
System Generator
for DSP

Reference Guide

UG638 (v14.5) March 20, 2013

This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7This document applies to the following software versions: ISE Design Suite 14.5 through 14.7

System Generator for DSP Reference Guide www.xilinx.com UG638 (v14.5) March 20, 2013

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs
to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any
form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the
Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any
corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in
connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT
WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING
ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2006 - 2013. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

http://www.xilinx.com

Table of Contents
Chapter 1: Xilinx Blockset
Organization of Blockset Libraries . 20

AXI4 Blocks . 21
Basic Element Blocks . 22
Communication Blocks . 24
Control Logic Blocks . 25
Data Type Blocks . 27
DSP Blocks . 28
Floating-Point Blocks . 30
Index Blocks . 32
Math Blocks . 41
Memory Blocks . 43
Shared Memory Blocks. 44
Tool Blocks . 44
Simulink Blocks Supported by System Generator . 46

Common Options in Block Parameter Dialog Boxes . 47
Avoid Naming Your Design the Same as a Xilinx Block . 47
Precision . 47
Arithmetic Type . 47
Number of Bits . 47
Binary Point . 47
Overflow and Quantization . 47
Latency . 48
Provide Synchronous Reset Port . 48
Provide Enable Port . 48
Sample Period . 49
Use Behavioral HDL (otherwise use core) . 49
Use XtremeDSP Slice . 49
FPGA Area (Slices, FFs, LUTs, IOBs, Embedded Mults, TBUFs) / Use Area Above For Estimation49
Display shortened port names . 50

Block Reference Pages . 51

Absolute . 52
Block Parameters . 52
LogiCORE™ Documentation . 52
Device Support . 53

Accumulator . 54
Block Interface . 54
Block Parameters . 54
LogiCORE™ Documentation . 55
Device Support . 55

Addressable Shift Register . 56
Block Interface . 56
Block Parameters . 57
LogiCORE™ Documentation . 57
Device Support . 57

AddSub . 58
System Generator for DSP Reference Guide www.xilinx.com 3
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=3

Block Parameters . 58
LogiCORE™ Documentation . 59
Device Support . 59

Assert . 60
Block Parameters . 60
Using the Assert block to Resolve Rates and Types. 61
LogiCORE™ Documentation . 61
Device Support . 62

AXI FIFO . 63
Block Interface . 63
Block Parameters . 63
LogiCORE™ Documentation . 65
Device Support . 65

BitBasher . 66
Block Parameters . 66
Supported Verilog Constructs . 66
Limitations . 68

Black Box . 69
Requirements on HDL for Black Boxes . 69
The Black Box Configuration Wizard . 70
The Black Box Configuration M-Function . 71
Sample Periods . 72
Block Parameters . 73
Data Type Translation for HDL Co-Simulation . 74
An Example . 75
Device Support . 76
See Also . 76

ChipScope . 77
Hardware and Software Requirements . 77
Block Parameters . 77
ChipScope Project File . 78
Importing Data Into MATLAB Workspace From ChipScope . 78
Known Issues . 79
More Information . 79

CIC Compiler 2.0 . 80
Block Parameters Dialog Box . 80
LogiCORE™ Documentation . 81
Device Support . 81

CIC Compiler 3.0 . 82
Sample Rates and the CIC Compiler Block . 82
Block Parameters Dialog Box . 82
LogiCORE™ Documentation . 84
Device Support . 84

Clock Enable Probe . 85
Options . 86

Clock Probe . 87

CMult . 88
Block Parameters . 88
LogiCORE™ Documentation . 89
Device Support . 89

Complex Multiplier 3.1 . 90
4 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=4

Block Parameters Dialog Box . 90
LogiCORE™ Documentation . 91
Device Support . 91

Complex Multiplier 5.0 . 92
Block Parameters Dialog Box . 92
LogiCORE™ Documentation . 96
Device Support . 96

Concat . 97
Block Interface . 97
Block Parameters . 97

Configurable Subsystem Manager . 98
Block Parameters . 99

Constant. 100
Block Parameters . 100
Appendix: DSP48 Control Instruction Format . 102

Convert . 103
Block Parameters . 103
LogiCORE™ Documentation . 104
Device Support . 104

Convolution Encoder 7.0 . 105
Block Parameters Dialog Box . 105
LogiCORE™ Documentation . 106
Device Support . 106

Convolution Encoder 8.0 . 107
Block Parameters Dialog Box . 107
LogiCORE™ Documentation . 108
Device Support . 108

CORDIC 4.0 . 109
Block Parameters Dialog Box . 109
LogiCORE™ Documentation . 111
Device Support . 111

CORDIC 5.0 . 112
Changes from CORDIC 4.0 to CORDIC 5.0 . 112
Block Parameters Dialog Box . 113
LogiCORE™ Documentation . 116
Device Support . 116

Counter . 117
Block Parameters . 118
LogiCORE™ Documentation . 118
Device Support . 118

DDS Compiler 4.0 . 119
Architecture Overview . 119
Block Interface . 120
Block Parameters . 121
LogiCORE™ Documentation . 123
Device Support . 123

DDS Compiler 5.0 . 124
Architecture Overview . 124
AXI Ports that are Unique to this Block . 125
Block Parameters . 125
LogiCORE™ Documentation . 130
System Generator for DSP Reference Guide www.xilinx.com 5
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=5

Device Support . 130

Delay . 131
Block Parameters . 131
Logic Synthesis using Behavioral HDL . 132
Logic Synthesis using Structural HDL . 132
Implementing Long Delays. 135
Re-settable Delays and Initial Values . 135
Device Support . 136

Depuncture . 137
Block Parameters . 138

Disregard Subsystem . 139

Divide . 140
LogiCORE™ Documentation . 141
Device Support . 141

Divider Generator 3.0 . 142
Block Parameters . 142
LogiCORE™ Documentation . 143
Device Support . 143

Divider Generator 4.0 . 144
Block Parameters . 144
LogiCORE™ Documentation . 146
Device Support . 146

Down Sample . 147
Zero Latency Down Sample . 147
Down Sample with Latency . 148
Block Parameters . 149
Xilinx LogiCORE . 149

DSP48 . 150
Block Parameters . 150
See Also . 152

DSP48 Macro . 153
Block Interface . 153
Block Parameters . 153
Entering Opmodes in the DSP48 Macro Block . 154
Entering Pipeline Options and Editing Custom Pipeline Options . 160
DSP48 Macro Limitations . 161
See Also . 161

DSP48 macro 2.0 . 162
Block Parameters . 162
LogiCORE™ Documentation . 166
Device Support . 166
See Also . 166

DSP48 Macro 2.1 . 167
Block Parameters . 167
LogiCORE™ Documentation . 171
zDevice Support . 171
See Also . 171

DSP48A . 172
Block Parameters . 172
See Also . 174
6 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=6

DSP48E . 175
Block Parameters . 175
See Also . 179

DSP48E1 . 180
Block Parameters . 180
See Also . 184

Dual Port RAM . 185
Block Interface . 185
Block Parameters . 187
Xilinx LogiCORE . 189
LogiCORE™ Documentation . 189
Device Support . 189

EDK Processor. 191
Memory Map Interface . 191
Block Parameters . 192
Known Issues . 194
Online Documentation for the MicroBlaze Processor . 194

Expression . 195
Block Parameters . 195

Fast Fourier Transform 7.1 . 196
Theory of Operation . 196
Block Interface . 196
Block Parameters . 198
Block Timing . 200
LogiCORE™ Documentation . 200
Device Support . 200

Fast Fourier Transform 8.0 . 202
Theory of Operation . 202
AXI Ports that are Unique to this Block . 202
Block Parameters . 203
Block Timing . 205
LogiCORE™ Documentation . 207
Device Support . 208

FDATool . 209
Example of Use . 209
FDA Tool Interface . 209

FIFO . 210
Block Parameters . 210
LogiCORE™ Documentation . 211
Device Support . 211

FIR Compiler 5.0. 212
Block Interface . 212
Block Parameters . 213
LogiCORE™ Documentation . 218
Device Support . 218

FIR Compiler 6.2. 219
AXI Ports that are Unique to this Block . 219
Block Parameters . 219
LogiCORE™ Documentation . 227
Device Support . 227

FIR Compiler 6.3. 228
System Generator for DSP Reference Guide www.xilinx.com 7
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=7

AXI Ports that are Unique to this Block . 228
Block Parameters . 228
Channel Specification tab . 229
LogiCORE™ Documentation . 236
Device Support . 236

From FIFO . 237
Block Parameters . 237
LogiCORE™ Documentation . 239
Device Support . 239
See Also . 239

From Register . 240
Block Parameters . 240
Crossing Clock Domain . 241
See Also . 241

Gateway In . 242
Gateway Blocks . 242
Block Parameters . 242

Gateway Out. 244
Gateway Blocks . 244
Block Parameters . 244

Indeterminate Probe . 246

Interleaver/De-interleaver 6.0 . 247
Forney Convolutional Operation . 247
Rectangular Block Operation . 248
Block Parameters . 249
How to Migrate an Interleaver De-Interleaver 5.1 block to 6.0 . 254
LogiCORE™ Documentation . 256
Device Support . 257

Interleaver/De-interleaver 7.0 . 258
Forney Convolutional Operation . 258
Configuration Swapping . 260
Rectangular Block Operation . 260
AXI Interface . 261
AXI Ports that are Unique to this Block . 261
Block Parameters . 263
LogiCORE™ Documentation . 266
Device Support . 266

Interleaver/De-interleaver 7.1 . 267
Forney Convolutional Operation . 267
Configuration Swapping . 269
Rectangular Block Operation . 269
AXI Interface . 270
AXI Ports that are Unique to this Block . 270
Block Parameters . 272
LogiCORE™ Documentation . 275
Device Support . 275

Inverter . 276
Block Parameters . 276

JTAG Co-Simulation . 277
Block Parameters . 277

LFSR . 280
8 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=8

Block Interface . 280
Block Parameters . 280

Logical . 282
Block Parameters . 282
Xilinx LogiCORE . 282

MCode . 283
Configuring an MCode Block . 283
MATLAB Language Support . 284
Block Parameters Dialog Box . 304

ModelSim . 305
Block Parameters . 305
Fine Points . 307

Mult . 310
Block Parameters . 310
LogiCORE™ Documentation . 311
Device Support . 311

Multiple Subsystem Generator . 312
Block Parameters . 312
Design Generation . 312
Multiple Clock Support . 315
Files Generated . 315

Mux . 317
Block Parameters . 317
LogiCORE™ Documentation . 318
Device Support . 318

Natural Logarithm . 319
Block Parameters Dialog Box . 319
LogiCORE™ Documentation . 319
Device Support . 319

Negate. 320
Block Parameters . 320

Network-based Ethernet Co-Simulation . 321
Block Parameters . 321
See Also . 322

Opmode . 323
Block Parameters . 323
Xilinx LogiCORE . 324
References . 324
DSP48A Control Instruction Format . 325
DSP48 Control Instruction Format . 326
DSP48E Control Instruction Format . 327
DSP48E1 Control Instruction Format . 329

Parallel to Serial . 332
Block Interface . 332
Block Parameters . 332

Pause Simulation . 333
Block Parameters . 333

PicoBlaze Instruction Display . 334
Block Interface . 334
Block Parameters . 334
System Generator for DSP Reference Guide www.xilinx.com 9
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=9

Xilinx LogiCORE . 334

PicoBlaze Microcontroller . 335
Block Interface . 335
Block Parameters . 335
How to Use the PicoBlaze Assembler . 336
Device Support . 336
Known Issues . 336
PicoBlaze Microprocessor Online Documentation . 336

PicoBlaze6 Instruction Display . 337
Block Interface . 337
Block Parameters . 337
Xilinx LogiCORE . 337

PicoBlaze6 Microcontroller . 338
Block Interface . 339
Block Parameters . 340
How to Use the PicoBlaze Assembler . 340
Device Support . 341
PicoBlaze6 Microprocessor Online Documentation . 341

Point-to-point Ethernet Co-Simulation . 342
Block Parameters . 342
See Also . 344

Puncture . 345
Block Parameters . 345

Reciprocal . 346
Block Parameters . 346
LogiCORE™ Documentation . 346
Device Support . 346

Reciprocal SquareRoot . 347
Block Parameters . 347
LogiCORE™ Documentation . 347
Device Support . 347

Reed-Solomon Decoder 7.1 . 348
Block Interface . 348
Block Parameters . 349
LogiCORE™ Documentation . 352
Device Support . 352

Reed-Solomon Decoder 8.0 . 353
Block Interface Channels and Pins . 353
Block Parameters . 355
LogiCORE™ Documentation . 358
Device Support . 358

Reed-Solomon Encoder 7.1. 359
Block Interface . 359
Block Parameters . 361
LogiCORE™ Documentation . 363
Device Support . 363

Reed-Solomon Encoder 8.0. 364
Block Interface Channels and Pins . 365
Other Optional Pins. 366
Block Parameters . 366
LogiCORE™ Documentation . 368
10 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=10

Device Support . 368

Register . 369
Block Interface . 369
Block Parameters . 369
LogiCORE™ Documentation . 369
Device Support . 369

Reinterpret . 370
Block Parameters . 370
LogiCORE™ Documentation . 371
Device Support . 371

Relational . 372
Block Parameters . 372
LogiCORE™ Documentation . 372
Device Support . 372

Reset Generator. 373
Block Parameters . 373

Resource Estimator . 374
Block Parameters . 374
Perform Resource Estimation Buttons . 374
Blocks Supported by Resource Estimation . 375
Viewing ISE Reports . 376
Known Issues for Resource Estimation . 376

ROM . 378
Block Parameters . 378
LogiCORE™ Documentation . 379
Device Support . 379

Register . 381
Block Interface . 381
Block Parameters . 381
Xilinx LogiCORE . 381

Sample Time . 382

Scale . 383
Block Parameters . 383
Xilinx LogiCore . 383

Serial to Parallel . 384
Block Interface . 384
Block Parameters . 384

Shared Memory . 385
Block Interface . 385
Block Parameters . 387
LogiCORE™ Documentation . 388
Device Support . 388

Shared Memory Read . 389
FIFO Transactions . 389
Lockable Memory Transactions . 389
Block Parameters . 390
See Also . 390

Shared Memory Write . 391
FIFO Transactions . 391
Lockable Memory Transactions . 391
System Generator for DSP Reference Guide www.xilinx.com 11
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=11

Block Parameters . 392
See Also . 392

Shift. 393
Block Parameters . 393
Xilinx LogiCORE . 393

Simulation Multiplexer . 394
Using Subsystem for Simulation and Black Box for Hardware . 394
Block Parameters . 395

Single Port RAM . 396
Block Interface . 396
Block Parameters . 396
Write Modes . 397
Hardware Notes . 398
Xilinx LogiCORE . 399
LogiCORE™ Documentation . 399
Device Support . 400

Single-Step Simulation . 401
Block Parameters . 401

Slice . 402
Block Parameters . 402

SquareRoot . 403
Block Parameters . 403
LogiCORE™ Documentation . 403
Device Support . 403

System Generator . 404
Token Parameters . 404

Threshold . 411
Block Parameters . 411
Xilinx LogiCORE . 411

Time Division Demultiplexer . 412
Block Interface . 412
Block Parameters . 413

Time Division Multiplexer . 414
Block Interface . 414
Block Parameters . 414

To FIFO . 415
Block Parameters . 415
LogiCORE™ Documentation . 417
Device Support . 417
See Also . 417

To Register . 418
Block Parameters . 418
Crossing Clock Domains . 419
LogiCORE™ Documentation . 420
Device Support . 420
See Also . 420

Toolbar. 421
Block Interface . 421
Toolbar Menus . 422
References . 422
12 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=12

See Also . 422

Up Sample . 423
Block Interface . 423
Block Parameters . 424

VDMA Interface 4.0 . 425
Preparing to Use This Block . 425
xlVDMACreateProject utility . 430
Block Parameters . 431
LogiCORE™ Documentation . 432
Device Support . 432

VDMA Interface 5.4 . 433
Preparing to Use This Block . 433
xlVDMACreateProject utility . 433
Block Parameters . 435
LogiCORE™ Documentation . 436
Device Support . 436

