
Vivado Design Suite
User Guide

 High-Level Synthesis

UG902 (v2012.2) July 25, 2012

High-Level Synthesis www.xilinx.com 2
UG902 (v2012.2) July 25, 2012

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce,
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions
of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application
requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.
[© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

7/25/12 1.0 Initial Xilinx release of the Vivado Design Suite User Guide: High-Level Synthesis.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

Table of Contents
Chapter 1: High-Level Synthesis Introduction

High-Level Synthesis Introduction . 7

Chapter 2: High-Level Synthesis User Guide
Introduction . 8
Introduction to High-Level Synthesis . 17
C Validation and Coding Styles . 48
Interface Management . 66
Design Optimization . 111
Function Optimizations . 121
Loop Optimizations . 133
Array Optimizations. 150
Logic Structure Optimizations . 164
Verification . 170
Exporting the RTL Design. 177
Exporting in IP-XACT Format . 179
Exporting To System Generator . 182
Synthesis Overview . 186
Understanding Operators, Cores & Directives. 189
Controlling Operators & Cores . 190
High-Level Synthesis Operators . 194
High-Level Synthesis Cores . 195

Chapter 3: High-Level Synthesis Operator and Core Guide
Synthesis Overview . 186
Understanding Operators . 189
Controlling Operators and Cores . 190
High-Level Synthesis Operators . 194
High-Level Synthesis Cores . 195
High-Level Synthesis www.xilinx.com 3
UG902 (2012.2) July 25, 2012

http://www.xilinx.com

Chapter 4: High-Level Synthesis Coding Style Guide
Preface . 200
Introduction . 200
C for Synthesis . 202
C Libraries . 240
Coding Styles for Modeling Hardware . 253
C++ for Synthesis . 286
SystemC Synthesis . 300
C Arbitrary Precision Types . 316
C++ Arbitrary Precision Types . 328
C++ Arbitrary Precision Fixed Point Types . 344

Chapter 5: High-Level Synthesis
Command Reference Guide
Using High-Level Synthesis Commands . 363
High-Level Synthesis Commands . 369
add_file . 369
autoimpl . 370
cosim_design . 372
autosyn . 374
close_project . 374
close_solution . 375
config_array_partition. 375
config_bind. 377
config_dataflow . 378
config_interface . 379
config_rtl . 382
config_schedule . 383
create_clock . 384
delete_project . 385
delete_solution . 386
elaborate . 386
help . 387
list_core . 388
list_part. 390
open_project . 391
open_solution . 392
set_clock_uncertainty . 393
High-Level Synthesis www.xilinx.com 4
UG902 (2012.2) July 25, 2012

http://www.xilinx.com

set_directive_allocation . 394
set_directive_array_map . 395
set_directive_array_partition . 397
set_directive_array_reshape . 399
set_directive_array_stream . 400
set_directive_clock . 402
set_directive_dataflow . 403
set_directive_data_pack . 405
set_directive_dependence . 406
set_directive_expression_balance . 408
set_directive_function_instantiate . 409
set_directive_inline . 410
set_directive_interface . 412
set_directive_latency. 415
set_directive_loop_flatten . 417
set_directive_loop_merge . 418
set_directive_loop_tripcount . 419
set_directive_loop_unroll . 420
set_directive_occurrence . 422
set_directive_pipeline . 424
set_directive_protocol. 425
set_directive_resource . 426
set_directive_top . 428
set_directive_unroll. 429
set_part. 431
set_top . 432

Appendix A: Additional Resources
Xilinx Resources . 433
Solution Centers. 433
References . 433
High-Level Synthesis www.xilinx.com 5
UG902 (2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis www.xilinx.com 7
UG902 (v2012.2) July 25, 2012

Chapter 1

High-Level Synthesis Introduction

High-Level Synthesis Introduction
This guide explains different concepts associated with High-Level Synthesis (HLS) and gives
a basic overview of High-Level Synthesis and the Xilinx® High-Level Synthesis tool.

• High-Level Synthesis transforms a C, C++ or SystemC design specification into a
Register Transfer Level (RTL) implementation which in turn can be synthesized into a
Xilinx Field Programmable Gate Array (FPGA).

• Coding style that explains how you can write C code (including C++ and SystemC) for
implementation on a Xilinx® FPGA device.

• High-Level Synthesis Reference information.

http://www.xilinx.com

Chapter 2

High-Level Synthesis User Guide

Introduction
The introduction explains different concepts associated with High-Level Synthesis (HLS) and
gives a basic overview of High-Level Synthesis, the Xilinx® HLS tool.

Functional Abstraction Level

Definitions

The FPGA design community has moved through a few abstraction levels, to manage the
complexity of the designs. Each new abstraction level hides some of the complexity of a
design implementation step, offering productivity at the cost of less visibility in the
challenges associated with the lower abstraction level:

• A transistor layout database hides the challenges in mask making and wafer processing.
The focus of the layout abstraction layer is to respect Design Rule Checks (DRC) which
models the basic layout.

• For FPGA design, a netlist avoids a detailed layout effort: the netlist is constructed with
instances from a pre-built library. The focus of the netlist abstraction layer is to define
the Boolean functionality of the design with appropriate area, performance and power.

• A Register Transfer Level (RTL) description captures the desired functionality by
defining datapath and logic between boundaries of registers. RTL synthesis creates a
netlist of Boolean functions to implement the design. The focus of the RTL abstraction
layer is to define a model for the hardware which is functionally correct.

• A functional specification removes the need to the define register boundaries (and the
specific logic required between them) to implement the desired algorithm. The focus of
the designer is only on specifying the desired functionality.

As with previous moves up the abstraction level, using a functional specification with
high-level synthesis (HLS) to automatically create the RTL design provides productivity
benefits in both verif ication and design optimization.
High-Level Synthesis www.xilinx.com 8
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• The signif icant benefits of acceleration in simulation time by using a functional C
language based specif ication and the resultant earlier detection of design errors has
been embraced for quite a while.

• High Level Synthesis shortens the previous manual RTL creation process and avoids
translation errors by automating the creation of the RTL from the functional
specification.

• High Level Synthesis automates the optimization of the RTL architecture, allowing
multiple architectures to quickly and easily be evaluated before committing to an
optimum solution.

C-based Specification

C-based entry is the most popular mechanism to create functional specif ications. Currently,
ANSI-C (with C99), C++ and SystemC are standards deployed by many system architects to
define the functionality of systems intended to be implemented on an FPGA.

High-Level Synthesis provides comprehensive support for C, C++ and SystemC, the IEEE
standard (IEEE-1666) used for modeling and concurrent simulation of hardware. The
constructs which cannot be synthesized are those which unbounded at elaboration time
and for which a finite sized description cannot be determined.

Native C data types live within the classic boundaries of 8-bit, 16-bit, 32-bit and 64-bit
words (char, short, int, long, long long). Neither ANSI-C nor C++ has built-in data types to
deal with bit-accurate calculations, where the exact bit-width of the data type is used (and
which results in optimally sized hardware). High-Level Synthesis provides support for
arbitrary precision data types in both C and C++. High-Level Synthesis fully supports the
arbitrary precision data types provided by SystemC.

High-Level Synthesis (HLS)
The synthesis of C into RTL employs many advanced transformations working on all aspects
of the design area and performance. High-Level Synthesis provides synthesizable support
for a large subset of all three input C standards (C, C++ and SystemC) enabling it to
synthesize the C code with minimal modifications.

High-Level Synthesis performs two distinct types of synthesis upon the design:

• Algorithm Synthesis takes the content of the functions, and synthesizes the functional
statements into RTL statements over a number of clock cycles.

• Interface Synthesis transforms the function arguments (or parameters) into RTL ports
with specific timing protocols, allowing the design to communicate with other designs
in the system.

° Interface synthesis can be performed on global variables, top-level function
arguments and the return value of the top-level function.
High-Level Synthesis www.xilinx.com 9
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
° The types of available interfaces are:

- Wire

- Register

- One-way & two-way handshakes

- Bus

- FIFO

- RAM

° In addition, a function level protocol can be synthesized to the top-level function.
The function level protocol includes signals which control when the function can
start operation and indicate when it has completed.

High-Level Synthesis synthesis is executed in multiple steps. The effect of interface
synthesis impacts what is achievable in algorithm synthesis and vice versa. Like the
numerous decisions made during any manual RTL design, the number of available
implementations and optimizations is large and the combinations of how they impact each
other is very large. High-Level Synthesis abstracts the user away from these details and
allows the user to productively get to the best design in the shortest time.

To better understand how High-Level Synthesis is able to abstract the designer away from
the implementation details, it is recommended to review the remainder of this section
which explains some of the fundamental concepts of HLS and type of optimizations
High-Level Synthesis provides:

• Control and Datapath Extraction

• Scheduling & Binding

• Arbitrary Precision Data Types

• Optimizations

• Design Constraints

Control and Datapath Extraction

The f irst thing which is performed during HLS is to extract the control and datapath inferred
by the code. Figure 2-1 shows a small example on how this is performed.

The control functionality is provided by the loops and conditional branches in the code.
Figure 2-1 shows how the control behavior can be extracted from the code. Each time the
function requires an entry or exit from a loop, it is equivalent to entering or exiting a state
in an RTL Finite State Machine (FSM)2.

In Figure 2-1 it is assumed that all operations take a single cycle (or state) to complete. In
reality, timing delays and the clock frequency may require more cycles to complete the
operations, for example state 1 may expand to states 11, 12 and 13, the control logic may
High-Level Synthesis www.xilinx.com 10
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
be impacted by the IO protocols inferred by interface synthesis and High-Level Synthesis
may create a more complex and optimized state machine.

The datapath extraction is more straightforward and can be determined by unrolling all the
loops and evaluating the conditional statements in the design.

The final datapath implementation in the RTL is unlikely to be as simple as that shown in
Figure 2-1: High-Level Synthesis will easily determine that the first adder is not required
since the f inal shift operation is a power of 2 and requires no hardware. More complex
optimizations and decisions will be made when the design is scheduled.

Scheduling & Binding

Scheduling and binding are the processes at the heart of high-level synthesis. High-Level
Synthesis will determine during the scheduling process in which cycle operations will occur.
The decisions made during scheduling take into account, among other things, the clock
frequency and clock uncertainty, timing information from the device technology library, as
well as area, latency and throughput directives.

For the same example code shown in Figure 2-1, multiple RTL implementations are
possible. Figure 2-2 shows just 3 possible implementations.

1. Using 4 clock cycles means a single adder and multiplier can be used, as High-Level
Synthesis can share the adder and multiplier across clock cycles: 1 adder, 1 multiplier
and 4 clock cycles to complete.

X-Ref Target - Figure 2-1

Figure 2-1: Control and Data Extraction
High-Level Synthesis www.xilinx.com 11
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
2. If analysis of the target technology timing indicates the adder chain can complete in 1
clock cycle, a design which uses 3 adders and 4 multipliers but which f inish in 1 clock
cycle can be realized (faster but larger than option 1).

3. Take 2 clock cycles to finish but use only 2 adders and 2 multipliers (smaller than option
2 but faster than option 1).

High-Level Synthesis quickly creates the most optimum implementation based on its own
default behavior and the constraints and directives specif ied by the user. Later chapters
explain how to set constraints and directives to quickly arrive at the most ideal solution for
the specif ic requirements.

Binding is the process that determines which hardware resource, or core, is used for each
schedule operation. For example, High-Level Synthesis will automatically determine if an
adder and subtractor will used or if a single adder-subtractor can be used for both
operations.

Since the decisions in the binding process can influence the scheduling of operations, for
example, using a pipelined multiplier instead of a standard combinational multiplier,
binding decisions are considered during scheduling.

Arbitrary Precision Data Types

Native C data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL operations
(corresponding to hardware) support arbitrary widths. HLS needs a mechanism to allow the

X-Ref Target - Figure 2-2

Figure 2-2: Scheduling
High-Level Synthesis www.xilinx.com 12
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
specification of arbitrary precision bit-widths or the RTL design may use 32-bit multipliers
when only 17-bit multipliers are required (not an issue to a C program, but a major issue in
an RTL design).

High-Level Synthesis provides arbitrary precision integer and fixed-point data types
(Table 2-1).

These arbitrary types are supported by functions which provide hardware like operations,
such as bit-slicing, concatenation and range-selection. Refer to the section “Arbitrary
Precision Data Types" section in this User Guide.

Optimizations

High-Level Synthesis can perform a number of optimizations on the design to produce high
quality RTL satisfying the performance and area goals. This section introduces a few of the
optimization techniques to give an overview of the capabilities.

Pipelining is an optimization which allows one of the major performance advantages of
hardware over software, concurrent or parallel operation, to be automatically implemented
in the RTL design.

A C program operates in a sequential manner. Given the function "top" shown on the
left-hand side of Figure 2-3, every sub-function from “func_A” to “func_C” must complete its
operation before “func_A” can once again execute.

Table 2-1: Integer Data Types

Language Integer Data Type Required Header

C [u]int<precision> (1024 bits) #include "ap_cint.h"

C++ ap_[u]int<W> (1024 bits)
ap_[u]fixed<W,I,Q,O,N>

#include "ap_int.h"
#include "ap_fixed.h"

System C sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)
sc_[u]f ixed<W,I,Q,O,N>

#include "systemc.h"

#include "sc_f ixed.h"
High-Level Synthesis www.xilinx.com 13
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
Even if “func_A” is ready to process the next set of operations as soon as it is f inished,
functions "func_B" and "func_C" must complete execution before “func_A” can once again
begin operation.

As function “sub_func” on the right-hand side of Figure 2-3 shows, it is the same at the
operator level: the f irst operation cannot re-execute until the last is complete.

The sequential nature of the C language, or in other words its lack of concurrency, puts
artif icial dependencies on operations which must wait their turn for execution. High-Level
Synthesis provides the ability to automatically pipeline both functions and loops to ensure
the RTL design does not suffer from such limitations.

By default, High-Level Synthesis will seek to execute these operations in parallel and reduce
the overall latency of the design. In addition to this, High-Level Synthesis can improve the
throughput by pipelining these operations, allowing different executions of the function or
different loop iterations to overlap in time.

Figure 2-4 shows the result when High-Level Synthesis is used to pipeline the sub-functions
and/or operations in a loop.

X-Ref Target - Figure 2-3

Figure 2-3: Functions & Loops Without Pipelining
High-Level Synthesis www.xilinx.com 14
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• At the function level, dataflow optimization allows the sub-functions (“func_A”, “func_B”
and “func_C”) to execute as soon as data is available.

° Function “func_A” starts it’s next operation “before func_C” has completed its f irst
execution.

° Compared with the previous implementation in Figure 2-3, the 8 clock cycles it took
to execute the function is now only 5 cycles and “func_A” starts a new operation
every 3 clock cycles instead of every 8.

• Pipelining the loop allows the operations in a loop to execute concurrently.

° Figure 2-4 shows how loop pipelining can also positively performance compared
with Figure 2-3: the loop completes in only 4 clock cycles and processes an new
input (RD operation) every clock cycle instead of waiting for 3 clock cycles.

Another example of a design optimization which can be automatically implemented by
High-Level Synthesis is array partitioning.

Within C language descriptions, arrays are used as a convenient way to group similar
elements together. When the elements of arrays are synthesized as storage elements (that
is, when the value must be maintained across clock cycles) these array elements can be
grouped at the RTL in RAMs or they can be broken into their constituent parts and
implemented as individual registers.

• If the elements of an array are accessed one at a time, an eff icient implementation in
hardware is to keep them grouped together and mapped into a RAM.

X-Ref Target - Figure 2-4

Figure 2-4: Functions & Loops With Pipelining
High-Level Synthesis www.xilinx.com 15
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
• If multiple elements of an array are required simultaneously, it may be more
advantageous for performance to implement them as individual registers: allowing
parallel access to the data.

Implementing an array of storage elements as individual registers may help performance
but this loses the substantial benefits of RAMs: area eff icient in all technologies and they
are readily available in the device as BRAMs (separate from the LUTs and registers).

High-Level Synthesis provides a variety of techniques to ensure arrays are implemented in
the most optimal manner:

• Partitioning large arrays into multiple smaller arrays, which can be mapped to different
instances of RAM (allowing multiple reads or writes in the same cycle).

• Enabling multiple small arrays to be implemented onto the same RAM resource.

The application of a few simple directives provides for a large number of different
implementations, from pipelining to the manipulation of arrays, ensuring that the most
optimal implementation for the particular design can be quickly and easily found.

Design Constraints

Finally, in addition to the clock period and clock uncertainty, High-Level Synthesis offers a
number of constraints including the ability to:

• Specify a specific latency across functions, loops and regions.

• Specify a limit on the number of resources used.

• Override the inherent or implied dependencies in the code and permit operations (for
example, a memory read before write)

These constrains can be applied using High-Level Synthesis directives to create a design
with the desired attributes.

Designing with High-Level Synthesis is a HLS flow allows the designer to quickly implement
an initial architecture, which will be defined by the dependencies in the code and the
default High-Level Synthesis interpretation of C language constructs, and then easily direct
the design with directives towards the desired high performance implementation.
High-Level Synthesis www.xilinx.com 16
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Introduction to High-Level Synthesis

High-Level Synthesis Overview
As shown in Figure 2-5, High-Level Synthesis accepts as input, a C-based design
description, and directives and constraints, specif ied using the Graphical User Interface
(GUI) or a Tcl batch script. A technology library specifying the timing and area details of all
supported Xilinx device is built-in and is not required to be supplied.

High-Level Synthesis outputs RTL design f iles in Verilog, VHDL and SystemC. In addition
verif ication and implementation scripts, used to automated the RTL verif ication and RTL
synthesis steps are also created.

This section provides an overview of these various inputs and outputs.

X-Ref Target - Figure 2-5

Figure 2-5: High-Level Synthesis Use Model
High-Level Synthesis www.xilinx.com 17
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Design Files

When referring to C, or C-based design, High-Level Synthesis covers all 3 standards:

• ANSI-C enhanced with a data type for arbitrary integer precision.

• C++ enhanced with classes for arbitrary integer precision and f ixed point precision.

• SystemC (IEEE-1666)

The documentation will elaborate on how to simulate the input specification, including
explanations of the provided arbitrary precision enhancements.

The C-based input can include a test bench. If provided, a C test bench can be re-used to
verify the output RTL: improving designer productivity by removing the need to create RTL
test benches for RTL verif ication. High-Level Synthesis supports multiple input files and
while the recommended flow separates the test bench from the design to be synthesized in
separate f iles, this is not required.

Device Technology Library

A device technology library models the area and timing of each supported Xilinx device,
enabling the optimization engine to make the appropriate trade-offs. The device
technology library is built-in to High-Level Synthesis and does not need to be supplied.

Directives and Constraints

The directives and constraints are specified in the High-Level Synthesis GUI or with the
Tcl-based command language and drive the optimization engine towards the desired
performance goals and RTL architecture.

RTL Output

The RTL output is written automatically after the successful completion of synthesis.
High-Level Synthesis supports three hardware description language standards:

• VHDL(IEEE 1076-2000)

• Verilog(IEEE 1364-2001)

• SystemC(IEEE 1666-2006 -Version 2.2-)

Note: The SystemC output from High-Level Synthesis is the design implementation at the Register
Transfer Level (RTL).
High-Level Synthesis www.xilinx.com 18
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Simulation Output (RTL co-simulation)

High-Level Synthesis creates the scripts required to verify the generated RTL through
co-simulation with the original test bench and a variety of RTL simulators. The following RTL
simulators are supported:

• ModelSim

• VCS

• OSCI SystemC

The SystemC output can be verif ied using the built-in SystemC kernel and requires not third
part simulator or license. The supported HDL simulators require a license from the
appropriate vendor.

Implementation Output

The scripts and constraint f iles required for processing the design through RTL synthesis
and P&R on the FPGA are provided. These scripts ensure the RTL synthesis process can be
completed in a push-button manner from the High-Level Synthesis GUI.

Using High-Level Synthesis
This section provides an introduction to High-Level Synthesis, explaining how to invoke
High-Level Synthesis, create a project, use solutions to manage the RTL implementation and
apply directives for optimization. After this introduction, details on a tutorial example are
provided.

High-Level Synthesis can be invoked as a Graphical User Interface (GUI) or as a Command
Line Interface (CLI) which accepts Tcl commands in interactive or batch mode.

High-Level Synthesis Graphical User Interface

Windows

To invoke High-Level Synthesis on a PC Windows platform double-click on the desktop icon
as shown in Figure 2-6.

X-Ref Target - Figure 2-6

Figure 2-6: Vivado HLS GUI Icon
High-Level Synthesis www.xilinx.com 19
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Linux

To invoke High-Level Synthesis on a Linux platform execute the following command at the
Linux command prompt.

$ vivado_hls

The High-Level Synthesis GUI invokes as shown in Figure 2-7.

The Getting Started options in Figure 2-7 allow the following tasks to be performed:

• Create New Project

° This will launch the project setup wizard.

X-Ref Target - Figure 2-7

Figure 2-7: GUI Mode
High-Level Synthesis www.xilinx.com 20
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
• Open project

° Navigate to an existing project.

• Open Recent Project

° Select from a list of recent projects.

The Documentation tasks available directly from the Welcome Screen (Figure 2-7) are:

• Browse Examples

° Open High-Level Synthesis examples. These can also be found in the examples
directory in the High-Level Synthesis installation area.

• Release Note Guide

° Open the Release Notes for this version of software.

• User Guide

° Open the High-Level Synthesis User Guide.

• High-Level Synthesis Tutorial

° Select a tutorial to open.

High-Level Synthesis Command Line Interface

On Windows the High-Level Synthesis Command Line Interface (CLI) can be invoked from
the start menu: Xilinx Design Tools > vivado 2012.2 > Vivado HLS Command
Prompt.

On Windows and Linux, using the -i option with the vivado_hls command will open
High-Level Synthesis in interactive mode. High-Level Synthesis will wait for Tcl commands
to be entered.

$ vivado_hls -i [-l <log_file>]

vivado_hls>

By default, High-Level Synthesis creates an vivado_hls.log f ile in the current directory.
To specify a different f ile, the -1 <log_file> option can be used.

X-Ref Target - Figure 2-8

Figure 2-8: Vivado HLS CLI Icon
High-Level Synthesis www.xilinx.com 21
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
High-Level Synthesis supports auto-completion: press the <TAB> key after the initial few
letters of a command and High-Level Synthesis will offer a list of candidates that match the
command.

vivado_hls> open<TAB>
open
open_project
open_solution

The High-Level Synthesis commands have built-in help, which can be accessed with the
help command in High-Level Synthesis. The command name can still be provided through
auto-complete:

vivado_hls> help <command>

Type the exit command to quit interactive mode, and return to the shell prompt:

vivado_hls> exit
$

Commands also can be embedded in a Tcl script and executed in batch mode with the -f
<script_file> option.

$ vivado_hls -f script.tcl

To further help with script automation High-Level Synthesis provides options which will
return details on the environment in which it is running, namely the -version option
which returns the version number of High-Level Synthesis, -system which returns
operating system High-Level Synthesis is running on, the -machine option which returns
the current machine architecture and -root_dir which returns the name of the directory
where High-Level Synthesis is installed.

Using the CLI Shell on Windows

On the Windows OS, the CLI shell is implemented using the Minimalist GNU for Windows
(minGW) environment which allows both standard Windows DOS commands to be used
and/or a subset of Linux commands to be used.

Figure 2-9 shows that both (or either) the Linux ls command and the DOS dir command
can be used to list the contents of a directory.
High-Level Synthesis www.xilinx.com 22
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Be aware that not all Linux commands and behaviors are supported in the minGW
environment. The following represent some know common differences in support:

• The Linux which command is not supported.

• Linux paths in Makefile will be automatically expanded to minGW paths. In all Makefile,
replace any Linux style pathnames assignments such as FOO := :/ with versions where
the pathname is quoted such as FOO := “:/” to prevent any path substitutions.

Creating an High-Level Synthesis Project

The first step in using High-Level Synthesis is to create a new project or open an existing
project. As shown in Figure 2-7 when the High-Level Synthesis GUI invokes the menu
commands for performing these operations are File > New Project and File > Open Project.

When File > New Project is selected the High-Level Synthesis project wizard invokes. The
f irst screen of the project wizard asks for details on the project specification as shown in
Figure 2-10.

The fields for entering the project specif ication are:

• Project Name: In addition to being the project name this will be the name of the
directory when the project details are stored. The use of a f ile extension, such as the

X-Ref Target - Figure 2-9

Figure 2-9: High-Level Synthesis CLI Icon
High-Level Synthesis www.xilinx.com 23
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
.prj extension shown in Figure 2-10, makes the directory easily identif iable as a project
directory but is not a requirement.

• Location: This is when the project will be stored.

• Top Level: If the top-level module is a SystemC SC_MODULE, select SystemC.
Otherwise select C/C++ (the default). If the source files use SystemC types but the
top-level is not an SC_MODULE, select C/C++.

Pressing the Next > button will move the wizard to the second screen where details of the
project C sources f iles can be entered (Figure 2-11).

The name of the top-level function to be synthesized should be specified.

Note: This is not required when the project is specified as SystemC.

Use the Add Files… button to add the source code files to the project.

X-Ref Target - Figure 2-10

Figure 2-10: Project Specif ication
High-Level Synthesis www.xilinx.com 24
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The Edit CFLAGS button allows any C compiler flags required to successfully compile the
source f iles, to be added to the project.

Examples of C compiler flags include macro specif ications such as –DMACRO_1 which
defines macro MACRO_1 during compilation, -fnested-functions which is required for any
design which contains nested functions and –I/project/source/headers which provides the
search path for any associated header f iles. Any headers which exist in the local directory
(as specified by the Location in Figure 2-10) are automatically found and included.

The next window in the project wizard allows the files associated with the test bench to be
added to the project.

The C test bench used to validate the C algorithm can be reused to verify the output RTL.
High-Level Synthesis automatically creates the adapters and wrappers to instantiate the RTL
design into the C test bench and verify the RTL through co-simulation of C and HDL,
negating the requirement to create an RTL test bench.

X-Ref Target - Figure 2-11

Figure 2-11: Project Source Files
High-Level Synthesis www.xilinx.com 25
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
As with the C source files, the Add Files… button is used to add the C test bench and the Edit
CFLAGS button to include any C compiler options.

In addition to the C source f iles, all f iles read by the test bench should be added to the
project. In the example shown in Figure 2-12, the test bench opens f ile in.dat to supply
input stimuli to the design and file out.golden.dat to read the expected results. Since the
test bench accesses these f iles, both are (and must be) included in the project.

If the test bench f iles exist in a directory, the entire directory may be included rather than
the individual f iles.

If there is no C test bench, there is no requirement to enter any information here and the
Next> button will open the f inal window of the project wizard which allows the details for
the first solution to be specified (Figure 2-13)

X-Ref Target - Figure 2-12

Figure 2-12: Project Test Bench Files
High-Level Synthesis www.xilinx.com 26
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The fields in Figure 2-13 allow the following details to be specif ied:

• Solution Name: High-Level Synthesis provides the initial default name solution1 but
any name can be specif ied for the solution.

• Clock : The clock period is specif ied using units of ns. The clock period used for
synthesis is the clock period minus the clock uncertainty. High-Level Synthesis uses the
timing information in the technology library to create the RTL design. The clock
uncertainty value allows a user controllable margin to account for any increases in net
delays due to RTL synthesis, place and route. If not specif ied in ns, the clock uncertainty
defaults to 12.5% of the clock period.

• Part: Press to select the appropriate technology (Figure 2-14).

X-Ref Target - Figure 2-13

Figure 2-13: Initial Solution Settings
High-Level Synthesis www.xilinx.com 27
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Selecting Finish will open the project as shown in Figure 2-15.

X-Ref Target - Figure 2-14

Figure 2-14: Part Selection
High-Level Synthesis www.xilinx.com 28
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
All the Tcl commands for creating the project are stored in the script.tcl f ile within the
solution. Double-clicking on the script.tcl f ile in the Explorer pane (right-hand side of
Figure 2-15) opens the f ile in the Information pane, as shown in Figure 2-15.

For users wishing to develop Tcl batch scripts, the script.tcl f ile is an ideal starting point. The
containers shown in the Explorer pane can be found in the project directory: simply copy
the file from solution directory.

The primary commands for using High-Level Synthesis are provided in the toolbar
(Figure 2-16). Project control ensures only commands which can be currently executed are
highlighted. For example, synthesis must be performed before RTL simulation can be
executed and thus the simulation toolbar button will remain grey until synthesis completes.

X-Ref Target - Figure 2-15

Figure 2-15: New Project
High-Level Synthesis www.xilinx.com 29
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The primary command buttons, shown within the red box in Figure 2-16, are (in left to right
order):

• Create a New Project

• Create a New Solution

• Edit the existing Project Settings

• Edit the existing Solution Settings

• Compare Solution reports

• Cleanup the C simulation environment.

• Build the C/C++/SystemC executable.

• Run the C/C++/SystemC executable.

• Run the C/C++/SystemC executable in debug mode.

• Run Synthesize

• Run RTL Simulation

• Export RTL Design

Each of the buttons on the tool bar has an equivalent command in the menus.

The f irst step after creating a project is to validate the C function. Pressing the Build toolbar
button will compile the C design (debug or optimized release version), as shown in
Figure 2-17.

X-Ref Target - Figure 2-16

Figure 2-16: Tool Bar
High-Level Synthesis www.xilinx.com 30
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The build can then be run or optionally viewed in the debug environment. If the Debug
toolbar button is used the debug environment can be opened (Figure 2-18) and the debug
step buttons (red box in Figure 2-18) to step through the code and analyze its operation.

X-Ref Target - Figure 2-17

Figure 2-17: C Compiled with Build
High-Level Synthesis www.xilinx.com 31
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The next step is to execute synthesis. When synthesis completes the synthesis report is
available, it will open automatically in the information pane, and results can be analyzed.
(Figure 2-19)

X-Ref Target - Figure 2-18

Figure 2-18: C Debug Environments
High-Level Synthesis www.xilinx.com 32
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The report provides details on both the performance and area of the RTL design. The
outline tab can be used to navigate through the report. Reports are created for each
function in the hierarchy (unless the function was inlined: an optimization discussed in later
chapters). The report for the top-level function provides details for the entire design.

Table 2-2 explains the categories in the synthesis report.

X-Ref Target - Figure 2-19

Figure 2-19: Synthesis Report
High-Level Synthesis www.xilinx.com 33
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Table 2-2: Synthesis Report Catagories

Category Sub-Catagory Description

Report Version --- Details on the version of High-Level
Synthesis used to create the results.

General Information --- Project name, solution name and
when the solution was executed.

User Assignments --- Details on the technology, target
device attributes and the target
clock period.

Performance Estimates Summary of timing analysis The estimate of the fastest
achievable clock frequency. This is
an estimate because logic synthesis
and P and R are still to be
performed.

Summary of overall latency The latency of the design: the
number of clock cycles from the
start of execution until the f inal
output is written.
If the latency of loops can vary, the
best, average and worse case
latencies will be different.
If the design is pipelined this
section will show the throughput
(Without pipelining the throughput
is the same as the latency: the next
input will be read when the f inal
output is written).

Summary of loop latency This shows the latency of individual
loops in the design.
The trip count is the number of
iterations of the loop.
The loop latency is the latency to
complete all iterations of the loop.

Area Estimates Summary This shows the resources (LUTS,
Flip-Flops, DSP48s etc.) used to
implement the design.
The sub-categories are explained in
the Details section of this table.

Utilization Shows the utilization of resources
for the selected device.
High-Level Synthesis www.xilinx.com 34
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The most typical use of High-Level Synthesis is to create an initial design, then perform
optimizations to meet the desired area and performance goals. Solutions offer a convenient

Details: Component The resources specif ied here are
used by the components
(sub-blocks) within the top-level
design. Components are created by
sub-functions in the design. Unless
inlined, each function becomes it’s
own level of hierarchy.
In this example there are no
sub-blocks: the design has one level
of hierarchy.

Details: Expression This category shows the area used
by any expressions such as
multipliers, adders, comparators
etc. at the current level of hierarchy.

Details: FIFO The resources listed here are those
used in the implementation of FIFOs
at this level of the hierarchy.

Details: Memory The resources listed here are those
used in the implementation of
memories at this level of the
hierarchy.

Details: Multiplexors All the resources used to implement
multiplexors at this level of
hierarchy are shown here.

Details: Registers This category shows the register
resources used at this level of
hierarchy.

Hierarchical Multiplexor Count A summary of the multiplexors
throughput the hierarchy.

Power Estimate Summary The expected power used by the
device.
At this level of abstraction the
power is an estimate and should be
used for comparing the efficiently
of different solutions.

Hierarchical Register Count The estimated power used by
resisters throughput the design
hierarchy.

Interface Summary Interface This section shows the details on
type of interfaces used for the
function and the ports: port names,
directions, bit-widths, etc.

Table 2-2: Synthesis Report Catagories

Category Sub-Catagory Description
High-Level Synthesis www.xilinx.com 35
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
way to ensure the results from earlier synthesis rounds can be both preserved and
compared.

Using Solutions

The New Solution tool bar button (Figure 2-16) or the menu Project > New Solution can be
used to create a new solution. This opens the Solution Wizard (Figure 2-20).
High-Level Synthesis www.xilinx.com 36
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The solution setting window has the same options as the f inal window in the New Project
wizard (Figure 2-15) plus two additional options which allow directives and customs
commands which were applied to a solution to be conveniently copied to the new solution,
where they may be modif ied or removed. The next section explains how directives can be
added to solutions.

X-Ref Target - Figure 2-20

Figure 2-20: Solution Wizard
High-Level Synthesis www.xilinx.com 37
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Using The High-Level Synthesis GUI

Before discussing how optimizations are performed, it is worth spending some time to
review how the High-Level Synthesis GUI displays information and how it can be
customized.

In some cases the default setting of the High-Level Synthesis GUI may prevent certain
information from being shown. This relates to the following:

• Information defined in header f iles.

• Comments in the source written in a language other than English.

Resolving Header File Information

By default, the High-Level Synthesis GUI does not automatically parse all header files to
resolve all coding constructs. The symptoms of this can be:

• Annotations in the code viewer which say a variable or value is unknown or cannot be
defined.

• Variables in the code which do not appear in the directives window.

In both cases, the definitions for the unknown values and missing variables will be defined
in a header f ile (a f ile with extension .h or .hpp). The solution to resolving the missing
information is to edit the project setting using menu item Project > Project Settings… and
enable the Parse All Header Files as shown in Figure 2-21.
High-Level Synthesis www.xilinx.com 38
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Note: When option Parse all header f iles is selected, the High-Level Synthesis GUI will continuously
pole all header f iles for any potential changes. This may result in a reduced response time from the
GUI as CPU cycles are used to check the header f iles.

Resolving Comments in the Source Code

In some localizations, non-English comments in the source file may appear as strange
characters. This can be corrected by:

1. Selecting the project in the Explorer Pane.

2. Right-click and select the appropriate language encoding using Properties > Resource.
In the section titled Text File Encoding select Other and choose appropriate encoding
from the drop-down menu.

X-Ref Target - Figure 2-21

Figure 2-21: Enabling Header File Parsing
High-Level Synthesis www.xilinx.com 39
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Customizing the GUI Behavior

The behavior of the High-Level Synthesis GUI can be customized using the menu Windows
> Preferences and new user defined tool settings saved.

As an example on how detailed customizations can be performed using the Preferences
menu, the following change will be made: The default setting for the key combination
CTRL-TAB, is to make the active tab in the Information Pane toggle between the source code
and the header f ile. This will be changed to make the CTRL-TAB combination make each tab
in turn the active tab.

• In the Preferences menu, sub-menu General > Keys allows the Command value Toggle
Source/Header to be selected and the CTRL-TAB combination removed by using the
Unbind Command key.

• Selecting Next Tab in the Command column, placing the cursor in the Binding dialog
box and pressing the CTRL key and then the TAB key, will cause the operation CTRL-TAB
to be associated with making the Next Tab active.

Reviewing the sub-menus in the Preferences menu allows every aspect of the High-Level
Synthesis GUI environment to be customized to ensure the highest levels of productivity.

Using Directives to Optimize

Directives can be used to perform various optimizations on the design. This section explains
how optimizations are added to the solution. The various optimizations are discussed in
detail in later chapters of this User Guide

The first step in adding optimization directives is to open the source code in the
Information pane.

As shown in Figure 2-22, expand the source container, located at the top of the Explorer
pane, and double-click on the source f ile to open it for editing in the Information pane.
High-Level Synthesis www.xilinx.com 40
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
With the source code active in the Information pane, the directives tab on the right-hand
side becomes active.

Directives Tab

The directives tab contains all the objects in the opened source code upon which directives
can be applied.

• Functions

• Interfaces

° Interfaces are the arguments to the top-level function: these will become ports on
the RTL design and directives can be specif ied on these to specify the IO protocol
ports.

X-Ref Target - Figure 2-22

Figure 2-22: Source and Directive
High-Level Synthesis www.xilinx.com 41
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
• Arrays

• Loops

• Regions

° A region is any named region of code surrounded by braces.

Note: The objects shown in the directives tab are only those from the f ile currently shown in the
information pane (current active f ile): not all f iles in the design.

The following example shows the outline of some source code, highlighting each of the
scopes and objects upon which directives can be applied and optimizations performed.

int foo_sub_A (int mem_1[64],..) {
 for_A: for (int n = 0; n < 3; ++n) {

...
 }
 ...
}
int foo_sub_B (int mem_1[64], int i) {
 for_B:for (int n = 0; n < 4; ++n) {

...
 }
 ...
}
void foo_top (int mem_1[64], int mem_2[64]) {
 ...
for_top: for (int i = 0; i < 64; ++i) {
 my_label: {

...
 }
}

}

Figure 2-23 shows how this example code is represented in the directives tab.
High-Level Synthesis www.xilinx.com 42
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
Applying Directives

Directives are applied by selecting an object in the directives tab and clicking with the
right-hand button of mouse to open the directives window, as shown in Figure 2-24.

The drop-down menu allows the appropriate directives to be added. The example in
Figure 2-24 shows the DATAFLOW directive being added. In addition to the options for the
directive (discussed in later chapters) the directives window allows the directive to be
inserted into the directive f ile as a Tcl command or to be inserted directly into the code as
a pragma.

Note: To apply directives to objects in a header f ile, such as a class:

To add a directive to a class member or global variable, open the Directives Editor on a function that
uses the variable and enter the variable name manually in Directives Editor.

To add a directive to a local scalar, open the Directives Editor on a function that contains the variable.
and enter the variable manually in Directives Editor.

X-Ref Target - Figure 2-23

Figure 2-23: GUI Directives Objects
High-Level Synthesis www.xilinx.com 43
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
When the Into Directive File option is selected in the directives dialog box, the directive is
written to f ile directives.tcl in the solution directory. The two advantages for this approach
are:

• Each solution can have its own directives.

• Users wishing to create Tcl batch f iles can simply copy the directive from the
directives.tcl f ile

Figure 2-25 shows the directive being added to the directives.tcl f ile and shows the
resulting directives.tcl opened in the information pane.

X-Ref Target - Figure 2-24

Figure 2-24: Adding Directives
High-Level Synthesis www.xilinx.com 44
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The alternative option for directives is to add a pragma to the code. The advantage to this
option is that the directive is permanently applied to the code and no additional f iles are
required. This is an ideal approach for releasing IP and for directives which will never
changed based on the technology target, such as the TRIPCOUNT directive.

Figure 2-26 shows the directive from the previous example being applied as a pragma, by
selecting option Source File in the Destination section of Directives Editor, and the resultant
source code open in the information pane.

X-Ref Target - Figure 2-25

Figure 2-25: Adding Tcl Directives
High-Level Synthesis www.xilinx.com 45
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
In both cases, the directive will be applied and the optimization performed when synthesis
is executed.

The only disadvantage to using pragmas is that the directive is now permanently embedded
with the source code and will be used for every new solution.

First Example
A tutorial introduction on using High-Level Synthesis is available via the help menu.

The tutorial uses a design example to provide a good understanding of the following topics
associated with using High-Level Synthesis:

• Perform validation of the C design

• Create an High-Level Synthesis project

• Perform Synthesis & Design Analysis

• Address Bit-accurate design

• Perform Design Optimization

• Understand how to perform RTL verif ication and export

• Review using High-Level Synthesis with Tcl scripts

X-Ref Target - Figure 2-26

Figure 2-26: Adding Pragma Directives
High-Level Synthesis www.xilinx.com 46
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction to High-Level Synthesis
The example design for use with the tutorial can be found in the examples directory in the
High-Level Synthesis installation area.
High-Level Synthesis www.xilinx.com 47
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
C Validation and Coding Styles
Verif ication in an HLS flow can be separated into two discrete processes. Pre-synthesis
validation which validates the C program correctly implements the required functionality
and post-synthesis verif ication which verif ies the RTL is correct. It is not uncommon for
both processes to be referred to as simulation: C simulation and RTL simulation.

Pre-Synthesis Validation
Prior to synthesis, the function to be synthesized should be verif ied using a test bench. An
ideal test bench has the following attributes:

• The test bench is self-checking.

• The test bench is in a separate file from the design (not a requirement, as discussed
next, but advised).

Having the test bench and the function to be synthesized in separate files keeps a clean
separation between the process of simulation and synthesis. If the test bench is in the same
file as the function to be synthesized, there is a minor modification to the general
High-Level Synthesis flow: the f ile with the test bench and the function to be synthesized
should be added to the High-Level Synthesis project as a source f ile and as a test bench file.

Similarly, if the file with the function to be synthesized has functions above which are not in
the test bench f ile, the file(s) with the functions above the top-level function must added to
the project as a test bench file.

Typically the entire process of compiling C designs for pre-synthesis validation can be
performed inside High-Level Synthesis as shown in Figure 2-17 and Figure 2-18. The C
validation can however also be performed at the command line in the High-Level Synthesis
Command Prompt.

C Validation outside the High-Level Synthesis GUI

Given a top-level design f ile "foo_top.c" and test bench f ile "tb_foo_top.c" the following
commands can be used to compile and execute the test bench:

$ gcc -o foo_top foo_top.c tb_foo_top.c
$./foo_top

C++ Validation outside the High-Level Synthesis GUI

Given a top-level C++ design f ile "foo_top.cpp" and test bench file "tb_foo_top.cpp" the
following commands can be used to compile and execute the test bench:
High-Level Synthesis www.xilinx.com 48
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
$ g++ -o foo_top foo_top.cpp tb_foo_top.cpp
$./foo_top

SystemC Validation outside the High-Level Synthesis GUI

Given a top-level design f ile "foo_top.cpp" and test bench file "tb_foo_top.cpp" the
following commands can be used to compile and execute the test bench (the command
options for the f irst gcc command are shown split over multiple lines for clarity but should
appear on the same command line):

$ g++ -o foo_top foo_top.cpp tb_foo_top.cpp
 -I$vivado_hls_ROOT/Linux_x86_64/tools/systemc/include/
 -lsystemc
 -L$vivado_hls_ROOT/Linux_x86_64/tools/systemc/lib-linux64
$./foo_top

Since SystemC is being used the "systemc.h" header f ile must be included in all
compilations.

Using a non-standard version of GCC

The version of gcc should be used to compile the C code prior to synthesis. High-Level
Synthesis will create RTL to match the functionality of this version of gcc and this is the
version which will be used to co-simulate the C test bench with the RTL.

High-Level Synthesis can be instructed to use a different version of gcc for RTL simulation
by setting the environment variable AP_SIM_GCC prior to invoking High-Level Synthesis.
The variable should be defined with the path to the directory which contains the local
version of gcc.

Visual Studio Compiler

Microsoft Visual Studio Compiler (MVSC) can be used to compile the code prior to using
High-Level Synthesis.

When the functions are to be compiled with High-Level Synthesis header f iles, such as
those used with arbitrary precision integers (these are discussed in section “Arbitrary
Precision Data Types” later in this chapter) there are special considerations to be aware of.

Compile C

C functions using arbitrary precision integers, as defined by High-Level Synthesis header
f ile “ap_cint.h” must be compiled with APCC as discussed in the section “Arbitrary Precision
Types with C”. MVSC cannot be used for C designs which use High-Level Synthesis arbitrary
precision types.
High-Level Synthesis www.xilinx.com 49
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
Compiling C++

C++ functions which include High-Level Synthesis header files must have the location of
the header file specified in MVSC.

To specify the location of the High-Level Synthesis header f iles in MVSC,

1. Click Project

2. Click Properties

3. In the panel that opens, select C/C++

4. Select general

5. Click on additional include directories and add the path as show in Figure 2-27.

Unsupported C Language Constructs
While High-Level Synthesis is able to synthesize a large subset of all three C modeling
standards (C, C++ and SystemC) there are some constructs which cannot be synthesized.
This section outlines the constructs which cannot be synthesized.

In order to be synthesized, the C function must contain the entire functionality of the design
(none of the functionality can be performed by system calls to the OS), the C constructs

X-Ref Target - Figure 2-27

Figure 2-27: Setting High-Level Synthesis Include Path in Visual Studio
High-Level Synthesis www.xilinx.com 50
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
must be of a f ixed/bounded size and the implementation of those constructs unambiguous.
The following constructs fail to satisfy one or more of these characteristics.

System Calls

System calls cannot be synthesized since they are actions which related to performing some
task upon the operating system in which the C program is running. A few examples show
how system calls cannot be synthesized into anything within the hardware design itself.

• The printf() call prints information to the system console: this is useful during C
simulation but cannot be a feature of the f inal hardware design and as such cannot be
synthesized.

• The fprintf() call accesses files in the system upon which the program is executing.
Again, this cannot be performed by the final hardware: access to external data must be
performed via the top-level function arguments or to global variables.

Other examples of such calls are getc(), time(), sleep() etc. all of which make calls to the
operating system.

In general, most system calls cannot be synthesized. Some commonly used system calls are
automatically ignored by High-Level Synthesis (e.g. printf and cout) but in general they
should be removed from consideration by synthesis by using the __SYNTHESIS__ macro.

Some system calls, such as those which allocate memory for the program to access, are part
of the functionality of the design and must be both removed and transformed to maintain
the functionality.

Dynamic Memory & Functions

Any system calls which manage memory allocation within the system, for example malloc(),
alloc() and free(), must be removed from the design code prior to synthesis.

The reason for this is that they are implying resources which are created and released
during runtime: to be able to synthesize a hardware implementation the design must be
fully self-contained, specifying all required resources.

However, since they also typically used to define the functionality of the design, they must
be transformed into equivalent bounded representation. The following examples show how
dynamic memory allocations are transformed into equivalent bounded representations.

#ifndef __SYNTHESIS__
// If synthesis is not required, use this code
long long x = malloc (sizeof(long long));
int* arr = malloc (64 * sizeof(int));

#else
// For synthesis, use this code
static long long x;
int arr[64];

#end
High-Level Synthesis www.xilinx.com 51
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
The recommended approach is to make the above changes and re-execute the C simulation
to verify the simulation with the synthesizable code is identical to the original (by adding
the option -D__SYNTHESIS__ to the gcc or g++ compilation).

Similarly dynamic virtual function calls are not synthesizable. The following cannot be
synthesized since it create new function at run time.

Class A {
public:
 virtual void bar() {…};
};

void fun(A* a) {
 a->bar();
}
A* a = 0;
if (base)
A= new A();

else
A = new B();

foo(a);

Pointer Casting

Pointer casting is not supported in the general case but is supported between native C
types. The following is not synthesizable and must be transformed as shown in the example,
where values are assigned using the original type.

struct {
 short first;
 short second;
} pair;
#ifndef __SYNTHESIS__
// If synthesis is not required, use this code
(unsigned)pair = -1U;

#else
// For synthesis, use this code
pair.first = -1U;
pair.second = -1U;

#end

Recursive Functions

To create a hardware implementation the C function, High-Level Synthesis must be able to
determine the resources which be required to implement the functionality. Recursive
functions cannot be synthesize since the recursion may be endless (and have no bounds).

unsigned foo (unsigned n)

{
 if (n == 0 || n == 1) return 1;
 return (foo(n-2) + foo(n-1));
}
High-Level Synthesis www.xilinx.com 52
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
Tail recursion is synthesizable. In this example, the recursion will reach a maximum limit and
is therefore synthesizable.

unsigned foo (unsigned m, unsigned n)
{
 if (m == 0) return n;
 if (n == 0) return m;
 return foo(n, m%n);
}

Standard Template Libraries

Many of the C++ Standard Template Libraries (STLs) contain function recursion and use
dynamic memory allocation. For this reason the STLs cannot be synthesized.

The solution with STLs is to create a local function with identical functionality which does
not exhibit these characteristics.

Arbitrary Precision Data Types
C-based native data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL busses
(corresponding to hardware) support arbitrary lengths. HLS needs a mechanism to allow
the specif ication of arbitrary precision bit-width and not rely on the artif icial boundaries of
native C data types: if a 17-bit multiplier is required the user should not be force to
implement this with a 32-bit multiplier.

High-Level Synthesis provides arbitrary precision data types for C, C++ and supports the
arbitrary precision data types which are part of SystemC.

The advantage of arbitrary precision data types is that they allow the C code to be updated
to use variables with smaller bit-widths and then for the C simulation to be re-executed to
validate the functionality remains identical.

The __SYNTHESIS__ macro can be used to add arbitrary precision data types to the source
code while retaining the original types for reference:

void foo {
ifdef __SYNTHESIS__
// use bit accurate type
int8 a,

#else
// Original Source
int a,

#endif
 ...
};

High-Level Synthesis provides both integer and f ixed point data types.
High-Level Synthesis www.xilinx.com 53
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
Integer Data Types

High-Level Synthesis provides arbitrary precision integer data types (Table 2-3) which
manage the value of the integer numbers within the boundaries of the specified width.

Arbitrary Precision Types with C

For the C language, the header f ile “ap_cint.h” defines the arbitrary precision integer data
types [u]int. The “ap_cint.h” f ile is located in $VIVADO_HLS_ROOT/include (where
$VIVADO_HLS_ROOT is the High-Level Synthesis installation directory).

To use arbitrary precision integer data types in a C function,

• Add header f ile "ap_cint.h" to the source code.

• Change the bit types to intN or uintN, where N is a bit-size from 1 to 1024.

• Compile using the apcc compiler

° Select the Use APCC for Compiling C Compiler option in the GUI.

° Use apcc in place of gcc at the command prompt

The following example shows how the header f ile is added and the two variables are
implemented to use 9-bit integer and 10-bit unsigned integer types:

#include ap_cint.h

void foo_top (…) {

 int9 var1; // 9-bit
 uint10 var2; // 10-bit unsigned

Note: Standard C compilers will not correctly simulate C arbitrary precision types and the
High-Level Synthesis apcc utility must be used.

Standard C compilers such as gcc will compile the attributes used in the header f ile to
define the bit sizes, but they do know what they means. The final executable created by
standard C compiler will issue messages such as the following

$VIVADO_HLS_ROOT/include/etc/autopilot_dt.def:1036: warning: bit-width attribute
directive ignored

Table 2-3: Integer Data Types

Language Integer Data Type Required Header

C [u]int<precision> (1024 bits) apcc none
gcc #include “ap_cin.h”

C++ ap_[u]int<W> (1024 bits) #include “ap_int.h”

System C sc_[u]int<W> (64 bits)
sc_[u]bigint<W> (512 bits)

#include “systemc.h”
High-Level Synthesis www.xilinx.com 54
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
and proceed to use native C data types for the simulation and producing results which do
not reflect the bit-accurate behavior of the code.

High-Level Synthesis includes a compiler, apcc, which overcomes this limitation and allows
the function to be compiled and verif ied in a bit-accurate manner.

The apcc compiler can be enabled in the project setting using menu Project > Project
Settings > Simulation and select Use APCC for Compiling C Files as shown in Figure 2-28.

Note: When option Use APCC for Compiling C Files is selected, the design can no longer be
analyzed in the debugger: this is a side-effect of using arbitrary procession type in C code.

For functions specif ied using C++ or SystemC there are no such limitations when using arbitrary
precision types. This limitation only exists with C, not C++ or SystemC.

APCC should not be used to compile C++ or SystemC functions (it will be ignored if selected).

X-Ref Target - Figure 2-28

Figure 2-28: Enabling the APCC Compiler
High-Level Synthesis www.xilinx.com 55
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
If compiling at the command prompt, the apcc compiler should be used at the shell prompt:
it is command line compatible with gcc and will process the arbitrary precision arithmetic
correctly (respecting the boundaries imposed by the bit-width information).

When apcc is used the High-Level Synthesis header f iles are automatically included (no
need to use –I$VIVADO_HLS_ROOT/include) and the design will simulate with the correct
bit-accurate behavior.

$ apcc -o foo_top foo_top.c tb_foo_top.c
$./foo_top

Arbitrary Precision Types with C++

For the C++ language ap_[u]int data types, the header f ile “ap_int.h” defines the arbitrary
precision integer data. The “ap_int.h” f ile is located at $VIVADO_HLS_ROOT/include (where
$VIVADO_HLS_ROOT is the High-Level Synthesis installation directory).

To use arbitrary precision integer data types in a C++ function:

• Add header f ile "ap_int.h" to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header f ile is added and two variables have been
implemented to use 9-bit integer and 10-bit unsigned integer types:

#include ap_int.h

void foo_top (…) {

 ap_int<9> var1; // 9-bit
 ap_uint<10> var2; // 10-bit unsigned

If arbitrary precision integers are used, the simulation must include the path to header file
"ap_int.h":

$ g++ -o foo_top foo_top.cpp tb_foo_top.cpp -I$VIVADO_HLS_ROOT/include

Arbitrary Precision Types with SystemC

The arbitrary precision types used by SystemC are defined in the "systemc.h" header f ile
which is required to be included in all SystemC designs. They include the SystemC sc_int<>,
sc_uint<>, sc_bigint<> and sc_biguint<> types.

The path to the SystemC header file must be included when simulating SystemC designs.
Given a top-level design f ile "foo_top.cpp" and test bench file "tb_foo_top.cpp" the
following commands can be used to compile and execute the test bench on a Linux system
(the command options for the f irst gcc command are shown split over multiple lines for
clarity but should appear on the same command line):

$ g++ -o foo_top foo_top.cpp tb_foo_top.cpp
 -I$VIVADO_HLS_ROOT]\Win_x86\tools\systemc\include
High-Level Synthesis www.xilinx.com 56
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
 -lsystemc
 -L$VIVADO_HLS_ROOT\Win_x86\tools\systemc\lib
$./foo_top

Fixed Point Data Types

The use of f ixed-point types is of particular importance when using HLS since the behavior
of the C++/SystemC simulations performed using f ixed-point data types will match that of
the resulting hardware created by synthesis, allowing analysis of the effects of bit-accuracy,
quantization and overflow to be analyzed with fast C-level simulation.

High-Level Synthesis offers arbitrary precision f ixed point data types (Table 2-4) for use
with C++ and SystemC functions.

These data types manage the value of floating point numbers within the boundaries of a
specified total width and integer width (Figure 2-29).

Table 2-4: Fixed Point Data Types

Language Fixed Point Data Type Required Header

C -- Not Applicable -- -- Not Applicable --

C++ ap_[u]f ixed<W,I,Q,O,N> #include “ap_fixed.h”

System C sc_[u]fixed<W,I,Q,O,N> #define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”

X-Ref Target - Figure 2-29

Figure 2-29: Fixed Point Data Type
High-Level Synthesis www.xilinx.com 57
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
Table 2-5 provides a brief overview of operations supported by fixed point types.

ap_fixed

In this example the High-Level Synthesis ap_fixed type is used to define an 18-bit variable
with 6 bits representing the numbers above the decimal point and 12-bits representing the
value below the decimal point. The variable is specified as signed, rounding is specif ied as
the quantization mode and the default wrap-around mode is used for overflow.

#include <ap_fixed.h>
...
ap_fixed<18,6,AP_RND > my_type;
...

Table 2-5: Fixed Point Identif ier Summary

Identifier Description

W

I

Word length in bits

The number of bits used to represent the integer value (the number of bits above the
decimal point)

Q Quantization mode dictates the
behavior when greater
precision is generated than can
be defined by smallest
fractional bit in the variable
used to store the result.
SystemC Types:
SC_RND
SC_RND_ZERO
SC_RND_MIN_INF
AP_RND_INF
AP_RND_CONV
AP_TRN
AP_TRN_ZERO

AP_Fixed Types:
AP_RND
AP_RND_ZERO
AP_RND_MIN_INF
AP_RND_INF
AP_RND_CONV
AP_TRN
AP_TRN_ZERO

Description:
Rounding to plus infinity
Rounding to zero
Rounding to minus
infinity
Rounding to infinity
Convergent rounding
Truncation to minus
infinity
Truncation to zero
(default)

O The number of saturation bits in
wrap modes.
SystemC Types:
SC_SAT
SC_SAT_ZERO
SC_SAT_SYM
SC_WRAP
SC_WRAP_SM

AP_SAT
AP_SAT_ZERO
AP_SAT_SYM
AP_WRAP
AP_WRAP_SM

Saturation
Saturation to zero
Symmetrical saturation
Wrap around (default)
Sign magnitude wrap
around

N The number of saturation bits in wrap modes.
High-Level Synthesis www.xilinx.com 58
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
sc_fixed

In this sc_f ixed example a 22-bit variable is shown with 21 bits representing the numbers
above the decimal point: enabling only a minimum accuracy of 0.5. Rounding to zero is
used, such that any result less than 0.5 will round to 0 and saturation is specified.

#define SC_INCLUDE_FX
#define SC_FX_EXCLUDE_OTHER
#include <systemc.h>
...
sc_fixed<22,21,SC_RND_ZERO,SC_SAT> my_type;
...

Floating Point Types
To synthesize any design, High-Level Synthesis coverts the operations in the design into
operators which are then mapped to cores from the technology library. For floating point
designs not all operators have an associate floating point core in the library.

If there is no core in the technology library which can be mapped to, High-Level Synthesis
synthesis will halt synthesis with a message that there is no library core to map to. A
complete list of core in the High-Level Synthesis library is provided in the “High-Level
Synthesis Library Guide”.

Floating Point Arithmetic

In order to use a floating point core from the library, all arguments of the operation must be
floating point argument. The following example code:

A = B/2;

Must be converted to:

A =B * 0.5;

In order for a floating point operator to be used (for the multiplication). High-Level
Synthesis will not automatically convert the constant data type.

The standard arithmetic operations (+, -, *, / and %) are supported by floating point cores
in the technology library. Simply defining a variable as a float and then using it with the
standard arithmetic operators will result in a floating point core being used in the
implementation.

Floating Point Math Functions

For C/C++ math functions, the function must be declared. For example, to use the sqrtf()
function the following must be added to the code:

#include <math.h>
extern “C” float sqrtf(float);
High-Level Synthesis www.xilinx.com 59
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
The sqrtf() function can then be used with floating point variables.

Multi-Access Pointer Interfaces
Designs which use pointers in the argument list of the top-level function need special
consideration when multiple accesses are performed using the pointers. Multiple accesses
occur when a pointer is read from or written to, multiple times in the same function.

In the following example, (input) pointer “d_i” is read from four times and (output) “d_o” is
written to twice.

#include "fifo.h"

void fifo (int *d_o, int *d_i) {
 static int acc = 0;
 int cnt;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;

}

When multi-access pointers are used, the following must be performed:

• It is a requirement to use the volatile qualif ier.

• Specify the number of accesses on the port interface if verifying the RTL with
cosim_design.

• Be sure to validate the C prior to synthesis to confirm the intent and the C model is
correct

Understanding Volatile Interfaces

The code above is written with intent that input pointer "d_i" and output pointer "d_o" will
be implemented in RTL as interfaces with handshakes (such as FIFO or handshake ports)
which will ensure:

• Upstream producer blocks will supply new data each time a read is performed on RTL
port "d_i".

• Downstream consumer blocks will accept new data each time there is a write to RTL
port "d_o".

However, when this code is compiled by C compilers, the multiple accesses to each pointer
will be reduced to a single access: as far as the compiler is concerned, there is no indication
that the data on "d_i" changes during the execution of the function and only the final write
High-Level Synthesis www.xilinx.com 60
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
to "d_o" is relevant (the other writes will be over-written by the time the function
completes).

High-Level Synthesis will match the behavior of the C compiler and optimize these reads
and writes into a single read operation and a single write operation.

This design can be made to work as intended at the RTL by using the volatile qualif ier in the
code, as shown in the next example.

#include "fifo.h"

void fifo (volatile int *d_o, volatile int *d_i) {
 static int acc = 0;
 int cnt;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;

}

The volatile qualif ier tells the C compiler, and High-Level Synthesis, to make no
assumptions about the pointer accesses (the data is volatile and may change and the
compiler should therefore not optimize pointer accesses).

This example results in an RTL design which will perform the expected four reads on input
port "d_i" and two writes to output port "d_o".

However, even if the volatile keyword is used, this coding style (accessing a pointer multiple
times) introduces two additional issues associated with the test bench and verif ication.

It can easily result in:

• RTL cosim_design simulation failures.

• Modeling and Simulation mismatches.

RTL cosim_design simulation failures

The following test bench can be used to validate the algorithm above. This test bench
models four executions of the function, or four transactions, to highlight the operation of
the code.

Note: This test bench is not self-checking: the self-checking code is omitted for clarity.

#include <stdio.h>

#include "foo.h"

int main () {
High-Level Synthesis www.xilinx.com 61
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
 int d_o, d_i;

 for (d_i=0;d_i<4;d_i++) {
 foo(&d_o,&d_i);
 printf("%d %d\n", d_i, d_o);
 }

 return 0;
}

The header file “foo.h” used with this example would be the following, where the function
is simply declared, and allowing function “foo” to be defined in a separate f ile:

#ifndef FOO_H_
#define FOO_H_
void foo (volatile int *d_o, volatile int *d_i);

#endif

The issue with this test bench is that it only supplies a single value to the function each
transaction.

In each transaction, the test bench will apply a single value, but since the volatile keyword
is used, the function foo will perform four reads and hence will read the same value four
times.

The test bench will validate the algorithm with the following results, showing the output is
the accumulation of four input reads plus the accumulation (or output) from the previous
transaction:

Di Do
0 0
1 4
2 12
3 24

When RTL verif ication is performed the volatile qualif ier tells High-Level Synthesis to create
RTL which performs four reads and if synthesized with a handshake interface, this will
ensure the interface signals for new data each time port “d_i” is read.

To verify the RTL with cosim_design, High-Level Synthesis creates a SystemC wrapper with
adapters around the RTL and instantiates this (C code) wrapper into the existing C test
bench, as shown in Figure 2-30.
High-Level Synthesis www.xilinx.com 62
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
The wrapper created by High-Level Synthesis models any required handshakes on the RTL
interface and as such must ensure the input values to the DUT, presented by the test bench,
are ready when required by the RTL design. This requires storage.

High-Level Synthesis cannot determine from this type of function interface, using pointers,
how many reads or writes are performed. Neither of the arguments in the function interface
tells High-Level Synthesis how many values will be read or written.

void foo (volatile int *d_o, volatile int *d_i)

Unless something on the interface informs High-Level Synthesis as to how many values are
required, such the maximum size of an array, High-Level Synthesis will assume a single value
and only create simulation wrappers for a single input and single output.

If the RTL ports are actually reading or writing multiple values, this will result in the RTL
cosim_design simulation stalling: since the wrapper is modeling the producer and
consumer blocks which will be connected to the RTL design, the RTL design will try to read
or write the next value but the handshake interfaces will tell the design to wait, since there
is currently no value to read or no space to write.

When multi-access pointers are used at the interface, High-Level Synthesis must be
informed of the maximum number of reads or writes on the interface. When specifying the
interface, use the depth option on the INTERFACE directive as shown in Figure 2-33.

X-Ref Target - Figure 2-30

Figure 2-30: Cosim_design Wrapper Overview
High-Level Synthesis www.xilinx.com 63
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
In the above example, argument/port “d_i” is set to have a (FIFO interface) depth of 4,
ensuring that cosim_design will provide enough values to correctly verify the RTL.

Simulation Mismatches and C Modeling

Once the ports are defined to have a maximum depth and cosim_design can be used to
verify the RTL crated from the function, the next issue will be a simulation mismatch.

The RTL input interface will not supply the same four values in each transaction as the test
bench does. At the RT level, the wrapper (modeling the RTL producer block the design will
eventually be connected to) will supply a new value each time one is requested by the
handshake interface. It therefore supply 4 values in the f irst transaction of this example: 0
the value supplied by the test bench and then three undefined values , x, y and z since the
test bench only provided one value to the RTL wrapper.

There will be a simulation mismatch between the C and RTL.

Note: The issue here is the inability of this C code and test bench to correctly model multiple a
situation where multiple reads or writes is required.

At the start of this example, the function was verif ied by reading the same four values from
the test bench. This was done with the assumption that at the RT level, the data would be
updated but somehow things would work out. This was the mistake.

X-Ref Target - Figure 2-31

Figure 2-31: Interface Directive Dialog: Depth Option
High-Level Synthesis www.xilinx.com 64
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Validation and Coding Styles
This example was not contrived. It is something seen all too often with C function to be
synthesized into hardware: the code is often written and synthesized but it does not
execute as expected and a great deal of time is wasted debugging RTL.

Note: Always validate the C code with a C simulation prior to synthesis.

The limitations of this coding style can be overcome by re-writing the code.

The code shown in the next example has been updated to ensure it will read four unique
values from the test bench. This is achieved by having the code access explicit values
defined in the test bench. Since the pointer accesses are sequential and start at location
zero, a streaming interface type can be used during synthesis.

#include "foo.h"

void foo (volatile int *d_o, volatile int *d_i) {
 static int acc = 0;
 int cnt;

 acc += *d_i;
 acc += *(d_i+1);
 *d_o = acc;
 acc += *(d_i+2);
 acc += *(d_i+3);
 *(d_o+1) = acc;

}

The test bench is updated to model the fact that the function will read four unique values
in each transaction. (Note, to keep the example small and easy to understand, this new test
bench only models a single transaction and the self-checking code is omitted).

#include "foo.h"

int main () {
 int d_o[4], d_i[4];
 int i;

 for (i=0;i<4;i++) {
 d_i[i]=i;
 }

 foo(d_o,d_i);

 printf("Di Do\n");
 for (i=0;i<4;i++) {
 if (i<2)
 printf("%d %d\n", d_i[i], d_o[i]);
 else
 printf("%d\n", d_i[i]);
 }

return 0;
}

High-Level Synthesis www.xilinx.com 65
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The test bench will validate the algorithm with the following results, showing there are two
outputs from a single transaction and they are an accumulation of the f irst two input reads,
plus an accumulation of the next two input reads and the previous accumulation:

Di Do
0 1
1 6
2
3

This design will synthesize and the RTL will be verif ied by cosim_design if the port interfaces
are set to a depth of four (port “d_i”) and two (port “d_o”).

However, this updated example suffers from an additional limitation. Each time the function
is called, it will start reading data from position 0 in the external array (d_i[0] in the test
bench). This function requires that all data be available to read when the function is called

Streams can be used to work around this limitation. AP_STREAMs are a coding construct
provided by High-Level Synthesis, which allows streaming data, and hence applications
which use streaming data, to be more easily modeled in C.

Since, as has been seen in this example, streaming data is not easily modeled in C but is
often used in hardware designs (video, communications, etc.), AP_STREAMs may be the
most intuitive way to model the hardware in C. These are discussed in the “Coding with
Streams” section, discussed next.

Interface Management
In C based design, all input and output operations are performed, in zero time, through
formal function arguments. In an RTL design these same input and output operations must
be performed via a port in the design interface and must operate using a specific IO
(input-output) protocol.

High-Level Synthesis supports two solutions for specifying the type of IO protocol used:

• Interface synthesis, where the port interface is automatically created based on efficient,
safe and standard interfaces.

• Manual interface specification where the interface behavior is explicitly described in
the input source code. This allows any arbitrary IO protocol to be used, hence allows
the function to interface with any hardware resource.

° This solution is more typical with SystemC designs, where the IO control signals are
specified in the interface declaration and their behavior specif ied in the code.

° High-Level Synthesis also supports this mode of interface specif ication for C and
C++ designs. This is detailed later in this chapter.
High-Level Synthesis www.xilinx.com 66
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
Interface Synthesis
When a C program is synthesized into an RTL design, the C arguments are synthesized into
RTL data ports. Interface synthesis allows an interface protocol to be automatically added to
the RTL data port. The interface protocol could be as simple as an output valid signal
indicating when an output is ready or it could include all the ports required to interface with
a BRAM, such that the date could be read from or written to a BRAM.

The type of interfaces which can be created by interface synthesis depend on the C
argument. For example, for an output valid signal to be created by interface synthesis, the
C argument must be a point or C++ reference, since pass-by-value scalars can only be
inputs. Figure 2-32 summarizes the types of interface which are supported for each type of
C function argument.

Note: Interface synthesis is not generally supported for SystemC designs.

In SystemC designs all IO protocol signals are declared in the interface declaration and their behavior
is fully specif ied in the code.

The exception to this is for memory interfaces, as discussed in “SystemC Interface Synthesis”.

If no interface type is specif ied for the port, the interface will be implemented with the
default interface as detailed in Figure 2-32. If an unsupported interface type is specif ied, as
also shown in Figure 2-32, High-Level Synthesis will issue a warning message and revert to
the default interface type.
High-Level Synthesis www.xilinx.com 67
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The notes in Figure 2-32 are explained as follows:

1. The concept of inputs and outputs is somewhat different between C functions and RTL
blocks. The following convention is used here for the purposes of explaining interface
synthesis:

• A function argument which is read and never written to, like an RTL input port, is
referred to as an input (I).

• A function argument which is both read and written to, like an RTL inout port, is
referred to as an inout (IO)

• A function argument which is written to but never read, like an RTL output port, is
referred to as an output (O)

X-Ref Target - Figure 2-32

Figure 2-32: Data Type and Interface Synthesis Support
High-Level Synthesis www.xilinx.com 68
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
2. A standard pass-by-value argument cannot be used to output a value to the calling
function. The value of an argument such as this can only be returned (or output from the
function) by the function return statement.

• Any pass-by-value function argument which is written to but never read, (like an RTL
output port) will be synthesized as an RTL input port with no fanout.

• Any pass-by-value function argument which is written to and read, (like an RTL inout
port) will be synthesized as an RTL input port only.

3. The ap_ovld interface type is only valid for output ports.

4. The interface types ap_ctrl_none and ap_ctrl_hs are used to control the synthesis of
function level interface protocols. These interface types are specif ied on the function
itself (all other interface types are specif ied on the function arguments).

Interface Types

This section details each of the interface types supported by High-Level Synthesis. The
details on how to specify an interface are discussed after this section: f irst comes an
explanation of the interfaces.

There are two distinct types on interface synthesis. Interface synthesis which is performed
on C function arguments and interface synthesis which is performed at the function or
block level.

Block level interface synthesis applies an IO protocol to the entire block, adding control
signals to control when the block can begin operation, when it is ready for new data and
when it completes. Block level synthesis is controlled by interface modes ap_ctrl_hs and
ap_ctrl_none, which are applied to the function or the function return port.

Standard port level interface synthesis is specified by applying the appropriate interface
mode to a function argument. A function argument which is both read from and written to
(an RTL inout port) is synthesized in the following manner:

• For interface types ap_none, ap_stable, ap_ack, ap_vld, ap_ovld and ap_hs: as separate
input and output ports. For example, if function argument arg1 was both read from and
written to, it would be synthesized as RTL input data port arg1_i and output data port
arg1_o and any specif ied or default IO protocol is applied to each port individually.

• For interface types ap_memory and ap_bus: a single interface is created. Both these RTL
interfaces support read and write.

