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Chapter 1

Introduction to Programming with
SDSoC

The SDSoC™ environment provides tools for developing embedded systems in Xilinx®

Zynq®-7000 SoC, Zynq® UltraScale+™ MPSoC, or MicroBlaze™ embedded processor on Xilinx
devices.

It includes:

• An Eclipse-based integrated development environment (IDE) with compilers, debuggers, and
profilers for Arm® and MicroBlaze processors.

• A hardware emulator.

• A hardware compiler that synthesizes C/C++ functions into optimized hardware functions to
be used in the programmable logic (PL).

• A system compiler that generates complete hardware/software systems, including custom
hardware accelerators and data mover hardware blocks (for example, DMA engines), from
application code written in the C/C++ programming languages.

The sdscc/sds++ (referred to as sds++) system compiler provides options to perform
hardware/software event tracing, which provides detailed timeline visibility into accelerator tasks
running in hardware, data transfers between accelerators and memory, and application code
running on the CPUs.

Xilinx FPGAs and SoC devices offer many advantages, including a programmable hardware
architecture for implementing custom data paths, multi-level distributed memory architectures,
and interfacing to custom input/output devices, with full customizability of the hardware/
software interface to high-performance embedded CPUs. By building a custom hardware system,
you can achieve higher performance and lower power dissipation for your embedded
applications.

The SDSoC environment is unique because it provides the programmer the ability to create
hardware and software, while working within familiar software development workflows including
cross-compiling, linking, profiling, debugging, and running application binaries on target hardware
and in an emulator. Using the sds++ system compiler, you can target parts of your application to
be implemented as hardware accelerators running many times faster than optimized code
running on a processor.
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The programmer's view of the target device is heterogeneous computing, where code written in
C/C++ is running on multi-core Arm CPUs, as well as in custom hardware accelerators, typically
with a non-uniform memory architecture and custom interfaces to input/output devices. More
attention to where code will run, how data is mapped into memory, and how hardware and
software interact allows for better performance of your application.

In general, application code should reflect the heterogeneity of the target system. Take into
consideration that C/C++ code compiled into hardware accelerators benefit from programming
idioms that reflect microarchitecture details, while code running on CPUs benefit from idioms
that reflect the instruction set, cache, and memory architecture.

When working in the SDSoC environment, the hardware/software interface between CPU and
hardware accelerators is described through function calls and APIs specific to the underlying
devices. The majority of the code will access accelerators through function calls rather than
device driver APIs, with the sds++ system compiler generating highly efficient access from the
user space, automatically managing low level considerations such as cache management through
custom drivers provided by the system compiler.

Software Acceleration with SDSoC
When compared with processor architectures, the structures that comprise the programmable
logic (PL) in a Xilinx device enable a high degree of parallelism in application execution. The
custom processing architecture generated by the sds++/sdscc (referred to as sds++) system
compiler for a hardware function in an accelerator presents a different execution paradigm from
CPU execution, and provides an opportunity for significant performance gains. While you can re-
target an existing embedded processor application for acceleration in PL, writing your application
to use the source code libraries of existing hardware functions, such as the Xilinx xfOpenCV
library, or modifying your code to better use the PL device architecture, yields significant
performance gains and power reduction.

CPUs have fixed resources and offer limited opportunities for parallelization of tasks or
operations. A processor, regardless of its type, executes a program as a sequence of instructions
generated by processor compiler tools, which transform an algorithm expressed in C/C++ into
assembly language constructs that are native to the target processor. Even a simple operation,
such as the multiplication of two values, results in multiple assembly instructions that must be
executed across multiple clock cycles.
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An FPGA is an inherently parallel processing device capable of implementing any function that
can run on a processor. Xilinx devices have an abundance of resources that can be programmed
and configured to implement any custom architecture and achieve virtually any level of
parallelism. Unlike a processor, where all computations share the same ALU, the FPGA
programming logic acts as a blank canvas to define and implement your acceleration functions.
The FPGA compiler creates a unique circuit optimized for each application or algorithm; for
example, only implementing multiply and accumulate hardware for a neural net—not a whole
ALU.

The sds++ system compiler invoked with the -c option compiles a file into a hardware IP by
invoking the Vivado High-Level Synthesis (HLS) tool on the desired function definition. Before
calling the HLS tool, the sds++ compiler translates #pragma SDS into pragmas understood by
the HLS tool. The HLS tool performs hardware-oriented transformations and optimizations,
including scheduling, pipelining, and dataflow operations to increase concurrency.

The sds++ linker analyzes program dataflow involving calls into and between hardware
functions, mapping into a system hardware data motion network, and software control code
(called stubs) to orchestrate accelerators and data transfers through data movers. As described in
the following section, the sds++ linker performs data transfer scheduling to identify operations
that can be shared, and to insert wait barrier API calls into stubs to ensure program semantics are
preserved.

Execution Model of an SDSoC Application
The execution model for an SDSoC environment application can be understood in terms of the
normal execution of a C++ program running on the target CPU after the platform has booted. It is
useful to understand how a C++ binary executable interfaces to hardware.

The set of declared hardware functions within a program is compiled into hardware accelerators
that are accessed with the standard C runtime through calls into these functions. Each hardware
function call in effect invokes the accelerator as a task and each of the arguments to the function
is transferred between the CPU and the accelerator, accessible by the program after accelerator
task completion. Data transfers between memory and accelerators are accomplished through
data movers, such as a DMA engine, automatically inserted into the system by the sds++ system
compiler taking into account user data mover pragmas such as zero_copy.
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Figure 1:   Architecture of an SDSoC System
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To ensure program correctness, the system compiler intercepts each call to a hardware function,
and replaces it with a call to a generated stub function that has an identical signature but with a
derived name. The stub function orchestrates all data movement and accelerator operation,
synchronizing software and accelerator hardware at the exit of the hardware function call. Within
the stub, all accelerator and data mover control is realized through a set of send and receive APIs
provided by the sds_lib library.

When program dataflow between hardware function calls involves array arguments that are not
accessed after the function calls have been invoked within the program (other than destructors
or free() calls), and when the hardware accelerators can be connected using streams, the
system compiler transfers data from one hardware accelerator to the next through direct
hardware stream connections, rather than implementing a round trip to and from memory. This
optimization can result in significant performance gains and reduction in hardware resources.

The SDSoC program execution model includes the following steps:

1. Initialization of the sds_lib library occurs during the program constructor before entering
main().
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2. Within a program, every call to a hardware function is intercepted by a function call into a
stub function with the same function signature (other than name) as the original function.
Within the stub function, the following steps occur:

a. A synchronous accelerator task control command is sent to the hardware.

b. For each argument to the hardware function, an asynchronous data transfer request is
sent to the appropriate data mover, with an associated wait() handle. A non-void return
value is treated as an implicit output scalar argument.

c. A barrier wait() is issued for each transfer request. If a data transfer between
accelerators is implemented as a direct hardware stream, the barrier wait() for this
transfer occurs in the stub function for the last in the chain of accelerator functions for
this argument.

3. Clean up of the sds_lib library occurs during the program destructor, upon exiting main().

TIP: Steps 2a–2c ensure that program correctness is preserved at the entrance and exit of accelerator pipelines
while enabling concurrent execution within the pipelines.

Sometimes, the programmer has insight of the potential concurrent execution of accelerator
tasks that cannot be automatically inferred by the system compiler. In this case, the sds++
system compiler supports a #pragma SDS async(ID) that can be inserted immediately
preceding a call to a hardware function. This pragma instructs the compiler to generate a stub
function without any barrier wait() calls for data transfers. As a result, after issuing all data
transfer requests, control returns to the program, enabling concurrent execution of the program
while the accelerator is running. In this case, it is your responsibility to insert a #pragma SDS
wait(ID) within the program at appropriate synchronization points, which are resolved into
sds_wait(ID) API calls to correctly synchronize hardware accelerators, their implicit data
movers, and the CPU.

IMPORTANT! Every async(ID) pragma requires a matching wait(ID) pragma.

SDSoC Build Process
The SDSoC build process uses a standard compilation and linking process. Similar to g++, the
sds++ system compiler invokes sub-processes to accomplish compilation and linking.

As shown in the following figure, compilation is extended not only to object code that runs on
the CPU, but it also includes compilation and linking of hardware functions into IP blocks using
the Vivado High-Level Synthesis (HLS) tool, and creating standard object files (.o) using the
target CPU toolchain. System linking consists of program analysis of caller/callee relationships for
all hardware functions, and the generation of an application-specific hardware/software network
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to implement every hardware function call. The sds++ system compiler invokes all necessary
tools, including Vivado HLS (function compiler), the Vivado Design Suite to implement the
generated hardware system, and the Arm compiler and sds++ linker to create the application
binaries that run on the CPU invoking the accelerator (stubs) for each hardware function by
outputting a complete bootable system for an SD card.

Figure 2:   SDSoC Build Process

Embedded Process 
        Application

Hardware 
Functions

SDS++
Compilation

HLS Function 
Compile

GNU Arm 
Toolchain

SDS++
Linking

Vivado 
Design Suite

Update SW 
Image

C/C++

Arm Build 
Steps

Application 
Executable 

(.elf)

RTL, C/C++

Programmable Logic 
Build Steps

FPGA Binary 
(Bitstream)

Bootable System Image

Embedded System Source Code

X21126-041119

The compilation process includes the following tasks:

1. Analyzing the code and running a compilation for the main application on the Arm core, as
well as a separate compilation for each of the hardware accelerators.

2. Compiling the application code through standard GNU Arm compilation tools with an object
(.o) file produced as final output.

3. Running the hardware accelerated functions through the HLS tool to start the process of
custom hardware creation with an object (.o) file as output.

After compilation, the linking process includes the following tasks:

1. Analyzing the data movement through the design and modifying the hardware platform to
accept the accelerators.

2. Implementing the hardware accelerators into the programmable logic (PL) region using the
Vivado Design Suite to run synthesis and implementation, and generate the bitstream for the
device.

3. Updating the software images with hardware access APIs to call the hardware functions from
the embedded processor application.

4. Producing an integrated SD card image that can boot the board with the application in an
Executable and Linkable Format (ELF) file.
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SDSoC Programming Flow Overview
Embedded system development follows the typical steps of: code development, compilation and
link for the platform/device, profile the system for performance, and measure the actual
performance.