Viterbi Decoder 7.0 . 437
Block Interface . 437
Block Parameters . 438
LogiCORE™ Documentation . 442
Device Support . 442

Viterbi Decoder 8.0 . 443
Block Interface . 443
Block Parameters . 445
LogiCORE™ Documentation . 449
Device Support . 449

WaveScope . 450
Quick Tutorial . 450
Block Interface . 453

Chapter 2: Xilinx Reference Blockset
Communication . 461
Control Logic . 461
DSP . 461
Imaging . 462
Math . 462

2 Channel Decimate by 2 MAC FIR Filter . 463
Block Parameters . 463
Reference . 463

2n+1-tap Linear Phase MAC FIR Filter . 464
Block Parameters . 464
Reference . 464

2n-tap Linear Phase MAC FIR Filter . 465
Block Parameters . 465
Reference . 465

2n-tap MAC FIR Filter . 466
Block Parameters . 466
Reference . 466

4-channel 8-tap Transpose FIR Filter . 467
Block Parameters . 467
System Generator for DSP Reference Guide www.xilinx.com 13
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=13

4n-tap MAC FIR Filter . 468
Block Parameters . 468
Reference . 468

5x5Filter. 469
Block Parameters . 470

BPSK AWGN Channel . 471
Block Parameters . 471
Reference . 471

CIC Filter . 472
Block Interface . 472
Block Parameters . 473
Reference . 473

Convolutional Encoder . 474
Implementation . 474
Block Interface . 475
Block Parameters . 475

CORDIC ATAN . 476
Block Parameters . 476
Reference . 476

CORDIC DIVIDER . 477
Block Parameters . 477
Reference . 477

CORDIC LOG . 478
Block Parameters . 478
Reference . 479

CORDIC SINCOS . 480
Block Parameters . 480
Reference . 480

CORDIC SQRT. 481
Block Parameters . 481
Reference . 482

Dual Port Memory Interpolation MAC FIR Filter . 483
Block Parameters . 483
Reference . 483

Interpolation Filter . 484
Block Parameters . 484
Reference . 484

m-channel n-tap Transpose FIR Filter . 485
Block Parameters . 485

Mealy State Machine . 486
Example . 487
Block Parameters . 487

Moore State Machine . 490
Example . 491
Block Parameters . 492

Multipath Fading Channel Model . 493
Theory . 493
Implementation . 494
Block Parameters . 494
Functions . 495
14 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=14

Data Format . 496
Input . 497
Output . 498
Timing . 498
Initialization . 498
Demonstrations . 498
Hardware Co-Simulation Example . 498
Reference . 499

n-tap Dual Port Memory MAC FIR Filter . 500
Block Parameters . 500
Reference . 500

n-tap MAC FIR Filter . 501
Block Parameters . 501
Reference . 501

Registered Mealy State Machine. 502
Example . 503
Block Parameters . 504

Registered Moore State Machine . 505
Example . 506
Block Parameters . 507

Virtex Line Buffer. 508
Block Parameters . 508

Virtex2 Line Buffer. 509
Block Parameters . 509

Virtex2 5 Line Buffer . 510
Block Parameters . 510

White Gaussian Noise Generator . 511
4-bit Leap-Forward LFSR. 511
Box-Muller Method . 512
Block Parameters . 512
Reference . 512

Chapter 3: Xilinx XtremeDSP Kit Blockset
XtremeDSP Analog to Digital Converter . 514

Block Parameters . 514
Data Sheet . 514

XtremeDSP Co-Simulation. 515
Block Parameters . 515

XtremeDSP Digital to Analog Converter . 517
Block Parameters . 517
Data Sheet . 517

XtremeDSP External RAM . 518
Block Parameters . 518

XtremeDSP LED Flasher . 519
Block Parameters . 519

Chapter 4: System Generator Utilities
xlAddTerms . 523

Syntax . 523
System Generator for DSP Reference Guide www.xilinx.com 15
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=15

Description . 523
Examples . 525
Remarks . 525
See Also . 525

xlCache. 526
Syntax . 526
Description . 526
See Also . 527

xlConfigureSolver . 528
Syntax . 528
Description . 528
Examples . 528

xlfda_denominator . 529
Syntax . 529
Description . 529
See Also . 529

xlfda_numerator . 530
Syntax . 530
Description . 530
See Also . 530

xlGenerateButton . 531
Syntax . 531
Description . 531
See Also . 531

xlgetparam and xlsetparam . 532
Syntax . 532
Description . 532
Examples . 533
See Also . 533

xlgetparams . 534
Syntax . 534
Description . 534
Examples . 534
See Also . 535

xlGetReloadOrder. 536
Syntax . 536
Description . 536
See Also . 537

xlInstallPlugin . 538
Syntax . 538
Description . 538
Examples . 538
See Also . 538

xlLoadChipScopeData . 539
Syntax . 539
Description . 539
Examples . 539
See Also . 539

xlSBDBuilder . 540
Syntax . 540
Description . 540
16 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=16

See Also . 542

xlSetNonMemMap . 543
Syntax . 543
Description . 543
Examples . 543
See Also . 543

xlSetUseHDL . 544
Syntax . 544
Description . 544
Examples . 544
See Also . 544

xlSwitchLibrary. 545
Syntax . 545
Description . 545
Examples . 545

xlTBUtils . 546
Syntax . 546
Description . 546
Examples . 548
Remarks . 549
See Also . 549

xlTimingAnalysis. 550
Syntax . 550
Description . 550
Example . 550

xlUpdateModel. 551
Syntax . 551
Description . 551
Examples . 553

xlVDMACreateProject . 554

xlVersion . 555
Syntax . 555
Description . 555
See Also . 555

Chapter 5: System Generator GUI Utilities
Xilinx BlockAdd . 558

How to Invoke. 558
How to Use . 558

Xilinx Tools > Save as blockAdd default. 560
How to Use . 560
How to Restore the Block Default . 560

Xilinx BlockConnect. 561
Simple Connections . 561
Smart Connections . 562

Xilinx Tools > Terminate . 563
How to Use . 563
System Generator for DSP Reference Guide www.xilinx.com 17
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=17

Chapter 6: Programmatic Access
System Generator API for Programmatic Generation . 567

Introduction . 567
xBlock . 568
xInport . 569
xOutport . 569
xSignal . 570
xlsub2script . 570
xBlockHelp . 572

PG API Examples . 573
Hello World . 573
MACC . 574
MACC in a Masked Subsystem . 575

PG API Error/Warning Handling & Messages. 579
xBlock Error Messages . 579
xInport Error Messages . 579
xOutport Error Messages . 580
xSignal Error Messages . 580
xsub2script Error Messages . 580

M-Code Access to Hardware Co-Simulation . 580
Compiling Hardware for Use with M-Hwcosim . 581
M-Hwcosim Simulation Semantics . 581
Data Representation . 582
Interfacing to Hardware from M-Code . 582
M-Hwcosim Examples . 583
Automatic Generation of M-Hwcosim Testbench . 588
Resource Management . 591
M-Hwcosim MATLAB Class . 591
M-Hwcosim Shared Memory MATLAB Class . 596
M-Hwcosim Shared FIFO MATLAB Class . 598
M-Hwcosim Utility Functions . 599

Index . 603
18 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=18

Chapter 1

Xilinx Blockset

Organization of Blockset Libraries Describes how the Xilinx blocks are organized into
libraries.

Common Options in Block
Parameter Dialog Boxes

Describes block parameters that are common to most
blocks in the Xilinx blockset.

Block Reference Pages Alphabetical listing of the Xilinx blockset with detailed
descriptions of each block.
System Generator for DSP Reference Guide www.xilinx.com 19
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=19

Chapter 1: Xilinx Blockset
Organization of Blockset Libraries
The Xilinx Blockset contains building blocks for constructing DSP and other digital systems in
FPGAs using Simulink. The blocks are grouped into libraries according to their function, and some
blocks with broad applicability (e.g., the Gateway I/O blocks) are linked into multiple libraries. The
following libraries are provided:

Each block has a background color that indicates the following:

Library Description

Index Includes every block in the Xilinx Blockset.

AXI4 Blocks Includes every block the supports tjhe AXI4 Interface

Basic Element Blocks Includes standard building blocks for digital logic

Communication Blocks Includes forward error correction and modulator blocks, commonly used in
digital communications systems

Control Logic Blocks Includes blocks for control circuitry and state machines

Data Type Blocks Includes blocks that convert data types (includes gateways)

DSP Blocks Includes Digital Signal Processing (DSP) blocks

Floating-Point Blocks Includes blocks that support the Floating-Point data type as well as other
data types. Only a single data type is supported at a time. For example, a
floating-point input produces a floating-point output; a fixed-point input
produces a fixed-point output.

Index Blocks Includes All System Generator blocks

Math Blocks Includes blocks that implement mathematical functions

Memory Blocks Includes blocks that implement and access memories

Shared Memory Blocks Includes blocks that implement and access Xilinx shared memories

Tool Blocks Includes “Utility” blocks, e.g., code generation (System Generator token),
resource estimation, HDL co-simulation, etc

Background Color Meaning

Blue Block Goes into the FPGA fabric and is free!!

Green
Block Goes into the FPGA fabric and is a Licensed Core. Go to the Xilinx web
site to purchase the Core license.

Yellow
Blocks on the boundary of your design like Gateway, Shared Memory Read,
Shared Memory Write, VDMA, etc

White Utility or Tool

Red Symbol System Generator Token (control panel)
20 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=20

Organization of Blockset Libraries
AXI4 Blocks

Table 1-1: AXI4 Blocks

Block Description

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an
AXI-compatible block interface.

CIC Compiler 3.0 The Xilinx CIC Compiler provides the ability to design and implement
AXI4-Stream-compliant Cascaded Integrator-Comb (CIC) filters for a
variety of Xilinx FPGA devices.

Complex Multiplier 5.0 The Complex Multiplier 5.0 block implements AXI4-Stream
compliant, high-performance, optimized complex multipliers for
Virtex-6 and Spartan-6 devices based on user-specified options.

Convolution Encoder 8.0 The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi decoder,
this block performs forward error correction (FEC) in digital
communication systems. This block adheres to the AMBA® AXI4-
Stream standard.

DDS Compiler 5.0 The Xilinx DDS (Direct Digital Synthesizer) Compiler 5.0 block
implements high performance, optimized Phase Generation and Phase
to Sinusoid circuits with AXI4-Stream compliant interfaces for Virtex-
6, Spartan-6, Virtex-7 and Kintex-7 devices.

Divider Generator 4.0 The Xilinx Divider Generator 4.0 block creates a circuit for integer
division based on Radix-2 non-restoring division, or High-Radix
division with prescaling.

Fast Fourier Transform
8.0

The Xilinx Fast Fourier Transform 8.0 block implements the Cooley-
Tukey FFT algorithm, a computationally efficient method for
calculating the Discrete Fourier Transform (DFT). In addition, the
block provides an AXI4-Stream-compliant interface for Virtex-6 and
Spartan-6 devices.

FIR Compiler 6.2 The Xilinx FIR Compiler 6.2 block provides users with a way to
generate highly parameterizable, area-efficient, high-performance FIR
filters with an AXI4-Stream-compliant interface.

FIR Compiler 6.3 The Xilinx FIR Compiler 6.3 block provides users with a way to
generate highly parameterizable, area-efficient, high-performance FIR
filters with an AXI4-Stream-compliant interface.

Reed-Solomon Decoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting codes
with a wide range of applications in digital communications and
storage.

Reed-Solomon Encoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting codes
with a wide range of applications in digital communications and
storage. This block adheres to the AMBA® AXI4-Stream standard.

VDMA Interface 4.0 The VDMA (Video Direct Memory Access) Interface block is a bit-
accurate simulation model containing up to 4 AXI VDMA IP
LogiCOREs connected to an AXI interconnect and external memory.
System Generator for DSP Reference Guide www.xilinx.com 21
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=21

Chapter 1: Xilinx Blockset
Basic Element Blocks

VDMA Interface 5.4 As shown in the illustration below, the VDMA Interface block’s AXI
memory-mapped interface is connected to the AXI Interconnect. DDR
external memory is connected as the only slave on the AXI
Interconnect. All ports except memory-mapped ports of the VDMA
block are available on the VDMA Interface block.

Viterbi Decoder 8.0 Data encoded with a convolution encoder can be decoded using the
Xilinx Viterbi decoder block. This block adheres to the AMBA®
AXI4-Stream standard.

Table 1-1: AXI4 Blocks

Block Description

Table 1-2: Basic Element Blocks

Block Description

Absolute The Xilinx Absolute block outputs the absolute value of the input.

Addressable Shift
Register

The Xilinx Addressable Shift Register block is a variable-length shift
register in which any register in the delay chain can be addressed and
driven onto the output data port.

Assert The Xilinx Assert block is used to assert a rate and/or a type on a signal.
This block has no cost in hardware and can be used to resolve rates
and/or types in situations where designer intervention is required.

BitBasher The Xilinx BitBasher block performs slicing, concatenation and
augmentation of inputs attached to the block.

Black Box The System Generator Black Box block provides a way to incorporate
hardware description language (HDL) models into System Generator.

Clock Enable Probe The Xilinx Clock Enable (CE) Probe provides a mechanism for
extracting derived clock enable signals from Xilinx signals in System
Generator models.

Concat The Xilinx Concat block performs a concatenation of n bit vectors
represented by unsigned integer numbers, for example, n unsigned
numbers with binary points at position zero.

Constant The Xilinx Constant block generates a constant that can be a fixed-
point value, a Boolean value, or a DSP48 instruction. This block is
similar to the Simulink constant block, but can be used to directly drive
the inputs on Xilinx blocks.

Convert The Xilinx Convert block converts each input sample to a number of a
desired arithmetic type. For example, a number can be converted to a
signed (two's complement) or unsigned value.

Counter The Xilinx Counter block implements a free running or count-limited
type of an up, down, or up/down counter. The counter output can be
specified as a signed or unsigned fixed-point number.

Delay The Xilinx Delay block implements a fixed delay of L cycles.
22 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=22

Organization of Blockset Libraries
Down Sample The Xilinx Down Sample block reduces the sample rate at the point
where the block is placed in your design.

Expression The Xilinx Expression block performs a bitwise logical expression.

Gateway In The Xilinx Gateway In blocks are the inputs into the Xilinx portion of
your Simulink design. These blocks convert Simulink integer, double
and fixed-point data types into the System Generator fixed-point type.
Each block defines a top-level input port in the HDL design generated
by System Generator.

Gateway Out Xilinx Gateway Out blocks are the outputs from the Xilinx portion of
your Simulink design. This block converts the System Generator fixed-
point or floating-point data type into a Simulink integer, single, double
or fixed-point data type.

Inverter The Xilinx Inverter block calculates the bitwise logical complement of
a fixed-point number. The block is implemented as a synthesizable
VHDL module.

LFSR The Xilinx LFSR block implements a Linear Feedback Shift Register
(LFSR). This block supports both the Galois and Fibonacci structures
using either the XOR or XNOR gate and allows a re-loadable input to
change the current value of the register at any time. The LFSR output
and re-loadable input can be configured as either serial or parallel ports

Logical The Xilinx Logical block performs bitwise logical operations on fixed-
point numbers. Operands are zero padded and sign extended as
necessary to make binary point positions coincide; then the logical
operation is performed and the result is delivered at the output port.

Mux The Xilinx Mult block implements a multiplier. It computes the product
of the data on its two input ports, producing the result on its output port.

Parallel to Serial The Parallel to Serial block takes an input word and splits it into N
time-multiplexed output words where N is the ratio of number of input
bits to output bits. The order of the output can be either least significant
bit first or most significant bit first.

Register The Xilinx Register block models a D flip-flop-based register, having
latency of one sample period.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any
regard for retaining the numerical value represented by the input.

Relational The Xilinx Relational block implements a comparator.

Reset Generator The Reset Generator block captures the user's reset signal that is
running at the system sample rate, and produces one or more
downsampled reset signal(s) running at the rates specified on the block.