• For interface type ap_fifo: read and write are not supported for ap_fifo interfaces.

Structs on the interface are flattened and all hierarchy is removed before being
implemented as ports: the first argument in the struct hierarchy is implemented in the LSBs
of the port and the last argument implemented in the port MSBs. The implementation of
arrays inside structs depends on whether the struct is a pass-by-value or pointer argument.
High-Level Synthesis www.xilinx.com 69
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
• In pass-by-value structs, arrays are completely scalarized with all elements inlined to
create single-wide bus.

• In pointer structs, arrays ports are maintained and can be implemented in the same
manner as any other array (as discussed below).

If a design is to be verif ied using the cosim_design feature, the following must hold true:

• The design must use block-level handshakes, as specif ied by ap_ctrl_hs.

• Each output port must use an interface type which indicates when a write operation has
occurred: ap_vld, ap_ovld, ap_hs, ap_memory, ap_fifo or ap_bus.

The default interface types ensure the design can be verif ied by the cosim_design feature.
SystemC designs do use interface synthesis and there are no such requirements to verify a
SystemC design with cosim_design.

In the following explanations, producer blocks are those RTL blocks which provide data to
the current block inputs and consumer blocks are those which consume the output data of
the current block.

ap_ctrl_none & ap_ctrl_hs

Interface types ap_ctrl_none and ap_ctrl_hs are used to specify if the RTL is implemented
with block-level handshake signals or not. Block-level handshake signals specify when the
design can start to perform its standard operation and when that operation ends. These
interface types are specified on the function or the function return.

Figure 2-33 shows the resulting RTL ports and behavior when ap_ctrl_hs is specif ied on a
function (note, this is the default operation). In this example the function returns a value
using the return statement and thus output port ap_return is created in the RTL design: if
there is no function return statement this port is not created.

X-Ref Target - Figure 2-33

Figure 2-33: Example ap_ctrl_hs Interface
High-Level Synthesis www.xilinx.com 70
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
If ap_ctrl_none is specified, none of the handshake signal ports (“ap_start”, “ap_idle” and
“ap_done”) shown in Figure 2-33 are created and the block cannot be verif ied with the
cosim_design feature.

The behavior of the block level handshake signals created by interface mode ap_ctrl_hs are
shown in Figure 2-34 and summarized below.

After reset:

• The block will wait for “ap_start” to go high before it begins operation.

• Output “ap_idle” goes low when “ap_start” is sampled high.

• Data can now be read on the input ports.

° The f irst input data may be sampled on the first clock edge after “ap_idle” goes low.

• When the block completes all operations, any return value will be written to port
ap_return

° If there was no function return, there will be no ap_return port on the RTL block.

° Other outputs may be written to at any time until the block completes and are
independent of this IO protocol.

• Output “ap_done” goes high when the block completes operation.

° If there is an ap_return port, the data on this port will be valid when “ap_done” is
high.

X-Ref Target - Figure 2-34

Figure 2-34: Behavior of ap_ctrl_hs Interface
High-Level Synthesis www.xilinx.com 71
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
° The “ap_done” signal can therefore used to validate when the function return value
(output on port ap_return) is valid.

• The idle signal goes high one cycle after “ap_done” and remains high until the next
time “ap_start” is sampled high (indicating the block should once again begin
operation).

If the “ap_start” signal is high when “ap_done” goes high:

• The “ap_idle” signal will remain low.

• The block will immediately start its next execution (or next transaction).

• The next input may be read on the next clock edge.

High-Level Synthesis supports pipelining, allowing the next transaction to begin before the
current one ends. In this case, the block can accept new inputs before the f irst transaction
completes and output port “ap_done” is asserted high.

If the function is pipelined, or if the top-level loop is pipelined with the -rewind option, an
additional output port “ap_ready” is created to indicate when new inputs can be applied.
Figure 2-35 shows the behavior of the block level interface when pipelining is used.

After reset:

• If “ap_idle” is high, the “ap_ready” signal will go high.

X-Ref Target - Figure 2-35

Figure 2-35: Behavior of ap_ctrl_hs Interface with Pipelining
High-Level Synthesis www.xilinx.com 72
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
• The block will wait for “ap_start” to go high before it begins operation.

• Output “ap_idle” goes low when “ap_start” is sampled high.

• Data will be read on the input ports when “ap_ready” is high.

Note: Since “ap_ready” can be high before “ap_idle” is low, both the ready and idle signals must be
used by producer blocks for applying new data.

The remainder of the behavior is the same as that described for Figure 2-34.

Note: The only data which is guaranteed to be valid when “ap_done” is asserted is the data on the
optional ap_return port (this port will only exist if a value is returned from the function using the
return statement).

The other outputs in the design may be valid at this time, the end of the transaction when
“ap_done” is asserted, but that is not guaranteed. If it is a requirement that an output port
must have an associated valid signal, it should be specified with one of the port-level IO
protocols discussed in the remainder of this section.

ap_none

The ap_none interface type is simplest interface and has no other signals associated with it.
Neither the input nor output signals have any associated control ports indicating when data
is read or written. The only ports in the RTL design are those specif ied in the source code.

An ap_none interface requires no additional hardware overhead but does require that
producer blocks provide data to the input port at the correct time or hold it for the length
of a transaction (until the design completes) and consumer blocks are required to read
output ports at the correct time: as such, a design with interface mode ap_none specif ied
on an output cannot be automatically verif ied using the cosim_design feature.

The ap_none interface cannot be used with array arguments, as shown in Figure 2-32.

ap_stable

The ap_stable interface type, like type ap_none, does not add any interface control ports to
the design. The ap_stable type informs High-Level Synthesis that the data applied to this
port will remain stable during normal operation, but is not a constant value which could be
optimized, and the port is not required to be registered.

The ap_stable type is typically used for ports which will provide configuration data - data
which may change but which will remain stable during normal operation (configuration
data is typically only changed during or before a reset).

The ap_stable type can only be applied to input ports. When applied to inout ports, only the
input part of the port is considered to be stable.
High-Level Synthesis www.xilinx.com 73
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
ap_hs (ap_ack, ap_vld and ap_ovld)

An ap_hs interface provides both an acknowledge signal to say when data has been
consumed and a valid signal to indicate when data has been read. This interface type is a
superset of types ap_ack, ap_vld and ap_ovld.

• Interface type ap_ack only provides an acknowledge signal.

• Interface type ap_vld only provides a valid signal.

• Interface type ap_ovld only provides a valid signal and only applies to output ports or
the output half of an inout pair.

Figure 2-36 shows how an ap_hs interface behaves for both an input and output port. In
this example the input port in named “in” and the output port named “out”. Note how the
control signals are automatically named, based on the original port name (For example, the
valid port for input “in” is added and named “in_vld”).

For inputs:

• After reset and start have been applied, the block will begin normal operation.

• If the input port is to be read but the input valid is low, the design will stall and wait for
the input valid to be asserted; indicating a new input value is present.

• As soon as the input valid is asserted high, an output acknowledge will be asserted
high to indicate the data was read.

X-Ref Target - Figure 2-36

Figure 2-36: Behavior of ap_hs Interface
High-Level Synthesis www.xilinx.com 74
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
For outputs:

• After reset and start have been applied, the block will begin normal operation.

• When an output port is written to, its associated output valid signal is simultaneously
asserted to indicate valid data is present on the port.

• If the associated input acknowledge is low, the design will stall and wait for the input
acknowledge to be asserted.

• When the input acknowledge is asserted, the output valid is de-asserted on the next
clock edge.

Designs which use ap_hs interfaces can be verif ied with cosim_design and provide the
greatest flexibility in the development process, allowing both bottom-up and top-down
design flows: all intra-block communication is safely performed by two-way handshakes,
with no manual intervention or assumptions required for correct operation.

The ap_hs interface is a safe interface protocol but requires a two port overhead, with
associated control logic.

With an ap_ack interface, only an acknowledge port is synthesized.

• For input arguments this results in an output acknowledge port which is active high in
the cycle in which the input is read.

• For output arguments this results in an input acknowledge port.

° After a write operation, the design will stall and wait until the input acknowledge
has been asserted high, indicating the output has been read by a consumer block.

° However, there is no associated output port to indicate when the data can be
consumed.

Care should be taken when specifying output ports with ap_ack interface types. Designs
which use ap_ack on an output port cannot be verif ied by cosim_design.

Specifying interface type ap_vld results in a single associated valid port in the RTL design.

• For output arguments this results in an output valid port, indicating when the data on
the output port is valid.

Note: For input arguments this valid port behaves in a different manner than the valid port
implemented with ap_hs.

• If ap_vld is used on an input port (there is no associated output acknowledge signal),
the input port will be read as soon as the valid is active: even if the design is not ready
to read the port, the data port will be sampled and held internally until needed.

• The input data will be read each cycle the input valid is active.
High-Level Synthesis www.xilinx.com 75
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
An ap_ovld interface type is the same an ap_vld but can only be specified on output ports.
This is a useful type for ensuring pointers which are both read from and written to, will only
be implemented with an output valid port (and the input half will default to type ap_none).

ap_memory

Array arguments are typically implemented using the ap_memory interface. This type of
port interface is used to communicate with memory elements (RAMs, ROMs) when the
implementation requires random accesses to the memory address locations. Array
arguments are the only arguments which support a random access memory interface.

If sequential access to the memory element is all that is required, the ap_fifo interface
discussed next can be used to reduce the hardware overhead: no address generation is
performed in an ap_fifo interface.

When using an ap_memory interface, the array targets should be specif ied using the
set_directive_resource command as shown in section "Memory Resource Selection". If no
target is specif ied for the arrays, High-Level Synthesis will automatically determine if a
single or dual-port RAM interface will be used.

TIP: Ensure array arguments are targeted to the correct memory type using RESOURCE directive before
synthesis as re-synthesizing with new, correct, memories may result in a different schedule and RTL.

Figure 2-37 shows an example where an array named “d” has the resource specif ied as a
single-port BRAM.
High-Level Synthesis www.xilinx.com 76
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset:

• After reset and start have been applied, the block will begin normal operation.

• Reads will be performed by applying an address on the output address ports while
asserting the output signal “d_ce”.

° For this BRAM target, the design expects the input data to be available in the next
clock cycle.

• Write operations will be performed by asserting output ports “d_ce” and “d_we” while
simultaneously applying the address and data.

A memory interface cannot be stalled by external signals, provides an indication of when
output data is valid and can therefore be verif ied using cosim_design.

ap_fifo

If access to a memory element is required and the access is only ever performed in a
sequential manner (no random access required) an ap_fifo interface is the most hardware
eff icient. The ap_fifo interface allows the port to be connected to a FIFO, supports full
two-way empty-full communication and can be specif ied for array, pointer and
pass-by-reference argument types.

X-Ref Target - Figure 2-37

Figure 2-37: Behavior of ap_memory Interface
High-Level Synthesis www.xilinx.com 77
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
Functions which can use an ap_fifo interface will often use pointers and may access the
same variable multiple times. Refer to "Multi-Access Pointer Interfaces" to understand the
importance of the volatile qualif ier when this coding style is used.

Note: An ap_fifo interface assumes that all reads and writes are sequential in nature.

If High-Level Synthesis can determine this is not the case, it will issue an error and halt.

If High-Level Synthesis cannot determine that the accesses are always sequential, it will issue a
warning that it is unable to confirm this and proceed.

In the following example “in1” is a pointer which accesses the current address, then two
addresses above the current address and f inally one address below.

void foo(int* in1, ...) {
int data1, data2, data3;

 ...
data1= *in1;
data2= *(in1+2);
data3= *(in1-1);
...

}

If “in1” is specif ied as an ap_fifo interface, High-Level Synthesis will check the accesses and
determine the accesses are not in sequential order, issue an error and halt. To read from
non-sequential address locations use an ap_memory interface as this random accessed or
use an ap_bus interface.

An ap_fifo interface cannot be specif ied on an argument which is both read from and
written to (an inout port). Only input and output arguments can be specif ied with an ap_fifo
interface. An interface with input argument “in” and output argument “out” specif ied as
ap_fifo interfaces will behave as follows:
High-Level Synthesis www.xilinx.com 78
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset and start have been applied, the block will begin normal operation.

For reads:

• If the input port is to be read but the FIFO is empty, as indicated by input port
“in_empty_n” low, the design will stall and wait for data to become available.

• As soon as the input port “in_empty_n” is asserted high to indicate data is available, an
output acknowledge (“in_read”) is asserted high to indicate the data was read in this
cycle.

• If data is available in the FIFO when a port read is required, the output acknowledge
will be asserted to acknowledge data was read in this cycle.

For outputs:

• If an output port is to written to but the FIFO is full, as indicated by “out_full_n” low, the
data will be placed on the output port but the design will stall and wait for the space to
become available in the FIFO.

• When space becomes available in the FIFO (input “out_full_n” goes high) the output
acknowledge signal “out_write” is asserted to indicate the output data is valid.

• If there is space available in the FIFO when an output is written to, the output valid
signal is asserted to indicate the data is valid in this cycle.

X-Ref Target - Figure 2-38

Figure 2-38: Behavior of ap_fifo Interface
High-Level Synthesis www.xilinx.com 79
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
In an ap_fifo interface the output data port has an associated write signal: ports with an
ap_fifo interface can be verif ied using cosim_design.

ap_bus

An ap_bus interface can be used to communicate with a bus bridge. The interface does not
adhere to any specific bus standard but is generic enough to be used with a bus bridge
which in-turn arbitrates with the system bus. The bus bridge must be able to cache all burst
writes.

Functions which can employ an ap_bus interface will often use pointers and may access the
same variable multiple times. Refer to "Multi-Access Pointer Interfaces" to understand the
importance of the volatile qualif ier when this coding style is used.

An ap_bus interface can be used in two specific ways.

• Standard Mode: The standard mode of operation is to perform individual read and
write operations, specifying the address of each.

• Burst Mode: If the C function memcpy is used in the C source code, burst mode will be
used for data transfers. In burst mode, the base address and the size of the transfer is
indicated by the interface: the data samples are then quickly transferred in consecutive
cycles.

Figure 2-39 and Figure 2-40 show the behavior for read and write operations in standard
mode, when an ap_bus interface is applied to argument “d” in the following example:

void foo (int *d) {
 static int acc = 0;
 int i;

 for (i=0;i<4;i++) {
 acc += d[i+1];
 d[i] = acc;
 }
}

While Figure 2-41 and Figure 2-42 show the behaviors when the C memcpy function and
burst mode is used, as in this example code:

void bus (int *d) {
 int buf1[4], buf2[4];
 int i;

memcpy(buf1,d,4*sizeof(int));

for (i=0;i<4;i++) {

 buf2[i] = buf1[3-i];
 }

memcpy(d,buf2,4*sizeof(int));

}

High-Level Synthesis www.xilinx.com 80
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset:

• After reset and start have been applied, the block will begin normal operation.

• If a read is to be performed, but there is no data in the bus bridge FIFO
(“d_rsp_empty_n” is low):

° Output port “d_req_write” is asserted with port “d_req_din” de-asserted, to indicate
a read operation.

° The address is output.

° The design will stall and wait for data to become available.

• When data becomes available for reading the output signal “d_rsp_read” is immediately
asserted and data is read at the next clock edge.

• If a read is to be performed, and data is available in the bus bridge FIFO
(“d_rsp_empty_n” is high):

° Output port “d_req_write” is asserted and port “d_req_din” is de-asserted, to
indicate a read operation.

° The address is output.

° “d_rsp_read” is asserted in the next clock cycle and data is read at the next clock
edge.

X-Ref Target - Figure 2-39

Figure 2-39: Behavior of ap_bus Interface: Standard Read
High-Level Synthesis www.xilinx.com 81
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset:

• After reset and start have been applied, the block will begin normal operation.

• If a write is to be performed, but there is no space in the bus bridge FIFO (“d_req_full_n”
is low):

° The address and data are output.

° The design will stall and wait for space to become available.

• When space becomes available for writing:

° Output ports “d_req_write” and “d_req_din” are asserted, to indicate a write
operation.

° The output signal “d_req_din” is immediately asserted to indicate the data is valid at
the next clock edge.

• If a write is to be performed, and space is available in the bus bridge FIFO
(“d_rsp_full_n” is high):

° Output ports “d_req_write” and “d_req_din” are asserted, to indicate a write
operation.

° The address and data are output.

° “d_req_din” is asserted to indicate the data is valid at the next clock edge.

X-Ref Target - Figure 2-40

Figure 2-40: Behavior of ap_bus Interface: Standard Write
High-Level Synthesis www.xilinx.com 82
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset:

• After reset and start have been applied, the block will begin normal operation.

• If a read is to be performed, but there is no data in the bus bridge FIFO
(“d_rsp_empty_n” is low):

° Output port “d_req_write” is asserted with port “d_req_din” de-asserted, to indicate
a read operation.

° The base address for the transfer and the size are output.

° The design will stall and wait for data to become available.

• When data becomes available for reading the output signal “d_rsp_read” is immediately
asserted and data is read at the next N clock edges, where N is the value on output
port size.

• If the bus bridge FIFO runs empty of values, the data transfers stop immediately and
wait until data is available before continuing where it left off.

• If a read is to be performed, and data is available in the bus bridge FIFO

° Transfer begin as above and the design will stall and wait if the FIFO empties

X-Ref Target - Figure 2-41

Figure 2-41: Behavior of ap_bus Interface: Burst Read
High-Level Synthesis www.xilinx.com 83
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
After reset:

• After reset and start have been applied, the block will begin normal operation.

• If a write is to be performed, but there is no space in the bus bridge FIFO (“d_req_full_n
is low):

° The base address, transfer size and data are output.

° The design will stall and wait for space to become available.

• When space becomes available for writing:

° Output ports “d_req_write” and “d_req_din” are asserted, to indicate a write
operation.

° The output signal “d_req_din” is immediately asserted to indicate the data is valid at
the next clock edge.

° Output signal “d_req_din” will be immediately de-asserted if the FIFO becomes full
and re-asserted when space is available.

° The transfer will stop after N data values have been transferred, where N is the
value on the size output port.

• If a write is to be performed, and space is available in the bus bridge FIFO
(“d_rsp_full_n” is high):

° Transfer begins as above and the design will stall and wait when the FIFO is full.

X-Ref Target - Figure 2-42

Figure 2-42: Behavior of ap_bus Interface: Burst Write
High-Level Synthesis www.xilinx.com 84
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The ap_bus interface can be verif ied by cosim_design.

Controlling Interface Synthesis

Interface synthesis is controlled by the INTERFACE directive or by using a configuration
setting.

Configuration settings can be used to specify the default operation for creating RTL ports
and interfaces. The INTERFACE directive is used to specify the explicit interface type of a
particular port and overrides any default or global configuration.

Configuring Default Port Interface Types

Configuration settings can be used to:

• Add a global clock enable to the RTL design.

• Create RTL ports for any global variables.

• Set a default interface type for all ports of the specif ied type.

The configuration can be set using the GUI option Solution > Solution Settings… > General
> config_interface, as shown in Figure 2-43.

X-Ref Target - Figure 2-43

Figure 2-43: Setting a Configuration
High-Level Synthesis www.xilinx.com 85
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The interface configuration setting clock_enable adds global clock enable (CE) to be added
to the RTL design when selected. This adds port ap_ce to the top-level ports: when port
ap_ce is active low, the clock is inhibited to all registers in the design.

Any C function can use global variables: those variables defined outside the scope of any
function. By default, global variables do not result in the creation of RTL ports: High-Level
Synthesis will assume the global variable is inside the final design. The configuration
setting expose_global tells High-Level Synthesis the global variable will actually be
implemented outside the scope of the function/design and to create an RTL port.

Finally, the default interface type for all ports was shown in Figure 2-32. The interface
configuration allows these default interfaces to be specif ied by the user. The following
example, shown in Figure 2-43 and shown below using the associated Tcl command, sets
the interface type on all input ports to type ap_vld and the default type on all output ports
to type ap_memory.

config_interface -mode in ap_vld
config_interface -mode out ap_memory

Note: If a port is specif ied with an unsupported interface type, the configuration will be ignored
and the interface will be set to the default type for that port: the unsupported port types and the
default port types are shown in Figure 2-32.

For example, if an array port is specif ied to be implemented with an unsupported IO protocol type
such as ap_ack, the directive or configuration will be ignored.

Specifying Port Interface Types

The type of interface can be set on specific ports. Simply select the port in the GUI
directives tab and right-click on the mouse to open the directives menu as shown in
Figure 2-44.
High-Level Synthesis www.xilinx.com 86
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The interface can also be specif ied in Tcl command file. In this example, the same operation
as Figure 2-44 is specified and port x in function foo is set to type ap_hs.

set_directive_interface -mode ap_hs fir x

If an unsupported port interface type is selected, a message will be issued and the default
port type as shown in Figure 2-32 will be implemented.

Specifying Port Options

The INTERFACE directive has two options. The f irst specifies if the port should be registered
or not (the default) and second specifies the number of values read from or written to the
port.

By default High-Level Synthesis does not register ports. It will read input ports when the
data is required saving the area overhead of a register. If the register option is selected
High-Level Synthesis will register all pass-by-value reads in the first cycle of operation. For
pointer read it will register the read but it will perform the read one cycle before the data is
required. For output ports, the register option will guarantee the output is registered. For
memory, FIFO and bus interfaces the register option has no effect.

For cases where a pointer is read from or written to multiple times within a single
transaction, the depth option should be used to specify the maximum number of values
read or written. Failure to specify this correctly may results in a verif ication failure when the
cosim_design feature is used to verify the RTL.

X-Ref Target - Figure 2-44

Figure 2-44: Specifying Port Interfaces
High-Level Synthesis www.xilinx.com 87
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
Specifying Bus Interfaces
In addition to the standard interfaces explained in the Interface Synthesis section, Vivado
HLS can also automatically add bus interfaces to the RTL design.

The primary difference between bus interface ports and the RTL ports created by interface
synthesis (ap_none, ap_hs, etc) is that the bus interfaces are added to the design during the
Export RTL process. Details on the RTL export process are provided later in the chapter
Exporting the RTL Design.

As such:

• Bus interfaces are not reported in the synthesis reports.

• Bus interfaces are not present in the RTL written after synthesis.

The following bus interfaces are available:

• AXI4 Lite Slave

• AXI4 Master

• AXI4 Stream

• PLB 4.6 Slave

• PLB 4.6 Master

• FSL

• NPI

Another important aspect of bus interfaces is that the type of bus interface which can be
used depends on the protocol of RTL port (ap_none, ap_hs, ap_bus etc). Each type of RTL
interface can only be connected to certain bus interfaces.

Table 2-6 shows a list of the RTL interface ports Vivado HLS creates and bus interfaces
which can be connected to them. For example, an AXI4 Stream bus interface can only be
added to ports of type ap_fifo.

Table 2-6: RTL Port to Bus Interface Mappings

Bus Interface Protocol

RTL Interface
Protocol

AXI4 Lite
Slave

AXI4
Master

AXI4
Stream

PLB 4.6
Slave

PLB 4.6
Master FSL NPI

ap_bus - X - - X - -

ap_fifo - - X - - X -
High-Level Synthesis www.xilinx.com 88
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
For example, if the RTL port protocol is of type ap_fifo, it can be connected to an AXI4
Stream or FSL bus interface. If on the other hand, the RTL port is of type ap_ovld or
ap_memory, it cannot be connected to any bus interface:

• An ap_memory interface does not require an interface and can be directly connected to
memories (BRAM) in EDK.

• Any port with ap_ovld interface should be modified to be one of the supported types,
for example ap_hs, or it cannot be connected to an interface.

Adding a Bus Interface

To add a bus interface onto existing RTL interface, a resource is specif ied on the port using
the RESOURCE directive. (The same process and directive is used to specify which type of
memory resource is connected to an array port).

The RESOURCE directive requires that a core be specif ied. A complete list of all bus
interface and their corresponding cores is provided in the “Vivado HLS Library Guide” and
is shown in Table 2-7.

ap_ctrl_hs
ap_none
ap_vld
ap_ack
ap_hs

X - - X - - -

ap_ovld
ap_memory

- - - - - - -

Table 2-7: Bus Interface Interfaces

Bus Interface Core Description

AXI4 Lite Slave AXI4LiteS AXI4 slave interface

AXI4 Master AXI4M AXI4 Master interface

AXI4 Stream AXI4Stream AXI4 Steam interface

PLB 4.6 Slave PLB46S Standard bus-slave interface.

PLB 4.6 Master PLB46M Standard bus-master interface.

FSL FSL Standard Xilinx FSL interface.

NPI NPI64M Native multi-port memory controller
interface.

Table 2-6: RTL Port to Bus Interface Mappings

Bus Interface Protocol

RTL Interface
Protocol

AXI4 Lite
Slave

AXI4
Master

AXI4
Stream

PLB 4.6
Slave

PLB 4.6
Master FSL NPI
High-Level Synthesis www.xilinx.com 89
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The processing of creating a bus interface is therefore a two-step process:

• Create an RTL interface.

• Specify a bus interface resource.

The following example shows how port “out” can be connected to an AXI4 Master bus
interface.

Selecting an RTL Interface

The f irst step in creating a bus interface is to create an RTL port which supports the required
bus interface. Since an AXI4 Master bus interface is required, Table 2-7 shows that the RTL
port must be implemented with an ap_bus protocol.

In Figure 2-45, function argument “out” is selected and a directive is applied by
right-clicking with the mouse. After selecting INTERFACE from the drop-down menu, the
interface mode is specif ied as ap_bus.

The other options in the directive dialog allow the port to be optionally registered and the
required depth to be specif ied for RTL verif ication (if the port is a pointer which is accessed
multiple times, the number of accesses must be specif ied here).

X-Ref Target - Figure 2-45

Figure 2-45: RTL Interface Directive
High-Level Synthesis www.xilinx.com 90
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
Selecting a bus interface

To specify an AXI4 Master bus interface, the RESOURCE directive is used as shown in
Figure 2-46 to add resource AXI4M to port/argument out.

The options associated with the RESOURCE directive allows certain bus interfaces to contain
multiple ports and allow use of side-channel signals in AXI4 interfaces.

• When adding AXI4 Lite Slave or PLB 4.6 Slave interfaces, the port map option allows
multiple ports to be grouped into a single slave port. Use of this option is discussed
with these bus interfaces.

• The metadata option is used to map specific variables in the C function to specif ic
signals in the AXI4 interface standard. Examples of this are shown below for AXI4
Stream and AXI4 Master interfaces.

AXI4 Lite Slave Interface

An AXI4 slave interface is typically used to allow the design to be controlled by some form
of CPU or microcontroller. As such, it provides features only available in slave ports:

• Multiple RTL ports can be grouped into the same bus interface.

• When the design is exported as a Pcore for the EDK environment, the output includes C
function and header f iles for use with the code running on the processor.

The following example shows how multiple RTL ports are bundled into a common AXI4
slave interface, allowing multiple RTL ports to be accessed through a single bus interface,
and reviews the C f iles created.

int foo_top (int *a, int *b, int *c, int *d) {

X-Ref Target - Figure 2-46

Figure 2-46: Bus Interface Resource Directive
High-Level Synthesis www.xilinx.com 91
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
// Define the RTL interfaces
#pragma AP interface ap_hs port=a
#pragma AP interface ap_none port=b
#pragma AP interface ap_vld port=c
#pragma AP interface ap_ack port=d
#pragma AP interface ap_ctrl_hs port=return register

// Define the pcore interfaces and group into AXI4 slave “slv0”
#pragma AP resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=a
#pragma AP resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=b

// Define the pcore interfaces and group into AXI4 slave “slv1”
#pragma AP resource core=AXI4LiteS metadata="-bus_bundle slv1" variable=return
#pragma AP resource core=AXI4LiteS metadata="-bus_bundle slv1" variable=c
#pragma AP resource core=AXI4LiteS metadata="-bus_bundle slv1" variable=d

 *a += *b;
 return (*c + *d);
}

In the example above, ports “a” and “b” are grouped into a common AXI4 Lite Slave
interface as shown in Figure 2-47.

Block-level IO protocol is explicitly set by applying interface mode ap_ctrl_hs to the
function return. (This is the default but shown explicitly in this example). Grouping the
return port with ports “c” and “d”, means all the block level IO protocol signals
(ap_start, ap_done, etc) are assigned to the AXI4 Lite Slave interface slv1.

If the RESOURCE directive is applied using the GUI, the entire bus bundle string used to
create the groupings (e.g. "-bus_bundle slv1") including the quotes should be entered into
the metadata option box. Use the same bus_bundle name e.g. slv1, for each RTL port to be
grouped.
High-Level Synthesis www.xilinx.com 92
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
When the design is exported as a Pcore, the following C files are output in addition to the
RTL design, Refer to the chapter Exporting the RTL Design (the files and f ilenames shown
are for this example):

• xfoo_top_slv0.h

• xfoo_top_slv1.h

• xfoo_top.h

• xfoo_top.c

The file xfoo_top_slv0.h provides the memory mapped locations of the RTL ports grouped
in interface slv0. The comments in the file show how the RTL port data and control signals
are mapped into the AXI4 bus interface.

• Port “a” is read-write signal and so it implemented as separate input and output ports.

• Port “a” has both a valid and acknowledge signal associated with it.

• Port “b” is type ap_none and has no associated control signal.

// 0x00 : reserved
// 0x04 : reserved
// 0x08 : reserved
// 0x0c : reserved
// 0x10 : Control signal of a_i
// bit 0 - a_i_ap_vld (Read/Write/COH)
// bit 1 - a_i_ap_ack (Read)
// others - reserved

X-Ref Target - Figure 2-47

Figure 2-47: AXI4 Lite Slave Interfaces with Grouped RTL Ports
High-Level Synthesis www.xilinx.com 93
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
// 0x14 : Data signal of a_i
// bit 31~0 - a_i[31:0] (Read/Write)
// 0x18 : Control signal of a_o
// bit 0 - a_o_ap_vld (Read)
// bit 1 - a_o_ap_ack (Read/Write/COH)
// others - reserved
// 0x1c : Data signal of a_o
// bit 31~0 - a_o[31:0] (Read)
// 0x20 : reserved
// 0x24 : Data signal of b
// bit 31~0 - b[31:0] (Read/Write)
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on
Handshake)

#define XFOO_TOP_SLV0_ADDR_A_I_CTRL 0x10
#define XFOO_TOP_SLV0_ADDR_A_I_DATA 0x14
#define XFOO_TOP_SLV0_BITS_A_I_DATA 32
#define XFOO_TOP_SLV0_ADDR_A_O_CTRL 0x18
#define XFOO_TOP_SLV0_ADDR_A_O_DATA 0x1c
#define XFOO_TOP_SLV0_BITS_A_O_DATA 32
#define XFOO_TOP_SLV0_ADDR_B_DATA 0x24
#define XFOO_TOP_SLV0_BITS_B_DATA 32

File xfoo_top_slv1.h provides similar information, however, since interface “slv1” includes
the block level IO protocol signals (associated with the function return) it also includes in
details on setting and controlling the block interrupt.

// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/SC)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// others - reserved
// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved
// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_done)
// others - reserved
// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)
// others - reserved
// 0x10 : Control signal of c
// bit 0 - c_ap_vld (Read/Write/SC)
// others - reserved
// 0x14 : Data signal of c
// bit 31~0 - c[31:0] (Read/Write)
// 0x18 : Control signal of d
// bit 1 - d_ap_ack (Read/COR)
// others - reserved
// 0x1c : Data signal of d
// bit 31~0 - d[31:0] (Read/Write)
// 0x20 : Data signal of ap_return
// bit 31~0 - ap_return[31:0] (Read)
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on
Handshake)

#define XFOO_TOP_SLV1_ADDR_AP_CTRL 0x00
#define XFOO_TOP_SLV1_ADDR_GIE 0x04
High-Level Synthesis www.xilinx.com 94
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
#define XFOO_TOP_SLV1_ADDR_IER 0x08
#define XFOO_TOP_SLV1_ADDR_ISR 0x0c
#define XFOO_TOP_SLV1_ADDR_C_CTRL 0x10
#define XFOO_TOP_SLV1_ADDR_C_DATA 0x14
#define XFOO_TOP_SLV1_BITS_C_DATA 32
#define XFOO_TOP_SLV1_ADDR_D_CTRL 0x18
#define XFOO_TOP_SLV1_ADDR_D_DATA 0x1c
#define XFOO_TOP_SLV1_BITS_D_DATA 32
#define XFOO_TOP_SLV1_ADDR_AP_RETURN 0x20
#define XFOO_TOP_SLV1_BITS_AP_RETURN 32

Each of the address locations noted in the interface f iles above, have an associated C
function to access it. These functions are provided in f ile xfoo_top.c and defined in
xfoo_top.h, as shown next:

int XFoo_top_Initialize(XFoo_top *InstancePtr, XFoo_top_Config *ConfigPtr);

void XFoo_top_Start(XFoo_top *InstancePtr);
u32 XFoo_top_IsDone(XFoo_top *InstancePtr);
u32 XFoo_top_IsIdle(XFoo_top *InstancePtr);
u32 XFoo_top_GetReturn(XFoo_top *InstancePtr);

void XFoo_top_SetC(XFoo_top *InstancePtr, u32 Data);
u32 XFoo_top_GetC(XFoo_top *InstancePtr);
void XFoo_top_SetCVld(XFoo_top *InstancePtr);
u32 XFoo_top_GetCVld(XFoo_top *InstancePtr);
void XFoo_top_SetD(XFoo_top *InstancePtr, u32 Data);
u32 XFoo_top_GetD(XFoo_top *InstancePtr);
u32 XFoo_top_GetDAck(XFoo_top *InstancePtr);
void XFoo_top_SetA_i(XFoo_top *InstancePtr, u32 Data);
u32 XFoo_top_GetA_i(XFoo_top *InstancePtr);
void XFoo_top_SetA_iVld(XFoo_top *InstancePtr);
u32 XFoo_top_GetA_iVld(XFoo_top *InstancePtr);
u32 XFoo_top_GetA_iAck(XFoo_top *InstancePtr);
u32 XFoo_top_GetA_o(XFoo_top *InstancePtr);
u32 XFoo_top_GetA_oVld(XFoo_top *InstancePtr);
void XFoo_top_SetA_oAck(XFoo_top *InstancePtr);
u32 XFoo_top_GetA_oAck(XFoo_top *InstancePtr);
void XFoo_top_SetB(XFoo_top *InstancePtr, u32 Data);
u32 XFoo_top_GetB(XFoo_top *InstancePtr);

void XFoo_top_InterruptGlobalEnable(XFoo_top *InstancePtr);
void XFoo_top_InterruptGlobalDisable(XFoo_top *InstancePtr);
void XFoo_top_InterruptEnable(XFoo_top *InstancePtr, u32 Mask);
void XFoo_top_InterruptDisable(XFoo_top *InstancePtr, u32 Mask);
void XFoo_top_InterruptClear(XFoo_top *InstancePtr, u32 Mask);
u32 XFoo_top_InterruptGetEnabled(XFoo_top *InstancePtr);
u32 XFoo_top_InterruptGetStatus(XFoo_top *InstancePtr);

The names of these functions will vary depending upon the design name and the types of
ports in the design. This example includes every type of port and is useful for explaining the
general case. The functions created for this example are explained here, in the order they
would typically be called in the C program used to control and access the block via the AXI4
Lite Slave interface.
High-Level Synthesis www.xilinx.com 95
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
For example, the block is f irst instantiated in the program space, then the interrupts are set,
the block is started, port values are accessed and the results are read at the end.

First, use this function to instantiate an instance of XFoo_Top in the program space:

int XFoo_top_Initialize(XFoo_top *InstancePtr, XFoo_top_Config *ConfigPtr);

If interrupts are to be used, they must f irst be enabled in the processor. Refer to the
documentation for the processor for details on performing this task. If the interrupts are not
enabled in the processor the interrupt functions provided here will have no effect.

As shown later, it is possible to poll the device rather than use an interrupt service routine.
The following functions are however provided for use with an interrupt service routine.
There are two interrupts supported in the AXI Lite Slave interface:

• The first is status of the ap_done signal and available is in location 1.

• The second is a task level interrupt and is available in location 2. The task level interrupt
shows when a new task can be started and allows operations on the port to be
pipelined: a new task can be started before the ap_done signal/interupt indicates the
f irst task is f inished.

These functions will (in this order) allow the following interrupt service tasks to be
performed in the C code:

• Return the status of all interrupt sources.

• Show which interrupts are enabled.

• Allow individual interrupts to be cleared.

u32 XFoo_top_InterruptGetEnabled(XFoo_top *InstancePtr);
u32 XFoo_top_InterruptGetStatus(XFoo_top *InstancePtr);
void XFoo_top_InterruptClear(XFoo_top *InstancePtr, u32 Mask);

The next task is to enable the interrupts. The global interrupt function enables all interrupts
from the hardware block.

void XFoo_top_InterruptGlobalEnable(XFoo_top *InstancePtr);

The individual interrupts can be enabled using the following function. A mask value of 1
enables an interrupt from the ap_done signal; a value of 2 enables task level interrupt; a
value of 3 enables both types of interrupt.

void XFoo_top_InterruptEnable(XFoo_top *InstancePtr, u32 Mask);

At this stage, before starting the block, any ports which do not use an input handshake (e.g.
ap_none or ap_ack) should be configured (else, as soon as the block is started it will read
the default values in the interface registers). In this example, port “b” and “d” have such
protocols. The following functions can be used to set the value on these ports:

void XFoo_top_SetB(XFoo_top *InstancePtr, u32 Data);
High-Level Synthesis www.xilinx.com 96
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
void XFoo_top_SetD(XFoo_top *InstancePtr, u32 Data);

Although not a requirement, the following functions can be used to read back the data from
ports “b” and “d” to verify the correct data was written.

u32 XFoo_top_GetB(XFoo_top *InstancePtr);
u32 XFoo_top_GetD(XFoo_top *InstancePtr);

The block can be started by issuing a call to the start function (f irst, it may be worth
checking the status of the idle signal to confirm the last process is indeed f inished):

u32 XFoo_top_IsIdle(XFoo_top *InstancePtr);
void XFoo_top_Start(XFoo_top *InstancePtr);

Input ports which use handshakes can have their values set before the block is started, or
after the block is started. If the block is already started, but there is no valid value on an
input, the block will stall until valid data is present.

These writes should be performed in a similar manner to the hardware protocol: write the
data value, then set the valid bit to specify the data is valid. When the data is read by the
block, the valid bit in the adapter is automatically cleared.

In this example, ports “a” (input side) and “c” are being set after the block has been started.
The following functions can be used to set these values.

void XFoo_top_SetA_i(XFoo_top *InstancePtr, u32 Data);
void XFoo_top_SetA_iVld(XFoo_top *InstancePtr);

void XFoo_top_SetC(XFoo_top *InstancePtr, u32 Data);
void XFoo_top_SetCVld(XFoo_top *InstancePtr);

In a similar manner to ports “b” and “d”, the values on ports “a” and “c” can be read back
using the following functions to confirm they are correct.

u32 XFoo_top_GetA_i(XFoo_top *InstancePtr);
u32 XFoo_top_GetC(XFoo_top *InstancePtr);

In addition, the status of the valid flags can be read: remember, if the block has already been
started the valid flag will be automatically cleared as soon as the data is read by the
hardware.

u32 XFoo_top_GetA_iVld(XFoo_top *InstancePtr);
u32 XFoo_top_GetCVld(XFoo_top *InstancePtr);

In this example, port “a” and port “d” have output acknowledge signals associated with their
IO protocol. The status of the output acknowledges can also be read: if this is high, the data
read has been acknowledged by the hardware.

The following functions can be used to obtain the status of the acknowledge ports – as soon
as these registers are read by the function call, the register bit is cleared and can only be set
by the hardware.
High-Level Synthesis www.xilinx.com 97
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
u32 XFoo_top_GetA_iAck(XFoo_top *InstancePtr);
u32 XFoo_top_GetDAck(XFoo_top *InstancePtr);

In this example, while the block is running port “a” (output side) and the return port
(ap_return) are the only ports which will return data. The following function can be used to
check if there is any valid output data on port “a”:

u32 XFoo_top_GetA_oVld(XFoo_top *InstancePtr);

Once valid data is present on the output port, it can be read:

u32 XFoo_top_GetA_o(XFoo_top *InstancePtr);

If the read is successful, the following function can be used to acknowledge the read.
Remember, the hardware will stall until an output write is acknowledged.

void XFoo_top_SetA_oAck(XFoo_top *InstancePtr);

Once the hardware has read acknowledge register in the AXI Lite Slave interface, it will
automatically clear the acknowledge register. This can be confirmed using function:

u32 XFoo_top_GetA_oAck(XFoo_top *InstancePtr);

Finally, with all other ports serviced the return value from the function can be read. If no
interrupts are being used, the device can be polled to check if it is done:

u32 XFoo_top_IsDone(XFoo_top *InstancePtr);

Whether polling for the ap_done signal, or using an interrupt service routine, the following
function can be used read the return value:

u32 XFoo_top_GetReturn(XFoo_top *InstancePtr);

Finally, if interrupts are being used, the interrupts for the block can be disabled (individually
and/or globally).

void XFoo_top_InterruptDisable(XFoo_top *InstancePtr, u32 Mask);
void XFoo_top_InterruptGlobalDisable(XFoo_top *InstancePtr);

AXI4 Master Interface

To create an AXI4 Master interface, the RTL port must have an ap_bus interface, as shown in
Table 2-7. This example sets the port “m” as an ap_bus and then specifies that the port
connect to an “AXI4M” resource.

The block-level interface protocol is removed in this example by setting the IO protocol to
ap_ctrl_none. This ensures there are no other interface signals in this example (no
block-level handshakes signals and there is no return port).

#include "ap_cint.h"

#define N 256
High-Level Synthesis www.xilinx.com 98
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
typedef uint32 DT;

void foo_top (volatile DT *m) {

// Define the RTL interfaces
#pragma AP interface ap_ctrl_none port=return
#pragma AP interface ap_bus port=m

// Define the pcore interface as an AXI4 master
#pragma AP resource core=AXI4M variable=m

 DT buff[N], tmp;
 int i, j;
 memcpy(buff, m, N * sizeof(DT));
 for (i = 0, j = N - 1; i < j; i++, j--) {
 tmp = buff[i];
 buff[i] = buff[j];
 buff[j] = tmp;
 }
 memcpy(m, buff, N * sizeof(DT));
}

When the pcore is generated, an AXI4 Master interface will be connected to port “m” and
this can connect to an AXI4 system bus, as shown in Figure 2-48.

AXI4 Stream Interface

An AXI4 Stream interface is an AXI4-Stream master/slave interface. This interface can be
applied to any ap_fifo RTL port.

When applying a stream interface it is typical to define a struct whose members correspond
to the desired AXI4 Stream bus signals. In this example, struct DATA is defined and contains

X-Ref Target - Figure 2-48

Figure 2-48: AXI4 Master Interface
High-Level Synthesis www.xilinx.com 99
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
two members, data and strb. This example requires that both the port map and grouping
options are used. If there is only a single data variable, no other options are required.

The AXI4 Stream interface provided by Vivado HLS is designed to fit the flexibility of the bus
standard. Most signals (e.g. TREADY, TKEEP, TSTRB) in the AXI4 Stream standard are
optional. Only two signals TVALID and TREADY are mandatory (TREADY is optional in the
bus standard, but it is used in the Vivado HLS AXI4 Stream interface).

This example maps struct member data to the TDATA signal and struct member strb to the
TSTRB signal.

port_map={{data_i_data TDATA} {data_i_strb TSTRB}}
port_map={{data_o_data TDATA} {data_o_strb TSTRB}}

Using a struct allows multiple variables to be mapped into a single AXI4 Stream. However,
the default behavior in Vivado HLS is that each member of a struct creates a separate RTL
interface port. The bus bundle option is required to keep all members mapped to the same
AXI4 grouped.

Multiple RTL ports can be grouped into a single AXI4 stream interface in the same manner
as an AXI4 slave interface. The RTL ports grouped into an AXI4 stream interface however
must be either all input ports or all output ports. Bidirectional interfaces are not supported
for grouping.

Output interfaces are implemented a AXI4 Stream master interface and input interfaces an
AXI4 Stream slave interface.

In this example, the block-level interface protocol is removed by setting the IO protocol to
ap_ctrl_none. This ensures there are no other interface signals in this example (no
block-level handshakes signals and there is no return port).

#include "ap_cint.h"

#define N 256

typedef struct {
 uint32 data;
 uint4 strb;
} DATA;

void foo_top (DATA data_i[N], DATA data_o[N]) {

// Define the RTL interfaces
#pragma AP interface ap_ctrl_none port=return
#pragma AP interface ap_fifo port=data_i
#pragma AP interface ap_fifo port=data_o

// Define the pcore interfaces AXI4 slave
#pragma AP resource core=AXI4Stream variable=data_i metadata="-bus_bundle
AXI4Stream_S" port_map={{data_i_data TDATA} {data_i_strb TSTRB}}

// Define the pcore interfaces AXI4 master
High-Level Synthesis www.xilinx.com 100
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
#pragma AP resource core=AXI4Stream variable=data_o metadata="-bus_bundle
AXI4Stream_M" port_map={{data_o_data TDATA} {data_o_strb TSTRB}}

 int i;
 DATA buf[N];

 for (i = 0; i < N; i++) {
 buf[i] = data_i[i];
 }

 for (i = 0; i < N; i++) {
 data_o[i] = buf[N-1-i];
 }

}

If the port mappings are applied using the GUI, each port map should be enclosed by
braces {RTL_PORT AXI4_INTERFACE_SIGNAL} and all maps enclosed by an outer set of
braces. The entire string must be entered into the port_map option box. For example:

{{data_o_data TDATA} {data_o_strb TSTRB}}

Figure 2-49 shows the interface created from the example shown above, with RTL inputs
and outputs grouped into separate interfaces.

This example used a unique struct. The header file ap_axi_sdata.h, located in the include
directory in the Vivado HLS installation area, defines signed and unsigned structs for all

X-Ref Target - Figure 2-49

Figure 2-49: Pcore: AXI4 Stream Interfaces
High-Level Synthesis www.xilinx.com 101
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
possible signals in the AXI4 interface standard. These can be used in place of creating your
own structs.

• ap_axi_s is a signed interpretation of the AXI stream

• ap_axi_u is an unsigned interpretation of the AXI stream

 template<int D,int U,int TI,int TD>
 struct ap_axis{
 ap_int<D> data;
 ap_uint<D/8> keep;
 ap_uint<D/8> strb;
 ap_uint<U> user;
 ap_uint<1> last;
 ap_uint<TI> id;
 ap_uint<TD> dest;
 };

template<int D,int U,int TI,int TD>
 struct ap_axiu{
 ap_uint<D> data;
 ap_uint<D/8> keep;
 ap_uint<D/8> strb;
 ap_uint<U> user;
 ap_uint<1> last;
 ap_uint<TI> id;
 ap_uint<TD> dest;
 };

PLB Slave Interface

The following example shows how multiple RTL ports are bundled into a common PLB slave
interface. This allows multiple RTL ports to be accessed through a single bus interface.

int foo_top (int *a, int *b, int *c, int *d) {

// Define the RTL interfaces
#pragma AP interface ap_hs port=a
#pragma AP interface ap_hs port=b
#pragma AP interface ap_hs port=c
#pragma AP interface ap_hs port=d
#pragma AP interface ap_ctrl_hs port=return register

// Define the pcore interfaces and group into PLB slave “slv0”
#pragma AP resource core=PLB_SLAVE metadata="-bus_bundle slv0" variable=a
#pragma AP resource core=PLB_SLAVE metadata="-bus_bundle slv0" variable=b

// Define the pcore interfaces and group into PLB slave “slv1”
#pragma AP resource core=PLB_SLAVE metadata="-bus_bundle slv1" variable=c
#pragma AP resource core=PLB_SLAVE metadata="-bus_bundle slv1" variable=d
#pragma AP resource core=PLB_SLAVE metadata="-bus_bundle slv1" variable=return

 *a += *b;
 return (*c + *d);
}

High-Level Synthesis www.xilinx.com 102
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
In the example above, ports “a” and “b” are grouped into a common PLB slave interface as
shown in Figure 2-50.

The block-level IO protocol is explicitly set by applying interface mode ap_ctrl_hs to the
function return. (This is the default but shown explicitly in this example). All block-level IO
interface ports (ap_start, ap_done, etc) are assigned to a PLB slave interface as a single
group along with the function output (the ap_return port).

Ports “c” and “d” and grouped with the block-level IO protocol signals and function return
into group “slv1” as shown in Figure 2-50.

If the RESOURCE directive is applied using the GUI, the entire bus bundle string (e.g.
"-bus_bundle slv1") including the quotes should be entered into the metadata option box.

When exported as a Pcore, PLB slave interfaces are created with a set of accompanying C
f iles for use with the processor which will access the slave interface. These C f iles are similar
to those provided with the AXI4 Lite Slave interface and an explanation of the C f iles is
provided in the AXI4 Lite Slave section above.

PLB Master Interface

To create a PLB master interface, the RTL ports must be an ap_bus interface, as shown in
Table 2-7. This example sets the port “m” as an ap_bus and then specifies that the port
resource is a “PLB46M” resource.

X-Ref Target - Figure 2-50

Figure 2-50: Pcore: PLB Slave Interfaces with Bundle Ports
High-Level Synthesis www.xilinx.com 103
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
The block-level interface protocol is removed in this example by setting the IO protocol to
ap_ctrl_none. This ensures there are no other interface signals in this design (no
block-level handshakes signals and there is no return port).

#include "ap_cint.h"

#define N 256

typedef uint32 DT;
void foo_top (volatile DT *m) {

// Define the RTL interfaces
#pragma AP interface ap_ctrl_none port=return
#pragma AP interface ap_bus port=m

// Define the pcore interface as a PLB master
#pragma AP resource core=PLB46M variable=m

 DT buff[N], tmp;
 int i, j;
 memcpy(buff, m, N * sizeof(DT));
 for (i = 0, j = N - 1; i < j; i++, j--) {
 tmp = buff[i];
 buff[i] = buff[j];
 buff[j] = tmp;
 }
 memcpy(m, buff, N * sizeof(DT));
}

This specif ication results in a PLB v4.6 master interface which can be connected to a PLB bus
and will act as a master interface.

X-Ref Target - Figure 2-51

Figure 2-51: Pcore: PLB Master Interface
High-Level Synthesis www.xilinx.com 104
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
NPI Interface

 An NPI interface is created by f irst creating an ap_bus on the RTL interface. This interface
can then be assigned a “NPI64M” resource as shown in the following example.

#include "ap_cint.h"

#define N 256
typedef uint32 DT;

void foo_top (volatile DT *m) {

// Define the RTL interfaces
#pragma AP interface ap_ctrl_none port=return
#pragma AP interface ap_bus port=m

// Define the pcore interface as an NPI master
#pragma AP resource core=NPI64M variable=m

 DT buff[N], tmp;
 int i, j;
 memcpy(buff, m, N * sizeof(DT));
 for (i = 0, j = N - 1; i < j; i++, j--) {
 tmp = buff[i];
 buff[i] = buff[j];
 buff[j] = tmp;
 }
 memcpy(m, buff, N * sizeof(DT));
}

In this example, the block-level interface protocol is removed by setting the IO protocol to
ap_ctrl_none. This ensures there are no other interface signals in this design (no
block-level handshakes signals and there is no return port).

X-Ref Target - Figure 2-52

Figure 2-52: Pcore: NPI Master Interface
High-Level Synthesis www.xilinx.com 105
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
FSL Interface

An FSL interface can be connected to an RTL ap_fifo interface. The FSL interface is a
master/slave interface.

• If the interface is an input, a FSL slave interface is generated.

• If it is an output, a FSL master interface is generated.

• FSL interfaces cannot be connected to bi-directional ports (an ap_fifo interfaces
cannot be applied to these ports).

#define N 256

void foo_top (int data_i[N], int data_o[N]) {

// Define the RTL interfaces
#pragma AP interface ap_ctrl_none port=return
#pragma AP interface ap_fifo port=data_i
#pragma AP interface ap_fifo port=data_o

// Define the pcore interfaces as FSL types
#pragma AP resource core=FSL variable=data_i
#pragma AP resource core=FSL variable=data_o

 int buff[N], i;
 for (i = 0; i < N; i++) {
 buff[i] = data_i[i];
 }
 for (i = 0; i < N; i++) {
 data_o[i] = buff[N-1-i];
 }
}

In this example, there are two ap_fifo interfaces. One is an input and the other an output.
This examples set the block-level protocol to ap_ctrl_none to ensure there are no other
ports (there is no function return and the ap_ctrl_none ensures there are no block-level
handshake signals).

The input and output FSL interfaces are shown in Figure 2-53.
High-Level Synthesis www.xilinx.com 106
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
SystemC Interface Synthesis
In general, interface Synthesis is not supported for SystemC designs. The IO ports for
SystemC designs should be fully described in the SC_MODULE interface and in behavior of
the ports fully described in the source code.

An exception to this is memory ports. Given a design with standard SystemC array ports:

SC_MODULE(my_design) {
 //”RAM” Port
sc_uint<20> my_array[256];
…

The port “my_array” would be synthesized into internal RAMs.

Including the High-Level Synthesis header file “ap_mem_if.h” allows the port to be specified
as an ap_mem_port<data_width, address_bits> port. An ap_mem_port will be synthesized
into a standard RAM interface port with the specif ied data and address bus-widths.

The code example above, can be transformed into the following:

#include "ap_mem_if.h"

SC_MODULE(my_design) {
 //”RAM” Port
ap_mem_port<sc_uint<20>,sc_uint<8>, 256> my_array;

X-Ref Target - Figure 2-53

Figure 2-53: Pcore: FSL Master & Slave Interface
High-Level Synthesis www.xilinx.com 107
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
…

This will ensure interface port “my_array” is implemented as a RAM interface.

When an ap_mem_port is added to a SystemC design, an associated ap_mem_chn must be
added to the SystemC test bench to drive the ap_mem_port.

In the test bench, an ap_mem_chn is defined and attached to the instance as shown:

#include "ap_mem_if.h"
…
ap_mem_chn<int,int, 68> bus_mem;
…

// Instantiate the top-level module
my_design U_dut (“U_dut”)
U_dut.my_array.bind(bus_mem);
…

The header file “ap_mem_if.h” is located at “$VIVADO_HLS_ROOT\include
\ap_sysc\ap_mem_if.h” and must be included during SystemC simulation.

Manual Interface Specification
High-Level Synthesis has the ability to identify blocks of code which defines a specif ic IO
protocol. This allows an IO protocol to be specif ied without using interface synthesis or
SystemC (the protocol directive explained below can also be used with SystemC designs to
provide greater IO control).

In following example code:

• input "response[0]" is read

• output "request" is written

• input "response[1]" is read.

• AND it is required that the f inal design perform the IO accesses in this order

void test (
 int *z1,
 int a,
 int b,
 int *mode,
 volatile int *request,
 volatile int response[2],
 int *z2
) {

 int read1, read2;
 int opcode;
 int i;

 P1: {
High-Level Synthesis www.xilinx.com 108
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
 read1 = response[0];
 opcode = 5;
 *request = opcode;
 read2 = response[1];
 }
 C1: {
 *z1 = a + b;
 *z2 = read1 + read2;
 }
}

When High-Level Synthesis implements this code there is no reason the "request" write
should be between the two reads on "response". The code is written with this IO behavior
but there are no dependencies in the code which enforce it. High-Level Synthesis may
schedule the IO accesses in the same manner or choose some other access pattern.

In this case the use of a protocol block can be used to enforce a specif ic IO protocol
behavior. Since the accesses occur in the scope defined by block "P1", a protocol can be
applied to this block as follows:

• Include "ap_utils.h" header f ile which defines ap_wait().

• Place an ap_wait() statement after the write to "request", but before the read on
"response[1]".

° The ap_wait() statement will not cause the simulation to behave any differently, but
it will instruct High-Level Synthesis to insert a clock here during synthesis.

• Specify that block P1 is a protocol region.

° This will instruct High-Level Synthesis that the code within this region is to be
scheduled as is: no re-ordering of the IO or ap_wait() statements.

Applying the directive as shown:

set_directive_protocol test P1 -mode floating

To the modif ied code:

#include "ap_utils.h"// Added include file

void test (
 int *z1,
 int a,
 int b,
 int *mode,
 volatile int *request,
 volatile int response[2],
 int *z2
) {

 int read1, read2;
 int opcode;
 int i;
High-Level Synthesis www.xilinx.com 109
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Interface Management
 P1: {
 read1 = response[0];
 opcode = 5;
 ap_wait();// Added ap_wait statement
 *request = opcode;
 read2 = response[1];
 }
 C1: {
 *z1 = a + b;
 *z2 = read1 + read2;
 }
}

Will result in exact IO behavior specified in the code:

• input "response[0]" is read

• output "request" is written

• input "response[1]" is read.

The -mode floating option allows other code to execute in parallel with this block, if
allowed by data dependencies. The f ixed mode would prevent this.
High-Level Synthesis www.xilinx.com 110
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
Design Optimization
This chapter outlines the various optimizations and techniques which can be employed to
direct High-Level Synthesis to produce a micro-architecture which satisf ies the desired
performance, area and power goals.

The layout of the topics chapter is designed to help minimize the effort required in finding
the correct optimizations to apply and maximize productivity. It is recommended to
approach design optimization by reviewing the topics in the following order:

• Checklist & Guidelines

• Clocks, Timing & RTL output

• Arbitrary Precision Data Types

• Performing Optimizations

The "Checklist and Guidelines" section provides strategies for applying the optimizations
discussed in this chapter. Optimization strategies are provided for a number of standard
design goals such as area, throughput, latency and power. However, even if your overall
goals are different from one of these typical design goals, a review of this section will
provide a solid foundation for applying High-Level Synthesis's features and capabilities to
meet your goals.

In high-level synthesis, like logic synthesis, subtle changes to the input source code or the
constraints can result in a somewhat different output design, only more so. To prevent the
need to "start over again" review the sections on "Clocks, Timing & RTL output" and
"Arbitrary Precision Data Types" to ensure the basic design parameters and design
description are both correct and as ideal as possible before spending time and effort time
applying more complex optimizations.

When the time comes to apply more complex and powerful optimization techniques a
top-down or bottom-up approach can be used.

• If the design is far from meeting its latency or throughput goals, work from the
top-down. Applying optimizations at higher levels of abstraction and operation is more
likely to result in large improvements: start reviewing the design at the function level
and work down towards the logic level. This is also the order presented in this User
Guide.

• If the design is almost achieving its goals, focus on trying to reduce a few clock cycles
or resources. In this case, it may be more productive to start at the level of logic
structures, reviewing if better component selection would allow more operations in a
High-Level Synthesis www.xilinx.com 111
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
cycle or if array accesses are causing bottlenecks and work up toward the function
level.

Checklist & Guidelines
This section outlines some basic strategies for quickly reaching your optimization goals.

Design Basics

Review the basic designs parameters discussed in the section “Clocks, Timing & RTL output”
to ensure the RTL is being created with the following:

• Correct clock and clock uncertainty.

• Reset style.

• State encodings.

Interface Synthesis

It is important to pay attention to both algorithm and interface synthesis (the interface has
to provide the data, and could very well be the bottleneck to achieve required throughput
rates).

Before proceeding to perform design optimizations, ensure the correct interfaces are being
used:

• Confirm the current interfaces on the design are compatible with whatever design they
will communicate with.

• Review the "Interface Management" chapter to select and define the correct interface.

• Confirm that the chosen interfaces work with the post-synthesis verif ication
methodology, as changing the interfaces later may result in a different schedule. Refer
to the “Verif ication” chapter for more details on the verif ication flow.

Finally, it should be appreciated that to meet performance requirements it may be
necessary to change how the interface is implemented or the type of interface that is used.
For example, an array interface may benefit from:

• Being changed from a single to dual-port RAM implementation

• Being changed from a RAM to streaming FIFO implementation

• Being changed from an array to a pointer which can support a DMA-like bus interface.

These types of decisions and changes are no different from those made when optimizing by
hand: sometimes the biggest gain or only way forward is to consider a change at the level
above the design and hence change an interface protocol. High-Level Synthesis will quickly
allow you to determine if such changes will result in a beneficial architecture.
High-Level Synthesis www.xilinx.com 112
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
Data Types and Bit-Widths

High-Level Synthesis will propagate data types based on arithmetic properties; however it is
safer to be explicit where possible.

The bit-widths of the variables in the C function directly impact the size of the storage
elements and operators used in the RTL implementation. If a variables only requires 8-bits
but is specified as an integer type (32-bit) it may result in larger and slower 32-bit operators
being used, reducing the number of operations which can be performed in a clock cycle and
potentially increasing latency and throughput.

• Use the appropriate precision for the data types. Refer to section “Arbitrary Precision s”
in this chapter.

• Confirm the size of any arrays which are to be implemented as RAMs or registers. The
area impact of any over-sized elements in the array is magnified because there are
multiple elements in each array.

• Pay special attention to multiplications, divisions, modulus or other complex arithmetic
operations. If these variables are larger than they need to be, they will negatively
impact both area and performance.

• If using ANSI C, use apcc after modifying any bit-widths to confirm existing simulations
give the same results. Refer to section “Arbitrary Precision ” below for an explanation of
why apcc is required.

Minimum Area Designs

When trying to minimize the area in a design concentrate on re-using functions and loops.
Functions and loops will iterate over the same hardware resources each time they execute:
this maximizes sharing at a level above the operator.

• Before beginning work on minimizing the area, ensure the design already meets, or is
close to meeting, its performance metrics.

• If a function is called multiple times, it will share the same hardware. This is a great way
to save area through coding style. Check to see if function inlining will allow more
functions to be shared (Refer to the section on “Function Re-use, Inlining”).

• Similarly, a loop will iterate over the same hardware. This implements the loop
functionality with a small area but a large latency. Ensure for-loops are not unrolled: the
default is to keep them rolled. (Refer to the section "Loop Optimizations").

• If the design is pipelined, see if a different initiation interval still satisf ies the
throughput requirements but allows greater re-use of components. (Refer to the
section on “Function Optimizations” and "Loop Optimizations").

• Check if arrays are being optimally implemented on the existing RAMs or if array
partitioning or reshaping could make more optimal use of the available RAM resources:
allowing more parallel accesses. (Refer to "Array Optimizations").
High-Level Synthesis www.xilinx.com 113
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
Maximum Throughput Designs

In a maximum throughput design, the challenge is to process as much data as possible in as
few cycles as possible.

• Starting at the function level, and especially in C and C++ designs (SystemC can
support concurrency natively) examine the section on “Function Dataflow Pipelining”.

• Review the "Loop Pipelining" section later in this chapter to determine if pipelining can
be applied on loops.

If all pipelining is complete or cannot be considered, the next step is to look at minimizing
the latency through each function and loop: if it requires less cycles to complete the
operations, the next input can be read sooner. The techniques for minimizing the latency
are given in the next section but the following are areas of importance when dealing with
design throughput.

• Review the summary section of the reports. Examine the report on each function in the
hierarchy for critical loops, those having the greatest impact, and use some of the
techniques in the “Minimum Latency Designs” section below to reduce the latency of
critical loops.

° A loop which takes 25 clocks but is executed twice has a 50 cycle impact.

° A loop which requires only 4 clocks but is executed 256 times has a 1024 cycle
impact and should be considered more “critical”.

• Finally, if the limitation is at the design ports, consider changing the type of interface.
This will require confirming with the other designs in the system that such changes can
be supported.

Minimum Latency Designs

To reduce the latency through a design:

• Starting at the function and loop levels, and especially in C and C++ designs (SystemC
can support concurrency natively) examine the sections on “Function Dataflow
Pipelining” and "Loop Dataflow Pipelining" to improve concurrency.

• If there are any for-loops, check to see if unrolling or partially unrolling them, as
described in section "Unrolling Loops", will reduce the latency. Unrolling allows more
operations to be done in parallel using less cycles (but more resources and larger area).

• If there are multiple loops, remember that it costs 1 clock cycle to move from one
loop-body to another. Review the sections on “Merging Loops” and “Flattening Nested
Loops” to reduce loop overheads.

• Be careful with arrays. They typically map onto memories, which have a limited access
capabilities (read ports and write ports). This can result in dependencies in the
hardware that can increase the latency. For example, a dual-port RAM, or reconfigured
High-Level Synthesis www.xilinx.com 114
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
RAM as discussed in “Array Optimizations”, may allow more reads and writes in the
same clock cycle.

Minimum Power Designs

High-Level Synthesis automatically performs a number of power optimizations. Examples of
these include operator gating, which is performed during scheduling and the addition of
pipeline enables added to the beginning of pipelines. All power optimizations are applied
automatically, if they do not negatively impact performance constraints.

High-Level Synthesis does not allow performance to be sacrif iced to improve power
however there are a number of methodologies which can be followed to further reduce
power.

• Review the section above on “Minimum Area Designs” as reducing area can have a
great impact on power.

• Do not forget to use the architectural exploration capabilities of High-Level Synthesis.
High-Level Synthesis allows you change the clock period and quickly re-generate a new
micro-architecture.

Clocks, Timing & RTL output
For C and C++ designs only a single clock is supported. The same clock is applied to all
functions in the design. For SystemC designs, each SC_MODULE may be specif ied with a
different clock.

To specify multiple clocks in a SystemC design, use the -name option of the create_clock
command to create named clocks and use the set_directive_clock command or pragma to
specify which function contains the SC_MODULE to be synthesized with the specified clock.
Each SC_MODULE can only be synthesized using a single clock: clocks may be distributed
through functions, such as when multiple clocks are connected from the top-level ports to
individual blocks, but each SC_MODULE can only be sensitive to a single clock).

The clock period, in ns, is set in the solutions setting of the GUI. In addition High-Level
Synthesis uses the concept of a clock uncertainty to provide a user defined timing margin.

High-Level Synthesis estimates the timing of operations in the design but it cannot know
the final component placement and net routing: as such, it cannot know the exact delays.
The clock uncertainty is a value which is subtracted from the clock period to give the usable
clock period as shown in Figure 2-54. High-Level Synthesis will use the usable clock period
to schedule the operations in the design.
High-Level Synthesis www.xilinx.com 115
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
This provides some user specified slack to ensure downstream processes, such as logic
synthesis and place & route, have enough timing margin to complete their operations and
limits the design iterations associated with timing closer.

By default, the clock uncertainty is 12.5% of the cycle time; however the clock uncertainty
can be defined by the user, in the solutions settings menu beside the clock period. The
advantage of the automatic setting is that it is updated if the clock period is changed (else
the user must manually update the clock uncertainty when the clock period is changed).

Timing

The timing information used for the RTL operators and registers is defined by the library.
The libraries are all pre-characterized and stored within High-Level Synthesis.

High-Level Synthesis will always aim to meet latency, throughput (initiation interval) and
the timing constraints. However, even when High-Level Synthesis cannot meet constraints,
it will always output an RTL design.

• If High-Level Synthesis cannot meet a throughput constraint due to a data dependency
(for example, if a throughput of one is required but it requires two cycles to read a
value from memory) it will automatically increase the throughput until a design can be
realized.

• If the timing constraints inferred by the clock period cannot be met High-Level
Synthesis will issue message SCHED-644, as shown below, and output a design with the
best achievable performance.

X-Ref Target - Figure 2-54

Figure 2-54: Clock Period and Margin
High-Level Synthesis www.xilinx.com 116
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
@W [SCHED-644] Max operation delay (<operation_name> 2.39ns) exceeds the effective
cycle time

Even if High-Level Synthesis cannot meet timing requirements for a particular path, or
paths, it will still endeavor to achieve timing on all other paths. This behavior allows the user
to evaluate if higher optimization levels or special handling of those failing paths by
downstream processes can pull-in and ultimately satisfy the timing.

IMPORTANT: It is important to review the constraint report after synthesis to determine if all
constraints have been met: the fact that High-Level Synthesis produces an output design does not
guarantee the design meets all performance constraints. Review the "Performance Estimates" section of
the design report.

A design report is generated automatically for each function in the hierarchy when
synthesis completes and can be viewed in the solution reports folder and is stored in the
solution directory in f ile ./syn/report/<function name>.rpt.

The worse case timing for the entire design is reported as the worst case in each function
report. (There is no need to review every report in the hierarchy). If the timing violations are
too severe to be further optimized and corrected by downstream processes, review the
techniques in the remainder of this chapter before considering a faster target technology.

RTL Output

Various characteristics of the RTL output by High-Level Synthesis can be controlled using
the config_rtl command. These include

• The ability to specify the type of FSM encoding used in the RTL state machines.

• The ability to add an arbitrary comment string, such as a copyright notice, to all RTL
f iles using the –header option.

• Using the –prefix option to add a unique prefix to all output f iles, allowing RTL files
generated from the same top-level function (and which would have the same name by
default) to be easily combined in the same directory.

The RTL configuration can be defined via the Solution menu, using Solution > Solution
Settings > General tab > config_rtl as shown in Figure 2-55.

Using the Menu
High-Level Synthesis www.xilinx.com 117
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
Typically the most important aspect of RTL configuration is selecting the reset behavior.

Selecting RTL Reset Behavior

When discussing reset behavior it is important to understand the difference between
initialization and reset.

In C, variables defined with the static qualif ier and those defined in the global scope, are by
default initialized to zero. Optionally, these variables may be assigned a specif ic initial
value. For these type of variables, the initial value in the C code is assigned at compile time
(at time zero) and never again. In both cases, the same initial value will be implemented in
the RTL after synthesis: this ensures the FPGA bit-stream will initialize the device with the
same initial value(s).

Any variable not defined with the static qualif ier or defined in the global scope, but given
an initial value, is assigned its initial value each time the function executes. As such, the
initialization of such variables will occur each time the RTL design starts and will be part of

X-Ref Target - Figure 2-55

Figure 2-55: RTL Configurations
High-Level Synthesis www.xilinx.com 118
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
normal operation. An example of such an initialization is the accumulator in an FIR filter.
When a new data samples arrives, the accumulator is set to zero, values are then calculated
and accumulated but the result of the accumulation is not carried forward to the next
transaction. When a new sample arrives the accumulator is once again set to zero.

In addition to replicating the initial value of static and global variables in the RTL, a reset can
optionally be applied to the RTL (the current default is to add a reset).

Note: Note: Reset is separate and in addition to initialization.

Some configurations of the reset do not re-initialize variables to their initial power-up state when the
reset signal is applied. In these cases, the initial value is only applied at power-up time.

The current default operation is not to re-initialize static and global variables when a reset occurs.

The behavior of the RTL reset is controlled using the RTL configuration settings shown in
Figure 2-55.

This includes being able to set the polarity of the reset and whether the reset is
synchronous or asynchronous (Xilinx technologies favor the use of a synchronous reset: the
default) but more importantly it determines, via the reset option, which registers are reset
when the reset signal is applied.

The reset option has four settings:

• none: no reset is added to the design.

• control: reset control registers, such as those used in state machines and to generate
IO protocol signals.

• state: reset control registers and registers/memories derived from static/global
variables in the C code. Any static/global variable initialized in the C code is reset to its
initialized value.

• all: reset all registers and memories in the design. Any static/global variable initialized
in the C code is reset to its initialized value.

The default is setting control.

Note: When option state is used, any arrays implemented with RAMs will typically be initialized after
reset. Remember, most arrays implemented as a RAM are defined as statics and therefore imply that
all elements be initialized to zero: even if the elements do not explicitly initialization.

For a large memory, this reset behavior may take many clock cycles and required more area resources
to implement.

Example Tcl commands specifying all the attributes discussed in this section are shown
below (additional options can be reviewed in the config_rtl man page). These commands
perform the following:

• Set clock period as 10 ns
High-Level Synthesis www.xilinx.com 119
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Design Optimization
• Add a technology library

• Set the clock uncertainty to 2ns (if not specif ied, this defaults to 12.5% of the clock
period).

