
SDAccel Environment User
Guide

UG1023 (v2019.1) May 22, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1023

Revision History
The following table shows the revision history for this document.

Section Revision Summary

05/22/2019 Version 2019.1

SDAccel Execution Model Updated section.

SDAccel Build Process Added kernel description to .xo file.

SDAccel Design Methodology Updated software-centric description.

Chapter 2: Getting Started Added UG1352 link and information.

Creating an Application Project Added jSch and updated description .

Chapter 4: Programming for SDAccel Updated section.

Setting Up the Runtime Updated #4 code description.

Kernel Language Support Updated section.

Writing C/C++ Kernels Updated section.

Scalars Updated section.

Streaming Added section.

Building the Host Application Updated section.

Linking the Host Application Added note.

Building the Hardware Removed link and updated header.

Creating Multiple Instances of a Kernel Added clCreateSubDevices description.

Mapping Kernel Interfaces to Memory Resources Updated section.

Kernel to Kernel Streaming Connection Added section.

Allocating Compute Units to SLRs Added Kernel SLR and DDR link.

System Estimate Report Updated report_level code.

Compiling Added \ to code.

Linking Added \ to code and added note.

Compiling Updated description.

Linking Updated description.

Using the sdaccel.ini File Updated sdaccel.ini paragraph and added cpu_affinity entry
to Runtime Group.

Kernel Software Requirements Updated Control and Interrupt tables.

RTL Kernel Wizard General Settings Updated figure.

Kernel Options Added Kernel control interface.

Package RTL Kernel into Xilinx Object File Added links to the end of the section.

Creating SDAccel Kernels with Vivado HLS Updated SDAccel Bottom Up description and Device
Selection GUI.

Incorporating Vivado HLS Kernel Projects into SDAccel Updated first paragraph.

Appendix A: Getting Started with Examples Added GitHub links and description.

Appendix C: Useful Command Line Utilities Updated and added to UG1279.

Revision History

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=2

Section Revision Summary

01/24/2019 Version 2018.3

Best Practices for Acceleration with SDAccel Updated description.

XOCC Linking and Compilation Options Added SLR link.

Kernel Language Support Added SystemVerilog.

Setting Up the Runtime Updated #5 description.

Controlling Implementation Results Updated description.

Controlling Report Generation Updated description.

Debugging Features and Techniques Added notes to table.

Chapter 9: RTL Kernels Updated description.

Requirements for Using an RTL Design as an RTL Kernel Updated description.

Kernel Interface Requirements Updated description.

Kernel Software Requirements Updated description.

Interrupt Updated description.

Scalar Arguments Updated Argument type description.

RTL Kernel Type Project Flow Resized figures.

Managing Clocks in an RTL Kernel Added section.

Creating SDAccel Kernels with Vivado HLS Updated figures and description.

Xclbinutil Utility Updated description.

Clocks Added link and updated code.

12/05/2018 Version 2018.3

SDAccel Execution Model Updated figure.

SDAccel Design Methodology Moved tables to ordered list and updated description.

Best Practices for Acceleration with SDAccel Updated description.

Chapter 3: Creating an SDAccel Project Updated description and figures.

Creating an Application Project Updated section.

Understanding the SDx GUI Updated figure.

SDx Assistant Updated figures.

XOCC Linking and Compilation Options Added section.

Exporting an SDx Project Updated Export Filename figure.

Importing an SDx Project Added Import Type figure.

Coding the Host Application Updated description.

Writing C/C++ Kernels Updated description and split Pointer Arguments and
Scalars into sections.

Chapter 5: Building the System Updated Project Editor View figure and updated section
headings.

Building the Hardware Cleaned up the sample codes with $ and updated SDAccel
Linking, Instantiate Multiple Compute Units, and Assistant
XOCC Compile Settings figures. Removed Assistant Top-
Level figure.

Mapping Kernel Interfaces to Memory Resources Updated description.

Allocating Compute Units to SLRs Updated description.

Controlling Implementation Results Updated description.

Revision History

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=3

Section Revision Summary

Controlling Report Generation Updated description.

System Estimate Report Updated title and first paragraph.

Profile Summary Report Updated description.

Application Timeline Updated description, tip, and links.

Waveform View and Live Waveform Viewer Updated description.

Kernel SLR and DDR Memory Assignments Added section.

Debugging Features and Techniques Updated tables.

System Updated description.

Chapter 8: Building an Application via Command Line Updated description.

Compiling Updated description.

Building the Hardware Updated descriptions in the sections.

Using the sdaccel.ini File Split into three tables.

Kernel Software Requirements Updated section.

Kernel Interface Requirements Updated description and S_AXI_CONTROL entry and added
registers.

Interrupt Added link.

RTL Kernel Wizard Updated description.

Kernel Options Added description.

Streaming Interfaces Added section.

Package RTL Kernel into Xilinx Object File Updated description.

Chapter 10: HLS Kernel Design Integration into SDAccel Added chapter.

Useful Command Line Utilities Added appendix.

SLR Assignments for Kernels Removed appendix.

10/02/2018 Version 2018.2.xdf

Chapter 1: SDAccel Introduction and Overview Updated supported platforms to include the Alveo™ U200
and U250 Data Center accelerator cards.

Throughout document. Replaced xbsak and xbinst commands with xbutil
command.

Creating an Application Project Added a note regarding the need to separately install the
required platforms.

Appendix E: Migrating to a New Target Platform Added appendix.

Mapping Kernel Interfaces to Memory Resources Added note regarding using the --sp option to assign all
interfaces/ports of a kernel.

08/13/2018 Version 2018.2

Appendix F: Installing and Debugging a Board Removed Board Installation Appendix.
Board Installation procedures can be found in the
corresponding Board User Guides.
See KCU1500 Board User Guide (UG1260)and VCU1525
Reconfigurable Acceleration Platform User Guide (UG1268).

07/02/2018 Version 2018.2

Throughout Document Minor edits.

Board Installation and Debug Procedure Modified content to a command line-based installation flow.

Chapter 9: RTL Kernels Removed redundant topic.

Revision History

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 4Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=kcu1500;d=ug1260-kcu1500-data-center.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=vcu1525;d=ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=4

Section Revision Summary

Chapter 7: Chapter 7: Debugging Applications and Kernels Removed references to MicroBlaze Debug.

06/20/2018 Version 2018.2

Installing, Programming, and Debugging Boards Added appendix.

06/06/2018 Version 2018.2

This document has gone through a significant update with much of the content changed.

Chapter 3: Creating an SDAccel Project Added discussion of the Assistant view.

Chapter 4: Programming for SDAccel Added content on Coding the Host Application.

Chapter 5: Building the System Added details of the Building the Host Application and
Building the Hardware processes.

Chapter 7: Debugging Applications and Kernels This chapter is now an overview of the debugging process,
which is now fully presented in a separate User Guide.

Chapter 8: Building an Application via Command Line Added a discussion of the commands for compiling and
linking the host code and kernel code.

Chapter 9: RTL Kernels Significant updates to this content.

Appendix B: Directory Structure Describes the directory structure of application projects.

SLR Assignments for Kernels Discusses the use of --xp to control kernel placement.

Appendix F: JTAG Fallback for Private Debug Network Discusses remote debug issues for RTL kernels.

04/04/2018 Version 2018.1

xbsak Commands and Options Changed --apm command option to --spm.

Compiling Your OpenCL Kernel Using the Xilinx OpenCL
Compiler

Changed --pk command option to --profile_kernel.

Revision History

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=5

Table of Contents
Revision History...2

Chapter 1: SDAccel Introduction and Overview..9
Software Acceleration with SDAccel..10
SDAccel Execution Model... 11
SDAccel Build Process...13
SDAccel Design Methodology..16
Best Practices for Acceleration with SDAccel...18

Chapter 2: Getting Started.. 20

Chapter 3: Creating an SDAccel Project... 21
Using an SDx Workspace..21
Creating an Application Project...22
Understanding the SDx GUI...25
SDx Assistant..27
SDx Project Export and Import..33
Adding Sources..37

Chapter 4: Programming for SDAccel..41
Coding the Host Application.. 42
Kernel Language Support.. 45

Chapter 5: Building the System.. 49
Building the Host Application.. 51
Building the Hardware..52
Build Targets.. 61

Chapter 6: Profiling and Optimization..64
Design Guidance... 65
System Estimate Report... 66
HLS Report... 69
Profile Summary Report... 70

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=6

Application Timeline... 71
Waveform View and Live Waveform Viewer.. 73
Kernel SLR and DDR Memory Assignments...76

Chapter 7: Debugging Applications and Kernels..80
Debugging Features and Techniques...80

Chapter 8: Building an Application via Command Line.......................... 84
Building the Host...84
Building the Hardware..86
Using the sdaccel.ini File.. 89
emconfigutil Settings..92

Chapter 9: RTL Kernels...93
Requirements for Using an RTL Design as an RTL Kernel..93
RTL Kernel Wizard... 98
Manual Development Flow for RTL Kernels...115
Designing RTL Recommendations.. 119

Chapter 10: HLS Kernel Design Integration into SDAccel.................... 124
Creating SDAccel Kernels with Vivado HLS.. 125
Incorporating Vivado HLS Kernel Projects into SDAccel.. 129
Known Limitations.. 129

Appendix A: Getting Started with Examples...130
Installing Examples... 130
Using Local Copies.. 132

Appendix B: Directory Structure.. 134
Command Line.. 134
GUI.. 135

Appendix C: Useful Command Line Utilities..137

Appendix D: Managing Platforms and Repositories...............................138

Appendix E: Migrating to a New Target Platform.................................... 140
Design Migration...140
Migrating Releases..145
Modifying Kernel Placement..147

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=7

Address Timing..152

Appendix F: JTAG Fallback for Private Debug Network.........................155
JTAG Fallback Steps... 155

Appendix G: Additional Resources and Legal Notices........................... 156
Xilinx Resources...156
Documentation Navigator and Design Hubs.. 156
References..156
Please Read: Important Legal Notices... 157

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=8

Chapter 1

SDAccel Introduction and Overview
The SDAccel™ environment provides a framework for developing and delivering FPGA
accelerated data center applications using standard programming languages. The SDAccel
environment includes a familiar software development flow with an Eclipse-based integrated
development environment (IDE), and an architecturally optimizing compiler that makes efficient
use of FPGA resources. Developers of accelerated applications will use a familiar software
programming work flow to take advantage of FPGA acceleration with little or no prior FPGA or
hardware design experience. Acceleration kernel developers can use a hardware-centric
approach working through the HLS compiler with standard programming languages to produce a
heterogeneous application with both software and hardware components. The software
component, or application, is developed in C/C++ with OpenCL™ API calls; the hardware
component, or kernel, is developed in C/C++, OpenCL, or RTL. The SDAccel environment
accommodates various methodologies, allowing developers to start from either the software
component or the hardware component.

Xilinx® FPGAs offer many advantages over traditional CPU/GPU acceleration, including a custom
architecture capable of implementing any function that can run on a processor, resulting in better
performance at lower power dissipation. To realize the advantages of software acceleration on a
Xilinx device, you should look to accelerate large compute-intensive portions of your application
in hardware. Implementing these functions in custom hardware gives you an ideal balance
between performance and power. The SDAccel environment provides tools and reports to profile
the performance of your host application, and determine where the opportunities for
acceleration are. The tools also provide automated runtime instrumentation of cache, memory
and bus usage to track real-time performance on the hardware.

The SDAccel environment targets acceleration hardware platforms such as the Xilinx Alveo™
Data Center accelerator cards. This acceleration platform is designed for computationally
intensive applications, specifically applications for live video transcoding, data analytics, and
artificial intelligence (AI) applications using machine learning. There are also a number of available
third-party acceleration platforms compatible with the SDAccel environment.

A growing number of FPGA-accelerated libraries are available through the SDAccel environment,
such as the Xilinx Machine Learning (ML) suite to optimize and deploy accelerated ML inference
applications. Predefined accelerator functions include targeted applications, such as artificial
intelligence, with support for many common machine learning frameworks such as: Caffe, MxNet,
and TensorFlow; video processing, encryption, and big data analysis. These predefined
accelerator libraries offered by Xilinx and third-party developers can be integrated into your
accelerated application project quickly to speed development.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=9

Software Acceleration with SDAccel
When compared with processor architectures, the structures that comprise the programmable
logic (PL) fabric in a Xilinx FPGA enable a high degree of parallelism in application execution. The
custom processing architecture generated by SDAccel for a kernel presents a different execution
paradigm from CPU execution, and provides opportunity for significant performance gains. While
you can re-target an existing application for acceleration on an FPGA, understanding the FPGA
architecture and revising your host and kernel code appropriately will significantly improve
performance. Refer to the SDAccel Environment Programmers Guide (UG1277) for more
information on writing your host and kernel code, and managing data transfers between them.

CPUs have fixed resources and offer limited opportunities for parallelization of tasks or
operations. A processor, regardless of its type, executes a program as a sequence of instructions
generated by processor compiler tools, which transform an algorithm expressed in C/C++ into
assembly language constructs that are native to the target processor. Even a simple operation,
like the addition of two values, results in multiple assembly instructions that must be executed
across multiple clock cycles. This is why software engineers spend so much time restructuring
their algorithms to increase the cache hit rate and decrease the processor cycles used per
instruction.

On the other hand, the FPGA is an inherently parallel processing device capable of implementing
any function that can run on a processor. Xilinx FPGAs have an abundance resources that can be
programmed and configured to implement any custom architecture and achieve virtually any
level of parallelism. Unlike a processor, where all computations share the same ALU, operations in
an FPGA are distributed and executed across a configurable array of processing resources. The
FPGA compiler creates a unique circuit optimized for each application or algorithm. The FPGA
programming fabric acts as a blank canvas to define and implement your acceleration functions.

The SDAccel compiler exercises the capabilities of the FPGA fabric through the processes of
scheduling, pipelining, and dataflow.

• Scheduling: The process of identifying the data and control dependencies between different
operations to determine when each will execute. The compiler analyzes dependencies
between adjacent operations as well as across time, and groups operations to execute in the
same clock cycle when possible, or to overlap the function calls as permitted by the dataflow
dependencies.

• Pipelining: A technique to increase instruction-level parallelism in the hardware
implementation of an algorithm by overlapping independent stages of operations or functions.
The data dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All stages in
the chain run in parallel on the same clock cycle. Pipelining is a fine-grain optimization that
eliminates CPU restrictions requiring the current function call or operation to fully complete
before the next can begin.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=10

• Dataflow: Enables multiple functions implemented in the FPGA to execute in a parallel and
pipelined manner instead of sequentially, implementing task-level parallelism. The compiler
extracts this level of parallelism by evaluating the interactions between different functions of
a program based on their inputs and outputs. In terms of software execution, this
transformation applies to parallel execution of functions within a single kernel.

Another advantage of a Xilinx FPGA is the ability to be dynamically reconfigured. For example,
loading a compiled program into a processor or reconfiguring the FPGA during runtime can re-
purpose the resources of the FPGA to implement additional kernels as the accelerated
application runs. This allows a single SDAccel accelerator board provide acceleration for multiple
functions within an application, either sequentially or concurrently.

SDAccel Execution Model
In the SDAccel framework, an application program is split between a host application and
hardware accelerated kernels with a communication channel between them. The host
application, written in C/C++ and using API abstractions like OpenCL, runs on an x86 server
while hardware accelerated kernels run within the Xilinx FPGA. The API calls, managed by the
Xilinx Runtime (XRT), are used to communicate with the hardware accelerators. Communication
between the host x86 machine and the accelerator board, including control and data transfers,
occurs across the PCIe bus. While control information is transferred between specific memory
locations in hardware, global memory is used to transfer data between the host application and
the kernels. Global memory is accessible by both the host processor and hardware accelerators,
while host memory is only accessible by the host application.

For instance, in a typical application, the host will first transfer data, to be operated on by the
kernel, from host memory into global memory. The kernel would subsequently operate on the
data, storing results back to the global memory. Upon kernel completion, the host would transfer
the results back into the host memory. Data transfers between the host and global memory
introduce latency which can be costly to the overall acceleration. To achieve acceleration in a real
system, the benefits achieved by hardware acceleration kernels must outweigh the extra latency
of the data transfers. The general structure of this acceleration platform is shown in the following
figure.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=11

Figure 1: Architecture of an SDAccel Application

Custom Application

OpenCL API

Xilinx Runtime (XRT)

Drivers

Custom Kernels

AXI Interfaces

Global Memory

DMA

x86 Host CPU FPGA Device

PCIe

X21835-103118

The FPGA hardware platform, on the right-hand side, contains the hardware accelerated kernels,
global memory along with the DMA for memory transfers. Kernels can have one or more global
memory interfaces and are programmable. The SDAccel execution model can be broken down
into these steps:

1. The host application writes the data needed by a kernel into the global memory of the
attached device through the PCIe interface.

2. The host application sets up the kernel with its input parameters.

3. The host application triggers the execution of the kernel function on the FPGA.

4. The kernel performs the required computation while reading data from global memory, as
necessary.

5. The kernel writes data back to global memory and notifies the host that it has completed its
task.

6. The host application reads data back from global memory into the host memory and
continues processing as needed.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=12

The FPGA can accommodate multiple kernel instances at one time; this can occur between
different types of kernels or multiple instances of the same kernel. The XRT transparently
orchestrates the communication between the host application and the kernels in the accelerator.
The number of instances of a kernel is determined by compilation options.

SDAccel Build Process
The SDAccel environment offers all of the features of a standard software development
environment:

• Optimized compiler for host applications

• Cross-compilers for the FPGA

• Robust debugging environment to help identify and resolve issues in the code

• Performance profilers to identify bottlenecks and optimize the code

Within this environment, the build process uses a standard compilation and linking process for
both the software elements, and the hardware elements of the project. As shown in the following
figure, the host application is built through one process using standard GCC compiler, and the
FPGA binary is built through a separate process using the Xilinx xocc compiler.

Figure 2: Software/Hardware Build Process

X22015-112618

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=13

1. Host application build process using GCC:

• Each host application source file is compiled to an object file (.o).

• The object files (.o) are linked with the Xilinx SDAccel runtime shared library to create the
executable (.exe).

2. FPGA build process is highlighted in the following figure:

• Each kernel is independently compiled to a Xilinx object (.xo) file.

○ C/C++ and OpenCL C kernels are compiled for implementation on an FPGA using the
xocc compiler. This step leverages the Vivado® HLS compiler. Pragmas and attributes
supported by Vivado HLS can be used in C/C++ and OpenCL C kernel source code to
specify the desired kernel micro-architecture and control the result of the compilation
process.

○ RTL kernels are compiled using the package_xo utility. The RTL kernel wizard in the
SDAccel environment can be used to simplify this process.

• The kernel .xo files are linked with the hardware platform (shell) to create the FPGA
binary (.xclbin). Important architectural aspects are determined during the link step. In
particular, this is where connections from kernel ports to global memory banks are
established and where the number of instances for each kernel is specified.

○ When the build target is software or hardware emulation, as described below, xocc
generates simulation models of the device contents.

○ When the build target is the system (actual hardware), xocc generates the FPGA binary
for the device leveraging the Vivado Design Suite to run synthesis and implementation.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=14

Figure 3: FPGA Build Process

xocc -link Shell

.xclbin

OpenCL

xocc -c

.xo

C/C++

xocc -c

.xo

RTL

package_xo

.xo

X21155-111518

Note: The xocc compiler automatically uses the Vivado HLS and Vivado Design Suite tools to build the
kernels to run on the FPGA platform. It uses these tools with predefined settings which have proven to
provide good quality of results. Using the SDAccel environment and the xocc compiler does not require
knowledge of these tools; however, hardware-savvy developers can fully leverage these tools and use all
their available features to implement kernels.

Build Targets

The SDAccel tool build process generates the host application executable (.exe) and the FPGA
binary (.xclbin). The SDAccel build target defines the nature of FPGA binary generated by the
build process.

The SDAccel tool provides three different build targets, two emulation targets used for debug
and validation purposes, and the default hardware target used to generate the actual FPGA
binary:

• Software Emulation (sw_emu): Both the host application code and the kernel code are
compiled to run on the x86 processor. This allows iterative algorithm refinement through fast
build-and-run loops. This target is useful for identifying syntax errors, performing source-level
debugging of the kernel code running together with application, and verifying the behavior of
the system.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=15

• Hardware Emulation (hw_emu): The kernel code is compiled into a hardware model (RTL)
which is run in a dedicated simulator. This build and run loop takes longer but provides a
detailed, cycle-accurate, view of kernel activity. This target is useful for testing the
functionality of the logic that will go in the FPGA and for getting initial performance
estimates.

• System (hw): The kernel code is compiled into a hardware model (RTL) and is then
implemented on the FPGA device, resulting in a binary that will run on the actual FPGA.

SDAccel Design Methodology
The SDAccel environment supports the two primary use cases:

• Software-Centric Design: This software-centric approach focuses on improving the
performance of an application written by software programmers, by accelerating compute
intensive functions or bottlenecks identified while profiling the application.

• Hardware-Centric Design: The acceleration kernel developer creates an optimized kernel that
may be called as a library element by the application developer. Kernel languages are not
specific to the methodology. A software-centric flow can also use either C/C++, OpenCL, or
RTL for kernel. The main differences between the two approaches are the starting point
(software application or kernels) and the emphasis that comes with it.

The two use cases can be combined, allowing teams of software and hardware developers define
accelerator kernels and develop applications to use them. This combined methodology involves
different components of the application, developed by different people, potentially from different
companies. You can leverage predefined kernel libraries available for use in your accelerated
application, or develop all the acceleration functions within your own team.

Software-Centric Design

The methodology is comprised of two major phases:

1. Architecting the application

2. Developing the C/C++ kernels

In the first phase, the developer makes key decisions about the application architecture by
determining which software functions should be mapped to FPGA kernels, how much parallelism
is needed, and how it should be delivered.

In the second phase, the developer implements the kernels. This primarily involves structuring
source code and applying the desired compiler pragma to create the desired kernel architecture
and meet the performance target.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=16

Figure 4: Methodology Overview

Baseline perfomance,
establish goals

Identify which functions to
accelerate

Identify parallelization needs
in the FPGA device

Identify parallelization needs
in the software application

Refine architectural details

Architecting the Application

Partition code in load,
compute, store

Partition compute blocks
into smaller blocks,

recursively

Identify loops for
optimization

Reduce latency of loop

Improve initiation interval of
loop

Developing C/C++ Accelerators

X22683-041819

For more information on the SDAccel software design methodology, see the SDAccel
Methodology Guide (UG1346).

Hardware-Centric Design

Hardware-centric flows first focuses on developing and optimizing the kernel(s) and typically
leverages advanced FPGA design techniques. For more information, see the SDAccel Environment
Profiling and Optimization Guide (UG1207). The hardware-centric development flow typically uses
the following steps:

1. Baseline the application in terms of functionalities and performance and isolate functions to
be accelerated in hardware.

2. Estimate cycle budgets and performance requirements to define accelerator architecture and
interfaces.

3. Develop accelerator.

4. Verify functionality and performance. Iterate as needed.

5. Optimize timing and resource utilization. Iterate as needed.

6. Import kernel into SDAccel.

7. Develop sample host code to test with a dummy kernel having the same interfaces as the
actual kernel.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1346-sdaccel-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=17

8. Verify kernel works correctly with host code using hardware emulation, or running on actual
hardware. Iterate as needed.

9. Use Activity Timeline, Profile Summary, and timers in the source code to measure
performance to optimize host code for performance. Iterate as needed.

Best Practices for Acceleration with SDAccel
Below are some specific things to keep in mind when developing your application code and
hardware function in the SDAccel environment. You can find additional information in the
SDAccel Environment Profiling and Optimization Guide (UG1207).

• Look to accelerate functions that have a high ratio of compute time to input and output data
volume. Compute time can be greatly reduced using FPGA kernels, but data volume adds
transfer latency.

• Accelerate functions that have a self-contained control structure and do not require regular
synchronization with the host.

• Transfer large blocks of data from host to global device memory. One large transfer is more
efficient than several smaller transfers. Run a bandwidth test to find the optimal transfer size.

• Only copy data back to host when necessary. Data written to global memory by a kernel can
be directly read by another kernel. Memory resources include PLRAM (small size but fast
access with lowest latency), HBM (moderate size and access speed with some latency), and
DDR (large size but slow access with high latency).

• Take advantage of the multiple global memory resources to evenly distribute bandwidth
across kernels.

• Maximize bandwidth usage between kernel and global memory by performing 512-bit wide
bursts.