The SDSoC environment follows this standard software-centric flow, but also supports a more
hardware-centric flow for defining hardware functions first, and then integrating those into the
embedded application. What is unique about these two flows is that they are a heterogeneous
programming model; meaning that writing code for the CPU side of the system is going to be
different from writing the code for the programmable logic.

The software-centric approach focuses on the embedded processor application, and the
acceleration of specific software functions into hardware functions running in the programmable
logic (PL) region of the Xilinx device. This requires converting the C or C++ code of the software
function into Hardware Descriptive Language (HDL) that can be compiled for the programmable
logic using Vivado HLS.

A typical accelerated hardware function would be processor intensive (for example, complex
computations that take a long time), processing lots of data. This code should be written so that
data transfers are limited to streaming data into and from the accelerator, and should leverage
instruction-level parallelism and task-level parallelism to take advantage of the massively parallel
architecture of the programmable logic region of the device. The goal is to use parallelism to
achieve the desired performance for accelerated functions. The goal of the accelerator would be
to deliver, consume input data, process it, and output data as quickly as possible.

After the processor and accelerator code is written, it can be compiled for emulation, or for
compiling/linking to the hardware platform. For emulation, the code compiles faster allowing for
quick design iterations, where it can be used to estimate performance as well as checking data
integrity; but runs slower than on actual hardware. Emulation is very accurate with respect to
what executes on the hardware, because the same CPU code runs both on the quick emulator
(QEMU) and the target device.

When building to the hardware platform, it will run exactly as written for the processor and for
the hardware accelerators. The benefits of running on hardware would be to measure actual
runtime, as well as being able to adjust the builds later for in-circuit debugging, or performance
analysis.

The hardware-centric approach is used by designers experienced with developing on an FPGA.
This approach lets you control what functionality will be in the accelerator and how data/
commands will be transported between the logic and the CPU. This flow uses the Vivado Design
Suite to create customized IP containing AXI interfaces that are used to communicate between
the programmable logic (PL) region and the processing system (PS). This IP can then be packaged
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with the sdx_pack command to map the IP's AXI interfaces to a header file to create a static
library. Then, using this resulting include file and static library is as simple as calling a typical
library function. The key is ensuring that the data width in the header file matches what is
expected by the IP. See the SDSoC Environment User Guide (UG1027) for more information on
creating and using C-Callable IP.
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Chapter 2

Programming the Application
Creating an application for an embedded processor in the SDSoC™ environment is similar to
creating an application for any other SoC or embedded platform. However, there are some added
considerations when accelerating an embedded processor application from SDK, for example.
Programming for the SDSoC environment should include the following tasks:

• Identifying the appropriate function(s) in the processor application for acceleration in the
programmable logic (PL) region.

• Allocating memory for the embedded processor application code and software functions
running on the processing system (PS), and for the accelerated function(s) running on the PL
regions of the device.

• Enabling task-level parallelism with multiple accelerators running concurrently to optimize
system performance.

• Validating the software-to-hardware function code conversion, to insure things work as
intended.

To identify the functions that should be accelerators or turned into hardware functions, you
should determine what kind of computational load would be required. For example, functions
where large amounts of data are computed, or modified, would be good candidates for hardware
functions. However, functions written for a typical processor application might not benefit from
hardware acceleration in the SDSoC environment, and might need to be restructured to get real
performance improvements from acceleration.

Although you might not typically allocate memory for standard processor applications, leaving it
to the compiler to define, when programming for hardware acceleration you should manually
define the memory allocation in the code. The hardware functions require physically contiguous
memory to meet the performance requirements of the hardware.

In addition, when you have defined more than one software function for acceleration, you can
also manage the scheduling of these accelerators, deciding if they can run concurrently, or need
to be sequential. Understanding and managing the dataflow between the hardware functions and
the processor application is a key element of this process.

While converting software functions into hardware functions, you should test early and test
often by checking the results of the algorithm in the hardware function. Validate the data
returned by the hardware function with the expected results returned by the original software
function. Restructuring code into hardware functions might yield better performance, but you
must check for equivalent results.
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As for the remaining application functions, it is a matter of determining if the application is
running on Linux, FreeRTOS, or standalone. Each type has its own pros and cons; for example,
standalone is the easiest to use because only the Arm® processor is running the application host,
but using features that are only for Linux or FreeRTOS are not allowed.

Memory Allocation
Knowing what data is going to be processed by the accelerators can help you write the
application code to better allocate the memory being used. Generally, allocating memory using
malloc/free in the main function is suggested and can be beneficial for overall runtime, but
can be used anywhere except for the functions designated to be accelerators. However,
allocating memory specific to an accelerator using sds_alloc/sds_free yields better
performance due to the data being allocated and stored in physically contiguous memory that
yields faster reads and writes to the memory. Generally, the compiler will use the scatter-gather
approach when it cannot safely infer that the data allocated is physically contiguous. This can
occur when local variables and buffers use malloc. However, the scatter-gather data mover has
been highly optimized to minimize the software overhead associated with scatter-gather
transfers. Xilinx strongly recommends that you allocate memory using sds_alloc for data going
to the hardware functions.

The types of memory used are classified as contiguous/non-contiguous, and cacheable/non-
cacheable. For contiguous memory, an array would have all the elements of the array allocated
physically next to each other allowing for faster access times (think sequential read/writes). Using
non-cacheable memory means that the data being transferred is not intended to be used by the
PS, allowing for a higher transaction speeds. When using a cached memory allocation, there is a
performance hit for flushing the cache, as well as CPU access latencies.

You must allocate the data before calling the hardware function. The runtime sets up data
movers for you, with consideration for how memory is allocated. For example, in a matrix
multiplication design that contains 1024 elements (32 x 32), you must explicitly allocate memory
for the hardware function in the main function. The following code directs the compiler to
allocate memory on the heap in a physically contiguous, cacheable fashion:

int MatA[1024] = (int*)sds_alloc(1024*sizeof(int));
int MatB[1024] = (int*)sds_alloc(1024*sizeof(int));
int MatC[1024] = (int*)sds_alloc(1024*sizeof(int));

Allocating the memory on the heap allows for a lot more data to be processed, and to be
executed with better performance. When execution of this code is complete, you can release the
memory using sds_free.
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Examples of memory allocation can be found in the SDSoC Examples available on the Xilinx
GitHub repository. The following code is from the mmultadd example available in the
<install_dir>/SDx/<version>/samples folder. The code shows allocating the memory
in the main function, and performing a quick check to make sure it was properly allocated, and
releases the allocated memory if there was a problem:

int main(int argc, char* argv[]){
     int test_passed = 0;
     float *A, *B, *C, *D, *D_sw;

     A = (float *)sds_alloc(N * N * sizeof(float));
     B = (float *)sds_alloc(N * N * sizeof(float));
     C = (float *)sds_alloc(N * N * sizeof(float));
     D = (float *)sds_alloc(N * N * sizeof(float));
     D_sw = (float *)malloc(N * N * sizeof(float));
     
     if (!A || !B || !C || !D || !D_sw) {
          if (A) sds_free(A);
          if (B) sds_free(B);
          if (C) sds_free(C);
          if (D) sds_free(D);
          if (D_sw) free(D_sw);
          return 2;
     }
...
}

In the example above, you can see that variables used by the hardware functions are allocated
using the sds_alloc function to insure physically contiguous memory is allocated, while the
software-only variable (D_sw) is allocated using malloc.

At the end of the main() function, all of the allocated memory is released using sds_free or
free as appropriate:

sds_free(A);
sds_free(B);
sds_free(C);
sds_free(D);
free(D_sw);

The sds_alloc function, and other SDSoC specific functions for memory allocation/
deallocation can be found in sds_lib.h. More information on these APIs can be found in the 
Appendix B: SDSoC Environment API.
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Sequential/Parallel Accelerator Execution
After defining the memory allocations needed for the accelerators, you should determine how to
call the accelerators from the application code. There are multiple ways for the accelerators to
operate in the context of the main application. For example in an application in which there is
only one accelerator, calling the hardware function like any other function achieves the desired
results of a sequential dataflow. However, for multiple accelerators, knowing whether and how
the data is shared between the accelerators lets you choose between two distinct flows:

• Sequential (synchronous): Accelerators operate in sequence with one execution followed by
the next, providing some benefit of acceleration in the hardware implementation.

• Parallel (asynchronous): Both accelerators can operate concurrently, granting your application
task-level parallelism for significant performance improvement.

See the SDx Pragma Reference Guide (UG1253) for more information on the pragmas discussed
here.

To implement asynchronous dataflow, you must specify #pragma SDS async(id) and
#pragma SDS wait(id) in your embedded processor application. You must place these
pragmas in the application code, before and after the hardware function call, as shown in the
following example:

#pragma SDS async(1)
mmult(A, B, C);
#pragma SDS async(2)
madd(D, E, F);

// Do other SW functions

#pragma SDS wait(1)
#pragma SDS wait(2)

TIP: The advantage of using async/wait is that it lets the application perform other operations while the
hardware functions are running; and lets you hold the application at the appropriate point to wait for a hardware
function to return.

The preceding code example demonstrates a typical asynchronous method. Here, the provided
IDs correspond to their respective function (id = 1 for mmult, id = 2 for madd). The mmult
function is loaded with the inputs values of A and B, and processed. Notice in this case where the
accelerators are data independent (data is not being shared between the accelerators),
asynchronous execution is beneficial. If you determine that the data for an accelerator is not
needed by other functions on either the CPU or another accelerator, then async execution with
non-cacheable physically contiguous data can provide the best performance.

IMPORTANT! In cases where the data from one accelerator is required by a second accelerator, you should not
use async/wait. The async pragma forgoes compiler driven syncing, and thus you could end up with incorrect
results if one accelerator requires syncing prior to the start of another.
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An example of direct connection is provided with the SDSoC Examples available on the Xilinx
GitHub repository. The parallel_accel code offers a simple example of two hardware functions,
matrix addition and matrix multiplication, to demonstrate async and wait which helps to
achieve greater performance through system parallelism and concurrency.