• Create an RTL output with active low asynchronous reset on all registers.

• Use one-hot encoding for all state machines.

open_solution solution2

set_part {xc6vlx365tff1759-3}

create_clock -period 10ns
set_clock_uncertainty 2

config_rtl my_func -encoding onehot –reset all -reset_level low -reset_async

Once these basic specif ications are set and defined, the design can be optimized as
outlined in the remaining sections of this chapter.
High-Level Synthesis www.xilinx.com 120
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
Function Optimizations
A complete list of the optimizations which can be specif ied upon a function can be seen in
the GUI (Figure 2-56):

1. Select the source code in the Project Explorer window.

2. View the directives tab in the Auxiliary Pane.

3. Select a function, right-click with the mouse & select "Insert Directives"

4. Choose a directive from the menu and select the appropriate options
High-Level Synthesis www.xilinx.com 121
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
TIP: Not all of the directives which can be applied at the function level are related to the optimizations
of functions.

For example, when applied to a function, the RESHAPE directive is applied to all arrays in
the function (in effect, a short-hand way to apply the directive to multiple arrays
simultaneously). Array optimizations are discussed in a subsequent chapter.

Table 2-8 lists the directives which impact the behavior and optimization of functions
themselves and the order in which the optimizations are discussed in this chapter.

X-Ref Target - Figure 2-56

Figure 2-56: GUI Function Directives
High-Level Synthesis www.xilinx.com 122
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
Function Re-use, Inlining & Instantiation
High-Level Synthesis supports the synthesis of a hierarchy of function calls. By default, each
function gets mapped to a specif ic hardware implementation. Calling the same function
multiple times within the same enclosing function reuses the same hardware, just like
instantiating a block in an RTL design.

Function re-use is a highly effective way of ensuring resource sharing and keeping the
design smaller, since it guarantees all operations within the function are shared. If the
function hierarchy is removed, it is unlikely the same level of sharing can be achieved by
trying to re-assemble the individual operations at multiple locations (it's more likely that
local optimizations at different locations will limit sharing).

Function Inlining

There is typically a cycle overhead to enter and exit functions and removing the function
hierarchy can mean improved latency and throughput.

Function inlining can be used to remove function hierarchy, often at the expense of area. If
however a function is only called a few times and/or is small, inlining the function may

Table 2-8: Function Optimizations

GUI Directive Description

Inline Inlines a function, removing all function hierarchy. Used
to help improve latency and throughput by reducing
function call overhead.

Instantiate Allows functions to be locally optimized.

Dataflow Enables concurrency at the function level and used to
improve throughput and latency.

Pipeline Improves throughput of the function by allowing the
concurrent execution of operations within a function.

Latency Allows a minimum and maximum latency constraint to be
specif ied on the function.

Interface Applies function level handshaking. The synthesized
control ports start, done and idle enables test bench
re-use. This option is more fully discussed in the
"Interface Management" chapter.
High-Level Synthesis www.xilinx.com 123
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
actually improve area by allowing the few components within the function to be better
shared. There are other situations where inlining a function provides benefits.

• Improve function sharing

• Allow architecture exploration

All instances of a function will have the same implementation but to ensure functions are
shared they must be called within the same enclosing function and at the same level of
hierarchy. This may require inlining some other functions.

In this code example, function calls “foo_1” and “foo_2” may be shared but not function call
“foo_3” which is at a different level of hierarchy.

foo {x,y} {
...

}
foo_sub (p, q) {
int q1 = q + 10;
foo(p1,q);// foo_3
...

}
void foo_top { a, b, c, d} {
...
foo(a,b);//foo_1
foo(a,c);//foo_2
foo_sub(a,d);
...

}

In the above example, function inlining can be used to increase sharing by removing the
hierarchy created by function “foo_sub”. This can be performed in the GUI as shown in
Figure 2-56 or using the set_directive_inline command.

set_directive_inline foo_sub

The inlining directive optionally allows all functions below the specif ied function to be
recursively inlined: if the -recursive option was used in the above example, function
“foo_sub” would be inlined as would function call “foo_3”. If the recursive option is used on
the top-level function, all function hierarchy in the design will be removed.

The -off option can optionally be applied to functions to prevent them being inlined. If the
following commands are applied to the example above:

set_directive_inline –region -recursive foo_top
set_directive_inline -off foo_sub

All functions in the region of “foo_top” would be inlined, recursively down the hierarchy.
Function “foo” would be inlined for function calls “foo_1” and “foo_2” but not “foo_3”, which
is inside “foo_sub” since the -off option applied on function “foo_sub” will prevent inlining.
High-Level Synthesis www.xilinx.com 124
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
Function inlining is a powerful way to substantially modify the structure of the code without
actually performing any modif ications to the source and provides a very powerful method
for architectural exploration.

Function Instantiation

Function instantiation is a an optimization technique which has the area benefits of
maintaining the function hierarchy but provides an additional powerful option: performing
targeted local optimizations on specific instances of a function. This can simplify the control
logic around the function call and potentially improve latency and throughput.

Function instantiation exploits the fact that some inputs to a function may be a constant
value when the function is called and uses this to both simplify the surrounding control
structures (which are typically creating the constants) and produce smaller more optimized
function blocks. This is best explained by example.

Given the following code:

void A(){
 B(true);
 B(false);
 B(true);
 B(false);
}

void B(bool mode){
 if (mode) {
 // code segment 1
 } else {
 // code segment 2
 }
}

It is clear that function “B” has been written to perform multiple but exclusive operations
(depending on whether mode is true or not). Each instance of function “B” will be
implemented in an identical manner: this is great for function re-use and area optimization
but means that the control logic inside the function must be more complex.

Function instantiation can be performed from the directives tab in the GUI, by inserting
pragmas into the code or with the following Tcl command:

set_directive_function_instantiate -variable mode=true B

After function instantiation, the code will effectively be transformed to have two separate
functions, each optimized for different possible values of mode, as shown:

void A(){
 B1();
 B2();
 B1();
 B2();
}

High-Level Synthesis www.xilinx.com 125
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
void B1() {
 // code segment 1
}

void B2() {
 // code segment 2
}

Each version of the new function “B”, that is functions “B1” and “B2”, have simplif ied control
structures.

If the function were called at different levels of hierarchy such that function sharing is
diff icult without extensive inlining or code modifications, function instantiation can provide
the best means of improving area: many small locally optimized copies are better than
many large copies which cannot be shared.

Function Dataflow Pipelining

Dataflow pipelining takes a sequential functional description (Figure 2-57) and creates a
parallel process architecture from it (Figure 2-58). Dataflow pipelining is a very powerful
method for improving design throughput.

The channels shown in Figure 2-58 ensure a function is not required to wait until the
previous function has f inished all operations before it can begin. Figure 2-59 shows how
dataflow pipelining allows the execution of functions to overlap, increasing the overall
throughput of the design and reducing latency.

In Figure 2-59(A) the implementation with dataflow pipelining requires 8 cycles before a
new input can be processed by "func_A" and 8 cycles before an output is written by
"func_C" (assume the output is written at the end of "func_C").

X-Ref Target - Figure 2-57

Figure 2-57: Sequential Functional Description

X-Ref Target - Figure 2-58

Figure 2-58: Parallel Process Architecture
High-Level Synthesis www.xilinx.com 126
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
In Figure 2-59(B), "func_A" can begin processing a new input every 3 clock cycles (increased
throughput) and it only requires 5 clocks to output a f inal value (shorter latency).

The channels between the processes are implemented as either ping-pong buffers or FIFOs,
depending on the access patterns of the producer and the consumer of the data.

• If the function parameter (producer or consumer) is an array the channel is
implemented as a ping-pong buffer using standard memory accesses (with associated
address and control signals).

• For scalar, pointer and reference parameters and the function return, the channel is
implemented as a FIFO, which uses less hardware resources (no address generation) but
requires that the data is accessed sequentially.

IMPORTANT: To use dataflow pipelining the arguments in each function must appear only twice: once
as a producer from one function call (including return arguments) and once as a consumer in another
function argument.

In addition to using the GUI directive tab, dataflow pipelining can be specif ied using the
set_directive_dataflow command. When the directive is specif ied on a function, High-Level
Synthesis will seek to improve the concurrency of the functions within it. For the example

X-Ref Target - Figure 2-59

Figure 2-59: Dataflow Pipelining Behavior
High-Level Synthesis www.xilinx.com 127
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
shown in Figure 2-59 the following command would perform function dataflow pipelining
on functions “func_A”, “func_B” and “func_C”.

set_directive_dataflow top

When dataflow pipelining is used, High-Level Synthesis will by default attempt to execute
each RTL block starting at the same clock edge: maximum parallel behavior. If data
dependencies prevent the RTL implementation of a function from executing until an earlier
function provides data (as in the Figure 2-59(B) where “func_B” must wait 1 clock cycle for
“func_A” to generate the data for “i1”) High-Level Synthesis will automatically adjust the
interval between one block starting execution and the next block starting execution, to the
minimum possible number of cycles.

The –interval option can be used to specify exactly how many cycles there will be between
an RTL block beginning execution and the next RTL block beginning execution. For example,
if an interval of 3 is specif ied, there would be 3 cycles between the start of each function in
Figure 2-59(B).

For scalar values, the maximum channel size will be one: only one value is passed from one
function to another. When arrays are used as function arguments the number of elements in
the channel (memory) is defined by the maximum size of the consumer or producer array.
High-Level Synthesis does however provide a means to specify a default channel depth
(refer to "Configuring " below).

When dataflow pipelining is applied to a function only the sub-functions at the current level
of hierarchy will be pipelined. If a sub-function itself contains additional functions which
could also benefit from dataflow pipelining, the sub-function should be inlined to ensure all
functions are at the same level of hierarchy.

Configuring Dataflow Memories

The default channel used between function interfaces can be specif ied using the
config_dataflow command. Configuration commands allow a default operation to be set for
a solution. This command allows the default channel size and implementation to be set for
all channels in a design.

config_dataflow -default_channel (fifo | *pingpong*) -fifo_depth <FIFO size>

The size of a channel is defined by the maximum size of the consumer or producer array. In
some cases this may be overly conservative. The -f ifo_depth option provides a means for
the user to override the default behavior.

IMPORTANT: If an array parameter is specified to use a FIFO channel, the array must be set to a
streaming type array (refer to "Array Streaming" for an explanation of streaming).

If the default channel type is FIFO but a specif ic array has been specified as non-streaming
using set_directive_array_stream command, the channel implementation for that array will
default to a ping-pong channel (an explicit directive overrides a configuration).
High-Level Synthesis www.xilinx.com 128
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
Function Pipelining
Where dataflow pipelining allows the optimization of the communication between
functions to improve throughput, function pipelining optimizes the operations within a
function and has a similarly positive effect on throughput.

The throughput improvements in function pipelining are shown in Figure 2-60. Function
pipelining allows operations to happen concurrently: the function does not have to
complete all operations before it begin the next operation.

Without pipelining the function reads an input every 3 clock cycles and outputs a value
every 2 clock cycles. With pipelining, a new input is read every cycle with no change to the
output latency or resources used.

Function pipelining is only possible so long as there is no resource contention or data
dependency which prevents pipelining. For example, in Figure 2-61 below, assume the input
array “m[2]” is implemented with a single-port RAM. The function cannot be pipelined, as
shown in Figure 2-61(A) because the two reads operations on input “m[2]” (“op_Read_m[0]”
and “op_Read_m[1]”) cannot be performed in the same clock cycle.

X-Ref Target - Figure 2-60

Figure 2-60: Function Pipelining Behavior
High-Level Synthesis www.xilinx.com 129
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
The function can be pipelined, as shown in Figure 2-62(B), by increasing the initiation
interval of the pipeline. The initiation interval is the number of cycles between new input
reads.

In Figure 2-61(A) the initiation interval is 1 because a new operation is performed every
clock cycle. In Figure 2-61(B) an initiation interval of 2 is used - there is no longer any
resource contention on the input port - and the function can be successfully pipelined.

Note: Resource contentions can occur due to reads and writes on ports, access to limited resources
(for example, if only 1 multiplier is available) or reads and writes on arrays mapped to a RAM or FIFO.

Review sections "Array Optimizations" and "Controlling Hardware Resources" for more
details on analyzing resource contention if pipelining fails to achieve the desired initiation
interval. The resource contention problem in Figure 2-61 could also be solved by using a
dual-port RAM for array “m[2]", allowing both reads to be performed in the same clock
cycle.

Function pipelining can be applied using the Tcl command

set_directive_pipeline function_foo

X-Ref Target - Figure 2-61

Figure 2-61: Pipeline Resource Contention
High-Level Synthesis www.xilinx.com 130
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
or applied using the directives tab in the GUI. Pipelining is applied hierarchically to the
specified function: all sub-functions in the hierarchy below the specified function are
automatically (and recursively) inlined and any loops in the hierarchy are automatically
unrolled.

The default operation for function pipelining is to create a pipeline which runs forever and
never ends. In some cases, it is desirable to have a pipeline which can be "emptied" or
"flushed" and the option -flush is provided to perform this. When a pipeline is "flushed" the
pipeline stops reading new inputs when none are available (as determined by a data valid
signal at the start of the pipeline) but continues processing, shutting down each successive
pipeline stage, until the f inal input has been processed through to the output of the
pipeline.

Latency Constraints
High-Level Synthesis supports the use of latency constraints upon a function. When a
maximum and/or minimum constraint is placed on the function, High-Level Synthesis will
try to ensure all operations in the function complete within the range of clock cycles
specified.

Latency constraints can be applied to a function as shown in Figure 2-56 or they can be
specified using the set_directive_latency command.

set_directive_latency -min 3 -max 5 function_foo

If High-Level Synthesis is unable to meet a latency constraint it will allow the timing in one
of the clock cycles to be violated, as described in “Clocks, Timing & RTL output”. High-Level
Synthesis will produce a design with the minimum timing violation to facilitate a strategy of
meeting timing using downstream logic synthesis. If the timing violation is too great to be
met using logic synthesis, review the techniques in the “Logic Structure Optimizations”
chapter to reduce logic delays.

To confirm that all latency constraints have been satisfied, review the constraint report.

Function Interface Protocol
High-Level Synthesis provides the capability of automatically creating a function interface
protocol. When a function is synthesized each of the function parameters, any function
return value and any global variables accessed by the function are implemented as input or
output ports in the f inal RTL design. In addition to these ports, High-Level Synthesis can
synthesize function control ports which allow the RTL implementation to be more easily
integrated into a surrounding system.

The interface protocol provides an input start signal ("ap_start") which must be set to logic
1 before the function will begin execution, an output signal to indicate when the function
has completed all operations ("ap_done") and an output idle signal ("ap_idle") to indicate
that no operations are currently being performed by the function.
High-Level Synthesis www.xilinx.com 131
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Function Optimizations
The ability to automatically add a function level interface protocol means the
implementation details of the protocol can be omitted from the source code description,
allowing it to remain a high-level specification of the algorithm.

An interface protocol can be applied to any function in the hierarchy but it is recommended
to only apply an interface protocol to the top-level function and allow High-Level Synthesis
to schedule the most optimum communication between sub-functions.

A complete description of the function interface protocol is provided in the "Interface
Management" chapter and a detailed waveform diagram of the protocol is shown in
Figure 2-33.
High-Level Synthesis www.xilinx.com 132
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Loop Optimizations
Within functions, C language descriptions are typically implemented as a series of loops.
Understanding how loops are implemented in HLS, can be optimized and the impact of
loop hierarchy is crucial to achieving optimal performance at the RT level.

A complete list of the directives which can be applied to loops can be seen in the GUI
(Figure 2-62):

1. Select the source code in the Project Explorer window.

2. View the directives tab in the Auxiliary Pane.

3. Select a loop, right-click with the mouse & select "Insert Directives"

4. Choose a directive from the menu and select the appropriate options
High-Level Synthesis www.xilinx.com 133
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
IMPORTANT: Not all of the directives which can be applied to loops are related to the optimization of
loops.

For example, when applied to a loop, the BALANCE directive is applied to the logic
structures created with the loop. Logic optimizations are discussed in a subsequent chapter.

Table 2-9 lists the optimizations which can be performed on loops and the order in which
the optimizations are discussed in this chapter.

X-Ref Target - Figure 2-62

Figure 2-62: GUI Function Directives
High-Level Synthesis www.xilinx.com 134
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Unrolling Loops
By default loops are kept rolled in High-Level Synthesis. That is to say that the loops are
treated as a single entity: all operations in the loop are implemented using the same
hardware resources for iteration of the loop.

High-Level Synthesis provides the ability to unroll or partially unroll for-loops.

Figure 2-63 shows both the powerful advantages of loop unrolling and the implications
which must be considered when unrolling loops. The example in Figure 2-63 assumes the
arrays a[i], b[i] and c[i] are mapped to RAMs. If the arrays were not mapped to sequential
elements, the number of cycles in the example would be determined by the combinational
delay of the multiplier.

The first conclusion which can be drawn from Figure 2-63 is how easy it is to create many
different implementations by the simple application of loop unrolling.

Table 2-9: Loop Level Optimizations

GUI Directive Description

Unrolling Unroll for-loops to create multiple independent
operations rather than a single collection of operations.

Merging Merge consecutive loops to reduce overall latency,
increase sharing and optimization.

Flattening Allows nested loops to be collapsed into a single loop
with improved latency and logic optimizations

Dataflow Allows sequential loops to operate concurrently

Pipelining Used to increase throughput by performing concurrent
operations

Dependence Used to provide additional information which can be
used to overcome loop-carry dependencies.

Tripcount Provides user override of iteration analysis

Latency Specify a cycle latency for the loop operation
High-Level Synthesis www.xilinx.com 135
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
• Rolled Loop: When the loop is rolled, each iteration will be performed in a separate
clock cycle. This implementation takes four clock cycles, only requires one multiplier
and each RAM can be a single port RAM.

• Partially Unrolled Loop: In this example, the loop is partially unrolled by a factor of 2.
This implementation required two multipliers and dual-port RAMs to support two reads
or writes to each RAM in the same clock cycle. This implementation does however only
take 2 clock cycles to complete: twice the throughput and half the latency of the rolled
loop version.

• Unrolled loop: In the fully unrolled version the entire loop operation can be performed
in a single clock cycle. This implementation however requires four multipliers. More
importantly, this implementation requires the ability to perform 4 reads and 4 write
operations in the same clock cycle. Since quad-port RAMs are not common, this

X-Ref Target - Figure 2-63

Figure 2-63: Loop Unrolling Details
High-Level Synthesis www.xilinx.com 136
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
implementation may require the arrays be implemented as register arrays rather than
RAMs, or that array partitioning and re-shaping be used.

It is safe to say that depending on how the arrays are implemented (some or all mapped to
RAMs) and the delay of the multiplier, there could be many more possible implementations
of this simple example.

Loop unrolling can be performed using the GUI as shown in Figure 2-56 by applying
directives to individual loops in the design. Alternatively, loop directives can be applied to
all for-loops in a function by applying the unroll directive to the function itself as shown in
Figure 2-56. The Tcl command can also be used to unroll specific loops:

set_directive_unroll -skip_exit_check -factor 2 top/for_mult

The set_directive_unroll command can only be applied to loops which are labeled, as shown
in Figure 2-63, unless the directive is applied as a pragma inserted into the source code
(which would apply to all versions of the code).

Partial loop unrolling does not require the unroll factor to be an integer multiple of the
maximum iteration count. High-Level Synthesis will automatically add any exit checks to
ensure partially unrolled loops are functionally identical to the original loop. For example,
given the following code:

for(int i = 0; i < N; i++) {
 a[i] = b[i] + c[i];
}

Loop unrolling by a factor of 2 will effectively transform the code to look like the following
example where the "break" construct is used, and implemented in the RTL, to ensure the
functionality remains the same:

for(int i = 0; i < N; i += 2) {
 a[i] = b[i] + c[i];
 if (i+1 >= N) break;
 a[i+1] = b[i+1] + c[i+1];
}

Since N is a variable, High-Level Synthesis may not be able to determine its maximum value
(it could be driven from an input port). If it is known that the unrolling factor, 2 in this case,
is an integer multiple of the maximum iteration count N, the -skip_exit_check option can be
used to remove the exit check. The effect of unrolling can now be represented as:

for(int i = 0; i < N; i += 2) {
 a[i] = b[i] + c[i];
 a[i+1] = b[i+1] + c[i+1];
}

This helps minimize the area and simplify the control logic.
High-Level Synthesis www.xilinx.com 137
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Unrolling Loops in C++ Classes

When loops are used in C++ classes, care should be taken to ensure the loop induction
variable is not a data member of the class as this prevents the loop for being unrolled.

In this example, loop induction variable “k” is a member of class “foo_class”.

template <typename T0, typename T1, typename T2, typename T3, int N>
class foo_class {
private:
pe_mac<T0, T1, T2> mac;

public:
T0 areg;
T0 breg;
T2 mreg;
T1 preg;

 T0 shift[N];
int k; // Class Member

 T0 shift_output;
void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
{

Function_label0:;
#pragma AP inline off
SRL:for (k = N-1; k >= 0; --k) {

#pragma AP unroll// Loop will fail UNROLL
if (k > 0)
shift[k] = shift[k-1];

else
shift[k] = data;

}

 *dataOut = shift_output;
 shift_output = shift[N-1];
}

*pcout = mac.exec1(shift[4*col], coeff, pcin);
};

For High-Level Synthesis to be able to unroll the loop as specif ied by the UNROLL pragma
directive, the code should be re-written to remove “k” as a class member.

template <typename T0, typename T1, typename T2, typename T3, int N>
class foo_class {
private:
pe_mac<T0, T1, T2> mac;

public:
T0 areg;
T0 breg;
T2 mreg;
T1 preg;

 T0 shift[N];
 T0 shift_output;
void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
{

Function_label0:;
int k; // Local variable

#pragma AP inline off
High-Level Synthesis www.xilinx.com 138
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
SRL:for (k = N-1; k >= 0; --k) {
#pragma AP unroll// Loop will unroll

if (k > 0)
shift[k] = shift[k-1];

else
shift[k] = data;

}

 *dataOut = shift_output;
 shift_output = shift[N-1];
}

*pcout = mac.exec1(shift[4*col], coeff, pcin);
};

Merging Loops
All rolled loops imply and create at least one state in the design Finite-State-Machine (FSM).
When there are multiple sequential loops this can sometimes create additional unnecessary
clock cycles and prevent further optimizations.

Figure 2-64 shows a simple example where a seemingly intuitive coding style has a negative
impact on the performance of the RTL design.

Figure 2-64(A) shows how by default, each rolled loop in the design creates at least one
(but perhaps more, depending on the number of operations to be performed) state in the

X-Ref Target - Figure 2-64

Figure 2-64: Loop Merging
High-Level Synthesis www.xilinx.com 139
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
FSM3. Moving between those states costs clock cycles: assuming each loop iteration
requires one clock cycle, it take a total of 11 cycles to execute both loops:

• 1 clock cycle to enter the ADD loop.

• 4 clock cycles to execute the add loop.

• 1 clock cycle to exit ADD and enter SUB.

• 4 clock cycles to execute the SUB loop.

• 1 clock cycle to exit the SUB loop.

• For a total of 11 clock cycles.

In this simple example it should become obvious that an else branch in the ADD loop would
also solve the problem but in a more complex example it may be less obvious and the more
intuitive coding style may have greater advantages, such as allowing colleagues in the same
design team to more easily understand a very complex algorithm. (Adding statements to
perform the same merge operation, such as multiple if-else statements, may make the code
very unreadable).

High-Level Synthesis provides a feature to automatically merge loops. Using the directives
tab in the GUI to add a MERGE directive to the function (or a region which contains both
loops) would instruct High-Level Synthesis to merge the loops and create a control
structure similar to that shown in Figure 2-64(B) which requires only 6 clocks to complete.

Currently, loop merging in High-Level Synthesis has the following restrictions:

• If loop bounds are all variables, they must have the same value.

• If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

• Loops with both variable bound and constant bound cannot be merged.

• The code between loops to be merged cannot have side effects: multiple execution of
this code should generate the same results (a=b is allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO reads: merging would change the
order of the reads and reads from a FIFO or FIFO interface must always be in sequence.

Loop merging can be performed at the command line using the set_directive_loop_merge
command (on a function as shown below or on a labeled loop or region) or it can be
performed using the GUI to apply the MERGE directive.

set_directive_loop_merge top
High-Level Synthesis www.xilinx.com 140
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Flattening Nested Loops
In a similar manner to the consecutive loops discussed in the previous section, it requires
additional clock cycles to move between rolled nested loops. It requires one clock cycle to
move from an outer loop to an inner loop and from an inner loop to an outer loop.

In the small example shown here, this implies 200 extra clock cycles to execute loop "Outer".

void foo_top { a, b, c, d} {
...
Outer: while(j<100)
Inner: while(i<6)// 1 cycle to enter inner
...
LOOP_BODY
...

} // 1 cycle to exit inner
}
...

}

In addition, nested loops prevent the outer loop from being pipelined, as discussed in the
next section on "Loop Dataflow Pipelining".

High-Level Synthesis provides the set_directive_loop_flatten command to allow labeled
perfect and semi-perfect nested loops to be automatically flattened, removing the need to
re-code for optimal hardware performance and reducing the number of cycles it takes to
perform the operations in the loop.

• Perfect loop nest: only the innermost loop has loop body content, there is no logic
specified between the loop statements and all the loop bounds are constant.

• Semi-perfect loop nest: only the innermost loop has loop body content, there is no
logic specif ied between the loop statements but the outermost loop bound can be a
variable.

For imperfect loop nests, where the inner loop has variables bounds or the loop body is not
exclusively inside the inner loop, designers should try to restructure the code, or unroll the
loops in the loop body to create a perfect loop nest.

When the directive is applied to a set of nested loops it should be applied to the inner most
loop which contains the loop body.

set_directive_loop_flatten top/Inner

Loop flattening can also be performed using the directive tab in the GUI, either by applying
it to individual loops or applying it to all loops in a function by applying the directive at the
function level.
High-Level Synthesis www.xilinx.com 141
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Loop Dataflow Pipelining
Dataflow pipelining can be applied to loops in similar manner as it can be applied to
functions. It allows loops which are sequential in nature to operate concurrently at the RTL.
Dataflow pipelining should be applied to a function, loop or region which contains all
function or all loops: do not apply on a scope which contains a mixture of loops and
functions.

Figure 2-65 shows the advantages dataflow pipelining can produce when applied to loops.

Without dataflow pipelining, loop N must execute and complete all iterations before loop
M can begin. The same applies to the relationship between loops M and P. In this example,
it is 8 cycles before loop N can start processing the next value and 8 cycles before an output
is written (assuming the output is written when loop P f inishes).

X-Ref Target - Figure 2-65

Figure 2-65: Loop Dataflow Pipelining
High-Level Synthesis www.xilinx.com 142
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
With dataflow pipelining, these loops can be allowed to operate in parallel, accepting new
inputs every 3 cycles and outputting a value every 5 cycles: using the same hardware
resources. High-Level Synthesis automatically inserts channels between the loops to ensure
data can flow asynchronously from one loop to the next.

The channels between the loops are implemented as either ping-pong buffers or FIFOs.

• If the variable is an array the channel is implemented as a ping-pong buffer using
standard memory accesses (with associated address and control signals).

• For all other variable types, and streaming arrays, the channel is implemented as a FIFO,
which uses less hardware resources (no address generation), but requires the data is
accessed sequentially.

IMPORTANT: To use dataflow pipelining the variables must be produced by one loop and consumed by
only one other loop.

In addition to using the GUI directive tab, dataflow pipelining can be specif ied using the
set_directive_dataflow command. When the directive is specified in a region High-Level
Synthesis will seek to improve the concurrency of the loops within it. For the example shown
in Figure 2-65 the following command would perform loop dataflow pipelining on loops
“Loop_N”, “Loop_M” and “Loop_P”.

set_directive_dataflow -interval 2 top

The –interval option can be used to specify exactly how many cycles there will be between
the start of one loop implementation and the next. By default High-Level Synthesis will try
to minimize this time. Ideally High-Level Synthesis will try to have them all start of the same
clock edge and execute in parallel, but data dependencies will typically prevent this. For
example, if an interval of 3 is specif ied, there would be 3 cycles between the start of loop
implementation in Figure 2-65(B).

The number of elements in the channel (memory) is defined by the maximum size of the
consumer or producer array size but High-Level Synthesis provides a means to specifying a
default channel depth (refer to "Configuring " below).

Configuring Default Channels

The default channel used between loops can be specified using the config_dataflow
command. Configuration commands allow a default operation to be set for a solution. This
command allows the default channel size and implementation to be set for all channels in
a design.

config_dataflow -default_channel (fifo | *pingpong*) -size <FIFO size>

The size of a channel is defined by the maximum size of the consumer or producer array. In
some cases this may be overly conservative. The -size option provides a means for the user
to override the default behavior.
High-Level Synthesis www.xilinx.com 143
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
If an array parameter is specif ied to use a FIFO channel, the array is automatically converted
to a streaming type (refer to "Array Streaming" for an explanation of streaming). If the
default channel type is FIFO but a specif ic array has been specif ied as non-streaming using
set_directive_array_stream command, the channel implementation for that array will default
to a ping-pong channel. (An explicit directive overrides a configuration).

Loop Pipelining
In a C language description the operations in a loop are executed sequentially and the next
iteration of the loop can only begin when the last operation in the loop is complete. An RTL
design can execute multiple operations concurrently and it is often desirable that the RTL
be implemented to perform in this manner.

Loop pipelining allows the operations in a loop to be implemented in a concurrent manner
as shown in Figure 2-66. The default sequential operation is shown in Figure 2-66(A) where
there are 3 clock cycles between each input read and it requires 8 clock cycles before the
last output write is performed.

In the pipelined version of the loop, shown in Figure 2-66(B), a new input sample is read
every cycle and the final output is written after only 4 clock cycles: substantially improving
both the throughput and latency while using the same hardware resources, since the only
changes to the design are in the control logic.

The number of cycles between new input reads is called the pipeline initiation interval and
is specif ied by the user but defaults to 1 if not specified.
High-Level Synthesis www.xilinx.com 144
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Loop pipelining can be prevented due to resource contention, as shown for pipelined
functions back in Figure 2-61, and data dependencies.

Only the inner-most loop in a series of nested loops can be pipelined, however pipelining
will automatically flatten any loops in the hierarchy below the pipelined region.

Data dependencies are a much harder issue to resolve and often require changes to the
source code. A scalar data dependency could look like:

while (a != b) {
 if (a > b) a –= b;
 else b –= a;
 }

Obviously, the next iteration of this loop can not start until the current iteration has
calculated the updated the values of a and b (Figure 2-67).

X-Ref Target - Figure 2-66

Figure 2-66: Loop Pipelining
High-Level Synthesis www.xilinx.com 145
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Dependencies are common with memory accesses:

for (i = 1; i < N; i++)
 mem[i] = mem[i-1] + i;

In this case, the next iteration of the loop must wait until the current iteration updates the
content of the array (Figure 2-68).

If the result of the previous loop iteration must be available before the current iteration can
begin, loop pipelining is not possible. If High-Level Synthesis cannot pipeline with the
specified initiation interval it will automatically increase the initiation internal (in effect,
pulling the next iteration into the current iteration to remove the dependency). If it cannot
pipeline at all, as shown by the above examples in Figure 2-67 and Figure 2-68, it halts
pipelining and proceeds to output a non-pipelined design with reduced throughput.

Loop pipelining can be specif ied on loops using the directives tab in the GUI and labeled
loops can be pipelined using the Tcl command as shown in this example:

set_directive_pipeline -II 5 -enable_flush foo/sum_loop

The initiation interval of the pipeline is specif ied as 5 in this example, meaning a new input
will be read every 5 clock cycles and flushing is enabled. Flushing means the pipeline is
constructed such that it can be shutdown and cleanly emptied. The default, with no
flushing, creates a pipeline which will run continuously until the design is reset.

X-Ref Target - Figure 2-67

Figure 2-67: Scalar Dependency

X-Ref Target - Figure 2-68

Figure 2-68: Memory Dependency
High-Level Synthesis www.xilinx.com 146
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
Loop Carry Dependencies
Loop pipelining can be prevented by loop carry dependencies as explained in the previous
section ("Loop Pipelining"). However, under certain complex scenarios automatic
dependence analysis can be too conservative and fail to filter out false dependencies.

For instance:

void foo(int A[3*N], int x)
{
 LF: for (i = 0; i < N; i++)
 A[i+x] = A[i] + i; // User knows that 2*N > x >= N
}

In the above example, the High-Level Synthesis does not have any knowledge about the
range of input parameter "x" and will conservatively assume that there is always a
dependence between the write to "A[i+x]" and the read from "A[i]" and schedule the loop
iterations sequentially.

To overcome this deficiency, the user can specify the dependence directive to provide
High-Level Synthesis with additional information about the loop-carried dependencies on
one or multiple variables. Here we can inform the tool that no loop-carried dependencies
would exist if we know in advance that x is no less than N (and no greater than 2*N).

set_directive_dependence -variable x -type inter -dependent false foo/LF

When specifying dependencies there are two main types:

• Inter : specifies the dependency is between different iterations of the same loop. If this
is specified as false it will allow High-Level Synthesis to perform operations in parallel if
the loop is unrolled or partially unrolled and prevents such concurrent operation when
specified as false.

• Intra: specifies dependence within the same iteration of a loop, for example an array
being accessed at the start and end of the same iteration. When intra dependencies are
specified as false High-Level Synthesis may move operations freely within the loop,
increasing their mobility and potentially improving performance or area. Obviously
when the dependency is specif ied as true, the operations must be performed in the
order specif ied.

Loop Iteration Control
High-Level Synthesis performs analysis to automatically determine the maximum possible
iteration of a loop, however it is not possible for High-Level Synthesis to determine the
actual maximum iteration of a loop.

In the following example, the maximum iteration of the for-loop is determined by the value
of input "num_samples". High-Level Synthesis can determine that the maximum possible
High-Level Synthesis www.xilinx.com 147
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
value of this variable is 15 (it is of type uint4), but it cannot know that the actual value of
"num_samples" is, for example, never above 9 due to an external constraint.

void foo (uint4 num_samples, ...);

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
...

 result = a + b;
 }
}

If the latency or throughput of the design is dependent on a loop with a variable index,
High-Level Synthesis will not be able to report the correct values for throughput or latency.
High-Level Synthesis will report the latency of the loop as being unknown (represented in
the reports by a question mark "?").

Specifying the loop iterations, or tripcount, ensures the report contains valid numbers. This
can be specif ied using the TRIPCOUNT directive which can be applied via the GUI using the
directives tab or specif ied on labeled loops using the Tcl command line:

set_directive_loop_tripcount -min 3 -max 8 -avg 5 foo/loop_1

The -max option tells High-Level Synthesis the maximum number of iterations the loop will
ever iterate. The -min option specif ies the minimum number of iterations which will be
performed and the -avg option specif ies an average tripcount. This ensures the High-Level
Synthesis reports accurately reflect the maximum and minimum design throughput.

The tripcount directive does not impact the results of synthesis. The tripcount values are
only used for reporting, where they help to ensure the reports generated by High-Level
Synthesis show meaningful ranges for latency and throughput.

Loop Latency
The maximum and minimum latency for a loop can be specif ied as a constraint. This is a
means of ensuring the performance targets are met and a powerful way to control how the
resources in a loop are used.

By default High-Level Synthesis will seek to meet timing and then minimize latency. If
timing cannot be met, latency will be extended until timing can be met. If there is a latency
constraint which prevents latency being extended, High-Level Synthesis will allow local
timing violations as detailed in the "Clocks, Timing & RTL output" section. Given the latency
achieved with the default settings:
High-Level Synthesis www.xilinx.com 148
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Loop Optimizations
• Setting a maximum latency which is less than this will cause High-Level Synthesis to
work harder to meet the lower latency value by trying to improve operator sharing and
chaining.

• Setting a minimum latency which is higher than this will allow High-Level Synthesis to
take more clock cycles to complete the operations, allowing increased sharing and
potentially meeting timing on any paths which are currently failing.

Latency constraints are applied on each loop separately via the GUI or using the
set_directive_latency command using the loop label.
High-Level Synthesis www.xilinx.com 149
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Array Optimizations
The memory configurations in a design have a great impact on the performance and area of
the overall design. Arrays in a C language description are typically mapped to memories
and so the optimizations performed on arrays have a great impact on both area and
performance.

A complete list of the directives which can be applied to arrays can be seen in the GUI
(Figure 2-69):

1. Select the source code in the Project Explorer window.

2. View the directives tab in the Auxiliary Pane.

3. Select an array, right-click with the mouse & select "Insert Directives"

4. Choose a directive from the menu and select the appropriate options
High-Level Synthesis www.xilinx.com 150
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Table 2-10 lists the optimizations which can be performed on arrays and the order in which
they are discussed in this chapter.

X-Ref Target - Figure 2-69

Figure 2-69: GUI Array Directives
High-Level Synthesis www.xilinx.com 151
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Arrays in a C language description are generally implemented using memory resources at
the RTL. This chapter explains how arrays can be implemented using specif ic RAMs or
ROMs, how they can be transformed (split horizontally, split vertically, aggregated or
combinations of these operations) to ensure they map eff iciently into the available memory
resource and how they can be decomposed into individual registers.

Arrays which are specified as arguments to the top-level function are synthesized in a
slightly different manner. In this case it is assumed the memory resource is outside the
design and the array is synthesized into ports which can access this resource. The same
transformations can be performed upon such arrays: the result of synthesis will simply be
ports which can access the transformed array.

Array Initialization & Reset
High-Level Synthesis supports the initialization of arrays in the source code. The
initialization value of arrays is replicated in the RTL and in the FPGA, where the bitstream is
used to ensure the RAM (or registers if the array is partitioned) is initialized to the same
values when the device is powered-up.

The following code example shows:

• An example where the array is initialized from file f ir_coef.h.

Table 2-10: Array Optimizations

GUI Directive Description

Resource Specify which hardware resource (RAM component) a
array maps to.

Map Reconfigures array dimensions by combining multiple
smaller arrays into a single large array to help reduce
RAM resources and area.

Partition Control how large arrays are partitioned into multiple
smaller arrays to reduce RAM access bottleneck. Also
used to ensure arrays are implemented as registers and
not RAMs.

Reshape Can reshape an array from one with many elements to
one with greater word-width. Useful for improving RAM
accesses without using many RAMs.

Stream Specifies that an array should be implemented as a FIFO
rather than RAM.
High-Level Synthesis www.xilinx.com 152
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
• An example where the const qualif ier is used: High-Level Synthesis will know the array
should be implemented as a ROM.

If the const qualif ier is not used High-Level Synthesis can generally detect when arrays are
only read from and thus should be implemented as a ROM, however it is always best to
specify explicitly which memory resource should be used to implement the array. Resource
selection is discussed in the next section.

typedef intcoef_t;
typedef intdata_t;
typedef intacc_t;

 data_t fir (
data_t x

) {
 static data_t shift_reg[N];
 acc_t acc;
 int i;

 const coef_t c[N+1]={
#include "fir_coef.h"
 };

 acc=0;
 mac_loop: for (i=N-1;i>=0;i--) {
 if (i==0) {
 acc+=x*c[0];
 shift_reg[0]=x;
 } else {
 shift_reg[i]=shift_reg[i-1];
 acc+=shift_reg[i]*c[i];
 }
 }
 return=acc;
 }

Arrays will be initialized to the values specified in the source code at power-up, however
subsequent applications of the reset port to the device will not return the array to this initial
power-on state: the reset of arrays is not supported through any reset added by High-Level
Synthesis.

If arrays must be returned to some initial (reset) state when an external signal is applied,
this must be explicitly coded into the design. An example of this is:

...
 const coef_t c_temp[N+1]={
#include "fir_coef.h"
 };
 coef_t c[N+1];

 if (rst_array==1) {
for (i=0;i<N;i++) {
c[i] = c_temp[i];

}
 }
High-Level Synthesis www.xilinx.com 153
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
...

This however may result in two undesirable attributes in the RTL design:

• Unlike a power-up initialization, this type of explicit reset requires that the RTL design
iterate through each address in the array/RAM to set the value: this can take many
clock cycles if N is large.

• This requires that an additional variable, rst_array in this case, is added to the top-level
function interface. This port would be in addition to any reset signal which is added
during synthesis.

Memory Resource Selection
If no memory resource is specified for an array, High-Level Synthesis will automatically
determine which memory resource (single-port, dual-port, etc.) will be used. The same
applies to arrays specif ied as function arguments on the top-level function: High-Level
Synthesis may create an interface to a dual-port memory since it allows higher throughput.
This is not guaranteed to be the best choice and so users are encouraged to specify exactly
which memory resource each array should map to.

Arrays are mapped to a specif ic RAM resource using the set_directive_resource command as
shown below or this can be specif ied in the GUI as shown in Figure 2-69 (or inserted as a
pragma in the code).

Given the following example with three arrays, one specif ied as a function parameter and
two defined within the function,

void foo (in[16], ...) {
 int8 array1[16];
 int12 array2[48];
 ...
loop_1: for(i=0;i<8;i++) {
array1[i] = in[i];
...

}
}

Interface Resources

The following will specify the type of RAM which supplies the data to port in[16]:

set_directive_resource -core RAM_1P foo in

The -core option specif ies the RAM core: a complete list of RAM cores is available in the
“High-Level Synthesis Library Guide” and can be selected from the RESOURCE directive
window in the GUI.

If parameter "in[16]" is specif ied as having an ap_memory interface, the ports created will
match the ports on RAM_1P. If RAM_1P has a chip-enable (CE) port, High-Level Synthesis
High-Level Synthesis www.xilinx.com 154
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
will create an interface with a CE port. If the RAM_1P has separate address ports for reading
and writing, High-Level Synthesis will create an address port to read the RAM and an
address port to write to the RAM. If it has a single address port for both, High-Level
Synthesis will create a design with a single address port for both read and write operations.

If port in[16] is specified as an ap_fifo the type of memory resource specified is of less
importance since an ap_fifo interface is always the same: data ports with read, write, empty
and full ports.

Refer to chapter "Interface Management" for more details on selecting an interface.

Design Resources

Using the same code example above, the following commands specify the type of RAM
used to implement arrays "array1" and "array2".

set_directive_resource -core RAM_1P foo array1
set_directive_resource -core RAM_2P foo array2

In this case, "array1" is mapped to core RAM_1P and "array2" is mapped to core RAM_2P. At
this stage, the following must be satisf ied:

• RAM_1P must have more than 16 elements (addresses) and each element must be
greater than 8-bits, since int8 is an 8-bit datatype.

• RAM_2P must have more than 28 elements and each element must be more than
12-bits (int12 is a 12-bit datatype).

Even if port "in1" has already been specif ied as communicating with a RAM_1P component
outside the function, there is no requirement that "array1" be targeted to the same type of
RAM component. High-Level Synthesis will perform any transformation necessary to read
from one type of RAM or RAM port and write to another.

Array Mapping
In most technology libraries the RAMs provided have pre-defined sizes (e.g. power-of-2
depth, with 1,8,16-bit words). When there are many small arrays in the original
specification, mapping them into a single large array before specifying a target resource
may reduce the storage overhead. If each small array gets a separate memory, a lot of
memory space is potentially wasted and the design will be unnecessarily large.

The High-Level Synthesis set_directive_array_map command supports two ways of mapping
small arrays into a larger one:

• Horizontal mapping: this corresponds to creating a new array by concatenating the
original arrays. Physically, this gets implemented as a single array with more elements.
High-Level Synthesis www.xilinx.com 155
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
• Vertical mapping: this corresponds to creating a new array by concatenating the
original words in the array. Physically, this gets implemented by a single array with a
larger bit-width.

Horizontal Mapping

The following code example has two arrays which would result in two RAM components.

void foo (...) {
 int8 array1[M];
 int12 array2[N];
 ...
loop_1: for(i=0;i<M;i++) {
array1[i] = ...;
array2[i] = ...;
...

}
 ...
}

Arrays "array1" and "array2" can be combined into a common array, specif ied as "array3" in
the following example:

set_directive_array_map -instance array3 -mode horizontal foo array1
set_directive_array_map -instance array3 -mode horizontal foo array2

The MAP directive, which can also be specif ied in the GUI by selecting the individual arrays,
transforms the arrays as shown in Figure 2-70.

When using horizontal mapping the smaller arrays are mapped into a larger array, starting
at location 0 in the larger array, and in the order the commands are issued (in the

X-Ref Target - Figure 2-70

Figure 2-70: Horizontal Mapping
High-Level Synthesis www.xilinx.com 156
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
High-Level Synthesis GUI it is the order the arrays are specif ied using the menu). The -offset
option can be used to add additional elements between the original arrays.

To repeat the previous example, but reversing the order of the commands (adding "array2"
then "array1") and adding an offset, as shown below,

set_directive_array_map -instance array3 -mode horizontal foo array2
set_directive_array_map -instance array3 -mode horizontal -offset 2 foo array1

would result in the transformation shown in Figure 2-71.

After mapping the newly formed array, "array3" in the above examples, can be mapped into
a single RAM component.

set_directive_resource -core RAM_1P foo array3

The RAM implementation shown in Figure 2-72 corresponds to the mapping in Figure 2-70
(no offset is used).

X-Ref Target - Figure 2-71

Figure 2-71: Horizontal Mapping with Offset
High-Level Synthesis www.xilinx.com 157
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Although horizontal mapping can result in using less RAM components and hence improve
area, it can have an impact on throughput and performance. In the above example both the
accesses to "array1" and "array2" in "loop_1" can be performed in the same clock cycle. If
both arrays are mapped to the same RAM this will now require a separate access, and clock
cycle, for each read operation.

To overcome this limitation, High-Level Synthesis provides vertical mapping.

Vertical Mapping

In vertical mapping, arrays are concatenated by to produce an array with higher bit-widths.
Figure 2-73 shows how the same example used in horizontal mapping discussion is
transformed when vertical mapping mode is applied.

set_directive_array_map -instance array3 -mode vertical foo array2
set_directive_array_map -instance array3 -mode vertical foo array1

X-Ref Target - Figure 2-72

Figure 2-72: Memory for Horizontal Mapping
High-Level Synthesis www.xilinx.com 158
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
In vertical mapping the arrays are concatenated in the order specified by the command,
with the f irst arrays starting at the LSB and the last array specif ied ending at the MSB.
(Note, "array2" was specif ied f irst by the set_directive_array_map command. In the
High-Level Synthesis GUI it is the order the arrays are specified using the menus).

After mapping the newly formed array, "array3" in the above examples, can be mapped into
a single RAM component (Figure 2-74).

set_directive_resource -core RAM_1P foo array3

X-Ref Target - Figure 2-73

Figure 2-73: Vertical Mapping
High-Level Synthesis www.xilinx.com 159
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Mapping & Global Arrays

It is possible to map a global array. However the resulting array instance will be global and
any local arrays mapped onto this same array instance will become global.

When local arrays of different functions get mapped onto the same target array, then the
target array instance becomes global.

When array function parameters are mapped, they need to be parameters of the same
function.

Array Partitioning
Arrays can also be partitioned into smaller arrays. Memories only have a limited amount of
read ports and write ports which can limit the throughput of a load/store intensive
algorithm. The bandwidth can sometimes be improved by splitting up the original array (a
single memory resource) into multiple smaller arrays (multiple memories), effectively
increasing the number of ports.

Partitioning a larger array into smaller arrays with the set_directive_array_partition
command can hence improve the throughput.

High-Level Synthesis provides three types of array partitioning, as shown (Figure 2-75). The
various types are specified with the -type option:

• block : the original array is split into equally sized blocks of consecutive elements of the
original array.

X-Ref Target - Figure 2-74

Figure 2-74: Memory for Vertical Mapping
High-Level Synthesis www.xilinx.com 160
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
• cyclic: the original array is split into equally sized blocks interleaving the elements of
the original array.

• complete: the default operation is to split the array into its individual elements. This
corresponds to resolving a memory into registers.

For block and cyclic partitioning the -factor option can be used to specify the number of
array which are created. In Figure 2-75 a factor of 2 is used - the array is divided into two
smaller arrays. If the number of elements in the array is not an integer multiple of the factor,
the final array has fewer elements.

When partitioning multi-dimensional arrays, the -dim option can be used to specify which
dimension is partitioned. In this example,

void foo (...) {
 int array1[L][M][N];
 ...
}

"array1" is split into three arrays, each of which has dimension 1 of size L/3.

set_directive_array_partition -type block -dim 1 -factor 3 foo array1

If zero is specif ied as the dimension (-dim 0) all dimensions are partitioned.

X-Ref Target - Figure 2-75

Figure 2-75: Array Partitioning
High-Level Synthesis www.xilinx.com 161
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Array Reshaping
The command set_directive_array_reshape combines array partitioning with vertical
mapping. This ultimately takes different elements from a dimension in the original array,
and combines them into a single element in the reshaped array.

Given the following example:

void foo (...) {
 int array1[N];
 int array2[N];
 int array3[N];
 ...
}

The following commands can be used to reshape arrays "array1", "array2" and "array3" into
a three new arrays, using the default factor of 2 to create block, cyclic and complete types.

set_directive_array_reshape -type block -instance array4 foo array1
set_directive_array_reshape -type cyclic -instance array5 foo array2
set_directive_array_reshape -type complete -instance array6 foo array3

Figure 2-76 shows the result of the above commands.

X-Ref Target - Figure 2-76

Figure 2-76: Array Reshaping
High-Level Synthesis www.xilinx.com 162
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Array Optimizations
Array Streaming
By default all arrays are implemented as memory elements, unless complete partitioning
reduces them to individual registers. This means all arrays will be assigned to a RAM
resource and accessed with the data, address, chip and write enable signals specified on the
RAM core in the technology library.

To use a FIFO instead of a RAM, the array must be specified as streaming. The following
arrays are automatically specif ied as steaming:

If an array on an interface is set as interface type ap_fifo it is automatically set as
streaming.

All other array must be specif ied as streaming if a FIFO interface is required. This includes
if streaming interface is required between function or loops when dataflow pipelining is
specified.

An array can be specified to be streaming by

set_directive_array_stream foo array1

The only options to the command are used when applying the command to arrays involved
in dataflow channels. The -depth option overrides the default FIFO depth (the size of the
largest array) and the -off option overrides the config_dataflow command: when the default
channel is specif ied as a FIFO the set_directive_array_stream -off option can be used to
prevent the array from streaming and ensure it uses a pingpong buffer.
High-Level Synthesis www.xilinx.com 163
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
Logic Structure Optimizations
The logic structures created by High-Level Synthesis are of the utmost importance. Once
functions and loops have been optimized for concurrent operation, merged, inlined and
flattened for minimum latency, pipelined for maximum throughput and array accesses have
been analyzed to reduce bottlenecks, it is often ultimately the logic structures which dictate
or limit the performance of a design and understanding how to improve them, the key to
success.

A number of items dictate the type of logic structures implemented in a design:

• Clock Rate

• Target Device

• Operator Selection

• Controlling Hardware Resources

• Struct Packing

• Expression balancing

• Elaboration Effort

The impact of the clock, target device, state machine encoding and the reset are discussed
in the "Design Optimization" chapter. These items should be reviewed and confirmed
before applying any other optimization techniques discussed here.

Operator Selection
During synthesis High-Level Synthesis selects implementations for operators (+, -, *, /, %,
etc.) from the device technology library. By default High-Level Synthesis chooses operators
which are the best balance between timing and area. The config_bind can be used to
influence which operators are used and to minimize the number of operators.

config_bind -effort [low | medium | high] -min_op <list> -reset

The config_bind command can only be issued inside an active solution. Once the command
has been issued it will apply to all synthesis operations performed in the solution: if the
solution is closed and re-opened the specified configuration will still apply to any new
synthesis operations.

Any configurations applied with the config_bind command can be removed by using the
-reset option or by using open_solution -reset to open the solution.
High-Level Synthesis www.xilinx.com 164
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
The default effort level for the binding operation is medium.

• Low Effort: Spend less timing sharing, run time is faster but the f inal RTL may be
larger. Useful for cases where the designer knows there is little sharing possible or
desirable and does not wish to waste CPU cycles exploring possibilities.

• Medium Effort: The default, where High-Level Synthesis tries to share operations but
endeavors to finish in a reasonable time.

• High Effort: Try to maximize sharing and do not limit run time. High-Level Synthesis
will keep trying until all possible combinations of sharing have been explored.

Effort levels impact every operator in the top-level function - bindings are set for the entire
design.

The -min_op operation allows a particular operation to be minimized in the RTL. For
example, if the design contains 12 multipliers, the following command would seek to
minimize the number of multipliers in this design:

config_bind -min_op mul

Refer to the config_bind command in the "High-Level Synthesis Reference Guide" for a
complete list of available operators.

Controlling Hardware Resources
The resources used to implement the RTL can be specif ied explicitly during synthesis or a
general limit can be put on the resources synthesis is permitted to use. These techniques
can be used to both improve timing (and hence latency and throughput) and area.

The resource used for a specif ic operation can be directly specif ied. Resources can be
specified using the GUI (and as a pragma) and applied to any variable in a function using
the set_directive_resource command.

When High-Level Synthesis reads the code shown in this example,

int foo (
 int a,
 int b
) {
 int c, d;
 c = a*b;
 d = a*c;
 return d;
}

the multiplications, used for variables "c" and "d", will be implemented in the internal
database as standard "mul" (multiplier) operators. A complete list of operators is available
in the "High-Level Synthesis Library Guide".
High-Level Synthesis www.xilinx.com 165
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
When synthesis is performed, High-Level Synthesis will use the timing constraints specified
by the clock, the delays specif ied by the target device and any user constraints to determine
which core is used to implement the operators: it could use the combinational core
"multiplier" or it may decide to use a pipeline multiplier core such as "Mul2S". A complete
list of available cores is provided in the "High-Level Synthesis Library Guide".

The RESOURCE directive can be used to explicitly specify which core should be used. The
following command informs High-Level Synthesis to use a 2-stage pipelined multiplier for
variable "c".

set_directive_resource -core Mul2S foo c

In addition to selecting specif ic operators to improve timing or area, the total number of
operators used in the design can be limited to force operator sharing and improve area
(often at the expense of timing or latency). For the same example code given above, the
following command:

set_directive_allocation -limit 1 -type operation foo mul

limits the implementation to one mul operation (by default, there is no limit). This forces
High-Level Synthesis to use a single multiplier for function "foo".

Struct Packing
Packing the members of a struct into a single wide-word can reduce the control overhead
associated with each of the individual elements are result in both a smaller and faster
design.

The PACK directive can be used to pack the three 8-bit char elements into a single
wide-word element. In the new word, the f irst element of the struct will occupy the least
signif icant bits and the last element, the most significant bits. If the struct contains arrays,
the array with be reshaped with complete partitioning and packed with the other scalars.

Given a struct, “my_data”, used in function foo

typedef struct{
 unsigned char A;
 unsigned char B;
 unsigned char C;
}my_data;

void foo(my_data a_in[50], my_data b_out[50])
{

 int i;

 for(i=0; i < 50; i++){
 b_out[i].A = (a_in[i].A >> 1) + 10;
 b_out[i].B = (a_in[i].B >> 2);
 b_out[i].C = (a_in[i].C >> 3) + 100;
 }
High-Level Synthesis www.xilinx.com 166
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
}

The following commands will pack the members “a_in” into a new variable called “a_in” (it
will use the same name if no –instance option is used) and pack the members of struct
“b_in” into a new called “new_var”.

set_directive_data_pack foo a_in
set_directive_data_pack –instance new_var foo b_out

In both cases, the new variables will be 24-bits wide (three 8-bit char types).

Note: The maximum bit-width of any port or bus created by data packing is 8192 bits.

Expression Balancing
During synthesis a number of optimizations, such as strength reduction, bitwidth
minimization etc. are performed automatically. Included in the list of automatic
optimizations is expression balancing.

One of the optimizations which can be directly controlled is expression balancing. This
optimization rearranges operators to construct a balanced tree and reduce latency.
Expression balancing is on by default but may be disabled.

Software programmers often will write highly sequential code by using assignment
operators (such as += and *=) for convenience. However, this sequential code may have an
adverse effect on latency.

Let us look at the following example:

int foo_top (short a, short b, short c, short d)
{
 int i;
 int sum;

 sum = 0;
 sum += a;
 sum += b;
 sum += c;
 sum += d;
 return sum;

}

The code above must be executed sequentially. Suppose each addition requires one clock
cycle, the complete computation for "sum" requires four clock cycles shown in Figure 2-77.
High-Level Synthesis www.xilinx.com 167
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
However additions "(a+b)" and "(c+d)" can be executed in parallel allowing the latency to
be reduced. After balancing the computation completes in two clock cycles as shown in
Figure 2-78.

Expression balancing typically prohibits sharing and can result in increased area. In the
example from Figure 2-77 a single adder can be used for the entire design, unless the
design is pipelined, because only one adder is required in each clock cycle. In the example
in Figure 2-78 a minimum of two adders are required (and three if the design is pipelined).

The following command turns off expression balancing in function "foo":

set_directive_expression_balance -off foo

X-Ref Target - Figure 2-77

Figure 2-77: Adder Tree

X-Ref Target - Figure 2-78

Figure 2-78: Adder Tree After Balancing
High-Level Synthesis www.xilinx.com 168
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Logic Structure Optimizations
Elaboration Effort
The first process performed on the input function(s) is elaboration. It is during elaboration
that the functionality of the C/C++/SystemC is transformed into generic logic structures.
The effort level used during elaboration has an impact on the starting point for synthesis.

By default, the effort level used during elaboration is std (standard). The standard effort
level is typically enough for most design, because it provides the best balance between
memory/CPU usage and optimization.

The effort level during elaboration can be set by using the -effort option.

elaboration -effort [low | std | high]

Low Effort Level

A low effort level is only recommended when the time taken to elaborate the design
becomes excessively large. No optimizations will be performed on if-else or branch
conditions which can result in larger area (due to less sharing).

Standard Effort Level

The default standard effort level seeks a balance between optimization and run time.

High Effort Level

When high effort level is used more optimization is performed on the initial database which
helps both timing and area. Anything which increases the search space (a design with many
mutually exclusive paths, many opportunities for sharing, a lack of design constraints etc.)
will increase the run time.
High-Level Synthesis www.xilinx.com 169
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
Verification
Post-synthesis verif ication can be automated through the use of the cosim_design feature
which can re-use the pre-synthesis test bench to seamlessly perform verif ication on the
output RTL.

When synthesis completes High-Level Synthesis writes the output RTL to the "syn" directory
as shown in Figure 2-79. These f iles can be used with an appropriately created RTL test
bench to verify the design.

However, High-Level Synthesis provides a much more productive method to verify the RTL
design: cosim_design.

X-Ref Target - Figure 2-79

Figure 2-79: Output Directory Structure
High-Level Synthesis www.xilinx.com 170
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
Automatic Verification of the RTL
The cosim_design feature can re-use the existing C-level test bench created for
pre-synthesis verif ication and automatically verify the RTL using he built-in SystemC RTL
simulator or a 3rd party HDL simulator.

The following is required in order to use the cosim_design feature successfully:

• The correct interface synthesis options must be selected.

• The test bench must be self-checking and return a value of 0.

• Any 3rd-party simulators must be available in the search path.

Interface Synthesis Requirements

In order to use the cosim_design feature to automatically verify the RTL design.

• The top-level function of C and C++ designs must be synthesized using an ap_ctrl_hs
interface.

° This interface creates a start, done and idle port on the design which are used to
control when transactions begin and when to capture data at the end of a
transaction.

• C and C++ designs must use one of the following interfaces on each output port.
(These are the only interfaces which provide a data valid signal, required to capture the
output data):

° ap_vld

° ap_ovld

° ap_hs

° ap_memory

° ap_fifo

° ap_bus

Since SystemC designs do not use interface synthesis, there are no such requirements for
SystemC designs.

Unsupported Optimizations

The automatic RTL verif ication does not support cases where multiple transformations have
been performed upon arrays or arrays within structs on the interface.

In order for automatic verif ication to be performed, arrays on the function interface, or
array inside structs on the function interface, can use any of the following optimizations,
but not two or more:
High-Level Synthesis www.xilinx.com 171
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
• Reshape.

• Partition.

• Data Pack on structs elements.

Test Bench Requirements

To verify the RTL design produces the same results as the original C code, the test bench
used to execute the verif ication should be self-checking. The important features of a
self-checking test bench are discussed in the following example:

int main () {
 int ret=0;
 …
 // Execute (DUT) Function
 …

 // Write the output results to a file
 …

 // Check the results
 ret = system("diff --brief -w output.dat output.golden.dat");

 if (ret != 0) {
 printf("Test failed !!!\n");
 ret=1;
 } else {
 printf("Test passed !\n");
 }
 …
 return ret;
}

• Write the output from the function to a file.

• Compare the results to some existing know good (or golden) results.

• If the results are correct, return the value 0.

• If the results are incorrect, return a non-zero value.

° Any value can be returned. A sophisticated test bench may return different values
depending on the type of difference/failure.

A test bench such as the one shown above provides a substantial productivity improvement
by automatically checking the results, freeing the user from manually verifying them.

If a zero is returned by the top-level test bench function main(), High-Level Synthesis will
issue a message stating the verif ication was successful.

@I [SIM-1] *** cosim_design finished: PASS ***
High-Level Synthesis www.xilinx.com 172
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
Note: If the test bench returns a value of zero, but does not self-check the RTL results and confirm
the results are indeed correct, High-Level Synthesis will still issue message SIM-1 (as above)
indicating the simulation test passed: when no results have actually been checked.

Ensure the test bench checks the results against the expected behavior.

If any non-zero value is returned, High-Level Synthesis will issue two messages: one stating
the value returned and one stating the RTL verif ication failed.

Note: A return of “20” also means there was no return value in the test bench: the test bench should
be enhanced to self-check the results and return a value of zero if they are correct.

Debugging a Simulation Mismatch

If the test bench is self-checking and shows the results from the RTL to be different from the
C code, the following methodology can be used to debug the differences and confirm this
is a bug in the RTL:

1. Confirm the result from the C validation step was not created by from a double or float
type. When comparing the results of double or float types, the test bench must be smart
enough to compare in ranges and not in absolute values, since associatively
optimizations (the order of the operations) can vary the results depending on the level
of optimization applied in the C compilation and synthesis.

2. If required, modify the test bench to print at which sample/cycle the difference is f irst
observed.

3. When executing the simulation, as shown below, select the Dump Trace option to create
a VCD and view the output waveforms in a 3rd-party tool which can open VCD files (e.g.
ModelSim, Verdi, etc.).

4. Try to match up common points in the C and RTL and using the debugger in the CDT and
the RTL VCD file, determine when and where the two representations diverge.

The debug steps may also include adding printf statements or writing specific results to a
f ile in the C source but the above is the basic methodology for debugging differences.

RTL simulator support

With the above requirements in place, cosim_design can verify the RTL design using any of
the valid language and simulator combinations shown in Table 2-11.
High-Level Synthesis www.xilinx.com 173
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
When verifying the SystemC RTL output, High-Level Synthesis uses the built-in SystemC
kernel to verify the RTL. This does not require a license, uses the same version of SystemC
used in synthesis and means the RTL design can always be verif ied using High-Level
Synthesis.

To verify one of the RTL HDL designs (verilog or VHDL) any of the 3rd-party simulators
shown in Table 2-12 may be used.

For the 3rd party simulators, the executable must be available in the OS search path and the
simulator must have a C co-simulation license, since the original C test bench must also be
simulated with the design.

RTL Verification

The simulation can be launched from the GUI using the simulation toolbar button.

This in turn opens the simulation wizard window (Figure 2-81).

Table 2-11: Cosim_design Simulation Support

Simulator OSCI ModelSim VCS

SystemC Supported Not Supported Not Supported

Verilog Not Supported Supported Supported

VHDL Not Supported Supported Supported

X-Ref Target - Figure 2-80

Figure 2-80: Tool Bar
High-Level Synthesis www.xilinx.com 174
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
The wizard presents the available RTL languages to simulate (any or all can be simulated). To
simulate using a specif ic language, use the drop-down menu to select a setting other than
"Skip": the drop-down menu will list the simulators supported for that language.

Alternatively the simulator can be run using the High-Level Synthesis command line
interface using the cosim_design Tcl command:

Simulate VHDL RTL using the ModelSim simulator
cosim_design -tool modelsim -rtl vhdl

#Simulate systemc RTL using the OSCI simulator
cosim_design -rtl systemc

Once the verif ication has been executed, the sim directory shown in Figure 2-79 will be
populated by the simulation files and the adapters used within test bench: these are not
intended for user review but they are not encoded or protected.

If the Setup Only option is selected, High-Level Synthesis will create the scripts, adapters
and wrappers to verify the design but will not execute the simulator. The Dump Trace option

X-Ref Target - Figure 2-81

Figure 2-81: High-Level Synthesis Simulation Wizard
High-Level Synthesis www.xilinx.com 175
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Verification
causes a VCD trace f ile to be written for each function in the design: these files are written
to the appropriate HDL sub-directory of the “sim” directory shown in Figure 2-79.

The Optimizing Compiler option will result in High-Level Synthesis using optimized options
to compile the C test bench and SystemC adapters: this will result in longer compile time
but will improve the run time performance.

The Input Arguments allows the specification of any arguments required by the test bench.
The active compile configuration is shown as part of this dialog box.
High-Level Synthesis www.xilinx.com 176
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting the RTL Design
Exporting the RTL Design
The final step in the Vivado HLS flow is to export the RTL design as a block of Intellectual
Property (IP) which can be used by other tools in the Xilinx flow. The RTL design can be
exported as three types IP Block:

• IP-XACT formatted IP for use with Vivado

• A System Generator IP block

• Pcore formatted IP for use with EDK

Each of these export formats has some restrictions related to the device technology used to
implement the design and the version of Vivado HLS being used. Table 2-12 shows a
summary of which technologies can be exported in each version of Vivado HLS. Refer to
section Vivado HLS Licensed Technologies to understand the difference between Vivado
HLS (System Edition or SE) and Vivado HLS (standalone) versions.

Generally, the output package will contain both Verilog and VHDL RTL, however, if the
design uses any bus interfaces (AXI4. PLB, FSL interfaces etc) only Verilog RTL will be output
in the package.

Bus Interfaces
Since buses interfaces allow the IP block to be more easily connected to other blocks in a
system, it is common when exporting IP blocks to make extensive use bus interfaces (AXI4,
PLB, FSL etc.).

Before proceeding to export the RTL, refer to the section Specifying Bus Interfaces in the
Interface Management chapter to ensure you have correctly specified any bus interfaces.

As noted above, the use of bus interfaces means only Verilog RTL will be output in the
exported IP.

Table 2-12: Device Support for RTL Export Flows

Vivado HLS (SE) Vivado HLS (Standalone)

IP-XACT 7-Series 7-Series

System Generator 7-Series 7-Series

EDK Pcore Not Supported 7-Series, Spartan-3, Spartan-6, Virtex-4,
Virtex-5, and Virtex-6
High-Level Synthesis www.xilinx.com 177
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting the RTL Design
RTL Synthesis
When Vivado HLS reports on the results of synthesis, it provides estimations of the results
expected after RTL synthesis: the expected clock frequency, the expected number of
registers, LUTs and BRAMs etc. These results are estimations because Vivado HLS cannot
know what exact optimizations down-stream RTL synthesis will perform or what will be the
actual routing delays, and hence f inal timing, after place and route.

Before exporting a design, you have the opportunity to execute logic synthesis, for either
the Verilog or VHDL version of the design, using the evaluate option shown in Figure 2-82.

Logic synthesis will automatically be performed by the appropriate Xilinx RTL synthesis
product:

• 7-Series devices will use Vivado RTL Synthesis.

• Zynq and Non-7-Series devices will use ISE.

Note: To execute RTL synthesis, the logic synthesis binary executable must be available in the
system search path. Refer to the Vivado HLS Installation Guide.

This evaluation option simply allows the HLS estimations to be confirmed from within the
Vivado HLS environment, before the IP is sent to the next stage of the design flow. The

X-Ref Target - Figure 2-82

Figure 2-82: Export RTL Dialog Box
High-Level Synthesis www.xilinx.com 178
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting in IP-XACT Format
results of RTL synthesis are stored in the directory
<Project_Directory>/<Solution_Name>/impl/<HDL_Version> and are not part
of the exported IP.

Keep in mind, when this RTL IP block is included in a larger RTL design and RTL synthesis
re-executed, these results may change slightly: the evaluate option is only meant to provide
quick confirmation that the f inal results will likely be close to the Vivado HLS estimates.

Package Identification
The IP-XACT and Pcore formats support identif ication tags embedded in the exported
package. These f ields are optional but will use the following default strings if none are
applied (the pcore format includes only the version identif ication string).

• version: 1.00.a

• library: hls

• vendor: xilinx.com

• description: An IP generated by Vivado HLS

Tcl command
RTL export is supported by the Tcl command export_design. This command can only be
issued after the csynth_design command but can be executed multiple times with
different options.

Refer to the Vivado HLS Reference Guide or the GUI menu Help > Man Page for more details
on this command.

Exporting in IP-XACT Format
Upon completion of synthesis and RTL verif ication, open the Export RTL dialog box by
selecting the Solution > Export RTL from the main menu, or by right-clicking on the
desired solution in the Explorer pane, or by clicking on the Export RTL toolbar icon as
shown in Figure 2-83.

X-Ref Target - Figure 2-83

Figure 2-83: Export RTL Tool Bar Button
High-Level Synthesis www.xilinx.com 179
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting in IP-XACT Format
Select IP-XACT in the Format Selection section (Figure 2-82). This is the default choice
if it has never been changed for a given solution.

Identifying information fields for the IP-XACT package may be customized in the IP
Identification dialog box. Default values are populated for all f ields.

If post-place-and-route resource and timing statistic for the IP block are desired then select
the Evaluate option and the desired RTL language.

Pressing OK will generate the IP-XACT package. This package will be written to directory
<Project_Directory>/<Solution_Name>/impl/ip. This ip directrory will contain a
.zip archive: this is the IP-XACT package.

If the Evaluate option was selected, logic synthesis will be executed and the f inal timing
and resources reported. Refer to the RTL synthesis section above for details on RTL
synthesis.

Importing IP-XACT package into Vivado
A Vivado HLS generated IP-XACT package may be imported into the IP Catalog of Vivado a
project by following these steps in the Vivado GUI (see the Vivado documentation for other
methods of importing IP):

1. Open the project in the Vivado GUI.

2. Click on Project Manager > IP Catalog in the Flow Navigator pane (far left in
default layout)

3. In the IP Catalog tab (upper right pane in default layout) click on the Add IP icon
(lower left; yellow symbol w/ green '+'). This will bring up the Add IP dialog.

4. If no Repository Path is setup or if a different one is preferred, select or create it

5. Click on the browse icon (ellipsis …) which will bring up the Select IP File dialog

6. Browse to and select to the .zip archive for the HLS generated package. Click OK for
this dialog and the previous one.

7. After processing the IP should appear under the heading "VIVADO HLS IP"

8. Add the IP to the as with any other Xilinx provided IP from this point

The repository directory to which user generated IP is imported may be added to the IP
Catalog for all future projects by selecting the Tools > Options menu item, selecting the
General category, scrolling down to the IP Catalog item and Add Directories.

Exporting in Pcore Format
Upon completion of synthesis and RTL verif ication, open the Export RTL dialog box by
selecting the Solution > Export RTL from the main menu, or by right-clicking on the
High-Level Synthesis www.xilinx.com 180
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting in IP-XACT Format
desired solution in the Explorer pane, or by clicking on the Export RTL toolbar icon as
shown in Figure 2-83.