• Cache data in local memory within the kernels. Accessing local memories is much faster than
accessing global memory.

• In the host application, use events and non-blocking transactions to launch multiple requests
in a parallel and overlapping manner.

• In the FPGA, use different kernels to take advantage of task-level parallelism and use multiple
CUs to take advantage of data-level parallelism to execute multiple tasks in parallel and
further increase performance.

• Within the kernels take advantage of tasks-level with dataflow and instruction-level
parallelism with loop unrolling and loop pipelining to maximize throughput.

• Some Xilinx FPGAs contain multiple partitions called super logic regions (SLRs). Keep the
kernel in the same SLR as the global memory bank that it accesses.

• Use software and hardware emulation to validate your code frequently to make sure it is
functionally correct.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=18

• Frequently review the SDAccel Guidance report as it provides clear and actionable feedback
regarding deficiencies in your project.

Chapter 1: SDAccel Introduction and Overview

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=19

Chapter 2

Getting Started
Download and install the SDAccel™ tool suite according to the directions provided in the SDAccel
Environment Release Notes, Installation, and Licensing Guide (UG1238).

You might also want to review Get Moving with Alveo (UG1352) which provides an easy-to-follow,
guided introduction to developing software code for FPGA-accelerated applications.

You can find details on downloading and working with design examples from the Xilinx® GitHub
and in Appendix A: Getting Started with Examples.

Note: The SDAccel tool suite includes the entire tool stack to create a bitstream, object code, and
executables. If you have installed the Xilinx Vivado® Design Suite and the Software Development Kit (SDK)
tools independently, you should not attempt to combine these installations with the SDAccel tools. Ensure
that your tools are derived from an SDAccel installation (which includes the Vivado Design Suite and
SDAccel tools).

IMPORTANT! The SDAccel application runs only on the Linux operating system. See the SDAccel Environment
Release Notes, Installation, and Licensing Guide (UG1238) for a description of the software requirements for the
SDAccel environment.

Chapter 2: Getting Started

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1352-get-moving-with-alveo.pdf
https://github.com/Xilinx/sdaccel-tutorials
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=20

Chapter 3

Creating an SDAccel Project
Within the SDx™ tool you can create an SDAccel™ project using the IDE GUI. The following topic
shows you how to set up a SDx workspace, create an SDAccel project, and use key features of
the IDE.

In addition to the SDx IDE, the SDAccel environment provides a command line interface to
support a scripted flow, described in Chapter 8: Building an Application via Command Line. For a
full list of commands, see the SDx Command and Utility Reference Guide (UG1279).

Using an SDx Workspace
1. Launch the SDx IDE directly from the command line:

$ sdx

2. The SDx IDE opens and prompts you to select a workspace, as shown in the following figure.

Figure 5: Specify the SDx Workspace

IMPORTANT! When opening a new shell to enter an SDx command, ensure that you first source the
settings64 and setup scripts to set up the tool environment. See the SDAccel Environment Release Notes,
Installation, and Licensing Guide (UG1238) for more information.

IMPORTANT! If you use a single computer to perform both development and deployment, be sure to open
separate terminals for running the SDx tools and thexbutil board installation utility. Running both tools from
the same terminal adversely affects the environment variables and causes tool issues.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 21Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=21

The SDx workspace is the folder that stores your projects, source files, and results while working
in the tool. You can define separate workspaces for each project or have workspaces for different
types of projects. The following instructions show you how to define a workspace for an SDAccel
project.

1. Click the Browse button to navigate to, and specify, the workspace, or type the appropriate
path in the Workspace field.

2. Select the Use this as the default and do not ask again check box to set the specified
workspace as your default choice and eliminate this dialog box in subsequent uses of SDx.

3. Click Launch.

TIP: You can change the current workspace from within the SDx IDE by selecting File → Switch Workspace.

You have now created an SDx workspace and can populate the workspace with projects.
Platform and application projects are created to describe the SDx tool flow for creating an
SDAccel platform.

Creating an Application Project
TIP: Example designs are provided with the SDAccel tool installation, and also on the Xilinx GitHub repository.
See Appendix A: Getting Started with Examples for more information.

1. After launching the SDx IDE you can create a new Project. Select File → New → SDx
Application Project, or if this is the first time the SDx IDE has been launched, you can select
Create Application Project on the Welcome screen.

2. The New SDx Project wizard opens.

3. In the Create a New SDx Application Project page, you can specify the project name as
shown. Specify the name of the project in the Project name field.

Figure 6: Create a New SDx Application Project

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 22Send Feedback

https://github.com/Xilinx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=22

4. The Use default location is selected by default to locate your project in a folder in the SDx
workspace. You can uncheck this check box to specify that the project is created in a
Location of your choice.

5. If you specify the location, you can use Choose file system to select the default file system,
JSch, or enable the Eclipse Remote File System Explorer (RSE).

IMPORTANT! The project location cannot be a parent folder of an SDx workspace.

6. Click Next.

The Platform dialog box, similar to the one shown in the following figure, displays the available
installed platforms. For installing additional platforms, see the "Installing Platform-Specific
Packages" section in SDAccel Environment Release Notes, Installation, and Licensing Guide
(UG1238).

IMPORTANT! Be sure to select the right platform for your project, as subsequent processes are driven by this
choice.

Figure 7: Specify SDAccel Platform

A platform is composed of a shell, which describes the base hardware design and the meta-data
used in attaching accelerators to declared interfaces. SDAccel offers platforms for various boards.

You can add custom defined or third-party platforms into a repository. See Appendix D:
Managing Platforms and Repositories for more information.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 23Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=23

1. To select the target platform for your project, select the desired platform and click Next.

2. The System configuration page opens, as shown in the following figure. Select System
configuration and Runtime from a list of those defined for the selected platform. The System
Configuration defines the software environment that runs on the hardware platform. It
specifies the operating system and the available runtime settings for the processors in the
hardware platform.

Figure 8: Specify System Configuration

3. After selecting the System Configuration and clicking Next, the Templates page displays, as
shown in the following figure. Specify an application template for your new project. The
samples directory within the SDx tools installation contains multiple source code example
templates.

4. Initially, the Template dialog box has an Empty Application and a Vector Addition application.
To access additional SDAccel examples, click the SDx Examples button.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=24

Figure 9: Application Templates

5. When the SDx Examples dialog box opens, click the Download button for the SDAccel
Examples. Then click OK. The downloaded examples are now listed in the Templates page.

Note: The SDx tool might try to download the examples from a GitHub repo depending on your
network configuration. Specific proxy settings might be necessary.

6. You can use the template projects as examples to learn about the SDx tool and acceleration
kernels or as a foundation for your new project. Note that you must select a template. You
can select Empty Application to create a blank project into which you can import files and
build your project from scratch.

7. Click Finish to close the New SDx Project wizard and open the project.

Understanding the SDx GUI
When you open a project in the SDx IDE, the workspace is arranged in a series of different views
and editors, also known as a perspective in the IDE. The tool opens with the SDx (default)
perspective shown in the following figure.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=25

Figure 10: SDx – Default Perspective

Editor Area

Project Explorer

Assistant Console

Outline

Target Connections

Some key views/editors in the default perspective are:

• Project Explorer: Displays a file-oriented tree view of the project folders and their associated
source files, plus the build files, and reports generated by the tool.

• Assistant: Provides a central location to view/edit settings, build and run your SDAccel
application, launch profiling and debug sessions, and open reports.

• Editor Area: Displays project settings, build configurations, and provides access to many
commands for working with the project.

• Console Area: Presents multiple views including the command console, design guidance,
project properties, logs and terminal views.

• Outline: Displays an outline of the current source file opened in the Editor Area.

• Target Connections: Provides status for different targets connected to the SDx tool, such as
the Vivado hardware server, Target Communication Framework (TCF), and quick emulator
(QEMU) networking.

To close a view, click the Close button (x) on the tab of the view. To open a view, select Window 
→ Show View and select a view. You can arrange views to suit your needs by dragging and
dropping them into new locations in the IDE.

To save the arrangement of views as a perspective, select Window → Perspective → Save
Perspective As. This defines different perspectives for initial project editing, report analysis, and
debug for example. Any changes made without saving as a perspective are stored with the
workspace. To restore the default arrangement of views, select Window → Perspective → Reset
Perspective.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=26

To open different perspectives, select Window → Perspective → Open Perspective.

To restore the SDx (default) perspective, click the SDx button on the right side of the main
toolbar.

SDx Assistant
The Assistant view provides an SDx-centric project tree to manage settings, builds, run times,
profile, debug, and reports. It is a companion view to the Project Explorer and is opened by
default directly below the Project Explorer view.

An example view of the Assistant and its tree structure is shown below. For the expanded
Emulation-HW flow, it shows the binary container contents and the debug reports including the
Profile Summary, Application Timeline, and Waveform.

Figure 11: Assistant Tree Structure Example

Each item in the tree has a type-specific right-click menu with actions for that item. The actions
can open dialogs, reports or views, start processes, or launch external tasks.

For example, right-clicking the project (mixed_c_rtl in the following example) displays the
following menu:

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=27

Figure 12: Assistant Right-Click

TIP: If the actions are disabled/grayed out, this means the project does not have the applicable information.

Select Settings to open the Project Settings dialog box.

Figure 13: Project Settings

You can select the settings for the various items listed in the tree. For example, if you select the
setting for the Emulation-HW build configuration, it displays the following. The Assistant makes
it easy to navigate through the design objects and view/update their settings.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=28

Figure 14: Emulation-HW

The View Menu includes options that affect the Assistant view behavior, but do not affect
project data. Select this option by left-clicking the downward pointing arrow shown in the
following graphic.

Figure 15: Assistant View Menu

It displays the following options:

• Show Reports: If checked, reports will be visible in the tree. If not checked, reports will not be
shown in the tree. Reports open in the tree only when they exist in the project, usually after a
project has been built or run, with specific settings.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=29

• Show Active Build Configurations Only: If checked, the tree will only show the active build
configurations for each project. The active build configuration, in the assistant, will be the
most-recently-built configuration. The active build configuration can also be changed to view
the standard CDT methods (Project → Build Configurations → Set Active, or Project → Build
Configurations → Manage).

When using the assistant to iterate on a specific build, it can be helpful to see only the current
build configuration.

• Link with Console: If checked, the build console in the Console view switches automatically to
match the current selection in the Assistant tree, if the selection is for a build configuration, or
a descendant in the tree from a build configuration. If not checked, the console does not
automatically switch when the Assistant selection changes.

• Link with Guidance: If checked, the Guidance in the Console area automatically switches to
match the current selection in the Assistant tree.

Figure 16: Assistant Link with Console View Menu

You can see that with a couple of clicks you can access many of the functions and features of the
tool using the Assistant.

XOCC Linking and Compilation Options
Using the Assistant window, you can update both the xocc compile and link options. First, right-
click a binary_container folder in the Assistant window and select Settings as shown below.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=30

Figure 17: XOCC Settings from Assistant

The Binary Container Settings window is displayed as shown below. To add linker xocc options,
enter the options directly into the XOCC linker options field. Your added options are updated in
the makefile (located under the Project Explorer) and applied during building. In addition, the
updated options are also displayed in the XOCC Linker Command Line box for convenience.

Figure 18: XOCC Linker Options

The xocc linker options differ slightly between the Emulation-HW, Emulation-SW, and System
configurations. Specifically, the target (-t option) matches the respective configuration and
debugging is not enabled in the System configuration.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=31

To add xocc compile options to a particular kernel, click the desired kernel under the
binary_container folder. For instance, in the image below, kernel krnl_vadd has been
selected under the System configuration. Compile options can be entered directly into the XOCC
compile options field. Your added options are only applied to that kernel and not shared across
kernels. The XOCC Compiler Command Line displays the updated options.

Figure 19: XOCC Compiler Options

There are options to set the number of instances (Compute Units) of the kernel and for setting
the port data width. When modifying these options, the associated xocc compile option is
automatically generated and added to the xocc compiler command line for you.

Similar to the xocc linker options, the compiler options differ slightly between the Emulation-
HW, Emulation-SW, and System configurations. Specifically, the target (-t option) matches the
respective configuration and debugging is not enabled in the System configuration.

For Emulation-HW and System configurations, a Compute Unit Settings area is also displayed
(outlined in yellow in the above image) which allows additional linker and compile options to be
set. Since none of the additional options apply to Emulation-SW, the Compute Unit Settings area
is not displayed for this configuration.

For Emulation-HW configuration, only Memory and SLR (see Super Logic Region for explanation
of SLR) allocation options are displayed. However, for System configuration, additional protocol
checker and profiling logic options are displayed. Depending on the options selected, this results
in updates to both the xocc linker and compile options.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=32

SDx Project Export and Import
SDx provides a simplified method for exporting/importing one or more SDx projects within your
workspace. You can optionally include associated project build folders.

Exporting an SDx Project
When exporting a project, it archives the project in a zip file with all the relevant files necessary
to import into another workspace.

1. To export a project, select File → Export from the main menu.

2. When the Export wizard opens, select the Project to import under the folder, as shown in the
following figure, and click Next.

Figure 20: Select Export Wizard

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=33

3. When the Export SDx Projects window opens, the projects in the workspace will be
displayed as shown in the following figure. Select the desired projects to be included in the
archive by checking the respective check boxes. Enter the name of the archive file and the
directory location to where you wish to save the file. In addition, you can optionally include
the associated project build folders in the archive by checking the Include build folders check
box. The build folders include all the build related files including reports and bit files for
example.

4. Click Finish to save the archive zip file.

Figure 21: Export Filename Build Folder

The SDx projects have been successfully archived and can be imported into a different
workspace.

Importing an SDx Project
1. To import an SDx project, select File → Import from the top menu.

2. From the Import window, select the SDx Project import wizard under the Xilinx folder as
shown in the following figure and click Next.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=34

Figure 22: Import Select an Import Wizard

3. This opens the Import Projects window to select the import file type. Select the SDx project
exported zip file shown in the following figure and click Next.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=35

Figure 23: Import Projects – Import Type

4. This opens the Import SDx Projects window.

5. Browse and select the desired archive file. It will display the archived projects.

6. Select the projects to import using the check boxes and click Next. In the following figure
both projects are selected for import.

7. Click Finish to import the projects into your workspace.

Figure 24: Import Archive Filename

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=36

Adding Sources
A project consists of many different sources including those for host application code, kernel
functions and even pre-compiled .xo files. With the project open in the SDx IDE, you can add

these source files to the project by left-clicking the import sources icon in the Project
Explorer. This displays the Import Sources dialog box shown in the following image.

Figure 25: Import Sources Dialog Box

1. In the dialog box, click Browse to select the directory from which you want to import sources.
Select the desired sources and click Finish.

2. The source files in that directory will be displayed. Select the desired sources to import by
selecting the appropriate check boxes and click Finish. In the following image C/C++,
OpenCL™ and header files will be imported into the project.

IMPORTANT! When you import source files into a workspace, it copies the file into the workspace. Any changes
to the files are lost if you delete the workspace.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=37

3. Similarly you can import compiled kernels (.xo files) into the project through the Import
Sources selection. In the following image, the krnl_vadd.xo file will be imported into the
project.

Figure 26: Import .xo Sources

4. In addition to importing sources, you can also create and edit new source files in the GUI.
With the project open in the SDx IDE, right-click the src folder and select New → File as
shown in the following image.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=38

Figure 27: New File Select

5. Select the folder in which to create the new file and enter a file name as shown in the image
below. Click Finish to add the file to the project.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=39

Figure 28: New File Name

6. After adding source files to your project, you are ready to begin configuring, compiling, and
running the application. You can open a source file by expanding the src folder in the Project
Explorer and double-clicking on the file.

Chapter 3: Creating an SDAccel Project

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=40

Chapter 4

Programming for SDAccel
The custom processing architecture generated by the SDAccel™ environment for a kernel
running on a Xilinx® FPGA provides opportunities for significant performance gains. However,
you must take advantage of these opportunities by writing your host and kernel code specifically
for acceleration on an FPGA.

The host application is running on x86 servers and uses the SDAccel runtime to manage
interactions with the FPGA kernels. The host application is written in C/C++ using OpenCL™
APIs. The custom kernels are running within a Xilinx® FPGA on an SDAccel platform.

The SDAccel hardware platform contains global memory banks which are used to transfer data
between the host and kernel. In addition, on supported platforms, direct streaming between the
host and kernel can also be used to transfer between the host and kernel. Communication
between the host x86 machine and the SDAccel accelerator board occurs across the PCIe® bus.

The following topics discuss how to write code for the host application to setup the Xilinx
Runtime (XRT), load the kernel binary into the SDAccel platform, pass data efficiently between
the host application and the kernel, and trigger the kernel on the FPGA at the appropriate time in
the host application.

The FPGA fabric can support multiple kernels running simultaneously. Therefore, you can create
multiple instances of a single kernel, or configure multiple kernels on the same device, to increase
the performance of the host application. Kernels running on the FPGA can have one or more
interfaces to connect to the platform or other kernels. Specifying the number of kernels running
on the FPGA, memory bank connections accessed by the kernel, and streaming connections
between the host and kernel or between kernels is done using xocc linking options during the
build process.

For more information, see the Building the Hardware section, or for greater detail see the
SDAccel Environment Programmers Guide (UG1277). Refer to that guide for details of the host
application, kernel code, and the interactions between them.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=41

Coding the Host Application
When creating the host application, you must manage the required overhead to setup and
configure the SDAccel runtime, program and launch the kernel, pass data back and forth between
the host application and the kernel, as well as address the primary function of the application.

Setting Up the Runtime
Within every host application you must set up the environment to identify the OpenCL platform
and the device IDs, specify a context, create a command queue, build a program, and spawn one
or more kernels. The program identifies and configures the kernel, and transfers data between
the host code and the kernel. In the host code, this process could use the following steps below.

TIP: The following code examples are taken from the IDCT example design.

1. To set up the OpenCL runtime environment, you need to identify the Xilinx platform using
the clGetPlatformIDs and clGetPlatformInfo commands. For example:

cl_platform_id platform_id; // platform id

err = clGetPlatformIDs(16, platforms, &platform_count);

// Find Xilinx Platform
for (unsigned int iplat=0; iplat<platform_count; iplat++) {
 err = clGetPlatformInfo(platforms[iplat],
 CL_PLATFORM_VENDOR,
 1000,
 (void *)cl_platform_vendor,
 NULL);

 if (strcmp(cl_platform_vendor, "Xilinx") == 0) {
 // Xilinx Platform found
 platform_id = platforms[iplat];
 }
}

2. Identify the Xilinx devices on the platform available for enqueuing kernels, using the
clGetDeviceIDs command. Finding the device IDs requires the platform ID discovered in the
prior step. For example:

clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_ACCELERATOR, 1, &device_id,
NULL);

3. Setup the context using clCreateContext. The context is the environment that work-items
execute, and identifies devices to be assigned transactions from the command queue. The
example below shows the creation of the context:

cl_context cntxt = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 42Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/vision/idct
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetPlatformInfo.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateContext.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=42

4. Define the command queue using clCreateCommandQueue. The command queue is a list of
commands waiting to be executed to a device. You can setup the command queue to handle
commands in the order submitted, or to be out-of-order so that a command can be executed
as soon as possible. Use the out-of-order command queue, or multiple in-order command
queues, for concurrent kernel execution on the FPGA. An example follows:

// Create out-of-order Command Queue
cl_command_queue commands = clCreateCommandQueue(context, device_id,
CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
, &err);

5. Finally, in the host code you need to set up the program, which contains and configures the
kernels to be passed to the command queue by the host application. The
load_file_to_memory function is used to load the file contents in the host machine
memory space. The clCreateProgramWithBinary command downloads the FPGA
binary (.xclbin) to the device and returns a cl_program handle. The following example
shows the creation of the program using these API calls:

char *fpga_bin;
size_t fpga_bin_size;
fpga_bin_size = load_file_to_memory(binaryName, &fpga_bin);

cl_program program = clCreateProgramWithBinary(context, 1,
 (const cl_device_id*) &device_id, &fpga_bin_size,
 (const unsigned char**) &fpga_bin, NULL, &err);

Transferring Data to/from the FPGA Device
With the program established, you can transfer the data required by the kernel to the SDAccel
platform prior to triggering the kernel. The simplest way to send data back and forth from the
kernel is using clCreateBuffer, clEnqueueReadBuffer, and clEnqueueWriteBuffer commands.
However, to transfer the data required ahead of the transaction, use the
clEnqueueMigrateMemObjects command. Using this command results reduced latency in the
application. The following code example demonstrates this:

int host_mem_ptr[MAX_LENGTH]; // host memory for input vector

// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
 host_mem_ptr[i] = <... >
}

cl_mem dev_mem_ptr = clCreateBuffer(context,
 CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
 sizeof(int) * number_of_words, host_mem_ptr, NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &dev_mem_ptr);

err = clEnqueueMigrateMemObjects(commands, 1, dev_mem_ptr, 0, 0,
 NULL, NULL);

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 43Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateCommandQueue.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueReadBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueWriteBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueMigrateMemObjects.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=43

TIP: By default, all the memory interfaces from all the kernels are connected to a single global memory bank. You
can customize the global memory bank connections by modifying the default connection. This improves kernel
performance by enabling multiple kernels to concurrently read and write data from separate global memory
banks. See Mapping Kernel Interfaces to Memory Resources for more information.

Setting Up the Kernel
With the program established, you can setup the kernel, execute the kernel, and manage event
synchronization between the host application and the kernel.

1. Create a kernel from the program and the loaded FPGA binary using the clCreateKernel
command:

// Create Kernel
cl_kernel krnl = clCreateKernel(program, "krnl_idct", &err);

2. Set the kernel arguments using the clSetKernelArg. You can use this command to set the
arguments for the kernel.

// Set the kernel arguments
clSetKernelArg(mKernel, 0, sizeof(cl_mem), &mInBuffer[0]);
clSetKernelArg(mKernel, 1, sizeof(cl_mem), &mInBuffer[1]);
clSetKernelArg(mKernel, 2, sizeof(cl_mem), &mOutBuffer[0]);
clSetKernelArg(mKernel, 3, sizeof(int), &m_dev_ignore_dc);
clSetKernelArg(mKernel, 4, sizeof(unsigned int), &mNumBlocks64);

3. The kernel is scheduled to run on the FPGA by using the clEnqueueTask. The request to
execute the kernel is placed into the command queue and either waits for its turn, or is
executed when ready, depending on the nature of the queue.

clEnqueueTask(mQ, mKernel, 1, &inEvVec[mCount], &runEvVec[mCount]);

4. Because the clEnqueueTask (and clEnqueueMigrateMemObjects) command is
asynchronous in nature, and will return immediately after the command is enqueued in the
command queue, you might need to manage the scheduling of events within the host
application. To resolve the dependencies among the commands in the host application, you
can use clWaitForEvents or clFinish commands to pause or block execution of the host
program. For example:

// Execution waits until all commands in the command queue are finished
clFinish(command_queue);

clWaitForEvents(1, &readevent); // Wait for clEnqueueReadBuffer event to
finish

For more information on setting up the kernel, see the SDAccel Environment Programmers Guide
(UG1277).

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 44Send Feedback

https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clCreateKernel.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueTask.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clWaitForEvents.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clFinish.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=44

Kernel Language Support
The SDAccel environment supports kernels expressed in OpenCL C, C/C++, and RTL
(SystemVerilog, Verilog, or VHDL). You can use different kernel types in the same application.
However, each kernel has specific requirements and coding styles that should be used.

Kernels created from OpenCL C and C/C++ are well-suited to software and algorithm developers.
It makes it easier to start from an existing C/C++ application and accelerate portions of it.

All kernels require the following:

• A single slave AXI4-Lite interface used to access control registers (to pass scalar arguments
and to start/stop the kernel)

• At least one of the following interfaces (can have both interfaces):

○ AXI4 master interface to communicate with global memory.

○ AXI4-Stream interface for transferring data between kernels or directly with the host.

Writing OpenCL C Kernels
The SDAccel environment supports the OpenCL C language constructs and built-in functions
from the OpenCL 1.0 embedded profile. The following is an example of an OpenCL C kernel for
matrix multiplication that can be compiled with the SDAccel environment.

__kernel __attribute__ ((reqd_work_group_size(16,16,1)))
void mult(__global int* a, __global int* b, __global int* output)
{
 int r = get_local_id(0);
 int c = get_local_id(1);
 int rank = get_local_size(0);
 int running = 0;
 for(int index = 0; index < 16; index++){
 int aIndex = r*rank + index;
 int bIndex = index*rank + c;
 running += a[aIndex] * b[bIndex];
 }
 output[r*rank + c] = running;
 return;

}

IMPORTANT! Standard C libraries such as math.h cannot be used in the OpenCL C kernel. Use OpenCL built-in
C functions instead.