The parallel_accel example provides both a sequential dataflow form of the two
accelerators, and a parallel dataflow form of the two accelerators, and uses performance monitor
functions (seq_hw_ctr, par_hw_ctr) from the included sds_utils.h to measure the
performance difference. The relevant code is provided below for examination:

//Two hw functions are called back to back. First the 
//vadd_accel is executed, then vmul_accel is executed.
//The execution of both accelerators is sequential here.
//To prevent automatic dataflow between calls to the two
//hw functions, async and wait pragma is used here so as
//to ensure that the two hw functions will be running sequentially.
seq_hw_ctr.start();
// Launch Hardware Solution
for(int itr = 0; itr < MAX_NUM_TIMES; itr++)
{
  #pragma SDS async(1)        
  vadd_accel(source_in1, source_in2, source_vadd_hw_results, size);
  #pragma SDS wait(1)
  #pragma SDS async(2)                        
  vmul_accel(source_in1, source_in2, source_vmul_hw_results, size);
  #pragma SDS wait(2)
}
seq_hw_ctr.stop();

//Two hw functions are called back to back.
//The program running on the hardware first transfers in1 and in2 
//to the vadd_accel hardware and returns immediately. Then the program 
//transfers in1  and in2 to the vmul_accel hardware and returns
//immediately. When the program later executes to the point of 
//#pragma SDS wait(id), it waits for the particular output to be ready.
par_hw_ctr.start();
// Launch Hardware Solution
#pragma SDS async(1)
vadd_accel(source_in1, source_in2, source_vadd_hw_results, size);
#pragma SDS async(2)
vmul_accel(source_in1, source_in2, source_vmul_hw_results, size);
for(int itr = 0; itr < MAX_NUM_TIMES; itr++)
{
  #pragma SDS wait(1)
  #pragma SDS async(1)
  vadd_accel(source_in1, source_in2, source_vadd_hw_results, size);
  #pragma SDS wait(2)
  #pragma SDS async(2)
  vmul_accel(source_in1, source_in2, source_vmul_hw_results, size);
}
#pragma SDS wait(1)
#pragma SDS wait(2)
par_hw_ctr.stop(); 
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In the sequential dataflow example, the async and wait pragmas are used to insure that the
two hardware functions are run sequentially. The key is the use of the wait pragma before the
call to the multiplier function, vmul_accel, which insures that the addition function,
vadd_accel, completes before matrix multiplication begins. Notice also the use of the
async(2) and wait(2) pragmas to insure that the application waits for the completion of the
vmul_accel hardware function before proceeding.

TIP: The async/wait pragmas are not actually needed in the preceding example, as the compiler automatically
synchronizes these functions in the manner described.

In the parallel dataflow example, the vadd_accel and vmul_accel functions are started in
sequence, not waiting for one to complete before calling the next. This results in nearly parallel
execution of the two hardware functions. These function calls are labeled async(1) and
async(2). Then the for loop is called to repeat the functions a number of times
(MAX_NUM_TIMES), but wait(1) and wait(2) are used to wait for the prior executions to
complete before calling the functions again.

As with parallel code, you must explicitly synchronize the function calls so that the data is
available for the application to complete the function. Failure to program this properly can result
in deadlocks, or non-deterministic behavior. However, in some instances running concurrent
accelerators might not provide the best performance compared to other means. An example of
this is pipelining concurrent accelerators that are data dependent on each other. This would
require the data to be synced on a pipeline stage before the accelerator can begin to process the
data.

Validating the Software to Hardware
Conversion

Testing accelerators in the SDSoC environment is similar to testing any other function on a
software platform. Generally, you can write a test bench to exercise and validate the application
code, or this testing can be implemented as a function call from the main function with a golden
dataset, and then comparing the outputs. Converting the C/C++ code of the software function to
the HDL code of the hardware function can cause the behavior of the hardware function to
change. It is a good idea to always run a verification test between the converted hardware code
and the known good software code to make sure the algorithm is maintained through the
complete build process.

TIP: For an application that has multiple accelerators, it is best to do a bottom-up testing approach, testing each
accelerator individually, and then testing all accelerators together. This should shorten debug time. See the
SDSoC Environment Debugging Guide (UG1282) for more information.
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Examples of verification code can be found in the SDSoC Examples available on the Xilinx
GitHub repository. The following code is from the mmultadd example available in the
<install_dir>/SDx/<version>/samples folder. The main.cpp file defines methods to
calculate golden data for the matrix addition (madd_golden) and multiplication
(mmult_golden). The code for mmult_golden is provided below:

void mmult_golden(float *A,  float *B, float *C)
{
     for (int row = 0; row < N; row++) {
          for (int col = 0; col < N; col++) {
               float result = 0.0;
               for (int k = 0; k < N; k++) {
                    result += A[row*N+k] * B[k*N+col];
               }
               C[row*N+col] = result;
          }
     }
}

Note that the function is essentially the same as the hardware function, mmult, which
accelerates the matrix multiplication in the PL region of the device, while adding a few
techniques such as array partitioning and pipelining to achieve optimal performance. The
mmult_golden simply calculates the expected value as golden data to be compared against the
results returned by the accelerated function.

Finally, within the mmult_test function, the verification process is called to generate the
golden data and compare it to the results generated by the accelerated hardware functions. This
section of the code is provided below:

int mmult_test(float *A,  float *B, float *C, float *D, float *D_sw) 
{
    std::cout << "Testing " << NUM_TESTS << " iterations of " << N << "x" 
        << N << " floating point mmultadd..." << std::endl;

    perf_counter hw_ctr, sw_ctr;
     
    for (int i = 0; i < NUM_TESTS; i++) 
    {
        init_arrays(A, B, C, D, D_sw);

        float tmp[N*N], tmp1[N*N];
        sw_ctr.start();
        mmult_golden(A, B, tmp);
        madd_golden(tmp, C, D_sw);
        sw_ctr.stop();

        hw_ctr.start();
        mmult(A, B, tmp1);
        madd(tmp1, C, D);
        hw_ctr.stop();

        if (result_check(D, D_sw))
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            return 1;
     }

     //Example performance measurement code removed
}

Performance Estimation
In some cases, knowing the wall-clock time of the functions that can be turned into hardware
functions might be necessary. You can accurately measure the execution time of functions by
using special SDSoC API calls that measure activity based off of the free running clock of the
Arm processor. The API functions include sds_clock_counter() and
sds_clock_frequency(). These functions can be used to log the start and end times of a
function. The function sds_clock_counter() returns the value of the free running clock
register, while the function sds_clock_frequency() returns the speed in ticks/second of the
Arm processor. See the Appendix B: SDSoC Environment API for more information on these
functions.

Note: sds_clock_frequency() is a high performance counter and offers a fine-grained measurement
of events.

A performance counter class is provided in the sds_util.h available with the SDSoC Examples
on the Xilinx GitHub repository. The perf_counter includes methods for capturing the start
and stop clock times, and the number of function calls, as shown below:

#include "sds_lib.h"

class perf_counter
{
public:
     uint64_t tot, cnt, calls;
     perf_counter() : tot(0), cnt(0), calls(0) {};
     inline void reset() { tot = cnt = calls = 0; }
     inline void start() { cnt = sds_clock_counter(); calls++; };
     inline void stop() { tot += (sds_clock_counter() - cnt); };
     inline uint64_t avg_cpu_cycles() { return ((tot+(calls>>1)) / 
calls); };
};

You can also use the avg_cpu_cycles() method to return the equivalent number of average
cycles the task took in CPU cycle count.
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Chapter 3

Programming Hardware Functions
Programming a function for hardware acceleration in the SDSoC™ environment is as simple as
writing a standard C/C++ function. However, to get the significant performance advantages of
hardware acceleration through the sds++/sdscc (referred to as sds++) system compiler, there
are a few considerations to keep in mind when writing the function, or modifying existing code
to be implemented in programmable logic.

• Defining the function interface: the data types of inputs and outputs, and data transfers.

• What kind of memory access the function will have: DMA (interfacing with DDR) or FIFOs.

• How will the data be accessed: contiguous or non-contiguous.

• How will the data be processed: loops, arrays.

Determining what data is going to be processed in and out of an accelerator is the first step in
creating a hardware function. Knowing the inputs and outputs of the hardware function, you can
get an idea of what parallelism can be achieved. A critical element to writing a function for
acceleration in programmable logic data sizes are fixed when implemented in hardware/
programmable logic. Hardware data sizes cannot change during runtime.

Exporting Hardware Functions as Libraries

After a hardware function, or a library of functions are written and optimized as needed, you can
create an exported library for reuse in other projects. A general flow for exporting a library is to
make sure that all the function definitions are grouped appropriately, and use the sds++/sdscc
command with the -shared (which is interpreted as -fPIC for gcc) option to build a shared
library when compiling the functions. More detailed information can be found in Appendix A:
Exporting a Library for GCC.
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C-Callable IP

An accelerator can also be created using RTL and provided as an IP core through the Vivado®

Design Suite, called a C-Callable IP. In this case, to use the C-Callable IP in the application code,
add the static library compiled for the appropriate Arm® processor, typically an archive (.a) file,
and the header file (.h/.hpp) as source files in the SDSoC application project. These files need
be added to the source directory of the application or specified for library search (-L), include
search (-I), and properly included and linked with the main function. Now, like any other
hardware function, it can be called as a typical C/C++ function, making sure the data sizes match
to the function parameters. More information on creating and using C-Callable IP can be found in
the SDSoC Environment User Guide (UG1027).

Coding Guidelines
This section contains general coding guidelines for application programming using the sds++
system compilers, with the assumption of starting from application code that has already been
cross-compiled for the Arm CPU within the Zynq®-7000 device, using the GNU toolchain
included as part of the SDSoC environment.

General Hardware Function Guidelines
• Hardware functions can execute concurrently under the control of a master thread. Multiple

master threads are supported.

• A top-level hardware function must be a global function, not a class method, and it cannot be
an overloaded function.

• There is no support for exception handling in hardware functions.

• It is an error to refer to a global variable within a hardware function or any of its sub-functions
when this global variable is also referenced by other functions running in software.

• Hardware functions support scalar types up to 1024 bits, including double, long, packed
structs, etc.

• A hardware function must have at least one argument.

• An output or inout scalar argument to a hardware function can be assigned multiple times, but
only the last written value is read upon function exit.

• Use predefined macros to guard code with #ifdef and #ifndef preprocessor statements;
the macro names begin and end with two underscore characters ‘_’. For examples, see
"SDSCC/SDS++ Compiler Commands" in the SDx Command and Utility Reference Guide
(UG1279).
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○ The __SDSCC__ macro is defined and passed as a -D option to sub-tools whenever sds++
is used to compile source files, and can be used to guard code dependent on whether it is
compiled by sds++ or by another compiler, for example a GNU host compiler.