Select Pcore for EDK in the Format Selection section, as shown in Figure 2-84. The
version information f ield for the Pcore package may be customized in the IP
Identification dialog box. A default value of 1.00.a is used if none is specified.

If post-place-and-route resource and timing statistic for the IP block are desired then select
the Evaluate option and select the desired RTL language.

Pressing OK will generate the Pcore package. This package will be written to directory
<Project_Directory>/<Solution_Name>/impl/pcores. This pcores directory will
contain a sub-directory named
<top_level_design_name>_top_v<Version_String>: this is the Pcore package.

Within the Pcore package the directory include will contain the software files for any
slave interface in the design: AXI4 Lite Slave or PLB 4.6 (slave) interfaces. Refer to the
section Specifying Bus Interfaces in the Interface Management chapter for details on how
these f iles are used.

X-Ref Target - Figure 2-84

Figure 2-84: Export RTL as Pcore
High-Level Synthesis www.xilinx.com 181
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting To System Generator
If the Evaluate option was selected, logic synthesis will be executed and the f inal timing
and resources reported. Refer to the RTL synthesis section above for details on RTL
synthesis.

Importing a Pcore package into the EDK environment
A Vivado HLS generated Pcore package may be imported into the EDK environment by
simply copying the contents of the pcores directory to the pcores directory in the EDK
project.

1. Copy the directory <Project_Directory>/<Solution_Name>/impl/pcores/*
to the directory <EDK_Project>/pcores.

2. From within the EDK project, the IP block will be listed under Project Local PCores.

3. If the IP block is not listed under Project Local PCores, use Project > Rescan
Local Repository to manually update the local Pcore information.

Exporting To System Generator
Any IP block imported into System Generator must have a clock-enable port. Vivado HLS
will check to ensure this condition is satisf ied before exporting any design to the System
Generator environment. Vivado HLS will issue an error message, as shown below, if the
design does not have a clock enable port.

IMPORTANT: @E [IMPL-64] Clock enable port is required for exporting the design to System Generator.
Please use 'config_interface -clock_enable' to generate the port.

Note: Vivado HLS must be configured to add a clock-enable port to the design before C synthesis
is performed.

As explained in the error message above, a clock-enable port can be added to any Vivado
HLS design by using the config_interface option clock_enable.

This interface configuration can be performed using the GUI or by Tcl command:

A. In the GUI, select the desired solution to ensure it is the current active solution. Open
the interface configuration setting using the menus Solution > Solution Settings >
General > Add > config_interface and select the clock_enable option.

OR

B. Add the following Tcl command config_interface –clock_enable before the
csynth_design command in your Tcl script
High-Level Synthesis www.xilinx.com 182
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting To System Generator
Port Optimizations

If any top-level function arguments are transformed during the synthesis process into a
composite port, the type information for that port cannot be determined and included in
the System Generator IP block.

The implication for this limitation is that any design which uses the reshape, mapping or
data packing optimization on ports must have the port type information, for these
composite ports, manually specif ied in System Generator.

To manually specify the type information in System Generator, you should know how the
composite ports were created and then use slice and reinterpretation blocks inside System
Generator when connecting the Vivado HLS block to other blocks in the system.

For example,

• If three 8-bit in-out ports R, G and B are packed into a 24-bit input port (RGB_in) and a
24-bit output port (RGB_out) ports.

Once the IP block has been included in System Generator:

• The 24-bit input port (RGB_in) would need to be driven by a System Generator block
which correctly groups three 8-bit input signals (Rin, Gin and Bin) into a 24-bit input
bus.

• The 24-bit output bus (RGB_out) would need to be correctly split into three 8-bit
signals (Rout, Bout and Gout).

Refer to the System Generator documentation for details on how to use the slice and
reinterpretation blocks for connecting to composite type ports.

Exporting the RTL

Upon completion of synthesis and RTL verif ication, open the Export RTL dialog box by
selecting the Solution > Export RTL from the main menu, or by right-clicking on the
desired solution in the Explorer pane, or by clicking on the Export RTL toolbar icon as
shown in Figure 2-83.

Select System Generator For DSP in the Format Selection section, as shown in
Figure 2-85.
High-Level Synthesis www.xilinx.com 183
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting To System Generator
If post-place-and-route resource and timing statistic for the IP block are desired then select
the Evaluate option and select the desired RTL language.

Pressing OK will generate the System Generator package. This package will be written to
directory <Project_Directory>/<Solution_Name>/impl/sysgen. And contains
everything need to import the design to System Generator.

If the Evaluate option was selected, logic synthesis will be executed and the f inal timing
and resources reported. Refer to the RTL synthesis section above for details on RTL
synthesis.

Importing the RTL into System Generator

A Vivado HLS generated System Generator package may be imported into System Generator
using the following steps:

1. Inside the System Generator design, right-click and use option XilinxBlockAdd to
instantiate new block.

2. Scroll down the list in dialog box and select Vivado HLS.

3. Double-click on the newly instantiated Vivado HLS block to open the Block Parameters
dialog box.

X-Ref Target - Figure 2-85

Figure 2-85: Export RTL to System Generator
High-Level Synthesis www.xilinx.com 184
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Exporting To System Generator
4. Browse to the solution directory where the Vivado HLS block was exported. Using the
example above, <Project_Directory>/<Solution_Name>/impl/sysgen, this
would mean browse to directory <Project_Directory>/<Solution_Name> and
select apply.
High-Level Synthesis www.xilinx.com 185
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Chapter 3

High-Level Synthesis Operator and Core
Guide

High-Level Synthesis transforms a C, C++ or SystemC design specification into a Register
Transfer Level (RTL) implementation which in turn can be synthesized into a Xilinx Field
Programmable Gate Array (FPGA).

To perform this task High-Level Synthesis, does the following:

• First elaborate the C, C++ or SystemC source code into an internal database containing
operators.

- The operators represent operations in the C code such as additions,
multiplications, array reads and writes etc.

• During synthesis, High-Level Synthesis maps the operators to cores from the
High-Level Synthesis library.

- Cores are the specific hardware components used to create the design (such as
adders, multipliers, pipelined multipliers, and block RAMs)

- A separate library is provided for each Xilinx technology (Spartan®-6,
Virtex®-7, and other Xilinx® devices)

This document provides details on the operators supported by High-Level Synthesis and
the accompanying libraries.

Synthesis Overview
When High-level Synthesis (HLS) is performed to transform C source code into a Register
Transfer Level (RTL) description, the source code is elaborated into an internal database
which contains operators.
High-Level Synthesis www.xilinx.com 186
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Synthesis Overview
The operators are explained in this High-Level Synthesis Operator and Core Guide, but
basically consist of all the operations which can occur in the C source code, such as:
additions, shifts, multiplications, bit-slicing, array accesses, and so forth.

High-Level Synthesis uses this internal database when it synthesizes the design. Synthesis is
a two-step process consisting of scheduling and binding.

About Scheduling
Scheduling is where High-Level Synthesis determines in which cycles an operation is to
occur.

If, for example, two addition operations are scheduled in the same clock cycle they cannot
use the same hardware adder; however, if they are scheduled in different clock cycles, they
could use the same adder and save resources. In the absence of any constraints or directives
High-Level Synthesis f irst tries to schedule the design to achieve the minimum possible
latency: this could require scheduling two additions in the same clock cycle.

About Binding
When scheduling completes, binding is the process where the scheduled operations are
bound to specific hardware implementations (or cores) from the technology library.

For example, a multiplication operation in the source code could be implemented by a
standard combinational multiplier, while another multiplication could be implemented
using a pipelined multiplier: the fact that a pipelined multiplier requires two stages would
have been considered during scheduling.

In High-Level Synthesis the effects of binding (knowledge of the specif ic cores that are used
to implement operations) are considered during the scheduling process. Figure 1, page 188
shows the process of scheduling and binding. This prevents decisions made during binding
from requiring that the design be re-scheduled, preventing endless iterations.

The types of cores available during the binding process depend on the selected device.
High-Level Synthesis provides a unique library for each Xilinx device and hence cores from
different libraries have different delays and timing. The delays associated with each core
affect which cores can be scheduled in a single clock cycle.
High-Level Synthesis www.xilinx.com 187
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Synthesis Overview
The created schedule depends upon to what cores the operators are bound. As such, the
scheduling process takes into consideration the effects binding has on the design.

In addition to device selection, High-Level Synthesis provides a number of commands and
directives that let you control the scheduling and binding process.

The process of synthesis, although straightforward to describe, is complicated in
implementation, taking account of a number of factors when creating a designs, such as
the:

• Operations in the code

• Design schedule

• Timing delays of the cores

• User constraints and directives

• Binding process

Understanding which cores are available for the RTL implementation is often crucial
to achieving a high performance design. The following subsections describes the
High-Level Synthesis operations and cores.

X-Ref Target - Figure 3-1

Figure 3: Synthesis Process
High-Level Synthesis www.xilinx.com 188
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Understanding Operators, Cores & Directives
Understanding Operators, Cores & Directives
During High-Level Synthesis (HLS) the operations in the C, C++ or SystemC source code are
identif ied and represented in the internal database. There are no commands to list or access
the internal database; the operations can be seen in the Design Viewer that is available in
the High-Level Synthesis GUI. Figure 2, page 189 shows an example from the Design
Viewer.

In Figure 2,a number of operations can be seen. For example, there are
additions represented by an add operation, multiplications represented by a mul
operation, array reads (load operation), comparisons (cmp operation) and
breaks represented by a br operation.

Figure 2-85 also shows how the Design Viewer can show the result of operator binding.
When the mul operation in block bb2 is selected in the schedule viewer window (right side
of the figure) it automatically cross-highlights in the resource viewer window (left side of
the figure) showing this mul operation is bound to hardware multiplier resource and
instance grp_fu_133. Instance grp_fu_133 (the same instance name is used in the RTL)
also shows it is used for a second multiplier operation: there are two operations inside
grp_fu_133, tmp2 and tmp3, indicating this single hardware instance is being used for
two mul operations.

X-Ref Target - Figure 3-1

Figure 4: Operations in the Design Viewer
High-Level Synthesis www.xilinx.com 189
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Controlling Operators & Cores
• Operations such as multiplications are implemented by a specif ic hardware multiplier in
the RTL design using a specif ic core. Not all operations map to cores.

• Operations such as the break from a loop or switch statement indicate a control flow
action and are implemented using logic rather than a core from the library. Operations
such as these cannot be controlled by user directives.

Controlling Operators & Cores
High-Level Synthesis provides the following ways to control the use of operations and
cores:

• Directing the allocation process for operations

• Directing the specif ic resources used for operations

• Scheduling efforts

• Control the binding process of operators to cores

• Listing details on the cores

Limiting Operators
High-Level Synthesis lets you limit how many operators are used in a design. For example,
if a design called foo has 317 multiplications but the FPGA only has 256 multipliers, the
following allocation command can be used to direct High-Level Synthesis to only create a
design schedule with maximum of 256 multiplication (mul) operators:

set_directive_allocation –limit 256 –type operation foo mul

The –type option has specif ied operation because the allocation directive can be used in
the same manner to limit the number of instances of cores and specif ic sub-functions.

Explicitly limiting the number of operators to reduce area might be required in some cases
because the default operation of High-Level Synthesis is to f irst maximize performance:

• By default, in the absence of any constraints or directives, High-Level Synthesis tries to
create a design with the lowest latency (the fewest number of cycles from input to
output).

• When directives are applied to specify a maximum or minimum latency, High-Level
Synthesis seeks to satisfy these latency constraints.

• When directives are applied for pipelining High-Level Synthesis f irst seeks to satisfy
these constraints, and then minimizes or satisf ies any latency constraints.
High-Level Synthesis www.xilinx.com 190
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Controlling Operators & Cores
Minimizing latency can often mean using more cores in the final design, for example, using
two adders in the same clock cycle rather than taking two clock cycles and sharing the same
adder.

Limiting the number of operators ensures fewer cores are used in the f inal design and
might force an increase in latency.

Table 1, page 194 lists all the operations which can be controlled using the
set_directive_allocation command.

Controlling Resources
The set_directive_resource command specif ies which core to use for an operation.
This directive ensures the exact core is known during the scheduling process: no effort on
binding is performed because this directive explicitly specif ies the binding.

Listing the details on the technology library shows which operations can be implemented
with each core (resource), and is explained Core Details, page 193.

The set_directive_resource directive is most typically used to specify which memory
element is to be used to implement an array.

High-Level Synthesis can determine through analysis which cores can and should be used
for each operation.

KEY CONCEPT: For arrays, a specific memory from the technology library should be specified for each
array: if none is specified High-Level Synthesis will automatically select a memory, single or dual-port,
which provides the highest throughput and lowest latency.

The resource directives uses the assigned variable as the target for the resource. Given code
Result=A*B in function foo, this example specif ies the multiplication be implemented
with two-stage, pipelined multiplier core, Mul2S.

set_directive_resource -core Mul2S foo Result

If the variable is used with multiple operators, the code must be modif ied to ensure there
is a single variable for each operator. For example:

Result = (A*B) + C;

Should be changed to:

Result_tmp = (A*B);

Result = Result_tmp + C;

And the directive specif ied on Result_tmp to control the multiplier resource or on Result
to control the adder resource.
High-Level Synthesis www.xilinx.com 191
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Controlling Operators & Cores
Controlling Schedule
The config_schedule command controls the effort during scheduling and can identify
the exact path when the design fails to satisfy the constraints.

Scheduling Effort

The following general information can be used for all effort level controls in High-Level
Synthesis, which are: high, low, and medium.

With an effort level set to high, High-Level Synthesis uses additional CPU cycles and
memory, even after satisfying the constraints, to determine if it can create an even smaller
or faster design. This exploration might, or might not, result in a better quality design but
it does take more time and memory to complete. For designs which are just failing to meet
their goals or for designs where many different optimization combinations are possible, this
could be a useful strategy.

For some designs, the nature of the code does not allow much optimization. For example,
if the code says move data from one variable to the next, there are no other actions to be
done, and the code just needs to be implemented: the High-Level Synthesis software,
however, does not determine that spending time doing exploration will not result in much
improvement, and it spends time researching more possibilities. For designs such as this, an
effort level set to low will most likely come to the same result much faster.

In summary, it is a better practice to leave the effort level at the default medium setting,
however:

TIP: If the design has little room for various combinations of operators and cores and it is
running a long time, using a low effort may give the same results much faster.

TIP: If the design is just failing to meet the require performance in area or timing, it is worth using
a high effort to see what is possible with further exploration and trials.

Critical Path Analysis

The config_schedule command also has a –verbose option. When you specify this option
High-Level Synthesis prints out the full critical path when scheduling is unable to meet the
constraints.

Controlling Binding
The config_bind command provides control over the binding process. The command lets
you direct how much effort is spent when binding cores to operators and enables direct
control for operator minimization in area sensitive designs.
High-Level Synthesis www.xilinx.com 192
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Controlling Operators & Cores
Binding Effort

The same general guidelines for scheduling effort also apply to binding. In this case,
designs with operations for which there are a large number of possible cores will benefit
more from higher efforts than design were there are few choice.

The list_core command, described in Core Details, can be used to determine the number
of possible cores with which each operator can be implemented.

Minimizing operators

You can use the config_bind command to force more sharing on the design.

• The –min_op option to the config_bind command instructs High-Level Synthesis to
create a design with the minimum number of specified operators.

For example, the following instructs High-Level Synthesis to create a design with the
minimum number of add operators.

config_bind –min_op add

Because this command affects the binding process it only has an impact when operators are
scheduled in the different clock cycles. If the operators are scheduled in the same clock
cycle to satisfy other constraints (latency and/or throughput) the config_bind command
has no effect on these operators. The allocation directive which impacts the result of
scheduling should be used to f irst limit the number of operators.

This command option is typically used to override any consideration of MUXing costs.
When operations are shared onto the same core, the additional MUXes, which are
implemented in LUTs, can have a signif icant impact on both timing and area. High-Level
Synthesis typically defaults to being conservative with MUXes if there is a potential that it
will violate timing.

Core Details

The list_core command is used to obtain details on the cores available in the
library.

To use the list_core a device must be selected using the set_part command. If no
device has been selected, the command will have no effect.

• The –operation option of the list core command lists all the cores in the library that
can be implemented with the specified operation.

Table 1, page 194 gives a complete list of the operations which can be queried. Using the
command without any option lists all the cores available for the target device..

• The –type option can be used to further refine the cores by category:
High-Level Synthesis www.xilinx.com 193
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Operators
- Function Units: Cores that implement standard RTL operations (such as add,
multiply, compare)

- Storage - Cores that implement storage elements such as registers or memories.

- Adapter - Cores that implement interfaces used to connect the top-level design
when IP is generated. These interfaces are implemented in the RTL wrapper used in
the IP generation flow, such as the Embedded Development Kit (EDK).

- IP Blocks -Any IP cores added by the user.

- Connectors - Cores used to implement connectivity within the design. This includes
direct connections and streaming storage elements.

Tables in High-Level Synthesis Cores, page 195 list the standard cores used in Xilinx
devices.

High-Level Synthesis Operators
Table 1 lists the operators used by High-Level Synthesis.

The columns in the table indicate whether the operator is:

• Available for viewing in the Design Viewer

• Can be controlled by the set_directive_allocation, and
set_directive_resource directives or the config_bind command

• If the associated cores can be listed from the library

Table 1: High-Level Synthesis Operators

Operator Description Design Viewer Controlled by
Directives

Library Core
listed

add Addition X X X

ashr Arithmetic Shift-Right X X X

br Break operation X

fiforead FIFO Read X X

fifowrite FIFO Write X X

fifonbread Non-Blocking FIFO Read X X

fifonbwrite Non-Blocking FIFO Write X X

icmp Integer Compare X X X

load Memory Read X X

lshr Logical Shift-Right X X X
High-Level Synthesis www.xilinx.com 194
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Cores
High-Level Synthesis Cores
The High-Level Synthesis cores can be listed in the following categories (also used in the
list_core command):

• Functional Unit Cores

• Storage Cores

• Connector Cores

• Adapter Cores

• Floating Point Cores

• IP Blocks

IMPORTANT: IP blocks are blocks added to the library by the user; consequently, they are not
listed in this document.

The cores are explained in the Table 2 through Table 6, page 198 in the following
subsections.

mul Multiplication X X X

mux Multiplexor X X

phi Multiplexor X

sdiv Signed Divider X

shl Shift-Left X X X

srem Signed Remainder X X

store Memory Write X X

sub Subtraction X X X

udiv Unsigned Division X X X

urem Unsigned Remainder X X

srem Signed Remainder X X

wireread IO read operation X

wirewrite IO write operation X

Table 1: High-Level Synthesis Operators (Cont’d)

Operator Description Design Viewer Controlled by
Directives

Library Core
listed
High-Level Synthesis www.xilinx.com 195
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Cores
Functional Unit Cores

Table 2 lists the cores that implement standard RTL logic operations (such as add,
multiply, and compare).

Storage Cores
Table 3 lists the cores that implement storage elements such as registers or memories.

Table 2: Functional Cores

Core Description

AddSub This core is used to implement both adders and subtractors.

AddSubnS An N-stage pipelined adder or subtractor. High-Level Synthesis will automatically
determine how many pipeline stages are required.

Cmp Comparator.

Div Divider.

Mul Combinational multiplier.

Mul2S 2-stage pipelined multiplier.

Mul3S 3-stage pipelined multiplier.

Mul4S 4-stage pipelined multiplier.

Mul5S 5-stage pipelined multiplier.

Mul6S 6-stage pipelined multiplier.

MulnS N-stage pipelined multiplier. High-Level Synthesis will automatically determine how
many pipeline stages are required.

Sel Generic selection operator, typically implemented as a mux.

Table 3: Storage Cores

Core Description
FIFO A FIFO. High-Level Synthesis will determine whether to implement this in the

RTL with a BRAM or as distributed RAM.

FIFO_ BRAM A FIFO implemented with a BRAM.

FIFO_LUTRAM A FIFO implemented as distributed RAM.

FIFO_SRL A FIFO implemented as with an SRL.

RAM_1P A single-port RAM. High-Level Synthesis will determine whether to implement
this in the RTL with a BRAM or as distributed RAM.

RAM_1P_BRAM A single-port RAM, implemented with a BRAM.

RAM_1P_LUTRAM A single-port RAM, implemented as distributed RAM.

RAM_2P A dual-port RAM, using separate read and write ports. High-Level Synthesis
will determine whether to implement this in the RTL with a BRAM or as
distributed RAM.
High-Level Synthesis www.xilinx.com 196
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Cores
Connector Cores
Table 4 lists the core used to implement connectivity within the design. This includes direct
connections and streaming storage elements.

Adapter Cores
Table 5 lists the cores that implement interfaces used to connect the top-level design when
IP is generated. These interfaces are implemented in the RTL wrapper used in the IP
generation flow in EDK.

RAM_2P_BRAM A dual-port RAM, using separate read and write ports, implemented with a
BRAM.

RAM_2P_LUTRAM A dual-port RAM, using separate read and write ports, implemented as
distributed RAM.

RAM_T2P_BRAM A true dual-port RAM, with support for both read and write on both the input
and output side, implemented with a BRAM.

RAM_2P_1S A dual-port asynchronous RAM: implemented in LUTs.

ROM_1P A single-port ROM. High-Level Synthesis will determine whether to implement
this in the RTL with a BRAM or with LUTs.

ROM_1P_BRAM A single-port ROM, implemented with a BRAM.

ROM_1P_LUTRAM A single-port ROM, implemented as distributed ROM.

ROM_1P_1S A single-port asynchronous ROM: implemented in LUTs.

ROM_2P A dual-port ROM. High-Level Synthesis will determine whether to implement
this in the RTL with a BRAM or as distributed ROM.

ROM_2P_BRAM A dual-port ROM implemented with a BRAM.

RAM_2P_LUTRAM A dual-port ROM implemented as distributed ROM.

Table 4: Connector Cores

Core Description

Mux Multiplexor.

Table 5: Adapter Cores

Core Description
FSL Standard Xilinx FSL interface.

NPI64M Native multi-port memory controller interface.

PLB46S Standard PLB46 slave interface.

PLB46M Standard PLB46 master interface.

Table 3: Storage Cores (Cont’d)

Core Description
High-Level Synthesis www.xilinx.com 197
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Cores
Floating Point Cores
High-Level Synthesis supports the following floating point cores for each Xilinx device. If no
floating point core exists for an operator or function, High-Level Synthesis will not be able
to synthesis the floating point operator and synthesis will halt.

AXI4LiteS AXI4 Lite slave interface.

AXI4M AXI4 master interface.

AXI4Stream AXI4 stream interface.

Table 6: Floating Point Cores

Core 7 Series Virtex-6 Virtex-5 Virtex-4 Spartan-6 Spartan-3

FAddSub X X X X X X
FAddSub_nodsp X X X - - -
FAddSub_fulldsp X X X - - -
FCmp X X X X X X
FDiv X X X X X X
FMul X X X X X X
FMul_nodsp X X X - X X
FMul_meddsp X X X - X X
FMul_fulldsp X X X - X X
FMul_maxdsp X X X - X X
FRSqrt X X X - - -
FRSqrt_nodsp X X X - - -
FRSqrt_fulldsp X X X - - -
FRecip X X X - - -
FRecip_nodsp X X X - - -
FRecip_fulldsp X X X - - -
FSqrt X X X X X X
DAddSub X X X X X X
DAddSub_nodsp X X X - - -
DAddSub_fulldsp X X X - - -
DCmp X X X X X X
DDiv X X X X X X
DMul X X X X X X
DMul_nodsp X X X - X X

Table 5: Adapter Cores (Cont’d)

Core Description
High-Level Synthesis www.xilinx.com 198
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Cores
DMul_meddsp X X X - - -
DMul_fulldsp X X X - X X
DMul_maxdsp X X X - X X
DRSqrt X X X X X X
DRecip X X X - - -
DSqrt X X X - - -

Table 6: Floating Point Cores (Cont’d)

Core 7 Series Virtex-6 Virtex-5 Virtex-4 Spartan-6 Spartan-3
High-Level Synthesis www.xilinx.com 199
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Chapter 4

High-Level Synthesis Coding Style Guide

Preface
The preface includes the syntax conventions used in this document.

Conventions
The following conventions are used in document:

Introduction
This coding style guide explains how you can write C code (including C++ and SystemC) for
implementation on a Xilinx® FPGA device. The f irst step is to synthesize the C code to a
register transfer level (RTL) description using Vivado™ High-Level Synthesis (HLS). The RTL
design is then synthesized into Xilinx gate-level primitives.

For more details on Vivado HLS and the complete tool flow to implementation on a Xilinx
FPGA, see Chapter 2, High-Level Synthesis User Guide chapter.

Table 4-1: Syntax Conventions

Convention Description

Command A command syntax, menu element, or a keyboard key.

<variable> A user-defined value.

choice1 | choice2 A choice of alternatives. The underlined choice is the default.

[option] An optional object.

{repeat} An object repeated 0 or more times.

Ctrl+c A keyboard combination, such as holding down the Ctrl key and
pressing c.

Menu>Item A path to a menu command, such as Item cascading from Menu.

RMB Right Mouse Button. Gives access to context-sensitive menu in the GUI.

<variable> ::= choice
$ bash_command
% tcl_command

Syntax and scripting examples (bash shell, Perl script, Tcl script).
High-Level Synthesis www.xilinx.com 200
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Introduction
The initial chapters of this document explain the basics of C programming with Vivado HLS
and how the HLS tool synthesizes various constructs in the C programming language into a
hardware implementation. The following chapter presents guidelines for extensions to the
C language: C++ and SystemC (a class library of C++ routines used for modeling hardware
behavior and available from www.accellera.org).

Note: Because statements about the C language also apply to C++ and SystemC, the term C code is
used throughout this document to imply code written in C, C++ or SystemC, unless specif ically
noted.

Algorithms written in C code are widely used in many applications and execute on many
different targets, including standard microprocessors (CPUs), graphics processors (GPUs),
microcontrollers used in real-time-operating-systems (RTOS) and digital signal processors
(DSPs). In all cases the compiled C code executes with adequate performance. For high
performance operation the C code is optimized for the target device. This document
explains how modifying the code can improve the quality and performance of the hardware.

Coding Examples
Each of the numbered coding examples in this document are provided as part of the Vivado
HLS release. The coding examples can be accessed in the following manner:

• From the Browse Examples option in the Vivado HLS start-up page.

• In the examples/coding directory available in the Vivado HLS installation area.

Each example directory has the same name as the top-level function for synthesis.

You can open the coding examples in the Vivado HLS GUI or use the provided Tcl script on
the command prompt.

The examples in this coding guide often refer to an associated header file. Some examples
show the header f ile: you can view all the header files in the example directory.

Note: Header f iles typically define the data types for the top-level function and test bench.
High-Level Synthesis www.xilinx.com 201
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com
www.accellera.org

C for Synthesis
C for Synthesis
The top-level of every C program is the main()function. In HLS any function below the
level of main() can be synthesized. In Vivado HLS, the function to be synthesized is
referred to as the top-level function, or design file, and any functions above this are
collectively referred to as the test bench. The test bench is used to validate the behavior of
the top-level function to be synthesized.

The Top-Level Design
Generally, it is good design practice to separate the top-level function for synthesis from
the test bench and to make use of header files.

• The test bench typically contains operations that cannot be synthesized into hardware,
such as f ile I/O accesses to the disk.

• Header files allow definitions used in the test bench and design files to be shared and
updated.

• Example 2-1 shows a design where function hier_func calls two sub-functions:

° sumsub_func to perform addition and subtraction.

° shift_func to perform shift.

• The types din_t, dint_t and dout_t are defined in the header f ile
hier_func.h, which is also described.

#include "hier_func.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{

*outSum = *in1 + *in2;
*outSub = *in1 - *in2;

}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
shift_func(&apb,&amb,C,D);

}

High-Level Synthesis www.xilinx.com 202
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Example 4-1: Hierarchical Design Example

The top-level function can contain multiple sub-functions; however, there can only be single
top-level function for synthesis. To synthesize multiple functions group them into a single
top-level function.

To synthesize function hier_func, the file shown in Example 2-1 can be added to an
Vivado HLS project as a design f ile and the top-level function specif ied as hier_func. As
described in later sections, the arguments to the top-level function (A , B, C and D in
Example 2-1) are synthesized into RTL ports and the functions within the top-level
(sumsub_func and shift_func in Example 2-1) are synthesized into hierarchical blocks.

The header f ile for Example 2-1, hier_func.h, this example shows how to use macros and
the use of typedef statements can make the code more portable and readable. Later
sections show how the typedef statement allows the types and hence the bit-width of the
data path to be refined for both area and performance improvements in the f inal FPGA
implementation.

#ifndef _HIER_FUNC_H_
#define _HIER_FUNC_H_

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D);

#endif

Example 4-2: Hierarchical Design Example Header File

The header file includes some definitions, such as NUM_TRANS, which are not required in
the design file. These are used by the test bench which includes the same header file.

The Test Bench
The first step in the synthesis of any block is to validate that the C function is correct. This
is performed by the test bench and writing a good test bench can greatly increase designer
productivity.

C functions execute in orders of magnitude faster than RTL simulations. Using C to develop
and validate the algorithm prior to synthesis is more productive than developing at RTL.
High-Level Synthesis www.xilinx.com 203
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
• The key to taking advantage of C development times is to have a test bench that checks
the results of the function against known good results. This allows any code changes to
be validated before synthesis: the algorithm is known to be correct.

• Vivado HLS can re-use the C test bench to verify the RTL design (no RTL test bench
needs to be created when using Vivado HLS). If the test bench checks the results from
the top-level function, the RTL can be automatically verif ied by simulation.Example 2-3
shows the test bench for the design that was shown in Example 2-1.

#include "hier_func.h"

int main() {
// Data storage
int a[NUM_TRANS], b[NUM_TRANS];
int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
int c[NUM_TRANS], d[NUM_TRANS];

//Function data (to/from function)
int a_actual, b_actual;
int c_actual, d_actual;

// Misc
int retval=0, i, i_trans, tmp;
FILE *fp;

// Load input data from files
fp=fopen("tb_data/inA.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
a[i] = tmp;

}
fclose(fp);

fp=fopen("tb_data/inB.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
b[i] = tmp;

}
fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

//Apply next data values
a_actual = a[i_trans];
b_actual = b[i_trans];

hier_func(a_actual, b_actual, &c_actual, &d_actual);

//Store outputs
c[i_trans] = c_actual;
d[i_trans] = d_actual;

}

// Load expected output data from files
fp=fopen("tb_data/outC.golden.dat","r");
for (i=0; i<NUM_TRANS; i++){
High-Level Synthesis www.xilinx.com 204
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
fscanf(fp, "%d", &tmp);
c_expected[i] = tmp;

}
fclose(fp);

fp=fopen("tb_data/outD.golden.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
d_expected[i] = tmp;

}
fclose(fp);

// Check outputs against expected
for (i = 0; i < NUM_TRANS-1; ++i) {

if(c[i] != c_expected[i]){
retval = 1;

}
if(d[i] != d_expected[i]){

retval = 1;
}

}

// Print Results
if(retval == 0){

printf(" *** *** *** *** \n");
printf(" Results are good \n");
printf(" *** *** *** *** \n");

} else {
printf(" *** *** *** *** \n");
printf(" Mismatch: retval=%d \n", retval);
printf(" *** *** *** *** \n");

}

// Return 0 if outputs are correct
return retval;

}

Example 4-3: Test Bench Example

Creating of Productive Test Bench

Example 2-3 highlights some of the attributes of a productive test bench; such as:

• The top-level function for synthesis (hier_func) is executed for multiple transactions,
as defined by macro NUM_TRANS (specif ied in the header f ile, Example 2-2), allowing
for many different data values to be applied and verif ied. The test bench is only as
good as the variety of tests it performs.

• The function outputs are compared against known good values. The known good
values are read from a f ile in this example, but could also be computed as part of the
test bench.

• The return value of main() function is set to zero if the results are correctly verif ied
and to a non-zero value if the results do not match known good values.
High-Level Synthesis www.xilinx.com 205
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
TIP: If the test bench does not return a value of 0, the RTL verification performed by Vivado HLS reports
a simulation failure. To take full advantage of the automatic RTL verification, check the results in the
test bench and return a 0 if the test bench has verified the results are correct.

A test bench which exhibits these attributes quickly tests and validates any changes made
to the C functions prior to synthesis and is re-usable at RTL, allowing easier verif ication of
the RTL.

Design Files and Test Bench Files
Because Vivado HLS re-uses the C test bench for RTL verif ication it requires that the test
bench and any associated f iles denoted as test bench f iles when they are added to the
Vivado HLS project.

Files associated with the test bench are any files accessed by the test bench and required
for the test bench to operate correctly. Examples of such files are the data f iles inA.dat,
inB.dat, and so forth in Example 2-3: you must also add these to the Vivado HLS project
as test bench f iles.

The requirement for identifying test bench files in an Vivado HLS project does not impose
a requirement that the design and test bench to be in separate f iles (although it is
recommended).

The same design from Example 2-1 is repeated below in Example 2-4. The only difference is
that the top-level function is renamed hier_func2, to differentiate the examples.

Using the same header f ile and test bench (other than the change from hier_func to
hier_func2), the only changes required in Vivado HLS to synthesize function
sumsum_func as the top-level function are:

• Set sumsub_func as the top-level function in the Vivado HLS project.

• Add the file in Example 2-4 as both a design f ile and project f ile: the level above
sumsub_func, function hier_func2, is now part of the test bench and must be
included in the RTL simulation.

Even though function sumsub_func is not explicitly instantiated inside the main()
function, the remainder of the functions (hier_func2 and shift_func) are confirming it
is operating correctly and thus are part of the test bench.

#include "hier_func2.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{

*outSum = *in1 + *in2;
*outSub = *in1 - *in2;

}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
High-Level Synthesis www.xilinx.com 206
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
{
*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void hier_func2(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
shift_func(&apb,&amb,C,D);

}

Example 4-4: New Top-Level

Combining Test Bench and Design Files

It is also possible to include the design and test bench into a single design file. Example 2-5
has the same functionality as the Example 2-1 through Example 2-3, except everything is
captured in a single f ile (function hier_func is renamed hier_func3 to ensure the
examples are unique).

IMPORTANT: If the test bench and design are in a single f ile, you must add the file to a
Vivado HLS project as both a design f ile and a test bench f ile.

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{

*outSum = *in1 + *in2;
*outSub = *in1 - *in2;

}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void hier_func3(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
shift_func(&apb,&amb,C,D);

}

int main() {
// Data storage
High-Level Synthesis www.xilinx.com 207
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
int a[NUM_TRANS], b[NUM_TRANS];
int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
int c[NUM_TRANS], d[NUM_TRANS];

//Function data (to/from function)
int a_actual, b_actual;
int c_actual, d_actual;

// Misc
int retval=0, i, i_trans, tmp;
FILE *fp;
// Load input data from files
fp=fopen("tb_data/inA.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
a[i] = tmp;

}
fclose(fp);

fp=fopen("tb_data/inB.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
b[i] = tmp;

}
fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

//Apply next data values
a_actual = a[i_trans];
b_actual = b[i_trans];

hier_func3(a_actual, b_actual, &c_actual, &d_actual);

//Store outputs
c[i_trans] = c_actual;
d[i_trans] = d_actual;

}

// Load expected output data from files
fp=fopen("tb_data/outC.golden.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
c_expected[i] = tmp;

}
fclose(fp);

fp=fopen("tb_data/outD.golden.dat","r");
for (i=0; i<NUM_TRANS; i++){

fscanf(fp, "%d", &tmp);
d_expected[i] = tmp;

}
fclose(fp);

// Check outputs against expected
for (i = 0; i < NUM_TRANS-1; ++i) {

if(c[i] != c_expected[i]){
retval = 1;
High-Level Synthesis www.xilinx.com 208
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
}
if(d[i] != d_expected[i]){

retval = 1;
}

}

// Print Results
if(retval == 0){

printf(" *** *** *** *** \n");
printf(" Results are good \n");
printf(" *** *** *** *** \n");

} else {
printf(" *** *** *** *** \n");
printf(" Mismatch: retval=%d \n", retval);
printf(" *** *** *** *** \n");

}

// Return 0 if outputs are correct
return retval;

}

Example 4-5: Test Bench and Top-Level Design

Top-Level Arguments: RTL Interface Ports
When the top-level function is synthesized the arguments (or parameters) to the function
are synthesized into RTL ports. This process is called interface synthesis.

Interface Synthesis

The code shown in Figure 2-6 can be used to provide a comprehensive overview interface
synthesis. In this example, there are two pass-by-value inputs, (in1 and in2), a pointer
(sum) which is both read from and written to, and a function return (the value of temp).

#include "sum_io.h"

dout_t sum_io(din_t in1, din_t in2, dio_t *sum) {

dout_t temp;

*sum = in1 + in2 + *sum;
temp = in1 + in2;

return temp;
}

Example 4-6: Interface Synthesis Example

By default, the design is synthesized into an RTL block with the ports shown in Figure 2-1.
High-Level Synthesis www.xilinx.com 209
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Vivado HLS has the following actions on ports. An explanation of the ports is as follows:

• Adds clock and reset port to the design.

• Adds design-level handshake signals by default: ports ap_start, ap_done and
ap_idle.

• If the function has a return value, adds output port ap_return to the RTL interface.

• Vivado HLS both reads from and writes to function arguments, then synthesizes them
into separate input and output ports (sum_i and sum_o in Figure 2-1).

• Vivado HLS by default, synthesizes input pass-by-value arguments and pointers as
simple wire ports with no associated handshaking signal.

• By default, output pointers synthesizes with an associated output valid signal to
indicate when the output data is valid.

When Vivado HLS synthesizes the RTL ports it automatically creates the necessary hardware
to read and write to the ports whether it takes a single cycle or multiple cycles. For the code
shown in Example 2-6 the timing behavior is shown in Figure 2-2 (assuming the target
technology and clock frequency allow a single addition per clock cycle).

X-Ref Target - Figure 4-1

Figure 4-1: RTL Ports After Default Interface Synthesis
High-Level Synthesis www.xilinx.com 210
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
• The design starts when ap_start is asserted high.

• The ap_idle signal is asserted low to indicate the design is operating.

• The input data is read at any clock after the f irst cycle (Vivado HLS will automatically
schedule when the reads occur).

• When output sum is calculated, the associated output handshake (sum_o_ap_vld)
indicates the data is valid.

• When the function completes, ap_done is asserted: this also indicates the data on
ap_return is valid.

• Port ap_idle is asserted high to indicate the design is waiting start again.

Chapter 2, High-Level Synthesis User Guide provides a complete explanation of interface
synthesis and the various options. The important points to understand here are:

• Interface synthesis automatically handles the data sequencing to and from the design:
you just need to select the appropriate interface.

• Many types of interfaces can be synthesized: wire ports, single and two-way
handshakes, RAM access ports and FIFO ports among others.

X-Ref Target - Figure 4-2

Figure 4-2: RTL Port Timing with Default Synthesis
High-Level Synthesis www.xilinx.com 211
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
• Many different types of interface can be synthesized from the same source code. If the
same code is synthesized with in1, in2, and sum specif ied as two-way handshakes,
the RTL ports would be as shown in Figure 2-3.

The rest of this section describes issues related to the how the coding style can influence
the implementation of RTL ports.

Pointers

Pointers can be used as arguments to the top-level function. It is important to understand
how pointers are implemented during synthesis as they can sometimes introduce issues in
achieving the desired RTL interface and design after synthesis.

Basic Pointers

A function with basic pointers on the top-level interface, such as shown in Example 2-7,
produces no issues for HLS. The pointer can be synthesized to either a simple wire interface
or an interface protocol using handshakes.

TIP: To be synthesized as a FIFO interface, a pointer must be read-only or write-only.

#include "pointer_basic.h"

void pointer_basic (dio_t *d) {
static dio_t acc = 0;

X-Ref Target - Figure 4-3

Figure 4-3: RTL Ports After Specified Interface Synthesis
High-Level Synthesis www.xilinx.com 212
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
acc += *d;
*d = acc;

}

Example 4-7: Basic Pointer Interface

When used with the test bench shown here in Example 2-8.

#include "pointer_basic.h"

int main () {
dio_t d;
int i, retval=0;
FILE *fp;

// Save the results to a file
fp=fopen("result.dat","w");
printf(" Din Dout\n", i, d);

// Create input data
// Call the function to operate on the data
for (i=0;i<4;i++) {

d = i;
pointer_basic(&d);
fprintf(fp, "%d \n", d);
printf(" %d %d\n", i, d);

}
fclose(fp);

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed!!!\n");
retval=1;

} else {
printf("Test passed!\n");

}

// Return 0 if the test
return retval;

}

Example 4-8: Basic Pointer Interface Test Bench

The C function and RTL simulation will verify the correct operation (although not all
possible cases) with this simple data set:

Din Dout
 0 0
 1 1
 2 3
 3 6
Test passed!
High-Level Synthesis www.xilinx.com 213
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Pointer Arithmetic

When pointer arithmetic is introduced it limits the possible interfaces that can be
synthesized in RTL. Example 2-9 shows the same code but this time some simple pointer
arithmetic is used to accumulate the data values (starting from the 2nd value).

#include "pointer_arith.h"

void pointer_arith (dio_t *d) {
static int acc = 0;
int i;

for (i=0;i<4;i++) {
acc += *(d+i+1);
*(d+i) = acc;

}
}

Example 4-9: Interface with Pointer Arithmetic

Example 2-10 shows the test bench that supports this example. Because the loop to
perform the accumulations is now inside function pointer_arith, the test bench
populates the address space, specif ied by array d[5], with the appropriate values.

#include "pointer_arith.h"

int main () {

dio_t d[5], ref[5];
int i, retval=0;
FILE *fp;

// Create input data
for (i=0;i<5;i++) {

d[i] = i;
ref[i] = i;

}

// Call the function to operate on the data
pointer_arith(d);

// Save the results to a file
fp=fopen("result.dat","w");
printf(" Din Dout\n", i, d);
for (i=0;i<4;i++) {

fprintf(fp, "%d \n", d[i]);
printf(" %d %d\n", ref[i], d[i]);

}
fclose(fp);

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed!!!\n");
retval=1;

} else {
printf("Test passed!\n");
High-Level Synthesis www.xilinx.com 214
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
}

// Return 0 if the test
return retval;

}

Example 4-10: Test Bench for Pointer Arithmetic Function

When simulated, this results in the following output:

Din Dout
 0 1
 1 3
 2 6
 3 10
Test passed!

The problem with the pointer arithmetic is that it does not access the pointer data in
sequence. Wire, handshake or FIFO interfaces have no way of accessing data out of order:

• A wire interface reads data when the design is ready to consume the data or write the
data when the data is ready.

• Handshake and FIFO interfaces read and write when the control signals permit the
operation to proceed.

In both cases, the data must arrive (and is written) in order, starting from element zero. In
Example 2-9 the code states the f irst data value read is from index 1 (i starts at 0, 0+1=1):
this is the 2nd element from array d[5] in the test bench.

When this is implemented in hardware, this requires some form of data indexing. This is not
supported with wire, handshake or FIFO interfaces. The code in Example 2-9 can only be
synthesized with an ap_bus interface: this interface supplies an address with which to
index the data when the data is accessed (read or write).

Alternatively the code must be modif ied as shown in Example 2-11, with an array on the
interface instead of a pointer. This can be implemented in synthesis with a RAM
(ap_memory) interface, which has the capability of indexing the data with an address and
can perform out-of-order, or non-sequential accesses.

Wire, handshake or FIFO interfaces can only be used on streaming data and therefore
cannot be used in conjunction with pointer arithmetic (unless it indexes the data starting at
zero and then proceeds sequentially).

More details on the ap_bus and ap_memory interface types are available in Chapter 2,
High-Level Synthesis User Guide and Chapter 1, High-Level Synthesis Command Reference
Guide.

#include "array_arith.h"

void array_arith (dio_t d[5]) {
static int acc = 0;
High-Level Synthesis www.xilinx.com 215
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
int i;

for (i=0;i<4;i++) {
acc += d[i+1];
d[i] = acc;

}
}

Example 4-11: Array Arithmetic

Multi-Access Pointer Interfaces: Streaming Data

Designs which use pointers in the argument list of the top-level function need special
consideration when multiple accesses are performed using pointers. Multiple accesses
occur when a pointer is read from or written to, multiple times in the same function.

The issues which arise are that:

• It is a requirement to use the volatile qualif ier on any function argument accessed
multiple times.

• On the top-level function, any such argument must have the number of accesses on the
port interface specif ied if verifying the RTL using co-simulation within Vivado HLS.

• Be sure to validate the C prior to synthesis to confirm the intent and the C model is
correct.

RECOMMENDED: If modeling the design requires that an function argument be accessed
multiple times it is recommended to model the design using streams, as explained in
section Designing with Streaming Data [ADD REFERENCE]. Using streams ensures none of
the issues detailed in this section will be encountered.

The section shows, using example design pointer_stream_bad, why the volatile qualif ier is
required when accessing pointers multiple times within the same function and also
highlights, using example design pointer_stream_better, why any design which have such
pointers on the top-level interface should be verif ied with a C test bench to ensure the
intended behavior is correctly modelled.

In Example 2-12, input pointer d_i is read from four times and output d_o is written to
twice, with the intent that the accesses will be implemented by FIFO interfaces (streaming
data into and out of the f inal RTL implementation).

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_i) {
din_t acc = 0;

acc += *d_i;
acc += *d_i;
*d_o = acc;
High-Level Synthesis www.xilinx.com 216
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
acc += *d_i;
acc += *d_i;
*d_o = acc;

}

Example 4-12: Multi-Access Pointer Interface

The test bench to verify this design is shown in Example 2-13.

#include "pointer_stream_bad.h"

int main () {

din_t d_i;
dout_t d_o;
int retval=0;
FILE *fp;

// Open a file for the output results
fp=fopen("result.dat","w");

// Call the function to operate on the data
for (d_i=0;d_i<4;d_i++) {

pointer_stream_bad(&d_o,&d_i);
fprintf(fp, "%d %d\n", d_i, d_o);

}
fclose(fp);

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed !!!\n");
retval=1;

} else {
printf("Test passed !\n");

}

// Return 0 if the test
return retval;

}

Example 4-13: Multi-Access Pointer Test Bench

Understanding Volatile Data

The code in Example 2-12 is written with intent that input pointer d_i and output pointer
d_o will be implemented in RTL as FIFO (or handshake) interfaces which will ensure:

• Upstream producer blocks will supply new data each time a read is performed on RTL
port d_i.

• Downstream consumer blocks will accept new data each time there is a write to RTL
port d_o.
High-Level Synthesis www.xilinx.com 217
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
However, when this code is compiled by standard C compilers, the multiple accesses to each
pointer will be reduced to a single access: as far as the compiler is concerned, there is no
indication that the data on d_i changes during the execution of the function and only the
f inal write to d_o is relevant (the other writes will be over-written by the time the function
completes).

Vivado HLS matches the behavior of the gcc compiler and optimizes these reads and writes
into a single read operation and a single write operation. When the RTL is examined, there
will only be a single read and write operation on each port.

The fundamental issue with this design is that the test bench and design do not adequately
model how the designer expects the RTL ports to be implemented:

• The designer expects RTL ports which read and write multiple times during a
transaction (and can stream the data in and out).

• The test bench only supplies a single input value and only returns a single output value.
A C simulation of Example 2-12 would show the following results, which demonstrates
each input is being accumulated 4 times, but it’s the same value being read once and
accumulated each time: not 4 separate reads.

Din Dout
0 0
1 4
2 8
3 12

This design can be made read and write to the RTL ports multiple times by using the volatile
qualif ier as shown below in Example 2-14.

The volatile qualif ier tells the C compiler, and Vivado HLS, to make no assumptions about
the pointer accesses: the data is volatile, may change and pointer accesses should not be
optimized.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
din_t acc = 0;

acc += *d_i;
acc += *d_i;
*d_o = acc;
acc += *d_i;
acc += *d_i;
*d_o = acc;

}

Example 4-14: Multi-Access Volatile Pointer Interface

Example 2-14 will simulate the same as Example 2-12 but the volatile qualif ier will prevent
pointer access optimizations and result in an RTL design which will perform the expected
four reads on input port d_i and two writes to output port d_o.
High-Level Synthesis www.xilinx.com 218
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
However, even if the volatile keyword is used, this coding style (accessing a pointer multiple
times) still has an issue in that the function and test bench do not adequately model
multiple distinct reads and writes.

In this case, four reads will be performed, but again, the same data will be read four times.
There will be two separate writes, each with the correct data but the test bench will only
capture data for the final write. (The intermediate accesses can be seen by enabling
cosim_design to create a trace file during RTL simulation and viewing the VCD file).

Note: Example 2-14 can be implemented with wire interfaces, but if a FIFO interface is specif ied
Vivado HLS will create an RTL test bench to stream new data on each read: since there is no new data
available from the test bench, the RTL will fail to verify. The issue here is that the test bench does not
correctly model the reads and writes correctly.

Modeling Streaming Data Interfaces

Unlike software, the concurrent nature of hardware systems allows them to take advantage
of streaming data, where data is continuously supplied to the design and the design
continuously outputs data: an RTL design can accept new data before the design has
f inished processing the existing data.

As the Example 2-14 has shown, modeling streaming data in software is non-trivial,
especially when writing software to model an existing hardware implementation (where the
concurrent/streaming nature already exists and needs to be modeled).

There are a number of approaches which can be taken here:

• Simply add the volatile qualif ier as shown in Example 2-14. The test bench will not
model unique reads and writes and RTL simulation using the original C test bench may
fail, but viewing the VCD waveforms will show the correct reads and writes are being
performed.

• Modify the code to model explicit unique reads and writes. This is shown next in
Example 2-15.

• Modify the code to using a streaming data type. A streaming data type allows hardware
using streaming data to be accurately modeled. This is discussed in Chapter 2,
High-Level Synthesis User Guide.

The code shown in Example 2-15 has been updated to ensure it will read four unique values
from the test bench and write two unique values. Since the pointer accesses are sequential
and start at location zero, a streaming interface type can be used during synthesis.

#include "pointer_stream_good.h"

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i) {
din_t acc = 0;

acc += *d_i;
acc += *(d_i+1);
*d_o = acc;
High-Level Synthesis www.xilinx.com 219
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
acc += *(d_i+2);
acc += *(d_i+3);
*(d_o+1) = acc;

}

Example 4-15: Explicit Multi-Access Volatile Pointer Interface

The test bench is updated to model the fact that the function will read four unique values
in each transaction. This new test bench only models a single transaction: to model multiple
transactions, the input data set would need to be increased to and the function called
multiple times.

#include "pointer_stream_good.h"

int main () {

din_t d_i[4];
dout_t d_o[4];

int i, retval=0;
FILE *fp;

// Create input data
for (i=0;i<4;i++) {

d_i[i] = i;
}

// Call the function to operate on the data
pointer_stream_good(d_o,d_i);

// Save the results to a file
fp=fopen("result.dat","w");
for (i=0;i<4;i++) {

if (i<2)
fprintf(fp, "%d %d\n", d_i[i], d_o[i]);

else
fprintf(fp, "%d \n", d_i[i]);
}
fclose(fp);

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed !!!\n");
retval=1;

} else {
printf("Test passed !\n");

}

// Return 0 if the test
return retval;

}

Example 4-16: Explicit Multi-Access Volatile Pointer Test Bench

The test bench will validate the algorithm with the following results, showing there are two
outputs from a single transaction and they are an accumulation of the f irst two input reads,
plus an accumulation of the next two input reads and the previous accumulation:
High-Level Synthesis www.xilinx.com 220
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Din Dout
0 1
1 6
2
3

The final issue to be aware of when pointers are accessed multiple time at the function
interface is RTL simulation modeling.

Multi-Access Pointers and RTL Simulation

To verify the RTL with cosim_design, Vivado HLS creates a SystemC wrapper with
adapters around the RTL and instantiates this wrapper into the existing C test bench, as
shown in Figure 2-4.

The wrapper created by Vivado HLS models any required handshakes on the RTL interface
and as such must ensure the input values to the DUT, presented by the test bench, are ready
when required by the RTL design. This requires storage in the adapter.

When pointers on the interface are accessed multiple times, to read or write, Vivado HLS
cannot determine from the function interface how many reads or writes are performed.
Neither of the arguments in the function interface informs Vivado HLS how many values will
be read or written.

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i)

Example 4-17: Volatile Pointer Interface

Unless something on the interface informs Vivado HLS as to how many values are required,
such the maximum size of an array, Vivado HLS will assume a single value and only create
simulation wrappers for a single input and single output.

If the RTL ports are actually reading or writing multiple values, this will result in the RTL
cosim_design simulation stalling: the wrapper is modeling the producer and consumer
blocks which will be connected to the RTL design, and if it only models a single value the
RTL design will stall when trying to read or write more than one value (since there is
currently no value to read or no space to write).

X-Ref Target - Figure 4-4

Figure 4-4: Cosim_design Wrapper Overview
High-Level Synthesis www.xilinx.com 221
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
When multi-access pointers are used at the interface, Vivado HLS must be informed of the
maximum number of reads or writes on the interface. When specifying the interface, use the
depth option on the INTERFACE directive as shown in Figure 2-5, page 222.

In the above example, argument/port d_i is set to have a FIFO interface with a depth of 4,
ensuring that cosim_design will provide enough values to correctly verify the RTL.

Arrays on the Interface

In HLS, arrays are synthesized into memory elements by default. When an array is used as
an argument to the top-level function the memory is assumed to be “off-chip” and interface
ports are synthesized to access the memory.

Vivado HLS has a rich feature set to configure how these ports are created.

• The memory can be specified as a single or dual port RAM.

• The interface can be specified as a FIFO interface.

• Vivado HLS array optimization directives (partition, map and reshape) can be used
to re-configure the structure of the array and hence number of IO ports.

The primary issue which arrays on the interface will introduce into a design is creating a
performance bottleneck because access to the data is limited through a memory (RAM or
FIFO) port. These issues can typically be over-come with the use of directives.

X-Ref Target - Figure 4-5

Figure 4-5: Interface Directive Dialog: Depth Option
High-Level Synthesis www.xilinx.com 222
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
The main rule for using arrays in synthesizable code, it is that arrays must be sized. If for
example, the declaration d_i[4] in Example 2-18 is changed to d_i[], Vivado HLS will
issues a message that the design cannot be synthesized.

@E [SYNCHK-61] array_RAM.c:52: unsupported memory access on
variable 'd_i' which is (or contains) an array with unknown size at compile time.

Array Optimization Directives

The resource directive can be used to explicitly specify which type of RAM is used, and
hence which RAM ports are created: single-port or dual-port. If no resource is specif ied
Vivado HLS will use a single-port RAM by default and automatically use a dual-port RAM if
it improves throughput or reduces latency.

The partition, map and reshape directives can be used to re-configure arrays on the
interface. Arrays can be partitioned into multiple smaller arrays, each implemented with its
own interface. This includes the ability to partition every element of the array into its own
scalar element: on the function interface, this results in a unique port for every element in
the array. This provides maximum parallel access but creates many more ports and may
introduce routing issues in the hierarchy above.

Similarly, smaller arrays may be combined into a single larger array, resulting in a single
interface. This may map better to an “off-chip” BRAM but keep in mind it may also introduce
a performance bottleneck. These trade-offs can made using Vivado HLS optimization
directives and do not impact coding.

RAM interfaces

The array arguments in the function shown in Example 2-18 will, by default, be synthesized
into a single-port RAM interface.

#include "array_RAM.h"

void array_RAM (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
int i;

For_Loop: for (i=0;i<4;i++) {
d_o[i] = d_i[idx[i]];

}

}

Example 4-18: RAM Interface

A single-port RAM interface will used because the for-loop ensures only one element can
be read and written in each clock cycle: there is no advantage in using a dual-port RAM
interface.
High-Level Synthesis www.xilinx.com 223
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
If the for-loop is unrolled, Vivado HLS will automatically use a dual-port because doing so
will allow multiple elements to be read at the same time and increase the throughput. The
type of RAM interface can be explicitly set by applying the resource directive.

As mentioned earlier, if there are issues related to arrays on the interface, they are typically
related to throughput and can be handled with optimization directives. For example, if the
arrays in Example 2-18 are partitioned into individual elements and the for-loop unrolled,
all four elements in each array will be accessed simultaneously.

FIFO Interfaces

Vivado HLS allows array arguments to be implemented as FIFO ports in the RTL. If a FIFO
ports is to be used, be sure that the accesses to and from the array are sequential. Vivado
HLS will perform analysis to confirm if the accesses are sequential.

• If Vivado HLS can verify the accesses are sequential it will implement a FIFO port.

• If Vivado HLS can determine the accesses are not sequential it will issue an error and
synthesis will halt.

• If Vivado HLS cannot determine if the accesses are sequential it will issue a warning and
proceed with the implementation of a FIFO port. If the accesses are in fact not
sequential it will result in an RTL simulation mismatch.

Example 2-19 shows a case where Vivado HLS cannot determine if the accesses are
sequential. In this example, both d_i and d_o are specified to be implemented with a FIFO
interface during synthesis.

#include "array_FIFO.h"

void array_FIFO (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
int i;

// Breaks FIFO interface d_o[3] = d_i[2];
For_Loop: for (i=0;i<4;i++) {

d_o[i] = d_i[idx[i]];
}

}

Example 4-19: Streaming FIFO Interface

In this case, it is the behavior of variable idx which determines if a FIFO interface can be
successfully created or not.

• If idx is incremented sequentially a FIFO interface can be created.

• If random values are used for idx, a FIFO interface will fail when implemented in RTL.

Since there is a possibility that this interface may work, Vivado HLS will issue a message
during synthesis and proceed to create a FIFO interface.

@W [XFORM-124] Array 'd_i': may have improper streaming access(es).
High-Level Synthesis www.xilinx.com 224
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
If the comments in Example 2-19 are removed, (“//Breaks FIFO interface”) Vivado
HLS can automatically determine the accesses to the arrays are not sequential and will halt
with an error message if a FIFO interface is specif ied.

Note: FIFO ports cannot be synthesized for arrays which are read from and written to: separate input
and output arrays (as in Example 2-19) must be created.

The following general rules apply to arrays which are to be streamed (implemented with a
FIFO interface):

• The array must be written/read in only one loop or function. This can be transformed
into a point to point connection which matches the characteristics of FIFO links.

• The array reads must be in the same order as the array write. Random access is not
supported for FIFO channels, so the array has to be used in the program following f irst
in f irst out semantics.

• The index used to read and write from the FIFO has to be analyzable at compile time.
Array addressing based on runtime computations cannot be analyzed for FIFO
semantics and will prevent the tool from converting an array into a FIFO.

Code changes are generally not required to implement or optimize arrays in the top-level
interface. The only time arrays on the interface may need coding changes is when the array
is part of a struct.

Structs on the Interface

When structs are used as arguments to the top-level function, the ports created by
synthesis depend on whether the struct is a pass-by-value argument or a pointer.

In this design example, struct data_t is defined in the header f ile shown in
Example 2-20. This struct has two data members:

• An unsigned vector A of type short (16-bit).

• An array B of four unsigned char types (8-bit).

typedef struct {
unsigned short A;
unsigned char B[4];
} data_t;

data_t struct_port(data_t i_val, data_t *i_pt, data_t *o_pt);

Example 4-20: Struct Declaration in Header file

In Example 2-21 the struct is used as both a pass-by-value argument (from i_val to the
return of o_val) and as a pointer (*i_pt to *o_pt). Although both methods provide a
similar result—passing the input to the output after an addition operation—the difference
is how the pass-by-value and pointer arguments are synthesized as ports.
High-Level Synthesis www.xilinx.com 225
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
#include "struct_port.h"

data_t struct_port(
data_t i_val,
data_t *i_pt,
data_t *o_pt
) {

data_t o_val;
int i;

// Transfer pass-by-value structs
o_val.A = i_val.A+2;
for (i=0;i<4;i++) {

o_val.B[i] = i_val.B[i]+2;
}

// Transfer pointer structs
o_pt->A = i_pt->A+3;
for (i=0;i<4;i++) {

o_pt->B[i] = i_pt->B[i]+3;
}

return o_val;
}

Example 4-21: Struct as Pass-by-Value and Pointer

In the case of the pass-by-value input arguments, the arrays in the struct will be completely
partitioned into separate elements:

• Struct element A will result in a 16-bit port.

• Struct element B will result in 4 separate 8-bit ports.

For the pointers and the function return, any arrays in the struct will be synthesized in the
same manner as standard arrays and will result in memory interface:

• Struct element A will result in a 16-bit port.

• Struct element B will result in a RAM port, accessing 4 elements.

When using structs with large arrays, it may be an advantage to convert any pass-by-value
structs to pointers otherwise such arrays will be completely partitioned into individual
elements, each implemented with their own port. For example, if the array contains 1024
elements, it will be implemented with 1024 separate RTL ports.

There are no limitations in the size or complexity of structs which can be synthesized by
Vivado HLS. There can be as many array dimensions and as many members in a struct
required. The only limitation with the implementation of structs is when arrays are to be
implemented as streaming (such as a FIFO interface). In this case, the same general rules
which apply to arrays on the interface should be followed (FIFO Interfaces).
High-Level Synthesis www.xilinx.com 226
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Types
The data types used in a C function compiled into an executable impact the accuracy of the
result, the memory requirements and can impact the performance.

• A 32-bit integer int data type can hold more data and hence provide more precision
than an 8-bit char type but obviously requires more storage.

• If 64-bit long long types are used on a 32-bit system the run time will be impacted as
it will typically require multiple accesses to read and write such values.

Similarly, when the C function is to be synthesized to an RTL implementation the types
impact the precision, the area and the performance of the RTL design: the data types used
for variables determine the size of the operators required and hence the area and
performance of the RTL.

Vivado HLS supports the synthesis of all standard C types including exact-width integer
types.

• (unsigned) char, (unsigned) short, (unsigned) int

• (unsigned) long, (unsigned) long long

• (unsigned) intN_t (where N is 8,16,32 and 64, as defined in stdint.h)

• float, double

Exact-width integers types are useful for ensuring designs are portable across all types of
system.

Note: Integer type (unsigned)long is implemented as 64-bit on 64-bit operating systems
and as 32-bit on 32-bit operating systems. Synthesis matches this behavior and will produce
different sized operators, and hence different RTL designs, depending on the type of operating
system on which Vivado HLS is run.

Data type (unsigned)int or (unsigned)int32_t should be used instead of type
(unsigned)long for 32-bit.

Data type (unsigned)long long or (unsigned)int64_t should be used instead of type
(unsigned)long for 64-bit.

Standard Types

Example 2-22 shows some basic arithmetic operations being performed.

#include "types_standard.h"

void types_standard(din_A inA, din_B inB, din_C inC, din_D inD,
dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4

) {

// Basic arithmetic operations
*out1 = inA * inB;
High-Level Synthesis www.xilinx.com 227
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
*out2 = inB + inA;
*out3 = inC / inA;
*out4 = inD % inA;

}

Example 4-22: Basic Arithmetic

The data types in Example 2-22 are defined in the header file types_standard.h shown
in Example 2-23 and show how standard signed types, unsigned types, and with the
inclusion of header file stdint.h, exact-width integer types can be used.

#include <stdio.h>
#include <stdint.h>

#define N 9

typedef char din_A;
typedef short din_B;
typedef int din_C;
typedef long long din_D;

typedef int dout_1;
typedef unsigned char dout_2;
typedef int32_t dout_3;
typedef int64_t dout_4;

void types_standard(din_A inA,din_B inB,din_C inC,din_D inD,dout_1
*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

Example 4-23: Basic Arithmetic Type Definitions

These different types result in the following operator and port sizes after synthesis:

• The multiplier used to calculate result out1 will be a 24-bit multiplier: an 8-bit char
type multiplied by a 16-bit short type requires a 24-bit multiplier. This result will be
sign-extended to 32-bit to match the output port width.

• The adder used for out2 will be 8-bit: since the output is an 8-bit unsigned char
type, only the bottom 8-bits of inB (a 16-bit short) are added to 8-bit char type inA.

• For output out3 (32-bit exact width type), 8-bit char type inA is sign-extended to
32-bit value and a 32-bit division operation is performed with the 32-bit (int type)
inC input.

• Similarly, a 64-bit modulus operation is performed using the 64-bit long long type
inD and 8-bit char type inA sign-extended to 64-bit, to create a 64-bit output result
out4.

As the result of out1 indicates, Vivado HLS will use the smallest operator it can and simply
extend the result to match the required output bit-width. Similarly, for result out2 even
though one of the inputs is 16-bit, an 8-bit adder can be used because only an 8-bit output
High-Level Synthesis www.xilinx.com 228
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
is required. However, as the results for out3 and out4 demonstrate, if all bits are required,
a full sized operator will be synthesized.

Floats and Doubles

Vivado HLS supports float and double types for synthesis. Both data types are
synthesized with IEEE-754 standard compliance.

• Single-precision 32 bit: 24-bit fraction, 8-bit exponent

• Double-precision 64 bit: 53-bit fraction, 11-bit exponent

In addition to using floats and doubles for standard arithmetic operations (+, -, * etc.) floats
and doubles are commonly used with the math.h (and cmath.h for C++). This section details
how standard operators are supported. Refer to section HLS Math Library [ADD REFERNCE]
for details on how to synthesize the C and C++ math libraries.

Example 2-24 show the header f ile used with Example 2-22 updated to define the data
types to be double and float types.

#include <stdio.h>
#include <stdint.h>
#include <math.h>

#define N 9

typedef double din_A;
typedef double din_B;
typedef double din_C;
typedef float din_D;

typedef double dout_1;
typedef double dout_2;
typedef double dout_3;
typedef float dout_4;

void types_float_double(din_A inA,din_B inB,din_C inC,din_D inD,dout_1
*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

Example 4-24: Float and Double Types

This updated header f ile is used with Example 2-25, where a sqrtf() function is used.

#include "types_float_double.h"

void types_float_double(
din_A inA,
din_B inB,
din_C inC,
din_D inD,
dout_1 *out1,
dout_2 *out2,
dout_3 *out3,
dout_4 *out4
) {
High-Level Synthesis www.xilinx.com 229
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
// Basic arithmetic & math.h sqrtf()
*out1 = inA * inB;
*out2 = inB + inA;
*out3 = inC / inA;
*out4 = sqrtf(inD);

}

Example 4-25: Use of Floats and Doubles

When Example 2-25 is synthesized it will result in 64-bit double-precision multiplier, adder
and divider operators: these operators will be implemented by the appropriate
floating-point Xilinx CORE Generator cores.

The square-root function used sqrtf() will be implemented using a 32-bit
single-precision floating-point core. It is worth noting that if the double-precision
square-root function sqrt() was used, it would result in additional logic to cast to and
from the 32-bit single-precision float types used for inD and out4: sqrt() is a
double-precision (double) function, while sqrtf() is a single precision (float) function.

CAUTION! In C functions, be careful when mixing float and double types as float-to-double and
double-to-float conversion units will be inferred in the hardware.

This code:
float foo_f = 3.1459;
float var_f = sqrt(foo_f);

Would result in the following hardware:
wire(foo_t)
 Float-to-Double Converter unit
 Double-Precision Square Root unit
 Double-to-Float Converter unit
 wire (var_f)

Using a sqrtf() function would remove the need for the type converters in hardware, save area and
improve timing.

Operations in float and double types are synthesized to a floating point operator LogicCore
cores. Table 2-2 shows the cores available for each Xilinx family.

The implications from the cores shown in Table 2-2 are that if the technology does not
support a particular LogicCore element, the design cannot be synthesized and Vivado HLS
will halt with an error message.

Table 4-2: Floating Point Cores

Core 7-Series Virtex 6 Virtex 5 Virtex 4 Spartan 6 Spartan 3

FAddSub X X X X X X

FAddSub_nodsp X X X - - -
High-Level Synthesis www.xilinx.com 230
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
The cores in Table 2-2 allow the operation, in some cases, to be implemented with a core in
which many DSP48s are used or none (e.g. DMul_nodsp and DMul_maxdsp). By default,
Vivado HLS will implement the operation using the core with the maximum number of
DSP48s. Alternatively, the Vivado HLS resource directive can be used to specify exactly
which core should be used.

A f inal consideration to be aware of when synthesizing float and double types is that Vivado
HLS will maintain the order of operations performed in the C code to ensure the results are
the same as the C simulation. Due to saturation and truncation, the following are not
guaranteed to be the same in single and double precision operations:

 A=B*C; A=B*F;
 D=E*F; D=E*C;
 O1=A*D O2=A*D;

With float and double types, O1 and O2 are not guaranteed to be the same.

TIP: In some cases (design dependent), optimizations such as unrolling or partial unrolling of loops,
may not be able to take full advantage of parallel computations as Vivado HLS will maintain the strict
order of the operations when synthesizing float and double types.

FAddSub_fulldsp X X X - - -

FCmp X X X X X X

FDiv X X X X X X

FMul X X X X X X

FMul_nodsp X X X - X X

FMul_meddsp X X X - X X

FMul_fulldsp X X X - X X

FMul_maxdsp X X X - X X

DAddSub X X X X X X

DAddSub_nodsp X X X - - -

DAddSub_fulldsp X X X - - -

DCmp X X X X X X

DDiv X X X X X X

DMul X X X X X X

DMul_nodsp X X X - X X

DMul_meddsp X X X - - -

DMul_fulldsp X X X - X X

DMul_maxdsp X X X - X X

Table 4-2: Floating Point Cores (Cont’d)

Core 7-Series Virtex 6 Virtex 5 Virtex 4 Spartan 6 Spartan 3
High-Level Synthesis www.xilinx.com 231
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
For C++ designs, Vivado HLS provides a bit-approximate implementation of the most
commonly used math functions.

Composite Types

Composite data types are supported for synthesis:

• array

• enum

• struct

• union

Example 2-26 shows a header file which first defines some enum types, uses them in a
struct, which is in turn used in another struct, allowing an intuitive description of a
complex type to be captured.

In addition, Example 2-26 shows how a complex define (MAD_NSBSAMPLES) statement can
be specif ied and synthesized.

#include <stdio.h>

enum mad_layer {
MAD_LAYER_I = 1,
MAD_LAYER_II = 2,
MAD_LAYER_III = 3

};

enum mad_mode {
MAD_MODE_SINGLE_CHANNEL = 0,
MAD_MODE_DUAL_CHANNEL = 1,
MAD_MODE_JOINT_STEREO = 2,
MAD_MODE_STEREO = 3

};

enum mad_emphasis {
MAD_EMPHASIS_NONE = 0,
MAD_EMPHASIS_50_15_US = 1,
MAD_EMPHASIS_CCITT_J_17 = 3

};

typedef signed int mad_fixed_t;

typedef struct mad_header {
enum mad_layer layer;

 enum mad_mode mode;
int mode_extension;
enum mad_emphasis emphasis;

unsigned long long bitrate;
unsigned int samplerate;

unsigned short crc_check;
unsigned short crc_target;
High-Level Synthesis www.xilinx.com 232
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
int flags;
int private_bits;

} header_t;

typedef struct mad_frame {
header_t header;
int options;
mad_fixed_t sbsample[2][36][32];

} frame_t;

define MAD_NSBSAMPLES(header) \
((header)->layer == MAD_LAYER_I ? 12 : \
(((header)->layer == MAD_LAYER_III && \
((header)->flags & 17)) ? 18 : 36))

void types_composite(frame_t *frame);

Example 4-26: Enum, Struct & Complex Define

The struct and enum types defined in Example 2-26 are used in Example 2-27. As with
standard C compilation, enum types are assumed to be 32-bit values and as such will result
in 32-bit values after synthesis.