In the case of OpenCL C kernels, the AXI4-Lite interface is generated automatically while the
AXI4-Lite memory map interfaces are generated based on the __global directive in the
function definition.

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=45

Writing C/C++ Kernels
Kernels written in C/C++ are supported by the SDAccel environment. The above matrix
multiplication kernel can be expressed in C/C++ code as shown below. For kernels captured in
this way, the SDAccel environment supports all of the optimization techniques available in
Vivado® HLS. The only thing that you must keep in mind is that expressing kernels in this way
requires compliance with a specific function signature style.

It is important to keep in mind that by default, kernels captured in C/C++ for HLS do not have
any inherent assumptions on the physical interfaces that will be used to transport the function
parameter data. HLS uses pragmas embedded in the code to direct the compiler as to which
physical interface to generate for a function port. For the function to be treated as a valid HLS
C/C++ kernel, each function argument should have a valid HLS interface pragma.

void mmult(int *a, int *b, int *output)
{
#pragma HLS INTERFACE m_axi port=a offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=output offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=a bundle=control
#pragma HLS INTERFACE s_axilite port=b bundle=control
#pragma HLS INTERFACE s_axilite port=output bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

 const int rank = 16;
 int running = 0;
 int bufa[256];
 int bufb[256];
 int bufc[256];
 memcpy(bufa, (int *) a, 256*4);
 memcpy(bufb, (int *) b, 256*4);

 for (unsigned int c=0;c<rank;c++){
 for (unsigned int r=0;r<rank;r++){
 running=0;
 for (int index=0; index<rank; index++) {
 #pragma HLS pipeline
 int aIndex = r*rank + index;
 int bIndex = index*rank + c;
 running += bufa[aIndex] * bufb[bIndex];
 }
 bufc[r*rank + c] = running;
 }
 }

 memcpy((int *) output, bufc, 256*4);
 return;
}void mmult(int *a, int *b, int *output)

When a kernel is defined in C++, use extern "C" { ... } around the functions targeted to be kernels.
The use of extern "C" instructs the compiler/linker to use the C naming and calling conventions.

For C/C++ kernels, use interface pragmas to map to AXI4-Lite and AXI4 memory map interface.
While for RTL kernels, you are responsible for adding these interfaces.

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=46

Pointer Arguments

All pointers are mapped to global memory. The data is accessed through AXI interfaces which can
be mapped to different banks. The memory interface specification needs the following two
pragmas:

1. The first is to define which argument the AXI memory map interface is accessed. An offset is
always required. The offset=slave means that the offset of the array <variable_name>
will be made available through the AXI slave interface of the kernel.

#pragma HLS INTERFACE m_axi port=<variable name> offset=slave
bundle=<AXI_MM_name>

2. The second pragma for the AXI Slave interface. Scalars (and pointer offsets) are mapped to
one AXI Slave control interface which must be named control.

#pragma HLS INTERFACE s_axilite port=<variable name> bundle=control

Note: Using platforms version 4.x or earlier, the interface name M_AXI_ARG_NAME was used by making
arg_name uppercase irrelevant of the original capitalization and prefixing with M_AXI_.

Using current platforms (version 5.x or later) the interface name m_axi_arg_name is used; the
original capitalization of arg_name must be lower case and prefixed by m_axi_.

Scalars

Scalars are considered constant inputs and should also be mapped to s_axilite. The control
interface specification is generated by the following command:

#pragma HLS INTERFACE s_axilite port=<variable name> bundle=control

Detailed information on how these pragmas are used is available in the SDx Pragma Reference
Guide (UG1253).

C++ arbitrary precision data types can be used for global memory pointers on a kernel. They are
not supported for scalar kernel inputs that are passed by value.

Streaming

Streaming provides the capability to stream data directly to kernels without using global memory.
Since global memory is not used, streaming can provide improved performance and power, but
requires additional FPGA memory (block RAM).

Streaming can be broken down into two distinct types:

1. Host to card (H2C) and card to host (C2H) streaming

2. Kernel to kernel (K2K) streaming

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=47

In H2C and C2H, data is streamed between the host and the kernels on the card. H2C and C2H
streaming is only available on select QDMA platforms such as
xilinx_u200_qdma_201910_1. For streaming between H2C and C2H, no explicit
connections are made by you – connections are made by the system linker automatically.

In addition to streaming data between host and card, kernel to kernel (K2K) streaming is also
supported. It provides direct streams between kernels. Unlike H2C and C2H streaming, K2K
streaming is supported on all platforms. However, with K2K streaming, it is necessary to specify
the connections between source and destination kernel stream interfaces. This is done during
xocc linking.

It is necessary to specify the following pragma for each streaming interface as shown below:

#pragma HLS interface axis port=<port_name>

The “SDAccel Streaming Platform” appendix in the SDAccel Environment Programmers Guide
(UG1277) provides complete details on streaming including Host and Kernel Coding Guidelines
for transfers between Host/Kernel and Kernel/Kernel. Also, for more information about C/C++
kernels, see the "Programming C/C++ Kernels" chapter in the SDAccel Environment Programmers
Guide (UG1277).

Writing RTL Kernels
RTL kernels have both software and hardware requirements for it to be used in the SDAccel
environment framework. On the software side, the RTL kernel must operate and adhere to the
register definitions described in Kernel Software Requirements.

On the hardware side, it requires the interfaces outlined in the Kernel Interface Requirements.

For complete details on creating and using RTL kernels, see Chapter 9: RTL Kernels.

Chapter 4: Programming for SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=48

Chapter 5

Building the System
Building the system requires building both the hardware (kernels) and the software (host code)
side of the system. The Project Editor view, shown below, gives a top-level view of the build
configuration. It provides general information about the active build configuration, including the
project name, current platform, and selected system configuration (OS and runtime). It also
displays several build options including the selected build target, and options for enabling host
and kernel debugging. For more details on build targets see Build Targets while Chapter 7:
Debugging Applications and Kernels gives details on using the debug options.

Figure 29: Project Editor View

The bottom portion of the Editor view lists the current kernels used in the project. The kernels
are listed under the binary container. In the above example, the kernel krnl_vadd has been

added to binary_container_1. To add a binary container left-click the icon. You can
rename the binary container by clicking the default name and entering a new name.

To add a kernel to the binary container, left-click the icon located in the Hardware Functions
window. It displays a list of kernels defined in the project. Select the kernel from the Add
Hardware Functions dialog box as shown in the following figure.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=49

Figure 30: Adding Hardware Functions to a Binary Container

In the Compute Units column, next to the kernel, enter a value to instantiate multiple instances
of the kernel (called compute units) as described in Creating Multiple Instances of a Kernel.

With the various options of the active build configuration specified, you can start the build

process by clicking on the Build () command.

The SDAccel™ build process generates the host application executable (.exe) and the FPGA
binary (.xclbin). The SDAccel environment manages two separate independent build flows:

• Host code (software) build

• Kernel code (hardware) build

SDAccel uses a standard compilation and linking process for both these software and hardware
elements of the project. The steps to build both the host and kernel code to generate the
selected build target are described in the following sections.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=50

Building the Host Application
The host application, written in C/C++ using OpenCL™ API calls, is built using the Xilinx® C++
compiler (xcpp) which is based on GNU compiler collection (GCC). Each source file is compiled
to an object file (.o) and linked with the Xilinx SDAccel runtime shared library to create the
executable (.exe) which executes on the host CPU.

TIP: xcpp is based on GCC, and therefore supports many standard GCC options which are not documented here.
For information refer to the GCC Option Index.

Compiling the Host Application
Each host application source file is compiled using the -c option and generates an object file
(.o).

xcpp ... -c <file_name1> ... <file_nameN>

The name of the output object file can optionally be specified with the -o option.

xcpp ... -o <outut_file_name>

You can produce debugging information using the -g option.

xcpp ... -g

Linking the Host Application
The generated object files (.o) are linked with the Xilinx SDAccel runtime shared library to create
the executable (.exe). Linking is performed using the -l option.

xcpp ... -l <object_file1.o> ... <object_fileN.o>

Note: Host compilation and linking can be integrated into one step. The -c and -l options are not
required, only the source input files are needed.

In the GUI flow, the host code and the kernel code are compiled and linked by clicking the Build

() command.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 51Send Feedback

https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=51

Building the Hardware
The kernel code is written in C, C++, OpenCL C, or RTL and is built by the xocc compiler; a
command line utility modeled after GCC. The final output of xocc is the generation of the FPGA
binary (.xclbin) which links the kernel .xo files and the hardware platform (.dsa). Generation
of the .xclbin is a two step build process requiring kernel compilation and linking.

The xocc can be used standalone (or ideally in scripts or a build system like make), and also is
fully supported by the SDx™ IDE.

Build Target
The compilation is dependent on the selected build target, which is discussed in greater detail in
Build Targets. You can specify the build target using the xocc –target option as shown below.

xocc --target sw_emu|hw_emu|hw ...

• For software emulation (sw_emu), the kernel source code is used during emulation.

• For hardware emulation (hw_emu), the synthesized RTL code is used for simulation in the
hardware emulation flow.

• For system build (hw), xocc generates the FPGA binary and the system can be run on
hardware.

Compiling the Kernels
During compilation, xocc compiles kernel accelerator functions (written in C/C++ or OpenCL
language) into Xilinx object (.xo) files. Each kernel is compiled into separate .xo files. This is the
-c/--compile mode of xocc.

Kernels written in RTL are compiled using the package_xo command line utility. This utility,
similar to xocc -c, also generates .xo files which are subsequently used in the linking stage.
See Chapter 9: RTL Kernels for more information.

Linking the Kernels
As discussed above, the kernel compilation process results in a Xilinx object file (.xo) whether
the kernel is described in OpenCL C, C, C++, or RTL. During the linking stage, .xo files from
different kernels are linked with the shell to create the FPGA binary container file (.xclbin)
which is needed by the host code.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=52

The xocc command to link files is:

$ xocc -l <kernel_object_file>.xo -o <binary_platform_file>.xclbin

where one more input kernel_object_file are given and the binary_platform_file is
the name of the xclbin output file.

Creating Multiple Instances of a Kernel
During the linking stage, you can specify the number of instances of a kernel, referred to as a
compute unit, through the --nk xocc switch. This allows the same kernel function to run in
parallel at application runtime to improve the performance of the host application, using different
device resources on the FPGA.

Note: For additional information on the --nk options, see SDAccel Environment Programmers Guide
(UG1277) and SDx Command and Utility Reference Guide (UG1279).

In the command-line flow, the xocc --nk option specifies the number of instances of a given
kernel to instantiate into the .xclbin file. The syntax of the command is as follows:

$ xocc –nk <kernel name>:<no of instances>:<name1>.<name2>…<nameN>

For example, the kernel foo is instantiated three times with compute unit names fooA, fooB,
and fooC:

$ xocc --nk foo:3:fooA.fooB.fooC

TIP: While the kernel instance name is optional, it is highly recommended to specify one as it is required for
options like --sp.

In the GUI flow, the number of compute units can be specified by right-clicking the top-level
kernel within the Assistant view, and selecting Settings.

From within the Project Settings dialog box, select the desired kernel to instantiate and update
the Compute units value. In the following figure, the kernel, krnl_vadd, will be instantiated
three times (that is, three CUs).

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=53

Figure 31: Instantiate Multiple Compute Units

In the figure above, three compute units of the krnl_vadd kernel will be linked into the FPGA
binary (.xclbin), addressable as krnl_vadd_1, krnl_vadd_2, and krnl_vadd_3.

To access the various instances of the kernel, use the OpenCL API clCreateSubDevices in
the host code to divide the device into multiple sub-devices containing one kernel instance per
sub-device. For specific details, see "Sub-devices" section in SDAccel Environment Programmers
Guide (UG1277).

Mapping Kernel Interfaces to Memory Resources
The link phase is when the memory ports of the kernels are connected to memory resources
which include PLRAM and DDR. If not specified, connections to these resources will be
completed automatically during xocc linking. However, Xilinx recommends specifying these
connections for optimal performance. For additional information, see SDAccel Environment
Programmers Guide (UG1277) and SDx Command and Utility Reference Guide (UG1279).

SDAccel platforms can have access to various memory resources. By mapping the input and
output ports from the compute unit to different memory resources for instance, you can improve
overall performance by enabling simultaneous access to input and output data.

Use the xocc --sp option during linking to map the interface from a compute unit to a memory
resource.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=54

Details of coding the host application can be found in the "Memory Data Transfer to/from the
FPGA Device" section in the SDAccel Environment Programmers Guide (UG1277).

The directive to assign a compute unit's memory interface to a memory resource is:

--sp <compute_unit>.<mem_interface>:<memory>

Where

• compute_unit is the name of the compute unit (CU)

• mem_interface is the name of one of the compute unit's memory interface or function
argument

• memory is the memory resource

It is necessary to have a separate directive for each memory interface connection.

TIP: To obtain kernel information including kernel, port, and argument names use the command line tool
kernelinfo if you have the .xo file or the platforminfo if you have the .xclbin file. For more
information on the tool, see the SDx Command and Utility Reference Guide (UG1279).

The following example assigns the memory interface called m_axi_gmem from a CU named
vadd_1 to DDR[3] memory:

xocc … --sp vadd_1.m_axi_gmem:DDR[3]

In the SDx GUI, the --sp switch can be added through the SDx GUI similar to the process
outlined in Creating Multiple Instances of a Kernel. Right-click the top-level kernel in the
Assistant view, and select Settings. From within the Project Settings dialog box, enter the --sp
option in the XOCC Linker Options field.

To add directives to the xocc compilation through the GUI, from within the Assistant, right-click
the desired kernel under System and select Settings.

This displays the hardware function settings dialog window where you can change the memory
interface mapping under the Compute Unit Settings area. To change the memory resource
mapping of a CU for a particular argument, click the Memory setting of the respective argument
and change to the desired memory resource. The following figure shows the a argument being
selected.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=55

Figure 32: Compute Unit Memory Setting

To select the identical memory resource for all CU arguments, click the memory resource for the
CU (that is, kernl_vadd_1 in the example above) and select the desired memory resource.

IMPORTANT! When using the --sp option to assign kernel interfaces to memory banks, you must specify the
--sp option for all interfaces of the kernel. Refer to "Customization of DDR Bank to Kernel Connection" in the
SDAccel Environment Programmers Guide (UG1277) for more information.

Kernel to Kernel Streaming Connection
Kernel to kernel (K2K) streaming provides direct streams between kernels. It is necessary to
specify the stream connections between source and destination kernel stream interfaces. This is
done during xocc linking through the –sc option as shown below:

xocc -l --sc <kernel_instance_name>.<source streaming
port>:<kernel_instance_name><destination streaming port>

For example, to connect the two streaming ports for the following two kernels:

1. Instance name CU_A with an output streaming port called data_out.

2. Instance name CU_B with an input streaming port called data_in.

Use the following:

xocc -l --sc CU_A.data_out:CU_B.data_in

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 56Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=56

Allocating Compute Units to SLRs
A Compute Unit (CU) is allocated to a super logic region (SLR) during xocc linking using the --
slr directive. The syntax of the command line directive is:

--slr <compute_unit>:<SLR_NUM>

where compute_unit is the name of the CU and SLR_NUM is the SLR number to which the CU
is assigned.

For example, xocc … --slr vadd_1:SLR2 assigns the CU named vadd_1 to SLR2.

The --slr directive must be applied separately for each CU in the design. For instance, in the
following example, three invocations of the --slr directive are used to assign all three CUs to
SLRs; krnl_vadd_1 and krnl_vadd_2 are assigned to SLR1 while krnl_vadd_3 is assigned
to SLR2.

--slr krnl_vadd_1:SLR1 --slr krnl_vadd_2:SLR1 --slr krnl_vadd_3:SLR2

In the absence of an --slr directive for a CU, the tools are free to place the CU in any SLR. See
Kernel SLR and DDR Memory Assignments for CU SLR mapping recommendations.

In the SDx GUI, to allocate a CU to an SLR in the GUI flow, right-click the desired kernel under
System or Emulation-HW configurations and select Settings as shown in the following figure.

Figure 33: xocc Link Settings

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=57

This displays the hardware function settings dialog window. Under the Compute Unit Settings
area, you can change the SLR where the CU is allocated to by clicking the SLR setting of the
respective CU and selecting the desired SLR from the menu as shown. Selecting Auto allows the
tools the freedom to place the CU in any SLR.

Figure 34: Compute Unit SLR Setting

Controlling Implementation Results
When compiling or linking, fine grain control over the hardware generated by SDAccel for
hardware emulation and system builds can be specified using the --xp switch.

The --xp switch is paired with parameters to configure the Vivado® Design Suite. For instance,
the --xp switch can configure the optimization, placement and timing results of the hardware
implementation.

The --xp can also be used to set up emulation and compile options. Specific examples of these
parameters include setting the clock margin, specifying the depth of FIFOs used in the kernel
dataflow region, and specifying the number of outstanding writes and reads to buffer on the
kernel AXI interface. A full list of parameters and valid values can be found in the SDx Command
and Utility Reference Guide (UG1279).

TIP: Familiarity with the Vivado Design Suite User Guide: High-Level Synthesis (UG902) and the tool suite is
necessary to make the most use of these parameters. See the Vivado Design Suite User Guide: Implementation
(UG904) for more information.

In the command line flow, parameters are specified as param:<param_name>=<value>,
where:

• param: Required keyword.

• param_name: Name of a parameter to apply.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 58Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=58

• value: Appropriate value for the parameter.

IMPORTANT! The xocc linker does not check the validity of the parameter or value. Be careful to apply valid
values or the downstream tools might not work properly.

For example:

$ xocc -–xp param:compiler.enableDSAIntegrityCheck=true
 -–xp param:prop:kernel.foo.kernel_flags="-std=c++0x"

You must repeat the --xp switch for each param used in the xocc command as shown below:

$ xocc -–xp param:compiler.enableDSAIntegrityCheck=true
-–xp param:prop:kernel.foo.kernel_flags="-std=c++0x"

You can specify param values in an xocc.ini file with each option specified on a separate line
(without the --xp switch).

An xocc.ini is an initialization file that contains --xp settings. Locate the file in the same
directory as the build configuration.

param:compiler.enableDSAIntegrityCheck=true
param:prop:kernel.foo.kernel_flags="-std=c++0x"

Under the GUI flow, if no xocc.ini is present, the application uses the GUI build settings.
Under a Makefile flow, if no xocc.ini file is present, it will use the configurations within the
Makefile.

In the SDx GUI, the --xp switch can be added through the GUI similar to that outlined in
Creating Multiple Instances of a Kernel. Right-click the top-level kernel in the Assistant view, and
select Settings. From within the Project Settings dialog box, enter the --xp option in the XOCC
Linker Options field.

You can also add xocc compiler options and --xp parameters to kernels by right-clicking the
kernel in the Assistant view. The following image demonstrates the --xp setting for the
krnl_vadd kernel.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=59

Figure 35: Assistant XOCC Compile Settings

Controlling Report Generation
The xocc -R switch controls the level of report generation during the link stage for hardware
emulation and system targets. Builds that generate fewer reports will typically run more quickly.

The command line option is as follows:

$ xocc -R <report_level>

Where <report_level> is one of the following report_level options:

• -R0: Minimal reports and no intermediate design checkpoints (DCP)

• -R1: Includes R0 reports plus:

○ Identifies design characteristics to review for each kernel (report_failfast)

○ Identifies design characteristics to review for full design post-opt (report_failfast)

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=60

○ Saves post-opt DCP

• -R2 : Includes R1 reports plus:

○ The Vivado default reporting including DCP after each implementation step

○ Design characteristics to review for each SLR after placement (report_failfast)

TIP: The report_failfast is a utility that highlights potential device utilization challenges, clock constraint
problems, and potential unreachable target frequency (MHz).

The -R switch can also be added through the SDx GUI as described in Creating Multiple
Instances of a Kernel:

• Right-click the top-level kernel in the Assistant view and select Settings.

• From within the Project Settings dialog box, enter the -R option in the XOCC Linker Options
field.

Build Targets
The SDAccel build target defines the nature of FPGA binary generated by the build process.
There are three different build targets, two emulation targets (software and hardware emulation)
used for debug and validation purposes and the default hardware target used to generate the
actual FPGA binary.

Software Emulation
The main goal of software emulation is to ensure functional correctness and to partition the
application into kernels. For software emulation, both the host code and the kernel code are
compiled to run on the host x86 processor. The programmer model of iterative algorithm
refinement through fast compile and run loops is preserved. Software emulation has compile and
execution times that are the same as a CPU. Refer to the SDAccel Environment Debugging Guide
(UG1281) for more information on running software emulation.

In the context of the SDAccel development environment, software emulation on a CPU is the
same as the iterative development process that is typical of CPU/GPU programming. In this type
of development style, a programmer continuously compiles and runs an application as it is being
developed.

For RTL kernels, software emulation can be supported if a C model is associated with the kernel.
The RTL kernel wizard packaging step provides an option to associate C model files with the RTL
kernel for support of software emulation flows.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1281-sdaccel-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=61

Hardware Emulation
While the software emulation flow is a good measure of functional correctness, it does not
guarantee correctness on the FPGA execution target. The hardware emulation flow enables the
programmer to check the correctness of the logic generated for the custom compute units before
deployment on hardware, where a compute unit is an instantiation of a kernel.

The SDAccel environment generates at least one custom compute unit for each kernel in an
application. Each kernel is compiled to a hardware model (RTL). During emulation kernels are
executed with a hardware simulator, but the rest of the system still uses a C simulator. This
allows the SDAccel environment to test the functionality of the logic that will be executed on the
FPGA compute fabric.

In addition, hardware emulation provides performance and resource estimation, allowing the
programmer to get an insight into the design.

In hardware emulation, compile and execution times are longer in software emulation; thus Xilinx
recommends that you use small data sets for debug and validation.

IMPORTANT! The DDR memory model and the memory interface generator (MIG) model used in Hardware
Emulation are high-level simulation models. These models are good for simulation performance, however they
approximate latency values and are not cycle-accurate like the kernels. Consequently, any performance numbers
shown in the profile summary report are approximate, and must be used only as a general guidance and for
comparing relative performance between different kernel implementations.

System
When the build target is system, xocc generates the FPGA binary for the device by running
synthesis and implementation on the design. The binary includes custom logic for every compute
unit in the binary container. Therefore, it is normal for this build step to run for a longer period of
time than the other steps in the SDAccel build flow. However, because the kernels will be
running on actual hardware, their execution times will be extremely fast.

The generation of custom compute units uses the Vivado High-Level Synthesis (HLS) tool, which
is the compute unit generator in the application compilation flow. Automatic optimization of a
compute unit for maximum performance is not possible for all coding styles without additional
user input to the compiler. The SDAccel Environment Profiling and Optimization Guide (UG1207)
discusses the additional user input that can be provided to the SDAccel environment to optimize
the implementation of kernel operations into a custom compute unit.

After all compute units have been generated, these units are connected to the infrastructure
elements provided by the target device in the solution. The infrastructure elements in a device
are all of the memory, control, and I/O data planes which the device developer has defined to
support an OpenCL application. The SDAccel environment combines the custom compute units
and the base device infrastructure to generate an FPGA binary which is used to program the
Xilinx device during application execution.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 62Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=62

IMPORTANT! The SDAccel environment always generates a valid FPGA hardware design and performs default
connections from the kernel to global memory. Xilinx recommends explicitly defining optimal connections. See
Kernel SLR and DDR Memory Assignments for details.

Specifying a Target
You can specify the target build from the command-line with the following command:

xocc --target sw_emu|hw_emu|hw ...

Similarly, from within the GUI, the build target can be specified by selecting the Active build
configuration pull-down tab in the Project Editor window. This provides three choices (see the
following figure):

• Emulation-SW

• Emulation-HW

• System

Figure 36: Active Build Configuration

TIP: You can also assign the compilation target from the Build () command, or from the Project → Build
Configurations → Set Active menu command.

After setting the active build configuration, build the system from the Project → Build Project
menu command.

The recommended build flow is detailed in Debugging Flows.