Serial to Parallel The Serial to Parallel block takes a series of inputs of any size and
creates a single output of a specified multiple of that size. The input
series can be ordered either with the most significant word first or the
least significant word first.

Table 1-2: Basic Element Blocks

Block Description
System Generator for DSP Reference Guide www.xilinx.com 23
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=23

Chapter 1: Xilinx Blockset
Communication Blocks

Slice The Xilinx Slice block allows you to slice off a sequence of bits from
your input data and create a new data value. This value is presented as
the output from the block. The output data type is unsigned with its
binary point at zero.

System Generator The System Generator token serves as a control panel for controling
system and simulation parameters, and it is also used to invoke the code
generator for netlisting. Every Simulink model containing any element
from the Xilinx Blockset must contain at least one System Generator
token. Once a System Generator token is added to a model, it is possible
to specify how code generation and simulation should be handled.

Time Division
Demultiplexer

The Xilinx Time Division Demultiplexer block accepts input serially
and presents it to multiple outputs at a slower rate.

Time Division
Multiplexer

The Xilinx Time Division Multiplexer block multiplexes values
presented at input ports into a single faster rate output stream.

Up Sample The Xilinx Up Sample block increases the sample rate at the point
where the block is placed in your design. The output sample period is
l/n, where l is the input sample period and n is the sampling rate.

Table 1-2: Basic Element Blocks

Block Description

Table 1-3: Communication Blocks - FEC

Communication Block Description

Convolution Encoder 7.0 The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi
decoder, this block performs forward error correction (FEC) in
digital communication systems.

Convolution Encoder 8.0 The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi
decoder, this block performs forward error correction (FEC) in
digital communication systems. This block adheres to the AMBA®
AXI4-Stream standard.

Depuncture The Xilinx Depuncture block allows you to insert an arbitrary
symbol into your input data at the location specified by the
depuncture code.

Interleaver/De-interleaver
6.0

The Xilinx Interleaver Deinterleaver block implements an
interleaver or a deinterleaver. An interleaver is a device that
rearranges the order of a sequence of input symbols. The term
symbol is used to describe a collection of bits. In some applications,
a symbol is a single bit. In others, a symbol is a bus.

Interleaver/De-interleaver
7.0

The classic use of interleaving is to randomize the location of errors
introduced in signal transmission. Interleaving spreads a burst of
errors out so that error correction circuits have a better chance of
correcting the data.
24 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=24

Organization of Blockset Libraries
Control Logic Blocks

Interleaver/De-interleaver
7.1

If a particular interleaver is used at the transmit end of a channel,
the inverse of that interleaver must be used at the receive end to
recover the original data. The inverse interleaver is referred to as a
de-interleaver.

Puncture The Xilinx Puncture block removes a set of user-specified bits from
the input words of its data stream.

Reed-Solomon Decoder
7.1

The Reed-Solomon (RS) codes are block-based error correcting
codes with a wide range of applications in digital communications
and storage.

Reed-Solomon Decoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting
codes with a wide range of applications in digital communications
and storage.

Reed-Solomon Encoder
7.1

The Reed-Solomon (RS) codes are block-based error correcting
codes with a wide range of applications in digital communications
and storage.

Reed-Solomon Encoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting
codes with a wide range of applications in digital communications
and storage. This block adheres to the AMBA® AXI4-Stream
standard.

Viterbi Decoder 7.0 Data encoded with a convolution encoder can be decoded using the
Xilinx Viterbi decoder block.

Viterbi Decoder 8.0 Data encoded with a convolution encoder can be decoded using the
Xilinx Viterbi decoder block. This block adheres to the AMBA®
AXI4-Stream standard.

Table 1-3: Communication Blocks - FEC

Communication Block Description

Table 1-4: Control Logic Blocks

Control Logic Block Description

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an
AXI-compatible block interface.

Black Box The System Generator Black Box block provides a way to incorporate
hardware description language (HDL) models into System Generator.

Constant The Xilinx Constant block generates a constant that can be a fixed-point
value, a Boolean value, or a DSP48 instruction. This block is similar to the
Simulink constant block, but can be used to directly drive the inputs on
Xilinx blocks.

Counter The Xilinx Counter block implements a free running or count-limited type
of an up, down, or up/down counter. The counter output can be specified as
a signed or unsigned fixed-point number.

Dual Port RAM The Xilinx Dual Port RAM block implements a random access memory
(RAM). Dual ports enable simultaneous access to the memory space at
different sample rates using multiple data widths.
System Generator for DSP Reference Guide www.xilinx.com 25
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=25

Chapter 1: Xilinx Blockset
EDK Processor The EDK Processor block allows user logic developed in System
Generator to be attached to embedded processor systems created using the
Xilinx Embedded Development Kit (EDK).

Expression The Xilinx Expression block performs a bitwise logical expression.

FIFO The Xilinx FIFO block implements an FIFO memory queue.

Inverter The Xilinx Inverter block calculates the bitwise logical complement of a
fixed-point number. The block is implemented as a synthesizable VHDL
module.

Logical The Xilinx Logical block performs bitwise logical operations on fixed-
point numbers. Operands are zero padded and sign extended as necessary
to make binary point positions coincide; then the logical operation is
performed and the result is delivered at the output port.

MCode The Xilinx MCode block is a container for executing a user-supplied
MATLAB function within Simulink. A parameter on the block specifies the
M-function name. The block executes the M-code to calculate block
outputs during a Simulink simulation. The same code is translated in a
straightforward way into equivalent behavioral VHDL/Verilog when
hardware is generated.

Mux The Xilinx Mux block implements a multiplexer. The block has one select
input (type unsigned) and a user-configurable number of data bus inputs,
ranging from 2 to 1024.

PicoBlaze Instruction
Display

The PicoBlaze Instruction Display block takes an encoded 18-bit
PicoBlaze instruction and a 10 bit address and displays the decoded
instruction and the program counter on the block icon. This feature is useful
when debugging PicoBlaze designs and can be used in conjunction with the
Single-Step Simulation block to step through each instruction.

PicoBlaze
Microcontroller

The Xilinx PicoBlaze Microcontroller block implements an embedded 8-
bit microcontroller using the PicoBlaze macro.

PicoBlaze6 Instruction
Display

The PicoBlaze6™ Instruction Display block takes an encoded 18-bit
picoblaze6 instruction and PicoBlaze address output and displays the
decoded instruction and the program counter on the block icon. This
feature is useful when debugging PicoBlaze6 designs and can be used in
conjunction with the Single-Step Simulation block to step through each
instruction.

PicoBlaze6
Microcontroller

The Xilinx PicoBlaze6™ Microcontroller block implements an 8-bit
microcontroller.

Relational The Xilinx Relational block implements a comparator.

ROM The Xilinx ROM block is a single port read-only memory (ROM).

Shift The Xilinx Shift block performs a left or right shift on the input signal. The
result will have the same fixed-point container as that of the input.

Table 1-4: Control Logic Blocks

Control Logic Block Description
26 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=26

Organization of Blockset Libraries
Data Type Blocks

Single Port RAM The Xilinx Single Port RAM block implements a random access memory
(RAM) with one data input and one data output port.

Slice The Xilinx Slice block allows you to slice off a sequence of bits from your
input data and create a new data value. This value is presented as the output
from the block. The output data type is unsigned with its binary point at
zero.

Table 1-4: Control Logic Blocks

Control Logic Block Description

Table 1-5: Data Type Blocks

Data Type Block Description

BitBasher The Xilinx BitBasher block performs slicing, concatenation and
augmentation of inputs attached to the block.

Concat The Xilinx Concat block performs a concatenation of n bit vectors
represented by unsigned integer numbers, for example, n unsigned
numbers with binary points at position zero.

Convert The Xilinx Convert block converts each input sample to a number of a
desired arithmetic type. For example, a number can be converted to a
signed (two's complement) or unsigned value.

Gateway In The Xilinx Gateway In blocks are the inputs into the Xilinx portion of your
Simulink design. These blocks convert Simulink integer, double and fixed-
point data types into the System Generator fixed-point type. Each block
defines a top-level input port in the HDL design generated by System
Generator.

Gateway Out Xilinx Gateway Out blocks are the outputs from the Xilinx portion of your
Simulink design. This block converts the System Generator fixed-point or
floating-point data type into a Simulink integer, single, double or fixed-
point data type.

Parallel to Serial The Parallel to Serial block takes an input word and splits it into N time-
multiplexed output words where N is the ratio of number of input bits to
output bits. The order of the output can be either least significant bit first or
most significant bit first.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any
regard for retaining the numerical value represented by the input.

Scale The Xilinx Scale block scales its input by a power of two. The power can
be either positive or negative. The block has one input and one output. The
scale operation has the effect of moving the binary point without changing
the bits in the container

Serial to Parallel The Serial to Parallel block takes a series of inputs of any size and creates
a single output of a specified multiple of that size. The input series can be
ordered either with the most significant word first or the least significant
word first.
System Generator for DSP Reference Guide www.xilinx.com 27
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=27

Chapter 1: Xilinx Blockset
DSP Blocks

Shift The Xilinx Shift block performs a left or right shift on the input signal. The
result will have the same fixed-point container as that of the input.

Slice The Xilinx Slice block allows you to slice off a sequence of bits from your
input data and create a new data value. This value is presented as the output
from the block. The output data type is unsigned with its binary point at
zero.

Table 1-5: Data Type Blocks

Data Type Block Description

Table 1-6: DSP Blocks

DSP Block Description

CIC Compiler 2.0 The Xilinx CIC Compiler provides the ability to design and implement
Cascaded Integrator-Comb (CIC) filters for a variety of Xilinx FPGA
devices.

CIC Compiler 3.0 The Xilinx CIC Compiler provides the ability to design and implement
AXI4-Stream-compliant Cascaded Integrator-Comb (CIC) filters for a
variety of Xilinx FPGA devices.

Complex Multiplier 3.1 The Xilinx Complex Multiplier block multiplies two complex
numbers.

Complex Multiplier 5.0 The Complex Multiplier 5.0 block implements AXI4-Stream
compliant, high-performance, optimized complex multipliers for
Virtex-6 and Spartan-6 devices based on user-specified options.

CORDIC 4.0 The Xilinx CORDIC 4.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm.

CORDIC 5.0 The Xilinx CORDIC 5.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm and is AXI compliant.

DDS Compiler 4.0 The Xilinx DDS Compiler block is a direct digital synthesizer, also
commonly called a numerically controlled oscillator (NCO). The block
uses a lookup table scheme to generate sinusoids. A digital integrator
(accumulator) generates a phase that is mapped by the lookup table into
the output sinusoidal waveform.

DDS Compiler 5.0 The Xilinx DDS (Direct Digital Synthesizer) Compiler 5.0 block
implements high performance, optimized Phase Generation and Phase
to Sinusoid circuits with AXI4-Stream compliant interfaces for Virtex-
6, Spartan-6, Virtex-7 and Kintex-7 devices.

Divider Generator 3.0 The Xilinx Divider Generator 3.0 block creates a circuit for integer
division based on Radix-2 non-restoring division, or High-Radix
division with prescaling.

Divider Generator 4.0 The Xilinx Divider Generator 4.0 block creates a circuit for integer
division based on Radix-2 non-restoring division, or High-Radix
division with prescaling.
28 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=28

Organization of Blockset Libraries
DSP48 The Xilinx DSP48 block is an efficient building block for DSP
applications that use Xilinx Virtex®-4 devices. The DSP48 combines
an 18-bit by 18-bit signed multiplier with a 48-bit adder and
programmable mux to select the adder's input.

DSP48 Macro The System Generator DSP48 Macro block provides a device
independent abstraction of the blocks DSP48, DSP48A, and DSP48E.
Using this block instead of using a technology-specific DSP slice helps
makes the design more portable between Xilinx technologies.

DSP48 macro 2.0 The System Generator DSP48 macro 2.0 block provides a device
independent abstraction of the blocks DSP48, DSP48A, and DSP48E.
Using this block instead of using a technology-specific DSP slice helps
makes the design more portable between Xilinx technologies.

DSP48 Macro 2.1 The System Generator DSP48 macro 2.1 block provides a device
independent abstraction of the blocks DSP48, DSP48A, and DSP48E.
Using this block instead of using a technology-specific DSP slice helps
makes the design more portable between Xilinx technologies.

DSP48A The Xilinx DSP48A block is an efficient building block for DSP
applications that use Xilinx Spartan-3A DSP devices. For those
familiar with the DSP48 and the DSP48E, the DSP48A is a ‘light’
version of primitive.

DSP48E The Xilinx DSP48E block is an efficient building block for DSP
applications that use Xilinx Virtex®-5 devices. The DSP48E combines
an 18-bit by 25-bit signed multiplier with a 48-bit adder and
programmable mux to select the adder's input.

DSP48E1 The Xilinx DSP48E1 block is an efficient building block for DSP
applications that use Xilinx Virtex®-6 and 7 series devices.
Enhancements to the DSP48E1 slice provide improved flexibility and
utilization, improved efficiency of applications, reduced overall power
consumption, and increased maximum frequency. The high
performance allows designers to implement multiple slower operations
in a single DSP48E1 slice using time-multiplexing methods.

Fast Fourier Transform 7.1 The Xilinx Fast Fourier Transform 7.1 block implements an efficient
algorithm for computing the Discrete Fourier Transform (DFT).

Fast Fourier Transform 8.0 The Xilinx Fast Fourier Transform 8.0 block implements the Cooley-
Tukey FFT algorithm, a computationally efficient method for
calculating the Discrete Fourier Transform (DFT). In addition, the
block provides an AXI4-Stream-compliant interface for Virtex-6 and
Spartan-6 devices.

FDATool The Xilinx FDATool block provides an interface to the FDATool
software available as part of the MATLAB Signal Processing Toolbox.

FIR Compiler 5.0 The Xilinx FIR Compiler 5.0 block implements a Multiply
Accumulate-based or Distributed-Arithmetic FIR filter. It accepts a
stream of input data and computes filtered output with a fixed delay,
based on the filter configuration. The MAC-based filter is implemented
using cascaded Xtreme DSP slices when available as shown in the
figure below.

Table 1-6: DSP Blocks

DSP Block Description
System Generator for DSP Reference Guide www.xilinx.com 29
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=29

Chapter 1: Xilinx Blockset
Floating-Point Blocks
The blocks in this library support the Floating-Point data type as well as other data types. Only a single
data type is supported at a time. For example, a floating-point input produces a floating-point output; a
fixed-point input produces a fixed-point output.

FIR Compiler 6.2 The Xilinx FIR Compiler 6.2 block provides users with a way to
generate highly parameterizable, area-efficient, high-performance FIR
filters with an AXI4-Stream-compliant interface.

FIR Compiler 6.3 The Xilinx FIR Compiler 6.3 block provides users with a way to
generate highly parameterizable, area-efficient, high-performance FIR
filters with an AXI4-Stream-compliant interface.

LFSR The Xilinx LFSR block implements a Linear Feedback Shift Register
(LFSR). This block supports both the Galois and Fibonacci structures
using either the XOR or XNOR gate and allows a re-loadable input to
change the current value of the register at any time. The LFSR output
and re-loadable input can be configured as either serial or parallel ports

Opmode The Xilinx Opmode block generates a constant that is a DSP48A,
DSP48, DS48E, or DSP48E1 instruction. The instruction is an 11-bit
value for the DSP48, 8-bit forDSP48A, 15-bit value for the DSP48E
and a 20-bit value for DSP48E1. The instruction can consists of the
opmode, carry-in, carry-in select, inmode and either the subtract or
alumode bits (depending upon the selection of DSP48 or DSP48E
type).

Table 1-6: DSP Blocks

DSP Block Description

Table 1-7: Floating-Point Blocks

Index Block Description

Absolute The Xilinx Absolute block outputs the absolute value of the input.

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an
AXI-compatible block interface.

Addressable Shift
Register

The Xilinx Addressable Shift Register block is a variable-length shift
register in which any register in the delay chain can be addressed and
driven onto the output data port.

AddSub The Xilinx AddSub block implements an adder/subtractor. The operation
can be fixed (Addition or Subtraction) or changed dynamically under
control of the sub mode signal.

