINX_XRT}/lib/ -o idct
idct.o

Linking is performed again using the -g option to ensure debug information is included.
Because the example uses the OpenCL™ interfaces and the runtime library, several
additional libraries are included in the link process (-l) which are picked up in addition to
the default library path from the path specified by -L option. Finally, the name of the
executable is specified by the -o option and the previously generated object file is
provided through the last argument.

5. Prepare the emulation environment. The following command is required for emulation runs:

emconfigutil --platform <device>

The actual emulation mode (sw_emu or hw_emu) then needs to be set through the
XCL_EMULATION_MODE environment variable. In C-shell this would be as follows:

setenv XCL_EMULATION_MODE sw_emu

6. Run the debugger on host and kernel. As stated in the earlier chapter, running the debugger
is best performed in the IDE. The following steps guide you through the command line debug
process which requires three separate terminals, all prepared by sourcing the SDAccel™
environment as described in the first section of this description.

a. In the first terminal, start the SDx debug server:

${XILINX_VIVADO}/bin/sdx_server --sdx-url

b. In a second terminal, set the emulation mode:

setenv XCL_EMULATION_MODE sw_emu

Create an sdaccel.ini file in the run directory with the following content:

[Debug]
app_debug=true

Run GDB by executing the following:

xgdb –-args idct krnl_idct.xclbin

Enter the following on the gdb prompt:

run

c. In the third terminal, attach the software emulation or hardware emulation model to GDB
to allow stepping through the design. Here, there is a difference between running
software emulation and hardware emulation. In either flow, start up another xgdb:

xgdb

Chapter 4: Examples

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=53

• For software emulation:

○ Type the following on the gdb prompt:

file <XILINX_SDX>/data/emulation/unified/cpu_em/generic_pcie/
model/genericpciemodel

Note: Because GDB does not expand the environment variable, it is easiest to replace
<XILINX_SDX> with the actual value of $XILINX_SDX.

• For hardware emulation:

1. Locate the sdx_server temporary directory: /tmp/sdx/$uid.

2. Find the sdx_server process ID (PID) containing the DWARF file of this debug
session.

3. At the gdb prompt, run:

file /tmp/sdx/$uid/$pid/NUM.DWARF

• In either case, connect to the kernel process:

target remote :NUM

Here, NUM is the number returned by the sdx_server as the GDB listener port.

At this point, debugging of the sw_emu and hw_emu can be done as usual with GDB. The
only difference is that the host code and the kernel code are debugged in two different
GDB sessions. This is common when dealing with different processes. It is most important
to understand that a breakpoint in one process might be hit before the next breakpoint in
the current process is hit. In these cases, the debugging session appears to hang, while
the second terminal is waiting for input.

Chapter 4: Examples

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=54

Appendix A

Additional Resources and Legal
Notices

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
1. SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238)

2. SDAccel Environment Profiling and Optimization Guide (UG1207)

3. SDAccel Environment Getting Started Tutorial (UG1021)

4. SDAccel™ Development Environment web page

5. Vivado® Design Suite Documentation

6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=55

8. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

10. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

11. Vivado Design Suite Properties Reference Guide (UG912)

12. Khronos Group web page: Documentation for the OpenCL standard

13. Xilinx® Virtex® UltraScale+™ FPGA VCU1525 Acceleration Development Kit

14. Xilinx® Kintex® UltraScale™ FPGA KCU1500 Acceleration Development Kit

15. Xilinx® Alveo™ web page

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Appendix A: Additional Resources and Legal Notices

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 56Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug912-vivado-properties.pdf
http://www.khronos.org
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/alveo
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=56

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan,
Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. OpenCL and the OpenCL logo are trademarks of
Apple Inc. used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia
Interface are trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1281 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Debugging Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1281&Title=%20SDAccel%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=57

	 SDAccel Environment Debugging Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction to Debugging in SDAccel
	SDAccel Execution Model
	SDAccel Build Process
	SDAccel Debug Flow Overview
	Software Emulation
	Hardware Emulation
	Hardware Execution

	Ch. 2: SDAccel Debug Features
	Defensive Programming
	SDAccel Software Debug
	IDE Debug Flow
	Command Line Debug Flow
	General Environment Setup
	Preparing the Host Code
	Preparing the Kernel
	Launching GDB Host Code Debug
	Launching Host and Kernel Debug

	Utilities for Hardware Debugging
	Using the Linux dmesg Utility
	Using the Xilinx xbutil Utility

	Hardware Debugging Using ChipScope
	Checking the FPGA Board for Hardware Debug Support
	Enabling ChipScope from the SDx IDE
	Command Line Flow

	Ch. 3: Debug Techniques
	Functional Verification (Software Emulation)
	Using printf() to Debug Kernels
	GDB-Based Debugging
	Host Code Debugging
	Xilinx OpenCL Runtime GDB Extensions

	GDB Kernel-Based Debugging

	Debugging in Hardware Emulation
	GDB-Based Debugging
	Waveform-Based Kernel Debugging
	Run the Waveform-Based Kernel Debugging Flow
	Enable Waveform Debugging through the XOCC Command Line

	System Verification and Hardware Debug
	Application Hangs
	AXI Firewall Trips
	Kernel Hangs due to AXI Violations
	Host Application Hangs when Accessing Memory
	Typical Errors Leading to Application Hangs

	Debugging with ChipScope
	Running XVC and HW Servers
	Adding Debug IP to RTL Kernels
	Debugging through the Host Application
	Pausing a C++ Host Application
	Pausing the Host Application Using GDB

	Automated Setup for Hardware Debug
	Manual Setup for Hardware Debug
	Debugging Designs using Vivado Hardware Manager

	Debugging a MicroBlaze Processor (RTL Kernels Only)
	Connecting to a MicroBlaze Processor in an RTL Kernel over XVC

	Ch. 4: Examples
	Complete Command Line Debug Example

	Appx. A: Additional Resources and Legal Notices
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