Chapter 5: Building the System

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=63

Chapter 6

Profiling and Optimization
The SDAccel™ environment generates various system and kernel resource performance reports
during compilation. It also collects profiling data during application execution in both emulation
and system mode configurations. Examples of the data reported includes:

• Host and device timeline events

• OpenCL™ API call sequence

• Kernel execution sequence

• FPGA trace data including AXI transactions

• Kernel start and stop signals

Together the reports and profiling data can be used to isolate performance bottlenecks in the
application and optimize the design to improve performance.

Optimizing an application requires optimizing both the application host code and any hardware
accelerated kernels. The host code must be optimized to facilitate data transfers and kernel
execution, while the kernel should be optimized for performance and resource usage.

There are four distinct areas to be considered when performing algorithm optimization in
SDAccel: System resource usage and performance, Kernel optimization, Host optimization and
PCIe® bandwidth optimization. The following SDAccel reports and graphical tools support your
efforts to profile and optimize these areas:

• System Estimate

• Design Guidance

• HLS Report

• Profile Summary

• Application Timeline

• Waveform View and Live Waveform Viewer

Reports are automatically generated after running the active build via the SDAccel GUI or xocc
Makefile flows.

Separate sets of reports are generated for all three build configurations and can be found in the
respective report directories.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=64

IMPORTANT! The high-level synthesis (HLS) report and HLS guidance are only generated for hardware
emulation and system build configurations for C and OpenCL kernels, not for RTL kernels.

The Profile Summary and Application Timeline reports are generated for all three build
configurations and are located under the default application sub-directory.

Reports can be viewed in a web browser or spreadsheet viewer for the SDAccel GUI. To access
these reports from the SDx™ integrated design environment, make sure the Assistant view is
visible and double-click the desired report.

This following sections briefly describe the various reports and graphical visualization tools, and
how they can be used to profile and optimize your design. For complete details on each report
along with optimization steps, and coding guidelines see the SDAccel Environment Profiling and
Optimization Guide (UG1207).

Design Guidance
The SDAccel environment has a comprehensive design guidance tool that provides immediate
actionable guidance to the software application developers for detected issues in their designs.
Guidance is generated from HLS, the SDx Profiler and the Vivado® Design Suite when invoked
from xocc. The generated design guidance can have several severity levels; errors, advisories,
warnings, and critical warnings are provided during software emulation, hardware emulation, and
system builds.

The guidance includes hyperlinks, examples, and links to documentation. This improves
productivity for current users by quickly highlighting issues and propels new users to more
quickly become experts in using the SDAccel tool.

Design guidance is automatically generated after building or running a design in the SDx GUI
with results contained in the Guidance view located in the console area of the SDx GUI. Hovering
over the guidance highlights solutions and suggestions.

The following image shows an example of guidance given by the SDx GUI. It details ways to
increase the bandwidth use of the kernels. Clicking a link displays an expanded view of the
actionable guidance. In this case, it displays guidance for maximizing use of global memory
bandwidth.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=65

Figure 37: Design Guidance Example

TIP: In the Assistant you can right-click on a build configuration and select Show Guidance.

There is one HTML guidance report for each command line run of xocc, including compile and
link. The report files are generated in the --report_dir location under the specific .xo name.

The name of the report file is given below, where <output> is the .xo name:

• xocc_compile_<output>_guidance.html for xocc compilation

• xocc_link_t_guidance.html for xocc linking

The profile design guidance helps you interpret the profiling results and know exactly where to
focus on to improve performance. Specific details of the reports and additional design guidance
details can be found in SDAccel Environment Profiling and Optimization Guide (UG1207).

System Estimate Report
The SDAccel HLS generates the System Estimate report provides estimates on FPGA resource
usage and the frequency at which the hardware accelerated kernels can operate. It is
automatically generated for Emulation-HW and System builds, and can be found under the
respective directory of the Assistant view shown below.

TIP: The time to generate the System Estimate report in Hardware Emulation build is much shorter than during
System builds which provide actual and not estimated resources. Xilinx® recommends iterating in Hardware
Emulation and optimizing before performing a System build.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 66Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=66

Figure 38: System Estimate Assistant View

The report contains high-level details of the user kernels including resource usage and estimated
frequency. The results can be used to guide the design optimization. For instance, if the target
frequency is not met, it might be necessary to revisit the source code.

An example report is shown in the following graphic. It shows the krnl_vadd kernel:

• It is estimated to operate at a frequency of 411 MHz which exceeds the 300 MHz targeted
frequency.

• In the best case it has a latency of one cycle.

• Estimated FPGA resource usage of 2353 FF, 3948 LUTs, no DSPs, and three block RAMs.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=67

Figure 39: System Estimate

When using the command line flow, you can generate various reports, including the system
estimate report with the following option:

xocc .. --report_level <arg>

where arg specifies the level of reports generated.

For additional details on the System Estimate report, see the SDAccel Environment Profiling and
Optimization Guide (UG1207). For information on the --report_level xocc option, see the
SDx Command and Utility Reference Guide (UG1279).

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=68

HLS Report
The HLS Report provides details about the high-level synthesis (HLS) process of a user kernel and
is generated in Hardware emulation and System builds. This process translates the C/C++ and
OpenCL kernel into a hardware description language responsible for implementing the
functionality on the FPGA. It provides estimated FPGA resource usage, operating frequency,
latency and interface signals of the custom-generated hardware logic. These details provide the
programmer many insights to guide kernel optimization.

The HLS Report can be opened by selecting the report in the Assistant and double-clicking. An
example of the HLS report follows.

Figure 40: HLS Report

When running from the command line, this report can be found in the following directory:

_x/<kernel_name>.<target>.<platform>/<kernel_name>/<kernel_name>/
solution/syn/report

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=69

For additional details on the System Estimate report see the SDAccel Environment Profiling and
Optimization Guide (UG1207).

Profile Summary Report
The Profile Summary provides annotated details regarding the overall application performance.
All data generated during the execution of the program is gathered by SDAccel and grouped into
categories. The Profile Summary enables the programmer to drill down to the actual Data
Transfer and Kernel Execution numbers and statistics.

TIP: The Profile Summary report is automatically generated for all build configurations. However, with the
Emulation-SW build, the report will not include any data transfer details under kernel execution efficiency and
data transfer efficiency. This information is only generated in Emulation-HW or System build configurations.

To open the Profile Summary report in the SDx IDE, double-click the Profile Summary report
under the Assistant as shown in the following image.

Figure 41: Opening Profile Summary Report

An example of the Profile Summary report is shown here.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 70Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=70

Figure 42: Profile Summary

The report has multiple tabs that can be selected. A description of each tab is given in the
following table.

Table 1: Profile Summary

Tab Description

Top Operations Kernels and Global Memory. This tab shows a summary of top operations. It displays the
profile data for top data transfers between FPGA and device memory.

Kernels & Compute Units Displays the profile data for all kernels and compute units.

Data Transfers Host and Global Memory. This table displays the profile data for all read and write transfers
between the host and device memory through the PCIe link. It also displays data transfers
between kernels and global memory, if enabled.

OpenCL APIs Displays the profile data for all OpenCL C host API function calls executed in the host
application.

For command line users, the profile summary data is generated by using the --
profile_kernel option during the linking stage. The --profile_kernel syntax is given
below:

--profile_kernel <[data]:<[kernel_name|all]:[compute_unit_name|all]:
[interface_name|all]:[counters|all]>

See the SDAccel Environment Profiling and Optimization Guide (UG1207) for complete details.

Application Timeline
Application Timeline collects and displays host and device events on a common timeline to help
you understand and visualize the overall health and performance of your systems. These events
include:

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 71Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=71

• OpenCL API calls from the host code.

• Device trace data including Compute units, AXI transaction start/stop.

• Host events and kernel start/stops.

This graphical representation enables the programmer to identify issues regarding kernel
synchronization and efficient concurrent execution.

TIP: By default, timeline and device trace data are only collected during hardware emulation and not System
build. Turning on device profiling for System build is intrusive and can negatively affect overall performance. This
feature should be used for system performance debugging only. To collect data during system testing, update the
run config setting. Details can be found in the SDAccel Environment Profiling and Optimization Guide (UG1207).

Double-click Application Timeline in the Reports window to open the Application Timeline
window.

The following is a snapshot of the Application Timeline window which displays host and device
events on a common timeline. Host activity is displayed at the top of the image and kernel
activity is shown on the bottom of the image. Host activities include creating the program,
running the kernel and data transfers between global memory and the host. The kernel activities
include read/write accesses and transfers between global memory and the kernel(s). This
information helps you understand details of application execution and identify potential areas for
improvements.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 72Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=72

Figure 43: Application Timeline

Timeline data can be enabled and collected through the command line flow, however, viewing
must be done through the GUI. Complete instructions for enabling and displaying timeline data
collection through both the command and GUI flows are given in SDAccel Environment Profiling
and Optimization Guide (UG1207).

Waveform View and Live Waveform Viewer
The SDx Development Environment can generate a Waveform View when running hardware
emulation. It displays in-depth details on the emulation results at the system level, compute unit
(CU) level, and at the function level. The details include data transfers between the kernel and
global memory and data flow through inter-kernel pipes. These details provide many insights into
the performance bottleneck from the system level down to the individual function call to help
developers optimize their applications.

The Live Waveform Viewer is similar to the Waveform view, however, it provides even lower-
level details. It can also be opened using xsim, a Xilinx tool used by hardware designers.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 73Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=73

Waveform View and Live Waveform Viewer data are not collected by default because it requires
the runtime to generate simulation waveform during hardware emulation, which consumes more
time and disk space. The SDAccel Environment Profiling and Optimization Guide (UG1207)
describes setups required to enable data collection for the Waveform View and Live Waveform
Viewer for both GUI and command line.

Double-click the Waveform in the Assistant view (shown in the following image) to open the
Waveform View window.

Figure 44: Opening Waveform View

An example of the Waveform View is shown here.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 74Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=74

Figure 45: Waveform View Example

The Live Waveform Viewer can be viewed if you select Launch Live Waveform in the Run
Configuration Main tab. Or, if the Launch Live Waveform is not selected, you can open the
waveform (.wdb) with xsim through the Linux command line. The .wdb file is located in the
sub-directory, Emulation-HW/<kernel_name>-Default, within the project directory. Use
the following Linux line command to open xsim:

xsim -gui <filename.wdb> &

An example of the xsim Live Waveform Viewer is shown in the following image.

Figure 46: Live Waveform Viewer Example

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=75

Kernel SLR and DDR Memory Assignments
Kernel compute unit (CU) instance and DDR memory resource floorplanning are keys to meeting
quality of results of your design in terms of frequency and resources. Floorplanning involves
explicitly allocating CUs (a kernel instance) to SLRs and mapping CUs to DDR memory resources.
When floorplanning, both CU resource usage and DDR memory bandwidth requirements need to
be considered.

The largest Xilinx FPGAs are made up of multiple stacked silicon dies. Each stack is referred to as
a super logic region (SLR) and has a fixed amount of resources and memory including DDR
interfaces. Available device SLR resources which can be used for custom logic can be found in
SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238) or can be displayed
using the platforminfo utility described in the SDx Command and Utility Reference Guide
(UG1279).

You can use the actual kernel resource utilization values to help distribute CUs across SLRs to
reduce congestion in any one SLR. The system estimate report lists the number of resources
(LUTs, Flip-Flops, block RAMs, etc.) used by the kernels early in the design cycle. The report can
be generated during hardware emulation and system compilation through the command line or
GUI and is described in System Estimate Report.

Use this information along with the available SLR resources to help assign CUs to SLRs such that
no one SLR is over-utilized. The less congestion in an SLR, the better the tools can map the
design to the FPGA resources and meet your performance target. For mapping memory
resources and CUs, see Mapping Kernel Interfaces to Memory Resources and Allocating
Compute Units to SLRs, respectively.

Note: While compute units can be connected to any available DDR memory resource, it is also necessary to
account for the bandwidth requirements of the kernels when assigning to SLRs. SDAccel Environment
Profiling and Optimization Guide (UG1207) provides details on allocating and optimizing DDR bandwidth.

After allocating your CUs to SLRs, map any CU master AXI port(s) to DDR memory resources.
Xilinx recommends connecting to a DDR memory resource in the same SLR as the CU. This
reduces competition for the limited SLR-crossing connection resources. In addition, connections
between SLRs use super long line (SLL) routing resources, which incurs a greater delay than a
standard intra-SLR routing.

It might be necessary to cross an SLR region to connect to a DDR resource in a different SLR.
However, if both the --sp and the --slr directives are explicitly defined, the tools
automatically add additional crossing logic to minimize the effect of the SLL delay, and facilitates
better timing closure.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 76Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=76

Guidelines for Kernels that Access Multiple Memory
Banks
The DDR memory resources are distributed across the super logic regions (SLRs) of the platform.
Because the number of connections available for crossing between SLRs is limited, the general
guidance is to place a kernel in the same SLR as the DDR memory resource with which it has the
most connections. This reduces competition for SLR-crossing connections and avoids consuming
extra logic resources associated with SLR crossing.

Figure 47: Kernel and Memory in Same SLR

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

X22194-010919

Note: The image on the left shows a single AXI interface mapped to a single memory bank. The image on
the right shows multiple AXI interfaces mapped to the same memory bank.

As shown in the previous figure, when a kernel has a single AXI interface that maps only a single
memory bank, the platforminfo utility described in the SDx Command and Utility Reference
Guide (UG1279) lists the SLR that is associated with the memory bank of the kernel; therefore,
the SLR where the kernel would be best placed. In this scenario, the design tools might
automatically place the kernel in that SLR without need for extra input; however, you might need
to provide an explicit SLR assignment for some of the kernels under the following conditions:

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=77

• If the design contains a large number of kernels accessing the same memory bank.

• A kernel requires some specialized logic resources that are not available in the SLR of the
memory bank.

When a kernel has multiple AXI interfaces and all of the interfaces of the kernel access the same
memory bank, it can be treated in a very similar way to the kernel with a single AXI interface, and
the kernel should reside in the same SLR as the memory bank that its AXI interfaces are mapping.

Figure 48: Memory Bank in Adjoining SLR

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0

Kernel

SLR1

 SLR0

X22195-010919

Note: The image on the left shows one SLR crossing is required when the kernel is placed in SLR0. The
image on the right shows two SLR crossings are required for kernel to access memory banks.

When a kernel has multiple AXI interfaces to multiple memory banks in different SLRs, the
recommendation is to place the kernel in the SLR that has the majority of the memory banks
accessed by the kernel (shown it the figure above). This minimizes the number of SLR crossings
required by this kernel which leaves more SLR crossing resources available for other kernels in
your design to reach your memory banks.

When the kernel is mapping memory banks from different SLRs, explicitly specify the SLR
assignment as described in Kernel SLR and DDR Memory Assignments.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=78

Figure 49: Memory Banks Two SLRs Away

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0

Kernel

SLR2

 SLR1

 SLR0

Memory Bank 3

Memory Bank 2

Memory Bank 1

Memory Bank 0Kernel

SLR2

 SLR1

 SLR0

X22196-010919

Note: The image on the left shows two SLR crossings are required to access all of the mapped memory
banks. The image on the right shows three SLR crossings are required to access all of the mapped memory
banks.

As shown in the previous figure, when a platform contains more than two SLRs, it is possible that
the kernel might map a memory bank that is not in the immediately adjacent SLR to its most
commonly mapped memory bank. When this scenario arises, memory accesses to the distant
memory bank must cross more than one SLR boundary and incur additional SLR-crossing
resource costs. To avoid such costs it might be better to place the kernel in an intermediate SLR
where it only requires less expensive crossings into the adjacent SLRs.

Chapter 6: Profiling and Optimization

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=79

Chapter 7

Debugging Applications and
Kernels

The SDAccel™ environment provides application-level debug features and techniques that allow
the host code, kernel code, and the interactions between them to be debugged. These features
and techniques are split between software-centric and more detailed low-level hardware centric
flows.

In addition, for hardware-centric debugging, designs running on hardware can be debugged with
both PCIe® using Xilinx® virtual cable (XVC) and JTAG using USB-JTAG cables without changing
the design.

Debugging Features and Techniques
There are several features and techniques that you can use to debug your design. The following
table lists the features or techniques that can be used for debugging in the three build
configurations. Each feature and technique is described in more detail in the SDAccel Environment
Debugging Guide (UG1281).

Table 2: Features and Techniques for Debugging Different Build Configurations

Feature/Technique OS Host Kernel FPGA (Platform)

Software Emulation dmesg GDB GDB xbutil

Hardware
Emulation dmesg GDB GDB

Kernel Waveform Viewer xbutil

System dmesg GDB
Kernel Waveform Viewer

ILA
xbutil

Notes:
1. dmesg is a Linux command.
2. GDB is the GNU Debugger.
3. xbutil is a Xilinx provided utility.

These features and techniques can be divided into software and hardware-centric debugging
features as shown in the following table.

Chapter 7: Debugging Applications and Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 80Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1281-sdaccel-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=80

Table 3: Software and Hardware Debugging Features and Techniques

Software-centric Hardware-centric

GNU Debugger (GDB) Kernel waveform viewer

Xilinx utility xbutil Integrated Logic Analyzer (ILA)

Linux dmesg N/A

Using both software-centric, and hardware-centric debugging features, you can isolate and
identify functional issues, protocol problems, as well as troubleshoot board hangs.

Debugging Flows
The recommended application-level debugging flow consists of three levels of debugging:

• Perform software emulation (sw_emu) to confirm the algorithm functionality.

• Perform hardware emulation (hw_emu) to create custom hardware and confirm the
correctness of the logic generated and performance on FPGAs.

• Perform a System build (hardware) hw to implement the custom hardware.

Each provides specific insights into the design and makes debugging easier. All flows are
supported through an integrated GUI flow as well as through a batch flow using basic compile
time and runtime setup options. A brief description of each flow follows.

Software Emulation

Software emulation can be used to validate functional correctness of the host and kernel (written
in C/C++ or OpenCL™). The GDB can be used to debug both the host and kernel code. It is
recommended to iterate in Software Emulation, which takes little compile time and executes
quickly, until the application is functioning correctly in all modes of operation.

Hardware Emulation

Hardware Emulation can be used to validate the host code, profile host and kernel performance,
give estimated FPGA resource usage as well as verify the kernel using an accurate model of the
hardware (RTL). The execution time for hardware emulation takes more time than software
emulation; thus Xilinx recommends that you use small data sets for debug and validation. Again,
the GDB can be used to debug the host and kernels. Iterate in Hardware Emulation until the
estimated kernel performance is sufficient (see the SDAccel Environment Profiling and Optimization
Guide (UG1207) for optimization details).

Chapter 7: Debugging Applications and Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=81

System

Finally, in hardware execution (System) the complete system is validated on actual hardware to
ensure kernels are executing correctly and system performance is met. SDAccel provides specific
hardware debug capabilities which include waveform analysis, kernel activity reports, and
memory access analysis to isolate these critical hardware issues. Hardware debugging requires
additional logic to be incorporated into the overall hardware model and will impact FPGA
resources and performance. This additional logic can be removed in the final compilation.

GNU Debugging
For the GNU debugging (GDB), you can add breakpoints, inspect variables, and debug the kernel
or host code. This familiar software debug flow allows quick debugging to validate the
functionality. SDAccel also provides special GDB extensions to examine the content of the
OpenCL runtime environment from the application host. These can be used to debug protocol
synchronization issues between the host and the kernel.

The SDAccel environment supports GDB host program debugging in all flows, but kernel
debugging is limited to software and hardware emulation flows. Debugging information needs to
be generated first in the binary container by passing the -g option to the xocc command line
executable or enabled by setting the appropriate box in the GUI options.

In software and hardware emulation flows, there are restrictions with respect to the accelerated
kernel code debug interactions. Because this code is preprocessed in the software emulation
flow and translated into a hardware description language (HDL) in the hardware emulation flow,
it is not always possible to set breakpoints at all locations especially in hardware emulation.

For more details, see the SDAccel Environment Debugging Guide (UG1281).

Linux “dmesg”
Debugging hangs in the system can be difficult; however, SDAccel provides a method to debug
the interaction with Linux and the hardware platform using the dmesg Linux command.

When the software or hardware appears to lock up, you can use the dmesg command to print a
record of the transactions and kernel information messages. The detailed report can help to
isolate and resolve the issue.

Chapter 7: Debugging Applications and Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1281-sdaccel-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=82

Kernel Waveform Viewer
SDAccel provides waveform-based HDL debugging through the GUI flow in hardware emulation
mode. The waveform is opened in the Vivado® waveform viewer which should be familiar to
Vivado users. It allows you to display kernel interface and internal signals and includes debug
controls such as restart, HDL breakpoints, as well as HDL code lookup and waveform markers. In
addition, it provides top-level DDR data transfers (per bank) along with kernel-specific details
including compute unit stalls, loop pipeline activity, and data transfers.

For details, see the SDAccel Environment Profiling and Optimization Guide (UG1207).

ILA
SDAccel provides insertion of the system integrated logic analyzers (ILA) into a design to capture
and view AXI transaction level activity using the interface signals between the kernel and global
memory. The ILA provides, for example, custom event triggering on one or more signals to allow
waveform capture at system speeds. The waveforms can be analyzed in a viewer and used to
debug hardware such as protocol violations or performance issues and can be crucial for
debugging difficult situation like application hangs. This low-level, hardware-centric debug
technique should be familiar to Vivado users. See the Vivado Design Suite User Guide: Programming
and Debugging (UG908) for complete details.

Note: The ILA core requires system resources, including logic and local memory to capture and store the
signal data.

System ILAs can be inserted into the design using xocc command with -–dk options.

For example,

$ xocc --dk chipscope:<compute_unit_name>:<interface_name>

Captured data can be accessed through the Xilinx Virtual Cable (XVC) using the Vivado tools.

Chapter 7: Debugging Applications and Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 83Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=83

Chapter 8

Building an Application via
Command Line

In addition to using the SDAccel™ GUI to create projects and build hardware accelerated
applications, the SDx™ system tools can be invoked with a command-line interface in a command
or shell window, in which a path to the tools has been set.

TIP: To configure a command shell, source the settings64.sh or settings64.csh file on Linux, from the
<install_dir>/SDx/<version> directory, where <install_dir> is the installation folder of the SDx
software, and <version> is the software release.

You will recall from Chapter 5: Building the System that an SDAccel application project is
compiled in a two part process: the software build process for the host application, and the
hardware build process for the accelerated kernel. The host application is compiled using xcpp, a
GCC-compatible compiler.

The SDAccel Xilinx® Open Code Compiler (xocc), xocc, is a command line compiler that takes
your source code and runs it through the Vivado® implementation tools to generate the
bitstream and other files that are needed to program the FPGA-based accelerator cards. It
supports kernels expressed in OpenCL™ C, C++ and RTL (SystemVerilog, Verilog, or VHDL).

This chapter walks through the command-line flow and shows how to build the software and
hardware components from the command-line, or a script. See the SDx Command and Utility
Reference Guide (UG1279) for details on the xocc tool and associated options.

Building the Host
Compiling
The host code (written in C/C++ using OpenCL APIs) is compiled by the Xilinx C++ (xcpp)
compiler and generates host executable (.exe file) which executes on the host CPU. xcpp is a
wrapper which uses standard gcc compiler along with standard gcc switches and command line
arguments which should be familiar to the software developer and are not elaborated here.

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 84Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=84

TIP: xcpp is based on GCC, and therefore supports many standard GCC options which are not documented here.
For information refer to the GCC Option Index.

An example of the xcpp command used to compile a design is given below:

xcpp -DSDX_PLATFORM=xilinx_vcu1525_dynamic_5_1 \
-I/${XILINX_XRT}/include/ \
-I/${XILINX_VIVADO}/include/ -g -Wall -c -o vadd.o vadd.cpp \

The various options used are detailed on the right-hand side in brackets.

Table 4: Host Code Compilation

Code Description

xcpp

-DSDX_PLATFORM=xilinx_vcu1525_dynamic_5_1 (define macro)

-I/${XILINX_XRT}/include/ (include directory of header files)

-I/${XILINX_VIVADO}/include/ (include directory of header files)

-I<user include directory> (user include file directory)

-g (produce debugging information)

-Wall (all warnings)

-c (compile)

-o vadd.o (specify output file, vadd.o)

vadd.cpp (source file)

Linking
The generated object files (.o) are linked with the Xilinx SDAccel runtime shared library to create
the executable (.exe).

An example of the xcpp command used to link the design is given below:

xcpp -o vadd.exe -W1 -lxilinxopencl -lpthread -lrt -lstdc++ \
-L/${XILINX_XRT}/lib/ \
-rpath,/lnx64/lib/csim vadd.o \

Note: When linking the host applications against -lxilinxopencl, the -rpath-link is needed. When
linking with -lOpenCL, then -rpath-link is not needed.