○ When sds++ compiles source files targeted for hardware acceleration using Vivado HLS,
the __SDSVHLS__ macro is defined and passed as a -D option, and can be used to guard
code dependent on whether high-level synthesis is run or not.

○ Vivado HLS employs some 32-bit libraries irrespective of the host machine. Furthermore,
the tool does not provide a true cross-compilation.

All object code for the Arm CPUs is generated with the GNU toolchains, but the sds++ compiler,
built upon Clang/LLVM frameworks, is generally less forgiving of C/C++ language violations than
the GNU compilers. As a result, you might find that some libraries needed for your application
cause front-end compiler errors when using sds++. In such cases, compile the source files
directly through the GNU toolchain rather than through sds++, either in your makefiles or by
setting the compiler to arm-linux-gnueabihf-g++. To set the compiler, right-click the file (or
folder) in the Project Explorer and select C/C++ Build → Settings → SDSCC/SDS++ Compiler. See
"Compiling and Running Applications on an Arm Processor" in the SDSoC Environment User Guide
(UG1027) for more information.

Hardware Function Argument Types
The sds++ supports hardware function arguments with types that resolve to a single or array of
C99 basic arithmetic type (scalar), a struct or class whose members flatten to a single or
array of C99 basic arithmetic type (hierarchical structs are supported), and an array of struct
whose members flatten to a single C99 basic arithmetic type. Scalar arguments must fit in a
1024-bit container. The SDSoC environment automatically infers hardware interface types for
each hardware function argument based on the argument type and the following pragmas:

#pragma SDS data copy|zero_copy
#pragma SDS data access_pattern

To avoid interface incompatibilities, you should only incorporate Vivado HLS interface type
directives and pragmas in your source code when sds++ fails to generate a suitable hardware
interface directive.

• Vivado HLS provides arbitrary precision types ap_fixed<int>, ap_int<int>, and an
hls::stream class. In the SDSoC environment, ap_fixed<int> types must be specified
as having widths greater than 7 but less than 1025 (7 < width < 1025). The hls::stream
data type is not supported as the function argument to any hardware function.

• By default, an array argument to a hardware function is transferred by copying the data, that
is, it is equivalent to using #pragma SDS data copy. As a consequence, an array argument
must be either used as an input or produced as an output, but not both. For an array that is
both read and written by the hardware function, you must use #pragma SDS data
zero_copy to tell the compiler that the array should be kept in the shared memory and not
copied.
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• To ensure alignment across the hardware/software interface, do not use hardware function
arguments that are an array of bool.

Pointers

Pointer arguments for a hardware function require special consideration. Hardware functions
operate on physical addresses, which typically are not available to user space programs, so
pointers cannot be embedded in data structures passed to hardware functions.

In the absence of any pragmas, a pointer argument is taken to be a scalar parameter by default,
even though in C/C++ a pointer might denote a one-dimensional array type. The following are
the permitted pragmas:

• The DATA ZERO_COPY pragma provides pointer semantics using shared memory.

#pragma SDS data zero_copy

• The DATA COPY and DATA ACCESS_PATTERN pragma pair maps the argument onto a
stream, and requires that the array elements are accessed in sequential index order.

#pragma SDS data copy(p[0:<p_size>]) 
#pragma SDS data access_pattern(p:SEQUENTIAL)

The DATA COPY pragma is only required when the sds++ system compiler is unable to
determine the data transfer size and issues an error.

TIP: If you require non-sequential access to the array in the hardware function, you should change the pointer
argument to an array with an explicit declaration of its dimensions, for example A[1024].

Hardware Function Interfacing
After defining what function is needed for acceleration, there are a few key items to ensure
compilation is valid. The Vivado HLS tool data types (ap_int, ap_uint, ap_fixed, etc.) cannot
be part of the function parameter list that the software part of the application calls. These data
types are unique to the HLS tool and have no bearing outside of the intended tool and associated
compiler.

For example, if the following function was written in the HLS tool, the parameter list needs to be
adjusted, and the function body has to handle moving the data from the HLS tool to a more
generic data type, as shown below:

void foo(ap_int *a, ap_int *b, ap_int *c) { /* Function body */ }
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This needs to be modified if using local variables:

void foo(int *a, int *b, int *c) {
    ap_int *local_a = a;
    ap_int *local_b = b;
    ap_int *local_c = c;
    // Remaining function body
}

IMPORTANT! Initializing local variables with input data can consume too much memory in the accelerator.
Therefore, casting the input data types to the appropriate HLS data types will work instead.

Hardware Function Call Guidelines
• Stub functions generated in the SDSoC environment transfer the exact number of bytes

according to the compile-time determinable array bound of the corresponding argument in
the hardware function declaration. If a hardware function admits a variable data size, you can
use the following pragma to direct the SDSoC environment to generate code to transfer data
whose size is defined by an arithmetic expression:

#pragma SDS data copy(arg[0:<C_size_expr>])
#pragma SDS data zero_copy(arg[0:<C_size_expr>])

Where the <C_size_expr> must compile in the scope of the function declaration.

The zero_copy pragma directs the SDSoC environment to map the argument into shared
memory.

IMPORTANT! Be aware that mismatches between intended and actual data transfer sizes can cause the system
to hang at runtime, requiring laborious hardware debugging. See the SDSoC Environment Debugging Guide
(UG1282).

• Align arrays transferred by DMAs on cache-line boundaries (for L1 and L2 caches). Use the
sds_alloc() API provided with the SDSoC environment instead of malloc() to allocate
these arrays.

• Align arrays to page boundaries to minimize the number of pages transferred with the scatter-
gather DMA, for example, for arrays allocated with malloc.

• You must use sds_alloc to allocate an array for the following two cases:

1. You are using zero-copy pragma for the array.

2. You are using pragmas to explicitly direct the system compiler to use Simple-DMA.

Note: To use sds_alloc() from sds_lib.h, you must include stdlib.h before including
sds_lib.h. stdlib.h is included to provide the size_t type.
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Data Movers
A data mover is added by the sds++ compiler to move data into and out of the hardware
accelerator. Generally, a data mover is a FIFO, or a direct memory access (DMA) interface
between the processor and the programmable logic. The data mover is inferred by the compiler
based on the volume of data being transferred, characteristics of memory being transferred, and
access pattern expectations of the accelerator consuming or producing the data in the hardware
function. The data mover is implemented into the PL region to support data transfers to and from
the hardware function. The system compiler implements one or more accelerators in the
programmable region, including the data movers, automating control signals, and interrupts.

You can specify the SDS DATA COPY or DATA ZERO_COPY pragmas in the source code of the
hardware function to influence the behavior of the data movers. The DATA COPY pragma
indicates that data is explicitly copied between memory and the hardware function, using a
suitable data mover for the transfer. The DATA ZERO_COPY pragma means that the hardware
function accesses the data directly from shared memory through an AXI master bus interface.

With the data size boundaries known, methods of transferring data can be optimized. For
example, to access data like a large image (1920 x 1080), it is advantageous to store the data in
the DDR in a physically contiguous way. To retrieve the data, use direct interfacing to the DDR
and then determine if it needs to be sequentially accessed or not. By default, sds++ compiler
infers the data movers, but in cases where the data being transferred is large, you need to
identify the appropriate data mover to use. See the SDSoC Environment Profiling and Optimization
Guide (UG1235) for information on setting up and optimizing the data motion network. For
instance, if the function interface uses wide data widths (over 64-bit) applying the FASTDMA over
the AXIDMA_SIMPLE would allow for a higher bandwidth and possible faster throughput.

To incorporate these types of data movers, pragmas are used to tell the compiler how to
interface the accelerator to the rest of the system. For example, for storing and retrieving an
image in DDR the following SDS pragmas can be used:

#pragma SDS DATA COPY(out[0:size])
#pragma DATA ACCESS_PATTERN(data:SEQUENTIAL, out:SEQUENTIAL)
void accelerator(float *data, int *out, int size);

The DATA ACCESS_PATTERN pragma is used to specify how the data is being accessed by the
accelerator. It is needed when the data is determined at runtime, but unknown at compile. For
SEQUENTIAL data access, SDSoC creates a streaming interface, while a RANDOM data access
pattern creates a RAM interface, which is the default. A key point is that SEQUENTIAL only
accesses elements from the array one time, while RANDOM can access any array value in any
order. Note though that using a random access pattern still transfers the complete volume of
data, regardless of the volume being accessed.
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TIP: Depending on how the accelerator is written, the sds++ compiler can automatically determine how the
data is going to be accessed and the use of ACCESS_PATTERN would not be needed. For the example code, it
can be safely assumed that the accelerator's memory access is not easily determined and the pragma is needed to
make sure the compiler treats the data appropriately.

You can also use the SDS pragma DATA MEM_ATTRIBUTE as a hint to the compiler to trust that
memory is physically contiguous or not, and is cacheable or not.

Knowing how the data is being allocated can help tune the system performance depending on
the accelerator. For example, the compiler can use simple DMA transfer for physically contiguous
memory, which is smaller and faster than AXI_DMA_SG. For physically contiguous memory, you
must use sds_alloc, while for non-physically contiguous memory use malloc. Specifying the
DATA MEM_ATTRIBUTE helps determine what kind of data mover the compiler can use.

See the SDx Pragma Reference Guide (UG1253) for more information on SDS pragmas and
examples.

You can also direct the creation of data movers as elements of a packaged C-Callable IP by
applying pragmas to the software function signature defined in the header file associated with
the C-Callable IP. See the SDSoC Environment User Guide (UG1027) for more information.

Function Body
After determining the function interfaces and the data transfer mechanism, writing the function
body is all that remains. The body of a hardware function should not be all that different from a
function written for the processor. However, a key point to remember is that there are
opportunities to improve the performance of the accelerator, and of the overall application. To
this end, you can examine and rewrite the structure of hardware functions to increase
instruction-level or task-level parallelism, use bit-accurate data types, manage loop unrolling and
pipelining, and overall dataflow.

Data Types
As it is faster to write and verify the code by using native C data types such as int, float, or
double, it is a common practice to use these data types when coding for the first time.
However, the hardware function code is implemented in hardware and all the operator sizes used
in the hardware are dependent on the data types used in the accelerator code. The default native
C/C++ data types can result in larger and slower hardware resources that can limit the
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performance of the hardware function. Instead, consider using bit-accurate data types to ensure
the code is optimized for implementation in hardware. Using bit-accurate, or arbitrary precision
data types, results in hardware operators which are smaller and faster. This allows more logic to
be placed into the programmable logic and also allows the logic to execute at higher clock
frequencies while using less power.