Assert The Xilinx Assert block is used to assert a rate and/or a type on a signal.
This block has no cost in hardware and can be used to resolve rates and/or
types in situations where designer intervention is required.

Black Box The System Generator Black Box block provides a way to incorporate
hardware description language (HDL) models into System Generator.

CMult The Xilinx CMult block implements a gain operator, with output equal to
the product of its input by a constant value. This value can be a MATLAB
expression that evaluates to a constant.
30 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=30

Organization of Blockset Libraries
Constant The Xilinx Constant block generates a constant that can be a fixed-point
value, a Boolean value, or a DSP48 instruction. This block is similar to the
Simulink constant block, but can be used to directly drive the inputs on
Xilinx blocks.

Convert The Xilinx Convert block converts each input sample to a number of a
desired arithmetic type. For example, a number can be converted to a
signed (two's complement) or unsigned value.

Delay The Xilinx Delay block implements a fixed delay of L cycles.

Divide The Xilinx Divide block performs both fixed-point and floating-point
division with the a input being the dividend and the b input the divisor. Both
inputs must be of the same data type.

Dual Port RAM The Xilinx Dual Port RAM block implements a random access memory
(RAM). Dual ports enable simultaneous access to the memory space at
different sample rates using multiple data widths.

Fast Fourier Transform
8.0

The Xilinx Fast Fourier Transform 8.0 block implements the Cooley-
Tukey FFT algorithm, a computationally efficient method for calculating
the Discrete Fourier Transform (DFT). In addition, the block provides an
AXI4-Stream-compliant interface for Virtex-6 and Spartan-6 devices.

FIFO The Xilinx FIFO block implements an FIFO memory queue.

From FIFO The Xilinx From FIFO block implements the trailing half of a first-in-first-
out memory queue.

From Register The Xilinx From Register block implements the trailing half of a D flip-
flop based register. The physical register can be shared among two designs
or two portions of the same design.

Gateway In The Xilinx Gateway In blocks are the inputs into the Xilinx portion of your
Simulink design. These blocks convert Simulink integer, double and fixed-
point data types into the System Generator fixed-point type. Each block
defines a top-level input port in the HDL design generated by System
Generator.

Gateway Out Xilinx Gateway Out blocks are the outputs from the Xilinx portion of your
Simulink design. This block converts the System Generator fixed-point or
floating-point data type into a Simulink integer, single, double or fixed-
point data type.

Mult The Xilinx Mult block implements a multiplier. It computes the product of
the data on its two input ports, producing the result on its output port.

Mux The Xilinx Mux block implements a multiplexer. The block has one select
input (type unsigned) and a user-configurable number of data bus inputs,
ranging from 2 to 1024.

Natural Logarithm The Xilinx Natural Logarithm block produces the natural logarithm of the
input.

Negate The Xilinx Negate block computes the arithmetic negation of its input.

Reciprocal The Xilinx Reciprocal block performs the reciprocal on the input.
Currently, only the floating-point data type is supported.

Table 1-7: Floating-Point Blocks

Index Block Description
System Generator for DSP Reference Guide www.xilinx.com 31
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=31

Chapter 1: Xilinx Blockset
Index Blocks

Reciprocal SquareRoot The Xilinx Reciprocal SquareRoot block performs the reciprocal
squareroot on the input. Currently, only the floating-point data type is
supported.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any
regard for retaining the numerical value represented by the input.

Relational The Xilinx Relational block implements a comparator.

ROM The Xilinx ROM block is a single port read-only memory (ROM).

Shared Memory The Xilinx Shared Memory block implements a random access memory
(RAM) that can be shared among multiple designs or sections of a design.

Single Port RAM The Xilinx Single Port RAM block implements a random access memory
(RAM) with one data input and one data output port.

SquareRoot The Xilinx SquareRoot block performs the square root on the input.
Currently, only the floating-point data type is supported.

To FIFO The Xilinx To FIFO block implements the leading half of a first-in-first-out
memory queue.

To Register The Xilinx To Register block implements the leading half of a D flip-flop
based register, having latency of one sample period. The register can be
shared among multiple designs or sections of a design.

WaveScope The System Generator WaveScope block provides a powerful and easy-to-
use waveform viewer for analyzing and debugging System Generator
designs.

Table 1-7: Floating-Point Blocks

Index Block Description

Table 1-8: Index Blocks

Index Block Description

Absolute The Xilinx Absolute block outputs the absolute value of the input.

Accumulator The Xilinx Accumulator block implements an adder or subtractor-based
scaling accumulator.

Addressable Shift
Register

The Xilinx Addressable Shift Register block is a variable-length shift
register in which any register in the delay chain can be addressed and
driven onto the output data port.

AddSub The Xilinx AddSub block implements an adder/subtractor. The operation
can be fixed (Addition or Subtraction) or changed dynamically under
control of the sub mode signal.

Assert The Xilinx Assert block is used to assert a rate and/or a type on a signal.
This block has no cost in hardware and can be used to resolve rates and/or
types in situations where designer intervention is required.

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an
AXI-compatible block interface.
32 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=32

Organization of Blockset Libraries
BitBasher The Xilinx BitBasher block performs slicing, concatenation and
augmentation of inputs attached to the block.

Black Box The System Generator Black Box block provides a way to incorporate
hardware description language (HDL) models into System Generator.

ChipScope The Xilinx ChipScope™ block enables run-time debugging and
verification of signals within an FPGA.

CIC Compiler 2.0 The Xilinx CIC Compiler provides the ability to design and implement
Cascaded Integrator-Comb (CIC) filters for a variety of Xilinx FPGA
devices.

CIC Compiler 3.0 The Xilinx CIC Compiler provides the ability to design and implement
AXI4-Stream-compliant Cascaded Integrator-Comb (CIC) filters for a
variety of Xilinx FPGA devices.

Clock Enable Probe The Xilinx Clock Enable (CE) Probe provides a mechanism for extracting
derived clock enable signals from Xilinx signals in System Generator
models.

Clock Probe The Xilinx Clock Probe generates a double-precision representation of a
clock signal with a period equal to the Simulink system period.

CMult The Xilinx CMult block implements a gain operator, with output equal to
the product of its input by a constant value. This value can be a MATLAB
expression that evaluates to a constant.

Complex Multiplier 3.1 The Xilinx Complex Multiplier block multiplies two complex numbers.

Complex Multiplier 5.0 The Complex Multiplier 5.0 block implements AXI4-Stream compliant,
high-performance, optimized complex multipliers for Virtex-6 and
Spartan-6 devices based on user-specified options.

Concat The Xilinx Concat block performs a concatenation of n bit vectors
represented by unsigned integer numbers, for example, n unsigned
numbers with binary points at position zero.

Configurable Subsystem
Manager

The Xilinx Configurable Subsystem Manager extends Simulink's
configurable subsystem capabilities to allow a subsystem configurations to
be selected for hardware generation as well as for simulation.

Constant The Xilinx Constant block generates a constant that can be a fixed-point
value, a Boolean value, or a DSP48 instruction. This block is similar to the
Simulink constant block, but can be used to directly drive the inputs on
Xilinx blocks.

Convert The Xilinx Convert block converts each input sample to a number of a
desired arithmetic type. For example, a number can be converted to a
signed (two's complement) or unsigned value.

Convolution Encoder
7.0

The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi decoder, this
block performs forward error correction (FEC) in digital communication
systems.

Table 1-8: Index Blocks

Index Block Description
System Generator for DSP Reference Guide www.xilinx.com 33
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=33

Chapter 1: Xilinx Blockset
Convolution Encoder
8.0

The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi decoder, this
block performs forward error correction (FEC) in digital communication
systems. This block adheres to the AMBA® AXI4-Stream standard.

CORDIC 4.0 The Xilinx CORDIC 4.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm.

CORDIC 5.0 The Xilinx CORDIC 5.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm and is AXI compliant.

Counter The Xilinx Counter block implements a free running or count-limited type
of an up, down, or up/down counter. The counter output can be specified as
a signed or unsigned fixed-point number.

DDS Compiler 4.0 The Xilinx DDS Compiler block is a direct digital synthesizer, also
commonly called a numerically controlled oscillator (NCO). The block
uses a lookup table scheme to generate sinusoids. A digital integrator
(accumulator) generates a phase that is mapped by the lookup table into the
output sinusoidal waveform.

DDS Compiler 5.0 The Xilinx DDS (Direct Digital Synthesizer) Compiler 5.0 block
implements high performance, optimized Phase Generation and Phase to
Sinusoid circuits with AXI4-Stream compliant interfaces for Virtex-6,
Spartan-6, Virtex-7 and Kintex-7 devices.

Delay The Xilinx Delay block implements a fixed delay of L cycles.

Depuncture The Xilinx Depuncture block allows you to insert an arbitrary symbol into
your input data at the location specified by the depuncture code.

Divide The Xilinx Divide block performs both fixed-point and floating-point
division with the a input being the dividend and the b input the divisor. Both
inputs must be of the same data type.

Divider Generator 3.0 The Xilinx Divider Generator 3.0 block creates a circuit for integer division
based on Radix-2 non-restoring division, or High-Radix division with
prescaling.

Divider Generator 4.0 The Xilinx Divider Generator 4.0 block creates a circuit for integer division
based on Radix-2 non-restoring division, or High-Radix division with
prescaling.

Down Sample The Xilinx Down Sample block reduces the sample rate at the point where
the block is placed in your design.

DSP48 The Xilinx DSP48 block is an efficient building block for DSP applications
that use Xilinx Virtex®-4 devices. The DSP48 combines an 18-bit by 18-
bit signed multiplier with a 48-bit adder and programmable mux to select
the adder's input.

DSP48 Macro The System Generator DSP48 Macro block provides a device independent
abstraction of the blocks DSP48, DSP48A, and DSP48E. Using this block
instead of using a technology-specific DSP slice helps makes the design
more portable between Xilinx technologies.

Table 1-8: Index Blocks

Index Block Description
34 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=34

Organization of Blockset Libraries
DSP48 macro 2.0 The System Generator DSP48 macro 2.0 block provides a device
independent abstraction of the blocks DSP48, DSP48A, and DSP48E.
Using this block instead of using a technology-specific DSP slice helps
makes the design more portable between Xilinx technologies.

DSP48 Macro 2.1 The System Generator DSP48 macro 2.1 block provides a device
independent abstraction of the blocks DSP48, DSP48A, and DSP48E.
Using this block instead of using a technology-specific DSP slice helps
makes the design more portable between Xilinx technologies.

DSP48A The Xilinx DSP48A block is an efficient building block for DSP
applications that use Xilinx Spartan-3A DSP devices. For those familiar
with the DSP48 and the DSP48E, the DSP48A is a ‘light’ version of
primitive.

DSP48E The Xilinx DSP48E block is an efficient building block for DSP
applications that use Xilinx Virtex®-5 devices. The DSP48E combines an
18-bit by 25-bit signed multiplier with a 48-bit adder and programmable
mux to select the adder's input.

DSP48E1 The Xilinx DSP48E1 block is an efficient building block for DSP
applications that use Xilinx Virtex®-6 and 7 series devices. Enhancements
to the DSP48E1 slice provide improved flexibility and utilization,
improved efficiency of applications, reduced overall power consumption,
and increased maximum frequency. The high performance allows
designers to implement multiple slower operations in a single DSP48E1
slice using time-multiplexing methods.

Dual Port RAM The Xilinx Dual Port RAM block implements a random access memory
(RAM). Dual ports enable simultaneous access to the memory space at
different sample rates using multiple data widths.

EDK Processor The EDK Processor block allows user logic developed in System
Generator to be attached to embedded processor systems created using the
Xilinx Embedded Development Kit (EDK).

Expression The Xilinx Expression block performs a bitwise logical expression.

Fast Fourier Transform
7.1

The Xilinx Fast Fourier Transform 7.1 block implements an efficient
algorithm for computing the Discrete Fourier Transform (DFT).

Fast Fourier Transform
8.0

The Xilinx Fast Fourier Transform 8.0 block implements the Cooley-
Tukey FFT algorithm, a computationally efficient method for calculating
the Discrete Fourier Transform (DFT). In addition, the block provides an
AXI4-Stream-compliant interface for Virtex-6 and Spartan-6 devices.

FDATool The Xilinx FDATool block provides an interface to the FDATool software
available as part of the MATLAB Signal Processing Toolbox.

FIFO The Xilinx FIFO block implements an FIFO memory queue.

FIR Compiler 5.0 The Xilinx FIR Compiler 5.0 block implements a Multiply Accumulate-
based or Distributed-Arithmetic FIR filter. It accepts a stream of input data
and computes filtered output with a fixed delay, based on the filter
configuration. The MAC-based filter is implemented using cascaded
Xtreme DSP slices when available as shown in the figure below.

Table 1-8: Index Blocks

Index Block Description
System Generator for DSP Reference Guide www.xilinx.com 35
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=35

Chapter 1: Xilinx Blockset
FIR Compiler 6.2 The Xilinx FIR Compiler 6.2 block provides users with a way to generate
highly parameterizable, area-efficient, high-performance FIR filters with
an AXI4-Stream-compliant interface.

FIR Compiler 6.3 The Xilinx FIR Compiler 6.3 block provides users with a way to generate
highly parameterizable, area-efficient, high-performance FIR filters with
an AXI4-Stream-compliant interface.

From FIFO The Xilinx From FIFO block implements the trailing half of a first-in-first-
out memory queue.

From Register The Xilinx From Register block implements the trailing half of a D flip-
flop based register. The physical register can be shared among two designs
or two portions of the same design.

Gateway In The Xilinx Gateway In blocks are the inputs into the Xilinx portion of your
Simulink design. These blocks convert Simulink integer, double and fixed-
point data types into the System Generator fixed-point type. Each block
defines a top-level input port in the HDL design generated by System
Generator.

Gateway Out Xilinx Gateway Out blocks are the outputs from the Xilinx portion of your
Simulink design. This block converts the System Generator fixed-point or
floating-point data type into a Simulink integer, single, double or fixed-
point data type.

Indeterminate Probe The output of the Xilinx Indeterminate Probe indicates whether the input
data is indeterminate (MATLAB value NaN). An indeterminate data value
corresponds to a VHDL indeterminate logic data value of 'X'.

Interleaver/De-
interleaver 6.0

The Xilinx Interleaver Deinterleaver block implements an interleaver or a
deinterleaver. An interleaver is a device that rearranges the order of a
sequence of input symbols. The term symbol is used to describe a
collection of bits. In some applications, a symbol is a single bit. In others,
a symbol is a bus.

Interleaver/De-
interleaver 7.0

The classic use of interleaving is to randomize the location of errors
introduced in signal transmission. Interleaving spreads a burst of errors out
so that error correction circuits have a better chance of correcting the data.

Interleaver/De-
interleaver 7.1

If a particular interleaver is used at the transmit end of a channel, the
inverse of that interleaver must be used at the receive end to recover the
original data. The inverse interleaver is referred to as a de-interleaver.

Inverter The Xilinx Inverter block calculates the bitwise logical complement of a
fixed-point number. The block is implemented as a synthesizable VHDL
module.

JTAG Co-Simulation The Xilinx JTAG Co-Simulation block allows you to perform hardware co-
simulation using JTAG and a Parallel Cable IV or Platform USB. The
JTAG hardware co-simulation interface takes advantage of the ubiquity of
JTAG to extend System Generator's hardware in the simulation loop
capability to numerous other FPGA platforms.

Table 1-8: Index Blocks

Index Block Description
36 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=36

Organization of Blockset Libraries
LFSR The Xilinx LFSR block implements a Linear Feedback Shift Register
(LFSR). This block supports both the Galois and Fibonacci structures using
either the XOR or XNOR gate and allows a re-loadable input to change the
current value of the register at any time. The LFSR output and re-loadable
input can be configured as either serial or parallel ports

Logical The Xilinx Logical block performs bitwise logical operations on fixed-
point numbers. Operands are zero padded and sign extended as necessary
to make binary point positions coincide; then the logical operation is
performed and the result is delivered at the output port.