The various options used are detailed on the right-hand side in parentheses.

Table 5: Linking the Host Code

Code Description

xcpp

-o vadd.exe (create output file, vadd.exe)

-Wl (specify warning level)

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 85Send Feedback

https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=85

Table 5: Linking the Host Code (cont'd)

Code Description

-lxilinxopencl -lpthread -lrt -lstdcc++ (link with specified library files)

-L/${XILINX_XRT}/lib/ (search directories for library files)

-rpath,/lnx64/lib/csim (designate runtime search path)

vadd.o (object code file)

Building the Hardware
Compiling
The first stage in building any system is to compile a kernel accelerator function. Compilation is
done using the xocc compiler. There are multiple xocc options that need to be used to correctly
compile your kernel. These options are discussed here.

• Kernel source files are specified on the xocc command by directly listing the source files.
Multiple source files can be added.

• The -k / --kernel option is used to specify the kernel name associated with the source
files.

xocc … -k <kernel_name> <kernel_source_file> … <kernel_source_file>

• A platform on which the kernel is to be targeted must be specified. Specify the platform using
the -–platform xocc option.

xocc … --platform <platform_name>

• The build target must be specified. Specify with the -t / -–target xocc option.

xocc … -t <build_target>

By default, the build_target is set to hw. However, as discussed in Build Targets, the
build_target can be one of the following:

• sw_emu for software emulation

• hw_emu for hardware emulation

• hw for building on the target board

• The name of the generated output file can optionally be specified using the -o option. The
default output file name is <kernel>.xo.

xocc .. -o <xo_kernel_name> .xo

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=86

• System and estimate reports can optionally be generated using the –R/–report_level
options. Furthermore, you can optionally specify report, log, and temp directories using the –
report_dir, --log_dir, and –temp_dir options respectively. These can be useful for
organizing the generated files.

xocc ... --report_level 2 --report_dir <report_dir_name>

• Finally, use the xocc -c/--compile option to compile the kernel. This generates an .xo
file that can be used in the subsequent link stage.

xocc ... –c

Putting it all together in an example:

xocc -c -k krnl_vadd --platform xilinx_u200 -t sw_emu vadd.cl vadd.h \
-o krnl_vadd.xo --report_level 2 --report_dir reports

This performs the following:

• Compile the kernel: -c

• Name the Kernel: -k krnl_vadd

• Specify platform: --platform xilinx_u200 platform

• Target software emulation: -t sw_emu

• Source input files: vadd.cl and vadd.h

• Specify output file name: -o krnl_vadd.xo

• Generate level 2 reports and write them to reports DIR --report_level 2 --
report_dir reports

Linking
As discussed in Chapter 5: Building the System, the second part of the build process links one or
more kernels into the platform to create the binary container xclbin file. Similar to compiling,
linking requires several options.

• The .xo source files are specified on the xocc command by directly listing the source files.
Multiple source files can be added.

xocc … <kernel_xo_file.xo> … <kernel_xo_file.xo>

• You must specify the platform with the –-platform option. The platform specified must be
identical to that specified during compilation.

xocc … --platform <platform_name>

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=87

• You must specify the build target with the -t option. The specified target must be identical to
that specified during compilation.

xocc … -t <build_target>

• Like the compile stage, you can specify the name of the generated output file using the -o
option. The output file in the link stage will be an .xclbin file. The default output name is
a.xclbin.

xocc .. -o <xclbin_name>.xclbin

• As described in Creating Multiple Instances of a Kernel, the --nk option instantiates the
specified number of compute units for the given kernel in the .xclbin file. While the
compute unit instance name is optional, Xilinx recommends adding one.

xocc ... --nk <kernel_name>: <compute_units>:<kernel_name1>:
…:<kernel_nameN>

• As described in Mapping Kernel Interfaces to Memory Resources, you can optionally use the
-–sp option to specify the connection of a kernel interface to the target DDR bank. Multiple
--sp options can be specified to map each of the interfaces to a particular bank.

xocc ... --sp <kernel_instance_name>.<interface_name>:<bank name>

• Linking is also done using the -l/--link option.

xocc ... -l

Putting it all together in an example:

xocc -l --platform xilinx_u200 -t sw_emu –-nk krnl_vadd:1:krnl_vadd1 \
--sp krnl_vadd1.m_axi_gmem:DDR[3] -o vadd.xclbin krnl_vadd.xo

This performs the following:

• Link the kernel: -l

• Specify platform: --platform xilinx_u200

• Target software emulation: -t sw_emu

• Create one compute unit called krnl_vadd1:

-–nk krnl_vadd:1:krnl_vadd1

• Map krnl_vadd1, port m_axi_gmem to DDR bank3:

--sp krnl_vadd1.m_axi_gmem:DDR[3]

• Specify output file name: -o vadd.xclbin

• Source input file: krnl_vadd.xo

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=88

Using the sdaccel.ini File
The SDAccel runtime library uses various parameters to control debug, profiling, and message
logging during host application and kernel execution in software emulation, hardware emulation,
and system run on the acceleration board. These control parameters are specified in a runtime
initialization file.

For command line users, the runtime initialization file needs to be created manually and named
sdaccel.ini. The location of the file can be specified by defining the environment variable
SDACCEL_INI_PATH with the path of the directory in which the file exists. By default the tools
check SDACCEL_INI_PATH, .exe path, and current directory for .ini file in that order. If it
does not exist, it returns an empty string.

For SDx GUI users, the project manager creates the sdaccel.ini file automatically based on
your run configuration and saves it next to the host executable.

The runtime library checks if sdaccel.ini exists in the same directory as the host executable
and automatically reads the parameters from the file during start-up if it finds it.

Runtime Initialization File Format

The runtime initialization file is a text file with groups of keys and their values. Any line beginning
with a semicolon (;) or a hash (#) is a comment. The group names, keys, and key values are all case
sensitive.

The following is a simple example that turns on profile timeline trace and sends the runtime log
messages to the console.

#Start of Debug group
[Debug]
timeline_trace = true

#Start of Runtime group
[Runtime]
runtime_log = console

The following table lists all supported groups, keys, valid key values, and short descriptions on
the function of the keys.

Table 6: Debug Group

Key Valid Values Descriptions

debug [true|false] Enable or disable kernel debug.
• true: enable
• false: disable
• Default: false

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=89

Table 6: Debug Group (cont'd)

Key Valid Values Descriptions

profile [true|false] Enable or disable OpenCL code profiling.
• true: enable
• false: disable
• Default: false

timeline_trace [true|false] Enable or disable profile timeline trace
• true: enable
• false: disable
• Default: false

device_profile [true|false] Enable or disable device profiling.
• true: enable
• false: disable
• Default: false

Table 7: Runtime Group

Key Valid Values Descriptions

api_checks [true|false] Enable or disable OpenCL API checks.
• true: enable
• false: disable
• Default: true

runtime_log null console syslog filename Specify where the runtime logs are printed
• null: Do not print any logs.
• console: Print logs to stdout

• syslog: Print logs to Linux syslog
• filename: Print logs to the specified file.

For example,
runtime_log=my_run.log

• Default: null

cpu_affinity One or more integer Pin all runtime threads to specified CPUs.
For example, cpu_affinity = {4,5,6}

polling_throttle An integer Specify the time interval in microseconds
that the runtime library polls the device
status. Default: 0

Table 8: Emulation Group

Key Valid Values Descriptions

aliveness_message_interval Any integer Specify the interval in seconds that
aliveness messages need to be printed
Default: 300

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=90

Table 8: Emulation Group (cont'd)

Key Valid Values Descriptions

print_infos_in_console [true|false] Controls the printing of emulation info
messages to users console. Emulation info
messages are always logged into a file
called emulation_debug.log
• true = print in users console
• false = do not print in user console
• Default: true

print_warnings_in_console [true|false] Controls the printing emulation warning
messages to users console. Emulation
warning messages are always logged into a
file called emulation_debug.log.
• true = print in users console
• false = do not print in user console
• Default: true

print_errors_in_console [true|false] Controls printing emulation error
messages in users console. Emulation error
messages are always logged into file called
emulation_debug.log.
• true = print in users console
• false = do not print in user console
• Default: true

enable_oob [true|false] Enable or disable diagnostics of out of
bound access during emulation. A warning
is reported if there is any out of bound
access.
• true: enable
• false: disable
• Default: false

launch_waveform [off|batch|gui] Specify how the waveform is saved and
displayed during emulation.
• off: Do not launch simulator waveform

GUI, and do not save wdb file

• batch: Do not launch simulator
waveform GUI, but save wdb file

• gui: Launch simulator waveform GUI,
and save wdb file

• Default: off

Note: The kernel needs to be compiled with
debug enabled (xocc -g) for the waveform
to be saved and displayed in the simulator
GUI.

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=91

emconfigutil Settings
The emconfigutil command and options can be provided in the Command field under
emconfigutil to create an emulation configuration file.

For more information on emconfigutil and its options, refer to the "emconfigutil (Emulation
Configuration) Utility" section in SDx Command and Utility Reference Guide (UG1279).

Figure 50: emconfigutil Settings

Chapter 8: Building an Application via Command Line

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 92Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=92

Chapter 9

RTL Kernels
Many hardware engineers have existing RTL IP (including Vivado® IP integrator based designs),
or just feel comfortable implementing a kernel in RTL and develop it using Vivado. SDAccel™
allows RTL designs to be used, however they must adhere to the software and hardware
requirements to be used within the tool flow and runtime library.

TIP: RTL kernels should be written, designed, and tested using the recommendations in the UltraFast Design
Methodology Guide for the Vivado Design Suite (UG949).

Requirements for Using an RTL Design as an
RTL Kernel

An RTL design must meet both interface and software requirements to be used as an RTL kernel
within the SDAccel framework.

It might be necessary to add or modify the original RTL design to meet these requirements,
which are outlined in the following sections.

Kernel Interface Requirements
To satisfy the SDAccel execution model, an RTL kernel must adhere to the following interface
requirements:

• One and only one AXI4-Lite interface is used to access control signals and pass arguments.

• At least one of the following interfaces (can have both):

○ AXI4 master interface to communicate with memory.

○ AXI4-Stream interface to communicate between the kernels and/or with the host.

Note: With the ap_ctrl_none kernel control interface option, AXI4 master interfaces cannot be
used.

• At least one clock interface port.

The various interface requirements are summarized in the following table.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 93Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=93

Note: In some instances the port names must be written exactly.

Table 9: RTL Kernel Interface and Port Requirements

Port or
Interface Description Comment

ap_clk Primary clock input port • Name must be exact.
• Required port.

ap_clk_2 Secondary optional clock input port
• Name must be exact.
• Optional port.

ap_rst_n Primary active-Low reset input port

• Name must be exact.
• Optional port.
• This signal should be internally pipelined to improve

timing.
• This signal is driven by a synchronous reset in the

ap_clk clock domain.

ap_rst_n_2 secondary optional active-Low reset input

• Name must be exact.
• Optional port.
• This signal should be internally pipelined to improve

timing.
• This signal is driven by a synchronous reset in the

ap_clk_2 clock domain.

interrupt Active-High interrupt. • Name must be exact.
• Optional port. Port must be omitted if it is unused.

s_axi_control One and only one AXI4-Lite slave control
interface

• Name must be exact; case sensitive.
• Required port interface.

AXI4_MASTER One or more AXI4 master interfaces for
global memory access

• All AXI4 master interfaces must have 64-bit addresses.
• The kernel developer is responsible for partitioning

global memory spaces. Each partition in the global
memory becomes a kernel argument. The memory
offset for each partition must be set by a control
register programmable via the AXI4-Lite slave interface.

• AXI4 masters must not use Wrap or Fixed burst types
and must not use narrow (sub-size) bursts meaning
AxSIZE should match the width of the AXI data bus.

• Any user logic or RTL code that does not conform to
the requirements above, must be wrapped or bridged
to satisfy these requirements.

Kernel Software Requirements
RTL kernels have the same software interface model as OpenCL™ and C/C++ kernels. That is,
they are seen by the host application as functions with a void return value, scalar arguments, and
pointer arguments. For instance:

void mmult(unsigned int length, int *a, int *b, int *output)

The SDAccel execution model dictates the following:

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=94

• Scalar arguments are directly written to the kernel through an AXI4-Lite slave interface.

• Pointer arguments are transferred to/from memory.

• Kernels are expected to read/write data in global memory though one or more AXI4 memory
map and/or stream directly between the host and kernel.

• Kernels are controlled by the host application through the control register (shown below)
through the AXI4-Lite slave interface.

If the RTL design has a different execution model, it must be adapted to ensure that it can be
completed in this manner.

The following table defines the required register map for a kernel to be used within the SDAccel
environment. The control register is required by all kernels while the interrupt related registers
are only required for designs with interrupts. All user-defined registers must begin at location
0x10; locations below this are reserved.

Table 10: Address Map

Address Name Description

0x0 Control Controls and provides kernel status.

0x4 Global Interrupt Enable Used to enable interrupt to the host.

0x8 IP Interrupt Enable Used to control which IP generated signal are used to generate an
interrupt.

0xC IP Interrupt Status Provides interrupt status.

0x10 Kernel arguments start at
address 0x10

Includes scalars and global memory arguments.

The definition of the Control register bits differs depending on which of the following three
modes of operation the kernel is operating (see Vivado Design Suite User Guide: High-Level
Synthesis (UG902) for detailed descriptions of these modes of operation).

• ap_ctrl_none (that is, free-running kernels)

• ap_ctrl_hs (that is, sequential kernels)

• ap_ctrl_chain (that is, pipelined kernels)

The developer chooses the mode of operation of the kernel by complying with the definition of
the respective Control registers defined below.

ap_ctrl_none

For ap_ctrl_none mode, the kernel starts as soon as it is out of reset and never stops. For
streaming kernels only (see Streaming Interfaces).

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 95Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=95

Table 11: Control (0x0) in ap_ctrl_none Mode

Bit Name Description

31:0 Reserved Reserved

ap_ctrl_hs

In ap_ctrl_hs mode, the driver writes a 1 in ap_start and waits for both ap_start to be
deasserted (guaranteeing the input data is fully processed) and ap_done to be asserted
(guaranteeing the output data is fully produced). The definition of the Control register bits under
this mode of operation is given in the following table.

The ap_ctrl_hs kernels can and should only be restarted after they are done. They do not
allow pipelined/overlapping execution.

Table 12: Control (0x0) in ap_ctrl_hs Mode

Bit Name Description

0 ap_start Asserted by host when kernel can start processing data. Cleared by kernel on
handshake with ap_ready.

1 ap_done Asserted by kernel when it has finished producing output data. Cleared on read by host.

2 ap_idle Asserted by kernel when it is idle (deprecated).

3 ap_ready Asserted by kernel when it has finished processing input data. Self-cleared immediately.

6:4 Reserved Reserved

7 auto_restart1 If asserted, ap_start is held asserted by the kernel. Read/write access by the host.

31:8 Reserved Reserved

Notes:
1. auto_restart bit is not used by the Xilinx Runtime.

ap_ctrl_chain

In ap_ctrl_chain mode of operation, the driver asserts ap_start and waits for either:

• ap_start to be deasserted (guaranteeing the input data is fully processed) therefore
allowing to start the next batch or

• ap_done to be asserted (guaranteeing the output data is fully produced) then asserts
ap_continue (to allow the kernel to continue operation)

This mode is recommended if pipelined execution is desired. The definition of the Control
register bits for ap_ctrl_chain mode is given in the following table.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=96

Table 13: Control (0x0) in ap_ctrl_chain Mode

Bit Name Description

0 ap_start Asserted by host when kernel can start processing data. Cleared by kernel on
handshake with ap_ready.

1 ap_done Asserted by kernel when it has finished producing output data. Cleared by kernel on
handshake with ap_continue.

2 ap_idle Asserted by kernel when it is idle (deprecated).

3 ap_ready Asserted by kernel when it has finished processing input data. Self-cleared immediately.

4 ap_continue Asserted by host when kernel can proceed with operation. Cleared immediately by
kernel.

6:5 Reserved Reserved

7 auto_restart1 If asserted ap_start and ap_continue are held asserted. Read/write access by the host.

31:8 Reserved Reserved

Notes:
1. auto_restart bit is not used by the Xilinx Runtime.

Interrupt Registers
The following interrupt related registers are only required if the kernel has an interrupt.

Table 14: Global Interrupt Enable (0x4)

Bit Name Description

0 Global Interrupt
Enable

When asserted by the host along with any of the IP Interrupt Enable bit, this interrupt is
enabled. Read/write access by the host.

31:1 Reserved Reserved

Table 15: IP Interrupt Enable (0x8)

Bit Name Description

0 Channel 0 (ap_done) When asserted along with the Global Interrupt Enable bit, interrupt will be asserted on
ap_done assertion. Read/write access by host, and read only by kernel.

1 Channel 1 (ap_ready) When asserted along with the Global Interrupt Enable bit, interrupt will be asserted on
ap_ready assertion. Read/write access by host, and read only by kernel.

31:2 Reserved Reserved

Table 16: IP Interrupt Status (0xC)

Bit Name Description

0 Channel 0 (ap_done) Kernel asserts this interrupt status bit when an interrupt is asserted due to ap_done. If
you disable interrupt on ap_done, this bit is never asserted by the kernel. Host must
clear this bit by writing 1.

1 Channel 1 (ap_ready) Kernel asserts this interrupt status bit when an interrupt is asserted due to ap_ready. If
you disable interrupt on ap_ready, this bit is never asserted by the kernel. Host must
clear this bit by writing 1.

31:2 Reserved Reserved

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=97

Interrupt
RTL kernels can optionally have an interrupt port containing a single interrupt. The port name
must be called interrupt and be active-High. It is enabled when both the Global Interrupt
Enable (GIE) and Interrupt Enable Register (IER) bits are asserted. Further, the interrupt is cleared
only when writing a one to asserted bits of the IP Interrupt Status Register.

If adding an interrupt port to the kernel, the kernel.xml file needs be updated with this
information. The kernel.xml is generated automatically when using the RTL Kernel Wizard.
For details on updating the file, see Create Kernel Description XML File.

RTL Kernel Wizard
The RTL Kernel Wizard automates some of the steps that need to be taken to ensure that the
RTL IP is packaged into a kernel that can be integrated into a system in SDAccel.

The benefit of the wizard are:

• Automates some of the steps that must be taken to ensure that the RTL IP is packaged into a
kernel that can be integrated into a system in SDAccel.

• Steps you through the process of specifying your software function model and interface
model for the RTL kernel.

• Generates an RTL wrapper for the kernel that meets the RTL kernel interface requirements,
based on the interface information provided.

• Automatically generates the AXI4-Lite interface module including the control logic and
register file. The AXI4-Lite interface module is included in the generated top level RTL Kernel
wrapper.

• Includes in the wrapper an example kernel IP module that you need to replace with your RTL
IP design. The RTL IP developer must ensure correct connectivity between RTL IP with a
wrapper template.

• A kernel.xml file is generated to match the software function prototype and behavior
specified in the wizard.

The RTL Kernel Wizard generates a Vivado project containing an example design consisting of a
simple adder RTL IP, called VADD. In addition, it generates an associated RTL wrapper matching
the desired interface, control logic and register map (described above) based on the user Wizard
input. You can use this wrapper to wrap your RTL IP into an RTL kernel accessible by theSDAccel
framework.

Note: It is not required to use the code generated by the Wizard. You can completely generate your own
RTL kernel as long as it meets the software and interface requirements outline above.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=98

If you do use the generated wrapper, you need to replace the generated RTL IP (VADD) with
your RTL IP and connect to the wrapper.

The connections include clock(s), reset(s), AXI4-Lite interface, memory interfaces, and optionally
streaming interfaces. The number of connections will be based on the interface information
provided to the kernel wizard (for example, choosing two AXI4 memory interfaces). It is
necessary to manually make these connections to your IP and validate the design.

The RTL Kernel Wizard generates a Vivado project for the top-level RTL kernel wrapper and the
generated files. This enables you to easily update and optimize the RTL kernel.

Furthermore, the RTL Kernel Wizard also generates a simple test bench for the generated RTL
kernel wrapper and a sample host code to exercise the example RTL kernel. This example test
bench and host code must be modified to test the your RTL IP design accordingly.

Using the RTL Kernel Wizard is described in the following subsections.

Launching the RTL Kernel Wizard
The RTL Kernel Wizard can be launched with two different methods: from the SDx™
Development Environment or from the Vivado Integrated Design Environment (IDE). The SDx
Development Environment provides a more seamless experience by automatically importing the
generated kernel/example host code back into the SDx project.

To launch the RTL Kernel Wizard from the SDx Development Environment, perform the
following:

1. Launch the SDx Development Environment.

2. Create an SDx Project (Application Project Type).

3. Click Xilinx → RTL Kernel Wizard.

To launch the RTL Kernel Wizard from Vivado IDE, perform the following:

1. Create a new Vivado project choosing the same device as exists on the platform you intend
to target. If you do not know your target device, choose the default part.

2. Go to the IP catalog by clicking the IP catalog button.

3. Type wizard in the IP catalog search box.

4. Double-click SDx Kernel Wizard to launch the wizard.

Note: Use Vivado from the SDx install so the tool versions are the same.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=99

Using the RTL Kernel Wizard
The wizard is organized into pages that break down the process of creating a kernel into smaller
steps. To navigate between pages, click Next and select Back. To finalize the kernel and build a
project based on the inputs of the wizard, click OK. Each of the following sections describes each
page and its input options.

RTL Kernel Wizard General Settings

The following graphic shows the three settings in the General Settings tab.

Figure 51: RTL Kernel Wizard General Settings

Kernel Identification

The following are three settings in the General Settings tab.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=100

• Kernel name: The kernel name. This will be the name of the IP, top-level module name, kernel,
and C/C++ functional model. This identifier shall conform to C and Verilog identifier naming
rules. It must also conform to Vivado IP integrator naming rules, which prohibits underscores
except when placed in between alphanumeric characters.

• Kernel vendor: The name of the vendor. Used in the Vendor/Library/Name/Version (VLNV)
format described in the Vivado Design Suite User Guide: Designing with IP (UG896).

• Kernel library: The name of the library. Used in the VLNV. Must conform to the same
identifier rules.

Kernel Options

• Kernel type: An RTL kernel type consists of a Verilog RTL top-level module with a Verilog
control register module and a Verilog kernel example inside the top-level module. The block
design kernel type also delivers a Verilog RTL top-level module, but instead it instantiates an
IP integrator block diagram inside of a Verilog RTL top-level module. The block design consists
of a MicroBlaze™ subsystem that uses a block RAM exchange memory to emulate the control
registers. Example MicroBlaze software is delivered with the project to demonstrate using the
MicroBlaze to control the kernel.

• Kernel control interface: Selects the kernel mode of operation. Choices include ap_ctrl_hs,
ap_ctrl_none, and ap_ctrl_chain. For more information, see Kernel Software
Requirements.

• Enable MicroBlaze debug (Only available on select configurations): Adds a MicroBlaze Debug
Module (MDM) to a Block Design Kernel type example. The boundary scan interface of the
MDM module is connected to the top-level of the kernel. The debug interface is connected to
the MicroBlaze instance. This option is only available for platforms that support system debug
over the Xilinx® Virtual Cable and if the Kernel type is set as Block Design.

Clock and Reset Options

• Number of clocks: Sets the number of clocks used by the kernel. Every kernel has a primary
clock and reset called ap_clk and ap_rst_n. All AXI interfaces on the kernel are driven with
this clock and reset. When selecting Number of clocks to 2, a secondary clock and related
reset are provided to be used by the kernel internally. The secondary clock and reset are called
ap_clk_2 and ap_rst_n_2, respectively. This secondary clock supports independent
frequency scaling and is independent from the primary clock. The secondary clock is useful if
the kernel clock needs to run at a faster or slower rate than the AXI4 interfaces, which must
be clocked on the primary clock. When designing with multiple clocks, proper clock domain
crossing techniques must be used to ensure data integrity across all clock frequency scenarios.

• Has reset: Specifies whether to include a top-level reset input port to the kernel. Omitting a
reset can be useful to improve routing congestion of large designs. Any registers that would
normally have a reset in the design should have proper initial values to ensure correctness. If
enabled, there is a reset port included with each clock. Block Design type kernels must have a
reset input.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=101

Scalar Arguments

Scalar arguments are used to pass control type information to the kernels. Scalar arguments
cannot be read back from the host. For each argument that is specified, a corresponding register
is created to facilitate passing the argument from software to hardware. See the following figure.