Consider using bit-accurate data types instead of native C/C++ data types in your code.

RECOMMENDED: Bit-accurate data types should be used within the accelerator function and not at the top-
level interface.

Related Information
Hardware Function Interfacing

Arbitrary Precision Integer Types
Arbitrary precision integer data types are defined by ap_int or ap_uint for signed and
unsigned integer respectively inside the header file ap_int.h. To use arbitrary precision integer
data type:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and the two variables are
implemented to use 9-bit integer and 10-bit unsigned integer.

#include “ap_int.h” 
ap_int<9> var1 // 9 bit signed integer
ap_uint<10> var2 // 10 bit unsigned integer

Arbitrary Precision Fixed-Point Data Types
Some existing applications use floating point data types as they are written for other hardware
architectures. However, fixed-point data types are a useful replacement for floating point types
which require many clock cycles to complete. Carefully evaluate trade-offs in power, cost,
productivity, and precision when choosing to implement floating-point vs. fixed-point arithmetic
for your application and accelerators.

As discussed in Deep Learning with INT8 Optimization on Xilinx Devices (WP486), using fixed-point
arithmetic instead of floating point for applications like machine learning can increase power
efficiency, and lower the total power required. Unless the entire range of the floating-point type
is required, the same accuracy can often be implemented with a fixed-point type resulting in the
same accuracy with smaller and faster hardware. The paper Reduce Power and Cost by Converting
from Floating Point to Fixed Point (WP491) provides some examples of this conversion.
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Fixed-point data types model the data as an integer and fraction bits. The fixed-point data type
requires the ap_fixed header, and supports both a signed and unsigned form as follows:

• Header file: ap_fixed.h

• Signed fixed point: ap_fixed<W,I,Q,O,N>

• Unsigned fixed point: ap_ufixed<W,I,Q,O,N>

○ W = Total width < 1024 bits

○ I = Integer bit width. The value of I must be less than or equal to the width (W). The
number of bits to represent the fractional part is W minus I. Only a constant integer
expression can be used to specify the integer width.

○ Q = Quantization mode. Only predefined enumerated values can be used to specify Q. The
accepted values are:

- AP_RND: Rounding to plus infinity.

- AP_RND_ZERO: Rounding to zero.

- AP_RND_MIN_INF: Rounding to minus infinity.

- AP_RND_INF: Rounding to infinity.

- AP_RND_CONV: Convergent rounding.

- AP_TRN: Truncation. This is the default value when Q is not specified.

- AP_TRN_ZERO: Truncation to zero.

○ O = Overflow mode. Only predefined enumerated values can be used to specify O. The
accepted values are:

- AP_SAT: Saturation.

- AP_SAT_ZERO: Saturation to zero.

- AP_SAT_SYM: Symmetrical saturation.

- AP_WRAP: Wrap-around. This is the default value when O is not specified.

- AP_WRAP_SM: Sign magnitude wrap-around.

○ N = The number of saturation bits in the overflow WRAP modes. Only a constant integer
expression can be used as the parameter value. The default value is zero.

TIP: The ap_fixed and ap_ufixed data types permit shorthand definition, with only W and I being required,
and other parameters assigned default values. However, to define Q or N, you must also specify the parameters
before those, even if you just specify the default values.
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In the example code below, the ap_fixed type is used to define a signed 18-bit variable with 6
bits representing the integer value above the binary point, and by implication, 12 bits
representing the fractional value below the binary point. The quantization mode is set to round
to plus infinity (AP_RND). Because the overflow mode and saturation bits are not specified, the
defaults AP_WRAP and 0 are used.

#include <ap_fixed.h>
...
  ap_fixed<18,6,AP_RND> my_type;
...

When performing calculations where the variables have different numbers of bits (W), or
different precision (I), the binary point is automatically aligned. See the "C++ Arbitrary Precision
Fixed-Point Types" in the Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more
information on using fixed-point data types.

Array Configuration
The SDSoC compiler maps large arrays to the block Ram (BRAM) memory in the PL region. These
BRAM can have a maximum of two access points or ports. This can limit the performance of the
application as all the elements of an array cannot be accessed in parallel when implemented in
hardware.

IMPORTANT! Use the following array configurations on local buffer variables inside the accelerator, rather than
on the function parameters, otherwise it can cause incorrect runtime behavior.

Depending on the performance requirements, you might need to access some or all of the
elements of an array in the same clock cycle. To achieve this, the #pragma HLS
ARRAY_PARTITION can be used to instruct the compiler to split the elements of an array and
map it to smaller arrays, or to individual registers. The compiler provides three types of array
partitioning, as shown in the following figure. The three types of partitioning are:

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

• complete: Split the array into its individual elements. This corresponds to resolving a
memory into individual registers. This is the default for the ARRAY_PARTITION pragma.
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Figure 3:   Partitioning Arrays
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For block and cyclic partitioning, the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used to split the array into two smaller arrays. If
the number of elements in the array is not an integer multiple of the factor, the later arrays will
have fewer elements.

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code in three different ways:

void foo (...) {
  // my_array[dim=1][dim=2][dim=3] 
  // The following three pragma results are shown in the figure below
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=3 <block|cyclic> 
factor=2
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=1 <block|cyclic> 
factor=2
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=0 complete
  int  my_array[10][6][4];
  ...   
}
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Figure 4:   Partitioning the Dimensions of an Array
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The examples in the figure demonstrate how partitioning dimension 3 results in four separate
arrays and partitioning dimension 1 results in 10 separate arrays. If 0 is specified as the
dimension, all dimensions are partitioned.

The Importance of Careful Partitioning

A complete partition of the array maps all the array elements to the individual registers. This
helps in improving the kernel performance because all of these registers can be accessed
concurrently in a same cycle.

CAUTION! Complete partitioning of the large arrays consumes a lot of PL region. It could even cause the
compilation process to slow down and face capacity issue. Partition the array only when it is needed. Consider
selectively partitioning a particular dimension or performing a block or cycle partitioning.

Choosing a Specific Dimension to Partition

Suppose A and B are two-dimensional arrays representing two matrices. Consider the following
Matrix Multiplication algorithm:

int A[64][64];
int B[64][64];
 
ROW_WISE: for (int i = 0; i < 64; i++) {
  COL_WISE : for (int j = 0; j < 64; j++) {
    #pragma HLS PIPELINE
    int result = 0;
    COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
      result += A[i ][ k] * B[k ][ j];
    }
    C[i][ j] = result;
  }
}
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Due to the PIPELINE pragma, the ROW_WISE and COL_WISE loop is flattened together and
COMPUTE_LOOP is fully unrolled. To concurrently execute each iteration (k) of the
COMPUTE_LOOP, the code must access each column of matrix A and each row of matrix B in
parallel. Therefore, the matrix A should be split in the second dimension, and matrix B should be
split in the first dimension.

#pragma HLS ARRAY_PARTITION variable=A dim=2 complete
#pragma HLS ARRAY_PARTITION variable=B dim=1 complete

Choosing Between Cyclic and Block Partitions

Here the same matrix multiplication algorithm is used to demonstrate choosing between cyclic
and block partitioning and determining the appropriate factor, by understanding the array access
pattern of the underlying algorithm.

int A[64 * 64];
int B[64 * 64];
#pragma HLS ARRAY_PARTITION variable=A dim=1 cyclic factor=64
#pragma HLS ARRAY_PARTITION variable=B dim=1 block factor=64
 
ROW_WISE: for (int i = 0; i < 64; i++) {
  COL_WISE : for (int j = 0; j < 64; j++) {
    #pragma HLS PIPELINE
    int result = 0;
    COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
      result += A[i * 64 +  k] * B[k * 64 + j];
    }
    C[i* 64 + j] = result;
  }
}

In this version of the code, A and B are now one-dimensional arrays. To access each column of
matrix A and each row of matrix B in parallel, cyclic and block partitions are used as shown in the
above example. To access each column of matrix A in parallel, cyclic partitioning is applied
with the factor specified as the row size, in this case 64. Similarly, to access each row of matrix
B in parallel, block partitioning is applied with the factor specified as the column size, or 64.

Minimizing Array Accesses with Caching

As arrays are mapped to BRAM with limited number of access ports, repeated array accesses can
limit the performance of the accelerator. You should have a good understanding of the array
access pattern of the algorithm, and limit the array accesses by locally caching the data to
improve the performance of the hardware function.
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The following code example shows a case in which accesses to an array can limit performance in
the final implementation. In this example, there are three accesses to the array mem[N] to create
a summed result.

#include "array_mem_bottleneck.h"
dout_t array_mem_bottleneck(din_t mem[N]) {  
  dout_t sum=0;
  int i;
  SUM_LOOP:for(i=2;i<N;++i) 
    sum += mem[i] + mem[i-1] + mem[i-2];    
  return sum;
}

The code in the preceding example can be rewritten as shown in the following example to allow
the code to be pipelined with a II = 1. By performing pre-reads and manually pipelining the data
accesses, there is only one array read specified inside each iteration of the loop. This ensures that
only a single-port BRAM is needed to achieve the performance.

#include "array_mem_perform.h"
dout_t array_mem_perform(din_t mem[N]) {  
  din_t tmp0, tmp1, tmp2;
  dout_t sum=0;
  int i;
  tmp0 = mem[0];
  tmp1 = mem[1];
  SUM_LOOP:for (i = 2; i < N; i++) { 
    tmp2 = mem[i];
    sum += tmp2 + tmp1 + tmp0;
    tmp0 = tmp1;
    tmp1 = tmp2;
  }     
  return sum;
}

RECOMMENDED: Consider minimizing the array access by caching to local registers to improve the pipelining
performance depending on the algorithm.

For more detailed information related to the configuration of arrays, see the "Arrays" section in
the Vivado Design Suite User Guide: High-Level Synthesis (UG902).

Loops
Loops are an important aspect for a high performance accelerator. Generally, loops are either
pipelined or unrolled to take advantage of the highly distributed and parallel FPGA architecture
to provide a performance boost compared to running on a CPU.