MCode The Xilinx MCode block is a container for executing a user-supplied
MATLAB function within Simulink. A parameter on the block specifies the
M-function name. The block executes the M-code to calculate block
outputs during a Simulink simulation. The same code is translated in a
straightforward way into equivalent behavioral VHDL/Verilog when
hardware is generated.

ModelSim The System Generator Black Box block provides a way to incorporate
existing HDL files into a model. When the model is simulated, co-
simulation can be used to allow black boxes to participate. The ModelSim
HDL co-simulation block configures and controls co-simulation for one or
several black boxes.

Mult The Xilinx Mult block implements a multiplier. It computes the product of
the data on its two input ports, producing the result on its output port.

Multiple Subsystem
Generator

The Xilinx Multiple Subsystem Generator block wires two or more System
Generator designs into a single top-level HDL component that incorporates
multiple clock domains. This top-level component includes the logic
associated with each System Generator design and additional logic to allow
the designs to communicate with one another.

Mux The Xilinx Mux block implements a multiplexer. The block has one select
input (type unsigned) and a user-configurable number of data bus inputs,
ranging from 2 to 1024.

Natural Logarithm The Xilinx Natural Logarithm block produces the natural logarithm of the
input.

Negate The Xilinx Negate block computes the arithmetic negation of its input.

Network-based Ethernet
Co-Simulation

The Xilinx Network-based Ethernet Co-Simulation block provides an
interface to perform hardware co-simulation through an Ethernet
connection over the IPv4 network infrastructure.

Opmode The Xilinx Opmode block generates a constant that is a DSP48A, DSP48,
DS48E, or DSP48E1 instruction. The instruction is an 11-bit value for the
DSP48, 8-bit forDSP48A, 15-bit value for the DSP48E and a 20-bit value
for DSP48E1. The instruction can consists of the opmode, carry-in, carry-
in select, inmode and either the subtract or alumode bits (depending upon
the selection of DSP48 or DSP48E type).

Parallel to Serial The Parallel to Serial block takes an input word and splits it into N time-
multiplexed output words where N is the ratio of number of input bits to
output bits. The order of the output can be either least significant bit first or
most significant bit first.

Table 1-8: Index Blocks

Index Block Description
System Generator for DSP Reference Guide www.xilinx.com 37
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=37

Chapter 1: Xilinx Blockset
Pause Simulation The Xilinx Pause Simulation block pauses the simulation when the input is
non-zero. The block accepts any Xilinx signal type as input.

PicoBlaze Instruction
Display

The PicoBlaze Instruction Display block takes an encoded 18-bit
PicoBlaze instruction and a 10 bit address and displays the decoded
instruction and the program counter on the block icon. This feature is useful
when debugging PicoBlaze designs and can be used in conjunction with the
Single-Step Simulation block to step through each instruction.

PicoBlaze
Microcontroller

The Xilinx PicoBlaze Microcontroller block implements an embedded 8-
bit microcontroller using the PicoBlaze macro.

PicoBlaze6 Instruction
Display

The PicoBlaze6™ Instruction Display block takes an encoded 18-bit
picoblaze6 instruction and PicoBlaze address output and displays the
decoded instruction and the program counter on the block icon. This
feature is useful when debugging PicoBlaze6 designs and can be used in
conjunction with the Single-Step Simulation block to step through each
instruction.

PicoBlaze6
Microcontroller

The Xilinx PicoBlaze6™ Microcontroller block implements an 8-bit
microcontroller.

Point-to-point Ethernet
Co-Simulation

The Xilinx Point-to-point Ethernet Co-Simulation block provides an
interface to perform hardware co-simulation through a raw Ethernet
connection.

Puncture The Xilinx Puncture block removes a set of user-specified bits from the
input words of its data stream.

Reciprocal The Xilinx Reciprocal block performs the reciprocal on the input.
Currently, only the floating-point data type is supported.

Reciprocal SquareRoot The Xilinx Reciprocal SquareRoot block performs the reciprocal
squareroot on the input. Currently, only the floating-point data type is
supported.

Reed-Solomon Decoder
7.1

The Reed-Solomon (RS) codes are block-based error correcting codes with
a wide range of applications in digital communications and storage.

Reed-Solomon Decoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting codes with
a wide range of applications in digital communications and storage.

Reed-Solomon Encoder
7.1

The Reed-Solomon (RS) codes are block-based error correcting codes with
a wide range of applications in digital communications and storage.

Reed-Solomon Encoder
8.0

The Reed-Solomon (RS) codes are block-based error correcting codes with
a wide range of applications in digital communications and storage. This
block adheres to the AMBA® AXI4-Stream standard.

Reciprocal The Xilinx Reciprocal block performs the reciprocal on the input.
Currently, only the floating-point data type is supported.

Register The Xilinx Register block models a D flip-flop-based register, having
latency of one sample period.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any
regard for retaining the numerical value represented by the input.

Relational The Xilinx Relational block implements a comparator.

Table 1-8: Index Blocks

Index Block Description
38 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=38

Organization of Blockset Libraries
Reset Generator The Reset Generator block captures the user's reset signal that is running at
the system sample rate, and produces one or more downsampled reset
signal(s) running at the rates specified on the block.

Resource Estimator The Xilinx Resource Estimator block provides fast estimates of FPGA
resources required to implement a System Generator subsystem or model.

ROM The Xilinx ROM block is a single port read-only memory (ROM).

Sample Time The Sample Time block reports the normalized sample period of its input.
A signal's normalized sample period is not equivalent to its Simulink
absolute sample period. In hardware, this block is implemented as a
constant.

Scale The Xilinx Scale block scales its input by a power of two. The power can
be either positive or negative. The block has one input and one output. The
scale operation has the effect of moving the binary point without changing
the bits in the container

Serial to Parallel The Serial to Parallel block takes a series of inputs of any size and creates
a single output of a specified multiple of that size. The input series can be
ordered either with the most significant word first or the least significant
word first.

Shared Memory The Xilinx Shared Memory block implements a random access memory
(RAM) that can be shared among multiple designs or sections of a design.

Shared Memory Read The Xilinx Shared Memory Read block provides a high-speed interface for
reading data from a Xilinx shared memory object. Both FIFO and lockable
shared memory objects are supported by the block.

Shared Memory Write The Xilinx Shared Memory Write block provides a high-speed interface for
writing data into a Xilinx shared memory object. Both FIFO and lockable
shared memory objects are supported by the block.

Shift The Xilinx Shift block performs a left or right shift on the input signal. The
result will have the same fixed-point container as that of the input.

Simulation Multiplexer The Simulation Multiplexer has been deprecated in System Generator.

Single Port RAM The Xilinx Single Port RAM block implements a random access memory
(RAM) with one data input and one data output port.

Single-Step Simulation The Xilinx Single-Step Simulation block pauses the simulation each clock
cycle when in single-step mode.

Slice The Xilinx Slice block allows you to slice off a sequence of bits from your
input data and create a new data value. This value is presented as the output
from the block. The output data type is unsigned with its binary point at
zero.

SquareRoot The Xilinx SquareRoot block performs the square root on the input.
Currently, only the floating-point data type is supported.

Table 1-8: Index Blocks

Index Block Description
System Generator for DSP Reference Guide www.xilinx.com 39
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=39

Chapter 1: Xilinx Blockset
System Generator The System Generator token serves as a control panel for controling system
and simulation parameters, and it is also used to invoke the code generator
for netlisting. Every Simulink model containing any element from the
Xilinx Blockset must contain at least one System Generator token. Once a
System Generator token is added to a model, it is possible to specify how
code generation and simulation should be handled.

Threshold The Xilinx Threshold block tests the sign of the input number. If the input
number is negative, the output of the block is -1; otherwise, the output is 1.
The output is a signed fixed-point integer that is 2 bits long. The block has
one input and one output.

Time Division
Demultiplexer

The Xilinx Time Division Demultiplexer block accepts input serially and
presents it to multiple outputs at a slower rate.

Time Division
Multiplexer

The Xilinx Time Division Multiplexer block multiplexes values presented
at input ports into a single faster rate output stream.

To FIFO The Xilinx To FIFO block implements the leading half of a first-in-first-out
memory queue.

To Register The Xilinx To Register block implements the leading half of a D flip-flop
based register, having latency of one sample period. The register can be
shared among multiple designs or sections of a design.

Toolbar The Xilinx Toolbar block provides quick access to several useful utilities
in System Generator. The Toolbar simplifies the use of the zoom feature in
Simulink and adds new auto layout and route capabilities to Simulink
models.

Up Sample The Xilinx Up Sample block increases the sample rate at the point where
the block is placed in your design. The output sample period is l/n, where l
is the input sample period and n is the sampling rate.

VDMA Interface 4.0 The VDMA (Video Direct Memory Access) Interface block is a bit-
accurate simulation model containing up to 4 AXI VDMA IP LogiCOREs
connected to an AXI interconnect and external memory.

Viterbi Decoder 7.0 Data encoded with a convolution encoder can be decoded using the Xilinx
Viterbi decoder block.

Viterbi Decoder 8.0 Data encoded with a convolution encoder can be decoded using the Xilinx
Viterbi decoder block. This block adheres to the AMBA® AXI4-Stream
standard.

WaveScope The System Generator WaveScope block provides a powerful and easy-to-
use waveform viewer for analyzing and debugging System Generator
designs.

Table 1-8: Index Blocks

Index Block Description
40 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=40

Organization of Blockset Libraries
Math Blocks

Table 1-9: Math Blocks

Math Block Description

Absolute The Xilinx Absolute block outputs the absolute value of the input.

Accumulator The Xilinx Accumulator block implements an adder or subtractor-based
scaling accumulator.

AddSub The Xilinx AddSub block implements an adder/subtractor. The operation
can be fixed (Addition or Subtraction) or changed dynamically under
control of the sub mode signal.

CMult The Xilinx CMult block implements a gain operator, with output equal to
the product of its input by a constant value. This value can be a MATLAB
expression that evaluates to a constant.

Complex Multiplier 3.1 The Xilinx Complex Multiplier block multiplies two complex numbers.

Complex Multiplier 5.0 The Complex Multiplier 5.0 block implements AXI4-Stream compliant,
high-performance, optimized complex multipliers for Virtex-6 and
Spartan-6 devices based on user-specified options.

Constant The Xilinx Constant block generates a constant that can be a fixed-point
value, a Boolean value, or a DSP48 instruction. This block is similar to the
Simulink constant block, but can be used to directly drive the inputs on
Xilinx blocks.

Convert The Xilinx Convert block converts each input sample to a number of a
desired arithmetic type. For example, a number can be converted to a
signed (two's complement) or unsigned value.

CORDIC 4.0 The Xilinx CORDIC 4.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm.

CORDIC 5.0 The Xilinx CORDIC 5.0 block implements a generalized coordinate
rotational digital computer (CORDIC) algorithm and is AXI compliant.

Counter The Xilinx Counter block implements a free running or count-limited type
of an up, down, or up/down counter. The counter output can be specified as
a signed or unsigned fixed-point number.

Divide The Xilinx Divide block performs both fixed-point and floating-point
division with the a input being the dividend and the b input the divisor. Both
inputs must be of the same data type.

Divider Generator 3.0 The Xilinx Divider Generator 3.0 block creates a circuit for integer division
based on Radix-2 non-restoring division, or High-Radix division with
prescaling.

Divider Generator 4.0 The Xilinx Divider Generator 4.0 block creates a circuit for integer division
based on Radix-2 non-restoring division, or High-Radix division with
prescaling.

Expression The Xilinx Expression block performs a bitwise logical expression.

Inverter The Xilinx Inverter block calculates the bitwise logical complement of a
fixed-point number. The block is implemented as a synthesizable VHDL
module.
System Generator for DSP Reference Guide www.xilinx.com 41
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=41

Chapter 1: Xilinx Blockset
Logical The Xilinx Logical block performs bitwise logical operations on fixed-
point numbers. Operands are zero padded and sign extended as necessary
to make binary point positions coincide; then the logical operation is
performed and the result is delivered at the output port.

MCode The Xilinx MCode block is a container for executing a user-supplied
MATLAB function within Simulink. A parameter on the block specifies the
M-function name. The block executes the M-code to calculate block
outputs during a Simulink simulation. The same code is translated in a
straightforward way into equivalent behavioral VHDL/Verilog when
hardware is generated.

Mult The Xilinx Mult block implements a multiplier. It computes the product of
the data on its two input ports, producing the result on its output port.

Natural Logarithm The Xilinx Natural Logarithm block produces the natural logarithm of the
input.

Negate The Xilinx Negate block computes the arithmetic negation of its input.

Reciprocal The Xilinx Reciprocal block performs the reciprocal on the input.
Currently, only the floating-point data type is supported.

Reciprocal SquareRoot The Xilinx Reciprocal SquareRoot block performs the reciprocal
squareroot on the input. Currently, only the floating-point data type is
supported.

Reinterpret The Xilinx Reinterpret block forces its output to a new type without any
regard for retaining the numerical value represented by the input.

Relational The Xilinx Relational block implements a comparator.

Scale The Xilinx Scale block scales its input by a power of two. The power can
be either positive or negative. The block has one input and one output. The
scale operation has the effect of moving the binary point without changing
the bits in the container

Shift The Xilinx Shift block performs a left or right shift on the input signal. The
result will have the same fixed-point container as that of the input.

SquareRoot The Xilinx SquareRoot block performs the square root on the input.
Currently, only the floating-point data type is supported.

Threshold The Xilinx Threshold block tests the sign of the input number. If the input
number is negative, the output of the block is -1; otherwise, the output is 1.
The output is a signed fixed-point integer that is 2 bits long. The block has
one input and one output.

Table 1-9: Math Blocks

Math Block Description
42 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=42

Organization of Blockset Libraries
Memory Blocks

Table 1-10: Memory Blocks

Math Block Description

Addressable Shift
Register

The Xilinx Addressable Shift Register block is a variable-length shift
register in which any register in the delay chain can be addressed and
driven onto the output data port.

AXI FIFO The Xilinx AXI FIFO block implements a FIFO memory queue with an
AXI-compatible block interface.

Delay The Xilinx Delay block implements a fixed delay of L cycles.

Dual Port RAM The Xilinx Dual Port RAM block implements a random access memory
(RAM). Dual ports enable simultaneous access to the memory space at
different sample rates using multiple data widths.

FIFO The Xilinx FIFO block implements an FIFO memory queue.

LFSR The Xilinx LFSR block implements a Linear Feedback Shift Register
(LFSR). This block supports both the Galois and Fibonacci structures using
either the XOR or XNOR gate and allows a re-loadable input to change the
current value of the register at any time. The LFSR output and re-loadable
input can be configured as either serial or parallel ports

Register The Xilinx Register block models a D flip-flop-based register, having
latency of one sample period.

ROM The Xilinx ROM block is a single port read-only memory (ROM).

Shared Memory The Xilinx Shared Memory block implements a random access memory
(RAM) that can be shared among multiple designs or sections of a design.

Single Port RAM The Xilinx Single Port RAM block implements a random access memory
(RAM) with one data input and one data output port.

VDMA Interface 4.0 The VDMA (Video Direct Memory Access) Interface block is a bit-
accurate simulation model containing up to 4 AXI VDMA IP LogiCOREs
connected to an AXI interconnect and external memory.

VDMA Interface 5.4 As shown in the illustration below, the VDMA Interface block’s AXI
memory-mapped interface is connected to the AXI Interconnect. DDR
external memory is connected as the only slave on the AXI Interconnect.
All ports except memory-mapped ports of the VDMA block are available
on the VDMA Interface block.
System Generator for DSP Reference Guide www.xilinx.com 43
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=43

Chapter 1: Xilinx Blockset
Shared Memory Blocks

Tool Blocks

Table 1-11: Shared Memory Blocks

Shared Memory Block Description

From FIFO The Xilinx From FIFO block implements the trailing half of a first-in-first-
out memory queue.

From Register The Xilinx From Register block implements the trailing half of a D flip-
flop based register. The physical register can be shared among two designs
or two portions of the same design.