Figure 52: Kernel Wizard Scalars

• Number of scalar kernel input arguments: Specifies the number of scalar input arguments to
pass to the kernel. For each number specified, a table row is generated that allows
customization of the argument name and argument type. There is no required minimum
number of scalars and the maximum allowed by the wizard is 64.

Scalar Input Argument Definition

The following is the scalar input argument definition:

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=102

• Argument name: The argument name is used in the generated Verilog control register module
as an output signal. Each argument is assigned an ID value. This ID value is used to access the
argument from the host software. The ID value assignments can be found on the summary
page of this wizard. To ensure maximum compatibility, the argument name follows the same
identifier rules as the kernel name.

• Argument type: Specifies the data type, and hence bit-width, of the argument. This affects the
register width in the generated Verilog module. The data types available are limited to the
ones specified by the OpenCL C Specification Version 2.0 in "6.1.1 Built-in Scalar Data Types"
section. The specification provides the associated bit-widths for each data type. The RTL
wizard reserves 64 bits for all scalars in the register map regardless of their argument type. If
the argument type is 32 bits or less, the RTL Wizard sets the upper 32 bits (of the 64 bits
allocated) as a reserved address location. Data types that represent a bit width greater than 32
bits require two write operations to the control registers.

Global Memory

Global memory is accessed by the kernel through AXI4 master interfaces (see the following
figure).

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 103Send Feedback

https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=103

Figure 53: Global Memory

Each AXI4 interface operates independently of each other, and each AXI4 interface can be
connected to one or more memory controllers to off-chip memory such as DDR4. Global
memory is primarily used to pass large data sets to and from the kernel from the host. It can also
be used to pass data between kernels. See the Memory Performance Optimizations for AXI4
Interface section for recommendations on how to design these interfaces for optimal
performance. For each interface, example AXI master logic is generated in the RTL kernel to
provide a starting point and can be discarded if not used.

In the Global Memory dialog box, you can specify the Number of AXI master interfaces present
on the kernel. The maximum is 16 interfaces. For each interface, you can customize an interface
name, data width, and the number of associated arguments. Each interface contains all read and
write channels. The default names proposed by the RTL kernel wizard are m00_axi and
m01_axi. If not changed, these names will have to be used when assigning a DDR bank through
the --sp option.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=104

AXI Master Definition (Table Columns)

• Interface name: Specifies the name of the interface. To ensure maximum compatibility, the
argument name follows the same identifier rules as the kernel name.

• Width (in bytes): Specifies the data width of the AXI data channels. Xilinx recommends
matching to the native data width of the memory controller AXI4 slave interface. The memory
controller slave interface is typically 64 bytes (512 bits) wide.

• Number of arguments: Specifies the number of arguments to associate with this interface.
Each argument represents a data pointer to global memory that the kernel can access.

Argument Definition

• Interface: Specifies the name of the AXI Interface that the corresponding columns in the
current row are associated with. This value is not directly modifiable; it is copied from the
interface name defined in the previous table.

• Argument name: Specifies the name of the pointer argument as it appears on the function
prototype signature. Each argument is assigned an ID value. This ID value is used to access the
argument from the host software. The ID value assignments can be found on the summary
page of this wizard. To ensure maximum compatibility, the argument name follows the same
identifier rules as the kernel name. The argument name is used in the generated Verilog
control register module as an output signal.

Streaming Interfaces

The streaming interfaces page allows configuration of AXI4-Stream interfaces on the kernel.
Streaming interfaces can be used for bus connections between kernels or to/from the host (on
certain QDMA-based platforms only). For kernel-to-kernel communication, the AXI4-Stream
signal set and protocol should match between kernels. Streaming interfaces used for direct host-
to-kernel and kernel-to-host communication must follow a strict protocol and signal declaration.
The QDMA AXI4-Stream protocol uses the TDATA/TKEEP/TLAST signals of the AXI4-Stream
protocol. Stream transactions consists of a series of transfers where the final transfer is
terminated with the assertion of the TLAST signal. The following figure shows the configuration
options. Stream transfers to/from the host must adhere to the following:

• AXI4-Stream transfer occurs when TVALID/TREADY are both asserted.

• TDATA must be 8, 16, 32, 64, 128, 256, or 512 bits wide.

• TKEEP (per byte) must be all 1s when TLAST is 0.

• TKEEP can be used to signal a ragged tail when TLAST is 1. For example, on a 4-byte
interface, TKEEP can only be 0b0001, 0b0011, 0b0111, or 0b1111 to specify the last
transfer is 1-byte, 2 bytes, 3 bytes, or 4 bytes in size, respectively.

• TKEEP cannot be all zeros (even if TLAST is 1).

• TLAST must be asserted at the end of a packet.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=105

• TREADY input/TVALID output should be low if kernel is not started to avoid lost transfers.

Figure 54: Streaming Interfaces

• Number of AXI4-Stream interfaces: Specifies the number of AXI4-Stream interfaces that exist
on the kernel. A maximum of 32 interfaces can be enabled per kernel. Xilinx recommends
keeping the number of interfaces as low as possible to reduce the amount of area consumed.

Stream Settings

• Name: Specifies the name of the interface. To ensure maximum compatibility, the argument
name follows the same identifier rules as the kernel name.

• Mode: Specifies the direction of the interface. A read only interface is an AXI4-Stream slave
interface and can be sent data with the clWriteStream API. A write only interface is an
AXI4-Stream master interface and the host can receive data from the interface with the
clReadStream API.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=106

• Width (bytes): Specifies the TDATA width (in bytes) of the AXI4-Stream interface. This
interface width is limited to 1 to 64 bytes in powers of 2.

Summary

This section summarizes VLNV, the software function prototype, and hardware control registers
created from options selected in the previous pages. The function prototype conveys what a
kernel call would be like if it was a C function. See the host code generated example of how to
set the kernel arguments for the kernel call. The register map shows the relationship between the
host software ID, argument name, hardware register offset, type, and associated interface.
Review this section for correctness before proceeding to generate the kernel.

Figure 55: Kernel Wizard Summary

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=107

Finalizing and Generating the Kernel from the RTL Wizard

If the RTL Kernel Wizard was launched from SDx, after clicking OK, the example Vivado project
opens.

If the RTL Kernel Wizard was launched from Vivado, after clicking OK do the following:

1. When the Generate Output Products window appears, select Global synthesis options and
click Generate, then click OK.

2. Right-click the .xci file in the Design Sources View in Vivado, and select Open IP Example
Design.

3. In the open example design window, select an output directory (or accept default) and click
OK. This opens a new Vivado project with the example design in it.

4. You can now close the current Vivado project from which the RTL Kernel Wizard was
invoked.

Interrupt

By default, the RTL Kernel Wizard creates a single interrupt port, named interrupt, along with
the interrupt logic in the Control Register block. This is reflected in the generated Verilog code
and the associated component.xml and kernel.xml files.

The interrupt is active-High and is enabled by setting both the Global Interrupt Enable (GIE) and
Interrupt Enable (IER) registers. By default, the IER uses the internal ap_done and ap_ready
signals to trigger an interrupt.

An interrupt is cleared when all the defined bits of the ISR register are zero as triggered by a
toggle on write command..

RTL Kernel Wizard Vivado Project
The RTL Kernel Wizard configuration dialog box customizes the specification of an RTL kernel by
specifying its I/O, control registers, and AXI4 interfaces. The next step in the process customizes
the contents of the kernel and then packages those contents into a Xilinx Object (xo) file. After
the RTL Kernel Wizard configuration GUI has completed, a Vivado kernel project is generated
and populated with the files necessary to create an RTL Kernel.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=108

The top-level Verilog file contains the expected input/output signals and parameters. These top-
level ports are matched to the kernel specification file (kernel.xml) and when combined with
the rest of the RTL/block design becomes the acceleration kernel. The AXI4 interfaces defined at
the top-level file contain a minimum subset of AXI4 signals required to generate an efficient, high
throughput interface. Signals omitted inherit optimized defaults when connected to the rest of
the AXI system. These optimized defaults allow the system to omit AXI features that are not
required, saving area and reducing complexity. If starting with existing code that contains AXI
signals not listed in the port list, it is possible to add these signals to the top-level ports and the
IP packager will adapt to them appropriately.

Depending on the selected Kernel Type, the contents of the top-level file is populated either
with a Verilog example and control registers or an instantiated IP integrator block design.

RTL Kernel Type Project Flow

The RTL kernel type delivers a top-level Verilog design consisting of control register and Vadd
sub-modules example design. The Vadd sub-module, shown in the following figure, consists of a
simple adder function, an AXI4 read master, two AXI4-Stream interfaces, and an AXI4 write
master. Each defined AXI4 interface has an independent example adder code. The first
associated argument of each interface is used as the data pointer for the example. Each example
reads 16 KB of data, performs a 32-bit add one operation, and then writes out 16 KB of data
back in place (the read and write address are the same). Care should be taken if the Control
Register module is modified to ensure that it still aligns with the kernel.xml file located in the
imports directory of the Vivado kernel project. The example sub-module can be replaced with
your custom logic or used as a starting point for your design.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=109

Figure 56: Kernel Type RTL Top

Kernel Top (Kernel Name)

Control Register Block
(Do Not Modify)

Example Block
(Replace or Modify)

Interrupt

control_s_axi

example

interrupt

m00_axi

m01_axi

Control Signals
(ap_ctrl_hs or ap_ctrl_chain

Scalar
Arguments

Global Memory
Arguments

AXI4-Lite Slave
Interface

axi_aresetn

axi_aclk

AXI4 Memory
Mapped Master

Interface

Control
Signals

Scalar
Arguments

Global Memory
Arguments

axi_aclk

axi_aresetn

krnl_clk
AXI4 Memory

Mapped Master
Interfacekrnl_rst_n

ap_clk_2

ap_rst_n_2

ap_clk

ap_rst_n

ap
_s

ta
rt

ap
_i

dl
e

ap
_d

on
e

sc
al

ar
0

sc
al

ar
1

sc
al

ar
N

ax
i0

0_
pt

r0

ax
i0

0_
pt

r1

ax
i0

1_
pt

rN

s_axi_control

ap
_r

ea
dy

ap
_c

on
tin

ue

(a
p_

ct
rl_

ch
ai

n
on

ly
)

AXI4-Stream Slave
Interface

axis01 AXI4-Stream Master
Interface axis00

X22079-051019

The Vadd sub-module, shown in the following figure, consists of a simple adder function, an AXI4
read master, and an AXI4 write master. Each defined AXI4add one operation, and then writes out
16 KB of data back in place (the read and write address are the same). interface has independent
example adder code. The first associated argument of each interface is used as the data pointer
for the example. Each example reads 16 KB of data, performs a 32-bit

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=110

Figure 57: Kernel Type RTL Example

Example Block

ap_start, ap_idle,
ap_done control logic

AXI4 Read Master
Vector
Adder
(+1)

AXI4 Write MasterAXI4-Stream AXI4-Stream

AXI4 Read Master
Vector
Adder
(+1)

AXI4 Write MasterAXI4-Stream AXI4-Stream

ap_clk (AXI) Domain

vadd_example_0

ap_clk2 (Kernel) Domain

ap_clk (AXI) Domain
vadd_example_1

ap_clk2 (Kernel) Domain

M_AXI AR
Channel

M_AXI R
Channel

M_AXI AR
Channel

M_AXI R
Channel

M_AXI AW
Channel

M_AXI W
Channel

M_AXI B
Channel

M_AXI AW
Channel

M_AXI W
Channel

M_AXI B
Channel

m
00

_a
xi

m
01

_a
xi

X22080-011019

The following table describes important files relative to the root of the Vivado project for the
kernel, where <kernel_name> is the name of the kernel chosen in the wizard.

Table 17: RTL Kernel Wizard Source and Test Bench File

Filename Description Delivered with Kernel
Type

interface has independent example
add<kernel_name>_ex.xpr

Vivado project file All

imports directory

<kernel_name>.v Kernel top-level module All

<kernel_name>_control_s_axi.v RTL control register module RTL

<kernel_name>_example.sv RTL example block RTL

<kernel_name>_example_vadd.sv RTL example AXI4 vector add block RTL

<kernel_name>_example_axi_read_master.sv RTL example AXI4 read master RTL

<kernel_name>_example_axi_write_master.sv RTL example AXI4 write master RTL

<kernel_name>_example_adder.sv RTL example AXI4-Stream adder block RTL

<kernel_name>_example_counter.sv RTL example counter RTL

<kernel_name>_exdes_tb_basic.sv Simulation test bench All

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=111

Table 17: RTL Kernel Wizard Source and Test Bench File (cont'd)

Filename Description Delivered with Kernel
Type

<kernel_name>_cmodel.cpp Software C-Model example for software
emulation.

All

<kernel_name>_ooc.xdc Out-of-context Xilinx constraints file All

<kernel_name>_user.xdc Xilinx constraints file for kernel user
constraints.

All

kernel.xml Kernel description file All

package_kernel.tcl Kernel packaging script proc definitions All

post_synth_impl.tcl Tcl post-implementation file All

sdx_imports directory

src/host_example.cpp Host code example All

makefile Makefile example All

<kernel_name>_ex.sdk/<kernel_name>_control/src directory

kernel_control.h MicroBlaze C header file Block Design

kernel_control.c MicroBlaze C file Block Design

<kernel_name>_ex.sdk/<kernel_name>_control/Debug directory

<kernel_name>_control.elf MicroBlaze elf file Block Design

<kernel_name>_ex.src/sources_1/<kernel_name>_bd directory

<kernel_name>_bd.bd Vivado Block Diagram file Block Design

Block Design Kernel Type Project Flow

The block design kernel type delivers an IP integrator block design (BD) as the basis of the kernel.
A MicroBlaze processor subsystem is used to sample the control registers and to control the flow
of the kernel. The MicroBlaze processor system uses a block RAM as an exchange memory
between the Host and the Kernel instead of a register file.

For each AXI interface, a DMA and math operation sub-blocks are created to provide an example
of how to control the kernel execution. The example uses the MicroBlaze AXI4-Stream interfaces
to control the AXI DataMover IP to create an example identical to the one in the RTL kernel type.
Also, included is an SDK project to compile and link an ELF file for the MicroBlaze core. This ELF
file is loaded into the Vivado kernel project and initialized directly into the MicroBlaze instruction
memory. The following steps can be used to modify the MicroBlaze processor program:

1. If the design has been updated, you might need to run the Export Hardware option. The
option can be found in the File → Export → Export Hardware menu location. When the
export Hardware dialog opens, click OK.

2. The software development kit (SDK) application can now be invoked. Select File → Launch → 
SDK from the Vivado menu.

3. When the Xilinx SDK GUI opens, click X just to the right of the text on the Welcome tab to
close the welcome dialog box. This shows an already loaded SDK project underneath.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=112

4. From the Project Explorer, the source files are under the <Kernel Name>_control/src
section. Modify these as appropriate.

5. When updates are complete, compile the source by selecting the menu option Project → 
Build All → Check for errors/warnings and resolve if necessary. The ELF file is automatically
updated in the GUI.

6. Run simulation to test the updated program and debug if necessary.

Simulation Test Bench

When a SystemVerilog simulation test bench is generated, this exercises the kernel to ensure its
operation is correct. It is populated with the checker function to verify the add one operation.
This generated test bench can be used as a starting point in verifying the kernel functionality. It
writes/reads from the control registers and executes the kernel multiple times while also
including a simple reset test. It is also useful for debugging AXI issues, reset issues, bugs during
multiple iterations, and kernel functionality. Compared to hardware emulation, it executes a more
rigorous test of the hardware corner cases, but does not test the interaction between host code
and kernel.

To run a simulation, click Vivado Flow Navigator → Run Simulation located on the left hand side
of the GUI and select Run Behavioral Simulation. If behavioral simulation is working as expected,
a post-synthesis functional simulation can be run to ensure that synthesis is matched with the
behavioral model.

Out-of-Context Synthesis

The Vivado kernel project is configured to run synthesis and implementation in out-of-context
(OOC) mode. A Xilinx Design Constraints (XDC) file is populated in the design to provide default
clock frequencies for this purpose. Running synthesis is useful to determine whether the kernel
synthesizes without errors. It also provides estimates of usage and frequency. The kernel should
be able to run through synthesis successfully before it is packaged.

Otherwise, errors occur during linking and it could be harder to debug. The synthesized outputs
can be used when packaging the kernel as a netlist instead of RTL. If a block design is used within
the kernel, the kernel must be packaged as a netlist. To run OOC synthesis, click Run Synthesis
from the Vivado Flow Navigator → Synthesis menu.

Software Model and Host Code Example

A C++ software model of the example add one operation is provided in the imports directory. It
has the same name as the kernel and has a cpp file extension. This software model can be
modified to model the function of the kernel. In the packaging step, this model can be included
with the kernel. When using SDx, this allows software emulation to be performed with the
kernel. The Hardware Emulation and the System Linker always uses the hardware description of
the kernel.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=113

In the sdx_imports directory, example C host code is provided and is called main.c. The host
code expects the binary container as the argument to the program. This can be automatically
specified by selecting Automatically add binary container(s) to arguments in Run Configuration 
→ Arguments after the host code is loaded into the SDx GUI. The host code then loads the
binary as part of the init function. The host code instantiates the kernel, allocates the buffers,
sets the kernel arguments, executes the kernel, and then collects and checks the results for the
example add one function.

Package RTL Kernel

After the kernel is designed and tested in Vivado, the final step for generating the RTL kernel is
to package the Vivado kernel project for use with SDx.

To begin the process, click Generate RTL Kernel from the Vivado Flow Navigator → Project
Manager menu. A pop-up dialog box opens with three main packaging options:

• A source-only kernel packages the kernel using the RTL design sources directly.

• The pre-synthesized kernel packages the kernel with the RTL design sources with a
synthesized cached output that can be used later on in the flow to avoid re-synthesizing. If the
target platform changes, the packaged kernel might fall back to the RTL design sources instead
of using the cached output.

• The netlist, design checkpoint (DCP), based kernel packages the kernel as a block box, using
the netlist generated by the synthesized output of the kernel. This output can be optionally
encrypted if necessary. If the target platform changes, the kernel might not be able to re-
target the new device and it must be regenerated from the source. If the design contains a
block design, the netlist (DCP) based kernel is the only packaging option available.

Optionally, all kernel packaging types can be packaged with the software model that can be used
in software emulation. If the software model contains multiple files, provide a space in between
each file in the Source files list, or use the GUI to select multiple files using the CTRL key when
selecting the file.

After you click OK, the kernel output products are generated. If the pre-synthesized kernel or
netlist kernel option is chosen, then synthesis can run. If synthesis has previously run, it uses
those outputs, regardless if they are stale. The kernel Xilinx Object .xo file is generated in the
sdx_imports directory of the Vivado kernel project.

At this point, you can close the Vivado kernel project. If the Vivado kernel project was invoked
from the SDx GUI, the example host code called main.c and kernel Xilinx Object (.xo) files are
automatically imported into the SDx source folder.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=114

Modifying an Existing RTL Kernel Generated from the Wizard

From the SDx GUI, it is possible to modify an existing generated kernel. By invoking the Xilinx
RTL Kernel Wizard menu option after a kernel has been generated, a dialog box opens that gives
you the option to modify an existing kernel. Selecting Edit Existing Kernel Contents re-opens the
Vivado Project, and you can then modify and generate the kernel contents again. Selecting Re-
customize Existing Kernel Interfaces revisits the RTL Kernel Wizard configuration dialog box.
Options other than Kernel Name can be modified and the previous Vivado project is replaced.

IMPORTANT! All files and changes in the previous project are lost when the updated Vivado kernel project is
generated.

Manual Development Flow for RTL Kernels
Using the RTL Kernel Wizard to create RTL kernels is highly recommended; however RTL kernels
can be created without using the wizard. This section provides details on each step of the manual
development flow. The three steps to package an RTL design as an RTL kernel for SDAccel
applications are:

1. Package the RTL block as Vivado IP.

2. Create a kernel description XML file.

3. Package the RTL kernel into a Xilinx Object (.xo) file.

These steps are an automated use of the RTL Kernel Wizard. A fully packaged RTL Kernel is
delivered as an .xo file with a file extension of .xo. This file is a container encapsulating the
Vivado IP object (including source files) and associated kernel XML file. The .xo file can be
compiled into the platform and run in hardware or hardware emulation flows.

Packaging an RTL Block as Vivado IP
RTL kernels must be packaged as a Vivado IP suitable for use in the IP integrator. See the Vivado
Design Suite User Guide: Creating and Packaging Custom IP (UG1118) for details on IP packaging in
Vivado.

The following interface packaging is required for the RTL Kernel:

• The AXI4-Lite interface name must be packaged as S_AXI_CONTROL, but the underlying AXI
ports can be named differently.

• The AXI4 interfaces must be packaged as AXI4 master endpoints with 64-bit address support.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 115Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=115

RECOMMENDED: Xilinx strongly recommends that AXI4 interfaces be packaged with AXI meta data
HAS_BURST=0 and SUPPORTS_NARROW_BURST=0. These properties can be set in an IP level bd.tcl file.
This indicates wrap and fixed burst type is not used and narrow (sub-size burst) is not used.

• ap_clk and ap_clk_2 must be packaged as clock interfaces.

• ap_rst_n and ap_rst_n_2 must be packaged as active-Low reset interfaces.

• ap_clk must be packaged to be associated with all AXI4-Lite, AXI4, and AXI4-Stream
interfaces.

To test if the RTL kernel is packaged correctly for the IP integrator, try to instantiate the
packaged kernel in the IP integrator. In the GUI, it should show up as having interfaces for clock,
reset, AXI4-Lite slave, AXI4 master, and AXI4 slave only. No other ports should be present in the
canvas view. The properties of the AXI interface can be viewed by selecting the interface on the
canvas. Then in the Block Interface Properties window, select the Properties tab and expand the
CONFIG table entry. If an interface is to be read-only or write-only, the unused AXI channels can
be removed and the READ_WRITE_MODE is set to read-only or write-only.

IMPORTANT! If the RTL kernel has constraints which refer to constraints in the static area such as clocks, then
the RTL kernel constraint file needs to be marked as late processing order to ensure RTL kernel constraints are
correctly applied.

There are two methods to mark constraints as late processing order:

1. If the constraints are given in a .ttcl file, add <: setFileProcessingOrder "late" :> to
the .ttcl preamble section of the file as shown below:

<: set ComponentName [getComponentNameString] :>
<: setOutputDirectory "./" :>
<: setFileName $ComponentName :>
<: setFileExtension ".xdc" :>
<: setFileProcessingOrder "late" :>

2. If the constraints are given in a .xdc file, then add the four lines starting at <spirit:define>
below in the component.xml. The four lines in the component.xml need to be next to the area
where the .xdc file is called. In the following example, my_ip_constraint.xdc file is being called
with the subsequent late processing order defined.

<spirit:file>
 <spirit:name>ttcl/my_ip_constraint.xdc</spirit:name>
 <spirit:userFileType>ttcl</spirit:userFileType>
 <spirit:userFileType>USED_IN_implementation</spirit:userFileType>
 <spirit:userFileType>USED_IN_synthesis</spirit:userFileType>
 <spirit:define>
 <spirit:name>processing_order</spirit:name>
 <spirit:value>late</spirit:value>
 </spirit:define>
</spirit:file>

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=116

Create Kernel Description XML File
A kernel description XML file needs to be created for each RTL kernel such that it can be used in
the SDAccel environment. The file must be called kernel.xml. The XML file specifies kernel
attributes like the register map and ports which are needed by the runtime and SDAccel flows.
The following is an example of a kernel.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<root versionMajor="1" versionMinor="6">
 <kernel name="sdx_kernel_wizard_0" language="ip_c"
vlnv="mycompany.com:kernel:sdx_kernel_wizard_0:1.0" attributes=""
preferredWorkGroupSizeMultiple="0" workGroupSize="1" interrupt="true">
 <ports>
 <port name="s_axi_control" mode="slave" range="0x1000" dataWidth="32"
portType="addressable" base="0x0"/>
 <port name="m00_axi" mode="master" range="0xFFFFFFFFFFFFFFFF"
dataWidth="512" portType="addressable" base="0x0"/>
 </ports>
 <args>
 <arg name="axi00_ptr0" addressQualifier="1" id="0" port="m00_axi"
size="0x8" offset="0x010" type="int*" hostOffset="0x0" hostSize="0x8"/>
 </args>
 </kernel>
</root>

The following table describes the format of the kernel XML in detail:

Table 18: Kernel XML Format

Tag Attribute Description

<root>
versionMajor Set to 1 for the current release of SDAccel.

versionMinor Set to 6 for the current release of SDAccel.