Example 2-27 also shows how printf statements will be automatically ignored during
synthesis.

#include "types_composite.h"

void types_composite(frame_t *frame)
{

if (frame->header.mode != MAD_MODE_SINGLE_CHANNEL) {
 unsigned int ns, s, sb;
 mad_fixed_t left, right;

 ns = MAD_NSBSAMPLES(&frame->header);
 printf("Samples from header %d \n", ns);

for (s = 0; s < ns; ++s) {
for (sb = 0; sb < 32; ++sb) {

left = frame->sbsample[0][s][sb];
right = frame->sbsample[1][s][sb];
frame->sbsample[0][s][sb] = (left + right) / 2;

}
}
frame->header.mode = MAD_MODE_SINGLE_CHANNEL;

}
}

Example 4-27: Use Complex Types

In Example 2-28 a union is created with a double and a struct. Unlike C compilation,
synthesis will not guarantee to use the same memory (in the case of synthesis,
High-Level Synthesis www.xilinx.com 233
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
registers) for all f ields in the union. Vivado HLS will perform whatever optimization
provides the most optimal hardware.

Note: Pointer reinterpretation is not supported for synthesis. As such, a union cannot hold pointers
to different types (or arrays of different types).

#include "types_union.h"

dout_t types_union(din_t N, dinfp_t F)
{

union {
struct {int a; int b; } intval;
double fpval;

} intfp;
unsigned long long one, exp;

// Set a floating-point value in union intfp
intfp.fpval = F;

// Slice out lower bits and add to shifted input
one = intfp.intval.a;
exp = (N & 0x7FF);

return ((exp << 52) + one) & (0x7fffffffffffffffLL);
}

Example 4-28: Unions

Type Qualifiers

The type qualif iers can have a direct impact on the hardware created by high-level
synthesis. In general, the qualif iers influence the synthesis results in a predictable manner,
as detailed below, however Vivado HLS is only limited by the interpretation of the qualif ier
as it affects functional behavior and can perform optimizations to create a more optimal
hardware design. Examples of this are shown after an overview of each qualif ier.

Volatile

The volatile qualif ier impacts how many reads or writes are performed in the RTL when
pointers are accessed multiple times on function interfaces. Although the volatile
qualif ier impacts this behavior in all functions in the hierarchy the impact of the volatile
qualif ier is discussed in the section on top-level interfaces (Refer to the section
Understanding Volatile Data, page 217).

Statics

Static types in a function hold their value between function calls. The equivalent behavior in
a hardware design is a registered variable (a flip-flop or memory). If a variable is required to
be a static type for the C function to execute correctly, it will certainly be a register in the
f inal RTL design: the value must be maintained across invocations of the function and
design.
High-Level Synthesis www.xilinx.com 234
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
It is not true however to state that only static types will result in a register after synthesis.
Vivado HLS will determine which variables are required to be implemented as registers in
the RTL design. For example, if a variable assignment must be held over multiple cycles,
Vivado HLS will create a register to hold the value, even if the original variable in the C
function was not a static type.

Vivado HLS obeys the initialization behavior of statics and automatically assigns the value
to zero, or any explicitly initialized value, to the register during initialization. This means the
static variable will be initialized in the RTL code and in the FPGA bitstream. It does not
automatically mean the variable will be re-initialized each time the reset signal is asserted.

Note: Refer to the RTL configuration (config_rtl command) to determine how static initialization
values are implemented with regard to the system reset.

Const

A const type specifies that the value of the variable is never updated. The variable is read
but never written to and therefore must be initialized. For most const variables, this will
typically mean they will be reduced to constants in the RTL design (Vivado HLS will perform
constant propagation and remove any unnecessary hardware).

In the case of arrays however, the const variable will be implemented as a ROM in the final
RTL design (in the absence of any auto-partitioning performed by Vivado HLS on small
arrays). Arrays specif ied with the const qualif ier will, like statics, be initialized in the RTL
and in the FPGA bitstream. (There is no need to reset them since they are never written to).

Vivado HLS Optimizations

Example 2-29 shows a case where Vivado HLS will implement a ROM even though the array
is not specified with a static or const qualif ier. This highlights how Vivado HLS will
analyze the design and automatically determine the most optimal implementation: the
qualif iers, or lack of them, influence but do not dictate the f inal RTL.

#include "array_ROM.h"

dout_t array_ROM(din1_t inval, din2_t idx)
{

din1_t lookup_table[256];
dint_t i;

for (i = 0; i < 256; i++) {
lookup_table[i] = 256 * (i - 128);
}

return (dout_t)inval * (dout_t)lookup_table[idx];
}

Example 4-29: Non-static, Non-const, ROM implementation
High-Level Synthesis www.xilinx.com 235
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
In the case of Example 2-29, Vivado HLS is able to determine the implementation is best
served by having the variable lookup_table as a memory element in the final RTL. More
details on how this achieved for arrays is discussed in the section Implementing ROMs.

Global Variables

Global variables can be freely used in the code and are fully synthesizable. By default
however, global variables are not exposed as ports on the RTL interface. Example 2-30 helps
explain how global variables are synthesized.

In Example 2-30, three global variables are used. Although this example uses arrays, all
types of global variables are supported.)

• Values are read from array Ain.

• Array Aint is used to transform and pass values from Ain to Aout.

• The outputs are written to array Aout.

din_t Ain[N];
din_t Aint[N];
dout_t Aout[N/2];

void types_global(din1_t idx) {
din_t i,lidx;

// Move elements in the input array
for (i=0; i<N; ++i) {

lidx=i;
if(lidx+idx>N-1)

lidx=N-1;
Aint[lidx] = Ain[lidx+idx] + Ain[lidx];

}

// Sum to half the elements
for (i=0; i<(N/2); i++) {

Aout[i] = (Aint[i] + Aint[i+1])/2;
}

}

Example 4-30: Global variables

By default, after synthesis, the only port on the RTL design will be port idx: global variables
are not exposed as RTL ports by default. In the default case, array Ain is an internal RAM
which is read from and Aout an internal RAM which is written to.

The expose_global option in the Vivado HLS interface configuration can be used to
instruct Vivado HLS to expose global variables as ports on the RTL interface. In this case,
ports will be created to access both Ain and Aout as external RAMs. In addition however,
ports will also be created showing the accesses to internal RAM.
High-Level Synthesis www.xilinx.com 236
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Note: When global variables are exposed, all global variables in the design, including those which
only have accesses internal to the design, are exposed as RTL ports.

In summary, global variables are supported for synthesis, however a coding style which uses
global variables extensively is not recommended.

Pointers

Pointers are used extensively in C code and are well supported for synthesis. The only cases
where care needs to be taken when using pointers are:

• When pointers are accessed (read or written) multiple times in the same function. Refer
to Multi-Access Pointer Interfaces: Streaming Data for issues related to this.

• When using arrays of pointers, each pointer must point to a scalar or a scalar array: not
another pointer.

• Pointer casting is only supported when casting between standard C types, as shown.

Many previous examples have shown how C pointers can be synthesized using Vivado HLS.
Synthesis support for pointers includes, as shown in Example 2-31, cases where pointers
point to multiple objects.

#include "pointer_multi.h"

dout_t pointer_multi (sel_t sel, din_t pos) {
static const dout_t a[8] = {1, 2, 3, 4, 5, 6, 7, 8};
static const dout_t b[8] = {8, 7, 6, 5, 4, 3, 2, 1};

dout_t* ptr;
if (sel)

ptr = a;
else
ptr = b;

return ptr[pos];
}

Example 4-31: Multiple Pointer Targets

Double-pointers are also supported for synthesis (Example 2-32). If a double-pointer is
used in multiple functions, Vivado HLS will inline all functions in which it is used. If multiple
functions are inlined, it may cause an increase in run time.

#include "pointer_double.h"

data_t sub(data_t ptr[10], data_t size, data_t**flagPtr)
{

data_t x, i;

x = 0;
// Sum x if AND of local index and double-pointer index is true
for(i=0; i<size; ++i)

if (**flagPtr & i)
High-Level Synthesis www.xilinx.com 237
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
x += *(ptr+i);
return x;

}

data_t pointer_double(data_t pos, data_t x, data_t* flag)
{

data_t array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
data_t* ptrFlag;
data_t i;

ptrFlag = flag;

// Write x into index position pos
if (pos >=0 & pos < 10)
*(array+pos) = x;

// Pass same index (as pos) as pointer to another function
return sub(array, 10, &ptrFlag);

}

Example 4-32: Double Pointers

Arrays of pointers can also be synthesized, as shown in Example 2-33 where an array of
pointers is used to store the start location of the 2nd dimension of a global array.

Note: The pointers in an array of pointers can only point to a scalar or to an array of scalars. They
cannot point to other pointers.

#include "pointer_array.h"

data_t A[N][10];

data_t pointer_array(data_t B[N*10]) {
data_t i,j;
data_t sum1;

// Array of pointers
data_t* PtrA[N];

// Store global array locations in temp pointer array
for (i=0; i<N; ++i)

PtrA[i] = &(A[i][0]);

// Copy input array using pointers
for(i=0; i<N; ++i)

for(j=0; j<10; ++j)
*(PtrA[i]+j) = B[i*10 + j];

// Sum input array
sum1 = 0;
for(i=0; i<N; ++i)

for(j=0; j<10; ++j)
sum1 += *(PtrA[i] + j);

return sum1;
}

High-Level Synthesis www.xilinx.com 238
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C for Synthesis
Example 4-33: Pointer Arrays

Pointer casting is supported for synthesis if native C types are used. In Example 2-34, type
data_t (char) is cast to type ‘.

#define N 1024

typedef int data_t;
typedef char dint_t;

data_t pointer_cast_native (data_t index, data_t A[N]) {
dint_t* ptr;
data_t i =0, result = 0;
ptr = (dint_t*)(&A[index]);

// Sum from the indexed value as a different type
for (i = 0; i < 4*(N/10); ++i) {

result += *ptr;
ptr+=1;

}
return result;

}

Example 4-34: Pointer Casting with Native Types

Pointer casting is not however supported between general types. For example, if a (struct)
composite type of signed values is created, the pointer cannot be cast to assign unsigned
values.

struct {
short first;
short second;

} pair;

// Not supported for synthesis
(unsigned)pair = -1U;

In such cases, the values must be assigned using the native type(s).

struct {
short first;
short second;

} pair;

// Assigned value
pair.first = -1U;
pair.second = -1U;
High-Level Synthesis www.xilinx.com 239
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
C Libraries
Vivado HLS provides a number of C libraries to help allow common hardware design
constructs to be both easily modeled in C and synthesized to RTL. The following C libraries
are discussed in this chapter:

• The hls_math.h library

• The hls_video.h library

The hls_math.h library provides synthesizable versions of the most commonly used
functions in the standard C/C++ math.h library to be synthesized.

The hls_video.h library provides video data types and classes which allow video
algorithms to be more easily captured in C.

HLS Math Library
The Vivado HLS library hls_math.h is used to provide extensive support for the synthesis of
the floating point functions found in the standard C and C++ libraries, math.h and cmath.h
respectively.

Table 2-3 lists the functions in math.h or cmath.h which will be synthesized. Some of these
functions will be implemented using a floating point LogicCore. The others will be
implemented as bit-approximate implementations using the hls_math.h library.

• A bit-approximate implementation may not provide the exact same accuracy as the
standard operation. The accuracy is typically within 1 ULP (Unit of Last Place) over most
operating ranges but may be as large as 100 ULP.

• A bit-approximate implementation may use a different underlying algorithm, than the
C/C++ software version, to achieve the result.

Functions in the math.h or cmath.h libraries not listed in Table 2-3 cannot be synthesized:
Vivado HLS will halt with an error.

The hls_math.h library is automatically called by Vivado HLS when synthesis is performed. It
can be optionally included in the source. The difference between including the hls_math.h
library and not is the difference in C simulation results: these differences are later.

• For the floating point C functions listed in Table 2-3, there is no double-precision
version of the function. As such, the support is marked as Not Applicable in Table 2-3.

• The figures in the Accuracy column list the accuracy difference from the minimum to
maximum difference over the entire range of the operator input values.
High-Level Synthesis www.xilinx.com 240
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
With respect to the following seven functions in Table 2-3.

• isinf

• isnan

Table 4-3: Math.h Bit - Approximate Supported Functions

Function Float Double Accuracy (ULP) LogicCore

ceilf Supported Not Applicable Exact Not Supported

copysignf Supported Not Applicable Exact Not Supported

fabsf Supported Not Applicable Exact Not Supported

floorf Supported Not Applicable Exact Not Supported

logf Supported Not Applicable 1 to 5 Not Supported

cosf Supported Not Applicable 1 to 100 Not Supported

sinf Supported Not Applicable 1 to 100 Not Supported

abs Supported Supported Exact Not Supported

ceil Supported Supported Exact Not Supported

copysign Supported Supported Exact Not Supported

cos Supported Supported 2 for float. 5 for
double

Not Supported

fabs Supported Supported Exact Not Supported

floor Supported Supported Exact Not Supported

fpclassify Supported Supported Exact Not Supported

isfinite Supported Supported Exact Not Supported

isinf Supported Supported Exact Not Supported

isnan Supported Supported Exact Not Supported

isnormal Supported Supported Exact Not Supported

log Supported Supported 1 for float, 16 for
double

Not Supported

log10 Supported Supported 1 for float, 16 for
double

Not Supported

recip Supported Supported Exact Supported

round Supported Supported Exact Not Supported

rsqrt Supported Supported Exact Supported

signbit Supported Supported Exact Not Supported

sin Supported Supported 2 for float, 5 for
double

Not Supported

sqrt Supported Supported Exact Supported

trunc Supported Supported Exact Not Supported
High-Level Synthesis www.xilinx.com 241
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
• copysign

• fpclassify

• isf inite

• isnormal

• signbit

Depending on the C standard being used to compile the above functions, the following
variations in results may be seen:

C90 mode: Only isinf, isnan, and copysign are usually provided by the system header f iles,
and they operate on doubles. In particular, copysign will always return a double result - this
may result in unexpected results after synthesis if it has to be returned to a float, since a
double-to-float conversion block will be introduced into the hardware.

C99 mode (-std=c99): All seven functions are usually provided under the expectation that
the system header files will redirect them to __isnan(double) and __isnan(float). Note that
the usual GCC header f iles don't redirect isnormal but implement it in terms of fpclassify.

C++ using math.h: All seven are provided by the system header f iles, and they operate on
doubles. In particular, copysign will always return a double result - this may result in
unexpected results after synthesis if it has to be returned to a float, since a double-to-float
conversion block will be introduced into the hardware.

C++, using cmath: Similar to C99 mode (-std=c99) except the system header f iles are
usually different, and that the functions are properly overloaded for float(). Note that
isnan(double) and isinf(double), copysign and copysignf are handled as built-ins, even
when 'using namespace std;'

C++, using cmath and namespace std: No issues

Note: GCC usually implements isinf and copysign as built-ins and reduces isnan to a floating point
comparison. I think we need to use -fno-builtin by default to avoid this behavior and get the best
behavior.

It is recommended to use -std=c99 for C and -fno-builtin for C and C++ for best results.

Simulation Differences

The results obtained by simulation will vary depending on which C library is used for the C
simulation and whether the C is compare to the RTL simulation is using the bit-approximate
implementation. Table 2-4 shows the difference in simulation results.

In summary:

• If the math.h or cmath.h library is used, there will be a difference between the C and
RTL results. (an example of this difference is shown below).
High-Level Synthesis www.xilinx.com 242
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
• If the hls_math.h library is used, there will be a difference between these results and
those obtained using math.h or cmath.h.

• If math.h or cmath.h library is used, and f ile lib_hls.cpp is included, the results will be
the same as if hls_math.h was used.

The following C++ Synthesis of math.h Functions example, shows a C++ design using the
sinf, cosf and sqrtf functions, and highlights how Vivado HLS can synthesize the design
but how the pre-synthesis and post-synthesis results will be different.

#include "cpp_math.h"

data_t cpp_math(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

The header file cpp_math.h is shown in C++ Synthesis of math.h Functions header file
example and shows how the cmath library is called (math.h is used in C), the standard
namespace is used and the data type data_t is defined as a float type.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle);

Although the test bench shown in C++ Synthesis of math.h functions Test Bench example
will validate the results in a pre-synthesis simulation, it will return an error after
post-synthesis RTL simulation: this is discussed next.

#include "cpp_math.h"

int main() {
 ofstream result;
 data_t angle = 0.01;
 data_t output;
int retval=0;

Table 4-4: Simulation Result Matrix

math.h or cmath.h Hls_math.h math.h or cmath.h with
lib_hls.cpp included.

C Validation Results A Results C Results C

RTL Simulation Results B Results C Results C
High-Level Synthesis www.xilinx.com 243
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
 result.open("result.dat");
 // Persistent manipulators
 result << right << fixed << setbase(10) << setprecision(15);

for (data_t i = 0; i <= 250; i++)
 {
 output = cpp_math(angle);

 result << setw(10) << i;
 result << setw(20) << angle;
 result << setw(20) << output;
 result << endl;

 angle = angle + .1;
 }
 result.close();

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {
printf("Test failed !!!\n");
retval=1;

} else {
printf("Test passed !\n");

 }

// Return 0 if the test passes
 return retval;
}

The test bench performs a comparison of the output results, saved to file result.dat,
with the expected data values in result.golden.dat. After synthesis, the RTL
implementation of the math.h functions will be bit-approximate versions of the functions
and the results.dat f ile output by the RTL simulation may therefore contain different
results than those expected.

Vivado HLS executes the RTL simulation in the project sub-directory
<SOLUTION>/sim/<HDL>, where SOLUTION is the name of the solution and HDL is the
HDL type chosen for RTL simulation. For example, given the following project settings:

• Project is called proj_cpp_math.prj

• Solution is solution1

• RTL is simulated using systemc

the RTL simulation output will be saved in file in
proj_cpp_math.prj/solution1/sim/ systemc/results.dat.

Figure 2-6 shows a comparison of the pre-synthesis result.dat f ile and the
post-synthesis RTL result.dat f ile: the output value is shown in the 3rd column.
High-Level Synthesis www.xilinx.com 244
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
The results of pre-synthesis simulation and post-synthesis simulation differ, in this
algorithm and test bench, by fractional amounts. The question is whether these fractional
amounts are acceptable in the f inal RTL implementation.

The recommended flow for handling these differences relies on using a smart test bench
which checks the results to ensure they lie within an acceptable error range.

• If using the math.h and cmath.h libraries (as in this case), verify the differences in
accuracy are acceptable.

• Alternatively, convert the function to use hls_math.h and verify the differences between
these results and those using math.h or cmath.h are acceptable.

Note: When working with floating point and double precision operations and functions, it is
advisable to check the results using ranges. Using absolute comparisons will often lead to errors
(even when comparing two sets of results calculated in a similar, but not identical manner, in the C
code).

Common Synthesis Errors

The following are common use errors when synthesizing math functions. These are often,
but not exclusively, caused by converting C functions to C++ in order to take advantage of
synthesis for math functions.

If the C++ cmath.h header file is used, the floating point functions (sinf, cosf, etc) can
be used and these will result in 32-bit operations in hardware. The cmath.h header file also

X-Ref Target - Figure 4-6

Figure 4-6: Pre-Synthesis and Post-Synthesis Simulation Differences
High-Level Synthesis www.xilinx.com 245
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
overloads the standard functions (sin, cos, etc) so that they can be used for float and
double types.

If the C math.h library is used, the floating point functions (sinf, cosf, etc) are required
in order to synthesize 32-bit floating point operations. All standard function calls (sin, cos,
etc.) will result in doubles and 64-bit double-precision operations being synthesized.

Note: When converting C functions to C++ in order to take advantage of math.h support, ensure
the new C++ code compiles correctly before synthesizing with Vivado HLS.

For example, if sqrtf() is used in the code with math.h it requires the following code extern "C"
float sqrtf(float); added to C++ code to support it.

Also, follow the warnings on mixing double and float types, outlined in section Floats and
Doubles, to avoid unnecessary hardware caused by type conversion.

HLS Video Library
The Vivado HLS video libraries require the use of the hls_video.h header file. All image
and video processing specif ic video types and functions provided by Vivado HLS are
provided with this header f ile.

When using Vivado HLS video libraries, the only additional usage requirement is that the
design is written in C++ and uses the hls namespace, or the types and classes must use
scoped naming.

#include <hls_video.h>

hls::rgb_8 video_data[1920][1080]

or

#include <hls_video.h>
using namespace hls;

rgb_8 video_data[1920][1080]

Data Types

The following data types are provided in the library. All data types currently support 8-bit
data only.

Table 4-5: Video Data Types

Data Type
Name Field 0 (8 bits) Field 1 (8 bits) Field 2 (8 bits) Field 3 (8 bits)

yuv422_8 Y UV Not Used Not Used

yuv444_8 Y U V Not Used
High-Level Synthesis www.xilinx.com 246
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
Once the hls_video.h library is included and the hls namespace defined, the data types
listed in Example 2-5 can be freely used.

#include <hls_video.h>
using namespace hls;

rgb_8 video_data[1920][1080]

Memory Line Buffer

The linebuffer class is a C++ class which allows the user to easily declare and manage
line buffers within their algorithmic code. This class provides all the methods required for
instantiating and working with line buffers. The linebuffer class works with all data types.

The main features of the linebuffer class are

• Support for all data types through parameterization

• User defined number of rows and columns

• Automatic banking of rows into separate memory banks for increased memory
bandwidth

• Provides all the methods for using and debugging line buffers in an algorithmic design

The linebuffer class has the following methods, explained below.

• print()

• shift_up();

• shift_down()

• insert_bottom()

rgb_8 G B R Not Used

yuva422_8 Y UV a Not Usedd

yuva444_8 Y U V a

rgba_8 G B R a

yuva420_8 Y aUV Not Used Not Used

yuvd422_8 U UV D Not Used

yuvd444_8 Y U V D

rgbd_8 G B R D

bayer_8 RGB Not Used Not Used Not Used

luma_8 Y Not Used Not Used Not Used

Table 4-5: Video Data Types

Data Type
Name Field 0 (8 bits) Field 1 (8 bits) Field 2 (8 bits) Field 3 (8 bits)
High-Level Synthesis www.xilinx.com 247
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
• insert_top()

• getval(row,column)

In order to illustrate the usage of the linebuffer class, the following data set is assumed at
the start of all examples.

Line Buffer Declaration

A line buffer can be instantiated in an algorithm by using the following data type:

hls::linebuffer<type, rows, columns>

One possible declaration for the line buffer holding the data in Table 2-6 is

hls::linebuffer<char,3,5> Buff_A;

Displaying Contents of the Line Buffer

The linebuffer class provides a print method to display the stored data in the line buffer.
Since a line buffer can have a large number of columns, the print method displays all rows
between a start and end column value.

For example,

Buff_A.print(1,3);

results in

Line 2:234
Line 1:789
Line 0:121314

Inserting and Shifting Data in a Line Buffer

The linebuffer class assumes that the data entering the block instantiating the line buffer is
arranged in raster scan order. Each new data item will therefore be stored in a different
column than the previous data item.

Inserting new values, while preserving a f inite number of previous values in a column,
requires a vertical shift between rows for a given column. After the shift is complete, a new
data value can be inserted at either the top or the bottom of the column.

Table 4-6: Data Set for Linebuffer Examples

Column 0 Column 1 Column 2 Column 3 Column 4

Row 2 1 2 3 4 5

Row 1 6 7 8 9 10

Row 0 11 12 13 14 15
High-Level Synthesis www.xilinx.com 248
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
For example, inserting the value 100 to the top of column 2 of the line buffer set can be
accomplished by using the following methods:

Buff_A.shift_down(2);
Buff_A.insert_top(100,2);

which will result in the new data set shown in Table 2-7.

Similarly, inserting the value 100 to the bottom of column 2 of the line buffer set in
Table 2-8 can be accomplished by

Buff_A.shift_up(2);
Buff_A.insert_bottom(100,2);

which results in a new data set as shown in Table 2-8.

The shift and insert methods both require the column value on which to operate on.

Retrieving Data

All values stored by a linebuffer instance are available using the getval(row,column)
method. This method returns the value of any location inside the line buffer. For example,

Value = Buff_A.getval(1,3);

results in variable Value being assigned the value 9.

Memory Window

The window C++ class allows the user to declare and manage 2 dimensional memory
windows. The main features of this class are

• Support for all data types through parametrization

• User defined number of rows and columns

Table 4-7: Data Set after Shift Down and Insert Top Classes Used

Column 0 Column 1 Column 2 Column 3 Column 4

Line 2 1 2 100 4 5

Line 1 6 7 3 9 10

Line 0 11 12 8 14 15

Table 4-8: Data Set after Shift Up and Insert Bottom Classes Used

Column 0 Column 1 Column 2 Column 3 Column 4

Line 2 1 2 100 4 5

Line 1 6 7 3 9 10

Line 0 11 12 8 14 15
High-Level Synthesis www.xilinx.com 249
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
• Automatic partitioning into individual registers for maximum bandwidth

• Provides all the methods to use and debug memory windows in the context of an
algorithm

The memory window class is supported by the following methods, explained below:

• print()

• shift_up();

• shift_down()

• shift_left()

• shift_right()

• insert(value,row,column)

• insert_bottom()

• insert_top()

• insert_left()

• insert_right()

• getval(row, column)

In order to illustrate the usage of the window class, the following data set is used at the
start of all examples.

Window Declaration

A memory window can be instantiated in an algorithm using the following data type.

hls::window<type, rows, columns>

One possible declaration for a memory window holding the data.

hls::window<char,3,3> Buff_B;

Displaying Contents of the Memory Window

The window class provides a print method for displaying the contents of a memory window.
By default, this method displays all values stored in the window. For example:

Table 4-9: Data Set for Memory Window Examples

Column 0 Column 1 Column 2

Row 2 1 2 3

Row 1 6 7 8

Row 0 11 12 13
High-Level Synthesis www.xilinx.com 250
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
Buff_B.print();

results in

Window Size3x3
Col012
Row 2123
Row 1678
Row 0111213

For all window class instantiations, row 0 is assumed to be the bottom of the memory
window.

Shifting Data in a Memory Window

The window class provides methods for moving data stored within the memory window up,
down, left and right. Each shift operation will clear space in the memory window for new
data.

Starting with the data set, these shifts have

Buff_B.shift_up();
Buff_B.print();

the following results.

Window Size3x3
Col0 1 2
Row 267 8
Row 1111213
Row 0New dataNew dataNew data

Similarly, starting with the data set in Table 2-9, these shifts have

Buff_B.shift_down();
Buff_B.print();

the following results.

Window Size3x3
Col 0 1 2
Row 2New dataNew dataNew data
Row 11 2 3
Row 06 7 8

And operations

Buff_B.shift_left();
Buff_B.print();

Will shift the data left and result in:

Window Size3x3
Col012
Row 223New data
High-Level Synthesis www.xilinx.com 251
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Libraries
Row 178New data
Row 01213New data

Finally,

Buff_B.shift_right();
Buff_B.print();

Will result in:

Window Size3x3
Col0 1 2
Row 2New data12
Row 1New data67
Row 0New data1112

Inserting and Retrieving Data from the Memory Window

The window class allows the user to insert and retrieve data from any location within the
memory window. It also supports block insertion of data on the boundaries of the memory
window.

Data can be inserted into any location of the memory window by
insert(value,row,column). For example, the value 100 can be placed into row 1,
column 1 of the memory window by

Buff_B.insert(100,1,1);
Buff_B.print();

which according to the print method results in

Window Size3x3
Col012
Row 2123
Row 161008
Row 0111213

Block level insertion requires the user to provide an array of data elements to be inserted on
a boundary. The methods provided by the window class are

• insert_bottom

• insert_top

• insert_left

• insert_right

For example, given the case where C is an array of 3 elements in which each element has the
value of 50, inserting the value 50 across the bottom boundary of the memory window is
achieved by

char C[3] = {50, 50, 50};
High-Level Synthesis www.xilinx.com 252
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Buff_B.insert_bottom(C);
Buff_B.print();

results in

Window Size3x3
Col012
Row 2123
Row 161008
Row 0505050

The other edge insertion methods for the window class work in the same way as the
insert_bottom() method.

Data can be retrieved from a memory window using getval(row,column). For example,

A = Buff_B.getval(0,1);

results in

A = 50

Coding Styles for Modeling Hardware
C code is written to satisfy a number of different requirements: reuse, readability,
performance. Until now, it is unlikely the C code was written to result in the most ideal
hardware after High-Level Synthesis.

However, like the requirements for reuse, readability and performance, certain coding
techniques or pre-defined constructs can be used to ensure the synthesis output results in
more optimal hardware or to better model hardware in C for easier validation of the
algorithm.

User Defined Registers in C++
In general, the only variables in a C function which are guaranteed to be implemented as
registers are those proceeded by the static qualif ier, those defined in the global scope
(unless the global is exposed as a port) and arrays which are targeted to memory resources.

For the other variables, they may be implemented in a register, or they may not: it depends
on the decisions made during of synthesis. Synthesis may determine that a particular
variable should be registered over multiple cycles, or it may determine the variable can be
used in the same cycle it’s created and therefore is not required to be registered. Only the
variable types mentioned above are guaranteed to be registers in the RTL.
High-Level Synthesis www.xilinx.com 253
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
The C++ function, “Reg”, used in the following example is a useful technique to guarantee
(or force) that a particular variable is a register in the final RTL design.

#include "foo.h"

template<class T>
T Reg(T in) {
#pragma AP INLINE off
#pragma AP INTERFACE port=return register
 return in;
}

int foo (int in1, int in2) {
 int tmp=in1*(0x0800-in2);
 // int out = tmp >> 10;
 int out = Reg(tmp >> 10);
 return(out);
}

int foo_top(int inA, int inB) {

 int res1 = foo(inA, inB);
 return(res1);
}

The important aspects of this code are:

• Function “Reg” is created and has its output, the function return value, registered.

° Registering function arguments (the RTL ports) is the only allowed use of the
interface directive on sub-functions. The interface directive cannot be used to
specify the IO protocol of a sub-function argument.

• Function “Reg” has inlining disabled in case Vivado HLS decides to automatically inline
this small function.

° Inlining function “Reg” negate the register operation performed on the function,
since it would no longer exist as a separate function if it is inlined.

• The output of the multiplier and shift operation in sub-function “foo” is used as the
input to the “Reg” function.

° This guarantees the result of this operation is registered in the RTL output, since the
function “Reg” has a registered output.

• The original source code for this variable is shown commented out. This is shown how
easy it is to apply this technique

In general, Vivado HLS will determine which variables should be registered in the f inal RTL,
but this coding technique can be used to force particular variables to be registered without
modifying the functionality of the code.
High-Level Synthesis www.xilinx.com 254
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Mapping Directly into SRL resources
Many C algorithms sequentially shift data through arrays: add a new value to the start of the
array, shift the existing data through array and drop the oldest data value. This operation is
implemented in hardware as a shift-register.

This most common way to implement a shift-register from C into hardware is to completely
partition the array into individual elements, and allow the data dependencies between the
elements in the RTL to imply a shift-register.

Logic synthesis will typically implement the RTL shift-register into a Xilinx SRL resource,
which efficiently implements shift-registers. The problem is that sometimes logic synthesis
does not implement the RTL shift-register using an SRL component:

• When data is accessed in the middle of the shift-register, logic synthesis cannot directly
infer an SRL.

• Sometimes, even when the RTL is ideal, logic synthesis may implement the shift-resister
in flip-flops, due to other factors. (Logic synthesis is also a complex process).

Vivado HLS provides a C++ class, ap_shift_reg, which ensures the shift-register defined
in the C code, is always implemented using an SRL resource. The ap_shift_reg class has
two methods to perform the various read and write accesses supported by an SRL
component.

Read From the Shifter

The read method allows a specified location to be read from the shifter register.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 2 of Sreg into var1
var1 = Sreg.read(2);

Read, Write and Shift Data

A shift method allows a read, write and shift operation to be performed.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
High-Level Synthesis www.xilinx.com 255
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 3 of Sreg into var1
// THEN shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3);

Read, Write and Enable-Shift

The shift method also supports an enabled input, allowing the shift process to be
controlled/enable by a variable.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1, In1;
bool En;

// Read location 3 of Sreg into var1
// THEN if En=1
// Shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3,En);

When using the ap_shift_reg class, Vivado HLS will create a unique RTL component for
each shifter. When logic synthesis is performed, this component is synthesized into an SRL
resource.

Designing with Streaming Data
Streaming data is a type of data transfer in which data samples are sent in sequential order
starting from the first sample: streaming requires no address management.

Modeling designs which use streaming data can be diff icult in C. As discussed in the section
Multi-Access Pointer Interfaces: Streaming Data, the approach of using pointers to perform
multiple read and/or write accesses can introduce problems, since there are implications for
the type qualif ier and how the test bench is constructed.

Vivado HLS provides a C++ template class, hls::stream<>, for modeling streaming data
structures. The streams implemented with the hls::stream<> class have the following
attributes.
High-Level Synthesis www.xilinx.com 256
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
This section shows how the hls::stream<> class can be used to more easily model
designs with streaming data. The topics in this section provide:

• An overview of modeling with streams and the RTL implementation of streams.

• Rules for global stream variables.

• How to use streams.

• Blocking reads and writes.

• Non-Blocking Reads and writes.

• Controlling the FIFO depth.

C Modeling and RTL Implementation

Streams are modeled as infinite queue in software (and in the test bench during RTL
co-simulation). There is no need to specify any depth in order to simulate streams in C.
Streams can be used inside functions and on the interface to functions. Internal streams
may be passed as function parameters.

Note: Streams can only be used in C++ based designs. Each hls::stream<> object must be written to
by a single process and read by a single process, e.g. in a DATAFLOW design each stream may only
have one producer and one consumer process.

In the RTL streams are implemented as either a FIFO or full handshake interface port. The
default interface port is an ap_fifo port. This port can optionally be implemented as an
ap_hs port on the top-level interface: Internal stream will only be implemented as FIFO
interfaces.

FIFOs created by streams are by default implemented with a depth of 1, implemented as a
2 element register-based FIFO. The depth of the FIFO optionally can be using the STREAM
directive.

Global and Local Streams

Streams may be defined either locally or globally. Local streams will always be implemented
as internal FIFOs. Global streams may be implemented as FIFOs or ports:

• Globally defined streams that are only read from, or only written to, will be inferred as
external ports of the top-level RTL block.

• Globally defined streams that are both read from and written to (in the hierarchy below
the top-level function) will be implemented as internal FIFOs.

Global variables may be interpreted as either internal FIFOs or external ports (top-level RTL
ports) to an HLS design, depending on usage, tool options and any C++ qualif ier applied at
declaration.
High-Level Synthesis www.xilinx.com 257
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
The rules for determining whether or not a globally declared hls::stream<> object will
be created as an internal FIFO or external port interface are as follows.

• If the 'static' qualif ier is applied at definition, the stream may only be accessed by
functions defined in the same source f ile as the definition (to conform to C/C++
semantics) and will be considered internal and implemented as a FIFO.

• If the config_interface command is in effect and has the -expose_global option
specified all non-static global hls::stream<> objects (as well as any other non-static
global variables of other types) will implement as ports in the top-level RTL.

Otherwise, any hls::stream<> object which is both read from and written to within the
design as an internal FIFO; Any that cannot be resolved to have internal linkage will be
exposed as top-level ports.

Using Streams

To use hls::stream<> objects the header f ile hls_stream.h must be included. This f ile
is available in the Vivado HLS include directory in the installation area (this directory is
auto-searched during simulation and synthesis and does not need to added to the search
path).

Streaming data objects are defined by specifying the type and variable name. In this
example, a 128-bit unsigned integer type is defined and used to create a stream variable
called my_wide_stream.

#include <ap_int.h>
#include <hls_stream.h>

typedef ap_uint<128> uint128_t; // 128-bit user defined type
hls::stream<uint128_t> my_wide_stream; // A stream declaration

Given that a stream is specif ied as hls::stream<T>, the type T may be any C++ native data
type, an HLS arbitrary precision type (e.g. ap_int<>, ap_ufixed<>, etc) or a user defined
(typedef) structure type.

Note: General user defined classes (or structures) that contain methods (member functions) should
not be used as the type (T) for a stream variable.

Streams must use scoped naming, as in the above example, or include the hls namespace at
the file-scope with a "using namespace hls;" statement. If a namespace is used, the above
example can be re-written as:

#include <ap_int.h>
#include <hls_stream.h>
using namespace hls;

typedef ap_uint<128> uint128_t; // 128-bit user defined type
stream<uint128_t> my_wide_stream; // hls:: no longer required
High-Level Synthesis www.xilinx.com 258
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
It is highly recommended to use pass-by-reference only, e.g. foo(hls::stream<char> &foo,
…), as this allows method selection via the . operator rather than the > operator.

Blocking and non-blocking access methods are supported.

• Non-blocking accesses can only be implemented as FIFO interfaces.

• Streaming ports, implemented as ap_fifo ports, and which will be defined with to an
AXI4Stream resource, must not use non-blocking accesses.

Blocking Reads and Writes

The basic accesses to an hls::stream<> object are blocking reads and writes, which are
accomplished via class methods (member functions). These methods will stall (block)
execution if a read is attempted on an empty stream FIFO, a write to a full stream FIFO or
until a full handshake is accomplished for a stream mapped to an ap_hs interface protocol.

Blocking Write Methods

In this example, the value of variable src_var is pushed into the stream.

// Usage of void write(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream.write(src_var);

The << operator is overloaded such that it may be used in a similar fashion to the stream
insertion operators for C++ stream (e.g. iostreams, f ilestreams, etc). The hls::stream<>
object to be written to is supplied as the left-hand side argument and the value to be
written as the right-hand side.

// Usage of void operator << (T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream << src_var;

Blocking Read Methods

This method reads from the head of the stream and assigns the values to the variable
dst_var.

// Usage of void read(T &rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream.read(dst_var);
High-Level Synthesis www.xilinx.com 259
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Alternatively, the next object in the stream can be read by simply assigning (using =, +=,
etc) the stream to an object on the left-hand side:

// Usage of T read(void)

hls::stream<int> my_stream;

int dst_var = my_stream.read();

The '>>' operator is overloaded to allow use similar to the stream extraction operator for
C++ stream (e.g. iostreams, f ilestreams, etc). The hls::stream is supplied as the LHS
argument and the destination variable the RHS.

// Usage of void operator >> (T & rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream >> dst_var;

Non-Blocking Reads and Writes

Non-blocking write and read methods are also provided. These allow execution to continue
even when a read is attempted on an empty stream FIFO or a write to a full stream FIFO.

These methods return a Boolean value indicating the status of the access (true if successful,
false otherwise). Additionally methods are provided for testing the status of an
hls::stream<> stream.

Note: None of the methods detailed for non-blocking accesses may be used on an hls::stream<>
interface for which the ap_hs protocol has been selected.

During C simulation, streams have an infinite size. It is therefore not possible to validate
with C simulation if the stream will be full: these methods can only be verif ied during RTL
simulation when the FIFO sizes are defined (either the default size of 1 or an arbitrary size
defined with the STREAM directive).

Non-blocking Writes

This method attempts to push variable src_var into the stream my_stream, returning a
boolean true if successful. Otherwise, false is returned and the queue is unaffected.

// Usage of void write_nb(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

if (my_stream.write_nb(src_var)) {
// Perform standard operations
High-Level Synthesis www.xilinx.com 260
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
...
} else {
// Write did not occur
return;

}

Fullness Test

bool full(void)

This method returns true, if and only if the hls::stream<> object is full.

// Usage of bool full(void)

hls::stream<int> my_stream;
int src_var = 42;
bool stream_full;

stream_full = my_stream.full();

Non-Blocking Read

bool read_nb(T & rdata)

This method attempts to read a value from the stream, returning true if successful.
Otherwise, false is returned and the queue is unaffected.

// Usage of void read_nb(const T & wdata)

hls::stream<int> my_stream;
int dst_var;

if (my_stream.read_nb(dst_var)) {
// Perform standard operations
...

} else {
// Read did not occur
return;

}

Emptiness Test

bool empty(void)

This method returns true if the hls::stream<> is empty.

// Usage of bool empty(void)

hls::stream<int> my_stream;
int dst_var;
bool stream_empty;

fifo_empty = my_stream.empty();
High-Level Synthesis www.xilinx.com 261
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
The following example shows how a combination of non-blocking accesses and full/empty
tests can be used to provide error handling functionality for cases when the RTL FIFOs are
full or empty:

#include "hls_stream.h"
using namespace hls;

typedef struct {
 short data;
 bool valid;
 bool invert;
} input_interface;

bool invert(stream<input_interface>& in_data_1,
 stream<input_interface>& in_data_2,
 stream<short>& output
) {
 input_interface in;
 bool full_n;

// Read an input value or return
 if (!in_data_1.read_nb(in))
 if (!in_data_2.read_nb(in))
 return false;

// If the valid data is written, return not-full (full_n) as true
 if (in.valid) {
 if (in.invert)
 full_n = output.write_nb(~in.data);
 else
 full_n = output.write_nb(in.data);
 }
 return full_n;
}

 A complete design example using streams is provided in the Vivado HLS examples section:
Help > Welcome > Examples > Design > hls_stream.

Controlling the RTL FIFO Depth

For most designs using streaming data, the default RTL FIFO depth of 1 is suff icient:
streaming data is generally processed one sample at a time.

For multi-rate designs where the implementation may require a FIFO with a depth greater
than 1, you must determine, and set using the STREAM directive, the depth necessary for
the RTL simulation to complete. If the FIFO depth is insuff icient, the symptom will be that
RTL co-simulation stalls.

Stream objects cannot be viewed in the GUI directives pane. As such, the STREAM directive
cannot be applied directly using the GUI directives pane, however, by right-clicking on the
function in which an hls::stream<> object is declared (or is used or exists in the
High-Level Synthesis www.xilinx.com 262
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
argument list) the STREAM directive may be selected and the 'variable' f ield may be
populated manually with name of the stream variable.

An alternative is to specify the STREAM directive manually in the directives.tcl f ile or added
as a pragma in source.

RTL Co-Simulation Support

At present, the following scenarios are not supported by the Vivado HLS RTL co-simulation
feature (they are supported for synthesis):

Arrays of hls::stream<> in the top-level interface.

void dut_top(uint16_t odata[N], hls::stream<uint8_t>chan[4]) { … }

Structures or classes containing hls::stream<> members in the top-level interface.

typedef struct {
 hls::stream<uint8_t> a;
 hls::stream<uint16_t> b;
} strm_strct_t;

void dut_top(strm_strct_t indata, strm_strct_t outdata) { … }

These restrictions apply to both top-level function arguments and globally declared
objects. If arrays or structs of streams are used for synthesis, the design must be verif ied
using an external RTL simulator and user created HDL test bench. There are no such
restrictions on hls::stream<> objects with strictly internal linkage.

C Arbitrary Precision Integer Types

The native data types in C are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations however support arbitrary bit-lengths. Vivado HLS provides arbitrary precision
data types for C to allow variables and operations in the C code to be specif ied with any
arbitrary bit-widths: 6-bit, 17-bit, 234-bit etc. up to 1024 bits.

Note: Vivado HLS also provides arbitrary precision data types in C++ and supports the arbitrary
precision data types which are part of SystemC. These types are discussed in the respective C++ and
SystemC coding.

There are two primary advantages of arbitrary precision data types:

• Better quality hardware: If for example, a 17-bit multiplier is required, arbitrary
precision types can be used to specify that exactly 17-bit are used in the calculation.

° Without arbitrary precision data types, such a multiplication (17-bit) must be
implemented using 32-bit integer data types and result in the multiplication being
implemented with multiple DSP48 components.
High-Level Synthesis www.xilinx.com 263
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
• Accurate C simulation/analysis: Arbitrary precision data types in the C code allows the
C simulation to be executed using accurate bit-widths and for the C simulation to
validate the functionality (and accuracy) of the algorithm before synthesis.

The remainder of this section explains how to use arbitrary precision types and reviews
issues where care should be taken. A detailed description of arbitrary precision types is
provided in a reference section at the end of this document (C Arbitrary Precision Types)
and includes:

• Techniques for assigning constant and initialization values to arbitrary precision
integers (including values greater than 64-bit).

• A description of Vivado HLS helper functions, such as printing, concatenating,
bit-slicing and range selection functions.

• A description of operator behavior, including a description of shift operations (a
negative shift values, results in a shift in the opposite direction).

Using Arbitrary Precision Types with C

For the C language, the header file ap_cint.h defines the arbitrary precision integer data
types [u]int#W. For example, int8 represents an 8-bit signed integer data type and
uint234 represents a 234-bit unsigned integer type.

The ap_cint.h f ile is located in the directory $HLS_ROOT/include, where $HLS_ROOT
is the Vivado HLS installation directory.

The code shown in Example 2-35, is a repeat of the code shown in the earlier example on
basic arithmetic (Example 2-22). In both examples the data types in the top-level function
to be synthesized are specif ied as dinA_t, dinB_t etc.

#include "apint_arith.h"

void apint_arith(din_A inA, din_B inB, din_C inC, din_D inD,
out_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4

) {

// Basic arithmetic operations
*out1 = inA * inB;
*out2 = inB + inA;
*out3 = inC / inA;
*out4 = inD % inA;

}

Example 4-35: Basic Arithmetic Revisited

The real difference between the two examples is in how the data types are defined. To use
arbitrary precision integer data types in a C function:

• Add header f ile ap_cint.h to the source code.
High-Level Synthesis www.xilinx.com 264
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
• Change the native C types to arbitrary precision types intN or uintN, where N is a
bit-size from 1 to 1024.

The data types are defined in the header apint_arith.h as shown in Example 2-36.
Compared with Example 2-22, the input data types have simply been reduced to represent
the maximum size of the real input data (e.g., 8-bit input inA is reduced to 6-bit input). The
output types, however, have been refined to be more accurate, for example, out2, the sum
of inA and inB, need only be 13-bit and not 32-bit.

#include <stdio.h>
#include "ap_cint.h"

// Previous data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;
//typedef long long dinD_t;
//typedef int dout1_t;
//typedef unsigned int dout2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef int6 dinA_t;
typedef int12 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;

typedef int18 dout1_t;
typedef uint13 dout2_t;
typedef int22 dout3_t;
typedef int6 dout4_t;

void apint_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t inD,dout1_t
*out1,dout2_t *out2,dout3_t *out3,dout4_t *out4);

Example 4-36: Basic Arithmetic APINT Types

If Example 2-36 is synthesized it will result in a design which is functionally identical to
Example 2-22 (given data in the range specified by Example 2-36). The final RTL design,
however, is smaller in area and has a faster clock speed (smaller bit-widths result in reduced
logic).

However, before synthesis, the function must be compiled and validated.

Validating Arbitrary Precision Types in C

To create arbitrary precision types, attributes are added to define the bit-sizes in file
ap_cint.h. Standard C compilers such as gcc will compile the attributes used in the
header f ile, but they do know what the attributes mean. The final executable created by
standard C compilers will issue messages such as the following:

$HLS_ROOT/include/etc/autopilot_dt.def:1036: warning: bit-width attribute directive
ignored
High-Level Synthesis www.xilinx.com 265
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
It will then proceed to use native C data types for the simulation. This results in
computations which do not reflect the bit-accurate behavior of the code. For example, a
3-bit integer value with binary representation 100 will be treated as having a decimal value
4 and not -4.

Vivado HLS includes a compiler, apcc, which overcomes this limitation and allows the
function to be compiled and simulated in a bit-accurate manner.

IMPORTANT: When bit-accurate types are in C, the design must be compiled and simulated using the
apcc compiler.

The apcc compiler can be enabled in the project setting using menu Project > Project
Settings > Simulation and selecting Use APCC Compiler as shown in Figure 2-7.

If compiling at the command prompt, the apcc compiler should be used at the shell
prompt: it is command line compatible with gcc and will process the arbitrary precision
arithmetic correctly (respecting the boundaries imposed by the bit-width information).

X-Ref Target - Figure 4-7

Figure 4-7: Enabling the APCC Compiler
High-Level Synthesis www.xilinx.com 266
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
When apcc is used, the Vivado HLS header f iles are automatically included (no need to use
–I$HLS_ROOT/include) and the design will simulate with the correct bit-accurate
behavior.

$ apcc –o foo_top foo_top.c tb_foo_top.c
$./foo_top

In summary, when using arbitrary precision types in C, compile using the apcc compiler:

• Select the Use APCC Compiler option in the GUI.

• Use apcc in place of gcc at the command prompt.

For functions specified using C++ or SystemC there are no such limitations when using
arbitrary precision types. (An alternative may be to change the f ile name exertions to .cpp,
use C++ arbitrary precision types, and compile/simulate using a C++ compiler).

Debugging Arbitrary Precision Types in C

Note: When apcc is used to compile C code the design can no longer be analyzed in the Vivado
HLS C debugger: this is a side-effect of using arbitrary procession type in C code.

If there is a requirement to debug the design, the following methodology is recommended:

• If the operation of the algorithm requires analysis in the debugger, use native C types
(int, char, short, etc.) and open the code in the debugger to verify correct
operation of the algorithm.

° This is easily performed when all types are defined in the header f ile, allowing the
data types throughout to be changed in one location.

• If the operation of the algorithm is known to be correct and it is simply the case that
the bit accurate nature of the arbitrary precision types must be analyzed, execute a C
simulation and use the printf and/or fprintf functions to output the data values
for analysis.

Integer Promotion Issues

Care should be taken when the result of arbitrary precision operations crosses the native 8,
16, 32 and 64-bit boundaries. In the following example, the intent is that two 18-bit values
are multiplied and the result stored in a 36-bit number:

#include "ap_cint.h"

int18 a,b;
int36 tmp;

tmp = a * b;

However, what happens in this example is that integer promotion occurs and the result in
not what is expected.
High-Level Synthesis www.xilinx.com 267
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
In integer promotion, the C compiler promotes the result of the multiplication operator
from 18-bit, to the next native bit size (32-bit) and then assigns the result to the 36-bit
variable tmp. This results in the behavior and incorrect result shown in Figure 2-8.

Since Vivado HLS will produce the same results as C simulation, Vivado HLS will create
hardware where a 32-bit multiplier result is sign-extended to a 36-bit result.

The solution to the integer promotion issue is to cast operator inputs to the output size.
Figure 2-37 shows where the inputs to the multiplier are cast to 36-bit value before the
multiplication. This results in the correct (expected) results during C simulation and the
expected 36-bit multiplication in the RTL.

#include "ap_cint.h"

typedef int18 din_t;
typedef int36 dout_t;

dout_t apint_promotion(din_t a,din_t b) {
 dout_t tmp;

 tmp = (dout_t)a * (dout_t)b;
 return tmp;
}

Example 4-37: Cast to avoid Integer Promotion

Casting to avoid integer promotion issue is only required when the result of an operation is
greater than the next native boundary (8, 16, 32 or 64). This behavior is more typical with
multipliers than with addition and subtraction operations.

Integer promotion issues are not present when using C++ or SystemC arbitrary precision
types.

X-Ref Target - Figure 4-8

Figure 4-8: Integer Promotion
High-Level Synthesis www.xilinx.com 268
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Functions
The top-level function becomes the top-level of the RTL design after synthesis and
sub-functions are synthesized into blocks in the RTL design.

IMPORTANT: The top-level function cannot be a static function.

After synthesis, each function in the design will have its own synthesis report and RTL HDL
f ile (Verilog, VHDL and SystemC). Sub-functions can optionally be inlined to merge their
logic with the logic of the surrounding function. Inlining functions can result in better
optimizations but can also increase run time, since more logic and more possibilities have
to be kept in memory and analyzed. Vivado HLS may perform automatic inlining of small
functions (which can be disabled by setting the inline directive to off for that function).
If a function is inlined there will be no report or separate RTL f ile for that function: the logic
and loops are merged with the function above it in the hierarchy.

The primary impact of a coding style on functions is on the function arguments and
interface.

If the arguments to a function are sized accurately, Vivado HLS can propagate this
information through the design and there is no need to create arbitrary precision types for
every variable. In the following example, two integers are multiplied, but only the bottom
24-bits are used for the result.

#include "ap_cint.h"

int24 foo(int x, int y) {
int tmp;

tmp = (x * y);
return tmp

}

When this code is synthesized the result will be a 32-bit multiplier with the output
truncated to 24-bit.

If, however, the inputs are correctly sized to 12-bit types (int12) as shown in Example 2-38,
the final RTL will use a 24-bit multiplier.

#include "ap_cint.h"
typedef int12 din_t;
typedef int24 dout_t;

dout_t func_sized(din_t x, din_t y) {
int tmp;

tmp = (x * y);
return tmp

}

Example 4-38: Sizing Function Arguments
High-Level Synthesis www.xilinx.com 269
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Using arbitrary precision types for the two function inputs is enough to ensure Vivado HLS
creates a design using a 24-bit multiplier: the 12-bit types are propagated through the
design. It is recommended to correctly size the arguments of all functions in the hierarchy.

In general, when variables are driven directly from the function interface, especially from
the top-level function interface, they can prevent some optimizations from taking place. A
typical case of this is when an input is used as the upper limit for a loop index.

Loops
Loops provide a very intuitive and concise way of capturing the behavior of an algorithm
and are used often in C code. Loops are very well supported by synthesis: loops can be
pipelined, unrolled, partially unrolled, merged and flattened.

The optimizations unroll, partially unroll, flatten and merge effectively make changes to the
loop structure, as if the code was changed: these optimizations ensure limited coding
changes are required when optimizing loops. There are some optimizations however which
can only be applied in certain conditions and some coding changes may be required to
allow them.

RECOMMENDED: Avoid use of global variables for loop index variables, as this can inhibit some
optimizations.

Variable Loop Bounds

Some of the optimizations Vivado HLS can apply are prevented when the loop has variable
bounds. In Example 2-39 shown below, the loop bounds are determined by variable width,
which is driven from a top-level input. In this case the loop is considered to have variables
bounds, since Vivado HLS cannot know when the loop will complete.

#include "ap_cint.h"
#define N 32

typedef int8 din_t;
typedef int13 dout_t;
typedef uint5 dsel_t;

dout_t code028(din_t A[N], dsel_t width) {

dout_t out_accum=0;
dsel_t x;

LOOP_X:for (x=0;x<width; x++) {
out_accum += A[x];

}

return out_accum;
}

Example 4-39: Variable Loop Bounds
High-Level Synthesis www.xilinx.com 270
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Trying to optimize the design in Example 2-39 will uncover the problems which are
introduced by variable loop bounds.

The first issue with variable loop bounds is that they prevent Vivado HLS from determining
the latency of the loop. Vivado HLS can determine the latency to complete one iteration of
the loop, but because it cannot statically determine the exact value of variable width, it does
not know how many iteration are performed and thus cannot report the loop latency (the
number of cycles to completely execute every iteration of the loop).

Where variable loop bounds are present, Vivado HLS will report the latency as a question
mark (?) instead of using exact values. The following shows the result after synthesis of
Example 2-39.

+ Summary of overall latency (clock cycles):
* Best-case latency: ?
* Average-case latency: ?
* Worst-case latency: ?

+ Summary of loop latency (clock cycles):
+ LOOP_X:

* Trip count: ?
* Latency: ?

The f irst problem with variable loop bounds is therefore that the performance of the design
is unknown.

To overcome this problem Vivado HLS provides the tripcount directive. The tripcount
directive allows a minimum, average and/or maximum tripcount to be specif ied for the
loop: the tripcount is the number of loop iterations. If a maximum tripcount of 32 is applied
to LOOP_X in Example 2-39, the report is updated to the following:

+ Summary of overall latency (clock cycles):
* Best-case latency: 2
* Average-case latency: 18
* Worst-case latency: 34

+ Summary of loop latency (clock cycles):
+ LOOP_X:

* Trip count: 0 ~ 32
* Latency: 0 ~ 32

Note: The values provided by the user for the tripcount directives are used only for reporting and
have impact on synthesis. The tripcount value simply allows Vivado HLS to report number in the
report. This allows the user to see the effect of optimizations: solutions can now be complared.

Tripcount directives have no impact on the results of synthesis, only reporting.

The next steps in optimizing Example 2-39 for high throughput would be:

• Unroll the loop and allow the accumulations to occur in parallel.

• Partition the array input, or the parallel accumulations will be limited, by a single
memory port.
High-Level Synthesis www.xilinx.com 271
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
If these optimizations are applied, the output from Vivado HLS will highlight the biggest
problem with variable bound loops:

@W [XFORM-503] Cannot unroll loop 'LOOP_X' in function 'code028': cannot completely
unroll a loop with a variable trip count.

Since variable bounds loops cannot be unrolled, they not only prevent the unroll directive
being applied, they also prevent pipelining of the levels above the loop.

IMPORTANT: When a loop or function is pipelined, Vivado HLS will unroll all loops in the hierarchy
below the function or loop. If there is a loop with variable bounds in this hierarchy it will prevent
pipelining.

When a loop or function is pipelined, Vivado HLS will unroll all loops in the hierarchy below
the function or loop. If there is a loop with variable bounds in this hierarchy it will prevent
pipelining.

The solution to loops with variable bounds is to make the number of loop iteration a f ixed
value with conditional executions inside the loop. The code from Example 2-39 can be
re-written as shown in Example 2-40. Here, the loop bounds are explicitly set to the
maximum value of variable width and the loop body is conditionally executed.

#include "ap_cint.h"
#define N 32

typedef int8 din_t;
typedef int13 dout_t;
typedef uint5 dsel_t;

dout_t loop_max_bounds(din_t A[N], dsel_t width) {

dout_t out_accum=0;
dsel_t x;

LOOP_X:for (x=0;x<N-1; x++) {
if (x<width) {

out_accum += A[x];
}

}

return out_accum;
}

Example 4-40: Variable Loop Bounds Re-Written

The for-loop (LOOP_X) in Example 2-40 can be unrolled: the loop has f ixed upper bounds
and Vivado HLS knows how much hardware to create. There will be N (32) copies of the
loop body in the RTL design, each copy of the loop body will have conditional logic
associated with it and be executed depending on the value of variable width.
High-Level Synthesis www.xilinx.com 272
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Loop Pipelining

When pipelining loops, the most optimum balance between area and performance is
typically found by pipelining the inner most loop. This is also results in the fastest run time.
The code in Example 2-41 can be used to demonstrate the trade-offs when pipelining loops
and functions.

#include "loop_pipeline.h"

dout_t loop_pipeline(din_t A[N]) {

int i,j;
static dout_t acc;

LOOP_I:for(i=0; i < 20; i++){
LOOP_J: for(j=0; j < 20; j++){

acc += A[i] * j;
}

}

return acc;
}

Example 4-41: Loop Pipeline

If the inner-most (LOOP_J) is pipelined, there will be one copy of LOOP_J in hardware, (a
single multiplier) and Vivado HLS will use the outer-loop (LOOP_I) to simply feed LOOP_J
with new data. Only 1 multiplier operation and 1 array access need to be scheduled, then
the loop iterations can be scheduled as single loop-body entity (20x20 loop iterations).

Note: When a loop or function is pipelined, any loop in the hierarchy below the loop or function
being pipelined must be unrolled.

If the outer-loop (LOOP_I) is pipelined, inner-loop (LOOP_J) will be unrolled creating 20
copies of the loop body: 20 multipliers and 20 array accesses must now be scheduled. Then
each iteration of LOOP_I can be scheduled as a single entity.

If the top-level function is pipelined, both loops must be unrolled: 400 multipliers and 400
arrays accessed must now be scheduled. It is very unlikely Vivado HLS will produce a design
with 400 multiplications since in most designs data dependencies often prevent maximal
parallelism, for example, in this case, even if a dual-port RAM is used for A[N] the design
can only access two values of A[N] in any clock cycle.

The concept to appreciate when selecting at which level of the hierarchy to pipeline it to
understand that pipelining the inner-most loop will give the smallest hardware with
generally acceptable throughput for most applications. Pipelining the upper-levels of the
hierarchy will unroll all sub-loops and can create many more operations to schedule (which
could impact run time and memory capacity) but will typically give the highest performance
design in terms of throughput and latency.

To summarize the above options:
High-Level Synthesis www.xilinx.com 273
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
• Pipeline LOOP_J: Latency will be approximately 400 cycles (20x20) and will require less
than 100 LUTs and registers (the IO control and FSM are always present).

• Pipeline LOOP_I: Latency will be approximately 20 cycles but will require a few
hundred LUTs and registers. About 20 times the logic as f irst option, minus any logic
optimizations which can be made.

• Pipeline function loop_pipeline: Latency will be approximately 10 (20 dual-port
accesses) but will require thousands of LUTs and registers (about 400 times the logic of
the first option minus any optimizations which can be made).

 Imperfect Nested Loops

When the inner-loop of a loop hierarchy is pipelined, Vivado HLS automatically flattens the
nested loops, to reduce latency and improve overall throughput by removing any cycles
caused by loop transitioning (the checks performed on the loop index when entering and
exiting loops). Such checks can result in a clock delay when transitioning from one loop to
the next (entry and/or exit). In Example 2-41, pipelining the inner-most loop would result in
the following message from Vivado HLS.

@I [XFORM-541] Flattening a loop nest 'LOOP_I' in function 'loop_pipeline'.

Nested loops can only be flattened if the loops are perfect or semi-perfect.

• Perfect Loops

° Only the inner most loop has body (contents).

° There is no logic specif ied between the loop statements.

° The loop bounds are constant.

• Semi-perfect Loops

° Only the inner most loop has body (contents)

° There is no logic specif ied between the loop statements.

° The outer most loop bound can be variable.

Example 2-42 shows a case where the loop nest is imperfect.

#include "loop_imperfect.h"

void loop_imperfect(din_t A[N], dout_t B[N]) {

int i,j;
dint_t acc;

LOOP_I:for(i=0; i < 20; i++){
acc = 0;
LOOP_J: for(j=0; j < 20; j++){

acc += A[i] * j;
}
B[i] = acc / 20;
High-Level Synthesis www.xilinx.com 274
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
}

}

Example 4-42: Imperfect Nested Loops

The assignment to acc and array B[N] inside LOOP_I, but outside LOOP_J, prevent the
loops from being flattened. If LOOP_J in Example 2-42 is pipelined, the synthesis report will
show the following:

+ Summary of loop latency (clock cycles):
+ LOOP_I:

* Trip count: 20
* Latency: 480
+ LOOP_J:

* Trip count: 20
* Latency: 21
* Pipeline II: 1
* Pipeline depth: 2

• The pipeline depth shows it takes 2 clocks to execute one iteration of LOOP_J (this will
vary with the device technology and clock period).

• A new iteration can begin each clock cycle: Pipeline II is 1 (II is the Initiation Interval:
cycles between each new execution of the loop body).

• It takes 2 cycles for the first iteration to output a result. Due to pipelining each
subsequent iteration executes in parallel with the previous one and outputs a value
after 1 clock. The total latency of the loop is 2 plus 1 for each of the remaining 19
iterations: 21.

• LOOP_I, requires 480 clock cycles to perform 20 iterations, thus each iteration of
LOOP_I is 24 clocks cycles: this means there are 3 cycles of overhead to enter and exit
LOOP_J (24 – 21 = 3).

Imperfect loop nests, or the inability to flatten loop them, results in additional clock cycles
to enter and exit the loops. The code in Example 2-42 can be re-written to make the nested
loops perfect and allow them to be flattened.

Example 2-43 shows how conditionals can be added to loop LOOP_J to provide the same
functionality as Example 2-42 but allow the loops to be flattened.

#include "loop_perfect.h"

void loop_perfect(din_t A[N], dout_t B[N]) {

int i,j;
dint_t acc;

LOOP_I:for(i=0; i < 20; i++){
LOOP_J: for(j=0; j < 20; j++){

if(j==0) acc = 0;
acc += A[i] * j;
if(j==19) B[i] = acc / 20;
High-Level Synthesis www.xilinx.com 275
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
}
}

}

Example 4-43: Perfect Nested Loops

When Example 2-43 is synthesized, the loops are flattened:

@I [XFORM-541] Flattening a loop nest 'LOOP_I' in function 'loop_perfect'.

And the synthesis report shows an improvement in latency.

+ Summary of loop latency (clock cycles):
+ LOOP_I_LOOP_J:

* Trip count: 400
* Latency: 401
* Pipeline II: 1
* Pipeline depth: 2

When the design contains nested loops, analyze the results to ensure as many nested loops
as possible have been flattened: review the log f ile or look in the synthesis report for cases,
as shown above, where the loop labels have been merged (LOOP_I and LOOP_J are now
reported as LOOP_I_LOOP_J).

Loop Parallelism

Vivado HLS will schedule logic and functions are early as possible to reduce latency. To
perform this it will schedule as many logic operations and functions as possible in parallel.
It will not, however, schedule loops to execute in parallel.

If Example 2-44 is synthesized, loop SUM_X will be scheduled and then loop SUM_Y will be
scheduled: even though loop SUM_Y does not need to wait for loop SUM_X to complete
before it can begin its operation, it will be scheduled after SUM_X.

#include "loop_sequential.h"

void loop_sequential(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
dsel_t xlimit, dsel_t ylimit) {

dout_t X_accum=0;
dout_t Y_accum=0;
int i,j;

SUM_X:for (i=0;i<xlimit; i++) {
X_accum += A[i];
X[i] = X_accum;

}

SUM_Y:for (i=0;i<ylimit; i++) {
Y_accum += B[i];
Y[i] = Y_accum;

}
}
High-Level Synthesis www.xilinx.com 276
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Example 4-44: Sequential Loops

Since the loops have different bounds (xlimit and ylimit) they cannot be merged.
However by placing the loops in separate functions, as shown in Example 2-45, the exact
same functionality can be achieved and both loops (inside the functions), can be scheduled
in parallel.

#include "loop_functions.h"

void sub_func(din_t I[N], dout_t O[N], dsel_t limit) {
int i;
dout_t accum=0;

SUM:for (i=0;i<limit; i++) {

accum += I[i];
O[i] = accum;

}

}

void loop_functions(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
dsel_t xlimit, dsel_t ylimit) {

dout_t X_accum=0;
dout_t Y_accum=0;
int i,j;

sub_func(A,X,xlimit);
sub_func(B,Y,ylimit);

}

Example 4-45: Sequential Loops as Functions

If Example 2-45 is synthesized, the latency will be half the latency of Example 2-44 because
the loops (as functions) can now execute in parallel.

The dataflow optimization could also be used in Example 2-44. The principle of capturing
loops in functions to exploit parallelism is presented here for cases where dataflow
optimization cannot be used. For example, in a larger example, dataflow optimization
would be applied to all loops and functions at the top-level and memories placed between
every top-level loop and function.

Loop Dependencies

Loop dependencies are data dependencies which prevent optimization of loops, typically
pipelining. They can be within a single iteration of a loop and or between different iteration
of a loop.

The simplest way to understand loop dependencies is to examine an extreme example. In
the following example, the result of the loop is used as the loop continuation/exit
condition: each iteration of the loop must f inish before the next can start.
High-Level Synthesis www.xilinx.com 277
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Minim_Loop: while (a != b) {
if (a > b)

a –= b;
else

b –= a;
}

In this case, this loop cannot be pipelined: the next iteration of the loop cannot begin until
the previous iteration ends.

Not all loop dependencies are as extreme as this, but this example highlights the problem:
some operation cannot begin until some other operation has completed. The solution is to
try ensure the initial operation is performed as early as possible.

Loop dependencies can occur with any and all types of data; however they are particularly
common when using arrays. As such, they are discussed in the next section on arrays.

Arrays
Arrays are typically implemented as a memory (RAM, ROM or FIFO) after synthesis. As
discussed in the section Arrays on the Interface, arrays on the top-level function interface
are synthesized as RTL ports which access a memory outside. Arrays internal to the design
are synthesized to internal BRAM, LUTRAM or registers, depending on the optimization
settings.

Like loops, arrays are an intuitive coding construct and so they are often found in C
programs. Also like loops, Vivado HLS has a number of optimizations and directives which
can be applied to optimize their implementation in RTL without any need to modify the
code.

Cases where arrays can introduce problems in the RTL are:

• Array accesses can often create bottlenecks to performance. When implemented as a
memory, the number of memory ports limits access to the data.

• Array initialization, if not performed carefully, can result in undesirably long reset and
initialization in the RTL.

• Some care must be taken to ensure arrays which only require read accesses are
implemented as ROMs in the RTL.

As discussed in Pointers, arrays of pointers are supported, however each pointer can only
point to a scalar or an array of scalars.

Note: Arrays must be sized.
Supported: Array[10];
Not Supported: Array[];
High-Level Synthesis www.xilinx.com 278
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Array Accesses

The code in Example 2-46 shows a case where accesses to an array can limit performance in
the final RTL design. In this example there are three accesses to the array mem[N] to create
a summed result.

#include "array_mem_bottleneck.h"

dout_t array_mem_bottleneck(din_t mem[N]) {

dout_t sum=0;
int i;

SUM_LOOP:for(i=2;i<N;++i)
sum += mem[i] + mem[i-1] + mem[i-2];

return sum;

}

Example 4-46: Array-Memory Bottleneck

During synthesis the array is implemented as a RAM. If the RAM is specified as a single-port
RAM it is impossible to pipeline loop SUM_LOOP to process a new loop iteration every clock
cycle.

Trying to pipeline SUM_LOOP with an initiation interval of 1 will result in the following
message (after failing to achieve a throughput of 1, Vivado HLS automatically relaxes the
constraint):

@I [SCHED-61] Pipelining loop 'SUM_LOOP'.
@W [SCHED-69] Unable to schedule 'load' operation ('mem_load_1',
array_mem_bottleneck.c:54) on array 'mem' due to limited resources (II = 1).
@W [SCHED-69] Unable to schedule 'load' operation ('mem_load_2',
array_mem_bottleneck.c:54) on array 'mem' due to limited resources (II = 2).
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 3, Depth: 4.

The problem here is that the single-port RAM has only a single data port: only 1 read (and
1 write) can be performed in each clock cycle.

• SUM_LOOP Cycle1: read mem[i];

• SUM_LOOP Cycle2: read mem[i-1], sum values;

• SUM_LOOP Cycle3: read mem[i-2], sum values;

A dual-port RAM could be used, but this will only allow two accesses per clock cycle. Three
reads are required to calculate the value of sum and so three accesses per clock cycle are
required in order to pipeline the loop with an new iteration every clock cycle.

CAUTION! Arrays implemented as memory or memory ports, can often become bottlenecks to
performance.
High-Level Synthesis www.xilinx.com 279
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
The code in Example 2-46 can be re-written as shown in Example 2-47 to allow the code to
be pipelined with a throughput of 1. Notice, in Example 2-47 by performing pre-reads and
manually pipelining the data accesses there is only one array read specified in each
iteration of the loop: this ensures only a single-port RAM is required to achieve the
performance.

#include "array_mem_perform.h"

dout_t array_mem_perform(din_t mem[N]) {

din_t tmp0, tmp1, tmp2;
dout_t sum=0;
int i;

tmp0 = mem[0];
tmp1 = mem[1];
SUM_LOOP:for (i = 2; i < N; i++) {

tmp2 = mem[i];
sum += tmp2 + tmp1 + tmp0;
tmp0 = tmp1;
tmp1 = tmp2;

}

return sum;
}

Example 4-47: Array-Memory with Performance Access

Vivado HLS has a number of optimization directives for changing how arrays are
implemented and accessed. It is typically the case that directives can be used, and changes
to the code are not required. Arrays can be partitioned into blocks or into their individual
elements. In some cases, Vivado HLS will automatically partition arrays into individual
elements: this is controllable using the configuration settings for auto-partitioning.