Multiple Subsystem
Generator

The Xilinx Multiple Subsystem Generator block wires two or more System
Generator designs into a single top-level HDL component that incorporates
multiple clock domains. This top-level component includes the logic
associated with each System Generator design and additional logic to allow
the designs to communicate with one another.

Shared Memory The Xilinx Shared Memory block implements a random access memory
(RAM) that can be shared among multiple designs or sections of a design.

Shared Memory Read The Xilinx Shared Memory Read block provides a high-speed interface for
reading data from a Xilinx shared memory object. Both FIFO and lockable
shared memory objects are supported by the block.

Shared Memory Write The Xilinx Shared Memory Write block provides a high-speed interface for
writing data into a Xilinx shared memory object. Both FIFO and lockable
shared memory objects are supported by the block.

To FIFO The Xilinx To FIFO block implements the leading half of a first-in-first-out
memory queue.

To Register The Xilinx To Register block implements the leading half of a D flip-flop
based register, having latency of one sample period. The register can be
shared among multiple designs or sections of a design.

Table 1-12: Tool Blocks

Tool Blocks Description

ChipScope The Xilinx ChipScope™ block enables run-time debugging and
verification of signals within an FPGA.

Clock Probe The Xilinx Clock Probe generates a double-precision representation of a
clock signal with a period equal to the Simulink system period.

Configurable Subsystem
Manager

The Xilinx Configurable Subsystem Manager extends Simulink's
configurable subsystem capabilities to allow a subsystem configurations to
be selected for hardware generation as well as for simulation.

FDATool The Xilinx FDATool block provides an interface to the FDATool software
available as part of the MATLAB Signal Processing Toolbox.
44 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=44

Organization of Blockset Libraries
Indeterminate Probe The output of the Xilinx Indeterminate Probe indicates whether the input
data is indeterminate (MATLAB value NaN). An indeterminate data value
corresponds to a VHDL indeterminate logic data value of 'X'.

ModelSim The System Generator Black Box block provides a way to incorporate
existing HDL files into a model. When the model is simulated, co-
simulation can be used to allow black boxes to participate. The ModelSim
HDL co-simulation block configures and controls co-simulation for one or
several black boxes.

Multiple Subsystem
Generator

The Xilinx Multiple Subsystem Generator block wires two or more System
Generator designs into a single top-level HDL component that incorporates
multiple clock domains. This top-level component includes the logic
associated with each System Generator design and additional logic to allow
the designs to communicate with one another.

Pause Simulation The Xilinx Pause Simulation block pauses the simulation when the input is
non-zero. The block accepts any Xilinx signal type as input.

PicoBlaze
Microcontroller

The Xilinx PicoBlaze Microcontroller block implements an embedded 8-
bit microcontroller using the PicoBlaze macro.

PicoBlaze6
Microcontroller

The PicoBlaze6™ Instruction Display block takes an encoded 18-bit
picoblaze6 instruction and PicoBlaze address output and displays the
decoded instruction and the program counter on the block icon. This
feature is useful when debugging PicoBlaze6 designs and can be used in
conjunction with the Single-Step Simulation block to step through each
instruction.

Resource Estimator The Xilinx Resource Estimator block provides fast estimates of FPGA
resources required to implement a System Generator subsystem or model.

Sample Time The Sample Time block reports the normalized sample period of its input.
A signal's normalized sample period is not equivalent to its Simulink
absolute sample period. In hardware, this block is implemented as a
constant.

Simulation Multiplexer The Simulation Multiplexer has been deprecated in System Generator.

Single-Step Simulation The Xilinx Single-Step Simulation block pauses the simulation each clock
cycle when in single-step mode.

System Generator The System Generator token serves as a control panel for controling system
and simulation parameters, and it is also used to invoke the code generator
for netlisting. Every Simulink model containing any element from the
Xilinx Blockset must contain at least one System Generator token. Once a
System Generator token is added to a model, it is possible to specify how
code generation and simulation should be handled.

Toolbar The Xilinx Toolbar block provides quick access to several useful utilities
in System Generator. The Toolbar simplifies the use of the zoom feature in
Simulink and adds new auto layout and route capabilities to Simulink
models.

WaveScope The System Generator WaveScope block provides a powerful and easy-to-
use waveform viewer for analyzing and debugging System Generator
designs.

Table 1-12: Tool Blocks

Tool Blocks Description
System Generator for DSP Reference Guide www.xilinx.com 45
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=45

Chapter 1: Xilinx Blockset
Simulink Blocks Supported by System Generator

In general, Simulink blocks can be included in a Xilinx design for simulation purposes, but will not
be mapped to Xilinx hardware. However, the following Simulink blocks are fully supported by
System Generator and is mapped to Xilinx hardware:

Refer to the corresponding Simulink documentation for a complete description of the block.

Table 1-13: Simulink Blocks Supported by System Generator

Simulink Block Description

Demux The Demux block extracts the components of an input signal and outputs
the components as separate signals.

From The From block accepts a signal from a corresponding Goto block, then
passes it as output.

Goto The Goto block passes its input to its corresponding From blocks.

Mux The Mux block combines its inputs into a single vector output.
46 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=46

Common Options in Block Parameter Dialog Boxes
Common Options in Block Parameter Dialog Boxes
Each Xilinx block has several controls and configurable parameters, seen in its block parameters
dialog box. This dialog box can be accessed by double-clicking on the block. Many of these
parameters are specific to the block. Block-specific parameters are described in the documentation
for the block.

The remaining controls and parameters are common to most blocks. These common controls and
parameters are described below.

Each dialog box contains four buttons: OK, Cancel, Help, and Apply. Apply applies configuration
changes to the block, leaving the box open on the screen. Help displays HTML help for the block.
Cancel closes the box without saving changes. OK applies changes and closes the box.

Avoid Naming Your Design the Same as a Xilinx Block
It is important that you don’t name your design the same as a Xilinx block. For example, if you name
your design shared_memory.mdl, it may cause System Generator to issue an error message.

Precision

The fundamental computational mode in the Xilinx blockset is arbitrary precision fixe- point
arithmetic. Most blocks give you the option of choosing the precision, for example, the number of
bits and binary point position.

By default, the output of Xilinx blocks is full precision; that is, sufficient precision to represent the
result without error. Most blocks have a User-Defined precision option that fixes the number of total
and fractional bits

Arithmetic Type
In the Type field of the block parameters dialog box, you can choose unsigned or signed (two's
complement) as the data type of the output signal.

Number of Bits

Fixed-point numbers are stored in data types characterized by their word size as specified by number
of bits, binary point, and arithmetic type parameters. The maximum number of bits supported is
4096.

Binary Point
The binary point is the means by which fixed-point numbers are scaled. The binary point parameter
indicates the number of bits to the right of the binary point (for example,, the size of the fraction) for
the output port. The binary point position must be between zero and the specified number of bits.

Overflow and Quantization
When user-defined precision is selected, errors can result from overflow or quantization. Overflow
errors occur when a value lies outside the representable range. Quantization errors occur when the
number of fractional bits is insufficient to represent the fractional portion of a value.

The Xilinx fixed-point data type supports several options for user-defined precision. For overflow
the options are to Saturate to the largest positive/smallest negative value, to Wrap (for example, to
discard bits to the left of the most significant representable bit), or to Flag as error (an overflow as
System Generator for DSP Reference Guide www.xilinx.com 47
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=47

Chapter 1: Xilinx Blockset
a Simulink error) during simulation. Flag as error is a simulation only feature. The hardware
generated is the same as when Wrap is selected.

For quantization, the options are to Round to the nearest representable value (or to the value furthest
from zero if there are two equidistant nearest representable values), or to Truncate (for example, to
discard bits to the right of the least significant representable bit).

The following is an image showing the Quantization and Overflow options.

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the Matlab round() function. This method rounds the
value to the nearest desired bit away from zero and when there is a value at the midpoint between
two possible rounded values, the one with the larger magnitude is selected. For example, to round
01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly between 01.01 and 01.10 and the
latter is further from zero.

Round (unbiased: even values) also known as "Convergent Round (toward even)" or "Unbiased
Rounding". Symmetric rounding is biased because it rounds all ambiguous midpoints away from
zero which means the average magnitude of the rounded results is larger than the average magnitude
of the raw results. Convergent rounding removes this by alternating between a symmetric round
toward zero and symmetric round away from zero. That is, midpoints are rounded toward the nearest
even number. For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is
exactly between 01.01 and 01.10 and the latter is even. To round 01.1010 to a Fix_4_2, this yields
01.10, since 01.1010 is exactly between 01.10 and 01.11 and the former is even.

It is important to realize that whatever option is selected, the generated HDL model and Simulink
model behave identically.

Latency
Many elements in the Xilinx blockset have a latency option. This defines the number of sample
periods by which the block's output is delayed. One sample period might correspond to multiple
clock cycles in the corresponding FPGA implementation (for example, when the hardware is over-
clocked with respect to the Simulink model). System Generator does not perform extensive
pipelining; additional latency is usually implemented as a shift register on the output of the block.

Provide Synchronous Reset Port
Selecting the Provide Synchronous Reset Port option activates an optional reset (rst) pin on the
block.

When the reset signal is asserted the block goes back to its initial state. Reset signal has precedence
over the optional enable signal available on the block. The reset signal has to run at a multiple of the
block's sample rate. The signal driving the reset port must be Boolean.

Provide Enable Port
Selecting the Provide Enable Port option activates an optional enable (en) pin on the block. When
the enable signal is not asserted the block holds its current state until the enable signal is asserted
again or the reset signal is asserted. Reset signal has precedence over the enable signal. The enable
48 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=48

Common Options in Block Parameter Dialog Boxes
signal has to run at a multiple of the block 's sample rate. The signal driving the enable port must be
Boolean.

Sample Period
Data streams are processed at a specific sample rate as they flow through Simulink. Typically, each
block detects the input sample rate and produces the correct sample rate on its output. Xilinx blocks
Up Sample and Down Sample provide a means to increase or decrease sample rates.

Specify Explicit Sample Period

If you select Specify explicit sample period rather than the default, you can set the sample period
required for all the block outputs. This is useful when implementing features such as feedback loops
in your design. In a feedback loop, it is not possible for System Generator to determine a default
sample rate, because the loop makes an input sample rate depend on a yet-to-be-determined output
sample rate. System Generator under these circumstances requires you to supply a hint to establish
sample periods throughout a loop.

Use Behavioral HDL (otherwise use core)
When this checkbox is checked, the behavioral HDL generated by the M-code simulation is used
instead of the structural HDL from the cores.

The M-code simulation creates the C simulation and this C simulation creates behavioral HDL.
When this option is selected, it is this behavioral HDL that is used for further synthesis. When this
option is not selected, the structural HDL generated from the cores and HDL templates
(corresponding to each of the blocks in the model) is used instead for synthesis. Cores are generated
for each block in a design once and cached for future netlisting. This capability ensures the fastest
possible netlist generation while guaranteeing that the cores are available for downstream synthesis
and place and route tools.

Use XtremeDSP Slice
This field specifies that if possible, use the XtremeDSP slice (DSP48 type element) in the target
device. Otherwise, CLB logic are used for the multipliers.

FPGA Area (Slices, FFs, LUTs, IOBs, Embedded Mults, TBUFs) / Use Area
Above For Estimation

These fields are used by the Resource Estimator block. The Resource Estimator gives you the ability
to calculate the hardware resources needed for your System Generator design.

If you have placed a Resource Estimator in your design, you can use the FPGA Area field to
manually enter the FPGA area utilization of a specific block. If you do not fill in these values, the
Resource Estimator will calculate and fill in these values automatically.

If you wish to manually enter your own values for a specific block, then you must check the Define
FPGA area for resource estimation box in order to force the Resource Estimator to use your
entered values. Otherwise, the Resource Estimator will recalculate the FPGA Area and overwrite
any values that you have entered into this field.

There are seven values available to enter into the FPGA Area field. You must enter or read each
value in its correct position. If 'value=[1,2,3,4,5,6,7];' then:
System Generator for DSP Reference Guide www.xilinx.com 49
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=49

Chapter 1: Xilinx Blockset
 value(1) = Slices utilized by the block. An FPGA slice usually consists of two flip-flops, two
LUTs and some associated mux, carry, and control logic.

 value(2) = Flip-Flops utilized by the block.

 value(3) = Block RAM (BRAMs) utilized by the block.

 value(4) = LUTs utilized by the block.

 value(5) = IOBs consumed by the block.

 value(6) = Embedded (Emb.) multipliers utilized by the block.

 value(7) = Tristate Buffers (TBUFs) utilized by the block.

Only the Xilinx blocks that have a hardware cost (for example, blocks that require physical
hardware resources) are considered by the Resource Estimator. The FPGA Area field is omitted
from blocks with no associated hardware.

Although Slices are related to LUTs and Flops (Each Slice contains 1 LUT and 1 Flip-Flop), they are
entered separately since the number of packed slices will vary depending on the particular design.

Some Xilinx blocks do not support automatic resource estimation, as indicated in the Resource
Estimator block documentation. The FPGA Area field for these blocks will not be updated
automatically, and attempting to do so will cause a warning message to be displayed in the
MATLAB console.

Display shortened port names
AXI4-Stream signal names have been shortened (by default) to improve readability on the block.
Name shortening is purely cosmetic and when netlisting occurs, the full AXI4-Stream name is used.
For example, a shortened master signal on an AXI4-Stream interface might be data_tvalid.
When Display shortened port names is unchecked, the name becomes m_axis_data_tvalid.
50 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=50

Block Reference Pages
Block Reference Pages
System Generator for DSP Reference Guide www.xilinx.com 51
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=51

Chapter 1: Xilinx Blockset
Absolute
This block is listed in the following Xilinx Blockset libraries: Math, Floating-Point, Basic Elements
and Index.

The Xilinx Absolute block outputs the absolute value of the input.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
arithmetic output will always be Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

Fixed-point Output Type

Arithmetic type:

 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Quantization

Refer to the section Overflow and Quantization.

Overflow

Refer to the section Overflow and Quantization.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation

LogiCORE IP Floating-Point Operator v6.1
52 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=52

Absolute
Device Support

Floating-Point support is restricted to the following devices:

Virtex®-7, Kintex™-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan®-6
System Generator for DSP Reference Guide www.xilinx.com 53
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=53

Chapter 1: Xilinx Blockset
Accumulator
This block is listed in the following Xilinx Blockset libraries: Math and Index.

The Xilinx Accumulator block implements an adder or subtractor-based scaling
accumulator.

The block’s current input is accumulated with a scaled current stored value. The scale
factor is a block parameter.

Block Interface
The block has an input b and an output q. The output must have the same width as the input data.
The output will have the same arithmetic type and binary point position as the input. The output q
is calculated as follows:

A subtractor-based accumulator replaces addition of the current input b(n) with subtraction.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Operation: This determines whether the block is adder- or subtractor-based.

 Feedback scaling: specifies the feedback scale factor to be one of the following:

1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256.

 Reinitialize with input 'b' on reset: when selected, the output of the accumulator is reset to
the data on input port b. When not selected, the output of the accumulator is reset to zero. This
option is available only when the block has a reset port. Using this option has clock speed
implications if the accumulator is in a multirate system. In this case the accumulator is forced
to run at the system rate since the clock enable (CE) signal driving the accumulator runs at the
system rate and the reset to input operation is a function of the CE signal.

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL.
This gives the downstream logic synthesis tool maximum freedom to optimize for performance
or area.

 Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

The Accumulator block always has a latency of 1.
54 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=54

Accumulator
LogiCORE™ Documentation

LogiCORE IP Accumulator v11.0

Device Support

Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA,
Spartan-3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 55
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=c_accum;v=none;d=accum_ds213.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=55

Chapter 1: Xilinx Blockset
Addressable Shift Register
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Floating-Point,
Memory and Index.

The Xilinx Addressable Shift Register block is a variable-length shift register
in which any register in the delay chain can be addressed and driven onto the
output data port.

The block operation is most easily thought of as a chain of registers, where
each register output drives an input to a multiplexer, as shown below. The

multiplexer select line is driven by the address port (addr). The output data port is shown below as
q.