<kernel>

name Kernel name

language Always set it to ip_c for RTL kernels.

vlnv

Must match the vendor, library, name, and version attributes in
the component.xml of an IP. For example, If component.xml has
the following tags:
<spirit:vendor>xilinx.com</spirit:vendor>

<spirit:library>hls</spirit:library>

<spirit:name>test_sincos</spirit:name>

<spirit:version>1.0</spirit:version>

The vlnv attribute in kernel XML must be set to:
xilinx.com:hls:test_sincos:1.0

attributes Reserved. Set it to empty string.

preferredWorkGroupSizeMultiple Reserved. Set it to 0.

workGroupSize Reserved. Set it to 1.

interrupt Set equal to "true" (that is,. interrupt="true") if interrupt present
else omit.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=117

Table 18: Kernel XML Format (cont'd)

Tag Attribute Description

<port>

name
Port name. At least an AXI4 master port and an AXI4-Lite slave port
are required. The AXI4-Stream port can be optionally specified to
stream data between kernels. The AXI4-Lite interface name must
be S_AXI_CONTROL.

mode

• For AXI4 master port, set it to "master."

• For AXI4 slave port, set it to "slave."

• For AXI4-Stream master port, set it to "write_only."

• For AXI4-Stream slave port, set it "read_only."

range The range of the address space for the port.

dataWidth The width of the data that goes through the port, default is 32 bits.

portType Indicate whether or not the port is addressable or streaming.

• For AXI4 master and slave ports, set it to "addressable."

• For AXI4-Stream ports, set it to "stream."

base For AXI4 master and slave ports, set to 0x0. This tag is not
applicable to AXI4-Stream ports.

<arg>

name Kernel argument name.

addressQualifier

Valid values:

0: Scalar kernel input argument
1: global memory
2: local memory
3: constant memory
4: pipe

id

Only applicable for AXI4 master and slave ports. The ID needs to
be sequential. It is used to determine the order of kernel
arguments.
Not applicable for AXI4-Stream ports.

port Indicates the port to which the arg is connected.

size Size of the argument. The default is 4 bytes.

offset Indicates the register memory address.

type The C data type for the argument. For example, int*, float*.

hostOffset Reserved. Set to 0x0.

hostSize Size of the argument. The default is 4 bytes.

memSize
Not applicable to AXI4 master and slave ports.
For AXI4-Stream ports, memSize sets the depth of the created
FIFO.

The following tags specify additional information for AXI4-Stream ports. They are not applicable to AXI4 master or slave
ports.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=118

Table 18: Kernel XML Format (cont'd)

Tag Attribute Description

<pipe>

For each pipe in the compute unit, the compiler inserts a FIFO for buffering the data. The pipe tag
describes configuration of the FIFO.

name
This specifies the name for the FIFO inserted for the AXI4-Stream
port. This name must be unique among all pipes used in the same
compute unit.

width This specifies the width of FIFO in bytes. For example, 0x4 for 32-
bit FIFO.

depth This specifies the depth of the FIFO in number of words.

linkage Always set to internal.

<connection>

The connection tag describes the actual connection in hardware either from the kernel to the FIFO
inserted for the PIPE or from the FIFO to the kernel.

srcInst Specifies the source instance of the connection.

srcPort Specifies the port on the source instance for the connection.

dstInst Specifies the destination instance of the connection.

dstPort Specifies the port on the destination instance of the connection.

Package RTL Kernel into Xilinx Object File
The final step is to package the RTL IP and the associated kernel XML file together into a Xilinx
object file (.xo) so it can be used by the SDAccel compiler. The following example command line
packages test_sincos RTL IP and kernel.xml into object file named test.xo.

package_xo -xo_path test.xo -kernel_name test_sincos -kernel_xml
kernel.xml -ip_directory ./ip/

For additional information on the package_xo, see the "package_xo Command" section in SDx
Command and Utility Reference Guide (UG1279). Also, for examples on using the package_xo
command, see the Xilinx GitHub repository.

Designing RTL Recommendations
While the RTL Kernel Wizard assists in packaging RTL designs for use within the SDx flow, the
underlying RTL kernels should be designed with recommendations from the UltraFast Design
Methodology Guide for the Vivado Design Suite (UG949).

In addition to adhering to the interface and packaging requirements, the kernels should be
designed with performance goals in mind. Specifically:

• Memory Performance Optimizations for AXI4 Interface

• Quality of Results Considerations

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/rtl_kernel
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=119

• Debug and Verification Considerations

These topics are described in the following subsections.

Memory Performance Optimizations for AXI4
Interface
The AXI4 interfaces typically connects to DDR memory controllers in the platform.

RECOMMENDED: For optimal frequency and resource usage it is recommended that one interface is used per
memory controller.

For best performance from the memory controller, the following is the recommended AXI
interface behavior:

• Use an AXI data width that matches the native memory controller AXI data width, typically
512 bits.

• Do not use WRAP, FIXED, or sub-sized bursts.

• Use burst transfer as large as possible (up to 4k byte AXI4 protocol limit).

• Avoid use of deasserted write strobes. Deasserted write strobes can cause error-correction
code (ECC) logic in the DDR memory controller to perform read-modify-write operations.

• Use pipelined AXI transactions.

• Avoid using threads if an AXI interface is only connected to one DDR controller.

• Avoid generating write address commands if the kernel does not have the ability to deliver the
full write transaction (non-blocking write requests).

• Avoid generating read address commands if the kernel does not have the capacity to accept
all the read data without back pressure (non-blocking read requests).

• If a read-only or write-only interfaces are desired, the ports of the unused channels can be
commented out in the top level RTL file before the project is packaged into a kernel.

• Using multiple threads can cause larger resource requirements in the infrastructure IP
between the kernel and the memory controllers.

Managing Clocks in an RTL Kernel
An RTL kernel can have up to two external clock interfaces; a primary clock, ap_clk, and an
optional secondary clock, ap_clk_2. Both clocks can be used for clocking internal logic.
However, all external RTL kernel interfaces must be clocked on the primary clock. Both primary
and secondary clocks support independent automatic frequency scaling.

If you require additional clocks within the RTL kernel, a frequency synthesizer such as the
Clocking Wizard IP or MMCM/PLL primitive can be instantiated within the RTL kernel.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=120

Thus your RTL kernel can use just the primary clock, both primary and secondary clock, or
primary and secondary clock along with an internal frequency synthesizer. The following shows
the advantages and disadvantages of using these three RTL kernel clocking methods:

• Single input clock: ap_clk

○ External interfaces and internal kernel logic run at the same frequency.

○ No clock domain crossing (CDC) issues.

○ Frequency of ap_clk can automatically be scaled to allow kernel to meet timing.

• Two input clocks: ap_clk and ap_clk_2

○ Kernel logic can run at either clock frequency.

○ Need proper CDC technique to move from one frequency to another.

○ Both ap_clk and ap_clk_2 can automatically scale their frequencies independently to
allow the kernel to meet timing.

• Using a frequency synthesizer inside the kernel:

○ Additional device resources required to generate clocks.

○ Must have ap_clk and optionally ap_clk_2 interfaces.

○ Generated clocks can have different frequencies for different CUs.

○ Kernel logic can run at any available clock frequency.

○ Need proper CDC technique to move from one frequency to another.

When using a frequency synthesizer in the RTL kernel there are some constraints you should be
aware of:

1. RTL external interfaces are clocked at ap_clk.

2. The frequency synthesizer can have multiple output clocks that are used as internal clocks to
the RTL kernel.

3. You must provide a Tcl script to downgrade the clock resource placement DRCs in Vivado
placement to stop a Vivado DRC error from occurring. An example of the Tcl command
follows:

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN
[get_nets pfm_top_i/static_region/base_clocking/clkwiz_kernel/inst/
CLK_CORE_DRP_I/clk_inst/clk_out1

Note: This constraint should be edited to reflect the shell clock structure of your platform.

4. Use the xocc --xp option to specify the above Tcl script for use by Vivado implementation,
after optimization. For example:

--xp vivado_prop:run.impl_1.STEPS.OPT_DESIGN.TCL.POST={<PATH>/<TCL
Script>}

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=121

5. Specify the two global clock input frequencies which can be used by the kernels (RTL or HLS-
based). Use the xocc --kernel_frequency option to ensure the kernel input clock
frequency is as expected. For example to specify one clock use:

xocc --kernel_frequency 250

For two clocks, you can specify multiple frequencies based on the clock ID. The primary clock
has clock ID 0 and the secondary has clock ID 1.

xocc --kernel_frequency 0:250|1:500

TIP: Ensure that the PLL or MMCM output clock is locked before RTL kernel operations. Use the locked signal in
the RTL kernel to ensure the clock is operating correctly.

After adding the frequency synthesizer to an RTL kernel, the generated clocks are not
automatically scalable. Ensure the RTL kernel passes timing requirements, or xocc will return an
error like the following:

ERROR: [VPL-1] design did not meet timing - Design did not meet timing. One
or more unscalable system clocks did not meet their required target
frequency. Please try specifying a clock frequency lower than 300 MHz using
the '--kernel_frequency' switch for the next compilation. For all system
clocks, this design is using 0 nanoseconds as the threshold worst negative
slack (WNS) value. List of system clocks with timing failure.

In this case you will need to change the internal clock frequency, or optimize the kernel logic to
meet timing.

Quality of Results Considerations
The following recommendations help improve results for timing and area:

• Pipeline all reset inputs and internally distribute resets avoiding high fanout nets.

• Reset only essential control logic flip-flops (FFs).

• Consider registering input and output signals to the extent possible.

• Understand the size of the kernel relative to the capacity of the target platforms to ensure fit,
especially if multiple kernels will be instantiated.

• Recognize platforms that use Stack Silicon Interconnect (SSI) Technology. These devices have
multiple die and any logic that must cross between them should be FF to FF timing paths.

Debug and Verification Considerations
• RTL kernels should be verified in their own test bench using advanced verification techniques

including verification components, randomization, and protocol checkers. The AXI Verification
IP (VIP) is available in the Vivado IP catalog and can help with the verification of AXI
interfaces. The RTL kernel example designs contain an AXI VIP-based test bench with sample
stimulus files.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=122

• The hardware emulation flow should not be used for functional verification because it does
not accurately represent the range of possible protocol signaling conditions that real AXI
traffic in hardware can incur. Hardware emulation should be used to test the host code
software integration or to view the interaction between multiple kernels.

Chapter 9: RTL Kernels

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=123

Chapter 10

HLS Kernel Design Integration into
SDAccel

The major flow described in the application-centric methodology of this guide is concerned with
accelerator kernels being developed and integrated in the host application of a project in a top-
down model. This implies, all source code is presented to SDAccel™ and sections of it are
dedicated to being synthesized into accelerator modules. This flow calls the Vivado® High-Level
Synthesis (HLS) tool to translate the function into hardware implementable accelerator code.

Alternatively, SDAccel provides a bottom-up flow, where HLS-based hardware kernels are
created directly by importing from a Vivado HLS project. This allows you to perform
optimizations and to validate kernel performance within the Vivado HLS project. When your
kernel meets performance and resource requirements, the resulting Xilinx® object file (.xo) is
handed off for inclusion into the SDx™ project. During hand-off, all kernel Vivado HLS
optimization is maintained.

Figure 58: Vivado HLS Design Flow

K2
K2.xo
HLS

HLS Project

K1 K2.xo

SDx GUI Project

Iterative Design Process
X21852-110718

The benefits of the bottom-up flow include:

• Designer can design, validate, and optimize the kernel prior to integration into the complete
SDAccel project.

• Specific kernel optimizations are maintained for each kernel.

• Independent Vivado HLS and project locations allow separation of application and kernels.

• VHLS project can be used by multiple different projects, like a library instantiation.

• Allow teams to collaborate for increased productivity.

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=124

Creating SDAccel Kernels with Vivado HLS
Running Vivado HLS to generate kernels from C/C++ for SDAccel follows the regular Vivado HLS
flow. However, since the kernel is supposed to operate as an accelerator in an SDAccel, the
SDAccel kernel modeling guidelines need to be followed (see C/C++ modeling guide). Most
importantly, the interfaces need to be modeled as AXI memory interfaces except for scalar
parameters called by the value, which are mapped to an AXI4-Lite interface. This is illustrated in
the following example:

void krnl_idct(const ap_int<512> *block,
 const ap_uint<512> *q,
 ap_int<512> *voutp,
 int ignore_dc,
 unsigned int blocks) {
 #pragma HLS INTERFACE m_axi port=block offset=slave
bundle=p0 depth=512
 #pragma HLS INTERFACE s_axilite port=block bundle=control
 #pragma HLS INTERFACE m_axi port=q offset=slave
bundle=p1 depth=2
 #pragma HLS INTERFACE s_axilite port=q bundle=control
 #pragma HLS INTERFACE m_axi port=voutp offset=slave
bundle=p2 depth=512
 #pragma HLS INTERFACE s_axilite port=voutp bundle=control
 #pragma HLS INTERFACE s_axilite port=ignore_dc bundle=control
 #pragma HLS INTERFACE s_axilite port=blocks bundle=control
 #pragma HLS INTERFACE s_axilite port=return bundle=control

RECOMMENDED: The use of ap-datatypes in the interfaces require the use of ap-datatypes in the test
bench for HLS. This might result in slower C/C++ simulation speeds and mapping to native C/C++ should be
considered. As most host code is based on native data types, using them in the kernel interfaces is recommended.

For information on creating a new project, see the Vivado Design Suite User Guide: High-Level
Synthesis (UG902). For SDAccel kernel projects, you must select the SDAccel Bottom Up Flow
check box and specify the Clock Period and Part Selection as shown in the following figure.

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 125Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=125

Figure 59: New Vivado HLS Project

Choose the platform by clicking the Browse button to open the Device Selection Dialog and
select the accelerator board from the Device list.

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=126

Figure 60: Device Selection

When completed, the iterative optimization process can resume until the best possible
implementation results are achieved. For more information, see Vivado Design Suite User Guide:
High-Level Synthesis (UG902).

After synthesis is completed for the optimized design, it needs to be exported to the SDAccel
tool chain. The export command is available through the Main Toolbar → Solution → Export RTL
menu item.

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 127Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=127

Figure 61: Export RTL as IP

It is only necessary to confirm the XO file location, which names the generated XO-File that is
imported in the next section back into SDAccel.

Note: Most of the options shown in the previous section can also be set and changed from a running
project through the Main Menu → Solution → Solution Settings. The Synthesis and Export sections have
the same content as previously shown in this documentation.

This completes the HLS synthesis part for SDAccel. In the following section, some required
details for the command line flow are shown.

Typical Vivado HLS Script for SDAccel Synthesis
If you run your HLS synthesis through command line scripts, the following Tcl code is equivalent
to the GUI flow shown before:

open_project guiProj
set_top krnl_idct
add_files src/krnl_idct.cpp
add_files -tb src/idct.cpp
open_solution "solution1"

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=128

set_part {xcu200-fsgd2104-2-e} -tool vivado
create_clock -period 10 -name default
config_sdx -optimization_level none -target xocc
config_schedule -effort medium -enable_dsp_full_reg
config_compile -name_max_length 256 -pipeline_loops 64
#source "./guiProj/solution1/directives.tcl"
csim_design
csynth_design
cosim_design
export_design -rtl verilog -format ip_catalog -xo \
 /wrk/bugs/xoFlow/idct_hls/krnl_idct.xo

Incorporating Vivado HLS Kernel Projects into
SDAccel

The Vivado HLS output is the kernel code exported as a Xilinx object file (xo). This file can be
seamlessly integrated into SDAccel by selecting the object file as input (see Adding Sources for
more information). When SDAccel imports the xo file, the kernel name is automatically extracted
so the host code can start applying the accelerator.

During SDAccel compilation, it is possible to create multiple compute units from the kernels, but
the implementation remains the same as designed during the Vivado HLS run.

In SDAccel, the regular debug and analysis features are fully supported for this flow. It is possible
to build the hardware emulation flow to test and debug in detail the implementation and tune
the system build host code performance.

Note: The pure software emulation mode is currently not supported as duplicated header file dependencies
can create an issue.

Known Limitations
This flow has certain limitations not present in top-down flow:

• No software emulation support for projects with xo files (potential missing and duplicated
header files).

• GDB Kernel debug in hardware emulation flow is not supported.

• HLS analysis functionality is only available in the Vivado HLS project and not from SDAccel.

Chapter 10: HLS Kernel Design Integration into SDAccel

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=129

Appendix A

Getting Started with Examples
All Xilinx® SDx™ environments are provided with example designs. These examples can:

• Be a useful learning tool for both the SDx IDE and compilation flows such as makefile flows.

• Help you quickly get started in creating a new application project.

• Demonstrate useful coding styles.

• Highlight important optimization techniques.

Every platform provided within the SDx environment contains sample designs to get you started,
and are accessible through the project creation flow as described in Creating an Application
Project. Furthermore, each of these designs, which are found in <SDx_Install_Dir>/
samples provides a makefile so you can build, emulate, and run the code working entirely on
the command line if you prefer.

Many example designs and tutorials can be downloaded from the Xilinx GitHub repository. The
example design repository contains the latest examples to get you started with application
optimization targeting Xilinx PCIe® FPGA acceleration boards. All examples are ready to be
compiled and executed on SDAccel™ supported boards and accelerated cloud service partners.

In addition, the tutorial repository provides step-by-step instructions on a range of topics
including building an application, emulation, along with advanced topics such as mixing C++ and
RTL kernels, and optimizing host code.

Installing Examples
Select a template for new projects when working through the New SDx Project wizard. You can
also load template projects from within an existing project, by selecting Xilinx → SDx Examples.

Appendix A: Getting Started with Examples

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 130Send Feedback

https://github.com/Xilinx/
https://github.com/Xilinx/SDAccel_Examples
https://github.com/Xilinx/SDAccel-Tutorials
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=130

Figure 62: SDAccel Examples – Empty

The left side of the dialog box shows SDAccel™ Examples, and has a download command for
each category. The right side of the dialog box shows the directory to where the examples
downloaded and the URL from where the examples are downloaded. Customizing the location of
the download directory is accomplished using the directions in the Using Local Copies section.

Click Download next to SDAccel Examples to download the examples and populate the dialog
box. The examples are downloaded as shown in the following figure.

Appendix A: Getting Started with Examples

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=131

Figure 63: SDAccel Examples – Populated

The command menu at the bottom left of the SDx Examples dialog box provides two commands
to manage the repository of examples:

• Refresh: Refreshes the list of downloaded examples to download any updates from the
GitHub repository.

• Reset: Deletes the downloaded examples from the .Xilinx folder.

Note: Corporate firewalls can restrict outbound connections. Specific proxy settings might be necessary.

Using Local Copies
While you must download the examples to add Templates when you create new projects, the
SDx IDE always downloads the examples into your local .Xilinx/SDx/<version> folder:

• On Linux: ~/.Xilinx/SDx/<version>

Appendix A: Getting Started with Examples

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 132Send Feedback

https://github.com/Xilinx/SDSoC_Examples/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=132

The download directory cannot be changed from the SDx Examples dialog box. You might want
to download the example files to a different location from the .Xilinx folder. To perform this,
use the git command from a command shell to specify a new destination folder for the
downloaded examples:

git clone https://github.com/Xilinx/SDAccel_Examples
<workspace>/examples

When you clone the examples using the git command as shown above, you can use the
example files as a resource for application and kernel code to use in your own projects. However,
many of the files use include statements to include other example files that are managed in the
makefiles of the various examples. These include files are automatically populated into the src
folder of a project when the Template is added through the New SDx Project wizard. To make the
files local, locate the files and manually make them local to your project.

You can find the needed files by searching for the file from the location of the cloned repository.
For example, you can run the following command from the examples folder to find the
xcl2.hpp file needed for the vadd example:

find -name xcl2.hpp

Appendix A: Getting Started with Examples

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=133

Appendix B

Directory Structure
The directory structure generated by the GUI and make flows has been organized to allow you to
easily find and access files. By navigating each compile, link, logs, and reports directories,
you can easily reach generated files. Similarly, each kernel will also have a directory structure
created.

Command Line
When using xocc on the command line, by default it creates a directory structure during compile
and link. The .xo and .xclbin are always generated in the working directory. All the
intermediate files are created under the _x directory (default name of the temp_dir).

The following example shows the generated directory structure for two xocc compile runs (k1
and k2) and one xocc link (design.xclbin). The k1.xo, k2.xo and design.xclbin files
are located in the working directory. The _x directory contains the associated k1 and k2 kernel
compile sub-directories. The link, logs, and reports directories contain the respective
information on the builds.

Appendix B: Directory Structure

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=134

Figure 64: Command Line Directory Structure

You can optionally change the directory structure using the following xocc options:

--log_dir <dir_name (full or relative path)>

-–report_dir <dir_name (full or relative path)>

-–temp_dir <dir_name (full or relative path)>

See SDx Command and Utility Reference Guide (UG1279) for details on the xocc command
options.

GUI
Though similar, the default directory naming and structure is not identical to that created by the
makefile flow. The following example shows the generated directory structure for two xocc
compile runs (k1 and k2) and one xocc link (design.xclbin) automatically generated in the
GUI flow. The k1.xo, k2.xo, and design.xclbin files are located in the working directory.
The _x directory contains the associated k1 and k2 kernel compile sub-directories. Again, the
link, logs, and reports directories contain the respective information on the builds.

Appendix B: Directory Structure

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 135Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=135

Figure 65: GUI Directory Structure

The GUI manages the creation of the directory structure using the following xocc command
specifications which can be found in the makefile:

–-temp_dir

–-report_dir

–-log_dir

See the SDx Command and Utility Reference Guide (UG1279) for details on the xocc command
options.

Appendix B: Directory Structure

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 136Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=136

Appendix C

Useful Command Line Utilities
There are several Xilinx® command line utilities that provide detailed information to help
construct xocc command line and give data about the platform, including SLR resource
availability. These include platforminfo, kernelinfo, xclbinutil, emulation
configuration, Xilinx board, and SDSoC™ utilities. For more information on these command line
utilities, see SDx Command and Utility Reference Guide (UG1279).

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 137Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=137

Appendix D

Managing Platforms and
Repositories

The SDx™ environment comes with built-in platforms. If you need to use a custom platform for
your project, you must make that platform available for application implementation.

When you are creating a project, you can manage the platforms that are available for use in
SDAccel™ application projects, from the Platform Selection page of the SDx New Project wizard.
This lets you add a new platform for a project as it is being created.

Figure 66: SDAccel Platform Browse

This opens the New SDx Project dialog box, where you can manage the available platforms and
platform repositories.

Appendix D: Managing Platforms and Repositories

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=138

Figure 67: Specify SDAccel Platform

• Add Custom Platform: Add your own platform to the list of available platforms. Navigate to
the top-level directory of the custom platform, select it, and click OK to add the new platform.
The custom platform is immediately available for selection from the list of available platforms.
Select Xilinx → Add Custom Platform to directly add custom platforms to the tool.

• Manage Repositories: Add or remove standard and custom platforms. If a custom platform is
added, the path to the new platform is automatically added to the repositories. Removing any
platform from the list of repositories removes the platform from the list of available platforms.

• Add Devices/Platforms: Manage which Xilinx® devices and platforms are installed. If a device
or platform was not selected during the installation process, you can add it at a later time
using this command. This command launches the SDx Installer to let you select extra content
to install. Select Help → Add Devices/Platforms to directly add custom platforms to the tool.

Appendix D: Managing Platforms and Repositories

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=139

Appendix E

Migrating to a New Target Platform
This migration guide is intended for users who need to migrate their accelerated SDAccel™
environment application from one target platform to another. For example, moving an application
from a Virtex® UltraScale+™ VCU1525 Acceleration Development Board to a U200 Acceleration
Development Board.

The following topics are addressed as part of this:

• An overview of the Design Migration Process including the physical aspects of FPGA devices.

• Any changes to the host code and design constraints if a new release is used.

• Controlling kernel placements and DDR interface connections.

• Timing issues in the new shell which might require additional options to achieve performance.

Design Migration
When migrating an application implemented in one target platform to another, it is important to
understand the differences between the target platforms, and the impact those differences have
on the design.

Key considerations:

• Is there a change in the release?

• Does the new target platform contain a different shell?

• Do the kernels need to be redistributed across the Super Logic Regions (SLRs)?

• Does the design meet the required frequency (timing) performance in the new platform?