When an array is partitioned into multiple blocks, the single array is implemented as
multiple RTL RAM blocks. When partitioned into elements, each element will be
implemented as a register in the RTL. In both cases, partitioning allows more elements to be
accessed in parallel and can help with performance; the design trade-off is between
performance and the number of RAMs or registers required to achieve it.

FIFO accesses

A special care of arrays accesses are when arrays are implemented as FIFOs. This is often the
case when dataflow optimization is used.

Accesses to a FIFO must be in sequential order starting from location zero. In addition, if an
array is read in multiple locations, the code must strictly enforce the order of the FIFO
accesses. It is often the case that arrays with multiple fanout cannot be implemented as
FIFOs without additional code to enforce the order of the accesses.
High-Level Synthesis www.xilinx.com 280
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Array Initialization

RECOMMENDED: As discussed in the Type Qualifiers section, although not a requirement, it is highly
recommended to specify arrays which are to be implemented as memories with the static qualifier. This
not only ensures Vivado HLS will implement the array with a memory in the RTL, it also allows the
initialization behavior of static types to be used

In the following code, an array is initialized with a set of values. Each time the function is
executed, array coeff is assigned these values. After synthesis, each time the design
executes the RAM which implements coeff will be loaded with these values. For a
single-port RAM this would take 8 clock cycles. For an array of 1024, it would of course, take
1024 clock cycles, during which time no operations depending on coeff could occur.

int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

The following code uses the static qualif ier to define array coeff. The array is initialized
with the specif ied values at start of execution. Each time the function is executed, however,
array coeff remembers its values from the previous execution: a static array behaves in C
code as a memory does in RTL.

static int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

In addition, if the variable has the static qualif ier, Vivado HLS will initialize the variable in
the RTL design and in the FPGA bitstream: this removes the need for multiple clock cycles
to initialize the memory and ensures that initializing large memories is not an operational
overhead.

The RTL configuration command can be used to specify if static variables return to their
initial state after a reset is applied (not the default). If a memory is to be returned to its
initial state after a reset operation, this will incur an operational overhead and require
multiple cycles to reset the values: each value has to be written into each memory address.

Implementing ROMs

As was shown in Example 2-29 in the review of static and const type qualif iers, Vivado
HLS does not require than an array be specified with the static qualif ier in order to
synthesize a memory or the const qualif ier in order to infer the memory should be a ROM.
Vivado HLS will perform analysis of the design and seek to create the most optimum
hardware.

It is however highly recommended to use the static qualif ier for arrays which are intended
to be memories: as noted in Array Initialization, a static type behaves in an almost identical
manner as a memory in RTL.

The const qualif ier is also recommended when arrays are only read, since Vivado HLS
cannot always infer a ROM should be used by analysis of the design. The general rule for
High-Level Synthesis www.xilinx.com 281
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
the automatic inference of a ROM is that a local, static (non-global) array is written to
before being read. The following practices in the code can help infer a ROM:

• Initialize the array as early as possible in the function that uses it.

• Group writes together.

• Do not interleave array(ROM) initialization writes with non-initialization code.

• Do not store different values to the same array element (group all writes together in
the code).

• Element value computation must not depend on any non-constant (at compile-time)
design variable(s), other that the initialization loop counter variable.

If complex assignments are used to initialize a ROM, for example functions from the
math.h library, placing the array initialization into a separate function will allow a ROM to
be inferred. In Example 2-48, array sin_table[256] is inferred as a memory and
implemented as a ROM after RTL synthesis.

#include "array_ROM_math_init.h"
#include <math.h>

void init_sin_table(din1_t sin_table[256])
{

int i;
for (i = 0; i < 256; i++) {

dint_t real_val = sin(M_PI * (dint_t)(i - 128) / 256.0);
sin_table[i] = (din1_t)(32768.0 * real_val);

}
}

dout_t array_ROM_math_init(din1_t inval, din2_t idx)
{

short sin_table[256];
init_sin_table(sin_table);
return (int)inval * (int)sin_table[idx];

}

Example 4-48: ROM Initialization with math.h

TIP: Since the result of the sin() function results in constant values, no core is required in the RTL
design to implement the sin() function. The sin() function is not one of the cores listed in Table 2-2
and is not supported for synthesis in C. (Refer to the C++ for Synthesis section for using math.h
functions in C++.)

Unsupported C Constructs
While Vivado HLS has support for a wide range of the C language, there are some
constructs which are not synthesizable or result in errors further down the design flow. This
section outlines areas where coding changes must be made, if the function is to be
synthesized and implemented in an FPGA device.
High-Level Synthesis www.xilinx.com 282
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
As a general rule, in order to be synthesized the C function must contain the entire
functionality of the design (none of the functionality can be performed by system calls to
the operating system), the C constructs must be of a f ixed/bounded size and the
implementation of those constructs unambiguous.

System Calls

System calls cannot be synthesized since they are actions which relate to performing some
task upon the operating system in which the C program is running.

Vivado HLS will automatically ignore commonly used system calls which only display data
and have no impact on the execution of the algorithm, such as printf() and
fprintf(stdout,), however in general calls to the system cannot be synthesized and
should be removed from the function prior to synthesis. Other examples of such calls are
getc(), time(), sleep(), etc. all of which make calls to the operating system.

Vivado HLS automatically defines the macro __SYNTHESIS__ when synthesis is
performed. This allows the __SYNTHESIS__ macro to be used to exclude
non-synthesizable code from the design.

Example 2-49 shows a case where the intermediate results from a sub-function are saved to
a file on the hard drive. The macro __SYNTHESIS__ is used to ensure the
non-synthesizable f iles writes are ignored during synthesis.

#include "hier_func4.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{

*outSum = *in1 + *in2;
*outSub = *in1 - *in2;

}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA = *in1 >> 1;
*outB = *in2 >> 2;

}

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{

dint_t apb, amb;

sumsub_func(&A,&B,&apb,&amb);
#ifndef __SYNTHESIS__

FILE *fp1;// The following code is ignored for synthesis
char filename[255];
sprintf(filename,"Out_apb_%03d.dat",apb);
fp1=fopen(filename,"w");
fprintf(fp1, "%d \n", apb);
fclose(fp1);

#endif
shift_func(&apb,&amb,C,D);

}

High-Level Synthesis www.xilinx.com 283
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
Example 4-49: File Writes for Debug

The __SYNTHESIS__ macro is provided as a convenient way to exclude non-synthesizable
code, without removing the code itself from the C function. Using such a macro does
however mean the C code for simulation and the C code for synthesis are now different.

CAUTION! If the __SYNTHESIS__ macro is used to change the functionality of the C code, it can
result in different results between C simulation and C synthesis. Errors in such code are inherently
difficult to debug, and using the __SYNTHESIS__ macro to create changes in functionality should be
avoided.

Dynamic Memory Usage

Any system calls which manage memory allocation within the system, for example,
malloc(), alloc(), and free() are using resources which exist in the memory of the
operating system and are created and released during runtime: to be able to synthesize a
hardware implementation the design must be fully self-contained, specifying all required
resources.

Memory allocation system calls must be removed from the design code prior to synthesis.
However, since dynamic memory operations are used to define the functionality of the
design, they must be transformed into equivalent bounded representations. Example 2-50
shows how a design using malloc() can be transformed into a synthesizable version.

The code in Example 2-50 highlights two useful coding style techniques:

• First, the design does not make use of the __SYNTHESIS__ macro: rather the user
defined macro NO_SYNTH is used to select between the synthesizable and
non-synthesizable versions. This ensures the same exact same code is simulated in C
and synthesized in Vivado HLS.

• Secondly, the pointers in the original design using malloc() do not need to be
re-written to work with f ixed sized elements. Fixed sized resources can be created and
the existing pointer can simply be made to point to the fixed sized resource: this
technique can prevent manual re-coding of the existing design.

#include "malloc_removed.h"
#include <stdlib.h>
//#define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {

#ifdef NO_SYNTH
long long *out_accum = malloc (sizeof(long long));
int* array_local = malloc (64 * sizeof(int));

#else
long long _out_accum;
long long *out_accum = &_out_accum;
int _array_local[64];
int* array_local = &_array_local[0];
High-Level Synthesis www.xilinx.com 284
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Coding Styles for Modeling Hardware
#endif
int i,j;

LOOP_SHIFT:for (i=0;i<N-1; i++) {

if (i<width)
*(array_local+i)=din[i];

else
*(array_local+i)=din[i]>>2;

}

*out_accum=0;
LOOP_ACCUM:for (j=0;j<N-1; j++) {

*out_accum += *(array_local+j);
}

return *out_accum;
}

Example 4-50: Transforming malloc() to Fixed Resources

RECOMMENDED: Since the coding changes here impact the functionality of the design, it is not
recommended to use the __SYNTHESIS__ macro. The recommended approach is to:

1. Add the user defined macro NO_SYNTH to the code and modify the code.
2. Enable macro NO_SYNTH, execute the C simulation and save the results.
3. Disable the macro NO_SYNTH (e.g. comment out, as in Example 50), execute the C simulation to
verify the results are identical.

Perform synthesis with the user defined macro disabled.
This methodology ensures the updated code is validated with C simulation and the exact same code is
then synthesized.

Pointer Limitations

General Pointer Casting

Pointer casting is not supported in the general case but is supported between native C
types. Refer to the Pointers section for details on pointer casting.

Pointer Arrays

Arrays of pointers are supported for synthesis if each pointer points to a scalar or an array
of scalars. Arrays of pointers cannot point to additional pointers. Refer to the Pointers
section for details on pointer arrays.

Recursive Functions

Recursive functions cannot be synthesized. This applies to functions which can form endless
recursion, where endless :
High-Level Synthesis www.xilinx.com 285
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
unsigned foo (unsigned n)
{
 if (n == 0 || n == 1) return 1;
 return (foo(n-2) + foo(n-1));
}

Tail recursion, where there are a finite number of function calls, is also not supported:

unsigned foo (unsigned m, unsigned n)
{
 if (m == 0) return n;
 if (n == 0) return m;
 return foo(n, m%n);
}

In C++, templates can be used to implement tail recursion. C++ is addressed next.

C++ for Synthesis
This chapter covers aspects of the C++ language as it is used for synthesis using Vivado
HLS. Almost all of the items covered in the chapter on C for Synthesis also relate to coding
with C++ (top-level function arguments, pointers, loops, arrays etc.) and the chapter C for
Synthesis should have be read before proceeding with this chapter.

Topics in C for Synthesis which do not apply when using C++ are the arbitrary precision
types used with C (C++ has its own arbitrary precision types) and the limitations when
compiling arbitrary precision types in C: apcc is not required for C++ simulation and no
Integer Promotion Issues are encountered with C++ arbitrary precision types.

The addition language features of C++, relevant for synthesis, include classes, templates,
C++ arbitrary precision types, support for the math.h library and standard template
libraries are covered in this chapter.

Vivado HLS expects C++ functions to be named with the standard g++ f ile extensions
(.cpp, .cxx, etc). Standard C language functions, appropriately renamed and not using
Vivado HLS C arbitrary precision types (u)int#, can be synthesized as C++ designs. There
is no requirement to use a C++ object orientated coding style.

C++ Classes
C++ classes are fully supported for synthesis with Vivado HLS. The top-level for synthesis
must be a function: a class cannot be the top-level for synthesis. To synthesize a class
member function, the class itself should be instantiated into function: the top-level class
should not simply be instantiated into the test bench. Example 2-51 shows how class CFIR
(defined in the header f ile discussed next) is instantiated in the top-level function cpp_FIR
and used to implement an FIR f ilter.

#include "cpp_FIR.h"
High-Level Synthesis www.xilinx.com 286
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
// Top-level function with class instantiated
data_t cpp_FIR(data_t x)

{
static CFir<coef_t, data_t, acc_t> fir1;

cout << fir1;

return fir1(x);
}

Example 4-51: C++ FIR Filter

IMPORTANT: Classes and class member functions cannot be the top-level for synthesis. The class
should be instantiated in a top-level function.

Before examining the class used to implement the design in Example 2-51, it is worth
noting Vivado HLS automatically ignores the standard output stream cout during synthesis.
When synthesized Vivado HLS will issue the following warnings:

@I [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
@I [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
@I [SYNCHK-101] Discarding unsynthesizable system call: 'std::operator<<
<std::char_traits<char> >' (cpp_FIR.h:110)
@

The header file cpp_FIR.h is shown below in Example 2-52 and shows the definition of
class CFir and its associated member functions. In this example the operator member
functions () and << are overloaded operators, which are respectively used to execute the
main algorithm and used with cout to format the data for display during C simulation.

#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define N 85

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

// Class CFir definition
template<class coef_T, class data_T, class acc_T>
class CFir {

protected:
static const coef_T c[N];
data_T shift_reg[N-1];

private:
public:

data_T operator()(data_T x);
template<class coef_TT, class data_TT, class acc_TT>
High-Level Synthesis www.xilinx.com 287
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
friend ostream&
operator<<(ostream& o, const CFir<coef_TT, data_TT, acc_TT> &f);

};

// Load FIR coefficients
template<class coef_T, class data_T, class acc_T>
const coef_T CFir<coef_T, data_T, acc_T>::c[N] = {

#include "cpp_FIR.inc"
};

// FIR main algorithm
template<class coef_T, class data_T, class acc_T>
data_T CFir<coef_T, data_T, acc_T>::operator()(data_T x) {

int i;
acc_t acc = 0;
data_t m;

loop: for (i = N-1; i >= 0; i--) {
if (i == 0) {

m = x;
shift_reg[0] = x;

} else {
m = shift_reg[i-1];
if (i != (N-1))
shift_reg[i] = shift_reg[i - 1];

}
acc += m * c[i];

}
return acc;

}

// Operator for displaying results
template<class coef_T, class data_T, class acc_T>
ostream& operator<<(ostream& o, const CFir<coef_T, data_T, acc_T> &f) {

for (int i = 0; i < (sizeof(f.shift_reg)/sizeof(data_T)); i++) {
o << "shift_reg[" << i << "]= " << f.shift_reg[i] << endl;

}
o << "______________" << endl;
return o;

}

data_t cpp_FIR(data_t x);

Example 4-52: C++ Header File Defining Classes

The test bench Example 2-51 is shown in Example 2-53 and demonstrates how top-level
function cpp_FIR is called and validated. This example highlights some of the important
attributes of a good test bench for Vivado HLS synthesis:

• The output results are checked against known good values.

• The test bench returns 0 if the results are confirmed to be correct.

More details on test benches are provided in the Creating of Productive Test Bench section.

#include "cpp_FIR.h"
High-Level Synthesis www.xilinx.com 288
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
int main() {
ofstream result;
data_t output;
int retval=0;

// Open a file to save the results
result.open("result.dat");

// Apply stimuli, call the top-level function and save the results
for (int i = 0; i <= 250; i++)
{

output = cpp_FIR(i);

result << setw(10) << i;
result << setw(20) << output;
result << endl;

}
result.close();

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed !!!\n");
retval=1;

} else {
printf("Test passed !\n");

}

// Return 0 if the test
return retval;

}

Example 4-53: C++ Test Bench for cpp_FIR

Constructors, Destructors and Virtual Functions

Class constructors and destructors will be included and synthesized whenever a class object
is declared.

Virtual functions, including abstract ones, are supported for synthesis if Vivado HLS can
statically determine the function during elaboration. The following are cases where virtual
functions are not supported for synthesis:

• Virtual functions can be defined in a multi-layer inheritance class hierarchy but only
with a single inheritance.

• Dynamic polymorphism is only supported if the pointer object can be determined at
compile time. For example, such pointers cannot be used in an if-else or loop
constructs.

• An STL container cannot be used to contain the pointer of an object and call the
polymorphism function. For example:
High-Level Synthesis www.xilinx.com 289
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
vector<base *> base_ptrs(10);

//Push_back some base ptrs to vector.
for (int i = 0; i < base_ptrs.size(); ++i) {

//Static elaboration cannot resolve base_ptrs[i] to actual data type.
base_ptrs[i]->virtual_function();

}

• Cases where the base object pointer is a global variable are not supported. For
example:

Base *base_ptr;

void func()
{

……
base_prt->virtual_function();
……

}

• The base object pointer cannot be a member variable in a class definition.

// Static elaboration cannot bind base object pointer with correct data type.
class A
{

…..
Base *base_ptr;
void set_base(Base *base_ptr);
void some_func();
…..

};

void A::set_base(Base *ptr)
{

this.base_ptr = ptr;
}

void A::some_func()
{

….
base_ptr->virtual_function();
….

}

• If the base object pointer or reference is in the function parameter list of constructor,
Vivado HLS will not convert it. (The ISO C++ standard has depicted this in section12.7:
sometimes the behavior is undefined).

class A {
A(Base *b) {

b-> virtual _ function ();
}

};

Global Variables and Classes

It is not recommended to use global variables in classes as they can prevent some
optimizations from occurring. Example 2-54, shows a case where a class is used to create
High-Level Synthesis www.xilinx.com 290
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
the component for a f ilter (class polyd_cell is used as a component which performs shift,
multiply and accumulate operations).

typedef long long acc_t;
typedef int mult_t;
typedef char data_t;
typedef char coef_t;

#define TAPS 3
#define PHASES 4
#define DATA_SAMPLES 256
#define CELL_SAMPLES 12

// Use k on line 73 static int k;

template <typename T0, typename T1, typename T2, typename T3, int N>
class polyd_cell {
private:
public:

T0 areg;
T0 breg;
T2 mreg;
T1 preg;

T0 shift[N];
int k; //line 73

T0 shift_output;
void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
{
Function_label0:;

if (col==0) {
SHIFT:for (k = N-1; k >= 0; --k) {

if (k > 0)
shift[k] = shift[k-1];

else
shift[k] = data;

}
*dataOut = shift_output;
shift_output = shift[N-1];
}
*pcout = (shift[4*col]* coeff) + pcin;

}
};

// Top-level function with class instantiated
void cpp_class_data (

acc_t *dataOut,
coef_t coeff1[PHASES][TAPS],
coef_t coeff2[PHASES][TAPS],
data_t dataIn[DATA_SAMPLES],
int row

) {

acc_t pcin0 = 0;
acc_t pcout0, pcout1;
data_t dout0, dout1;
int col;
High-Level Synthesis www.xilinx.com 291
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
static acc_t accum=0;
static int sample_count = 0;
static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>

polyd_cell0;
static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>

polyd_cell1;

COL:for (col = 0; col <= TAPS-1; ++col) {

polyd_cell0.exec(&pcout0,&dout0,pcin0,coeff1[row][col],dataIn[sample_count],
col);

polyd_cell1.exec(&pcout1,&dout1,pcout0,coeff2[row][col],dout0,col);

if ((row==0) && (col==2)) {
*dataOut = accum;
accum = pcout1;

} else {
accum = pcout1 + accum;

}

}
sample_count++;

}

Example 4-54: C++ Class Data Member used for Loop Index

Within class polyd_cell there is a loop SHIFT used to shift data. If the loop index k used
in loop SHIFT was removed and replaced with the global index for k (shown earlier in the
example, but commented static int k), Vivado HLS would be unable to pipeline any
loop or function in which class polyd_cell was used. Vivado HLS would issue the
following message:

@W [XFORM-503] Cannot unroll loop 'SHIFT' in function 'polyd_cell<char, long long,
int, char, 12>::exec' completely: variable loop bound.

Using local non-global variables for loop indexing ensures Vivado HLS can perform all
optimizations.

Templates
As earlier examples in this chapter have shown, Vivado HLS supports the use of templates
in C++ for synthesis. Templates are not supported however for the top-level function.

IMPORTANT: The top-level function cannot be a template.

In addition to the general use of templates shown in Example 2-52 and Example 2-54,
templates can be used implement a form of recursion, which is not supported in standard
C synthesis (Recursive Functions).
High-Level Synthesis www.xilinx.com 292
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
Example 2-55 shows a case where a templatized struct is used to implement a
tail-recursion Fibonacci algorithm. The key to performing synthesis is that a termination
class is used to implement the final call in the recursion, where a template size of one is
used.

//Tail recursive call
template<data_t N> struct fibon_s {

template<typename T>
static T fibon_f(T a, T b) {

return fibon_s<N-1>::fibon_f(b, (a+b));
}

};

// Termination condition
template<> struct fibon_s<1> {

template<typename T>
static T fibon_f(T a, T b) {

return b;
}

};

void cpp_template(data_t a, data_t b, data_t &dout){
dout = fibon_s<FIB_N>::fibon_f(a,b);

}

Example 4-55: C++ Tail Recursion with Templates

Types
As with the C language types discussed in section Types, Vivado HLS supports the same
standard types in C++ types for synthesis.

Support is also provided for C++ arbitrary precision integers: the C++ arbitrary precision
integers are not the same as those used in C and do not have any of the simulation
limitations. In addition supported is provided in C++ for arbitrary precision f ixed point
types.

C++ Arbitrary Precision Integer Types

The native data types in C++ are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations however support arbitrary bit-lengths.

Vivado HLS provides arbitrary precision data types for C++ to allow variables and
operations in the C++ code to be specif ied with any arbitrary bit-widths: 6-bit, 17-bit,
234-bit etc. up to 1024 bits.

TIP: The default maximum width allowed is 1024 bits.This default may be overridden by defining the
macro AP_INT_MAX_W with a positive integer value less than or equal to 32768 before inclusion of the
ap_int.h header file.
High-Level Synthesis www.xilinx.com 293
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
C++ supports use of the arbitrary precision types defined in the SystemC standard: simply
include the SystemC header f ile systemc.h and use SystemC data types. More details on
SystemC types are provided in the chapter on SystemC.

Arbitrary precision data types have are two primary advantages over the native C++ types:

• Better quality hardware: If for example, a 17-bit multiplier is required, arbitrary
precision types can be used to specify that exactly 17-bit are used in the calculation.

° Without arbitrary precision data types, such a multiplication (17-bit) must be
implemented using 32-bit integer data types and result in the multiplication being
implemented with multiple DSP48 components.

• Accurate C++ simulation/analysis: Arbitrary precision data types in the C++ code
allows the C++ simulation to be performed using accurate bit-widths and for the C++
simulation to validate the functionality (and accuracy) of the algorithm before
synthesis.

The arbitrary precision types in C++ have none of the disadvantages of those in C:

• C++ arbitrary types can be compiled with standard C++ compilers (there is no C++
equivalent of apcc, as discussed in Validating Arbitrary Precision Types in C).

• C++ arbitrary precision types do not suffer from Integer Promotion Issues.

It is not uncommon for users to a file extension from .c to .cpp so the file can be compiled
as C++, where neither of the above issues are present.

The remainder of this section explains how to use arbitrary precision types. A detailed
description of arbitrary precision types is provided in a reference section at the end of this
document (C++ Arbitrary Precision Types) and includes:

• Techniques for assigning constant and initialization values to arbitrary precision
integers (including values greater than 1024-bit).

• A description of Vivado HLS helper methods, such as printing, concatenating,
bit-slicing and range selection functions.

• A description of operator behavior, including a description of shift operations (a
negative shift values, results in a shift in the opposite direction).

Using Arbitrary Precision Types with C++

For the C++ language, the header f ile ap_int.h defines the arbitrary precision integer
data types ap_(u)int<W>. For example, ap_int<8> represents an 8-bit signed integer
data type and ap_uint<234> represents a 234-bit unsigned integer type.

The ap_int.h file is located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
HLS installation directory.
High-Level Synthesis www.xilinx.com 294
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
The code shown in Example 2-56, is a repeat of the code shown in the earlier example on
basic arithmetic (Example 2-22 and again in Example 2-35). In this example the data types
in the top-level function to be synthesized are specif ied as dinA_t, dinB_t, etc.

#include "cpp_ap_int_arith.h"

void cpp_ap_int_arith(din_A inA, din_B inB, din_C inC, din_D inD,
dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4

) {

// Basic arithmetic operations
*out1 = inA * inB;
*out2 = inB + inA;
*out3 = inC / inA;
*out4 = inD % inA;

}

Example 4-56: Basic Arithmetic Revisited with C++ Types

In this latest update to this example, the C++ arbitrary precision types are used:

• Add header f ile ap_int.h to the source code.

• Change the native C++ types to arbitrary precision types ap_int<N> or ap_uint<N>,
where N is a bit-size from 1 to 1024 (as noted above, this can be extended to 32K-bits is
required).

The data types are defined in the header cpp_ap_int_arith.h as shown in
Example 2-36.

Compared with Example 2-22, the input data types have simply been reduced to represent
the maximum size of the real input data (e.g. 8-bit input inA is reduced to 6-bit input). The
output types however have been refined to be more accurate, for example, out2, the sum
of inA and inB, need only be 13-bit and not 32-bit.

#ifndef _CPP_AP_INT_ARITH_H_
#define _CPP_AP_INT_ARITH_H_

#include <stdio.h>
#include "ap_int.h"

#define N 9

// Old data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;
//typedef long long dinD_t;
//typedef int dout1_t;
//typedef unsigned int dout2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef ap_int<6> dinA_t;
High-Level Synthesis www.xilinx.com 295
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
typedef ap_int<12> dinB_t;
typedef ap_int<22> dinC_t;
typedef ap_int<33> dinD_t;

typedef ap_int<18> dout1_t;
typedef ap_uint<13> dout2_t;
typedef ap_int<22> dout3_t;
typedef ap_int<6> dout4_t;

void cpp_ap_int_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t inD,dout1_t
*out1,dout2_t *out2,dout3_t *out3,dout4_t *out4);

#endif

Example 4-57: Basic Arithmetic with C++ Arbitrary Precision Types

If Example 2-56 is synthesized it will result in a design which is functionally identical to
Example 2-22 and Example 2-36: to keep the test bench as similar as possible to
Example 2-36, rather than use the C++ cout operator to output the results to a file, the
built-in ap_int method .to_int() is used to convert the ap_int results to integer types
used with the standard fprintf function.

fprintf(fp, "%d*%d=%d; %d+%d=%d; %d/%d=%d; %d mod %d=%d;\n",
inA.to_int(), inB.to_int(), out1.to_int(),
inB.to_int(), inA.to_int(), out2.to_int(),
inC.to_int(), inA.to_int(), out3.to_int(),
inD.to_int(), inA.to_int(), out4.to_int());

Note: Section C++ Arbitrary Precision Types provides comprehensive details on the methods,
synthesis behavior and all aspects of using the ap_(u)int<N> arbitrary precision data types.

C ++Arbitrary Precision Fixed Point Types

C++ functions can take advantage of the arbitrary precision fixed point types provided with
Vivado HLS. Figure 2-9 summarizes the basic features of these fixed point types:

• The word can be signed (ap_fixed) or unsigned (ap_ufixed).

• A word with of any arbitrary size W can be defined.

• The number of places above the decimal point I, also defines the number of decimal
places in the word, W-I (represented by B in Figure 2-9).

• The type of rounding or quantization (Q) can be selected.

• The overflow behavior (O and N) can be selected.
High-Level Synthesis www.xilinx.com 296
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
The arbitrary precision f ixed point types can be used when header file ap_fixed.h is
included in the code.

The advantages of using fixed point types are:

• They allow fractional number to be easily represented.

• When variables have a different number of integer and decimal place bits, the
alignment of the decimal point is handled automatically.

• There are numerous options to automatically handle how rounding should happen:
when there are too few decimal bits to represent the precision of the result.

• There are numerous options to automatically handle how variables should overflow:
when the result is greater than the number of integer bits can represent.

These attributes are summarized by examining the code in Example 2-58. First, the header
f ile ap_fixed.h is included. The ap_fixed types are then defined via typedef
statement:

• A 10-bit input: 8-bit integer value with 2 decimal places.

• A 6-bit input: 3-bit integer value with 3 decimal places.

• A 22-bit variable for the accumulation: 17-bit integer value with 5 decimal places.

• A 36-bit variable for the result: 30-bit integer value with 6 decimal places.

Notice the function contains no code to manage the alignment of the decimal point after
operations are performed: that is done automatically.

#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> din1_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;
typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp_ap_fixed(din1_t d_in1, din2_t d_in2) {

static dint_t sum;
sum =+ d_in1;

X-Ref Target - Figure 4-9

Figure 4-9: Arbitrary Precision Fixed Point Types
High-Level Synthesis www.xilinx.com 297
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
return sum * d_in2;
}

Example 4-58: AP_Fixed Point Example

The quantization and overflow modes are shown in Table 2-10 and are described in detail in
the in the reference section C++ Arbitrary Precision Fixed Point Types.

TIP: Quantization and overflow modes which do more than the default behavior of standard hardware
arithmetic (wrap and truncate) will result in operators with more associated hardware: it costs logic
(LUTs) to implement the more advanced modes, such as round to minus infinity or saturate
symmetrically.

Table 4-10: Fixed Point Identifier Summary

Identifier Description

W Word length in bits

I The number of bits used to represent the integer value (the number of bits above
the decimal point)

Q
Quantization mode dictates the behavior when greater precision is generated
than can be defined by smallest fractional bit in the variable used to store the
result.

Mode Description

AP_RND Rounding to plus infinity

AP_RND_ZERO Rounding to zero

AP_RND_MIN_INF Rounding to minus infinity

AP_RND_INF Rounding to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity

AP_TRN_ZERO Truncation to zero (default)

O Overflow mode dictates the behavior when more bits are generated than the
variable to store the result contains.

Mode Description

AP_SAT Saturation

AP_SAT_ZERO Saturation to zero

AP_SAT_SYM Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around

N The number of saturation bits in wrap modes.
High-Level Synthesis www.xilinx.com 298
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ for Synthesis
Using ap_(u)fixed types the C++ simulation will be bit-accurate and fast simulation can
be used to validate the algorithm and its accuracy. After synthesis, the RTL will exhibit the
exact same bit-accurate behavior.

Arbitrary precision fixed point types can be freely assigned literal values in the code, as
shown in the test bench (Example 2-59) used with Example 2-58, where the values of in1
and in2 are declared and assigned constant values.

When assigning literal values involving operators the literal values must first be cast to
ap_(u)fixed types or the C compiler and Vivado HLS will interpret the literal as an integer
or float/double type and may fail to find a suitable operator. For example, in the
assignment of in1 = in1 + din1_t(0.25) the literal 0.25 is cast an ap_fixed type.

int main()
{

ofstream result;
din1_t in1 = 0.25;
din2_t in2 = 2.125;
dout_t output;
int retval=0;

result.open("result.dat");
// Persistent manipulators
result << right << fixed << setbase(10) << setprecision(15);

for (int i = 0; i <= 250; i++)
{

output = cpp_ap_fixed(in1,in2);

result << setw(10) << i;
result << setw(20) << in1;
result << setw(20) << in2;
result << setw(20) << output;
result << endl;

in1 = in1 + din1_t(0.25);
in2 = in2 - din2_t(0.125);

}
result.close();

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {

printf("Test failed !!!\n");
retval=1;

} else {
printf("Test passed !\n");

}

// Return 0 if the test passes
return retval;

}

Example 4-59: AP_Fixed Point Test Bench Example
High-Level Synthesis www.xilinx.com 299
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
Unsupported C++ Constructs
The supported C++ constructs which cannot be synthesized are listed in this section and
are in addition to those listed in Unsupported C Constructs.

Dynamic Objects

As with restrictions on dynamic memory usage in C, C++ objects which are dynamically
created and/or destroyed are not supported for synthesis. This includes dynamic
polymorphism and dynamic virtual function calls. The following cannot be synthesized
since it create new function at run time.

Class A {
public:

virtual void bar() {…};
};

void fun(A* a) {
a->bar();

}
A* a = 0;
if (base)

A= new A();
else

A = new B();

foo(a);

Standard Template Libraries

Many of the C++ Standard Template Libraries (STLs) contain function recursion and use
dynamic memory allocation. For this reason the STLs cannot be synthesized. The solution
with STLs is to create a local function with identical functionality which does not exhibit
these characteristics of recursion, dynamic memory allocation or the dynamic creation and
destruction of objects.

SystemC Synthesis
Vivado HLS provides support for SystemC (IEEE standard 1666), a C++ class library used to
model hardware and available at www.systemc.org. Vivado HLS supports SystemC version
2.1 and SystemC Synthesizable Subset (Draft 1.3).

This section provides details on the synthesis of SystemC functions with Vivado HLS. The
information provided here is in addition to the information provided in the earlier chapters,
C for Synthesis and C++ for Synthesis, and those chapters should be read to fully
understand the basic rules of coding for synthesis.
High-Level Synthesis www.xilinx.com 300
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com
www.systemc.org

SystemC Synthesis
IMPORTANT: As with C and C++ designs, the top-level function for synthesis must be a function below
the top-level for C compilation sc_main(): the sc_main() function cannot be the top-level function
for synthesis.

Design Modeling
The top-level for synthesis must be an SC_MODULE. Designs can be synthesized if modeled
using the SystemC constructor processes SC_METHOD and SC_CTHREAD or if SC_MODULES
are instantiated inside other SC_MODULES.

An SC_ MODULE cannot be defined inside another SC_MODULE (they can be instantiated, as
shown later). In cases, like the following where a module is defined inside another:

SC_MODULE(nested1)
{

SC_MODULE(nested2)
{

sc_in<int> in0;
sc_out<int> out0;
SC_CTOR(nested2)
{

SC_METHOD(process);
sensitive<<in0;

}
void process()
{

int var =10;
out0.write(in0.read()+var);

}
};

sc_in<int> in0;
sc_out<int> out0;
nested2 nd;
SC_CTOR(nested1)
:nd("nested2")
{

nd.in0(in0);
nd.out0(out0);

}
};

Must be transformed into a version, such as shown next, where the modules are not nested.

SC_MODULE(nested2)
{

sc_in<int> in0;
sc_out<int> out0;
SC_CTOR(nested2)
{

SC_METHOD(process);
sensitive<<in0;

}
void process()
High-Level Synthesis www.xilinx.com 301
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
{
int var =10;
out0.write(in0.read()+var);

}
};

SC_MODULE(nested1)
{

sc_in<int> in0;
sc_out<int> out0;
nested2 nd;
SC_CTOR(nested1)
:nd("nested2")
{

nd.in0(in0);
nd.out0(out0);
}

};

Similarly, an SC_MODULE cannot be derived from another SC_MODULE, as shown in this
example:

SC_MODULE(BASE)
{

sc_in<bool> clock; //clock input
sc_in<bool> reset;
SC_CTOR(BASE) {}

};

class DUT: public BASE
{
public:

sc_in<bool> start;
sc_in<sc_uint<8> > din;
…

};

RECOMMENDED: Define the module constructor inside the module.

Cases like the following,

SC_MODULE(dut) {
sc_in<int> in0;
sc_out<int>out0;
SC_HAS_PROCESS(dut);
dut(sc_module_name nm);
 …

};

dut::dut(sc_module_name nm)
{

SC_METHOD(process);
sensitive<<in0;

}

High-Level Synthesis www.xilinx.com 302
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
Should be transformed to:

SC_MODULE(dut) {
sc_in<int> in0;
sc_out<int>out0;

SC_HAS_PROCESS(dut);
dut(sc_module_name nm)
:sc_module(nm)
{

SC_METHOD(process);
sensitive<<in0;

}
…

};

SC_THREADs are not supported for synthesis.

Using SC_METHOD

Example 2-60 shows the header f ile, sc_combo_method.h, for a small combinational
design modeled using an SC_METHOD to model a half-adder. The top-level design name,
sc_combo_method, is specif ied in the SC_MODULE.

#include <systemc.h>

SC_MODULE(sc_combo_method){
//Ports
sc_in<sc_uint<1> > a,b;
sc_out<sc_uint<1> > sum,carry;

//Process Declaration
void half_adder();

//Constructor
SC_CTOR(sc_combo_method){

//Process Registration
SC_METHOD(half_adder);
sensitive<<a<<b;

}
};

Example 4-60: SystemC Combinational Example Header

The design has two single-bit input ports (a and b). The SC_METHOD is sensitive to any
changes in the state of either input port and executes function half_adder. The function
half_adder is specified in f ile, sc_combo_method.cpp, shown in Example 2-61 and
calculates the value for output port carry.

#include "sc_combo_method.h"

void sc_combo_method::half_adder(){
bool s,c;
s=a.read() ^ b.read();
High-Level Synthesis www.xilinx.com 303
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
c=a.read() & b.read();
sum.write(s);
carry.write(c);

#ifndef __SYNTHESIS__
cout << "Sum is " << a << " ^ " << b << " = " << s << ": " <<

sc_time_stamp() <<endl;
cout << "Car is " << a << " & " << b << " = " << c << ": " <<

sc_time_stamp() <<endl;
#endif

Example 4-61: SystemC Combinational Example Main Function

Example 2-61 shows how any cout statements used to display values during C simulation
can be protected from synthesis using the __SYNTHESIS__ macro.

The test bench for the Example 2-61 is shown in Example 2-62. This test bench displays a
number of important attributes required when using Vivado HLS.

#ifdef __RTL_SIMULATION__
#include "sc_combo_method_rtl_wrap.h"
#define sc_combo_method sc_combo_method_RTL_transactor
#else
#include "sc_combo_method.h"
#endif
#include "tb_init.h"
#include "tb_driver.h"

int sc_main (int argc , char *argv[])
{
sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

sc_signal<bool> s_reset;
sc_signal<sc_uint<1> > s_a;
sc_signal<sc_uint<1> > s_b;
sc_signal<sc_uint<1> > s_sum;
sc_signal<sc_uint<1> > s_carry;

// Create a 10ns period clock signal
sc_clock s_clk("s_clk",10,SC_NS);

tb_init U_tb_init("U_tb_init");
sc_combo_method U_dut("U_dut");
tb_driver U_tb_driver("U_tb_driver");

// Generate a clock and reset to drive the sim
U_tb_init.clk(s_clk);
U_tb_init.reset(s_reset);

// Connect the DUT
U_dut.a(s_a);
U_dut.b(s_b);
U_dut.sum(s_sum);
U_dut.carry(s_carry);
High-Level Synthesis www.xilinx.com 304
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
// Drive stimuli from dat* ports
// Capture results at out* ports
U_tb_driver.clk(s_clk);
U_tb_driver.reset(s_reset);
U_tb_driver.dat_a(s_a);
U_tb_driver.dat_b(s_b);
U_tb_driver.out_sum(s_sum);
U_tb_driver.out_carry(s_carry);

// Sim for 200
int end_time = 200;

cout << "INFO: Simulating " << endl;

// start simulation
sc_start(end_time, SC_NS);

if (U_tb_driver.retval != 0) {
printf("Test failed !!!\n");

} else {
printf("Test passed !\n");

}
return U_tb_driver.retval;

};

Example 4-62: SystemC Combinational Example Test Bench

In order to perform RTL simulation using the cosim_design feature in Vivado HLS, the
test bench must contain the macros shown at the top of Example 2-62. Given a design with
the name DUT, the following must be used, where DUT is replaced with the actual design
name.

#ifdef __RTL_SIMULATION__
#include "DUT_rtl_wrap.h"
#define DUT DUT_RTL_transactor
#else
#include "DUT.h" //Original unmodified code
#endif

Failure to add this in the test bench where the design header f ile is included will result in
cosim_design RTL simulation failing.

The report handler functions shown in Example 2-62 should be added to all SystemC test
bench files used with Vivado HLS.

sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

These settings prevent the printing of extraneous messages during RTL simulation.

The most important of these messages are the warnings:
High-Level Synthesis www.xilinx.com 305
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
Warning: (W212) sc_logic value 'X' cannot be converted to bool

The adapters placed around the synthesized design will start with unknown (X) values. Not
all SystemC types support unknown (X) values. This warning is issued when this occurs but
if can be ignored unless the design lacks the appropriate data handshakes (and reads data
unknown data).

Finally, the test bench in Example 2-62 performs checking on the results and returns a value
of zero if the results are correct. In this case, the results are verif ied inside function
tb_driver but the return value is checked and returned in the top-level test bench.

if (U_tb_driver.retval != 0) {
printf("Test failed !!!\n");

} else {
printf("Test passed !\n");

}
return U_tb_driver.retval;

Instantiating SC_MODULES

Hierarchical instantiations of SC_MODULEs can be synthesized, as shown in Example 2-63. In
Example 2-63, the two instances of the half-adder design (sc_combo_method) from
Example 2-60 are instantiated to create a full-adder design.

#include <systemc.h>
#include "sc_combo_method.h"

SC_MODULE(sc_hier_inst){
//Ports
sc_in<sc_uint<1> > a, b, carry_in;
sc_out<sc_uint<1> > sum, carry_out;

//Variables
sc_signal<sc_uint<1> > carry1, sum_int, carry2;

//Process Declaration
void full_adder();

//Half-Adder Instances
sc_combo_methodU_1, U_2;

//Constructor
SC_CTOR(sc_hier_inst)
:U_1("U_1")
,U_2("U_2")
{

// Half-adder inst 1
U_1.a(a);
U_1.b(b);
U_1.sum(sum_int);
U_1.carry(carry1);

// Half-adder inst 2
U_2.a(sum_int);
U_2.b(carry_in);
High-Level Synthesis www.xilinx.com 306
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
U_2.sum(sum);
U_2.carry(carry2);

//Process Registration
SC_METHOD(full_adder);
sensitive<<carry1<<carry2;

}
};

Example 4-63: SystemC Hierarchical Example

The function full_adder is used to create the logic for the carry_out signal, as shown
in Example 2-64.

#include "sc_hier_inst.h"

void sc_hier_inst::full_adder(){
carry_out= carry1.read() | carry2.read();

}

Example 4-64: SystemC full_adder Function

Using SC_CTHREAD

The constructor process SC_CTHREAD is used to model clocked processes (threads) and is
the primary way to model sequential designs. Example 2-65 shows a case which highlights
the primary attributes of a sequential design.

• The data has associated handshake signals, allowing it to operate with the same test
bench before and after synthesis.

• An SC_CTHREAD sensitive on the clock is used to model when the function is executed.

• The SC_CTHREAD supports reset behavior.

#include <systemc.h>

SC_MODULE(sc_sequ_cthread){
//Ports
sc_in <bool> clk;
sc_in <bool> reset;
sc_in <bool> start;
sc_in<sc_uint<16> > a;
sc_in<bool> en;
sc_out<sc_uint<16> > sum;
sc_out<bool> vld;

//Variables
sc_uint<16> acc;

//Process Declaration
void accum();

//Constructor
High-Level Synthesis www.xilinx.com 307
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
SC_CTOR(sc_sequ_cthread){

//Process Registration
SC_CTHREAD(accum,clk.pos());
reset_signal_is(reset,true);

}
};

Example 4-65: SystemC SC_CTHREAD Example

Function accum is shown in Example 2-66. The important aspects highlighted by this
examples are:

• The core modeling process is an infinite while() loop with a wait() statement inside
it.

• Any initialization of the variables is performed before the infinite while() loop: this
code is executed when reset is recognized by the SC_CTHREAD.

• The data reads and writes are qualif ied by handshake protocols.

#include "sc_sequ_cthread.h"

void sc_sequ_cthread::accum(){

//Initialization
acc=0;
sum.write(0);
vld.write(false);
wait();

// Process the data
while(true) {

// Wait for start
while (!start.read()) wait();

// Read if valid input available
if (en) {

acc = acc + a.read();
sum.write(acc);
vld.write(true);

} else {
vld.write(false);

}
wait();

}

}

Example 4-66: SystemC SC_CTHREAD Function

Synthesis with Multiple Clocks

SystemC, unlike C and C++ synthesis, supports designs with multiple clocks. In a multiple
clock design, the functionality associated with each clock must be captured in an
SC_CTHREAD.
High-Level Synthesis www.xilinx.com 308
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
Example 2-67 shows a design in which there are two clocks, named clock and clock2.
One is used to activate an SC_CTHREAD executing function Prc1 and the other used to
activate an SC_CTHREAD executing function Prc2. After synthesis, all the sequential logic
associated with function Prc1 will be clocked by clock, while clock2 will drive all the
sequential logic of function Prc2.

#include"systemc.h"
#include"tlm.h"
using namespace tlm;

SC_MODULE(sc_multi_clock)
{

//Ports
sc_in <bool> clock;
sc_in <bool> clock2;
sc_in <bool> reset;
sc_in <bool> start;
sc_out<bool> done;
sc_fifo_out<int> dout;
sc_fifo_in<int> din;

//Variables
int share_mem[100];
bool write_done;

//Process Declaration
void Prc1();
void Prc2();

//Constructor
SC_CTOR(sc_multi_clock)
{

//Process Registration
SC_CTHREAD(Prc1,clock.pos());
reset_signal_is(reset,true);

SC_CTHREAD(Prc2,clock2.pos());
reset_signal_is(reset,true);

}
};

Example 4-67: SystemC Multiple Clock Design

Top-Level SystemC Ports
The ports in a SystemC design are specif ied in the source code. The one major difference
when using SystemC, as compared to C and C++ functions, is that Vivado HLS only
performs interface synthesis on supported memory interfaces (refer to Arrays on the
Interface). All port on the top-level interface must be of types sc_in_clk , sc_in,
sc_out, sc_inout, sc_fifo_in, sc_fifo_out or ap_mem_if.

With the exception of the supported memory interfaces (sc_fifo_in, sc_fifo_out and
ap_mem_if) all handshaking between the design and the test bench must be explicitly
modeled in the SystemC function.
High-Level Synthesis www.xilinx.com 309
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
Note: Vivado HLS may add additional clock cycles to a SystemC design if this is required to meet
timing. Since the number of clock cycles after synthesis may be different, SystemC designs should
handshake all data transfers with the test bench.

Transaction level modeling using TLM 2.0 and event based modeling are not supported for
synthesis.

SystemC Interface Synthesis

In general, Vivado HLS does not perform interface synthesis on SystemC. As mentioned
above, it does support interface synthesis for some memory interfaces, namely RAM and
FIFO ports.

RAM Port Synthesis

Unlike the synthesis of C and C++, Vivado HLS does not automatically transform array ports
into RTL RAM ports. In the following SystemC code, Vivado HLS directives must be used to
partition the array ports into individual elements or this example code cannot be
synthesized:

SC_MODULE(dut)
{

sc_in<T> in0[N];
sc_out<T>out0[N];

…
SC_CTOR(dut)
{

…
}

};

 The directives which would partition these arrays into individual elements are:

set_directive_array_partition dut in0 -type complete
set_directive_array_partition dut out0 -type complete

If however N is a large number, this will result in many individual scalar ports on the RTL
interface.

Example 2-68 shows how a RAM interface can be modeled in SystemC simulation and fully
synthesized by Vivado HLS. In Example 2-68, the arrays are replaced by ap_mem_if types
which can synthesized into RAM ports.

• To use ap_mem_port types, the header f ile ap_mem_if.h from the
include/ap_sysc directory in the Vivado HLS installation area must be included.

° Inside the Vivado HLS environment, the directory include/ap_sysc is
automatically included.

• The arrays for din and dout are replaced by ap_mem_port types (The fields are
explained after Example 2-68).
High-Level Synthesis www.xilinx.com 310
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
#include"systemc.h"
#include "ap_mem_if.h"

SC_MODULE(sc_RAM_port)
{

//Ports
sc_in <bool> clock;
sc_in <bool> reset;
sc_in <bool> start;
sc_out<bool> done;
//sc_out<int> dout[100];
//sc_in<int> din[100];
ap_mem_port<int, int, 100, RAM2P> dout;
ap_mem_port<int, int, 100, RAM2P> din;

//Variables
int share_mem[100];
sc_signal<bool> write_done;

//Process Declaration
void Prc1();
void Prc2();

//Constructor
SC_CTOR(sc_RAM_port)
: dout ("dout"),
din ("din")
{

//Process Registration
SC_CTHREAD(Prc1,clock.pos());
reset_signal_is(reset,true);

SC_CTHREAD(Prc2,clock.pos());
reset_signal_is(reset,true);

}
};

Example 4-68: SystemC RAM Interface

The format of the ap_mem_port type is:

ap_mem_port (<data_type>, < address_type>, <number_of_elements>, <Mem_Target>)

• The data_type is the type used for the stored data elements. In Example 2-68, these
are standard int types.

• The address_type is the type used for the address bus. This type should have
enough data bits to address all elements in the array, or C simulation will fail.

• The number_of_elements specifies the number of elements in the array being
modeled.

• The Mem_Target specifies the memory to which this port will connect and hence
determines the IO ports on the f inal RTL. A list of the available targets are provided in
Table 2-11.
High-Level Synthesis www.xilinx.com 311
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
The memory targets described in Table 2-11 influence both the ports created by synthesis
and how the operations are scheduled in the design. For example, a dual-port RAM will
result in twice as many IO ports as a single-port RAM and may allow internal operations to
be scheduled in parallel: if code constructs, such as loops, and data dependencies allow
this.

Once the ap_mem_port has been defined on the interface, the variables are simply
accessed in the code in the same manner as any other arrays:

 dout[i] = share_mem[i] + din[i];

The test bench to support Example 2-68 is shown below in Example 2-69. The
ap_mem_port type must be supported by an ap_mem_chn type in the test bench. The
ap_mem_chn type is defined in the header f ile ap_mem_if.h and supports the same fields
as ap_mem_port.

#ifdef __RTL_SIMULATION__
#include "sc_RAM_port_rtl_wrap.h"
#define sc_RAM_port sc_RAM_port_RTL_transactor
#else
#include "sc_RAM_port.h"
#endif
#include "tb_init.h"
#include "tb_driver.h"
#include "ap_mem_if.h"

int sc_main (int argc , char *argv[])
{
 sc_report_handler::set_actions("/IEEE_Std_1666/deprecated", SC_DO_NOTHING);
sc_report_handler::set_actions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
sc_report_handler::set_actions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_, SC_LOG);
sc_report_handler::set_actions(SC_ID_OBJECT_EXISTS_, SC_LOG);

sc_signal<bool> s_reset;
sc_signal<bool> s_start;
sc_signal<bool> s_done;
ap_mem_chn<int,int, 100, RAM2P> dout;
ap_mem_chn<int,int, 100, RAM2P> din;

// Create a 10ns period clock signal
sc_clock s_clk("s_clk",10,SC_NS);

tb_init U_tb_init("U_tb_init");

Table 4-11: System C ap_mem_port Memory Targets

Target RAM Description

RAM1P A single-port RAM.

RAM2P A dual-port RAM.

RAMT2P A true dual-port RAM, with support for both read and write on both the input and output
side

ROM1P A single-port ROM.

ROM2P A dual-port ROM.
High-Level Synthesis www.xilinx.com 312
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
sc_RAM_port U_dut("U_dut");
tb_driver U_tb_driver("U_tb_driver");

// Generate a clock and reset to drive the sim
U_tb_init.clk(s_clk);
U_tb_init.reset(s_reset);
U_tb_init.done(s_done);
U_tb_init.start(s_start);

// Connect the DUT
U_dut.clock(s_clk);
U_dut.reset(s_reset);
U_dut.done(s_done);
U_dut.start(s_start);
U_dut.dout(dout);
U_dut.din(din);

// Drive inputs and Capture outputs
U_tb_driver.clk(s_clk);
U_tb_driver.reset(s_reset);
U_tb_driver.start(s_start);
U_tb_driver.done(s_done);
U_tb_driver.dout(dout);
U_tb_driver.din(din);

// Sim
int end_time = 1100;

cout << "INFO: Simulating " << endl;

// start simulation
sc_start(end_time, SC_NS);

if (U_tb_driver.retval != 0) {
printf("Test failed !!!\n");

} else {
printf("Test passed !\n");

}
return U_tb_driver.retval;

};

Example 4-69: SystemC RAM Interface Test Bench

FIFO Port Synthesis

FIFO ports on top-level interface can be synthesized directly from the standard SystemC
sc_fifo_in and sc_fifo_out ports. An example on using FIFO ports on the interface is
provided below (Example 2-70).

After synthesis each FIFO port will have a data port and associated FIFO control signals
(inputs will have empty and read ports; outputs will have full and write ports). An advantage
of using FIFO ports is that the handshake required to synchronize data transfers are
automatically added in the RTL test bench.

#include"systemc.h"
#include"tlm.h"
High-Level Synthesis www.xilinx.com 313
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
using namespace tlm;

SC_MODULE(sc_FIFO_port)
{

//Ports
sc_in <bool> clock;
sc_in <bool> reset;
sc_in <bool> start;
sc_out<bool> done;
sc_fifo_out<int> dout;
sc_fifo_in<int> din;

//Variables
int share_mem[100];
bool write_done;

//Process Declaration
void Prc1();
void Prc2();

//Constructor
SC_CTOR(sc_FIFO_port)
{

//Process Registration
SC_CTHREAD(Prc1,clock.pos());
reset_signal_is(reset,true);

SC_CTHREAD(Prc2,clock.pos());
reset_signal_is(reset,true);

}
};

Example 4-70: SystemC FIFO Interface

Unsupported SystemC Constructs

Modules and Constructors

As mentioned above, but repeated here for reference, the following are not supported:

• An SC_MODULE cannot be nested inside another SC_MODULE.

• An SC_MODULE cannot be derived from another SC_MODULE.

• SC_THREAD is not supported (the clocked version, SC_CTHREAD is supported).

Instantiating Modules

An SC_MODULE cannot instantiated using new. Such code, SC_MODULE(TOP)

{
sc_in<T> din;
sc_out<T> dout;
High-Level Synthesis www.xilinx.com 314
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

SystemC Synthesis
M1 *t0;

SC_CTOR(TOP){
t0 = new M1("t0");
t0->din(din);
t0->dout(dout);

}
}

Must be transformed to:

SC_MODULE(TOP)
{

sc_in<T> din;
sc_out<T> dout;

M1 t0;

SC_CTOR(TOP)
: t0(“t0”)
{

t0.din(din);
t0.dout(dout);

}
}

Module Constructors

Only name parameters can be used with module constructors. The following passing on
variable temp of type int is not allowed.

SC_MODULE(dut) {
sc_in<int> in0;
sc_out<int>out0;
int var;
SC_HAS_PROCESS(dut);
dut(sc_module_name nm, int temp)

:sc_module(nm),var(temp)
{ … }

};

Functions

Virtual Functions are not supported. The following code cannot be synthesized due to the
use of the virtual function.

SC_MODULE(DUT)
{

sc_in<int> in0;
sc_out<int>out0;

virtual int foo(int var1)
{

return var1+10;
}

High-Level Synthesis www.xilinx.com 315
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
 void process()
{

int var=foo(in0.read());
out0.write(var);

}
…

};

Top-Level Interface Ports

Reading an sc_out port is not supported. The following example is not allowed due to the
read on out0.

SC_MODULE(DUT)
{

sc_in<T> in0;
sc_out<T>out0;
…
void process()
{
int var=in0.read()+out0.read();
out0.write(var);
}

};

C Arbitrary Precision Types
This section provides the details on the Arbitrary Precision (AP) types provided for C
language design by Vivado HLS. Subsections provide details on the associated functions for
C int#w types.

IMPORTANT: When [u]int#W types are used, the apcc option must be selected in the project
settings, to ensure the types are correctly simulated. Functions with these types cannot be analyzed in
the debugger.

Compiling [u]int#W Types
In order to use the [u]int#W types the “ap_cint.h” header file must be included in all
source f iles which reference [u]int#W variables.

When compiling software models that use these types, it may be necessary to specify the
location of the Vivado HLS header files, for example, by adding the
”-I/<HLS_HOME>/include” option for gcc compilation.

Also note that best performance will be observed for software models when compiled with
gcc -O3 option.
High-Level Synthesis www.xilinx.com 316
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Declaring/Defining [u]int#W Variables
There are separate signed and unsigned C types, respectively:

• int#W

• uint#W

The number #W specifies the total width of the variable being declared.

As usual, user defined types may be created with the C/C++ ‘typedef’ statement as
shown among the following examples:

include “ap_cint.h” // use [u]int#W types

typedef uint128 uint128_t; // 128-bit user defined type
int96 my_wide_var; // a global variable declaration

The maximum width allowed is 1024 bits.

Initialization and Assignment from Constants (Literals)
A [u]int#W variable can be initialized with the same integer constants which are
supported for the native integer data types. The constants will be zero or sign extended to
the full width of the [u]int#W variable.

#include “ap_cint.h”

uint15 a = 0;
uint52 b = 1234567890U;
uint52 c = 0o12345670UL;
uint96 d = 0x123456789ABCDEFULL;

For bit-widths greater than 64-bit, the following functions can be used.

apint_string2bits()

This section also discusses use of the related functions:

• apint_string2bits_bin()

• apint_string2bits_oct()

• apint_string2bits_hex()

These functions convert a constant character string of digits, specif ied within the
constraints of the radix (decimal, binary, octal, hexadecimal), into the corresponding value
with the given bit-width N. For any radix, the number can be preceded with the minus sign
-, to indicate a negative value.

int#Napint_string2bits[_radix](const char*, int N)
High-Level Synthesis www.xilinx.com 317
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
This is used to construct integer constants with values that are bigger than what the C
language already permits. Smaller values work too, however are easier to specify with the
existing C language constant value constructs:

#include <stdio.h>
#include “ap_cint.h”

int128 a;

// Set a to the value hex 00000000000000000123456789ABCDF0
a = a-apint_string2bits_hex("-123456789ABCDEF",128);

In addition, values can be assigned directly from a character string.

apint_vstring2bits()

This function converts a character string of digits, specified within the constraints of the
hexadecimal radix, into the corresponding value with the given bit-width N. The number can
be preceded with the minus sign -, to indicate a negative value.

This is used to construct integer constants with values that are larger than what the C
language permits. The function is typically used in a test bench, to read information from a
f ile.

Given f ile test.dat contains the following data:

123456789ABCDEF
-123456789ABCDEF
-5

The function, used in the test bench, would supply the following values:

#include <stdio.h>
#include “ap_cint.h”

typedef data_t;

int128 test (
int128 t a
) {
return a+1;

}

int main () {
FILE *fp;
char vstring[33];

fp = fopen("test.dat","r");

while (fscanf(fp,"%s",vstring)==1) {

// Supply function “test” with the following values
// 00000000000000000123456789ABCDF0
// FFFFFFFFFFFFFFFFFEDCBA9876543212
// FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
High-Level Synthesis www.xilinx.com 318
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
test(apint_vstring2bits_hex(vstring,128));
printf("\n");

}

fclose(fp);
return 0;

}

Support for console I/O (Printing)
A [u]int#W variable can be printed with the same conversion specifiers that are supported
for the native integer data types. Only the bits that f it according to the conversion specif ier
will be printed:

#include “ap_cint.h”

uint164 c = 0x123456789ABCDEFULL;

printf(" d%40d\n",c); // Signed integer in decimal format
// d -1985229329
printf(" hd%40hd\n",c); // Short integer
// hd -12817
printf(" ld%40ld\n",c); // Long integer
// ld 81985529216486895
printf("lld%40lld\n",c); // Long long integer
// lld 81985529216486895

printf(" u%40u\n",c); // Unsigned integer in decimal format
// u 2309737967
printf(" hu%40hu\n",c);
// hu 52719
printf(" lu%40lu\n",c);
// lu 81985529216486895
printf("llu%40llu\n",c);
// llu 81985529216486895

printf(" o%40o\n",c); // Unsigned integer in octal format
// o 21152746757
printf(" ho%40ho\n",c);
// ho 146757
printf(" lo%40lo\n",c);
// lo 4432126361152746757
printf("llo%40llo\n",c);
// llo 4432126361152746757

printf(" x%40x\n",c); // Unsigned integer in hexadecimal format [0-9a-f]
// x 89abcdef
printf(" hx%40hx\n",c);
// hx cdef
printf(" lx%40lx\n",c);
// lx 123456789abcdef
printf("llx%40llx\n",c);
// llx 123456789abcdef

printf(" X%40X\n",c); // Unsigned integer in hexadecimal format [0-9A-F]
// X 89ABCDEF
High-Level Synthesis www.xilinx.com 319
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
}

As with initialization and assignment to [u]int#W variables, features are provided to
support printing values which require more than 64-bits to represent.

apint_print()

This is used to print integers with values that are larger than what the C language already
permits. This function prints a value to stdout, interpreted according to the radix (2, 8, 10,
16).

void apint_print(int#N value, int radix)

The following example shows the results when apint_printf() is used:

#include <stdio.h>
#include “ap_cint.h”

int65 Var1 = 44;

apint_print(tmp,2);
//000101100
apint_print(tmp,8); // 0000000000000000000054
apint_print(tmp,10); // 44
apint_print(tmp,16); // 0000000000000002C

apint_fprint()

This is used to print integers with values that are bigger than what the C language already
permits. This function prints a value to a f ile, interpreted according to the radix (2, 8, 10, 16).

void apint_fprint(FILE* file, int#N value, int radix)

Expressions Involving [u]int#W types
Variables of [u]int#W types may, for the most part, be used freely in expressions involving
any C operators. However, there are some behaviors that may seem unexpected and bear
detailed explanation.

Zero- and sign-extension on assignment from narrower to wider variables

When assigning the value of a narrower bit-width signed variable to a wider one, the value
will be sign-extended to the width of the destination variable, regardless of its signedness.

Similarly, an unsigned source variable will be zero-extended before assignment.

Explicit casting of the source variable may be necessary in order to ensure expected
behavior on assignment.
High-Level Synthesis www.xilinx.com 320
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Truncation on assignment of wider to narrower variables

Assigning a wider source variables value to a narrower one will lead to truncation of the
value, with all bits beyond the most significant bit (MSB) position of the destination variable
being lost.

There is no special handling of the sign information during truncation, which may lead to
unexpected behavior. Again, explicit casting may help avoid unexpected behavior.

Binary Arithmetic Operators

In general, any valid operation that may be done on a native C integer data type, is
supported for [u]int#w types.

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision
arithmetic. All of the following operators take either two operands of [u]int#W or one
[u]int#W type and one C/C++ fundamental integer data type, e.g., char, short, int, etc.

The width and signedness of the resulting value is determined by the width and signedness
of the operands, before sign-extension, zero-padding or truncation are applied based on
the width of the destination variable (or expression). Details of the return value are
described for each operator.

Note that when expressions contain a mix of ap_[u]int and C/C++ fundamental integer
types, the C++ types will assume the following widths:

• char : 8-bits

• short: 16-bits

• int: 32-bits

• long: 32-bits

• long long: 64-bits

Addition

[u]int#W::RType [u]int#W::operator + ([u]int#W op)

This operator produces the sum of two ap_[u]int (or one ap_[u]int and a C/C++
integer type).

The width of the sum value will be one bit more than the wider of the two operands (two
bits if and only if the wider is unsigned and the narrower is signed).

The sum will be treated as signed if either (or both) of the operands is of a signed type.

Subtraction

[u]int#W::RType [u]int#W::operator - ([u]int#W op)
High-Level Synthesis www.xilinx.com 321
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
This operator produces the difference of two integers.

The width of the difference value will be one bit more than the wider of the two operands
(two bits if and only if the wider is unsigned and the narrower signed), before assignment,
at which point it will be sign-extended, zero-padded or truncated based on the width of the
destination variable.

The difference will be treated as signed regardless of the signedness of the operands.

Multiplication

[u]int#W::RType [u]int#W::operator * ([u]int#W op)

This operator returns the product of two integer values.

The width of the product is the sum of the widths of the operands.

The product will be treated as a signed type if either of the operands is of a signed type.

Division

[u]int#W::RType [u]int#W::operator / ([u]int#W op)

This operator returns the quotient of two integer values.

The width of the quotient is the width of the dividend if the divisor is an unsigned type;
otherwise it is the width of the dividend plus one.

The quotient will be treated as a signed type if either of the operands is of a signed type.

Note: Vivado HLS synthesis of the divide operator will lead to lead to instantiation of appropriately
parameterized Xilinx LogiCORE™ IP divider core(s) in the generated RTL.

Modulus

[u]int#W::RType [u]int#W::operator % ([u]int#W op)

This operator returns the modulus, or remainder of integer division, for two integer values.

The width of the modulus is the minimum of the widths of the operands, if they are both of
the same signedness; if the divisor is an unsigned type and the dividend is signed then the
width is that of the divisor plus one.

The quotient will be treated as having the same signedness as the dividend.

Note: Vivado HLS synthesis of the modulus (%) operator will lead to lead to instantiation of
appropriately parameterized Xilinx LogiCORE divider core(s) in the generated RTL.
High-Level Synthesis www.xilinx.com 322
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Bitwise Logical Operators

The bitwise logical operators all return a value with a width that is the maximum of the
widths of the two operands and will be treated as unsigned if and only if both operands are
unsigned, otherwise it will be of a signed type.

Note that sign-extension (or zero-padding) may occur, based on the signedness of the
expression, not the destination variable.

Bitwise OR

[u]int#W::RType [u]int#W::operator | ([u]int#W op)

Returns the bitwise OR of the two operands.

Bitwise AND

[u]int#W::RType [u]int#W::operator & ([u]int#W op)

Returns the bitwise AND of the two operands.

Bitwise XOR

[u]int#W::RType [u]int#W::operator ^ ([u]int#W op)

Returns the bitwise XOR of the two operands.

Shift Operators

Each shift operator comes in two versions, one for unsigned right-hand side (RHS) operands
and one for signed RHS.

A negative value supplied to the signed RHS versions reverses the shift operations
direction, i.e. a shift by the absolute value of the RHS operand in the opposite direction will
occur.

The shift operators return a value with the same width as the left-hand side (LHS) operand.
As with C/C++, if the LHS operand of a shift-right is a signed type, the sign bit will be
copied into the most signif icant bit positions, maintaining the sign of the LHS operand.

Unsigned Integer Shift Right

[u]int#W [u]int#W::operator << (ap_uint<int_W2> op)

Integer Shift Right

[u]int#W [u]int#W::operator << (ap_int<int_W2> op)

Unsigned Integer Shift Left

[u]int#W [u]int#W::operator >> (ap_uint<int_W2> op)
High-Level Synthesis www.xilinx.com 323
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Integer Shift Left

[u]int#W [u]int#W::operator >> (ap_int<int_W2> op)

Beware when assigning the result of a shift-left operator to a wider destination variable, as
some (or all) information may be lost. It is recommended to explicitly cast the shift
expression to the destination type in order to avoid unexpected behavior.

Compound Assignment Operators

The compound assignment operators are supported:

*= /= %= += -= <<= >>= &= ^= |=

The RHS expression is f irst evaluated then supplied as the RHS operand to the base
operator, the result of which is assigned back to the LHS variable. The expression sizing,
signedness and potential sign-extension or truncation rules apply as detailed above for the
relevant operations.

Relational Operators

All relational operators are supported and return a Boolean value based on the result of the
comparison. Variables of ap_[u]int types may be compared to C/C++ fundamental
integer types with these operators.

Equality

bool [u]int#W::operator == ([u]int#W op)

Inequality

bool [u]int#W::operator != ([u]int#W op)

Less than

bool [u]int#W::operator < ([u]int#W op)

Greater than

bool [u]int#W::operator > ([u]int#W op)

Less than or equal

bool [u]int#W::operator <= ([u]int#W op)

Greater than or equal

bool [u]int#W::operator >= ([u]int#W op)
High-Level Synthesis www.xilinx.com 324
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Bit-Level Operation: Support Function
The [u]int#W types allow variables to be expressed with bit-level accuracy. It is often
desirable with (hardware) algorithms that bit-level operations be performed. Vivado HLS
provides the following functions to enable this.

Bit Manipulation

The following methods are provided in order to facilitate common bit-level operations on
the value stored in ap_[u]int type variable(s).

Length

apint_bitwidthof()

int apint_bitwidthof(type_or_value)

This function returns an integer value that provides the number of bits in an arbitrary
precision integer value; It can be used with a type or a value:

int5 Var1, Res1;

Var1= -1;
Res1 = apint_bitwidthof(Var1); // Res1 is assigned 5
Res1 = apint_and_reduce(int7); // Res1 is assigned 7

Concatenation

apint_concatenate()

int#(N+M) apint_concatenate(int#N first, int#M second)

Concatenates two [u]int#W variables, the width of the returned value is the sum of the
widths of the operands.

The high and low arguments will be placed in the higher and lower order bits of the result
respectively.

C native types, including integer literals, should be explicitly cast to an appropriate
[u]int#W type before concatenating in order to avoid unexpected results.

Bit selection

apint_get_bit()

int apint_get_bit(int#N source, int index)

This operation function selects one bit from an arbitrary precision integer value and returns
it.
High-Level Synthesis www.xilinx.com 325
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
The source must be an [u]int#W type and the index argument must be an int value. It
specifies the index of the bit to select. The least significant bit has index 0. The highest
permissible index is one less than the bit-width of this [u]int#W.

Set bit value

apint_set_bit()

int#N apint_set_bit(int#N source, int index, int value)

This function sets the specif ied bit, index, of the [u]int#W instance source to the value
specified (zero or one).

Range selection

apint_get_range()

int#N apint_get_range(int#N source, int high, int low)

This operation returns the value represented by the range of bits specif ied by the
arguments.

The Hi argument specif ies the most signif icant bit (MSB) position of the range and Lo the
least signif icant (LSB).

The LSB of the source variable is in position 0. If the Hi argument has a value less than Lo,
then the bits are returned in reverse order.

Set range value

apint_set_range()

int#N apint_set_range(int#N source, int high, int low, int#M part)

This function sets the bits specified of source between, high and low, to the value of part.

Bit Reduction

AND reduce

apint_and_reduce()

int apint_and_reduce(int#N value)

This function applies the AND operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool):

int5 Var1, Res1;

Var1= -1;
Res1 = apint_and_reduce(Var1); // Res1 is assigned 1
High-Level Synthesis www.xilinx.com 326
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C Arbitrary Precision Types
Var1= 1;
Res1 = apint_and_reduce(Var1); // Res1 is assigned 0

This operation is equivalent go comparing to -1, and return a 1 if it matches, 0 otherwise.
Another interpretation is to check that all bits are one.

OR reduce

apint_or_reduce()

int apint_or_reduce(int#N value)

This function applies the OR operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool). This operation is equivalent
go comparing to 0, and return a 0 if it matches, 1 otherwise.

int5 Var1, Res1;

Var1= 1;
Res1 = apint_or_reduce(Var1); // Res1 is assigned 1

Var1= 0;
Res1 = apint_or_reduce(Var1); // Res1 is assigned 0

XOR reduce

apint_xor_reduce()

int apint_xor_reduce(int#N value)

This function applies the OR operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool). This operation is equivalent
go counting the ones in the word, and return 1 if there are an even number, or 0 if there are
an odd number (even parity).

int5 Var1, Res1;

Var1= 1;
Res1 = apint_xor_reduce(Var1); // Res1 is assigned 0

Var1= 0;
Res1 = apint_xor_reduce(Var1); // Res1 is assigned 1

NAND reduce

apint_nand_reduce()

int apint_nand_reduce(int#N value)

This function applies the NAND operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool). This is equivalent to
comparing this value against -1 (all ones) and returning false if it matches, true otherwise.
High-Level Synthesis www.xilinx.com 327
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
int5 Var1, Res1;

Var1= 1;
Res1 = apint_nand_reduce(Var1); // Res1 is assigned 1

Var1= -1;
Res1 = apint_nand_reduce(Var1); // Res1 is assigned 0

NOR reduce

apint_nor_reduce()

int apint_nor_reduce(int#N value)

This function applies the NOR operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool). This is equivalent to
comparing this value against 0 (all zeros) and returning true if it matches, false otherwise.

int5 Var1, Res1;

Var1= 0;
Res1 = apint_nor_reduce(Var1); // Res1 is assigned 1

Var1= 1;
Res1 = apint_nor_reduce(Var1); // Res1 is assigned 0

XNOR reduce

apint_xnor_reduce()

int apint_xnor_reduce(int#N value)

This function applies the XNOR operation on all bits in the value, and returns the resulting
single bit as an integer value (which can be cast onto a bool). This operation is equivalent
go counting the ones in the word, and return 1 if there are an odd number, or 0 if there are
an even number (odd parity).

int5 Var1, Res1;

Var1= 0;
Res1 = apint_xnor_reduce(Var1); // Res1 is assigned 0

Var1= 1;
Res1 = apint_xnor_reduce(Var1); // Res1 is assigned 1

C++ Arbitrary Precision Types
Vivado HLS provides a C++ template class, ap_[u]int<>, that implements arbitrary
precision (or bit-accurate) integer data types with consistent, bit-accurate behavior
between software and hardware modeling.
High-Level Synthesis www.xilinx.com 328
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
This class provides all arithmetic, bit-wise, logical and relational operators allowed for
native C integer types. In addition this class provides methods to handle some useful
hardware operations, such as allowing initialization and conversion of variables of widths
greater than 64 bits. Details for all operators and class methods are detailed below.