The Addressable Shift Register has a maximum depth of 1024 and a minimum depth of 2. The
address input port, therefore, can be between 1 and 10 bits (inclusive). The data input port width
must be between 1 and 255 bits (inclusive) when this block is implemented with the Xilinx
LogiCORE™ (for example, when Use behavioral HDL (otherwise use core) is unchecked).

In hardware, the address port is asynchronous relative to the output port. In the block S-function, the
address port is therefore given priority over the input data port, for example, on each successive
cycle, the addressed data value is read from the register and driven to the output before the shift
operation occurs. This order is needed in the Simulink software model to guarantee one clock cycle
of latency between the data port and the first register of the delay chain. (If the shift operation were
to come first, followed by the read, then there would be no delay, and the hardware would be
incorrect.)

Block Interface
The block interface (inputs and outputs as seen on the Addressable Shift Register icon) are as
follows:

Input Signals:

Output Signals:

d data input

addr address

en enable signal (optional)

q data output
56 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=56

Addressable Shift Register
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to this block are as follows:

 Infer maximum latency (depth) using address port width: you can choose to allow the
block to automatically determine the depth or maximum latency of the shift-register-based on
the bit-width of the address port.

 Maximum latency (depth): in the case that the maximum latency is not inferred (previous
option), the maximum latency can be set explicitly.

 Initial value vector: specifies the initial register values. When the vector is longer than the
shift register depth, the vector's trailing elements are discarded. When the shift register is
deeper than the vector length, the shift register's trailing registers are initialized to zero.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Implementation tab

Parameters specific to this block are as follows:

 Optimization: you can choose to optimize for Resource (minimum area) or for Speed
(maximum performance).

LogiCORE™ Documentation
LogiCORE IP RAM-based Shift Register v11.0

LogiCORE IP Floating-Point Operator v6.1

Device Support

Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-
3A/3AN/3A DSP/XA

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 57
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=c_shift_ram;v=none;d=shift_ram_ds228.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=57

Chapter 1: Xilinx Blockset
AddSub
This block is listed in the following Xilinx Blockset libraries: Math, Floating-Point and Index.

The Xilinx AddSub block implements an adder/subtractor. The operation can be fixed
(Addition or Subtraction) or changed dynamically under control of the sub mode
signal.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Operation: Specifies the block operation to be Addition, Subtraction, or Addition/
Subtraction. When Addition/Subtraction is selected, the block operation is determined by the
sub input port, which must be driven by a Boolean signal. When the sub input is 1, the block
performs subtraction. Otherwise, it performs addition.

 Provide carry-in port: When selected, allows access to the carry-in port, cin. The carry-in
port is available only when User defined precision is selected and the binary point of the
inputs is set to zero.

 Provide carry-out port: When selected, allows access to the carry-out port, cout. The carry-
out port is available only when User defined precision is selected, the inputs and output are
unsigned, and the number of output integer bits equals x, where x = max (integer bits a, integer
bits b).

Output tab

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
arithmetic output will always be Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

User-Defined Precision

Fixed-point Precision

 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Quantization

Refer to the section Overflow and Quantization.

Overflow
58 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=58

AddSub
Refer to the section Overflow and Quantization.

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL.
This gives the downstream logic synthesis tool maximum freedom to optimize for performance
or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

Core Parameters

 Pipeline for maximum performance: The XILINX LogiCORE can be internally pipelined to
optimize for speed instead of area. Selecting this option puts all user defined latency into the
core until the maximum allowable latency is reached. If this option is not selected and latency
is greater than zero, a single output register is put in the core and additional latency is added on
the output of the core.

 Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Adder/Subtractor v11.0

LogiCORE IP Floating-Point Operator v6.1

Device Support
Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-
3A/3AN/3A DSP/XA

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 59
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=c_addsub;v=none;d=addsub_ds214.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=59

Chapter 1: Xilinx Blockset
Assert
This block is listed in the following Xilinx Blockset libraries: Floating-Point and Index.

The Xilinx Assert block is used to assert a rate and/or a type on a signal. This block has
no cost in hardware and can be used to resolve rates and/or types in situations where
designer intervention is required.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this block are as follows:

Assert Type

 Assert type: specifies whether or not the block will assert that the type at its input is the same
as the type specified. If the types are not the same, an error message is reported.

 Specify type: specifies whether or not the type to assert is provided from a signal connected to
an input port named type or whether it is specified Explicitly from parameters in the Assert
block dialog box.

Output Precision

 Specifies the data type of the output. Can be Boolean, Fixed-point, or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Ar it heme tic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width.

Fraction width: Specify the fraction width.

Rate

 Assert rate: specifies whether or not the block will assert that the rate at its input is the same
as the rate specified. If the rates are not the same, an error message is reported.

 Specify rate: specifies whether or not the initial rate to assert is provided from a signal
connected to an input port named rate or whether it is specified Explicitly from the Sample
rate parameter in the Assert block dialog box.

 Provide output port: specifies whether or not the block will feature an output port. The type
and/or rate of the signal presented on the output port is the type and/or rate specified for
assertion.
60 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=60

Assert
Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

The Output type parameter in this block uses the same description as the Arithmetic Type described
in the topic Common Options in Block Parameter Dialog Boxes.

The Assert block does not use a Xilinx LogiCORE™ and does not use resources when implemented
in hardware.

Using the Assert block to Resolve Rates and Types
In cases where the simulation engine cannot resolve rates or types, the Assert block can be used to
force a particular type or rate. In general this might be necessary when using components that use
feedback and act as a signal source. For example, the circuit below requires an Assert block to force
the rate and type of an SRL16. In this case, you can use an Assert block to 'seed' the rate which is
then propagated back to the SRL16 input through the SRL16 and back to the Assert block. The
design below fails with the following message when the Assert block is not used.

“The data types could not be established for the feedback paths through this block. You might need
to add Assert blocks to instruct the system how to resolve types.

To resolve this error, an Assert block is introduced in the feedback path as shown below:

In the example, the Assert block is required to resolve the type, but the rate could have been
determined by assigning a rate to the constant clock. The decision whether to use Constant blocks or
Assert blocks to force rates is arbitrary and can be determined on a case by case basis.

System Generator 8.1 and later now resolves rates and types deterministically, however in some
cases, the use of Assert blocks might be necessary for some System Generator components, even if
they are resolvable. These blocks might include Black Box components and certain IP blocks.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1
System Generator for DSP Reference Guide www.xilinx.com 61
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=61

Chapter 1: Xilinx Blockset
Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
62 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=62

AXI FIFO
AXI FIFO
This block is listed in the following Xilinx Blockset libraries: Control Logic, Floating-Point,
Memory, and Index.

The Xilinx AXI FIFO block implements a FIFO memory queue with
an AXI-compatible block interface.

Block Interface
Write Channel

 tready: Indicates that the slave can accept a transfer in the current cycle.

 tvalid: Indicates that the master is driving a valid transfer. A transfer takes place when both
tvalid and tready are asserted.

 tdata: The primary input data chennel

Read Channel

 tdata: The primary output for the data.

 tready: Indicates that the slave can accept a transfer in the current cycle.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

Performance Options:

 FIFO depth: specifies the number of words that can be stored. Range 16-4M.

Actual FIFO depth: A report field that indicates the actual FIFO depth. The actual depth of the
FIFO depends on its implementation and the features that influence its implementation.

Optional Ports:

 TDATA: The primary payload that is used to provide the data that is passing across the
interface. The width of the data payload is an

 integer number of bytes.

 TDEST: Provides routing information for the data stream.

 TSTRB: The byte qualifier that indicates whether the content of theassociated byte of TDATA
is processed as a data byte or a positionbyte. For a 64-bit DATA, bit 0 corresponds to the least
significant byte on DATA, and bit 7 corresponds to the most significant byte. For example:

 STROBE[0] = 1b, DATA[7:0] is valid

 STROBE[7] = 0b, DATA[63:56] is not valid
System Generator for DSP Reference Guide www.xilinx.com 63
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=63

Chapter 1: Xilinx Blockset
 TREADY: Indicates that the slave can accept a transfer in the current cycle.

 TID: The data stream identifier that indicates different streams of data.

 TUSER: The user-defined sideband information that can betransmitted alongside the data
stream.

 TKEEP: The byte qualifier that indicates whether the content of the associated byte of
TDATA is processed as part of the data stream. Associated bytes that have the TKEEP byte
qualifier deasserted are null bytes and can be removed from the data stream. For a 64-bit
DATA, bit 0 corresponds to the least significant byte on DATA, and bit 7 corresponds to the
most significant byte. For example:

 KEEP[0] = 1b, DATA[7:0] is a NULL byte

 KEEP [7] = 0b, DATA[63:56] is not a NULL byte

 TLAST: Indicates the boundary of a packet.

 arestn: Adds arestn (global reset) port to the block.

Data Threshold Parameters

 Provide FIFO occupancy DATA counts: Adds data_count port to the block. This port
indicates the number of words written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure the user never overflows the FIFO.
The exception to this behavior is when a write operation occurs at the rising edge of write
clock; that write operation will only be reflected on WR_DATA_COUNT at the next rising
clock edge. D = log2(FIFO depth)+1

Implementation tab

FIFO Options

 FIFO implementation type: specifies how the FIFO is implemented in the FPGA; possible
choices are Common Clock Block RAM and Common Clock Distributed RAM.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
64 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=64

AXI FIFO
LogiCORE™ Documentation

LogiCORE IP FIFO Generator 9.2

LogiCORE IP Floating-Point Operator v6.1

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6,
Spartan-3A/3AN/3A DSP, Spartan-3E, Spartan-3

Floating-Point support is restricted to the following devices:

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 65
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=65

Chapter 1: Xilinx Blockset
BitBasher
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types and Index.

The Xilinx BitBasher block performs slicing, concatenation and augmentation of
inputs attached to the block.

The operation to be performed is described using Verilog syntax which is detailed in
this document. The block can have up to four output ports. The number of output ports

is equal to the number of expressions. The block does not cost anything in hardware.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 BitBasher Expression: Bitwise manipulation expression based on Verilog Syntax. Multiple
expressions (limited to a maximum of 4) can be specified using new line as a separator
between expressions.

Output Type tab

 Output: This refers to the port on which the data type is specified

 Output type: Arithmetic type to be forced onto the corresponding output

 Binary Point: Binary point location to be forced onto the corresponding output

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Supported Verilog Constructs
The BitBasher block only supports a subset of Verilog expression constructs that perform bitwise
manipulations including slice, concatenation and repeat operators. All specified expressions must
adhere to the following template expression:

output_var = {bitbasher_expr}

bitbasher_expr: A slice, concat or repeat expression based on Verilog syntax or simply an input
port identifier.

output_var: The output port identifier. An output port with the name output_var will appear on the
block and will hold the result of the wire expression bitbasher_expr

Concat

output_var = {bitbasher_expr1, bitbasher_expr2, bitbasher_expr3}

The concat syntax is supported as shown above. Each of bitbasher_exprN could either be an
expression or simply an input port identifier.

The following are some examples of this construct:

a1 = {b,c,d,e,f,g}
a2 = {e}
a3 = {b,{f,c,d},e}
66 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=66

BitBasher
Slice

output_var = {port_identifier[bound1:bound2]}…(1)
output_var = {port_identifier[bitN]}…(2)

port_identifier: The input port from which the bits are extracted.

bound1, bound2: Non-negative integers that lie between 0 and (bit-width of port_identifier – 1)

bitN: Non-negative integers that lie between 0 and (bit-width of port_identifier – 1)

As shown above, there are two schemes to extract bits from the input ports. If a range of consecutive
bits need to be extracted, then the expression of the following form should be used.

output_var = {port_identifier[bound1:bound2]}…(1)

If only one bit is to be extracted, then the alternative form should be used.

output_var = {port_identifier[bitN]}…(2)

The following are some examples of this construct:

a1 = {b[7:3]}

a1 holds bits 7 through 3 of input b in the same order in which they appear in bit b (for
example, if b is 110110110 then a1 is 10110).

a2 = {b[3:7]}

a2 holds bits 7 through 3 of input b in the reverse order in which they appear in bit b (for
example, if b is 110100110 then a2 is 00101).

a3 = {b[5]}

a3 holds bit 5 of input b.

a4 = {b[7:5],c[3:9],{d,e}}

The above expression makes use of a combination of slice and concat constructs.Bits 7 through
5 of input b, bits 3 through 9 of input c and all the bits of d and e are concatenated.

Repeat

output_var = {N{bitbasher_expr}}

N: A positive integer that represents the repeat factor in the expression

The following are some examples of this construct:

a1 = {4{b[7:3]}}

The above expression is equivalent to a1 = {b[7:3], b[7:3], b[7:3], b[7:3]}

a2 = {b[7:3],2{c,d}}

The above expression is equivalent to a2 = {b[7:3],c,d,c,d }
System Generator for DSP Reference Guide www.xilinx.com 67
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=67

Chapter 1: Xilinx Blockset
Constants

Binary Constant: N'bbin_const

Octal Constant: N'ooctal_const

Decimal Constant: N'doctal_const

Hexadecimal Constant: N'hoctal_const

N: A positive integer that represents the number of bits that are used to represent the constant

bin_const: A legal binary number string made up of 0 and 1

octal_const: A legal octal number string made up of 0, 1, 2, 3, 4, 5, 6 and 7

decimal_const: A legal decimal number string made up of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

hexadecimal_const: A legal binary number string made up of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e
and f

A constant can only be used to augment expressions already derived from input ports. In other
words, a BitBasher block cannot be used to simply source constant like the Constant block.

The following examples make use of this construct:

a1 = {4'b1100, e}

if e were 110110110 then a1 would be 1100110110110.

a1 = {4'hb, e}

if e were 110110110 then a1 would be 1101110110110.

a1 = {4'o10, e}

if e were 110110110 then a1 would be 1000110110110.

Limitations
 Does not support masked parameterization on the bitbasher expressions.

 An expression cannot contain only constants, that is, each expression must include at least one
input port.
68 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=68

Black Box
Black Box
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic,
Floating-Point and Index.

The System Generator Black Box block provides a way to incorporate hardware
description language (HDL) models into System Generator.

The block is used to specify both the simulation behavior in Simulink and the
implementation files to be used during code generation with System Generator. A
black box's ports produce and consume the same sorts of signals as other System
Generator blocks. When a black box is translated into hardware, the associated
HDL entity is automatically incorporated and wired to other blocks in the resulting

design.

The black box can be used to incorporate either VHDL or Verilog into a Simulink model. Black box
HDL can be co-simulated with Simulink using the System Generator interface to either ISE®
Simulator or the ModelSim simulation software from Model Technology, Inc. You can find more
information on this topic in the documentation for the ModelSim block and in the topic HDL Co-
Simulation.

In addition to incorporating HDL into a System Generator model, the black box can be used to
define the implementation associated with an external simulation model (e.g., Hardware Co-
Simulation Blocks). System Generator also includes several Black Box Examples that demonstrate
the capabilities and use of the black box.

Requirements on HDL for Black Boxes
Every HDL component associated with a black box must adhere to the following System Generator
requirements and conventions:

 The entity name must not collide with any entity name that is reserved by System Generator
(e.g., xlfir, xlregister).

 Bi-directional ports are supported in HDL black boxes; however they will not be displayed in
the System Generator as ports, they will only appear in the generated HDL after netlisting.
Please refer to the topic for more infromation.

 For a Verilog Black Box, the module and port names must be lower case and follow standard
Verilog naming conventions.

 For a VHDL Black Box, the supported port data types are std_logic and std_logic_vector.

 Top level ports should be ordered most significant bit down to least significant bit, as in
std_logic_vector(7 downto 0), and not std_logic_vector(0 to 7).

 Clock and clock enable ports must be named according to the conventions described below.

 Any port that is a clock or clock enable must be of type std_logic. (For Verilog black boxes,
such ports must be non-vector inputs, e.g., input clk.)

 Clock and clock enable ports on a black box are not treated like other ports. When a black box
is translated into hardware, System Generator drives the clock and clock enable ports with
signals whose rates can be specified according to the block's configuration and the sample
rates that drive it in Simulink.

 Falling-edge triggered output data cannot be used.