The following diagram summarizes the migration flow described in this guide, and the topics to
consider during the migration process.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=140

Figure 68: Shell Migration Flowchart

Start

Host code
migration

Migrate
Release?

Release
migration

New shell
target?

Modify kernel
placement

Synthesize and
run design

Timing met?Address timing

Done

Yes

Yes

Yes

No

No

No

X21401-120318

IMPORTANT! Before starting to migrate a design it is important to understand the architecture of an FPGA and
the shell.

Understanding an FPGA Architecture
Before migrating any design to a new target platform, you should have a fundamental
understanding of the FPGA architecture. The following diagram shows the floorplan of a Xilinx®

FPGA device. The concepts to understand are:

• SSI Devices

• SLRs

• SLR routing resources

• Memory interfaces

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=141

Figure 69: Physical View of Xilinx FPGA with Four SLR Regions

Memory
Bank 3

SLR3

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Intra SLR
Route

SLR
Route

X22081-120418

TIP: The FPGA floorplan shown above is for a SSI device with four SLRs where each SLR contains a DDR Memory
interface.

Stacked Silicon Interconnect Devices

A SSI device is one in which multiple silicon dies are connected together via silicon interconnect,
and packaged into a single device. An SSI device enables high-bandwidth connectivity between
multiple die by providing a much greater number of connections. It also imposes much lower
latency and consumes dramatically lower power than either a multiple FPGA or a multi-chip
module approach, while enabling the integration of massive quantities of interconnect logic,
transceivers, and on-chip resources within a single package. The advantages of SSI devices are
detailed in Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough FPGA Capacity,
Bandwidth, and Power Efficiency.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 142Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=142

Super Logic Region

An SLR is a single FPGA die slice contained in an SSI device. Multiple SLR components are
assembled to make up an SSI device. Each SLR contains the active circuitry common to most
Xilinx FPGA devices. This circuitry includes large numbers of:

• LUTs

• Registers

• I/O Components

• Gigabit Transceivers

• Block Memory

• DSP Blocks

One or more kernels may be implemented within an SLR. A single kernel may not be
implemented across multiple SLRs.

SLR Routing Resources

The custom hardware implemented on the FPGA is connected via on-chip routing resources.
There are two types of routing resources in an SSI device:

• Intra-SLR Resources: Intra-SLR routing resource are the fast resources used to connect the
hardware logic. The SDAccel environment automatically uses the most optimal resources to
connect the hardware elements when implementing kernels.

• Super Long Line (SLL) Resources: SLLs are routing resources running between SLRs, used to
connect logic from one region to the next. These routing resources are slower than intra-SLR
routes. However, when a kernel is placed in one SLR, and the DDR it connects to is in another,
the SDAccel environment automatically implements dedicated hardware to use SLL routing
resources without any impact to performance. More details on managing placement are
provided in Modifying Kernel Placement.

Memory Interfaces

Each SLR contains one or more memory interfaces. These memory interfaces are used to connect
to the DDR memory where the data in the host buffers is copied before kernel execution. Each
kernel will read data from the DDR memory and write the results back to the same DDR
memory. The memory interface connects to the pins on the FPGA and includes the memory
controller logic.

Understanding Shells
In the SDAccel development environment, a shell is the hardware design that is implemented
onto the FPGA before any custom logic, or accelerators are added. The shell defines the
attributes of the FPGA used in the target platform and is composed of two regions:

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=143

• Static region which contains kernel and device management logic.

• Dynamic region where the custom logic of the accelerated kernels is placed.

The figure below shows an FPGA with the shell applied.

Figure 70: Shell on an FPGA with Four SLR Regions

Static
Region
(Shell)

Memory
Bank 3

SLR3

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Dynamic
Region

X22082-120418

The shell, which is a static region that cannot be modified by the user, contains the logic required
to operate the FPGA, and transfer data to and from the dynamic region. The static region, shown
above in gray, might exist within a single SLR, or as in the above example, might span multiple
SLRs. The static region contains:

• DDR memory interface controllers

• PCIe® interface logic

• XDMA logic

• Firewall logic, etc.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=144

The dynamic region is the area shown in white above. This region contains all the reconfigurable
components of the shell and is the region where all the accelerator kernels are placed.

Because the static region consumes some of the hardware resources available on the device, the
custom logic to be implemented in the dynamic region can only use the remaining resources. In
the example shown above, the shell defines that all four DDR memory interfaces on the FPGA
can be used. This will require resources for the memory controller used in the DDR interface.

Details on how much logic may be implemented in the dynamic region of each shell is provided in
the SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238). This topic is
also addressed in Modifying Kernel Placement, later in this guide.

Migrating Releases
Before migrating to a new target platform, you should also determine if you will need to target
the new platform to a different release of the SDAccel environment. If you do intend to target a
new release, it is highly recommended to first target the existing platform using the new software
release to confirm there are no changes required, and then migrate to a new target platform.

There are two steps to follow when targeting a new release with an existing platform:

• Host Code Migration

• Release Migration

IMPORTANT! Before migrating to a new release, it is recommended that you review the SDAccel Environment
Release Notes, Installation, and Licensing Guide (UG1238).

Host Code Migration
In the 2018.3 release of the SDAccel environment there are some fundamental changes to how
the Xilinx Runtime (XRT) environment and shell(s) are installed. In previous releases, both the XRT
environment and shell(s) were automatically installed with the SDAccel environment. This has
implications on the setup required to compile the host code.

Refer to the SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238) for
details on the 2018.3 installation.

The XILINX_XRT environment variable is used to specify the location of the XRT environment
and must be set before you compile the host code. When the XRT environment has been
installed, the XILINX_XRT environment variable can be set by sourcing the /opt/
xilinx/xrt/setup.csh, or /opt/xilinx/xrt/setup.sh file as appropriate. Secondly,
ensure that your LD_LIBRARY_PATH variable also points to the XRT installation area.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 145Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=145

To compile, and run the host code, make sure you source the <SDX_INSTALL_DIR>/
settings64.csh, or <SDX_INSTALL_DIR>/settings64.sh file from the SDAccel
installation.

If you are using the GUI, it will automatically incorporate the new XRT location and generate the
makefile when you build your project.

However, if you are using your own custom makefile, you need to make the following changes:

• In your makefile, do not use the XILINX_SDX environment variable which was used in
prior releases.

• The XILINX_SDX variables and paths must be updated to the XILINX_XRT environment
variable:

○ Include directories are now specified as: -I${XILINX_XRT}/include and -I$
{XILINX_XRT}/include/CL

○ Library path is now: -L${XILINX_XRT}/lib

○ OpenCL™ library will be: libxilinxopencl.so. So, use -lxilinxopencl in your
makefile

Release Migration
After migrating the host code, build the code on the existing target platform using the new
release of the SDAccel development environment. Verify that you can run the project in the
SDAccel environment using the new release, and make sure it completes successfully, and meets
the timing requirements.

Issues which can occur when using a new release are:

• Changes to C libraries or library files.

• Changes to kernel path names.

• Changes to the HLS pragmas or pragma options embedded in the kernel code.

• Changes to C/C++/OpenCL compiler support.

• Changes to the performance of kernels: this may require adjustments to the pragmas in the
existing kernel code.

Address these issues using the same techniques you would use during the development of any
kernel. At this stage, ensure the throughput performance of the target platform using the new
release meets your requirements. If there are changes to the final timing (the maximum clock
frequency), you can address these when you have moved to the new target platform. This is
covered in Address Timing.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=146

Modifying Kernel Placement
The primary issue when targeting a new platform is ensuring that an existing kernel placement
will work in the new target platform. Each target platform has an FPGA defined by a shell. As
shown in the figure below, the shell(s) can be different.

• The shell of the original platform on the left has four SLRs, and the static region is spread
across all four SLRs.

• The shell of the target platform on the right has only three SLRs, and the static region is fully-
contained in SLR1.

Figure 71: Comparison of Shells of the Hardware Platform

Static
Region
(Shell)

Memory
Bank 3

SLR3

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Dynamic
Region

Static
Region
(Shell)

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Dynamic
Region

X22083-120418

This section explains how to modify the placement of the kernels.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=147

Implications of a New Hardware Platform
The figure below highlights the issue of kernel placement when migrating to a new target
platform, or shell. In the example below:

• Existing kernel, kernel_B, is too large to fit into SLR2 of the new target platform because most
of the SLR is consumed by the static region.

• The existing kernel, kernel_D, must be relocated to a new SLR because the new target
platform does not have four SLRs like the existing platform.

Figure 72: Migrating Platforms – Kernel Placement

Static
Region
(Shell)

Memory
Bank 3

SLR3

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Static
Region
(Shell)

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

kernel_D

kernel_C

kernel_B

kernel_A

kernel_D

kernel_C

kernel_B

kernel_A

X

X

X22084-120418

When migrating to a new platform, you need to take the following actions:

• Understand the resources available in each SLR of the new target platform, as documented in
the SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238).

• Understand the resources required by each kernel in the design.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 148Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=148

• Use the xocc linker options (--slr and --sp) to specify which SLR each kernel is placed in,
and which DDR bank each kernel connects to.

These items are addressed in the remainder of this section.

Determining Where to Place the Kernels
To determine where to place kernels, two pieces of information are required:

• Resources available in each SLR of the shell of the hardware platform (.dsa).

• Resources required for each kernel.

With these two pieces of information you will then determine which kernel or kernels can be
placed in each SLR of the shell.

Keep in mind when performing these calculation that 10% of the available resources can be used
by system infrastructure:

• Infrastructure logic can be used to connect a kernel to a DDR interface if it has to cross an
SLR boundary.

• In an FPGA, resources are also used for signal routing. It is never possible to use 100% of all
available resources in an FPGA because signal routing also requires resources.

Available SLR Resources

The resources available in each SLR provided by Xilinx can be found in the SDAccel Environment
Release Notes, Installation, and Licensing Guide (UG1238). The figure below shows an example
shell. In this example you can see:

• The SLR description indicates which SLR contains static and/or dynamic regions.

• The resources available in each SLR (LUTs, Registers, RAM, etc.) are listed.

This allows you to determine what resources are available in each SLR.

Table 19: SLR Resources of a Hardware Platform

Area SLR 0 SLR 1 SLR 2

SLR description Bottom of device; dedicated to
dynamic region.

Middle of device; shared by
dynamic and static region
resources.

Top of device; dedicated to
dynamic region.

Dynamic region
pblock name

pfa_top_i_dynamic_region_pblock
_dynamic_SLR0

pfa_top_i_dynamic_region_pblock
_dynamic_SLR1

pfa_top_i_dynamic_region_pblock
_dynamic_SLR2

Compute unit
placement
syntax

set_property
CONFIG.SLR_ASSIGNMENTS
SLR0[get_bd_cells<cu_name>]

set_property
CONFIG.SLR_ASSIGNMENTS
SLR1[get_bd_cells<cu_name>]

set_property
CONFIG.SLR_ASSIGNMENTS
SLR2[get_bd_cells<cu_name>]

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 149Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=149

Table 19: SLR Resources of a Hardware Platform (cont'd)

Area SLR 0 SLR 1 SLR 2

Global memory resources available in dynamic region

Memory
channels;
system port
name

bank0 (16 GB DDR4) bank1 (16 GB DDR4, in static
region)
bank2 (16 GB DDR4, in dynamic
region)

bank3 (16 GB DDR4)

Approximate available fabric resources in dynamic region

CLB LUT 388K 199K 388K

CLB Register 776K 399K 776K

Block RAM Tile 720 420 720

UltraRAM 320 160 320

DSP 2280 1320 2280

Kernel Resources

The resources for each kernel can be obtained from the System Estimate report.

The System Estimate report is available in the Assistant view after either the Hardware
Emulation or System run are complete. An example of this report is shown below.

Figure 73: System Estimate Report

• FF refers to the CLB Registers noted in the platform resources for each SLR.

• LUT refers to the CLB LUTs noted in the platform resources for each SLR.

• DSP refers to the DSPs noted in the platform resources for each SLR.

• BRAM refers to the block RAM Tile noted in the platform resources for each SLR.

This information can help you determine the proper SLR assignments for each kernel.

Assigning Kernels to SLRs
Each kernel in a design can be assigned to a SLR region using the xocc --slr command line
option to specify a placement file. When placing kernels, it is recommended to also assign the
specific DDR memory bank that the kernel will connect to using the xocc --sp command line
option. An example can be used to demonstrate these two command line options.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=150

The figure below shows an example where the existing target platform shell has four SLRs, and
the new target platform has a shell with three SLRs, and the static region is also structured
differently between the target platforms. In this migration example:

• Kernel_A is mapped to SLR0.

• Kernel_B, which no longer fits in SLR1, is remapped to SLR0, where there are available
resources.

• Kernel_C is mapped to SLR2.

• Kernel_D, is remapped to SLR2, where there are available resources.

The kernel mappings are illustrated in the figure below.

Figure 74: Mapping of Kernels Across SLRs

Static
Region
(Shell)

Memory
Bank 3

SLR3

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

Static
Region
(Shell)

Memory
Bank 2

SLR2

Memory
Bank 1

SLR1

Memory
Bank 0

SLR0

kernel_D

kernel_C

kernel_B

kernel_A

kernel_D

kernel_C

kernel_B

kernel_A

X22085-120418

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=151

Specifying Kernel Placement

For the above example, the kernels are placed using the following xocc command option.

xocc --slr kernel_A:SLR0 \
 --slr kernel_B:SLR0 \
 --slr kernel_C:SLR2 \
 --slr kernel_D:SLR2

With these command line options, each of the kernels is placed as shown in the figure above.

Specifying Kernel DDR Interfaces

You should also specify the kernel DDR memory interface when specifying kernel placements.
Specifying the DDR interface ensures the automatic pipelining of kernel connections to a DDR
interface in a different SLR. This ensures there is no degradation in timing which can reduce the
maximum clock frequency.

In this example, using the kernel placements in the above figure:

• Kernel_A is connected to Memory Bank 0.

• Kernel_B is connected to Memory Bank 1.

• Kernel_C is connected to Memory Bank 2.

• Kernel_D is connected to Memory Bank 1.

The following xocc command line performs these connections:

xocc --sp kernel_A.arg1:bank0 \
 --sp kernel_B.arg1:bank1 \
 --sp kernel_C.arg1:bank2 \
 --sp kernel_D.arg1:bank1

IMPORTANT! When using the --sp option to assign kernel ports to memory banks, you must specify the --sp
option for all interfaces/ports of the kernel. Refer to "Customization of DDR Bank to Kernel Connection" in the
SDAccel Environment Programmers Guide (UG1277) for more information.

Address Timing
Perform a system run and if it completes with no violations, then the migration is successful.

If timing has not been met you may need to specify some custom constraints to help meet
timing. Refer to UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) for more
information on meeting timing.

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 152Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=152

Custom Constraints
Custom constraints are passed to the Vivado® tools using the xocc -xp option for custom
placement and timing constraints. Custom Tcl constraints for floorplanning of the kernels will
need to be reviewed in the context of the new target platform (.dsa). For example, if a kernel
was moved to a different SLR in the new shell, the corresponding placement constraints for that
kernel will also need to be modified.

In general, timing is expected to be comparable between different target platforms that are based
on the 9P Virtex UltraScale device. Any custom Tcl constraints for timing closure will need to be
evaluated and might need to be modified for the new platform.

Additionally, any non-default options that are passed to xocc or to the Vivado tools using the
xocc --xp switch will need to be updated for the new shell.

Timing Closure Considerations
Design performance and timing closure can vary when moving across SDx™ releases or shell(s),
especially when one of the following conditions is true:

• Floorplan constraints were needed to close timing.

• Device or SLR resource utilization was higher than the typical guideline:

○ LUT utilization was higher than 70%

○ DSP, RAMB, and UltraRAM utilization was higher than 80%

○ FD utilization was higher than 50%

• High effort compilation strategies were needed to close timing.

The utilization guidelines provide a threshold above which the compilation of the design can take
longer, or performance can be lower than initially estimated. For larger designs which usually
require using more than one SLR, specify the kernel/DDR association on the xocc command line
while verifying that any floorplan constraint ensures the following:

• The utilization of each SLR is below the recommended guidelines.

• The utilization is balanced across SLRs if one type of hardware resource needs to be higher
than the guideline.

For designs with overall high utilization, increasing the amount of pipelining in the kernels, at the
cost of higher latency, can greatly help timing closure and achieving higher performance.

For quickly reviewing all aspects listed above, use the fail-fast reports generated throughout the
SDx flow when using one of the following two options:

• xocc –R 1

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=153

○ report_failfast is run at the end of each kernel synthesis step

○ report_fafailst is run after opt_design on the entire design

○ opt_design DCP is saved

• xocc –R 2

○ Same reports as with -R 1, plus:

○ report_failfast is post-placement for each SLR

○ Additional reports and intermediate DCPs are generated

All reports and DCPs can be found in the implementation directory, including kernel synthesis
reports:

<runDir>/_x/link/vivado/prj/prj.runs/impl_1

For more information about timing closure and the fail-fast report, see the UltraFast Design
Methodology Timing Closure Quick Reference Guide (UG1292).

Appendix E: Migrating to a New Target Platform

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 154Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1292-ultrafast-timing-closure-quick-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=154

Appendix F

JTAG Fallback for Private Debug
Network

RTL kernel and platform debug in a data center environment typically uses the XVC-over-PCIe®

connection due to the typical inaccessibility of the physical JTAG connector of the board. While
XVC-over-PCIe allows you to remotely debug your systems, certain debug scenarios such as AXI
interconnect system hangs can prevent you from accessing the design debug functionality that
depends on these PCIe/AXI features. Being able to debug these kinds of scenarios is especially
important for platform designers.

The JTAG Fallback feature is designed to provide access to debug networks that were previously
only accessible through XVC-over-PCIe. The JTAG Fallback feature can be enabled without having
to change the XVC-over-PCIe-based debug network in the platform design.

On the host side, when the Vivado® user connects through hw_server to a JTAG cable that is
connected to the physical JTAG pins of the device under test (DUT), hw_server disables the
XVC-over-PCIe pathway to the DUT. When you disconnect from the JTAG cable, hw_server re-
enables the XVC-over-PCIe pathway to the DUT.

JTAG Fallback Steps
Here are the steps required to enable JTAG Fallback:

1. Enable the JTAG Fallback feature of the Debug Bridge (AXI-to-BSCAN mode) master of the
debug network to which you want to provide JTAG access. This step enables a BSCAN slave
interface on this Debug Bridge instance.

2. Instantiate another Debug Bridge (BSCAN Primitive mode) in the static logic partition of the
platform design.

3. Connect the BSCAN master port of the Debug Bridge (BSCAN Primitive mode) from step 2 to
the BSCAN slave interface of the Debug Bridge (AXI-to-BSCAN mode) from step 1.

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=155

Appendix G

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
1. SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238)

Appendix G: Additional Resources and Legal Notices

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 156Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=156

2. SDAccel Environment Profiling and Optimization Guide (UG1207)

3. SDAccel Environment Getting Started Tutorial (UG1021)

4. SDAccel™ Development Environment web page

5. Vivado® Design Suite Documentation

6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

8. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

10. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

11. Vivado Design Suite Properties Reference Guide (UG912)

12. Khronos Group web page: Documentation for the OpenCL standard

13. Xilinx® Virtex® UltraScale+™ FPGA VCU1525 Acceleration Development Kit

14. Xilinx® Kintex® UltraScale™ FPGA KCU1500 Acceleration Development Kit

15. Xilinx® Alveo™ web page

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Appendix G: Additional Resources and Legal Notices

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 157Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug912-vivado-properties.pdf
http://www.khronos.org
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/alveo
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=157

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2015-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan,
Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. OpenCL and the OpenCL logo are trademarks of
Apple Inc. used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia
Interface are trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix G: Additional Resources and Legal Notices

UG1023 (v2019.1) May 22, 2019 www.xilinx.com
SDAccel Environment User Guide 158Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=158

	SDAccel Environment User Guide
	Revision History
	Table of Contents
	Ch. 1: SDAccel Introduction and Overview
	Software Acceleration with SDAccel
	SDAccel Execution Model
	SDAccel Build Process
	SDAccel Design Methodology
	Best Practices for Acceleration with SDAccel

	Ch. 2: Getting Started
	Ch. 3: Creating an SDAccel Project
	Using an SDx Workspace
	Creating an Application Project
	Understanding the SDx GUI
	SDx Assistant
	XOCC Linking and Compilation Options

	SDx Project Export and Import
	Exporting an SDx Project
	Importing an SDx Project

	Adding Sources

	Ch. 4: Programming for SDAccel
	Coding the Host Application
	Setting Up the Runtime
	Transferring Data to/from the FPGA Device
	Setting Up the Kernel

	Kernel Language Support
	Writing OpenCL C Kernels
	Writing C/C++ Kernels
	Pointer Arguments
	Scalars
	Streaming

	Writing RTL Kernels

	Ch. 5: Building the System
	Building the Host Application
	Compiling the Host Application
	Linking the Host Application

	Building the Hardware
	Build Target
	Compiling the Kernels
	Linking the Kernels
	Creating Multiple Instances of a Kernel
	Mapping Kernel Interfaces to Memory Resources
	Kernel to Kernel Streaming Connection
	Allocating Compute Units to SLRs
	Controlling Implementation Results
	Controlling Report Generation

	Build Targets
	Software Emulation
	Hardware Emulation
	System
	Specifying a Target

	Ch. 6: Profiling and Optimization
	Design Guidance
	System Estimate Report
	HLS Report
	Profile Summary Report
	Application Timeline
	Waveform View and Live Waveform Viewer
	Kernel SLR and DDR Memory Assignments
	Guidelines for Kernels that Access Multiple Memory Banks

	Ch. 7: Debugging Applications and Kernels
	Debugging Features and Techniques
	Debugging Flows
	Software Emulation
	Hardware Emulation
	System

	GNU Debugging
	Linux “dmesg”
	Kernel Waveform Viewer
	ILA

	Ch. 8: Building an Application via Command Line
	Building the Host
	Compiling
	Linking

	Building the Hardware
	Compiling
	Linking

	Using the sdaccel.ini File
	emconfigutil Settings

	Ch. 9: RTL Kernels
	Requirements for Using an RTL Design as an RTL Kernel
	Kernel Interface Requirements
	Kernel Software Requirements
	ap_ctrl_none
	ap_ctrl_hs
	ap_ctrl_chain

	Interrupt Registers
	Interrupt

	RTL Kernel Wizard
	Launching the RTL Kernel Wizard
	Using the RTL Kernel Wizard
	RTL Kernel Wizard General Settings
	Kernel Identification
	Kernel Options
	Clock and Reset Options

	Scalar Arguments
	Scalar Input Argument Definition

	Global Memory
	AXI Master Definition (Table Columns)
	Argument Definition

	Streaming Interfaces
	Stream Settings

	Summary
	Finalizing and Generating the Kernel from the RTL Wizard
	Interrupt

	RTL Kernel Wizard Vivado Project
	RTL Kernel Type Project Flow
	Block Design Kernel Type Project Flow
	Simulation Test Bench
	Out-of-Context Synthesis
	Software Model and Host Code Example
	Package RTL Kernel
	Modifying an Existing RTL Kernel Generated from the Wizard

	Manual Development Flow for RTL Kernels
	Packaging an RTL Block as Vivado IP
	Create Kernel Description XML File
	Package RTL Kernel into Xilinx Object File

	Designing RTL Recommendations
	Memory Performance Optimizations for AXI4 Interface
	Managing Clocks in an RTL Kernel
	Quality of Results Considerations
	Debug and Verification Considerations

	Ch. 10: HLS Kernel Design Integration into SDAccel
	Creating SDAccel Kernels with Vivado HLS
	Typical Vivado HLS Script for SDAccel Synthesis

	Incorporating Vivado HLS Kernel Projects into SDAccel
	Known Limitations

	Appx. A: Getting Started with Examples
	Installing Examples
	Using Local Copies

	Appx. B: Directory Structure
	Command Line
	GUI

	Appx. C: Useful Command Line Utilities
	Appx. D: Managing Platforms and Repositories
	Appx. E: Migrating to a New Target Platform
	Design Migration
	Understanding an FPGA Architecture
	Understanding Shells

	Migrating Releases
	Host Code Migration
	Release Migration

	Modifying Kernel Placement
	Implications of a New Hardware Platform
	Determining Where to Place the Kernels
	Assigning Kernels to SLRs

	Address Timing
	Custom Constraints
	Timing Closure Considerations

	Appx. F: JTAG Fallback for Private Debug Network
	JTAG Fallback Steps

	Appx. G: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