Chapter 3: Programming Hardware Functions

UG1278 (v2019.1) May 22, 2019  www.xilinx.com
SDSoC Programmers Guide  34Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1278&Title=SDSoC%20Programmers%20Guide&releaseVersion=2019.1&docPage=34


By default, loops are neither pipelined nor unrolled. Each iteration of the loop takes at least one
clock cycle to execute in hardware. Thinking from the hardware perspective, there is an implicit
wait until clock for the loop body. The next iteration of a loop only starts when the previous
iteration is finished.

Loop Pipelining
By default, every iteration of a loop only starts when the previous iteration has finished. In the
loop example below, a single iteration of the loop adds two variables and stores the result in a
third variable. Assume that in hardware this loop takes three cycles to finish one iteration. Also,
assume that the loop variable len is 20, that is, the vadd loop runs for 20 iterations in the
hardware function. Therefore, it requires a total of 60 clock cycles (20 iterations * 3 cycles) to
complete all the operations of this loop.

vadd: for(int i = 0; i < len; i++) {
  c[i] = a[i] + b[i];
}

TIP: It is good practice to always label a loop as shown in the above code example (vadd:…). This practice helps
with debugging when working in the SDSoC environment. Note that the labels generate warnings during
compilation, which can be safely ignored.

Pipelining the loop executes subsequent iterations in a pipelined manner. This means that
subsequent iterations of the loop overlap and run concurrently, executing at different sections of
the loop-body. Pipelining a loop can be enabled by the pragma HLS PIPELINE. Note that the
pragma is placed inside the body of the loop.

vadd: for(int i = 0; i < len; i++) {
  #pragma HLS PIPELINE
  c[i] = a[i] + b[i];
}

In the example above, it is assumed that every iteration of the loop takes three cycles: read, add,
and write. Without pipelining, each successive iteration of the loop starts in every third cycle.
With pipelining the loop can start subsequent iterations of the loop in fewer than three cycles,
such as in every second cycle, or in every cycle.

The number of cycles it takes to start the next iteration of a loop is called the initiation interval
(II) of the pipelined loop. So II = 2 means each successive iteration of the loop starts every two
cycles. An II = 1 is the ideal case, where each iteration of the loop starts in the very next cycle.
When you use the pragma HLS PIPELINE the compiler always tries to achieve II = 1
performance.

The following figure illustrates the difference in execution between pipelined and non-pipelined
loops. In this figure, (A) shows the default sequential operation where there are three clock cycles
between each input read (II = 3), and it requires eight clock cycles before the last output write is
performed.
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Figure 5:   Loop Pipelining
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In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II = 1)
and the final output is written after only four clock cycles: substantially improving both the II and
latency while using the same hardware resources.

IMPORTANT! Pipelining a loop causes any loops nested inside the pipelined loop to get unrolled.

If there are data dependencies inside a loop it might not be possible to achieve II = 1, and a larger
initiation interval might be the result. Loop dependencies are discussed in Loop Dependencies.

Loop Unrolling
The compiler can also unroll a loop, either partially or completely to perform multiple loop
iterations in parallel. This is done using the HLS UNROLL pragma. Unrolling a loop can lead to a
very fast design, with significant parallelism. However, because all the operations of the loop
iterations are executed in parallel, a large amount of programmable logic resource are required to
implement the hardware. As a result, the compiler can face challenges dealing with such a large
number of resources and can face capacity problems that slow down the hardware function
compilation process. It is a good guideline to unroll loops that have a small loop body, or a small
number of iterations.

vadd: for(int i = 0; i < 20; i++) {
  #pragma HLS UNROLL
  c[i] = a[i] + b[i];
}

In the preceding example, you can see pragma HLS UNROLL has been inserted into the body of
the loop to instruct the compiler to unroll the loop completely. All 20 iterations of the loop are
executed in parallel if that is permitted by any data dependency.
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Completely unrolling a loop can consume significant device resources, while partially unrolling
the loop provides some performance improvement without causing a significant impact on
hardware resources.

Partially Unrolled Loop

To completely unroll a loop, the loop must have a constant bound (20 in the example above).
However, partial unrolling is possible for loops with a variable bound. A partially unrolled loop
means that only a certain number of loop iterations can be executed in parallel.

The following code examples illustrates how partially unrolled loops work:

array_sum:for(int i=0;i<4;i++){
  #pragma HLS UNROLL factor=2
  sum += arr[i];
}

In the above example the UNROLL pragma is given a factor of 2. This is the equivalent of
manually duplicating the loop body and running the two loops concurrently for half as many
iterations. The following code shows how this would be written. This transformation allows two
iterations of the above loop to execute in parallel.

array_sum_unrolled:for(int i=0;i<2;i+=2){
  // Manual unroll by a factor 2
  sum += arr[i];
  sum += arr[i+1];
}

Just like data dependencies inside a loop impact the initiation interval of a pipelined loop, an
unrolled loop performs operations in parallel only if data dependencies allow it. If operations in
one iteration of the loop require the result from a previous iteration, they cannot execute in
parallel, but execute as soon as the data from one iteration is available to the next.

RECOMMENDED: A good methodology is to PIPELINE loops first, and then UNROLL loops with small loop
bodies and limited iterations to improve performance further.
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Loop Dependencies
Data dependencies in loops can impact the results of loop pipelining or unrolling. These loop
dependencies can be within a single iteration of a loop or between different iterations of a loop.
The straightforward method to understand loop dependencies is to examine an extreme
example. In the following code example, the result of the loop is used as the loop continuation or
exit condition. Each iteration of the loop must finish before the next can start.

Minim_Loop: while (a != b) { 
  if (a > b) 
    a -= b; 
  else 
    b -= a;
}

This loop cannot be pipelined. The next iteration of the loop cannot begin until the previous
iteration ends.

Dealing with various types of dependencies with the sds++ compiler is an extensive topic
requiring a detailed understanding of the high-level synthesis procedures underlying the
compiler. Refer to the Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more
information on "Dependencies with Vivado HLS."

Nested Loops
Coding with nested loops is a common practice. Understanding how loops are pipelined in a
nested loop structure is key to achieving the desired performance.

If the pragma HLS PIPELINE is applied to a loop nested inside another loop, the sds++
compiler attempts to flatten the loops to create a single loop, and apply the PIPELINE pragma
to the constructed loop. The loop flattening helps in improving the performance of the hardware
function.

The compiler is able to flatten the following types of nested loops:

1. Perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• All the loop bounds are constant.

2. Semi-perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• The inner loop bound must be a constant, but the outer loop bound can be a variable.
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The following code example illustrates the structure of a perfect nested loop:

ROW_LOOP: for(int i=0; i< MAX_HEIGHT; i++) {
  COL_LOOP: For(int j=0; j< MAX_WIDTH; j++) {
    #pragma HLS PIPELINE
    // Main computation per pixel
  }
}

The above example shows a nested loop structure with two loops that performs some
computation on incoming pixel data. In most cases, you want to process a pixel in every cycle,
hence PIPELINE is applied to the nested loop body structure. The compiler is able to flatten the
nested loop structure in the example because it is a perfect nested loop.

The nested loop in the preceding example contains no logic between the two loop declarations.
No logic is placed between the ROW_LOOP and COL_LOOP; all of the processing logic is inside the
COL_LOOP. Also, both the loops have a fixed number of iterations. These two criteria help the
sds++ compiler flatten the loops and apply the PIPELINE constraint.

RECOMMENDED: If the outer loop has a variable boundary, then the compiler can still flatten the loop. You
should always try to have a constant boundary for the inner loop.

Sequential Loops
If there are multiple loops in the design, by default they do not overlap, and execute sequentially.
This section introduces the concept of dataflow optimization for sequential loops. Consider the
following code example:

void adder(unsigned int *in, unsigned int *out, int inc, int size) {

  unsigned int in_internal[MAX_SIZE];
  unsigned int out_internal[MAX_SIZE];
  mem_rd: for (int i = 0 ; i < size ; i++){
    #pragma HLS PIPELINE
    // Reading from the input vector "in" and saving to internal variable
    in_internal[i] = in[i];
  }
  compute: for (int i=0; i<size; i++) {
  #pragma HLS PIPELINE
    out_internal[i] = in_internal[i] + inc;
  } 

  mem_wr: for(int i=0; i<size; i++) {
  #pragma HLS PIPELINE
    out[i] = out_internal[i];
  }
}

In the previous example, three sequential loops are shown: mem_rd, compute, and mem_wr.

• The mem_rd loop reads input vector data from the memory interface and stores it in internal
storage.
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• The main compute loop reads from the internal storage and performs an increment operation
and saves the result to another internal storage.

• The mem_wr loop writes the data back to memory from the internal storage.

By default, these loops are executed sequentially without any overlap. First, the mem_rd loop
finishes reading all the input data before the compute loop starts its operation. Similarly, the
compute loop finishes processing the data before the mem_wr loop starts to write the data.
However, the execution of these loops can be overlapped, allowing the compute (or mem_wr)
loop to start as soon as there is enough data available to feed its operation, before the mem_rd
(or compute) loop has finished processing its data.

The loop execution can be overlapped using dataflow optimization as described in Dataflow
Optimization.

Dataflow Optimization
Dataflow optimization is a powerful technique to improve the hardware function performance by
enabling task-level pipelining and parallelism inside the hardware function. It allows the sds++
compiler to schedule multiple functions of the hardware function to run concurrently to achieve
higher throughput and lower latency. This is also known as task-level parallelism.

The following figure shows a conceptual view of dataflow pipelining. The default behavior is to
execute and complete func_A, then func_B, and finally func_C. With the HLS DATAFLOW
pragma enabled, the compiler can schedule each function to execute as soon as data is available.
In this example, the original top function has a latency and interval of eight clock cycles. With
DATAFLOW optimization, the interval is reduced to only three clock cycles.
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Figure 6:   Dataflow Optimization
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Dataflow Coding Example
In the dataflow coding example you should notice the following:

1. The HLS DATAFLOW pragma is applied to instruct the compiler to enable dataflow
optimization. This is not a data mover, which deals with interfacing between the PS and PL,
but how the data flows through the accelerator.