Compiling ap_[u]<> Types
In order to use the ap_[u]fixed<> classes one must include the “ap_int.h” header f ile
in all source files which reference ap_[u]fixed<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vivado HLS header files, for example by adding the
”-I/<HLS_HOME>/include” option for g++ compilation.

Also note that best performance will be observed for software models when compiled with
g++ -O3 option.

Declaring/Defining ap_[u] Variables
There are separate signed and unsigned classes: ap_int<int_W> & ap_uint<int _W>
respectively. The template parameter int_W specif ies the total width of the variable being
declared.

As usual, user defined types may be created with the C/C++ ‘typedef’ statement as
shown among the following examples:

include “ap_int.h”// use ap_[u]fixed<> types

typedef ap_uint<128> uint128_t; // 128-bit user defined type
ap_int<96> my_wide_var; // a global variable declaration

The default maximum width allowed is 1024 bits; this default may be overridden by defining
the macro AP_INT_MAX_W with a positive integer value less than or equal to 32768 before
inclusion of the “ap_int.h” header file.

CAUTION! Setting the value of AP_INT_MAX_W too high may cause slow software compile and run
times.

Example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include “ap_int.h”

ap_int<2048> very_wide_var;
High-Level Synthesis www.xilinx.com 329
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Initialization and Assignment from Constants (Literals)
The class constructor and assignment operator overloads, allows initialization of and
assignment to ap_[u]fixed<> variables using standard C/C++ integer literals.

However, this method of assigning values to ap_[u]fixed<> variables is subject to the
limitations of C++ and the system upon which the software will run, typically leading to a
64-bit limit on integer literals (e.g. for those LL or ULL suffixes).

In order to allow assignment of values wider than 64-bits, the ap_[u]fixed<> classes
provide constructors that allow initialization from a string of arbitrary length (less than or
equal to the width of the variable).

By default, the string provided will be interpreted as a hexadecimal value as long as it
contains only valid hexadecimal digits (i.e. 0-9 and a-f). In order to assign a value from such
a string, an explicit C++ style cast of the string to the appropriate type must be made.

Examples of initialization and assignments, including for values greater than 64-bit, are:

ap_int<42> a_42b_var(-1424692392255LL); // long long decimal format
a_42b_var = 0x14BB648B13FLL; // hexadecimal format

a_42b_var = -1; // negative int literal sign-extended to full width

ap_uint<96> wide_var(“76543210fedcba9876543210”); // Greater than 64-bit
wide_var = ap_int<96>(“0123456789abcdef01234567”);

The ap_[u]<> constructor may be explicitly instructed to interpret the string as
representing the number in radix 2, 8, 10, or 16 formats. This is accomplished by adding the
appropriate radix value as a second parameter to the constructor call.

If the string literal provided contains any characters that are invalid as digits for the radix
specified a compilation error will occur.

Examples using different radix formats:

ap_int<6> a_6bit_var(“101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“40”, 8); // 32d in octal format
a_6bit_var = ap_int<6>(“55”, 10); // decimal format
a_6bit_var = ap_int<6>(“2A”, 16); // 42d in hexadecimal format

a_6bit_var = ap_int<6>(“42”, 2); // COMPILE-TIME ERROR! “42” is not binary

The radix of the number encoded in the string can also be inferred by the constructor, when
it is prefixed with a zero (0) followed by one of the following characters: “b”, “o” or “x”; the
prefixes “0b”, “0o” and “0x” correspond to binary, octal and hexadecimal formats
respectively.

Examples using alternate initializer string formats:

ap_int<6> a_6bit_var(“0b101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“0o40”, 8); // 32d in octal format
High-Level Synthesis www.xilinx.com 330
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
a_6bit_var = ap_int<6>(“0x2A”, 16); // 42d in hexidecimal format

a_6bit_var = ap_int<6>(“0b42”, 2); // COMPILE-TIME ERROR! “42” is not binary

Support for console I/O (Printing)
As with initialization and assignment to ap_[u]fixed<> variables, features are provided
to support printing values which require more than 64-bits to represent.

The easiest way to output any value stored in an ap_[u]int variable is to use the C++
standard output stream, std::cout (#include <iostream> or <iostream.h>).
The stream insertion operator, “<<“, is overloaded to correctly output the full range of
values possible for any given ap_[u]int variable. The stream manipulators “dec”, “hex”
and “oct” are also supported, allowing formatting of the value as decimal, hexadecimal or
octal respectively.

Example using “cout” to print values:

#include <iostream.h>
// Alternative: #include <iostream>

ap_uint<72> Val(“10fedcba9876543210”);

cout << Val << endl; // Yields: “313512663723845890576”
cout << hex << val << endl; // Yields: “10fedcba9876543210”
cout << oct << val << endl; // Yields: “41773345651416625031020”

It is also possible to use the standard C library (#include <stdio.h>) to print out values
larger than 64-bits, by f irst converting the value to a C++ std::string, then to a C character
string. The ap_[u]int classes provide a method, to_string() to do the f irst conversion
and the std::string class provides the c_str() method to convert to a null-terminated
character string.

The ap[u]int::to_string() method may be passed an optional argument specifying the radix
of the numerical format desired. The valid radix argument values are 2, 8, 10 & 16 for binary,
octal, decimal and hexadecimal respectively; the default radix value is 16.

A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean and the default value is
false, causing the non-decimal formats to be printed as unsigned values.

Examples for using printf to print values:

ap_int<72> Val(“80fedcba9876543210”);

printf(“%s\n”, Val.to_string().c_str(); // => “80FEDCBA9876543210”
printf(“%s\n”, Val.to_string(10).c_str(); // => “-2342818482890329542128”
printf(“%s\n”, Val.to_string(8).c_str(); // => “401773345651416625031020”
printf(“%s\n”, Val.to_string(16, true).c_str(); // => “-7F0123456789ABCDF0”
High-Level Synthesis www.xilinx.com 331
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Expressions Involving ap_[u]<> types
Variables of ap_[u]<> types may, for the most part, be used freely in expressions involving
any C/C++ operators. However, there are some behaviors that may seem unexpected and
bear detailed explanation.

Zero- and sign-extension on assignment from narrower to wider variables

When assigning the value of a narrower bit-width) signed (ap_int<>) variable to a wider
one, the value will be sign-extended to the width of the destination variable, regardless of
its signedness.

Similarly, an unsigned source variable will be zero-extended before assignment.

Explicit casting of the source variable, as shown below, may be necessary in order to ensure
expected behavior on assignment.

ap_uint<10> Result;

ap_int<7> Val1 = 0x7f;
ap_uint<6> Val2 = 0x3f;

Result = Val1; // Yields: 0x3ff (sign-extended)
Result = Val2; // Yields: 0x03f (zero-padded)

Result = ap_uint<7>(Val1); // Yields: 0x07f (zero-padded)
Result = ap_int<6>(Val2); // Yields: 0x3ff (sign-extended)

Truncation on assignment of wider to narrower variables

Assigning a wider source variables value to a narrower one will lead to truncation of the
value, with all bits beyond the most significant bit (MSB) position of the destination variable
being lost.

There is no special handling of the sign information during truncation, which may lead to
unexpected behavior. Again, explicit casting may help avoid unexpected behavior.

Class Operators and Methods
In general, any valid operation that may be done on a native C/C++ integer data type, is
supported, via operator overloading, for ap_[u]int types.

In addition to these overloaded operators, some class specif ic operators and methods are
included to ease bit-level operations.

Binary Arithmetic Operators

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision
arithmetic. All of the following operators take either two operands of ap_[u]int or one
High-Level Synthesis www.xilinx.com 332
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
ap_[u]int type and one C/C++ fundamental integer data type, e.g. char, short, int,
etc.

The width and signedness of the resulting value is determined by the width and signedness
of the operands, before sign-extension, zero-padding or truncation are applied based on
the width of the destination variable (or expression). Details of the return value are
described for each operator.

Note that when expressions contain a mix of ap_[u]int and C/C++ fundamental integer
types, the C++ types will assume the following widths:

• char : 8-bits

• short: 16-bits

• int: 32-bits

• long: 32-bits

• long long: 64-bits

Addition

ap_(u)int::RType ap_(u)int::operator + (ap_(u)int op)

This operator produces the sum of two ap_[u]int (or one ap_[u]int and a C/C++
integer type).

The width of the sum value will be one bit more than the wider of the two operands (two
bits if and only if the wider is unsigned and the narrower is signed).

The sum will be treated as signed if either (or both) of the operands is of a signed type.

Subtraction

ap_(u)int::RType ap_(u)int::operator - (ap_(u)int op)

This operator produces the difference of two integers.

The width of the difference value will be one bit more than the wider of the two operands
(two bits if and only if the wider is unsigned and the narrower signed), before assignment,
at which point it will be sign-extended, zero-padded or truncated based on the width of the
destination variable.

The difference will be treated as signed regardless of the signedness of the operands.

Multiplication

ap_(u)int::RType ap_(u)int::operator * (ap_(u)int op)

This operator returns the product of two integer values.
High-Level Synthesis www.xilinx.com 333
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
The width of the product is the sum of the widths of the operands.

The product will be treated as a signed type if either of the operands is of a signed type.

Division

ap_(u)int::RType ap_(u)int::operator / (ap_(u)int op)

This operator returns the quotient of two integer values.

The width of the quotient is the width of the dividend if the divisor is an unsigned type;
otherwise it is the width of the dividend plus one.

The quotient will be treated as a signed type if either of the operands is of a signed type.

IMPORTANT: Vivado HLS synthesis of the divide operator will lead to lead to instantiation of
appropriately parameterized Xilinx LogiCORE divider core(s) in the generated RTL.

Modulus

ap_(u)int::RType ap_(u)int::operator % (ap_(u)int op)

This operator returns the modulus, or remainder of integer division, for two integer values.

The width of the modulus is the minimum of the widths of the operands, if they are both of
the same signedness; if the divisor is an unsigned type and the dividend is signed then the
width is that of the divisor plus one.

The quotient will be treated as having the same signedness as the dividend.

IMPORTANT: Vivado HLS synthesis of the modulus (%) operator will lead to lead to instantiation of
appropriately parameterized Xilinx LogiCORE divider core(s) in the generated RTL.

Examples of arithmetic operators:

ap_uint<71> Rslt;

ap_uint<42> Val1 = 5;
ap_int<23> Val2 = -8;

Rslt = Val1 + Val2; // Yields: -3 (43 bits) sign-extended to 71 bits
Rslt = Val1 – Val2; // Yields: +3 sign extended to 71 bits
Rslt = Val1 * Val2; // Yields: -40 (65 bits) sign extended to 71 bits
Rslt = 50 / Val2; // Yields: -6 (33 bits) sign extended to 71 bits
Rslt = 50 % Val2; // Yields: +2 (23 bits) sign extended to 71 bits
High-Level Synthesis www.xilinx.com 334
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Bitwise Logical Operators

The bitwise logical operators all return a value with a width that is the maximum of the
widths of the two operands and will be treated as unsigned if and only if both operands are
unsigned, otherwise it will be of a signed type.

Note that sign-extension (or zero-padding) may occur, based on the signedness of the
expression, not the destination variable.

Bitwise OR

ap_(u)int::RType ap_(u)int::operator | (ap_(u)int op)

Returns the bitwise OR of the two operands.

Bitwise AND

ap_(u)int::RType ap_(u)int::operator & (ap_(u)int op)

Returns the bitwise AND of the two operands.

Bitwise XOR

ap_(u)int::RType ap_(u)int::operator ^ (ap_(u)int op)

Returns the bitwise XOR of the two operands.

Unary Operators

Addition

ap_(u)int ap_(u)int::operator + ()

Returns the self copy of the ap_[u]int operand.

Subtraction

ap_(u)int::RType ap_(u)int::operator - ()

This operator returns the negated value of the operand with the same width if it is a signed
type or its width plus one if it is unsigned.

The return value is always a signed type.

Bit-wise Inverse

 ap_(u)int::RType ap_(u)int::operator ~ ()

This operator returns the bitwise-NOT of the operand with the same width and signedness.
High-Level Synthesis www.xilinx.com 335
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Equality Zero

 bool ap_(u)int::operator ! ()

This operator returns a Boolean “false” value if and only if the operand is equal to zero (0),
“true” otherwise.

Shift Operators

Each shift operator comes in two versions, one for unsigned right-hand side (RHS) operands
and one for signed RHS.

A negative value supplied to the signed RHS versions reverses the shift operations
direction, i.e., a shift by the absolute value of the RHS operand in the opposite direction will
occur.

The shift operators return a value with the same width as the left-hand side (LHS) operand.
As with C/C++, if the LHS operand of a shift-right is a signed type, the sign bit will be
copied into the most signif icant bit positions, maintaining the sign of the LHS operand.

Unsigned Integer Shift Right

ap_(u)int ap_(u)int::operator << (ap_uint<int_W2> op)

Integer Shift Right

ap_(u)int ap_(u)int::operator << (ap_int<int_W2> op)

Unsigned Integer Shift Left

ap_(u)int ap_(u)int::operator >> (ap_uint<int_W2> op)

Integer Shift Left

ap_(u)int ap_(u)int::operator >> (ap_int<int_W2> op)

CAUTION! Beware when assigning the result of a shift-left operator to a wider destination variable, as
some (or all) information may be lost. It is recommended to explicitly cast the shift expression to the
destination type in order to avoid unexpected behavior.

Example for shift operations:

ap_uint<13> Rslt;

ap_uint<7> Val1 = 0x41;

Rslt = Val1 << 6; // Yields: 0x0040, i.e. msb of Val1 is lost
Rslt = ap_uint<13>(Val1) << 6; // Yields: 0x1040, no info lost

ap_int<7> Val2 = -63;
Rslt = Val2 >> 4; //Yields: 0x1ffc, sign is maintained and extended
High-Level Synthesis www.xilinx.com 336
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Compound Assignment Operators

The compound assignment operators are supported:

*= /= %= += -= <<= >>= &= ^= |=

The RHS expression is f irst evaluated then supplied as the RHS operand to the base
operator, the result of which is assigned back to the LHS variable. The expression sizing,
signedness and potential sign-extension or truncation rules apply as detailed above for the
relevant operations.

Example of a compound assignment statement:

ap_uint<10> Val1 = 630;
ap_int<3> Val2 = -3;
ap_uint<5> Val3 = 27;

Val1 += Val2 - Val3; // Yields: 600 and is equivalent to:

// Val1 = ap_uint<10>(ap_int<11>(Val1) +
// ap_int<11>((ap_int<6>(Val2) –
// ap_int<6>(Val3))));

Increment & Decrement Operators

The increment and decrement operators are provided. All return a value of the same width
as the operand and which is unsigned if and only if both operands are of unsigned types
and signed otherwise.

Pre-increment

ap_(u)int& ap_(u)int::operator ++ ()

This operator returns the incremented value of the operand as well as assigning the
incremented value to the operand.

Post-increment

const ap_(u)int ap_(u)int::operator ++ (int)

This operator returns the value of the operand before assignment of the incremented value
to the operand variable.

Pre-decrement

ap_(u)int& ap_(u)int::operator -- ()

This operator returns the decremented value of, as well as assigning the decremented value
to, the operand.
High-Level Synthesis www.xilinx.com 337
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Post-decrement

const ap_(u)int ap_(u)int::operator -- (int)

This operator returns the value of the operand before assignment of the decremented value
to the operand variable.

Relational Operators

All relational operators are supported and return a Boolean value based on the result of the
comparison. Variables of ap_[u]int types may be compared to C/C++ fundamental
integer types with these operators.

Equality

bool ap_(u)int::operator == (ap_(u)int op)

Inequality

bool ap_(u)int::operator != (ap_(u)int op)

Less than

bool ap_(u)int::operator < (ap_(u)int op)

Greater than

bool ap_(u)int::operator > (ap_(u)int op)

Less than or equal

bool ap_(u)int::operator <= (ap_(u)int op)

Greater than or equal

bool ap_(u)int::operator >= (ap_(u)int op)

Other Class Methods and Operators

Bit-level Operations

The following methods are provided in order to facilitate common bit-level operations on
the value stored in ap_[u]int type variable(s).

Length

int ap_(u)int::length ()

This method returns an integer value providing the total number of bits in the ap_[u]int
variable.
High-Level Synthesis www.xilinx.com 338
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Concatenation

ap_concat_ref ap_(u)int::concat (ap_(u)int low)
ap_concat_ref ap_(u)int::operator , (ap_(u)int high, ap_(u)int low)

Concatenates two ap_[u]int variables, the width of the returned value is the sum of the
widths of the operands.

The high and low arguments will be placed in the higher and lower order bits of the result
respectively; the concat() method places the argument in the lower order bits.

When using the overloaded comma operator, the parentheses are required. The comma
operator version may also appear on the LHS of assignment.

C/C++ native types, including integer literals, should be explicitly cast to an appropriate
ap_[u]int type before concatenating in order to avoid unexpected results.

Examples of concatenation:

ap_uint<10> Rslt;

ap_int<3> Val1 = -3;
ap_int<7> Val2 = 54;

Rslt = (Val2, Val1); // Yields: 0x1B5
Rslt = Val1.concat(Val2); // Yields: 0x2B6
(Val1, Val2) = 0xAB; // Yields: Val1 == 1, Val2 == 43

Bit selection

ap_bit_ref ap_(u)int::operator [] (int bit)

This operation function selects one bit from an arbitrary precision integer value and returns
it.

The returned value is a reference value, which can be used to set or clear the corresponding
bit in this ap_[u]int.

The bit argument must be an int value. It specif ies the index of the bit to select. The least
signif icant bit has index 0. The highest permissible index is one less than the bit-width of
this ap_[u]int.

The result type ap_bit_ref represents the reference to one bit of this ap_[u]int
instance specif ied by bit.

Range selection

ap_range_ref ap_(u)int::range (unsigned Hi, unsigned Lo)
ap_range_ref ap_(u)int::operator () (unsigned Hi, unsigned Lo)

This operation returns the value represented by the range of bits specif ied by the
arguments.
High-Level Synthesis www.xilinx.com 339
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
The Hi argument specif ies the most significant bit (MSB) position of the range and Lo the
least signif icant (LSB).

The LSB of the source variable is in position 0. If the Hi argument has a value less than Lo,
then the bits are returned in reverse order.

Examples using range selection:

ap_uint<4> Rslt;

ap_uint<8> Val1 = 0x5f;
ap_uint<8> Val2 = 0xaa;

Rslt = Val1.range(3, 0); // Yields: 0xF
Val1(3,0) = Val2(3, 0); // Yields: 0x5A
Val1(4,1) = Val2(4, 1); // Yields: 0x55
Rslt = Val1.range(7, 4); // Yields: 0xA; bit-reversed!

AND reduce

bool ap_(u)int::and_reduce ()

This operation function applies the AND operation on all bits in this ap_(u)int and returns
the resulting single bit. This is equivalent to comparing this value against -1 (all ones) and
returning true if it matches, false otherwise.

OR reduce

bool ap_(u)int::or_reduce ()

This operation function applies the OR operation on all bits in this ap_(u)int and returns
the resulting single bit. This is equivalent to comparing this value against 0 (all zeros) and
returning false if it matches, true otherwise.

XOR reduce

bool ap_(u)int::xor_reduce ()

This operation function applies the XOR operation on all bits in this ap_int and returns the
resulting single bit. This is equivalent to counting the number of 1 bits in this value and
returning false if the count is even or true if the count is odd.

NAND reduce

bool ap_(u)int::nand_reduce ()

This operation function applies the NAND operation on all bits in this ap_int and returns
the resulting single bit. This is equivalent to comparing this value against -1 (all ones) and
returning false if it matches, true otherwise.

NOR reduce

bool ap_int::nor_reduce ()
High-Level Synthesis www.xilinx.com 340
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
This operation function applies the NOR operation on all bits in this ap_int and returns the
resulting single bit. This is equivalent to comparing this value against 0 (all zeros) and
returning true if it matches, false otherwise.

XNOR reduce

bool ap_(u)int::xnor_reduce ()

This operation function applies the XNOR operation on all bits in this ap_(u)int and
returns the resulting single bit. This is equivalent to counting the number of 1 bits in this
value and returning true if the count is even or false if the count is odd.

Examples of the various bit reduction methods:

ap_uint<8> Val = 0xaa;

bool t = Val.and_reduce(); // Yields: false
t = Val.or_reduce(); // Yields: true
t = Val.xor_reduce(); // Yields: false
t = Val.nand_reduce(); // Yields: true
t = Val.nor_reduce(); // Yields: false
t = Val.xnor_reduce(); // Yields: true

Bit reverse

void ap_(u)int::reverse ()

This member function reverses the contents of ap_[u]int instance, i.e. the LSB becomes
the MSB and vice versa.

Example of reverse method:

ap_uint<8> Val = 0x12;

Val.reverse(); // Yields: 0x48

Test bit value

bool ap_(u)int::test (unsigned i)

This member function check whether specif ied bit of ap_(u)int instance is 1, returning
true if so, false otherwise.

Example of test method:

ap_uint<8> Val = 0x12;

bool t = Val.test(5); // Yields: true

Set bit value

void ap_(u)int::set (unsigned i, bool v)
void ap_(u)int::set_bit (unsigned i, bool v)
High-Level Synthesis www.xilinx.com 341
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
This member function sets the specif ied bit of the ap_(u)int instance to the value of
integer V.

Set bit (to 1)

void ap_(u)int::set (unsigned i)

This member function setVivado Design Suite User Guides the specified bit of the
ap_(u)int instance to the value 1 (one).

Clear bit (to 0)

void ap_(u)int:: clear(unsigned i)

This member function sets the specif ied bit of the ap_(u)int instance to the value 0
(zero).

Invert bit

void ap_(u)int:: invert(unsigned i)

This member function inverts ith bit of the ap_(u)int instance, i.e. the ith bit will become
0 if its original value is 1 and vice versa.

Example of bit set, clear and invert bit methods:

ap_uint<8> Val = 0x12;
Val.set(0, 1); // Yields: 0x13
Val.set_bit(5, false); // Yields: 0x03
Val.set(7); // Yields: 0x83
Val.clear(1); // Yields: 0x81
Val.invert(5); // Yields: 0x91

Rotate Right

void ap_(u)int:: rrotate(unsigned n)

This member function rotate the ap_(u)int instance n places to right.

Rotate Left

void ap_(u)int:: lrotate(unsigned n)

This member function rotate the ap_(u)int instance n places to left.

Examples of rotate methods:

ap_uint<8> Val = 0x12;

Val.rrotate(3); // Yields: 0x42
Val.lrotate(6); // Yields: 0x90
High-Level Synthesis www.xilinx.com 342
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Types
Bitwise NOT

void ap_(u)int:: b_not()

This member function complements every bit of the ap_(u)int instance.

Example:

ap_uint<8> Val = 0x12;

Val.b_not(); // Yields: 0xED

Test sign

bool ap_int:: sign()

This member function checks whether the ap_(u)int instance is negative, returning true
if negative and return false if positive.

Explicit Conversion Methods

To C/C++ “(u)int”

int ap_(u)int::to_int ()
unsigned ap_(u)int::to_uint ()

These methods return native C/C++ (32-bit on most systems) integers with the value
contained in the ap_[u]int. If the value is greater than can be represented by an
“[unsigned] int”, then truncation will occur.

To C/C++ 64-bit “(u)int”

long long ap_(u)int::to_int64 ()
unsigned long long ap_(u)int::to_uint64 ()

These methods return native C/C++ 64-bit integers with the value contained in the
ap_[u]int. If the value is greater than can be represented by an “[unsigned] int”, then
truncation will occur.

To C/C++ “double”

 double ap_(u)int::to_double ()

This method returns a native C/C++ “double” 64-bit floating point representation of the
value contained in the ap_[u]int. Note that if the ap_[u]int is wider than 53 bits (the
number of bits in the mantissa of a “double”), the resulting “double” may not have the
exact value expected.
High-Level Synthesis www.xilinx.com 343
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
C++ Arbitrary Precision Fixed Point Types
Vivado HLS provides support for f ixed point types which allow fractional arithmetic to be
easily handled. The advantage of f ixed point arithmetic is shown in the following example.

ap_fixed<10, 5> Var1 = 22.96875; // 10-bit signed word, 5 fractional bits
ap_ufixed<12,11> Var2 = 512.5 // 12-bit word, 1 fractional bit
ap_fixed<13,5> Res1; // 13-bit signed word, 5 fractional bits

Res1 = Var1 + Var2; // Result is 535.46875

Even though Var1 and Var2 have different precisions, the fixed point type ensures the
decimal point is correctly aligned before the operation (an addition in this case), is
performed. The user is not required to perform any operations in the C code to align the
decimal point.

The type used to store the result of any f ixed point arithmetic operation must be large
enough, in both the integer and fractional bits, to store the full result.

If this is not the case, the ap_fixed type automatically performs overflow handling (when
the result has more MSBs than the assigned type supports) and quantization (or rounding:
when the result has fewer LSBs than the assigned type supports). The ap_[u]fixed type
provides a number of options, detailed below, on how the overflow and quantization are
performed.

The ap_[u]fixed Representation
In ap_[u]fixed types, a f ixed-point value is represented as a sequence of bits with a
specified position for the binary point. Bits to the left of the binary point represent the
integer part of the value and bits to the right of the binary point represent the fractional
part of the value.

ap_[u]fixed type is defined as follows:

ap_[u]fixed<int W,
int I,
ap_q_mode Q,
ap_o_mode O,
ap_sat_bits N>;

• The W attribute takes one parameter: the total number of bits for the word. Only a
constant integer expression can be used as the parameter value.

• The I attribute takes one parameter: the number of bits to represent the integer part.
The value of I must be less than or equal to W. The number of bits to represent the
fractional part is W minus I. Only a constant integer expression can be used as the
parameter value.
High-Level Synthesis www.xilinx.com 344
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
• The Q attribute takes one parameter: quantization mode. Only predefined enumerated
value can be used as the parameter value. The default value is AP_TRN.

• The O attribute takes one parameter: overflow mode. Only predefined enumerated
value can be used as the parameter value. The default value is AP_WRAP.

• The N attribute takes one parameter: the number of saturation bits considered used in
the overflow wrap modes. Only a constant integer expression can be used as the
parameter value. The default value is zero.

Note: If the quantization, overflow and saturation parameters are not specif ied, as in the f irst
example above, the default settings are used.

The quantization and overflow modes are explained below.

Quantization modes

AP_RND

The AP_RND quantization mode indicates that the value should be rounded to the nearest
representable value for the specif ic ap_[u]fixed type.

For example:

ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_RND_ZERO

The AP_RND_ZERO quantization mode indicates the value should be rounded to the
nearest representable value and rounding should be towards zero. That is, for positive
value, the redundant bits should be deleted, while for negative value, the least significant
bits should be added to get the nearest representable value.

For example:

ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

Rounding to plus infinity AP_RND

Rounding to zero AP_RND_ZERO

Rounding to minus infinity AP_RND_MIN_INF

Rounding to infinity AP_RND_INF

Convergent rounding AP_RND_CONV

Truncation AP_TRN

Truncation to zero AP_TRN_ZERO
High-Level Synthesis www.xilinx.com 345
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
AP_RND_MIN_INF

The AP_RND_MIN_INF quantization mode indicates that the value should be rounded to
the nearest representable value, and the rounding should be towards minus infinity. That is,
for positive value, the redundant bits should be deleted, while for negative value, the least
signif icant bits should be added.

For example:

ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_INF

The AP_RND_INF quantization mode indicates that the value should be rounded to the
nearest representable value, and the rounding depends on the least signif icant bit.

* For positive values, if the least signif icant bit is set, round towards plus infinity,
otherwise, round towards minus infinity.

* For negative value, if the least signif icant bit is set, round towards minus infinity,
otherwise, round towards plus infinity.

For example:

ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_CONV

The AP_RND_CONV quantization mode indicates that the value should be rounded to the
nearest representable value, and the rounding depends on the least signif icant bit. If the
least signif icant bit is set, round towards plus infinity, otherwise, round towards minus
infinity.

For example:

ap_fixed<3, 2, AP_RND_CONV, AP_SAT> UAPFixed4 = 0.75; // Yields: 1.0
ap_fixed<3, 2, AP_RND_CONV, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_TRN

The AP_TRN quantization mode indicates that the value should be rounded to the nearest
representable value, and the rounding should always towards minus infinity.

For example:

ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5
High-Level Synthesis www.xilinx.com 346
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
AP_TRN_ZERO

The AP_TRN_ZERO quantization mode indicates that the value should be rounded to the
nearest representable value.

* For positive values the rounding is same as mode AP_TRN.

* For negative values, round towards zero.

For example:

ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

Overflow modes

AP_SAT

The AP_SAT overflow mode indicates the value should be saturated to the maximum value
in case of overflow, or to the negative maximum value in case of negative overflow.

For example:

ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 15.0
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 7.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: -8.0

AP_SAT_ZERO

The AP_SAT_ZERO overflow mode indicates the value should be forced to in case of
overflow, or negative overflow.

For example:

ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0

Saturation AP_SAT

Saturation to zero AP_SAT_ZERO

Symmetrical saturation AP_SAT_SYM

Wrap-around AP_WRAP

Sign magnitude wrap-around AP_WRAP_SM
High-Level Synthesis www.xilinx.com 347
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
AP_SAT_SYM

The AP_SAT_SYM overflow mode indicates the value should be saturated to the maximum
value in case of overflow, or to the minimum value (negative maximum for signed
ap_fixed types and zero for unsigned ap_ufixed types) in case of negative overflow.

For example:

ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 15.0
ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 7.0
ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: -8.0

AP_WRAP

The AP_WRAP overflow mode indicates that the value should be wrapped around in case of
overflow.

For example:

ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 19.0; // Yields: 3.0
ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 31.0; // Yields: -1.0
ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: 13.0
ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: -3.0

If the value of N is set to zero (the default overflow mode):

• Any MSB bits outside the range are deleted.

• For unsigned numbers: after the maximum it wraps around to zero

• For signed numbers: after the maximum, it wraps to the minimum values.

If N>0:

• When N > 0, N MSB bits are saturated or set to 1.

• The sign bit is retained, so positive numbers remain positive and negative numbers
remain negative.

• The bits that are not saturated are copied starting from the LSB side.

AP_WRAP_SM

The AP_WRAP_SM overflow mode indicates that the value should be sign-magnitude
wrapped around.

For example:

ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = 19.0; // Yields: -4.0
ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = -19.0; // Yields: 2.0

If the value of N is set to zero (the default overflow mode):
High-Level Synthesis www.xilinx.com 348
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
• This mode uses sign magnitude wrapping.

• Sign bit set to the value of the least signif icant deleted bit.

• If the most signif icant remaining bit is different from the original MSB, all the
remaining bits are inverted.

• IF MSBs are same, the other bits are copied over.

° Step 1: First delete redundant MSBs.

° Step 2: The new sign bit is the least significant bit of the deleted bits. 0 in this case.

° Step 3: Compare the new sign bit with the sign of the new value.

• If different, invert all the numbers. They are different in this case.

If N>0:

• Uses sign magnitude saturation

• N MSBs will be saturated to 1.

• Behaves similar to case where N = 0, except that positive numbers stay positive and
negative numbers stay negative.

Compiling ap_[u]fixed<> Types
In order to use the ap_[u]fixed<> classes one must include the “ap_fixed.h” header f ile
in all source files which reference ap_[u]fixed<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vivado HLS header files, for example by adding the
”-I/<HLS_HOME>/include” option for g++ compilation.

Also note that best performance will be observed for software models when compiled with
g++ -O3 option.

Declaring/Defining ap_[u]fixed<> Variables
There are separate signed and unsigned classes: ap_fixed<W,I> and ap_ufixed<W,I>
respectively.

As usual, user defined types may be created with the C/C++ ‘typedef’ statement as
shown among the following examples:

include “ap_fixed.h” // use ap_[u]fixed<> types

typedef ap_ufixed<128,32> uint128_t; // 128-bit user defined type,
// 32 integer bits
High-Level Synthesis www.xilinx.com 349
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
Initialization and Assignment from Constants (Literals)
Any ap_[u]fixed variable may be initialized with normal floating point constants of the
usual C/C++ width (32 bits for type float, 64 bits for type double). That is, typically, a
floating point value that is single precision type or in the form of double precision.

Such floating point constants will be interpreted and translated into the full width of the
arbitrary precision fixed-point variable depending on the sign of the value.

For example:

#include <ap_fixed.h>

ap_ufixed<30, 15> my15BitInt = 3.1415;
ap_fixed<42, 23> my42BitInt = -1158.987;
ap_ufixed<99, 40> = 287432.0382911;

Support for console I/O (Printing)
As with initialization and assignment to ap_[u]fixed<> variables, features are provided
to support printing values which require more than 64-bits to represent.

The easiest way to output any value stored in an ap_[u]int variable is to use the C++
standard output stream, std::cout (#include <iostream> or <iostream.h>).
The stream insertion operator, “<<“, is overloaded to correctly output the full range of
values possible for any given ap_[u]int variable. The stream manipulators “dec”, “hex”
and “oct” are also supported, allowing formatting of the value as decimal, hexadecimal or
octal respectively.

Example using “cout” to print values:

#include <iostream.h>
// Alternative: #include <iostream>

ap_uint<72> Val(“10fedcba9876543210”);

cout << Val << endl; // Yields: “313512663723845890576”
cout << hex << val << endl; // Yields: “10fedcba9876543210”
cout << oct << val << endl; // Yields: “41773345651416625031020”

It is also possible to use the standard C library (#include <stdio.h>) to print out values
larger than 64-bits, by first converting the value to a C++ std::string, then to a C
character string. The ap_[u]int classes provide a method, to_string() to do the f irst
conversion and the std::string class provides the c_str() method to convert to a
null-terminated character string.

The ap[u]int::to_string() method may be passed an optional argument specifying
the radix of the numerical format desired. The valid radix argument values are 2, 8, 10 and
16 for binary, octal, decimal and hexadecimal respectively; the default radix value is 16.
High-Level Synthesis www.xilinx.com 350
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean and the default value is
false, causing the non-decimal formats to be printed as unsigned values.

Examples for using printf to print values:

ap_int<72> Val(“80fedcba9876543210”);

printf(“%s\n”, Val.to_string().c_str(); // => “80FEDCBA9876543210”
printf(“%s\n”, Val.to_string(10).c_str(); // => “-2342818482890329542128”
printf(“%s\n”, Val.to_string(8).c_str(); // => “401773345651416625031020”
printf(“%s\n”, Val.to_string(16, true).c_str(); // => “-7F0123456789ABCDF0”

Expressions Involving ap_[u]fixed<> types
Arbitrary precision fixed-point values can participate in expressions that use any operators
supported by C/C++. Once an arbitrary precision f ixed-point type or variable is defined,
their usage is the same as for any floating point type or variable in the C/C++ languages.
However, there are a few caveats:

Zero and Sign Extensions

Remember that all values of smaller bit-width will be zero or sign extended depending on
the sign of the source value. You may need to insert casts to obtain alternative signs when
assigning smaller bit-width to larger.

Truncations

When you assign an arbitrary precision fixed-point of larger bit-width than the destination
variable, truncation will occur.

Class Operators & Methods
In general, any valid operation that may be done on a native C/C++ integer data type, is
supported, via operator overloading, for ap_[u]fixed types. In addition to these
overloaded operators, some class specific operators and methods are included to ease
bit-level operations.

Binary Arithmetic Operators

Addition

ap_[u]fixed::RType ap_[u]fixed::operator + (ap_[u]fixed op)

This operator function adds this arbitrary precision f ixed-point with a given operand op to
produce a result.
High-Level Synthesis www.xilinx.com 351
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
TIP: The operands can be ap_[u]fixed, ap_[u]int, or C/C++ integer types. The result type
ap_[u]fixed::RType depends on the type information of the two operands.

For example:

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 + Val2; //Yields 6722.480957

Since Val2 has the larger bit-width on both integer part and fraction part, the result type
has the same bit-width and plus one, in order to be able to store all possible result values.

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - (ap_[u]fixed op)

This operator function subtracts this arbitrary precision f ixed-point with a given operand op
to produce a result.

The result type ap_[u]fixed::RType depends on the type information of the two
operands.

For example:

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val2 - Val1; // Yields 6720.23057

Since Val2 has the larger bit-width on both integer part and fraction part, the result type
has the same bit-width and plus one, in order to be able to store all possible result values.

Multiplication

ap_[u]fixed::RType ap_[u]fixed::operator * (ap_[u]fixed op)

This operator function multiplies this arbitrary precision fixed-point with a given operand
op to produce a result.

For example:

ap_fixed<80, 64> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 * Val2; // Yields 7561.525452
High-Level Synthesis www.xilinx.com 352
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
We have the multiplication of Val1 and Val2. The result type has sum of their integer part
bit-width and their fraction part bit width.

Division

ap_[u]fixed::RType ap_[u]fixed::operator / (ap_[u]fixed op)

This operator function divides this arbitrary precision f ixed-point by a given operand op to
produce a result.

For example:

ap_fixed<84, 66> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val2 / Val1; // Yields 5974.538628

We have the division of Val1 and Val2. In order to preserve enough precision:

• The integer bit-width of the result type is sum of the integer = bit-width of Val1 and
the fraction bit-width of Val2.

• The fraction bit-width of the result type is sum of the fraction bit-width of Val1 and the
whole bit-width of Val2.

Bitwise Logical Operators

Bitwise OR

ap_[u]fixed::RType ap_[u]fixed::operator | (ap_[u]fixed op)

This operator function applies or bitwise operation on this arbitrary precision f ixed-point
and a given operand op to produce a result.

For example:

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 | Val2; // Yields 6271.480957

Bitwise AND

ap_[u]fixed::RType ap_[u]fixed::operator & (ap_[u]fixed op)

This operator function applies and bitwise operation on this arbitrary precision f ixed-point
and a given operand op to produce a result.

For example:
High-Level Synthesis www.xilinx.com 353
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 & Val2; // Yields 1.00000

Bitwise XOR

ap_[u]fixed::RType ap_[u]fixed::operator ^ (ap_[u]fixed op)

This operator function applies xor bitwise operation on this arbitrary precision f ixed-point
and a given operand op to produce a result.

For example:

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 ^ Val2; // Yields 6720.480957

Increment and Decrement Operators

Pre-Increment

ap_[u]fixed ap_[u]fixed::operator ++ ()

This operator function prefix increases this arbitrary precision fixed-point variable by 1 to
produce a result.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ++Val1; // Yields 6.125000

Post-Increment

ap_[u]fixed ap_[u]fixed::operator ++ (int)

This operator function postf ix increases this arbitrary precision f ixed-point variable by 1,
returns the original val of this arbitrary precision fixed-point.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1++; // Yields 5.125000
High-Level Synthesis www.xilinx.com 354
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
Pre-Decrement

ap_[u]fixed ap_[u]fixed::operator -- ()

This operator function prefix decreases this arbitrary precision f ixed-point variable by 1 to
produce a result.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = --Val1; // Yields 4.125000

Post-Decrement

ap_[u]fixed ap_[u]fixed::operator -- (int)

This operator function postf ix decreases this arbitrary precision fixed-point variable by 1,
returns the original val of this arbitrary precision fixed-point.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1--; // Yields 5.125000

Unary Operators

Addition

ap_[u]fixed ap_[u]fixed::operator + ()

This operator function returns self copy of this arbitrary precision fixed-point variable.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = +Val1; // Yields 5.125000

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - ()

This operator function returns negative value of this arbitrary precision f ixed-point variable.

For example:

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;
High-Level Synthesis www.xilinx.com 355
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
Result = -Val1; // Yields -5.125000

Equality Zero

bool ap_[u]fixed::operator ! ()

This operator function compares this arbitrary precision f ixed-point variable with 0, and
returns the result.

For example:

bool Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = !Val1; // Yields false

Bitwise Inverse

ap_[u]fixed::RType ap_[u]fixed::operator ~ ()

This operator function returns bitwise complement of this arbitrary precision fixed-point
variable.

For example:

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ~Val1; // Yields -5.25

Shift Operators

Unsigned Shift left

ap_[u]fixed ap_[u]fixed::operator << (ap_uint<_W2> op)

This operator function shifts left by a given integer operand, and returns the result. The
operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift left operation is the same width as type being shifted.

Note: Shift currently cannot support overflow or quantization modes.

For example:

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val << sh; // Yields -10.5
High-Level Synthesis www.xilinx.com 356
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
The bit-width of the result is (W = 25, I = 15), however, since the shift left operation result
type is same as the type of Val, the high order two bits of Val are shifted out, and the
result is -10.5.

If a result of 21.5 is required, Val must be cast to ap_fixed<10, 7> f irst: e.g.,
ap_ufixed<10, 7>(Val).

Signed Shift Left

ap_[u]fixed ap_[u]fixed::operator << (ap_int<_W2> op)

This operator shifts left by a given integer operand, and returns the result. The shift
direction depends on whether operand is positive or negative.

• If the operand is positive, a shift right performed.

• If operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift right operation is the same width as type being shifted.

For example:

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val << sh; // Shift left, yields -10.25

Sh = -2;
Result = Val << sh; // Shift right, yields 1.25

Unsigned Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_uint<_W2> op)

This operator function shifts right by a given integer operand, and returns the result. The
operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift right operation is the same width as type being shifted.

For example:

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val >> sh; // Yields 1.25

If it is required to preserve all significant bits, extend fraction part bit-width of the Val f irst,
for example ap_fixed<10, 5>(Val).
High-Level Synthesis www.xilinx.com 357
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
Signed Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_int<_W2> op)

This operator shifts right by a given integer operand, and returns the result. The shift
direction depends on whether operand is positive or negative.

• If the operand is positive, a shift right performed.

• If operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift right operation is the same width as type being shifted. For
example:

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val >> sh; // Shift right, yields 1.25

Sh = -2;
Result = Val >> sh; // Shift left, yields -10.5

1.25

Relational Operators

Equality

bool ap_[u]fixed::operator == (ap_[u]fixed op)

This operator compares the arbitrary precision f ixed-point variable with a given operand,
and returns true if they are equal and false if they are not equal.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types. For
example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 == Val2; // Yields true
Result = Val1 == Val3; // Yields false

Non-Equality

bool ap_[u]fixed::operator != (ap_[u]fixed op)

This operator compares this arbitrary precision fixed-point variable with a given operand,
and returns true if they are not equal and false if they are equal.
High-Level Synthesis www.xilinx.com 358
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
The type of operand op can be ap_[u]f ixed, ap_int or C/C++ integer types. For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 != Val2; // Yields false
Result = Val1 != Val3; // Yields true

Greater-than-or-equal

bool ap_[u]fixed::operator >= (ap_[u]fixed op)

This operator compares a variable with a given operand, and returns true if they are equal
or if the variable is greater than the operator and false otherwise.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 >= Val2; // Yields true
Result = Val1 >= Val3; // Yields false

Less-than-or-equal

bool ap_[u]fixed::operator <= (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is equal to or
less than the operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 <= Val2; // Yields true
Result = Val1 <= Val3; // Yields true

Greater-than

bool ap_[u]fixed::operator > (ap_[u]fixed op)
High-Level Synthesis www.xilinx.com 359
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
This operator compares a variable with a given operand, and return true if it is greater than
the operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 > Val2; // Yields false
Result = Val1 > Val3; // Yields false

Less-than

 bool ap_[u]fixed::operator < (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is less than
the operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types. For
example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 < Val2; // Yields false
Result = Val1 < Val3; // Yields true

Bit Operator

Bit-Select-and-Set

af_bit_ref ap_[u]fixed::operator [] (int bit)

This operator selects one bit from an arbitrary precision f ixed-point value and returns it.

The returned value is a reference value, which can be used to set or clear the corresponding
bit in the ap_[u]fixed variable. The bit argument must be an integer value and it
specifies the index of the bit to select. The least significant bit has index 0. The highest
permissible index is one less than the bit-width of this ap_[u]fixed variable.

The result type is af_bit_ref with a value of either 0 or 1. For example:

ap_int<8, 5> Value = 1.375;

Value[3]; // Yields 1
High-Level Synthesis www.xilinx.com 360
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
Value[4]; // Yields 0

Value[2] = 1; // Yields 1.875
Value[3] = 0; // Yields 0.875

Bit Range

af_range_ref af_(u)fixed::range (unsigned Hi, unsigned Lo)
af_range_ref af_(u)fixed::operator [] (unsigned Hi, unsigned Lo)

This operation is similar to bit-select operator [] except that it operates on a range of bits
instead of a single bit.

It selects a group of bits from the arbitrary precision f ixed point variable. The Hi argument
provides the upper range of bits to be selected. The Lo argument provides the lowest bit to
be selected. If Lo is larger than Hi the bits selected will be returned in the reverse order.

The return type af_range_ref represents a reference in the range of the ap_[u]fixed
variable specif ied by Hi and Lo. For example:

ap_uint<4> Result = 0;
ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(3, 0); // Yields: 0x5
Value(3, 0) = Repl(3, 0); // Yields: -1.5

// when Lo > Hi, return the reverse bits string
Result = Value.range(0, 3); // Yields: 0xA

Range Select

af_range_ref af_(u)fixed::range ()
af_range_ref af_(u)fixed::operator []

This operation is the special case of the range select operator []. It selects all bits from this
arbitrary precision fixed point value in the normal order.

The return type af_range_ref represents a reference to the range specified by Hi = W - 1 and
Lo = 0. For example:

ap_uint<4> Result = 0;

ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(); // Yields: 0x5
Value() = Repl(3, 0); // Yields: -1.5

Length

int ap_[u]fixed::length ()
High-Level Synthesis www.xilinx.com 361
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

C++ Arbitrary Precision Fixed Point Types
This function returns an integer value that provides the number of bits in an arbitrary
precision f ixed-point value. It can be used with a type or a value. For example:

ap_ufixed<128, 64> My128APFixed;

int bitwidth = My128APFixed.length(); // Yields 128

Explicit Conversion to Methods

Fixed-toDouble

double ap_[u]fixed::to_double ()

This member function returns this f ixed-point value in form of IEEE double precision format.
For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
double Result;

Result = MyAPFixed.to_double(); // Yields 333.789

Fixed-to-ap_int

 ap_int ap_[u]fixed::to_ap_int ()

This member function explicitly converts this f ixed-point value to ap_int that captures all
integer bits (fraction bits are truncated). For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
ap_uint<77> Result;

Result = MyAPFixed.to_ap_int(); //Yields 333

Fixed-to-integer

int ap_[u]fixed::to_int ()
unsigned ap_[u]fixed::to_uint ()
ap_slong ap_[u]fixed::to_int64 ()
ap_ulong ap_[u]fixed::to_uint64 ()

This member function explicitly converts this f ixed-point value to C built-in integer types.
For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
unsigned int Result;

Result = MyAPFixed.to_uint(); //Yields 333

unsigned long long Result;
Result = MyAPFixed.to_uint64(); //Yields 333
High-Level Synthesis www.xilinx.com 362
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Chapter 5

High-Level Synthesis
Command Reference Guide

Using High-Level Synthesis Commands
Before using any High-Level Synthesis commands in an active design project it is
worthwhile to understand and appreciate a few basic High-Level Synthesis concepts.

1. High-Level Synthesis stores design in a project based structure.

2. High-Level Synthesis optimizations are specif ied on regions, or locations, within the
code.

3. High-Level Synthesis optimizations can be specified as Tcl commands or pragmas in the
source code (and in addition to editing text f iles, both options can be performed from
within the High-Level Synthesis GUI).

Each of these concepts is fully explained in the remaining sections of this chapter.

Managing Projects
High-Level Synthesis uses a project based database to manage the synthesis and
verif ication processes and to store the results. Every design must be represented in a
project which may itself contain multiple solutions.

The source code and testbench are stored in the project. Solutions can be used to specify a
different target technology (different FPGA families and devices), apply different directives
and create different implementations of the same source code, with a view to selecting the
most optimum implementation.

High-Level Synthesis projects and solutions are directly reflected in the directory structure
used by High-Level Synthesis. Figure 1-1 shows an example High-Level Synthesis directory
after results have been generated.

In the example in Figure 1-1:

• The project, as shown on the top line, is called project.prj and all project data is
stored in a project directory of the same name.
High-Level Synthesis www.xilinx.com 363
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Using High-Level Synthesis Commands
• The project contains source code and testbench files.

• There are 2 solutions in this project (solution1 and solution2).

• Currently solution1 (highlighted in bold) is the active solution.

• Simulation results have been generated, as shown by the sim directory.

• Synthesis results have been generated, as shown by the syn directory.

° The syn directory shows RTL output has been created in verilog, VHDL and
SystemC.

° The syn directory shows reports have been generated.

When using High-Level Synthesis commands, it is important to understand that some
commands can only be used inside an active project or solution. In general, projects are
used for the same set of source code and solutions are used to create different
implementations of that source code.

Note: Opening a new project automatically closes the existing project and opening a new solution
automatically closes the existing solution.

X-Ref Target - Figure 5-1

Figure 5-1: Project and Solution Structure
High-Level Synthesis www.xilinx.com 364
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Using High-Level Synthesis Commands
High-Level Synthesis Optimization Locations
Within High-Level Synthesis optimizations can be specified on functions, loops, regions,
arrays and interface parameters. This section explains how optimizations are applied and
the locations they affect.

Optimizations are specified in one of three ways:

1. Using the directives tab in the GUI.

2. Tcl commands can be used at the interactive prompt, or with a batch f ile, to specify
directives, provided the object can be uniquely identif ied (loops and regions require a
label).

3. Insert pragmas directives directly into the source code.

The optimizations specif ied by all of these techniques are applied to the specif ied location
(scope) within the source code.

The following example shows the outline of some source code.

int foo_sub_A (int mem_1[64],..) {
for_A: for (int n = 0; n < 3; ++n) {

...
}
...

}
int foo_sub_B (int mem_1[64], int i) {

for_B:for (int n = 0; n < 4; ++n) {
...

}
...

}
void foo_top (int mem_1[64], int mem_2[64]) {

...
for_top: for (int i = 0; i < 64; ++i) {

my_label: {
...

}
}

}

° Figure 1-2 shows how this code is represented in the GUI directives tab. The
directives tab can be viewed by selecting the source code within the Project
Explorer, then selecting the directives tab in the Auxiliary Pane (right hand side of
the GUI).
High-Level Synthesis www.xilinx.com 365
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Using High-Level Synthesis Commands
1. Interfaces - Directives applied to interfaces are applied to that interface object (function
parameter, global or return value) and nothing else.

2. Functions - Directives applied to functions are performed on all objects within the scope
of the function. The effect of any directive stops at the next level of function hierarchy
except in the case of PIPELINE which recursively flattens and unrolls everything, or if the
directive supports a recursive option and it is applied.

a. In the example in Figure 1-2, a directive applied on foo_top does not affect the
operations in foo_sub_A or foo_sub_B (other than the exceptions stated above).

3. Loops - Directives applied on loops impacts all objects within the scope of the loop.

a. If a MERGE directive is applied to a loop, the directive applies to any sub-loops but
not to the loop itself. The loop is not merged with siblings at the same level of
hierarchy but any sub-loops are merged.

b. A PIPELINE directive also applies to objects within the loop: they are pipelined, which
is essentially the same as pipelining the loop itself.

4. Arrays - Directives can be applied to arrays directly, in which case they only apply to the
array itself, or they can be applied to functions, loops or regions which contain multiple
arrays, in which case the directive applies to all arrays enclosed.

5. Regions - Regions of code can be created by inserting a pair of braces: {the code
between is a region}. Any directive applied to a labeled region applies to the objects
within that region.

Note: To apply directives using Tcl commands, loops and regions must have a named label as shown
in the above example (loop label for_top and region label my_label)

X-Ref Target - Figure 5-2

Figure 5-2: GUI Directives Objects
High-Level Synthesis www.xilinx.com 366
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Using High-Level Synthesis Commands
Other than interfaces and arrays, the other objects (function, loops and regions) represent
"areas" of the code which can cover multiple statements. For this reason, the command
pages within this manual lists the target as "location". Keep in mind when a directive is
applied to a location it is applied to all objects within the location (unless otherwise
explicitly specified).

Commands and Pragmas
High-Level Synthesis optimizations are primarily based on locations within the code, as
discussed in the previous section. This model for specifying optimizations supports the use
of pragmas in the code.

In this example, a pragma is inserted into the code to unroll a for-loop. After the pragma,
keyword AP is always specif ied and then the directive:

for (int i = 0; i < 64; ++i) {
#pragma AP UNROLL
...

}

Any directives entered in the C code are shared by every implementation which uses the C
specification. This could be a desired feature, to have the C specif ication contain all the
optimization directives, however in many cases designers may wish to separate the pragmas
from the source to allow different solutions to be created (when pragmas are used, every
solution which uses the source will have the same optimizations performed).

In the above example, the command set_directive_loop_unroll could have been
used at the command line interface provided the loop had a named label or the unroll
directive could have been added to the source code using the GUI directives tab.

The following can be viewed using the help command within High-Level Synthesis and lists
the associated pragma for each optimization directive:

>autopilot help
...
set_directive_allocation - Directive ALLOCATION
set_directive_array_map - Directive ARRAY_MAP
set_directive_array_partition - Directive ARRAY_PARTITION
set_directive_array_reshape - Directive ARRAY_RESHAPE
set_directive_array_stream - Directive ARRAY_STREAM
set_directive_dataflow - Directive DATAFLOW
set_directive_dependence - Directive DEPENDENCE
set_directive_expression_balance - Directive EXPRESSION_BALANCE
set_directive_function_instantiate - Directive FUNCTION_INSTANTIATE
set_directive_inline - Directive INLINE
set_directive_interface - Directive INTERFACE
set_directive_latency - Directive LATENCY
set_directive_loop_flatten - Directive LOOP_FLATTEN
set_directive_loop_merge - Directive LOOP_MERGE
set_directive_loop_tripcount - Directive LOOP_TRIPCOUNT
set_directive_occurrence - Directive OCCURRENCE
set_directive_pipeline - Directive PIPELINE
High-Level Synthesis www.xilinx.com 367
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

Using High-Level Synthesis Commands
set_directive_platform - Directive PLATFORM
set_directive_power - Directive POWER
set_directive_protocol - Directive PROTOCOL
set_directive_resource - Directive RESOURCE
set_directive_top - Directive TOP
set_directive_unroll - Directive UNROLL
...

The easiest way to determine what can be optimized and what the command or pragma is:

1. Open the code in the GUI.

2. Select the Directive tab, as shown in Figure 1-1, which shows all objects which can be
optimized.

3. With the object selected, right-click with the mouse to specify a directive.

a. Select the Destination as Into Directive File to see the command in
constraints/directive.tcl.

OR

b. Select the Destination as Into Source File to see the pragma inserted directly into
the code.
High-Level Synthesis www.xilinx.com 368
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis Commands
High-Level Synthesis Commands

add_file

Syntax
add_file [OPTIONS] <src_files>

Description
The add_file command adds design source files to the current project. The current
directory is automatically searched for any header f iles included in the design source. To
use header f iles stored in directories other than the current directory, use the -cflags
option to add those directories to the search path.

<src_files> - A list of source files with the description of the design.

Options
-tb - Specify any f iles used as part of the design testbench. These files are not synthesized
but used when post-synthesis verif ication is executed by the cosim_design command. No
design f iles can be included in the list of source f iles when this option is used: use a
separate add_file command to add design files and testbench f iles.

-cflags <string> - A string with any desired GCC compilation options.

-type (c|sc) - Specify if the source files are a C/C++ (c) or a SystemC (sc). The default is
C/C++ source f iles.

Pragma
There is no pragma equivalent of the add_file command.

Examples
This example adds three design f iles to the project.

add_file a.cpp

add_file b.cpp

add_file c.cpp

Multiple f iles can be added with a single command line.
High-Level Synthesis www.xilinx.com 369
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

autoimpl
add_file "a.cpp b.cpp c.cpp"

The following example adds a SystemC file with compiler flags to enable macro
USE_RANDOM and specifies an additional search path, sub-directory ./lib_functions,
for header files.

add_file -type sc top.cpp -cflags "-DUSE_RANDOM -I./lib_functions"

The -tb option is used to add testbench files to the project. This example adds multiple
f iles with a single command, including the testbench a_test.cpp and all data f iles read by
the testbench, input_stimuli.dat and out.gold.dat.

add_file -tb "a_test.cpp input_stimuli.dat out.gold.dat"

If the testbench data f iles in the previous example are stored in a separate directory, for
example test_data, the directory can be added to the project in place of the individual
data files.

add_file -tb a_test.cpp

add_file -tb test_data

autoimpl

Syntax
autoimpl [OPTIONS]

Description
Automatically creates and executes the scripts to create a gate-level implementation of the
RTL.

You can specify that a specif ic user-provided script to be used for the implementation in
place of the default High-Level Synthesis generated script.

The implementation scripts are created in sub-directory impl/<rtl> of the active solution.
By default, autoimpl automatically executes the scripts in this same directory, to produce
a gate level implementation. The -setup option can be used to create the scripts only:
logic synthesis is not invoked.

The -export and -custom_ports options can be used to create a pcore implementation
for use within the EDK environment. The option -xil_coregen will call the Core Generator
tool to create and instantiate optimized components (such as BRAM, Floating-Point blocks)
prior to logic synthesis.
High-Level Synthesis www.xilinx.com 370
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

autoimpl
Options
-export - This option creates an additional implementation of the design, with the
appropriate wrappers and external adapters, which can be imported into EDK as a core
model (can be directly copied to a project pcores directory).

-par - This option can only be used with the -tool option when specifying Synopsys
Synplify products for RTL synthesis. When this option is specif ied the place and route
implementation will be executed using the ISE Design Suite (otherwise place and route is
not performed).

-rtl (verilog|vhdl) - Determines which HDL is used for the RTL implementation. The
default is verilog.

-setup - When this option is specif ied all the implementation f iles will be created in the
impl/<rtl> directory of the active solution but the implementation will not be executed.

-tool - Specify which RTL synthesis tool is used to create a gate-level implementation. The
options are:

° ise - Xilinx ISE Design Suite (default)

° synplify - Synopsys Synplify

The -tool option can also be used to pass a string with additional tool options. This
option is only available using the command line and is not available in the GUI. For
example, to specify that Synplify Professional use a specific license, the following can be
used:

autoimpl -tool "synplify_pro -licensetype synplifypro_xilinx"

-xil_coregen

The string option can also be used to specify the exact executable. For example,
synplify_pro, synplify_pro_dp or synplify_premier:

autoimpl - tool "synplify_premier"

This option uses the CORE Generator tool flow to implement optimized netlists for
components in the RTL (such as BRAM/FP).

Pragma
There is no pragma equivalent of the autoimpl command.

Examples
This example creates all the scripts for implementation tool, but does not start
implementation.
High-Level Synthesis www.xilinx.com 371
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

cosim_design
autoimpl -setup

The following example implements the design using Synplify (with the default Verilog RTL):

autoimpl -tool synplify

This example creates the scripts for implementing the VHDL using the ISE Design Suite, but
does not execute the ISE Design Suite, calls the CORE Generator tool to create optimized
modules (such as memories, FIFOs) which are instantiated in the RTL prior to synthesis and
creates a pcore directory for use with EDK.

autoimpl -rtl vhdl -setup -xil_coregen -export

cosim_design

Syntax
cosim_design [OPTIONS]

Description
Executes post-synthesis co-simulation of the synthesized RTL with the original C-based
testbench. The files for the testbench are specif ied with the add_file -tb command and
option. The simulation is run in sub-directory sim/<HDL> of the active solution, where
<HDL> is selected by the -rtl option.

For a design to be verif ied with cosim_design, the design must use interface mode
ap_ctrl_hs and each output port must use one of the following interface modes which
identify, with a write valid signal, when an output is written: ap_vld, ap_ovld, ap_hs,
ap_memory, ap_fifo or ap_bus.

Options
-O - Enables optimize compilation of the C testbench and RTL wrapper. Without
optimization, cosim_design will compile the testbench as quickly as possible. Enable
optimization to improve the run time performance, if possible, at the expense of
compilation time.

Note: Although the resulting executable may potentially run much faster the run time
improvements are design dependent. Optimizing for run time may require large amounts of memory
for large functions.

-argv <string> - Option to specify the argument list for the behavioral testbench. The
<string> will be passed onto the main C function.
High-Level Synthesis www.xilinx.com 372
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

cosim_design
-coverage - This option enables the coverage feature during simulation with the VCS
simulator.

-ignore_init <integer> - Disables comparison checking for the f irst <integer> number
of clock cycles. This is useful when it is know the RTL will initially start with unknown ('hX)
values.

-ldflags <string> - Provides for the specification of options that need to be passed to
the linker for co-simulation. This is typically used to pass on include path information or
library information for the C test bench.

-mflags <string> - Provides for the specif ication of options that need to be passed to
the compiler for SystemC simulation. This is typically used to speed up compilation.

-rtl (systemc|vhdl|verilog) - Selects which RTL is to be used for verif ication with the
C testbench. For Verilog and VHDL a simulator must be specif ied with the -tool option.
The default is systemc.

-setup - When this option is specified all the simulation f iles will be created in the
sim/<HDL> directory of the active solution but the simulation will not be executed.

-tool (vcs|modelsim |riviera) - Option to select the simulator to be used to
co-simulate the RTL with the C testbench. No tool needs to be specif ied for SystemC
co-simulation: High-Level Synthesis will use its included SystemC kernel.

-trace_level (none|all) - Determines the level of VCD output which is performed.
Option all results in all ports and signals being saved to the VCD file. The VCD file is saved
in the sim/<HDL> directory of the current solution when the simulation executes. The
default is none.

Pragma
There is no pragma equivalent of the cosim_design command.

Examples
Perform verif ication using the SystemC RTL.

cosim_design

Use the VCS simulator to verify the Verilog RTL, enable the VCD coverage feature and save
all signals in VCD format.

cosim_design -tool VCS -rtl verilog -coverage -trace_level all

In this example, the VHDL RTL is verif ied using ModelSim and values 5 and 1 are passed to
the testbench function and used in the RTL verif ication.

cosim_design -tool modelsim -rtl vhdl -argv "5 1"
High-Level Synthesis www.xilinx.com 373
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

autosyn
This f inal example creates an optimized simulation model for the SystemC RTL but does not
execute the simulation. To run the simulation, execute run.sh in the sim/systemc
directory of the active solution.

cosim_design -O -setup

autosyn

Syntax
autosyn

Description
The autosyn command synthesizes the High-Level Synthesis database for the active
solution. The command can only be executed in the context of an active solution. The
elaborated design in the database is scheduled and mapped onto RTL, based on any
constraints that are set.

Pragma
There is no pragma equivalent of the autosyn command.

Examples
Run High-Level Synthesis synthesis on the top-level design.

autosyn

close_project

Syntax
close_project

Description
The close_project command closes the current project, so this project is no longer
active in the High-Level Synthesis session. The command prevents the designer from
entering any project or solution specific commands, but is not really required since opening
or creating a new project will automatically close the current active project.
High-Level Synthesis www.xilinx.com 374
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

close_solution
Pragma
There is no pragma equivalent of the close_project command.

Examples
Close the current project. All results are automatically saved.

close_project

close_solution

Syntax
close_solution

Description
The close_solution command closes the current solution, so this solution is no longer
active in the High-Level Synthesis session. The command prevents the designer from
entering any solution specif ic commands, but is not really required since opening or
creating a new solution will automatically close the current active solution.

Pragma
There is no pragma equivalent of the close_solution command.

Examples
Close the current solution. All results are automatically saved.

close_solution

config_array_partition

Syntax
config_array_partition [OPTIONS]
High-Level Synthesis www.xilinx.com 375
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_array_partition
Description
This command allows the default behavior for array partitioning to be specified.

OPTIONS
-auto_partition_threshold <int> - Sets the threshold for automatically partitioning
arrays (including those without constant indexing). Arrays which have fewer elements than
the specif ied threshold limit will be automatically partitioned into individual elements,
unless interface/core specification is applied on the array. The default is 4.

-auto_promotion_threshold <int> - Sets the threshold for automatically partitioning
arrays with constant-indexing. Arrays which have fewer elements than the specif ied
threshold limit and have constant-indexing (the indexing is not variable) will be
automatically partitioned into individual elements. The default is 64.

-exclude_extern_globals - Excludes external global arrays from throughput driven
auto-partitioning. By default, external global arrays are partitioned when option
-throughput_driven is selected. This option has no effect unless option
-throughput_driven is selected.

-include_ports - Enables auto-partitioning of IO arrays. This has the effect of reducing
an array IO port into multiple ports, each port the size of the individual array elements.

-scalarize_all - This option partitions all arrays in the design into their individual
elements.

-throughput_driven - Enables auto-partitioning of arrays based on the throughput.
High-Level Synthesis will automatically determine if partitioning the array into individual
elements will allow it to meet any specified throughput requirements.

Pragma
There is no pragma equivalent of the config_array_partition command.

Examples
In this example, all arrays in the design with less than 12 elements, but not global arrays, are
automatically partitioned into individual elements.

config_array_partition auto_partition_threshold 12 -exclude_extern_globals

This example instructs High-Level Synthesis to automatically determine which arrays to
partition, including arrays on the function interface, to improve throughput.

config_array_partition -throughput_driven -include_ports

Partition all arrays in the design, including global arrays, into individual elements.
High-Level Synthesis www.xilinx.com 376
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_bind
config_array_partition -scalarize_all

config_bind

Syntax
config_bind [OPTIONS]

Description
This command allows the default options for micro-architecture binding to be set. Binding
is the process where operators, such as addition, multiplication, and shift are mapped to
specific RTL implementations; for example a mult operation implemented as a
combinational or pipelined RTL multiplier.

Options
-effort (low|medium|high) - The optimizing effort level controls the trade off between
run-time and optimization. The default is medium effort.

A low effort optimization will improve the run time and may be useful for cases where
little optimization is possible, for example when all if-else statements have mutually
exclusive operators in each branch and no operator sharing can be achieved.

A high effort optimization will result in increased run time but will typically provide
better quality of results.

-min_op <string> - This option tells High-Level Synthesis to minimize the number of
instances of a particular operator. If there are multiple such operators in the code, this will
result in them being shared onto the fewest number of RTL resources (cores).

The following operators can be specif ied as arguments to this command option:

° add - Addition

° sub - Subtraction

° mul - Multiplication

° icmp - Integer Compare

° sdiv - Signed Division

° udiv - Unsigned Division

° srem - Signed Remainder

° urem - Unsigned Remainder
High-Level Synthesis www.xilinx.com 377
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_dataflow
° lshr - Logical Shift-Right

° ashr - Arithmetic Shift-Right

° shl - Shift-Left

Pragma
There is no pragma equivalent of the config_bind command.

Examples
This example tells High-Level Synthesis to spend more effort in the binding process, try
more options for implementing the operators, and try to produce a design with better
resource usage.

config_bind -effort high

In this example, the number of multiplication operators is minimized, resulting in RTL with
the fewest number of multipliers.

config_bind -min_op mul

config_dataflow

Syntax
config_dataflow [OPTIONS]

Description
This command specif ies the default behavior of dataflow pipelining (implemented by the
set_directive_dataflow command). This configuration command allows you to
specify the default channel memory type and depth.

Options
-default_channel (fifo|pingpong) - By default a RAM memory, configured in
pingpong fashion, is used to buffer the data between functions or loops when dataflow
pipelining is used. When streaming data is used (where the data is always read and written
in consecutive order), a FIFO memory will be more eff icient and can be selected as the
default memory type.

Note: Arrays must be set to streaming using the set_directive_array_stream command in order to
perform FIFO accesses.
High-Level Synthesis www.xilinx.com 378
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_interface
-fifo_depth <integer> - An integer value specifying the default depth of the FIFOs. This
option has no effect when pingpong memories are used. If not specif ied the FIFOs used in
the channel will be set to the size of the largest producer or consumer (whichever is largest).
In some cases this may be too conservative and introduce FIFOs which are larger than they
need to be. This option can be used when you know the FIFOs are larger than they are
required to be. Be careful when using this option as incorrect use may result in a design
which fails to operate correctly.

Pragma
There is no pragma equivalent of the config_dataflow command.

Examples
Change the default channel from ping-pong memories to a FIFO.

config_dataflow -default_channel

Change the default channel from ping-pong memories to a FIFO with a depth of 6.

Note: If the design implementation requires a FIFO with greater than 6 elements, this setting will
result in which fails RTL verif ication: this option is a user over-ride and care should be taken when
using it.

config_dataflow -default_channel fifo -fifo_depth 6

config_interface

Syntax
config_interface [OPTIONS]

Description
The config_interface command specifies the default interface used to implement the
RTL port of each function argument during interface synthesis. The function arguments can
be pass-by-value variables, pointers, arrays and pass-by-reference variables (as permitted
by the input language).

In addition, the config_interface command can be used to specify the default interface
for function level control (such as start, done) and to expose any global variables used by
the function as ports on the RTL design.

The default interface is used if none is explicitly specified for the function argument or if an
incompatible interface type is specified. A complete list of all interface types is provided
High-Level Synthesis www.xilinx.com 379
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_interface
below and a detailed explanation of each interface is provided in the High-Level Synthesis
User Guide (UG867).

Interface Types

ap_none - This interface provides no additional handshake or synchronization ports and
can be applied to any function argument type except arrays. This is the default interface
type for all read-only arguments (input ports), except array arguments.

ap_ack - Can be specif ied on any function argument except arrays and provides an
additional acknowledge port to indicate input data has been read by this RTL block or
confirm output data has been read by a downstream RTL block.

ap_vld - Can be specif ied on any function argument except arrays and provides an
additional data-valid port to indicate when input data is valid and can be read or when
output data is valid.

ap_ovld - Identical to the ap_vld interface except that it only applies to write-only
arguments (RTL output ports). This is the default interface type for all write-only arguments,
except array arguments.

ap_hs - Implements each argument with an RTL port supported by a full two-way
acknowledge and valid handshake. This can be specif ied for any function argument except
arrays.

ap_fifo - An ap_fifo interface can be specif ied for pointer, array or pass-by-reference
arguments. An ap_fifo interface implements the data accesses as reads and writes to a
FIFO, with associated empty, full and data valid signals.

ap_bus - This interface implements pointer and pass-by-reference variables as a general
purpose bus access similar to a typical DMA interface.

ap_memory - This interface is the default type for arrays arguments and can only be
specified on array arguments. An ap_memory interface results in an RTL implementation
which accesses the array elements as data values in a RAM, with associated address, chip
enable and write enable control signals. The set_directive_resource command
should be used to identify which RAM resource in the technology library is used for the
array: this will in turn specify the number of ports available and which control signals are
implemented.

ap_ctrl_none and ap_ctrl_hs - These interface types can only be specif ied on the
function return argument. The ap_ctrl_hs is the default and adds function level control
signals: an input start signal, output idle and done signals. If there is a function return
argument, the done signal signif ies when the return value is valid. The ap_ctrl_none
type ensures these control signals are not added to the design.
High-Level Synthesis www.xilinx.com 380
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_interface
Options
-all (ap_none|ap_stable|ap_ack|ap_vld|ap_ovld|ap_hs|ap_ctrl_none|
ap_ctrl_hs|ap_fifo|ap_bus|ap_memory) - The default interface type for all ports
types (input, output and inout) and function-level handshakes. The default is ap_none.

-clock_enable - Add a clock-enable port (ap_ce) to the design. The clock enable
prevents all clock operations when it is active low: disables all sequential operations.

-expose_global - Expose global variables as I/O ports. If a variable is created as a global
but all read and write accesses are local to the design, the resource will be created in the
design and there is no need for an IO port in the RTL. If however, the global variable is
expected to be an external source or destination outside the RTL block, ports should be
created using this option.

-in (ap_none|ap_stable|ap_ack|ap_vld|ap_hs|ap_fifo|ap_bus|ap_memory)
- Specify the default interface type for all input (read-only) arguments. The default is
ap_none.

-inout (ap_none|ap_stable|ap_ack|ap_vld|ap_ovld|ap_hs|ap_fifo|ap_bus
|ap_memory) - Specify the default interface type for all inout (read-write) arguments. The
default is ap_none.

-out (ap_none|ap_ack|ap_vld|ap_ovld|ap_hs|ap_fifo|ap_bus|ap_memory) -
Specify the default interface type for all output (write-only) arguments. The default is
ap_none.

-return (ap_ctrl_none|ap_ctrl_hs) - Specify if function level handshakes are used
or not. The default is ap_ctrl_hs.

Pragma
There is no pragma equivalent of the config_interface command.

Examples
Use an acknowledge interface for input ports.

config_interface -in ap_ack

Specify all outputs to use a handshake interface.

config_interface -out ap_hs

Do not implement any function level handshakes signals.

config_interface -return ap_ctrl_none
High-Level Synthesis www.xilinx.com 381
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_rtl
Configure all IO ports (read-write) to be implemented as valid interfaces and add a clock
enable port to the design.

config_interface -inout ap_vld -clock_enable

config_rtl

Syntax
config_rtl [OPTIONS] <model_name>

Description
This configures various attributes of the output RTL, such as the type of reset used, the
encoding of the state machines and allows a user specif ic identif ication to be used in the
RTL.

By default, these options are applied to the top-level design and all RTL blocks within the
design. Optionally, a specific RTL model may be specified.

<model_name> - The RTL module to configure. If none is provided, the top-level design (and
all sub-blocks) is assumed.

Options
-header <string> - This option places the contents of f ile <string> at the top (as
comments) of all output RTL and simulation f iles. This can be used to ensure the output RTL
f iles contain user specif ied identif ication.

-prefix <string> - Specify a prefix to be added to all RTL entity/module names.

-reset (none|control|state|all) - Variables initialized in the C code are always
initialized to the same value in the RTL and hence in the bit-stream. This initialization
however is only performed at power-on and not repeated when a reset is applied to the
design. The setting applied with the -reset option determines how registers/memories
are reset. The default is control.

° none - no reset is added to the design.

° control - reset control registers, such as those used in state machines and to
generate IO protocol signals.

° state - reset control registers and registers/memories derived from static/global
variables in the C code. Any static/global variable initialized in the C code is reset to
its initialized value.
High-Level Synthesis www.xilinx.com 382
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

config_schedule
° all - reset all registers and memories in the design. Any static/global variable
initialized in the C code is reset to its initialized value.

-reset_async - This option causes all registers to use a asynchronous reset. If this option
is not specified a synchronous reset is used.

-reset_level (low|high) - This option allows the polarity of the reset signal to be
either active low or active high. The default is high.

-encoding (bin|onehot|gray) - Specify the encoding style used by the design's state
machine. The default is bin.

Pragma
There is no pragma equivalent of the config_rtl command.

Examples
This example configures the output RTL to have all registers reset with an asynchronous
active low reset.

config_rtl –reset all -reset_async -reset_level low

Add the contents of f ile my_message.txt as a comment to all RTL output f iles.

config_rtl -header my_mesage.txt

config_schedule

Syntax
config_schedule [OPTIONS]

Description
This configures the default type of scheduling performed by High-Level Synthesis.

Options
-effort (high|medium|low) - Specify the effort used during scheduling operations. The
default is medium effort. A low effort optimization will improve the run time and may be
useful for cases where when there are few choices for the design implementation. A high
effort optimization will result in increased run time but will typically provide better quality
of results.
High-Level Synthesis www.xilinx.com 383
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

create_clock
-verbose - The verbose option will print out the critical path when scheduling fails to
satisfy any directives or constraints.

Pragma
There is no pragma equivalent of the config_schedule command.

Examples
Change the default schedule effort to low to reduce run time.

config_schedule -effort low

create_clock

Syntax
create_clock -period <number> [OPTIONS]

Description
The create_clock command creates a virtual clock for the current solution. The
command can only be executed in the context of an active solution. The clock period is a
constraint that drives Autopilot's optimization (chaining as many operations as feasible in
the given clock period).

For C and C++ designs, only a single clock is supported. For SystemC designs, multiple
named clocks can be created and applied to different SC_MODULEs using the
set_directive_clock command.

Options
-name <string> - Specify the name of the clock. If no name is given a default name is used.

-period <number> - Specify the clock period in ns or Mhz. If no units are specified then ns
are assumed. If no period is specified a default period of 10 ns is used.

Pragma
There is no pragma equivalent of the create_clock command.
High-Level Synthesis www.xilinx.com 384
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

delete_project
Examples
Specify a clock period of 50ns.

create_clock -period 50

This example uses the default period of 10ns to specify the clock.

create_clock

For a SystemC designs, multiple named clocks can be created (and applied using
set_directive_clock).

create_clock -period 15 fast_clk

create_clock -period 60 slow_clk

To specify clock frequency in MHz:

create_clock -period 100MHz

delete_project

Syntax
delete_project <project>

Description
The delete_project command deletes the directory associated with the project.

The command checks the corresponding project directory <project> to ensure it is a valid
High-Level Synthesis project before deleting it. If no directory <project> exists in the
current work directory the command has no effect.

 <project> - Specify the name of the project.

Pragma
There is no pragma equivalent of the delete_project command.

Examples
Delete project Project_1 by removing the directory ./Project_1 and all contents.

delete_project Project_1
High-Level Synthesis www.xilinx.com 385
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

delete_solution
delete_solution

Syntax
delete_solution <solution>

Description
The delete_solution command removes a solution from an active project, and deletes
the <solution> sub-directory from the project directory.

If the solution does not exist in the project directory this command has no effect.

 <solution> - Specify the name of the solution to be deleted.

Pragma
There is no pragma equivalent of the delete_solution command.

Examples
Delete solution Solution_1 from the active project by removing the sub-directory
Solution_1 from the active project directory.

delete_solution Solution_1

elaborate

Syntax
elaborate [OPTIONS]

Description
The elaborate command compiles the source f iles and creates the High-Level Synthesis
database for the active solution. The command can only be executed in the context of an
active solution.

Some initial processing of functions, loops and arrays is done, based on any directives that
are set.
High-Level Synthesis www.xilinx.com 386
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

help
Options
-effort (low|medium|high) - By default, the medium effort is used: this should
generally provide the best balance of run time and Quality-of-Results (QoR). The high
effort uses transformations that will lead to the best QoR but will take longer to run. A low
effort will run faster but may result in a less optimal design and should only be used for
cases where little or no optimization is possible.

Pragma
There is no pragma equivalent of the elaborate command.

Examples
After specifying all input source files and libraries, elaborate the design to create an internal
model which can be synthesized into RTL.

elaborate

Elaborate the design using high effort.

elaborate -effort high

help

Syntax
help [OPTIONS] <cmd>

Description
When used without any <cmd> the help command lists all the High-Level Synthesis Tcl
commands.

When used with an High-Level Synthesis command as an argument, the help command
provides information on the specified command. Auto-completion using the tab key, for
legal High-Level Synthesis commands, is active when typing the command argument.

Options
<cmd> - Name of the command to provide more help on.
High-Level Synthesis www.xilinx.com 387
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

list_core
Pragma
There is no pragma equivalent of the help command.

Examples
List the help page for command add_file.

help add_file

List all commands and directives used in High-Level Synthesis.

help

list_core

Syntax
list_core [OPTIONS]

Description
List all the cores in the currently loaded library. Cores are the components used to
implement operations in the output RTL (such as adders, multipliers, memories).

After elaboration the operations in the RTL are represented as operators in the internal
database. During scheduling operators are mapped to cores from the library to implement
the RTL design. Multiple operators may be mapped on the same instance of a core, sharing
the same RTL resource.

The list_core command allows the available operators and cores to be listed by using
the relevant option:

° Operation - This shows which cores in the library can be used to implement each
operation.

° Type - Lists the available cores by type, for example those which implement
functional operations or those which implement memory/storage operations.

If no options are provided, the command will list all cores in the library.

The information provided by the list_core command can be used with the
set_directive_resource command to implement specif ic operations onto specific
cores.
High-Level Synthesis www.xilinx.com 388
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

list_core
Options
-operation (opers) - List the cores in the library which can implement the specified
operation. The following is the list of operations:

° add - Addition

° sub - Subtraction

° mul - Multiplication

° udiv - Unsigned Division

° urem - Unsigned Remainder (Modulus operator)

° srem - Signed Remainder (Modulus operator)

° icmp - Integer Compare

° shl - Shift-Left

° lshr - Logical Shift-Right

° ashr - Arithmetic Shift-Right

° mux - Multiplexor

° load - Memory Read

° store - Memory Write

° fiforead - FIFO Read

° fifowrite - FIFO Write

° fifonbread - Non-Blocking FIFO Read

° fifonbwrite - Non-Blocking FIFO Write

-type (functional_unit|storage|connector|interface|ip_block) - This
option will only list cores of the specif ied type.

° Function Units - Cores which implement standard RTL operations (such as add,
multiply, compare)

° Storage - Cores which implement storage elements such as registers or memories.

° Connectors - Cores used to implement connectivity within the design. This included
direct connections and streaming storage elements.

° Adapter - Cores which implement interfaces used to connect the top-level design
when IP is generated. These interfaces are implemented in the RTL wrapper used in
the IP generation flow (Xilinx® EDK).

° IP Blocks - Any IP cores added by you.
High-Level Synthesis www.xilinx.com 389
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

list_part
Pragma
There is no pragma equivalent of the list_core command.

Examples
This example lists all core in the currently loaded libraries which can implement a add
operation.

list_core -operation add

Here, all available memory (storage) cores in the library are listed. The
set_directive_resource command can be used to implement an array using one of
the available memories.

list_core -type storage

list_part

Syntax
list_part [OPTIONS]

Description
This command returns the supported device families or supported parts for a given family.
If no option is provided, it will return all supported families. To return parts of a family,
specify one of the supported families which were listed when no option was provided to the
command: this will list the parts supported within that family.

Pragma
There is no pragma equivalent of the list_part command.

Examples
This following example returns all supported families.

 list_part

Here, all supported 'virtex6' parts are returned as a list.

 list_part virtex6
High-Level Synthesis www.xilinx.com 390
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

open_project
open_project

Syntax
open_project [OPTIONS] <project>

Description
The open_project command opens an existing project, or creates a new one.

There can only be one project active at any given time in an High-Level Synthesis session.
A project can contain multiple solutions. A project can be closed with the close_project
command or by starting another project with the open_project command. The
delete_project command will completely delete the project directory (removing it from
the disk) and any solutions associated it.

<project> - Specify the name of the project.

Options
-reset - Resets the project by removing any project data which already exists. This option
should be used when executing High-Level Synthesis with Tcl scripts, otherwise each new
add_file or add_library command will add additional f iles to the existing data.

Any previous project information on design source files, header f ile search paths and the
top level function is removed. The associated solution directories and f iles are kept (but
may now have invalid results: the delete_project command will accomplish the same as
the -reset option and remove all solution data).

Pragma
There is no pragma equivalent of the open_project command.

Examples
Open a new or existing project named Project_1.

open_project Project_1

Open a project and remove any existing data (preferred method when using Tcl scripts, to
prevent adding source or library files to the existing project data).

open_project -reset Project_2
High-Level Synthesis www.xilinx.com 391
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

open_solution
open_solution

Syntax
open_solution [OPTIONS] <solution>

Description
The open_solution command opens an existing solution or creates a new one in the
currently active project. Trying to open or create a solution when there is no active project
results in an error. There can only be one solution active at any given time in an High-Level
Synthesis session.

Each solution is managed in a sub-directory of the current project directory. If the solution
does not exist yet in the current work directory, then a new solution is created. A solution
can be closed by the close_solution command or by opening another solution with the
open_solution command. The delete_solution command will remove them from the
project and delete the corresponding subdirectory.

<solution> - Specify the name of the solution.

Options
-reset - Resets the solution data if the solution already exists. Any previous solution
information on libraries, constraints and directives is removed. Synthesis, verif ication and
implementation results are also removed.

Pragma
There is no pragma equivalent of the open_solution command.

Examples
Open a new or existing solution in the active project named Solution_1.

open_solution Solution_1

Open a solution in the active project and remove any existing data (preferred method when
using Tcl scripts, to prevent adding to the existing solution data).

open_solution -reset Solution_2
High-Level Synthesis www.xilinx.com 392
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_clock_uncertainty
set_clock_uncertainty

Syntax
set_clock_uncertainty <uncertainty> <clock_list>

Description
The set_clock_uncertainty command sets a margin on the clock period defined by
create_clock . The margin is subtracted from the clock period to create an effective clock
period. If the clock uncertainty is not defined, it will default to 12.5% of the clock period.

High-Level Synthesis will optimize the design based on the effective clock period, providing
a margin for downstream tools to account for logic synthesis and routing. The command
can only be executed in the context of an active solution. High-Level Synthesis will still use
the specif ied clock period in all output f iles for verif ication and implementation.

For SystemC designs where multiple named clocks are specified by the create_clock
command, a different clock uncertainty can be specif ied on each named clock by specifying
the named clock.

<uncertainty> - A value, specif ied in ns, which represents how much of the clock period is
used as a margin.

<clock_list> - A value, specif ied in ns, which represents how much of the clock period is
used as a margin.

Pragma
There is no pragma equivalent of the set_clock_uncertainty command.

Examples
Specify an uncertainty/margin of 0.5ns on the clock: this effectively reduces the clock
period High-Level Synthesis can use by 0.5ns.

set_clock_uncertainty 0.5

In this SystemC example, two clock domains and created and a different clock uncertainty is
specified on each domain. (Multiple clocks are supported in SystemC designs: the
set_directive_clock command is used to apply the clock to the appropriate function).

create_clock -period 15 fast_clk

create_clock -period 60 slow_clk

set_clock_uncertainty 0.5 fast_clock
High-Level Synthesis www.xilinx.com 393
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_allocation
set_clock_uncertainty 1.5 slow_clock

set_directive_allocation

Syntax
set_directive_allocation [OPTIONS] <location> <instances>

Description
Specify instance restrictions for resource allocation. This defines, and can limit, the number
of RTL instances used to implement specific functions or operations.

For example, if the C source has four instances of a function foo_sub, the
set_directive_allocation command can be used to ensure there is only one instance
of foo_sub in the final RTL (all four instances will be implemented using the same RTL
block).

<location> - The location string in the format of function[/label].

<instances> - A function or operator.

The function can be any function in the original C code and which has not been inlined by
the set_directive_inline command or inlined automatically by High-Level Synthesis.

The list of operators is as follows (provided there is an instance of such an operation in the
C source code):

° add - Addition

° sub - Subtraction

° mul - Multiplication

° icmp - Integer Compare

° sdiv - Signed Division

° udiv - Unsigned Division

° srem - Signed Remainder

° urem - Unsigned Remainder

° lshr - Logical Shift-Right

° ashr - Arithmetic Shift-Right

° shl - Shift-Left
High-Level Synthesis www.xilinx.com 394
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_map
Options
-limit <integer> - A maximum limit on the number of instances (of the type defined by
the -type option) to be used in the RTL design.

-type (function|operation) - The instance type can be function or operation. The
default is function.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP allocation \

instances=<Instance Name List> \

limit=<Integer Value> \

<operation, function>

Examples
Given a design foo_top with multiple instances of function foo, this command (the
pragma is also shown) limits the number of instances of foo in the RTL to 2.

set_directive_allocation -limit 2 -type function foo_top foo

#pragma AP allocation instances=foo limit=2 function

The following command (the pragma is also shown) limits the number of multipliers used in
the implementation of My_func to 1.

Note: This limit does not apply to any multipliers which may reside in sub-functions of My_func.
To limit the multipliers used in the implementation of any sub-functions, specify an allocation
directive on the sub-functions or inline the sub-function into function My_func.

set_directive_allocation -limit 1 -type operation My_func mul

#pragma AP allocation instances=mul limit=1 operation

set_directive_array_map

Syntax
set_directive_array_map [OPTIONS] <location> <array>
High-Level Synthesis www.xilinx.com 395
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_map
Description
This command maps a smaller array into a larger array. The typical usage is to use multiple
set_directive_array_map commands (with the same -instance target) to map multiple
smaller arrays into a single larger array which can then be targeted to a single larger
memory (RAM or FIFO) resource.

The -mode option is used to determine if the new target is a concatenation of elements
(horizontal mapping) or bit-widths (vertical mapping). The arrays are concatenated in the
order the set_directive_array_map commands are issued starting at target element
zero in horizontal mapping or bit zero in vertical mapping.

<location> - The name of the location, in the format function[/label], which contains the
array variable.

<variable> - Specify the name of the array variable to be mapped into the new target array
instance.

Options
-instance <string>- Specify the new array instance name, where the current array
variable is to be mapped.

-mode (horizontal|vertical) - Horizontal mapping concatenates the arrays to form a
target with more elements. Vertical mapping concatenates the array to form a target with
longer words. The default is horizontal.

-offset <integer> - This is only relevant for horizontal mapping and specif ies an integer
value that indicates the absolute offset in the target instance for current mapping
operation: element 0 of the array variable will map to element <int> of the new target (for
example, other elements will map to <int+1>, <int+2>). If the value is not specified,
High-Level Synthesis will calculate the required offset automatically, to avoid any overlap
(for example, concatenate the arrays starting at the next unused element in the target).

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP array_map \

variable=<variable> \

instance=<instance> \

<horizontal, vertical> \

offset=<int>
High-Level Synthesis www.xilinx.com 396
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_partition
Examples
The following commands (the equivalent pragmas are also shown) map arrays A[10] and
B[15] in function foo into a single new array AB[25]. Element AB[0] will be the same as A[0],
element AB[10] will be the same as B[0] (since no -offset option is used) and the bit-width
of array AB[25] will be the maximum bit-width of A[10] or B[15].

set_directive_array_map -instance AB -mode horizontal foo A

set_directive_array_map -instance AB -mode horizontal foo B

#pragma AP array_map variable=A instance=AB horizontal

#pragma AP array_map variable=B instance=AB horizontal

This example concatenates arrays C and D into a new array CD with same number of bits as
C and D combined. The number of elements in CD will be maximum of C or D.

set_directive_array_map -instance CD -mode vertical foo C

set_directive_array_map -instance CD -mode vertical foo D

#pragma AP array_map variable=C instance=CD vertical

#pragma AP array_map variable=D instance=CD vertical

set_directive_array_partition

Syntax
set_directive_array_partition [OPTIONS] <location> <array>

Description
Partitions an array into smaller arrays or individual elements. This will result in RTL with
multiple small memories or multiple registers instead of one large memory. This effectively
increases the amount of read and write ports for the storage, potentially improving the
throughput of the design, but will require more memory instances or registers.

<location> - The name of the location, in the format function[/label], which contains the
array variable.

<array> - Specify the name of the array variable to be partitioned.

Options
-dim <integer> - This is only relevant for multi-dimensional arrays and specifies which
dimension of the array is to be partitioned. If a value of 0 is used, all dimensions will be
partitioned with the specified options. Any other value will partition only that dimension,
for example, if a value 1 is used, only the f irst dimension will be partitioned.
High-Level Synthesis www.xilinx.com 397
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_partition
-factor <integer> - Integer number to specify the number of smaller arrays which are to
be created. This option is only relevant for type block or cyclic partitioning.

-type (block|cyclic|complete) - Block partitioning creates smaller arrays from
consecutive blocks of the original array. This effectively splits the array into N equal blocks
where N is the integer defined by the -factor option. The default is complete.

Cyclic partitioning creates smaller arrays by interleaving elements from the original
array. For example, if -factor 3 is used, element 0 is assigned to the first new array,
element 1 to the second new array, element 3 is assigned to the third new array and
then element 4 is assigned to the first new array again.

Complete partitioning decomposes the array into individual elements. For a
one-dimensional array this corresponds to resolving a memory into individual registers.
For multi-dimensional arrays, specify the partitioning of each dimension or use -dim 0
to partition all dimensions.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP array_partition \

variable=<variable> \

<block, cyclic, complete> \

factor=<int> \

dim=<int>

Examples
The following command (the equivalent pragma is also shown) partitions array AB[13] in
function foo into four arrays. Because 4 is not an integer multiple of 13, three of the arrays
will have 3 elements and one will have 4 (containing elements AB[9:12]).

set_directive_array_partition -type block -factor 4 foo AB

#pragma AP array_partition variable=AB block factor=4

This example partitions array AB[6][4] in function foo into two arrays, each of dimension
[6][2].

set_directive_array_partition -type block -factor 2 -dim 2 foo AB

#pragma AP array_partition variable=AB block factor=2 dim=2

All dimensions of AB[4][10][6] in function foo are partitioned into individual elements by
this command.
High-Level Synthesis www.xilinx.com 398
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_reshape
set_directive_array_partition -type complete -dim 0 foo AB

#pragma AP array_partition variable=AB complete dim=0

set_directive_array_reshape

Syntax
set_directive_array_reshape [OPTIONS] <location> <array>

Description
This command combines array partitioning with vertical array mapping, to create a single
new array with fewer elements but wider words.

It will f irst split the array into multiple arrays (in an identical manner as
set_directive_array_partition) and then automatically recombine the arrays
vertically (as per set_directive_array_map -type vertical) to create a new array with
wider words.

<location> -The name of the location, in the format function[/label], which contains the
array variable.

<array> - Specify the name of the array variable to be reshaped.

Options
-dim <integer> - This is only relevant for multi-dimensional arrays and specif ies which
dimension of the array is to be reshaped. If a value of 0 is used, all dimensions will be
partitioned with the specified options. Any other value will partition only that dimension,
for example, if a value 1 is used, only the f irst dimension will be partitioned.

-factor <integer> - Integer number to specify the number of temporary smaller arrays
which are to be created; Only relevant for type block or cyclic reshaping.

-type (block|cyclic|complete) - Block reshaping creates smaller arrays from
consecutive blocks of the original array. This effectively splits the array into N equal blocks
where N is the integer defined by the -factor option and then combines the N blocks into
a single array with word-width*N. The default is complete.

Cyclic reshaping creates smaller arrays by interleaving elements from the original array.
For example, if -factor 3 is used, element 0 is assigned to the f irst new array, element
1 to the second new array, element 3 is assigned to the third new array and then
element 4 is assigned to the f irst new array again. The f inal array is a vertical
concatenation (word concatenation, to create longer words) of the new arrays into a
single array.
High-Level Synthesis www.xilinx.com 399
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_stream
Complete reshaping decomposes the array into temporary individual elements and then
recombines them into an array with a wider word. For a one-dimension array this is
equivalent to creating a very-wide register (if the original array was N elements of M
bits, the result is a register with N*M bits).

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP array_reshape \

variable=<variable> \

<block, cyclic, complete> \

factor=<int> \

dim=<int>

Examples
The following command (the equivalent pragma is also shown) reshapes 8-bit array AB[17]
in function foo, into a new 32-bit array with 5 elements. Since 4 is not an integer multiple
of 13, AB[17] will be in the lower 8-bits of the 5th element (the remainder of the 5th element
is unused).

set_directive_array_reshape -type block -factor 4 foo AB

#pragma AP array_reshape variable=AB block factor=4

This example partitions array AB[6][4] in function foo, into a new array of dimension [6][2],
where dimension 2 is twice the width.

set_directive_array_reshape -type block -factor 2 -dim 2 foo AB

#pragma AP array_reshape variable=AB block factor=2 dim=2

This command reshapes 8-bit array AB[4][2][2] in function foo, into a new single element
array (a register), 4*2*2*8(=128)-bits wide.

set_directive_array_reshape -type complete -dim 0 foo AB

#pragma AP array_reshape variable=AB complete dim=0

set_directive_array_stream

Syntax
set_directive_array_stream [OPTIONS] <location> <variable>
High-Level Synthesis www.xilinx.com 400
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_array_stream
Description

By default, array variables are implemented as RAM (random access) memories:

• Top-level function array parameters are implemented as a RAM interface port.

• General arrays are implemented as RAMs for read-write access.

• In sub-functions involved in dataflow optimizations, the array arguments are
implemented using a RAM ping-pong buffer channel.

• Arrays involved in loop-based dataflow optimizations are implemented as a RAM
ping-pong buffer channel.

However, if the data stored in the array is consumed/produced in a sequential manner, a
more eff icient communication mechanism is to use streaming data, where FIFOs are used
instead of RAMs.

Note: When an argument of the top-level function is specif ied as interface type ap_fifo, the array
is automatically identif ied as streaming.

<location> - The name of the location, in the format function[/label], which contains the
array variable.

<variable> - Name of the array variable to be implemented as a FIFO.

Options
-depth <integer> - Only relevant for array streaming in dataflow channels, this is used to
override the default FIFO depth specif ied (globally) by the config_dataflow command.

-off - This option is only relevant for array streaming in dataflow channels. If used, the
config_dataflow -default_channel fifo command globally implies a
set_directive_array_stream on all arrays in the design. This option allows streaming
to be turned off on a specif ic array (and default back to using a RAM ping-pong buffer
based channel).

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP array_stream

variable=<variable> \

off \

depth=<int>
High-Level Synthesis www.xilinx.com 401
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_clock
Examples
The following command (the equivalent pragma is also shown) specifies array A[10] in
function foo to be streaming, and implemented as a FIFO.

set_directive_array_stream foo A

#pragma AP array_reshape variable=A

In this example, array B in named loop loop_1 of function foo, is set to streaming with a
FIFO depth of 12. In this case, the pragma should be placed inside loop_1.

set_directive_array_stream -depth 12 foo/loop_1 B

#pragma AP array_reshape variable=B depth=12

Here, array C has streaming disabled (it's assumed enabled by config_dataflow in this
example)

set_directive_array_stream -off foo C

#pragma AP array_reshape variable=C off

set_directive_clock

Syntax
set_directive_clock <location> <domain>

Description
Applies the named clock to the specif ied function.

In C and C++ designs, only a single clock is supported and the clock period specified by
create_clock is automatically applied to all functions in the design.

SystemC designs support multiple clocks. Multiple named clocks may be specif ied using
the create_clock command and applied to individual SC_MODULEs using the
set_directive_clock command. Each SC_MODULE is synthesized using a single clock.

<location> - The name of the function where the named clock is to be applied.

<domain> - The name of the clock, as specified by the -name option of the create_clock
command.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.
High-Level Synthesis www.xilinx.com 402
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_dataflow
The format and options are as shown:

#pragma AP clock domain=<string>

Examples
Given a SystemC design, where top-level foo_top has clocks ports fast_clock and
slow_clock but only uses fast_clock within its function and sub-block foo which only
uses slow_clock , the following commands create both clocks, apply fast_clock to
foo_top and slow_clock to sub-block foo. The equivalent pragmas are also shown and
should be placed in the scope of the appropriate function:

Note: There is no pragma equivalent of create_clock .

create_clock -period 15 fast_clk

create_clock -period 60 slow_clk

set_directive_clock foo_top fast_clock

set_directive_clock foo slow_clock

#pragma AP clock domain=fast_clock

#pragma AP clock domain=slow_clock

set_directive_dataflow

Syntax
set_directive_dataflow [OPTIONS] <location>

Description
The set_directive_dataflow command specif ies that dataflow optimization be
performed on the functions or loops, improving the concurrency of the RTL
implementation.

In a C description, all operations are performed in a sequential manner. High-Level
Synthesis automatically seeks to minimize latency and improve concurrency (in the absence
of any directives which limit resources, such as set_directive_allocation) however
data dependencies can limit this. For example, functions or loops which access arrays must
f inish all read/write accesses to the arrays before they complete, preventing the next
function or loop, which consumes the data, from starting operation.

It may however be possible for the operations in a function or loop to start execution
before the previous function or loop completes all its operations.
High-Level Synthesis www.xilinx.com 403
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_dataflow
When dataflow optimization is specif ied, High-Level Synthesis will analyze the dataflow
between sequential functions or loops, and seek to create channels (based on ping-pong
RAMs or FIFOs) which allow consumer functions or loops to start operation before the
producer functions or loops have completed, enabling functions or loops to operate in
parallel, decreasing the latency and improving the throughput of the RTL design.

If no initiation interval (number of cycles between the start of one function or loop and the
next) is specif ied, High-Level Synthesis will seek to minimize the initiation interval and start
operation as soon as data is available.

<location> - The name of the location, in the format function[/label], where dataflow
optimization is to be performed.

Options
-interval <integer> - An integer value specifying the desired initiation interval (II): the
number of cycles between the f irst function or loop executing and the start of execution of
the next function or loop.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP dataflow interval=<int>

Examples
This example specif ies dataflow optimization within function foo. The equivalent pragma is
also shown.

set_directive_dataflow foo

#pragma AP dataflow interval=3

In this example, dataflow is specif ied in function My_Func, with a target initiation interval
of 3.

set_directive_dataflow -interval 3 My_func

#pragma AP dataflow interval=3
High-Level Synthesis www.xilinx.com 404
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_data_pack
set_directive_data_pack

Syntax
set_directive_data_pack [OPTIONS] <location> <variable>

Description
This directive packs the data f ields of a struct into a single scalar with a wider word width.
Any arrays declared inside the struct will be completely partitioned and reshaped into a
wide scalar and be packed with other scalar f ields.

The bit alignment of the resulting new wide-word can be inferred from the declaration
order of the struct f ields. The f irst f ield takes the least signif icant sector of the word and so
forth until all f ields are mapped.

<location> - The name of the location, in the format function[/label], which contains the
variable which will be packed.

<variable> - Specify the name of the variable to be packed.

Options
-instance <string> - Specify the name of resultant variable after packing. If none is
provided, the name of the input variable will be used.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP data_pack variable=<variable> instance=<string>

Examples
The following command (the equivalent pragma is also shown) packs struct array AB[17]
with three 8-bit f ield fields (typedef struct {unsigned char R, G, B;} pixel) in function foo,
into a new 17 element array of 24-bits.

set_directive_data_pack foo AB

#pragma AP data_pack variable=AB
High-Level Synthesis www.xilinx.com 405
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_dependence
This example (the equivalent pragma is also shown) packs struct pointer AB with three 8-bit
f ields (typedef struct {unsigned char R, G, B;} pixel) in function foo, into a new 24-bit
pointer.

set_directive_data_pack foo AB

#pragma AP data_pack variable=AB

set_directive_dependence

Syntax
set_directive_dependence [OPTIONS] <location>

Description
High-Level Synthesis automatically detects dependencies within loops (a loop-independent
dependency) or between different iterations of a loop (a loop-carry dependency). These
dependencies impact when operations can be scheduled, especially during function and
loop pipelining.

Loop-independent dependence: the same element gets accessed in the same loop
iteration.

for (i=0;i<N;i++) {
A[i]=x;
y=A[i];

}

Loop-carry dependence: the same element gets accessed in a different loop iteration.

for (i=0;i<N;i++) {
A[i]=A[i-1]*2;

}

Under certain circumstances such as variable dependent array indexing or when an external
requirement needs enforced (for example, two inputs are never the same index) the
dependence analysis may be too conservative. The set_directive_dependence
command helps allows you to explicitly specify the dependence and resolve a false
dependence.

<location> - The name of the location, in the format function[/label], where the
dependence is to be specif ied.
High-Level Synthesis www.xilinx.com 406
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_dependence
Options
-class (array|pointer) - Specify a class of variables where the dependence need
clarif ication. This is mutually exclusive with the option -variable.

-dependent (true|false) - Specify if a dependence needs to be enforced (true) or
removed (false). The default is false.

-direction (RAW|WAR|WAW) - This is only relevant for loop-carry dependencies. Specify
the direction for a dependence:

° RAW (Read-After-Write - true dependence) - the write instruction uses a value used
by the read instruction.

° WAR (Write-After-Read - anti dependence) - the read instruction gets a value that is
overwritten by the write instruction.

° WAW (Write-After-Write - output dependence) - two write instructions write to the
same location, in a certain order.

-distance <integer> - This is only relevant for loop-carry dependencies where option
-dependent is set to true. A positive integer to specify the inter-iteration distance for
array access.

-type (intra|inter) - Specify if the dependence is within the same loop iteration (intra)
or between different loop iterations (inter). The default is inter.

-variable <variable> - Specify the specific variable to consider for the dependence
directive. This is mutually exclusive with the option -class.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP dependence \

variable=<variable> \

<array, pointer> \

<inter, intra> \

<RAW, WAR, WAW> \

distance=<int> \

<false, true>
High-Level Synthesis www.xilinx.com 407
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_expression_balance
Examples
This example removes the dependence between Var1 in the same iterations of loop_1 in
function foo. The equivalent pragma is also shown.

set_directive_dependence -variable Var1 -type intra \

-dependent false foo/loop_1

#pragma AP dependence variable=Var1 intra false

Here, the dependence on all arrays in loop_2 of function foo, is set to inform High-Level
Synthesis all reads must happen after writes in the same loop iteration.

set_directive_dependence -class array -type inter \

-dependent true -direction RAW foo/loop_2

#pragma AP dependence array inter RAW true

set_directive_expression_balance

Syntax
set_directive_expression_balance [OPTIONS] <location>

Description
Sometimes, a C-based specif ication is written with a sequence of operations. This can result
in a lengthy chain of operations in RTL, and with a small clock period, this could increase the
design latency.

By default, High-Level Synthesis will rearrange the operations, through associative and
commutative properties, to create a balanced tree which can shorten the chain, potentially
reducing latency at the cost of extra hardware.

The set_directive_expression_balance command allows this expression balancing
to be turned off or on within with a specif ied scope.

<location> - The name of the location, in the format function[/label], where the balancing
should be enabled or disabled.

Options
-off - Turn off expression balancing at this location.
High-Level Synthesis www.xilinx.com 408
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_function_instantiate
Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP expression_balance <off>

Examples
This example disables expression balancing within function My_Func. The equivalent
pragma is also shown.

set_directive_expression_balance -off My_Func

#pragma AP expression_balance off

Conversely, this example explicitly enables expression balancing in function My_Func2.

set_directive_expression_balance My_Func2

#pragma AP expression_balance

set_directive_function_instantiate

Syntax
set_directive_function_instantiate <location> <variable>

Description
By default,

• Functions remain as separate hierarchy blocks in the RTL.

• All instances of a function, at the same level of hierarchy, will use the same RTL
implementation (block).

The set_directive_function_instantiate command is used to create a unique RTL
implementation for each instance of a function, allowing each instance to be optimized.

By default, the following code would result in a single RTL implementation of function
foo_sub for all three instances.

char foo_sub(char inval, char incr)
{

return inval + incr;
}

High-Level Synthesis www.xilinx.com 409
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_inline
void foo(char inval1, char inval2, char inval3,
char *outval1, char *outval2, char * outval3)

{
*outval1 = foo_sub(inval1, 1);
*outval2 = foo_sub(inval2, 2);
*outval3 = foo_sub(inval3, 3);

}

Using the directive, in the manner shown in the example section below, would result in
three versions of function foo_sub, each independently optimized for variable incr.

<location> - The name of the location, in the format function[/label], where the instances
of a function are to be made unique.

variable <string> - Specify which function argument <string> is to be specified as
constant.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP function_instantiate variable=<variable>

Examples
For the example code shown above, the following Tcl (or pragma placed in function
foo_sub) allows each instance of function foo_sub to be independently optimized with
respect to input incr.

set_directive_function_instantiate incr foo_sub

#pragma AP function_instantiate variable=incr

set_directive_inline

Syntax
set_directive_inline [OPTIONS] <location>

Description
This command removes a function as a separate entity in the hierarchy. After inlining the
function will be dissolved and no longer appear as a separate level of hierarchy.
High-Level Synthesis www.xilinx.com 410
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_inline
In some cases inlining a function will allow operations within the function to be shared and
optimized more effectively with surrounding operations. An inlined function however,
cannot be shared: in some cases this may increase area.

By default, inlining is only performed on the next level of function hierarchy.

<location> - The name of the location, in the format function[/label], where inlining is to
be performed.

Options
-off - This disables function inlining and is used to prevent particular functions from being
inlined. For example, if the -recursive option is used in a caller function, this option can
prevent a particular callee function from being inlined when all others are.

-recursive - By default only one level of function inlining is performed: the functions
within the specif ied function are not inlined. The -recursive option inlines all functions
recursively down the hierarchy.

-region - All functions in the specif ied region are to be inlined.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP inline <region | recursive | off>

Examples
This example inlines all functions in foo_top (but not any lower level functions).

set_directive_inline -region foo_top

#pragma AP inline region

Here, only function foo_sub1 is inlined.

set_directive_inline foo_sub1

#pragma AP inline

These commands inline all functions in foo_top, recursively down the hierarchy, except
function foo_sub2. The f irst pragma is placed in function foo_top. The second pragma
is placed in function foo_sub2.

set_directive_inline -region -recursive foo_top

set_directive_inline -off foo_sub2
High-Level Synthesis www.xilinx.com 411
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_interface
#pragma AP inline region recursive

#pragma AP inline off

set_directive_interface

Syntax
set_directive_interface [OPTIONS] <location> <port>

Description
The set_directive_interface command specif ies how RTL ports are created from the
function description during interface synthesis.

The ports in the RTL implementation are derived from:

• Any function-level protocol which is specif ied.

• Function arguments.

• Global variables - accessed by the top-level function and defined outside its scope.

Function-level handshakes are used to control when the function starts operation and to
indicate when function operation ends, is idle and when (in the case of a pipelined function)
it is ready for new inputs. The implementation of a function-level protocol is controlled by
modes ap_ctrl_none or ap_ctrl_hs and only requires the top-level function name
(the function return should be specified for the pragma).

Each function argument can be specif ied to have its' own IO protocol (such as valid
handshake, acknowledge handshake).

If a global variable is accessed but all read and write operations are local to the design, the
resource will be created in the design and there is no need for an IO port in the RTL. If
however, the global variable is expected to be an external source or destination it should
have its' interface specif ied in a similar manner as standard function arguments (refer to the
examples section).

When set_directive_interface is used on sub-functions only the -register option
can be used: the -mode option is not supported on sub-functions.

<location> - The name of the location, in the format function[/label], where the function
interface or registered output is to be specified.

<port> - The parameter (function argument or global variable) for which the interface has
to be synthesized. This is not required when modes ap_ctrl_none or ap_ctrl_hs are
used.
High-Level Synthesis www.xilinx.com 412
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_interface
Options
-mode (ap_ctrl_none|ap_ctrl_hs|ap_none|ap_stable|ap_vld|ap_ovld|
ap_ack|ap_hs|ap_fifo|ap_memory|ap_bus) - Select the appropriate protocol.

Function protocol is implemented by the following -mode values:

° ap_ctrl_none - No function-level handshake protocol.

° ap_ctrl_hs - This is the default behavior and implements a function-level
handshake protocol. Input port ap_start must go high for the function to begin
operation. (All function-level signals are active high). Output port ap_done
indicates the function is f inished (and if there is a function return value, indicates
when the return value is valid) and output port ap_idle indicates when the
function is idle. In pipelined functions, an additional output port ap_ready is
implemented and indicates when the function is ready for new input data.

For function arguments and global variables, the following default protocol is used for each
argument type:

° Read-only (Inputs) - ap_none

° Write-only (Outputs) - ap_vld

° Read-Write (Inouts) - ap_ovld

° Arrays - ap_memory

The RTL ports to implement function arguments and global variables are specif ied by the
following -mode values:

° ap_none - No protocol in place. This corresponds to a simple wire.

° ap_stable - Only applicable to input ports, this informs High-Level Synthesis that
the value on this port is stable after reset and is guaranteed not to change until the
next reset. The protocol is implemented as mode ap_none but this allows internal
optimizations to take place on the signal fanout.

Note: This is not considered a constant value, simply an unchanging value.

° ap_vld - An additional valid port is created (<port_name>_vld) to operate in
conjunction with this data port. For input ports a read will stall the function until its
associated input valid port is asserted. An output port will have its output valid
signal asserted when it writes data.

° ap_ack - An additional acknowledge port is created (<port_name>_ack) to operate
in conjunction with this data port. For input ports, a read will assert the output
acknowledge when it reads a value. An output write will stall the function until its
associated input acknowledge port is asserted.

° ap_hs - Additional valid (<port_name>_vld) and acknowledge (<port_name>_ack)
ports are created to operate in conjunction with this data port. For input ports a
High-Level Synthesis www.xilinx.com 413
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_interface
read will stall the function until its input valid is asserted and will assert its output
acknowledge signal when data is read. An output write will assert an output valid
when it writes data and stall the function until its associated input acknowledge
port is asserted.

° ap_ovld - For input signals, this acts as mode ap_none and no protocol is added.
For output signals, this acts as mode ap_vld. For inout signals, the input gets
implemented as mode ap_none and the output as mode ap_vld.

° ap_memory - This mode implements array arguments as accesses to an external
RAM. Data, address and RAM control ports (such as CE, WE) are created to read
from and write the external RAM. The specif ic signals and number of data ports are
determined by the RAM which is being accessed. The array argument should be
targeted to a specific RAM in the technology library using the
set_directive_resource command (or High-Level Synthesis will automatically
determine the RAM to use).

° ap_fifo - Implements array, pointer and pass-by-reference ports as a FIFO access.
The data input port will assert its associated output read port (<port_name>_read)
when it is ready to read new values from the external FIFO and will stall the function
until its input available port (<port_name>_empty_n) is asserted to indicate a value
is available to read. An output data port will asset an output write port
(<port_name>_write) to indicate it has written a value to the port and will stall the
function until its associated input available port (<port_name>_full_n) is asserted
to indicate there is space available in the external FIFO for new outputs. This
interface mode should use the –depth option.

° ap_bus - implements pointer and pass-by-reference ports as a bus interface. Both
input and output ports are synthesized with a number of control signals to support
burst access to and from a standard FIFO bus interface. Refer to the High-Level
Synthesis User Guide (UG867) for a detailed description of this interface. This
interface mode should use the –depth option.

 -depth - The depth option is required for pointer interfaces using ap_fifo or ap_bus
modes. This option should be used to specify the maximum number of samples which will
be processed by the testbench. This is required to inform High-Level Synthesis about the
maximum size of FIFO needed in the verif ication adapter created for RTL co-simulation.

-register - For the top-level function, this option is relevant for scalar interfaces
ap_none, ap_ack , ap_vld, ap_ovld, ap_hs and causes the signal (and any relevant
protocol signals) to be registered and persist until at least the last cycle of the function
execution. This option requires the ap_ctrl_hs function protocol to be enabled. If this
option is used with ap_ctrl_hs is results in the function return value being registered.

This option can be used in sub-functions to register the outputs and any control signals
until the end of the function execution.
High-Level Synthesis www.xilinx.com 414
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_latency
Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP interface <mode> register port=<string>

Examples
This example turns off function-level handshakes for function foo.

set_directive_interface -mode ap_ctrl_none foo

#pragma AP interface ap_ctrl_none port=return

Here, argument InData in function foo is specif ied to have a ap_vld interface and the
input should be registered.

set_directive_interface -mode ap_vld -register foo InData

#pragma AP interface ap_vld register port=InData

This example exposes global variable lookup_table used in function foo as a port on the
RTL design, with an ap_memory interface.

set_directive_interface -mode ap_memory foo look_table

set_directive_latency

Syntax
set_directive_latency [OPTIONS] <location>

Description
Allows a maximum and/or minimum latency value to be specif ied on a function, loop or
region. High-Level Synthesis will always aim for minimum latency. The behavior of
High-Level Synthesis when minimum and maximum latency values are specif ied is
explained below.

• Latency is less than the minimum - If High-Level Synthesis can achieve less than the
minimum specif ied latency, it will extend the latency to the specified value and
potentially increasing sharing.

• Latency is greater than the minimum - The constraint is satisf ied and no further
optimizations are performed.
High-Level Synthesis www.xilinx.com 415
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_latency
• Latency is less than the maximum - The constraint is satisf ied and no further
optimizations are performed.

• Latency is greater than the maximum- -If High-Level Synthesis cannot schedule within
the maximum limit it will automatically increase effort to achieve the specif ied
constraint. If it still fails to meet the maximum latency a warning is issued and
High-Level Synthesis will proceed to produce a design with the smallest achievable
latency.

<location> - The name of the location (function, loop or region), in the format
function[/label], to be constrained.

Options
-max <integer> - An integer value specifying the maximum latency.

-min <integer> - An integer value specifying the minimum latency.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP latency \

min=<int> \

max=<int>

Examples
In this example, function foo is specif ied to have a minimum latency of 4 and a maximum
latency of 8.

set_directive_latency -min=8 -max=8 foo

#pragma AP latency min=4 max=4

In function foo, loop loop_row is specified to have a maximum latency of 12. The pragma
should be placed in the loop body.

set_directive_latency -max=12 foo/loop_row

#pragma AP latency max=12
High-Level Synthesis www.xilinx.com 416
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_loop_flatten
set_directive_loop_flatten

Syntax
set_directive_loop_flatten [OPTIONS] <location>

Description
This command is used to flatten nested loops into a single loop hierarchy. In the RTL
implementation it will cost a clock cycle to move between loops in the loop hierarchy and
flattening nested loops allows them to be optimized as a single loop, saving clock cycles
and potentially allowing greater optimization of the loop-body logic.

This directive should be applied to the inner-most loop in the loop hierarchy. Only perfect
and semi-perfect loops can be flattened in this manner.

• Perfect loop nest - only the inner-most loop has loop body content, there is no logic
specified between the loop statements and all the loop bounds are constant.

• Semi-perfect loop nest - only the inner-most loop has loop body content, there is no
logic specif ied between the loop statements but the outermost loop bound can be a
variable.

For imperfect loop nests, where the inner loop has variables bounds or the loop body is not
exclusively inside the inner loop, designers should try to restructure the code, or unroll the
loops in the loop body to create a perfect loop nest.

<location> - The name of the location (inner-most loop), in the format function[/label].

Options
-off - This option prevents flattening from taking place. This can be used to prevent some
loops from being flattened while all others in the specified location are flattened.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP loop_flatten off
High-Level Synthesis www.xilinx.com 417
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_loop_merge
Examples
This example flattens loop_1 in function foo and all (perfect or semi-perfect) loops above
it in the loop hierarchy, into a single loop. The pragma should be placed in the body of
loop_1.

set_directive_loop_flatten foo/loop_1

#pragma AP loop_flatten

Here, loop flattening is prevented in loop_2 of function foo. The pragma should be placed
in the body of loop_2.

set_directive_loop_flatten -off foo/loop_2

#pragma AP loop_flatten off

set_directive_loop_merge

Syntax
set_directive_loop_merge <location>

Description
Merge all the loops into a single loop. Merging loops reduces the number of clock cycles
required in the RTL to transition between the loop-body implementations) and allows the
loops be implemented in parallel (if possible).

The rules for loop merging are:

• If the loop bounds are variables, they must have the same value (number of iterations).

• If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

• Loops with both variable bound and constant bound cannot be merged.

• The code between loops to be merged cannot have side effects: multiple execution of
this code should generate the same results (a=b is allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO reads: merging would change the
order of the reads and reads from a FIFO or FIFO interface must always be in sequence.

<location> - The name of the location, in the format function[/label], where the loops
reside.
High-Level Synthesis www.xilinx.com 418
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_loop_tripcount
Options
-force - This option forces loops to be merged even when High-Level Synthesis issues a
warning. In this case user takes responsibility that the merged loop will function correctly.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP loop_merge force

Examples
This example merges all consecutive loops in function foo into a single loop.

set_directive_loop_merge foo

#pragma AP loop_merge

In this example, all loops inside loop_2 (but not loop_2 itself) of function foo are merged
by using the -force option. The pragma should be placed in the body of loop_2.

set_directive_loop_merge -force foo/loop_2

#pragma AP loop_merge force

set_directive_loop_tripcount

Syntax
set_directive_loop_tripcount [OPTIONS] <location>

Description
The total number of iterations performed by a loop is referred to as the loop tripcount.
High-Level Synthesis reports the total latency of each loop: the number of cycles to execute
all iterations of the loop. This loop latency is therefore a function of the tripcount (number
of loop iterations).

The tripcount could be a constant value, may depend on the value of variables used in the
loop expression (for example, x<y) or control statements used inside the loop. In some
cases, such as when the variables used to determine the tripcount are input arguments or
variables calculated by dynamic operation, High-Level Synthesis may not be able to
determine the tripcount and hence the loop latency might be unknown.
High-Level Synthesis www.xilinx.com 419
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_loop_unroll
To help with the design analysis which drives optimization, the
set_directive_loop_tripcount command allows you to specify minimum, average
and maximum tripcounts for a loop and see how the loop latency contributes to the total
design latency in the reports.

<location> - The name of the location of the loop, in the format function[/label], where the
tripcount needs to be specified.

Options
-avg <integer> - Specify the average latency.

-max <integer> - Specify the maximum latency.

-min <integer> - Specify the minimum latency.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP loop_tripcount \

min=<int> \

max=<int> \

avg=<int>

Examples
In this example, loop_1 in function foo is specif ied to have a minimum tripcount of 12, an
average of 14 and maximum of 16.

set_directive_loop_tripcount -min 12 -max 14 -avg 16 foo/loop_1

#pragma AP loop_tripcount min=12 max=14 avg=16

set_directive_loop_unroll

Syntax
set_directive_unroll [OPTIONS] <location>
High-Level Synthesis www.xilinx.com 420
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_loop_unroll
Description
Transforms loop by creating multiples copies of the loop body.

A loop is executed for the number of iterations specif ied by the loop induction variable. The
number of iterations may also be impacted by any logic inside the loop body (for example,
break or modif ications to any loop exit variable). The loop is implemented in the RTL by a
block of logic, which represents the loop-body, which is executed for the same number of
iterations.

The set_directive_loop_unroll command allows the loop to be fully unrolled,
creating as many copies of the loop-body in the RTL as there are loop iterations, or partially
unrolled by a factor N, creating N copies of the loop body and adjusting the loop iteration
accordingly.

If the factor N used for partial unrolling is not an integer multiple of the original loop
iteration count, the original exit condition needs to be checked after each unrolled
fragment of the loop body.

To unroll a loop completely, the loop bounds need to be known at compile time. This is not
required for partial unrolling.

<location> - The location of the loop, in the format function[/label], to be unrolled.

Options
-factor <integer> - Non-zero integer indicating that partial unrolling is requested. The
loop body will be repeated this number of times, and the iteration information will be
adjusted accordingly.

-region - This option should be specif ied when seeking to unroll all loops within a loop
without unrolling the enclosing loop itself.

Take the example where loop loop_1 contains multiple loops at the same level of loop
hierarchy, loops loop_2 and loop_3. A named loop, such as loop_1 is also a
region/location in the code: a section of code enclosed by braces {}. If the unroll directive
is specif ied on location <function>/loop_1, it will unroll loop_1.

The -region option specif ies that the directive be applied only to the loops enclosed the
named region: this results in loop_1 being left rolled, but all loops inside it (loop_2 and
loop_3) being unrolled.

-skip_exit_check - This option is only effective if a factor is specified (partial unrolling).

° Fixed bounds - No exit condition check is performed if the iteration count is a
multiple of the factor. For cases where the iteration count is not an integer multiple
of the factor, unrolling will be prevented and a warning issued (the exit check must
be performed in order to proceed).
High-Level Synthesis www.xilinx.com 421
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_occurrence
° Variable bounds - The exit condition check is removed. The designer is responsible
for ensuring the variable bounds is an integer multiple of the factor and that no exit
check is in fact required.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP unroll \

skip_exit_check \

factor=<int> \

region

Examples
This example unrolls loop L1 in function foo. The pragma should be placed in the body of
loop L1.

set_directive_loop_unroll foo/L1

#pragma AP unroll

In this example, an unroll factor of 4 is specified on loop L2 of function foo and the exit
check is removed. The pragma should be placed in the body of loop L2.

set_directive_loop_unroll -skip_exit_check -factor 4 foo/L2

#pragma AP unroll skip_exit_check factor=4

Here, all loops inside loop L3 in function foo are unrolled, but not loop L3 itself. The
-region option specif ies the location be considered an enclosing region and not a loop
label.

set_directive_loop_unroll -region foo/L3

#pragma AP unroll region

set_directive_occurrence

Syntax
set_directive_occurrence [OPTIONS] <location>
High-Level Synthesis www.xilinx.com 422
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_occurrence
Description
Used when pipelining functions or loops, to specify that the code in a location in executed
at a lesser rate than the code in the enclosing function or loop. This allows the code which
is executed at the lesser rate to be pipelined a slower rate and potentially shared within the
top-level pipeline.

For example, a loop iterates N times, but part of the loop is protected by a conditional
statement and only executes M times, where N is an integer multiple of M. The code
protected by the conditional is said to have an occurrence of N/M.

If N is pipelined with an initiation interval II, any function or loops protected by the
conditional statement may be pipelined with a higher initiation interval than II (at a slower
rate: this code is not executed as often) and can potentially be shared better within the
enclosing higher rate pipeline.

Indentifying a region with an occurrence allows the functions and loops in this region to be
pipelined with an initiation interval which is slower than the enclosing function or loop.

<location> - Specify the location which has a slower rate of execution.

Options
-cycle <int> - Specify the occurrence N/M, where N is the number of times the enclosing
function or loop is executed and M is the number of times the conditional region is
executed. N must be an integer multiple of M.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP occurrence cycle=<int>

Examples
In the following example, region Cond_Region in function foo has an occurrence of 4: it
executes at a rate 4 times slower than the code which encompasses it.

set_directive_occurrence -cycle 4 foo/Cond_Region

#pragma AP occurrence cycle=4
High-Level Synthesis www.xilinx.com 423
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_pipeline
set_directive_pipeline

Syntax
set_directive_pipeline [OPTIONS] <location>

Description
The set_directive_pipeline command specif ies the details for pipelining:

• Function pipelining

• Loop pipelining

A pipelined function or loop can process new inputs every N clock cycles, where N is the
initiation interval (II). The default initiation interval is 1, which process a new input every
clock cycle, or it can be specified by the –II option.

If High-Level Synthesis cannot create a design with the specif ied II it will issue a warning
and create a design with the lowest possible II: this design can then be analyzed with the
warning message to determine what steps must be taken to create a design which can
satisfy the required initiation interval.

<location> - The name of the location, in the format function[/label], to be pipelined.

Options
-II <integer> - An integer specifying the desired initiation interval for the pipeline.
High-Level Synthesis will try to meet this request: based on data dependencies, the actual
result might have a larger II.

-enable_flush - This option implements a pipeline that can flush pipeline stages if the
input of the pipeline stalls. This feature implements additional control logic, has greater
area and is optional.

-rewind - This option is only applicable to a loops and enables rewinding, which enables
continuous loop pipelining (with no pause between one loop iteration ending and the next
starting). Rewinding is effective only if there is one single loop (or a perfect loop nest)
inside the top-level function. The code segment before the loop is considered as
initialization, will be executed only once in the pipeline and cannot contain any conditional
operations (if-else).
High-Level Synthesis www.xilinx.com 424
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_protocol
Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP pipeline \

II=<int> \

enable_flush \

rewind

Examples
In the following example, function foo is pipelined with an initiation interval of 1.

set_directive_pipeline foo

#pragma AP pipeline

Here, loop loop_1 in function foo is pipelined with an initiation interval of 4 and
pipelining flush is enabled.

set_directive_pipeline -II 4 -enable_flush foo/loop_1

#pragma AP pipeline II=4 enable_flush

set_directive_protocol

Syntax
set_directive_protocol [OPTIONS] <location>

Description
This commands specif ies a region of the code, a protocol region, in which no clock
operations will be inserted by High-Level Synthesis unless explicitly specif ied in the code. A
protocol region can be used to manually specify an interface protocol: High-Level Synthesis
will not insert any clocks between any operations including those which read from or write
to function arguments. The order of read and writes will therefore be obeyed at the RTL.

A clock operation may be specif ied in C using an ap_wait() statement (include
ap_utils.h) and may be specified in C++ and SystemC designs by using the wait()
statement (include systemc.h). The ap_wait and wait statements have no effect on the
simulation of C and C++ designs respectively: they are only interpreted by High-Level
Synthesis.
High-Level Synthesis www.xilinx.com 425
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_resource
A region of code can be created in the C code by enclosing the region in braces {} and
naming it. (for example, io_section:{..lines of C code...} defines a region
called io_section).

<location> - The name of the location, in the format function[/label], to be implemented in
a cycle-accurate manner, corresponding to external protocol requirements.

Options
-mode (floating|fixed) - The default mode (floating) allows the code corresponding
to statements outside the protocol region to overlap with the statements in the protocol
statements in the final RTL: the protocol region remains cycle accurate but other operations
can occur at the same time.

The fixed mode ensures there is no overlap.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP protocol \

<floating, fixed>

Examples
This example defines region io_section in function foo as a f ixed protocol region. The
pragma should be placed inside of region io_section.

set_directive_protocol -mode fixed foo/io_section

#pragma AP protocol fixed

set_directive_resource

Syntax
set_directive_resource -core <string> <location> <variable>

Description
Specify that a specific library resource (core) be used to implement a variable (array,
arithmetic operation or function argument) in the RTL.
High-Level Synthesis www.xilinx.com 426
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_resource
High-Level Synthesis will implement the operations in the code using the cores available in
the currently loaded library. When multiple cores in the library can be used to implement
the variable, the set_directive_resource command specif ies which core is used. Use
the list_core command to list the available cores in the library. If no resource is
specified, High-Level Synthesis will determine the resource to use.

The most common use of set_directive_resource is to specify which memory
element in the library is used to implement an array. This allows you to control whether, for
example, the array is implemented as a single or dual-port RAM. This usage is particularly
important for arrays on the top-level function interface, since the memory associated with
the array determines the ports in the RTL.

<location> - The location, in the format function[/label], where the variable can be found.

<variable> - Specify the name of the variable.

Options
-core <string> - Specify the name of the core, as defined in the technology library.

-port_map <string> - This option is used to specify port mappings when using the IP
generation flow to map ports on the design with ports on the adapter. The argument to this
option is a Tcl list of the design port and adapter ports.

-metadata <string> -This option is used to specify bus options when using the IP
generation flow. The argument to this option is quoted list of bus operation directives.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP resource \

variable=<variable> \

core=<core>

Examples
In this example, variable coeffs[128] is an argument to top-level function foo_top. This
directive specifies coeffs be implemented with core RAM_1P from the library. The ports
created in the RTL to access the values of coeffs, will be those defined in the core RAM_1P.

set_directive_resource -core RAM_1P foo_top coeffs

#pragma AP resource variable=coeffs core=RAM_1P
High-Level Synthesis www.xilinx.com 427
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_top
Given code Result=A*B in function foo, this example specif ies the multiplication be
implemented with two-stage pipelined multiplier core, Mul2S.

set_directive_resource -core Mul2S foo Result

#pragma AP resource variable=Result core=Mul2S

set_directive_top

Syntax
set_directive_top [OPTIONS] <location>

Description
This directive attaches a name to a function, which can then be used for the set_top
command. This is typically used to synthesize member functions of a class in C++.

The directive should be specif ied in an active solution and then the set_top command
should be used with the new name.

<location> - The name of the function to be renamed.

Options
-name <string> - Specify the name to be used by the set_top command.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP top \

name=<string>

Examples
In this example, function foo_long_name is renamed to DESIGN_TOP, which is then
specified as the top-level. If the pragma is placed in the code, the set_top command must
still be issued or the top-level specified in the GUI project settings.

set_directive_top -name DESIGN_TOP foo_long_name

#pragma AP top name=DESIGN_TOP
High-Level Synthesis www.xilinx.com 428
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_unroll
set_top DESIGN_TOP

set_directive_unroll

Syntax
set_directive_unroll [OPTIONS] <location>

Description
This command has been renamed set_directive_loop_unroll (same arguments and
options as detailed here) and will be deprecated.

Transforms loop by creating multiples copies of the loop body.

A loop is executed for the number of iterations specif ied by the loop induction variable. The
number of iterations may also be impacted by any logic inside the loop body (for example,
break or modif ications to any loop exit variable). The loop is implemented in the RTL by a
block of logic, which represents the loop-body, which is executed for the same number of
iterations.

The set_directive_unroll command allows the loop to be fully unrolled, creating as
many copies of the loop-body in the RTL as there are loop iterations, or partially unrolled by
a factor N, creating N copies of the loop body and adjusting the loop iteration accordingly.

If the factor N used for partial unrolling is not an integer multiple of the original loop
iteration count, the original exit condition needs to be checked after each unrolled
fragment of the loop body.

To unroll a loop completely, the loop bounds need to be known at compile time. This is not
required for partial unrolling.

<location> - The location of the loop, in the format function[/label], to be unrolled.

Options
-factor <integer> - Non-zero integer indicating that partial unrolling is requested. The
loop body will be repeated this number of times, and the iteration information will be
adjusted accordingly.

-region - This option should be specif ied when seeking to unroll all loop within a loop
without unrolling the enclosing loop itself.

Take the example where loop loop_1 contains multiple loops at the same level of loop
hierarchy, loops loop_2 and loop_3. A named loop, such as loop_1 is also a
High-Level Synthesis www.xilinx.com 429
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_directive_unroll
region/location in the code: a section of code enclosed by braces { }. If the unroll directive
is specif ied on location <function>/loop_1, it will unroll loop_1.

The -region option specif ies that the directive be applied only to the loops enclosed the
named region: this results in loop_1 being left rolled, but all loops inside it (loop_2 and
loop_3) being unrolled.

-skip_exit_check - This option is only effective if a factor is specified (partial unrolling).

° Fixed bounds - No exit condition check is performed if the iteration count is a
multiple of the factor. For cases where the iteration count is not an integer multiple
of the factor, unrolling will be prevented and a warning issued (the exit check must
be performed in order to proceed).

° Variable bounds - The exit condition check is removed. The designer is responsible
for ensuring the variable bounds is an integer multiple of the factor and that no exit
check is in fact required.

Pragma
The pragma should be placed in the C source within the boundaries of the required
location.

The format and options are as shown:

#pragma AP unroll \

skip_exit_check \

factor=<int> \

region

Examples
This example unrolls loop L1 in function foo. The pragma should be placed in the body of
loop L1.

set_directive_unroll foo/L1

#pragma AP unroll

In this example, an unroll factor of 4 is specified on loop L2 of function foo and the exit
check is removed. The pragma should be placed in the body of loop L2.

set_directive_unroll -skip_exit_check -factor 4 foo/L2

#pragma AP unroll skip_exit_check factor=4

Here, all loops inside loop L3 in function foo are unrolled, but not loop L3 itself. The
-region option specif ies the location be considered an enclosing region and not a loop
label.

set_directive_unroll -region foo/L3
High-Level Synthesis www.xilinx.com 430
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_part
#pragma AP unroll region

set_part

Syntax
set_part <device_specification>

Description
The set_part command sets a target device for the current solution. The command can
only be executed in the context of an active solution.

< device_specification> - A device specification sets the target device for High-Level
Synthesis synthesis and implementation.

<device_family> - The device specification can be simply the device family name, which
will use the default device in the family.

<device><package><speed_grade> - The device specif ication can also be the target
device name including device, package and speed-grade information.

Pragma
There is no pragma equivalent of the set_part command.

Examples
The FPGA libraries provided with High-Level Synthesis can be added to the current solution
by simply providing the device family name as shown. In this case, the default device,
package and speed-grade specif ied in the High-Level Synthesis FPGA library for this device
family are used.

set_part virtex6

The FPGA libraries provided with High-Level Synthesis can optionally specify the specif ic
device with package and speed-grade information.

set_part xc6vlx240tff1156-1
High-Level Synthesis www.xilinx.com 431
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

set_top
set_top

Syntax
set_top <top>

Description
The set_top command defines the top-level function to be synthesized. Any functions
called from this function will also be part of the design.

<top> - Name of the function to be synthesized.

Pragma
There is no pragma equivalent of the set_top command.

Examples
This example sets the top-level function as foo_top.

set_top foo_top
High-Level Synthesis www.xilinx.com 432
UG902 (v2012.2) July 25, 2012

http://www.xilinx.com

High-Level Synthesis www.xilinx.com 433
UG902 (v2012.2) July 25, 2012

Appendix A

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
• Vivado Design Suite 2012.2 Documentation

(http://www.xilinx.com/support/documentation/dt_vivado_vivado2012-2.htm)

http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs
http://www.xilinx.com

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	High-Level Synthesis Introduction
	High-Level Synthesis Introduction

	High-Level Synthesis User Guide
	Introduction
	Functional Abstraction Level
	High-Level Synthesis (HLS)

	Introduction to High-Level Synthesis
	High-Level Synthesis Overview
	Using High-Level Synthesis
	First Example

	C Validation and Coding Styles
	Pre-Synthesis Validation
	Unsupported C Language Constructs
	Arbitrary Precision Data Types
	Floating Point Types
	Multi-Access Pointer Interfaces

	Interface Management
	Interface Synthesis
	Specifying Bus Interfaces
	SystemC Interface Synthesis
	Manual Interface Specification

	Design Optimization
	Checklist & Guidelines
	Clocks, Timing & RTL output

	Function Optimizations
	Function Re-use, Inlining & Instantiation
	Function Pipelining
	Latency Constraints
	Function Interface Protocol

	Loop Optimizations
	Unrolling Loops
	Merging Loops
	Flattening Nested Loops
	Loop Dataflow Pipelining
	Loop Pipelining
	Loop Carry Dependencies
	Loop Iteration Control
	Loop Latency

	Array Optimizations
	Array Initialization & Reset
	Memory Resource Selection
	Array Mapping
	Array Partitioning
	Array Reshaping
	Array Streaming

	Logic Structure Optimizations
	Operator Selection
	Controlling Hardware Resources
	Struct Packing
	Expression Balancing
	Elaboration Effort

	Verification
	Automatic Verification of the RTL

	Exporting the RTL Design
	Bus Interfaces
	RTL Synthesis
	Package Identification
	Tcl command

	Exporting in IP-XACT Format
	Importing IP-XACT package into Vivado
	Exporting in Pcore Format
	Importing a Pcore package into the EDK environment

	Exporting To System Generator

	High-Level Synthesis Operator and Core Guide
	Synthesis Overview
	About Scheduling
	About Binding

	Understanding Operators, Cores & Directives
	Controlling Operators & Cores
	Limiting Operators
	Controlling Resources
	Controlling Schedule
	Controlling Binding

	High-Level Synthesis Operators
	High-Level Synthesis Cores
	Functional Unit Cores
	Storage Cores
	Connector Cores
	Adapter Cores
	Floating Point Cores

	High-Level Synthesis Coding Style Guide
	Preface
	Conventions

	Introduction
	Coding Examples

	C for Synthesis
	The Top-Level Design
	The Test Bench
	Design Files and Test Bench Files
	Top-Level Arguments: RTL Interface Ports
	Types

	C Libraries
	HLS Math Library
	HLS Video Library

	Coding Styles for Modeling Hardware
	User Defined Registers in C++
	Mapping Directly into SRL resources
	Designing with Streaming Data
	Functions
	Loops
	Arrays
	Unsupported C Constructs

	C++ for Synthesis
	C++ Classes
	Templates
	Types
	Unsupported C++ Constructs

	SystemC Synthesis
	Design Modeling
	Top-Level SystemC Ports
	Unsupported SystemC Constructs

	C Arbitrary Precision Types
	Compiling [u]int#W Types
	Declaring/Defining [u]int#W Variables
	Initialization and Assignment from Constants (Literals)
	Support for console I/O (Printing)
	Expressions Involving [u]int#W types
	Bit-Level Operation: Support Function

	C++ Arbitrary Precision Types
	Compiling ap_[u]<> Types
	Declaring/Defining ap_[u] Variables
	Initialization and Assignment from Constants (Literals)
	Support for console I/O (Printing)
	Expressions Involving ap_[u]<> types
	Class Operators and Methods
	Other Class Methods and Operators

	C++ Arbitrary Precision Fixed Point Types
	The ap_[u]fixed Representation
	Quantization modes
	Overflow modes
	Compiling ap_[u]fixed<> Types
	Declaring/Defining ap_[u]fixed<> Variables
	Initialization and Assignment from Constants (Literals)
	Support for console I/O (Printing)
	Expressions Involving ap_[u]fixed<> types
	Class Operators & Methods

	High-Level Synthesis Command Reference Guide
	Using High-Level Synthesis Commands
	Managing Projects
	High-Level Synthesis Optimization Locations
	Commands and Pragmas

	High-Level Synthesis Commands
	add_file
	Syntax
	Description
	Options
	Pragma
	Examples

	autoimpl
	Syntax
	Description
	Options
	Pragma
	Examples

	cosim_design
	Syntax
	Description
	Options
	Pragma
	Examples

	autosyn
	Syntax
	Description
	Pragma
	Examples

	close_project
	Syntax
	Description
	Pragma
	Examples

	close_solution
	Syntax
	Description
	Pragma
	Examples

	config_array_partition
	Syntax
	Description
	OPTIONS
	Pragma
	Examples

	config_bind
	Syntax
	Description
	Options
	Pragma
	Examples

	config_dataflow
	Syntax
	Description
	Options
	Pragma
	Examples

	config_interface
	Syntax
	Description
	Options
	Pragma
	Examples

	config_rtl
	Syntax
	Description
	Options
	Pragma
	Examples

	config_schedule
	Syntax
	Description
	Options
	Pragma
	Examples

	create_clock
	Syntax
	Description
	Options
	Pragma
	Examples

	delete_project
	Syntax
	Description
	Pragma
	Examples

	delete_solution
	Syntax
	Description
	Pragma
	Examples

	elaborate
	Syntax
	Description
	Options
	Pragma
	Examples

	help
	Syntax
	Description
	Options
	Pragma
	Examples

	list_core
	Syntax
	Description
	Options
	Pragma
	Examples

	list_part
	Syntax
	Description
	Pragma
	Examples

	open_project
	Syntax
	Description
	Options
	Pragma
	Examples

	open_solution
	Syntax
	Description
	Options
	Pragma
	Examples

	set_clock_uncertainty
	Syntax
	Description
	Pragma
	Examples

	set_directive_allocation
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_array_map
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_array_partition
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_array_reshape
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_array_stream
	Syntax
	Options
	Pragma
	Examples

	set_directive_clock
	Syntax
	Description
	Pragma
	Examples

	set_directive_dataflow
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_data_pack
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_dependence
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_expression_balance
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_function_instantiate
	Syntax
	Description
	Pragma
	Examples

	set_directive_inline
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_interface
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_latency
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_loop_flatten
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_loop_merge
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_loop_tripcount
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_loop_unroll
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_occurrence
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_pipeline
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_protocol
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_resource
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_top
	Syntax
	Description
	Options
	Pragma
	Examples

	set_directive_unroll
	Syntax
	Description
	Options
	Pragma
	Examples

	set_part
	Syntax
	Description
	Pragma
	Examples

	set_top
	Syntax
	Description
	Pragma
	Examples

	Additional Resources
	Xilinx Resources
	Solution Centers
	References