2. The stream class is used as a data transferring channel between each of the functions in the
dataflow region.

TIP: The stream class infers a first-in first-out (FIFO) memory circuit in the programmable logic. This memory
circuit, which acts as a queue in software programming, provides data-level synchronization between the
functions and achieves better performance. For additional details on the hls::stream class, see the Vivado
Design Suite User Guide: High-Level Synthesis (UG902).

void compute_kernel(ap_int<256> *inx, ap_int<256> *outx, DTYPE alpha) {
  hls::stream<unsigned int>inFifo;
  #pragma HLS STREAM variable=inFifo depth=32
  hls::stream<unsigned int>outFifo; 
  #pragma HLS STREAM variable=outFifo depth=32

  #pragma HLS DATAFLOW
  read_data(inx, inFifo);
  // Do computation with the acquired data
  compute(inFifo, outFifo, alpha);
  write_data(outx, outFifo);
  return;
}
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Canonical Forms of Dataflow Optimization
Xilinx recommends writing the code inside a dataflow region using canonical forms. There are
canonical forms for dataflow optimizations for both functions and loops.

• Functions: The canonical form coding guideline for dataflow inside a function specifies:

1. Use only the following types of variables inside the dataflow region:

a. Local non-static scalar/array/pointer variables.

b. Local static hls::stream variables.

2. Function calls transfer data only in the forward direction.

3. Array or hls::stream should have only one producer function and one consumer
function.

4. The function arguments (variables coming from outside the dataflow region) should only
be read, or written, not both. If performing both read and write on the same function
argument then read should happen before write.

5. The local variables (those that are transferring data in forward direction) should be written
before being read.

The following code example illustrates the canonical form for dataflow within a function. Note
that the first function (func1) reads the inputs and the last function (func3) writes the
outputs. Also note that one function creates output values that are passed to the next
function as input parameters.

void dataflow(Input0, Input1, Output0, Output1) {
  UserDataType C0, C1, C2;
  #pragma HLS DATAFLOW
  func1(read Input0, read Input1, write C0, write C1);
  func2(read C0, read C1, write C2);
  func3(read C2, write Output0, write Output1);
}

• Loop: The canonical form coding guideline for dataflow inside a loop body includes the coding
guidelines for a function defined above, and also specifies the following:

1. Initial value 0.

2. The loop condition is formed by a comparison of the loop variable with a numerical
constant or variable that does not vary inside the loop body.

3. Increment by 1.
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The following code example illustrates the canonical form for dataflow within a loop.

void dataflow(Input0, Input1, Output0, Output1) {
             UserDataType C0, C1, C2;
             for (int i = 0; i < N; ++i) {
                  #pragma HLS DATAFLOW
                 func1(read Input0, read Input1, write C0, write C1);
                 func2(read C0, read C0, read C1, write C2);
                 func3(read C2, write Output0, write Output1);
               }
}

Troubleshooting Dataflow
The following behaviors can prevent the sds++ compiler from performing DATAFLOW
optimizations:

1. Single producer-consumer violations.

2. Bypassing tasks.

3. Feedback between tasks.

4. Conditional execution of tasks.

5. Loops with multiple exit conditions or conditions defined within the loop.

If any of the above conditions occur inside the dataflow region, you might need to re-architect
the code to successfully achieve dataflow optimization.

Chapter 3: Programming Hardware Functions

UG1278 (v2019.1) May 22, 2019  www.xilinx.com
SDSoC Programmers Guide  43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1278&Title=SDSoC%20Programmers%20Guide&releaseVersion=2019.1&docPage=43


Chapter 4

Using External I/O
Hardware accelerators generated in the SDSoC™ environment can communicate with system
inputs and outputs either directly through hardware connections, or though memory buffers (for
example, a frame buffer). Examples of system I/O include analog-to-digital and digital-to-analog
converters, image, radar, LiDAR, and ultrasonic sensors, and HDMI™ multimedia streams.

A platform exports stream connections in hardware that can be accessed in software by calling
platform library functions as described in Accessing External I/O Using Memory Buffers and 
Accessing External I/O Using Direct Hardware Connections. Direct hardware connections are
implemented over AXI4-Stream channels and connections to memory buffers are realized
through function calls implemented by the standard data movers supported in the SDSoC
environment.

For information and examples that show how to create SDSoC platforms, see the SDSoC
Environment Platform Development Guide (UG1146).

Accessing External I/O Using Memory Buffers
This section uses the motion-detect ZC702 + HDMI IO FMC or the ZC706 + HDMI IO FMC
platform found under the "Boards, Kits, & Modules" page of the SDSoC Development
Environment. The preconfigured SDSoC platform is responsible for the HDMI data transfer to
external memory. The application must call the platform interfaces to process the data from the
frame buffer in DDR memory. The following figure shows an example of how the design is
configured.
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Figure 7:   Motion Detect Design Configuration
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The SDSoC environment accesses the external frame buffer through an accelerator interface to
the platform. The zc702_hdmi platform provides a software interface to access the video frame
buffer through the Video4Linux2 (V4L2) API. The V4L2 framework provides an API accessing
a collection of device drivers supporting real-time video capture in Linux. This API is the
application development platform I/O entry point.

The motion_demo_processing function in the following code snippet from
m2m_sw_pipeline.c demonstrates the function call interface.

extern void motion_demo_processing(unsigned short int *prev_buffer,
            unsigned short int *in_buffer,
            unsigned short int *out_buffer,
            int fps_enable,
            int height, int width, int stride);
.
.
.
unsigned short *out_ptr = v_pipe->drm.d_buff[buf_next->index].drm_buff;
unsigned short *in_ptr1 = buf_prev->v412_buff;
unsigned short *in_ptr2 = buf_next->v412_buff;
v_pipe->events[PROCESS_IN].counter_val++;

motion_demo_processing(in_ptr1, in_ptr2, out_ptr,
                       v_pipe->fps_enable,
                       (int)m2m_sw_stream_handle.video_in.format.height,
                       (int)m2m_sw_stream_handle.video_in.format.width,
                       
(int)m2m_sw_stream_handle.video_in.format.bytesperline/2);
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The application accesses this API in motion_detect.c, where motion_demo_procesing is
defined and called by the img_process function.

void motion_demo_processing(unsigned short int *prev_buffer,
                             unsigned short int *in_buffer,
                             unsigned short int *out_buffer,
                             int fps_enable,
                             int height, int width, int stride)
{
      int param0=0, param1=1, param2=2;

      img_process(prev_buffer, in_buffer, out_buffer, height, width, 
stride);
}

Finally, img_process calls the various filters and transforms to process the data.

void img_process(unsigned short int *frame_prev,
                  unsigned short int *frame_curr,
                  unsigned short int *frame_out,
                  int param0, int param1, int param2)
{
...
}

By using a platform API to access the frame buffers, the application developer does not program
at the driver-level to process the video frames.

You can find the platform used for the code snippets on the SDSoC Downloads Page with the
name ZC702 + HDMI IO FMC or ZC706 + HDMI IO FMC.

Accessing the SDSoC Environment
The following steps outline how to access the project in the SDSoC environment.

1. Download and extract the platform to your system.

2. Open SDx™ and create a new application project.

3. From the Platform dialog box, select Add Custom Platform.

4. From the Specify Custom Platform Location dialog box, select the location of the
downloaded platform, and click OK.

5. From the Platform dialog box, select the custom platform folder named zc702_trd or
zc706_trd, and click Next.

6. From the System Configuration dialog box, leave the default settings and click Next.

7. From the Templates dialog box, select the Dense Optical Flow (1PPC) template, and
click Finish.
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Accessing External I/O Using Direct Hardware
Connections

Whereas the example in Accessing External I/O Using Memory Buffers demonstrated how
applications can access system I/O through memory buffers, a platform can also provide direct
hardware connectivity to hardware accelerators within an application generated in the SDSoC
environment. The following figure shows how a function s2mm_data_copy communicates to
the platform using an AXI4-Stream channel and writes to DDR memory using the zero_copy
data mover (implemented as an AXI4 master interface). This design template is called aximm
design example in the samples/platforms/zc702_axis_io platform.

Figure 8:   AXI4 Data Mover Design
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In this example, the zc702_axis_io platform proxies actual I/O by providing a free-running
binary counter (labeled Platform IP in the diagram) running at 50 MHz, connected to an AXI4-
Stream Data FIFO IP block that exports an AXI4-Stream master interface to the platform clocked
at the data motion clock (which might differ from the 50 MHz input clock).
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The direct I/O interface is specified using the sys_port pragma for a stream port. In the
following code snippet, the direct connection is specified for stream_fifo_M_AXIS.

#pragma SDS data sys_port (fifo:stream_fifo_M_AXIS)
#pragma SDS data zero_copy(buf)
int s2mm_data_copy(unsigned *fifo, unsigned buf[BUF_SIZE]) 
{
#pragma HLS interface axis port=fifo
     for(int i=0; i<BUF_SIZE; i++) {
#pragma HLS pipeline
          buf[i] = *fifo;
     }
     return 0;
}

In the following main application code, the rbuf0 variable maps the FIFO input stream to the
s2mm_data_copy function, so the sds++ compiler creates a direct hardware connection over
an AXI4-Stream channel. Because the s2mm_data_copy function transfers buf using the
zero_copy data mover, the buffer must be allocated in physically contiguous memory using
sds_alloc, and released using sds_free, as shown below.

int main() 
{
     unsigned *bufs[NUM_BUFFERS];
     bool error = false;
     unsigned* rbuf0;
     
     for(int i=0; i<NUM_BUFFERS; i++) {
          bufs[i] = (unsigned*) sds_alloc(BUF_SIZE * sizeof(unsigned));
     }
     
     // Flush the platform FIFO of start-up garbage
     s2mm_data_copy(rbuf0, bufs[0]);
     s2mm_data_copy(rbuf0, bufs[0]);
     s2mm_data_copy(rbuf0, bufs[0]);

     
     for(int i=0; i<NUM_BUFFERS; i++) {
       s2mm_data_copy(rbuf0, bufs[i]);
     }
     
     error = check(bufs);

     printf("TEST %s\n\r", (error ? "FAILED" : "PASSED"));
     
     for(int i=0; i<NUM_BUFFERS; i++) {
          sds_free(bufs[i]);
     }
     return 0;
}

Information on creating a platform using AXI4-Stream to write to memory directly can be found
in the "SDSoC Platform Examples" appendix of SDSoC Environment Platform Development Guide
(UG1146).
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Appendix A

Exporting a Library for GCC
This chapter demonstrates how to use the sds++ compiler to build a library of software
functions with entry points into hardware functions implemented in programmable logic. This
library can be linked into applications using the standard GCC linker for Zynq®-7000 SoC and
Zynq® UltraScale+™ MPSoC devices.

In addition to the library, sds++ generates a complete boot image for the hardware functions
and data motion network, including an FPGA bitstream. Using this library, you can develop
software applications that call the hardware functions (and fixed hardware) using standard GCC
toolchains. You are still targeting the same hardware system and using the sds++-generated
boot environment, but you are free to develop your software application using the GNU
toolchain in the software development environment of your choice.

IMPORTANT! In the current SDSoC™ release, libraries are not thread-safe, so they must be called into from a
single thread within an application, which could consist of many threads and processes.

Building a Shared Library
TIP: Shared libraries can be only created for application projects targeting Linux OS.

To build a shared library, sds++ requires at least one accelerator. The following example provides
three entry points into two hardware accelerators: a matrix multiplier and a matrix adder. You can
find these files in the samples/libmatrix/build directory.

• mmult_accel.cpp: Accelerator code for the matrix multiplier

• mmult_accel.h: Header file for the matrix multiplier

• madd_accel.cpp: Accelerator code for the matrix adder

• madd_accel.h: Header file for the matrix adder

• matrix.cpp: Code that calls the accelerators and determines the data motion network

• matrix.h: Header file for the library
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The matrix.cpp file contains functions that define the accelerator interfaces as well as how
the hardware functions communicate with the platform (that is, the data motion networks
between platform and accelerators). The function madd calls a single matrix adder accelerator,
and the function mmult calls a single matrix multiplier accelerator. Another function mmultadd
is implemented using two hardware functions, with the output of the matrix multiplier connected
directly to the input of the matrix adder.

/* matrix.cpp */
#include "madd_accel.h"
#include "mmult_accel.h"
    
void madd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
out_C[MSIZE*MSIZE])                                             
{
  madd_accel(in_A, in_B, out_C);
}
    
void mmult(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
out_C[MSIZE*MSIZE])                                            
{
  mmult_accel(in_A, in_B, out_C);
}
    
void mmultadd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
in_C[MSIZE*MSIZE], 
float out_D[MSIZE*MSIZE])
{
  float tmp[MSIZE * MSIZE];
    
  mmult_accel(in_A, in_B, tmp);
  madd_accel(tmp, in_C, out_D);
}

The matrix.h file defines the function interfaces to the shared library and is included in the
application source code.

/* matrix.h */
#ifndef MATRIX_H_
#define MATRIX_H_
   
#define MSIZE 16
    
void madd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
out_C[MSIZE*MSIZE]);
  
void mmult(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
out_C[MSIZE*MSIZE]);
    
void mmultadd(float in_A[MSIZE*MSIZE], float in_B[MSIZE*MSIZE], float 
in_C[MSIZE*MSIZE], 
float out_D[MSIZE*MSIZE]);
    
#endif /* MATRIX_H_ */
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In the samples/libmatrix/build/shared folder, the Makefile shows how the project is
built by specifying that the functions mmult_accel, madd, and mmult_add must be
implemented in programmable logic.

SDSFLAGS = \
    -sds-pf ${PLATFORM} \
    -sds-hw mmult_accel mmult_accel.cpp -sds-end \
    -sds-hw madd_accel madd_accel.cpp -sds-end

Object files are generated with position independent code (PIC), like standard shared libraries,
using the GCC standard -fpic option:

sds++ ${SDSFLAGS} -c -fpic –o mmult_accel.o mmult_accel.cpp
    sds++ ${SDSFLAGS} -c -fpic –o madd_accel.o madd_accel.cpp
    sds++ ${SDSFLAGS} -c -fpic –o matrix.o matrix.cpp

Link the objects files by using the using the GCC standard –shared switch:

sds++ ${SDSFLAGS} -shared -o libmatrix.so mmult_accel.o madd_accel.o 
matrix.o

After building the project, the following files are generated:

• libmatrix.so: Shared library suitable for linking using GCC and for runtime use

• sd_card: Directory containing an SD card image for booting the board

Delivering a Library
The following structure allows compiling and linking into applications using GCC in standard
ways.

<path_to_library>/include/matrix.h
<path_to_library>/lib/libmatrix.so
<path_to_library>/sd_card

IMPORTANT! The sd_card folder is to be copied into an SD card and used to boot the board. This image
includes a copy of the libmatrix.so file that is used at runtime.

Appendix A: Exporting a Library for GCC

UG1278 (v2019.1) May 22, 2019  www.xilinx.com
SDSoC Programmers Guide  51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1278&Title=SDSoC%20Programmers%20Guide&releaseVersion=2019.1&docPage=51


Compiling and Linking Against a Library
The following is an example of using the library with a GCC compiler. The library is used by
including the header file matrix.h and then calling the necessary library functions.

/* main.cpp (pseudocode) */
#include "matrix.h"
        
int main(int argc, char* argv[])
{
  float *A, *B, *C, *D;
  float *J, *K, *L;
  float *X, *Y, *Z;
  ...
  mmultadd(A, B, C, D);
  ...
  mmult(J, K, L);
  ...
  madd(X, Y, Z);
  ...
}

To compile against a library, the compiler needs the header file. The path to the header file is
specified using the -I switch. You can find example files in the samples/libmatrix/use
directory.

TIP: For explanation purposes, the code above is only pseudocode and not the same as the main.cpp file in the
directory. The file has more code that allows full compilation and execution.

gcc –I <path_to_library>/include –o main.o main.c

To link against the library, the linker needs the library. The path to the library is specified using
the -L switch. Also, ask the linker to link against the library using the -l switch.

gcc –I <path_to_library>/lib –o main.elf main.o -lmatrix

For detailed information on using the GCC compiler and linker switches see the GCC
documentation.

Use a Library at Runtime
At runtime, the loader looks for the shared library when loading the executable. After booting
the board into a Linux prompt and before executing the ELF file, add the path to the library to
the LD_LIBRARY_PATH environment variable. The sd_card created when building the library
already has the library, so the path to the mount point for the sd_card must be specified.

For example, if the sd_card is mounted at /mnt, use this command:

export LD_LIBRARY_PATH=/mnt
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Exporting a Shared Library
The following steps demonstrate how to export an SDSoC environment shared library with the
corresponding SD card boot image using the SDSoC environment GUI.

1. Select File → New → SDx Library Project to bring up the New SDx Library Project dialog box.

2. Create a new SDx Library project.

a. Type libmatrix in the Project name field.

b. Specify the Location.

c. Click Next.

d. Check the Shared Library checkbox in the Accelerated Library Type window.

e. Click Next.

f. Select Platform to be zc102.

g. Click Next.

3. Provide the system configuration and software details of your project.

a. Accept the default values in the System Configuration dialog box.

Note: Ensure that Sysroot path is unchecked.

b. Click Next.

4. In the Templates dialog box, select Matrix Shared Library from the Available Templates, and
click Finish to create the project.

5. In the Project Explorer, right-click libmatrix and select Import Sources.

6. In the Import Source dialog box, select Browse and samples/libmatrix and select build
and click OK.

7. In the Import Sources dialog box, check build and click Finish.

A new SDSoC shared library application project called libmatrix is created in the Project
Explorer view. The project includes two hardware functions mmult_accel and
madd_accel that are visible in the SDSoC Project Overview.

8. Build the library.

a. In the Project Explorer view, select the libmatrix project.

b. Select Project → Build Project.

After the build completes, there is a boot SD card image under the Debug (or current
configuration) folder.
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Appendix B

SDSoC Environment API
This section describes functions in sds_lib available for applications developed in the SDSoC™
environment.

Note: To use the library, #include "sds_lib.h" in source files. You must include stdlib.h before
including sds_lib.h to provide the size_t type declaration.

The SDSoC environment API provides functions to map memory spaces, and to wait for
asynchronous accelerator calls to complete.

• void sds_wait(unsigned int id): Wait for the first accelerator in the queue identified
by id, to complete. The recommended alternative is using #pragma SDS wait(id), as
described in pragma SDS async in the SDx Pragma Reference Guide (UG1253).

• void *sds_alloc(size_t size): Allocate a physically contiguous array of size bytes.

• void *sds_alloc_non_cacheable(size_t size): Allocate a physically contiguous
array of size bytes that is marked as non-cacheable. Memory allocated by this function is not
cached in the processing system. Pointers to this memory should be passed to a hardware
function with:

#pragma SDS data mem_attribute (p:NON_CACHEABLE)

• void sds_free(void *memptr): Free an array allocated through sds_alloc()

• void *sds_mmap(void *physical_addr, size_t size, void
*virtual_addr): Create a virtual address mapping to access a memory of size bytes
located at physical address physical_addr.

• physical_addr: Physical address to be mapped.

• size: Size of physical address to be mapped.

• virtual_addr:

○ If not null, it is considered to be the virtual-address already mapped to the
physical_addr and sds_mmap keeps track of the mapping.

○ If null, sds_mmap invokes mmap() to generate the virtual address, and virtual_addr
is assigned this value.

• void *sds_munmap(void *virtual_addr): Unmaps a virtual address associated with a
physical address created using sds_mmap().
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• unsigned long long sds_clock_counter(void): Returns the value associated with
a free-running counter used for fine grain time interval measurements.

• unsigned long long sds_clock_frequency(void): Returns the frequency (in ticks/
second) associated with the free-running counter that is read by calls to
sds_clock_counter. This is used to translate counter ticks to seconds.
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Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:
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1. SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)

2. SDSoC Environment User Guide (UG1027)

3. SDSoC Environment Getting Started Tutorial (UG1028)

4. SDSoC Environment Tutorial: Platform Creation (UG1236)

5. SDSoC Environment Platform Development Guide (UG1146)

6. SDSoC Environment Profiling and Optimization Guide (UG1235)

7. SDx Command and Utility Reference Guide (UG1279)

8. SDSoC Environment Programmers Guide (UG1278)

9. SDSoC Environment Debugging Guide (UG1282)

10. SDx Pragma Reference Guide (UG1253)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC Software Developers Guide (UG821)

13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)

15. ZCU102 Evaluation Board User Guide (UG1182)

16. PetaLinux Tools Documentation: Reference Guide (UG1144)

17. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

18. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

19. SDSoC Development Environment web page

20. Vivado® Design Suite Documentation

Training Resources
1. SDSoC Development Environment and Methodology

2. Advanced SDSoC Development Environment and Methodology
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Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
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© Copyright 2018-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.
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