To understand how clocks work for black boxes, it helps to understand how System Generator
handles Timing and Clocking in general. To produce multiple rates in hardware, System Generator
uses a single clock along with multiple clock enables, one enable for each rate. The enables activate
different portions of hardware at the appropriate times. Each clock enable rate is related to a
System Generator for DSP Reference Guide www.xilinx.com 69
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=69

Chapter 1: Xilinx Blockset
corresponding sample period in Simulink. Every System Generator block that requires a clock has at
least one clock and clock enable port in its HDL counterpart. Blocks having multiple rates have
additional clock and clock enable ports.

Clocks for black boxes work like those for other System Generator blocks. The black box HDL must
have a separate clock and clock enable port for each associated sample rate in Simulink. Clock and
clock enable ports in black box HDL should be expressed as follows:

 Clock and clock enables must appear as pairs (for example, for every clock, there is a
corresponding clock enable, and vice-versa). Although a black box can have more than one
clock port, a single clock source is used to drive each clock port. Only the clock enable rates
differ.

 Each clock name (respectively, clock enable name) must contain the substring clk (resp., ce).

 The name of a clock enable must be the same as that for the corresponding clock, but with ce
substituted for clk. For example, if the clock is named src_clk_1, then the clock enable must be
named src_ce_1.

Clock and clock enable ports are not visible on the black box block icon. A work around is required
to make the top-level HDL clock enable port visible in System Generator; the work around is to add
a separate enable port to the top-level HDL and AND this signal with the actual clock enable signal.

The Black Box Configuration Wizard
The Configuration Wizard is a tool that makes it easy to associate a Verilog or VHDL component to
a black box. The wizard is invoked whenever a black box is added to a model. To use the wizard,
copy the file that defines the HDL component for a black box into the directory that contains the
model. When a new black box is added to a model, the Configuration Wizard opens automatically.
An example is shown in the figure below.

From this wizard choose the HDL file that should be associated to the black box, then press the
Open button. The wizard generates a configuration M-function (described below) for the black box,
and associates the function with the block. The configuration M-function produced by the wizard
70 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=70

Black Box
can usually be used without change, but occasionally the function must be tailored by hand. Whether
the configuration M-function needs to be modified depends on how complex the HDL is.

The Black Box Configuration M-Function
A black box must describe its interface (e.g., ports and generics) and its implementation to System
Generator. It does this through the definition of a MATLAB M-function (or p-function) called the
block's configuration . The name of this function must be specified in the block parameter dialog
box under the Block Configuration parameter.

The configuration M-function does the following:

 It specifies the top-level entity name of the HDL component that should be associated with the
black box;

 It selects the language (for example, VHDL or Verilog);

 It describes ports, including type, direction, bit width, binary point position, name, and sample
rate. Ports can be static or dynamic. Static ports do not change; dynamic ports change in
response to changes in the design. For example, a dynamic port might vary its width and type
to suit the signal that drives it.

 It defines any necessary port type and data rate checking;

 It defines any generics required by the black box HDL;

 It specifies the black box HDL and other files (e.g., EDIF) that are associated with the block;

 It defines the clocks and clock enables for the block (see the following topic on clock
conventions).

 It declares whether the HDL has any combinational feed-through paths.

System Generator provides an object-based interface for configuring black boxes consisting of two
types of objects: SysgenBlockDescriptors, used to define entity characteristics, and
SysgenPortDescriptors, used to define port characteristics. This interface is used to provide System
Generator information in the configuration M-function for black box about the block's interface,
simulation model, and implementation.

If the HDL for a black box has at least one combinational path (for example, a direct feed-through
from an input to an output port), the block must be tagged as combinational in its configuration M-
function using the tagAsCombinational method. A black box can be a mixture (for example, some
paths can be combinational while others are not). It is essential that a block containing a
combinational path be tagged as such. Doing so allows System Generator to identify such
blocks to the Simulink simulator. If this is not done, simulation results are incorrect.

The configuration M-function for a black box is invoked several times when a model is compiled.
The function typically includes code that depends on the block's input ports. For example,
sometimes it is necessary to set the data type and/or rate of an output port based on the attributes on
an input port. It is sometimes also necessary to check the type and rate on an input port. At certain
times when the function is invoked, Simulink might not yet know enough for such code to be
executed.

To avoid the problems that arise when information is not yet known (in particular, exceptions),
BlockDescriptor members inputTypesKnown and inputRatesKnown can be used. These are used to
determine if Simulink is able, at the moment, to provide information about the input port types and
rates respectively. The following code illustrates this point.

if (this_block.inputTypesKnown)
% set dynamic output port types

% set generics that depend on input port types
% check types of input ports
System Generator for DSP Reference Guide www.xilinx.com 71
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=71

Chapter 1: Xilinx Blockset
end

If all input rates are known, this code sets types for dynamic output ports, sets generics that depend
on input port types, and verifies input port types are appropriate. Avoid the mistake of including
code in these conditional blocks (e.g., a variable definition) that is needed by code outside of the
conditional block.

Note that the code shown above uses an object named this_block. Every black box configuration M-
function automatically makes this_block available through an input argument. In MATLAB,
this_block is the object that represents the black box, and is used inside the configuration M-
function to test and configure the black box. Every this_block object is an instance of the
SysgenBlockDescriptor MATLAB class. The methods that can be applied to this_block are specified
in Appendix A. A good way to generate example configuration M-function is to run the
Configuration Wizard (described below) on simple VHDL entities.

The Black Box Examples are an excellent way to become familiar with black box configuration
options.

Sample Periods

The output ports, clocks, and clock enables on a black box must be assigned sample periods in the
configuration M-function. If these periods are dynamic, or the black box needs to check rates, then
the function must obtain the input port sample periods. Sample periods in the black box are
expressed as integer multiples of the system rate as specified by the Simulink System Period field on
the System Generator token. For example, if the Simulink System Period is 1/8, and a black box
input port runs at the system rate (for example, at 1/8), then the configuration M-function sees 1
reported as the port's rate. Likewise, if the Simulink System Period is specified as pi, and an output
port should run four times as fast as the system rate (for example, at 4*pi), then the configuration M-
function should set the rate on the output port to 4. The appropriate rate for constant ports is Inf.

As an example of how to set the output rate on each output port, consider the following code
segment:

block.outport(1).setRate(theInputRate);
block.outport(2).setRate(theInputRate*5);
block.outport(3).setRate(theInputRate*5);

The frist line sets the first output port to the same rate as the input port. The next two lines set the
output rate to 5 times the rate of the input.
72 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=72

Black Box
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Block Configuration M-Function: Specifies the name of the configuration M-function that is
associated to the black box. Ordinarily the file containing the function is stored in the directory
containing the model, but it can be stored anywhere on the MATLAB path. Note that
MATLAB limits all function names (including those for configuration M-functions) to 63
characters. Do not include the file extension (".m" or ".p") in the edit box.

 Simulation Mode: Tells the mode (Inactive, ISE® Simulator or External co-simulator) to use
for simulation. When the mode is Inactive, the black box ignores all input data and writes
zeroes to its output ports. Usually for this mode the black box should be coupled, using a
Configurable Subsystem as described in the topic Configurable Subsystems and System
Generator.

System Generator uses Configurable Subsystems to allow two paths to be identified – one for
producing simulation results, and the other for producing hardware. This approach gives the best
simulation speed, but requires that a simulation model be constructed. When the mode is ISE
Simulator or External co-simulator, simulation results for the black box are produced using co-
simulation on the HDL associated with the black box. When the mode is External co-simulator, it
is necessary to add a ModelSim HDL co-simulation block to the design, and to specify the name of
the ModelSim block in the field labeled HDL Co-Simulator To Use. An example is shown below:
System Generator for DSP Reference Guide www.xilinx.com 73
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=73

Chapter 1: Xilinx Blockset
System Generator supports the ModelSim simulator from Mentor Graphics®, Inc. for HDL co-
simulation. For co-simulation of Verilog black boxes, a mixed mode license is required. This is
necessary because the portion of the design that System Generator writes is VHDL.

Usually the co-simulator block for a black box is stored in the same subsystem that contains the
black box, but it is possible to store the block elsewhere. The path to a co-simulation block can be
absolute, or can be relative to the subsystem containing the black box (e.g., "../ModelSim"). When
simulating, each co-simulator block uses one license. To avoid running out of licenses, several black
boxes can share the same co-simulation block. System Generator automatically generates and uses
the additional VHDL needed to allow multiple blocks to be combined into a single ModelSim
simulation.

Data Type Translation for HDL Co-Simulation
During co-simulation, ports in System Generator drive ports in the HDL simulator, and vice-versa.
Types of signals in the tools are not identical, and must be translated. The rules used for translation
are the following.

 A signal in System Generator can be Boolean, unsigned or signed fixed point. Fixed-point
signals can have indeterminate values, but Boolean signals cannot. If the signal's value is
indeterminate in System Generator, then all bits of the HDL signal become 'X', otherwise the
bits become 0's and 1's that represent the signal's value.

 To bring HDL signals back into System Generator, standard logic types are translated into
Booleans and fixed-point values as instructed by the black box configuration M-function.
When there is a width mismatch, an error is reported. Indeterminate signals of all varieties
(weak high, weak low, etc.) are translated to System Generator indeterminates. Any signal that
is partially indeterminate in HDL simulation (e.g., a bit vector in which only the topmost bit is
indeterminate) becomes entirely indeterminate in System Generator.

 HDL to System Generator translations can be tailored by adding a custom simulation-only top-
level wrapper to the VHDL component. Such a wrapper might, for example, translate every
weak low signal to 0 or every indeterminate signal to 0 or 1 before it is returned to System
Generator.
74 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=74

Black Box
An Example

The following is an example VHDL entity that can be associated to a System Generator black box.
(This entity is taken from black box example Importing a VHDL Module).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity word_parity_block is

generic (width : integer := 8);
port (din : in std_logic_vector(width-1 downto 0);

parity : out std_logic);
end word_parity_block;
architecture behavior of word_parity_block is
begin

WORD_PARITY_Process : process (din)
variable partial_parity : std_logic := '0';
begin
partial_parity := '0';
XOR_BIT_LOOP: for N in din'range loop
partial_parity := partial_parity xor din(N);
end loop; -- N
parity <= partial_parity after 1 ns ;
end process WORD_PARITY_Process;

end behavior;

The following is an example configuration M-function. It makes the VHDL shown above available
inside a System Generator black box.

function word_parity_block_config(this_block)
this_block.setTopLevelLanguage('VHDL');

this_block.setEntityName('word_parity_block');
this_block.tagAsCombinational;
this_block.addSimulinkInport('din');
this_block.addSimulinkOutport('parity');
parity = this_block.port('parity');
parity.setWidth(1);
parity.useHDLVector(false);
% -----------------------------
if (this_block.inputTypesKnown)
this_block.addGeneric('width',
this_block.port('din').width);
end % if(inputTypesKnown)
% -----------------------------
% -----------------------------
if (this_block.inputRatesKnown)
din = this_block.port('din');
parity.setRate(din.rate);
end % if(inputRatesKnown)
% -----------------------------
this_block.addFile('word_parity_block.vhd');
return;
System Generator for DSP Reference Guide www.xilinx.com 75
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=75

Chapter 1: Xilinx Blockset
Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6

See Also

Importing HDL Modules
76 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=76

ChipScope
ChipScope
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx ChipScope™ block enables run-time debugging and verification of
signals within an FPGA.

Deep capture memory and multiple trigger options are provided. Data is captured
based on user defined trigger conditions and stored in internal block memory.

The Xilinx ChipScope block can be accessed at run-time using the ChipScope Pro
Analyzer software. The Analyzer is used to configure the FPGA, setup trigger

conditions and view the captured data at run-time. All control and data transfer is done using the
JTAG port, eliminating the need to drive data off-chip using I/O pins. Data can be exported from the
Analyzer and read back into the MATLAB workspace.

Hardware and Software Requirements
The ChipScope™ Pro software, a download cable and a FPGA board with a JTAG connector are
required. More information about purchasing ChipScope Pro can be found at
http://www.xilinx.com/ise/optional_prod/cspro.htm

The ChipScope Pro Analyzer supports the following download cables for communication between
the PC and devices in the JTAG Boundary Scan chain:

 Xilinx Parallel Cable IV

 Xilinx Platform USB Cable

 MultiLINX (JTAG mode only)

 Agilent E5904B Option 500, FPGA Trace Port Analyzer (Agilent E5904B TPA).

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this block are as follows:

Triggers

 Number of trigger ports: Multiple trigger ports allow a larger range of events to be detected
and can reduce the amount of data that is stored. Up to 16 Trigger Ports can be selected.
Trigger Port-numbering starts from 0 and they are named Trig0, Trig1, ... TrigN-1 by default.
The trigger port can be renamed by specifying a name on the signal that is connected to the
port.

Trigger Settings

 Display settings for trigger port: For each trigger port, the number of match units and the
match type need to be set. The pulldown menu displays settings for a particular trigger port.
For N ports, the display options for trigger port 0 to N-1 can be shown.

 Number of match units: Using multiple match units per trigger port increases the flexibility
of event detection. One to four match units can be used in conjunction to test for a trigger
event. The trigger value is set at run-time in the ChipScope™ Pro Analyzer.

 Match type: This option can be set to one of the following six types:

a. Basic: performs = or <> comparisons
System Generator for DSP Reference Guide www.xilinx.com 77
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/ise/optional_prod/cspro.htm
http://www.xilinx.com/ise/optional_prod/cspro.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=77

Chapter 1: Xilinx Blockset
b. Basic with edges: in addition to the basic operations high/low, low/high transitions can
also be detected

c. Extended: performs =, <>,>,<, <=, >= comparisons

d. Extended with edges: in addition to the extended operations, high/low, low/high
transitions can also be detected.

e. Range: performs =, <>, >, >=, <, <=, in range, not in range comparisons

f. Range with edges: in addition to the range operations, high/low, low/high transitions can
also be detected.

Note: The Basic match type is the most area efficient and can compare 8-bits per FPGA slice. The Basic With
Edges match unit compares 4-bits per slice, Extended and Extended With Edges operates on 2-bits per slice
and, Range and Range With Edges can compare 1-bit per slice.

 Use trigger ports as data: When this option is selected, the data and trigger ports are identical
and are named trig0/data0, trig1/data1, ... trigN-1/dataN-1, where N is the number of trigger
ports. This mode is very common in most logic analyzers, since it enables the data that is used
to trigger the ChipScope block to be captured and collected. This mode conserves hardware
resources by limiting the amount of data that is captured.

When this option is not selected the data ports are completely independent of the trigger ports.
The trigger ports are named trig0, trig1, … trigN-1, and the data ports are named data0, data1,
… dataN-1. The ports can be renamed by specifying a name on the signal that is connected to
the port.

 Number of data ports: Up to 256 bits of data can be captured per sample. This implies that
the number of Data Ports multiplied by the number of bits-per-port should be less than or equal
to 256. System Generator propagates the data width automatically; therefore only the number
of data ports need to be specified.

 Depth of capture buffer: The depth of the capture buffer is a power of 2.

ChipScope Project File
System Generator creates a project file for ChipScope™ Pro in order to group data signals
connected to the block into buses. A bus is created for each data port so that it can be viewed as an
analog waveform by using the Bus Plot feature in the ChipScope Pro Analyzer. Each data bus is
scaled based on the binary point used in Simulink model. If the signals connected to the ChipScope
block are named, these names are used in the ChipScope project file to name the buses.

A project can be loaded into the ChipScope Analyzer by selecting the File > Import > Select New
File menu option and by choosing the ChipScope project file associated with the design. The project
is saved as <block name>.cdc. <block name> is derived from the name of the Chipscope
block in the design being compiled in the model's target directory.

Importing Data Into MATLAB Workspace From ChipScope
To export data from the ChipScope™ Pro Analyzer, first select the buses in the Bus Plot window
that are to be exported. Then select the File > Export option, select the ASCII format and choose
'Bus Plot Buses' to export. Press the Export button and save the file with a .prn extension. Within
MATLAB, change the current working directory to the location where the .prn file has been saved
and type:

xlLoadChipScopeData('<your file name>.prn');

This loads the data from the .prn file into the MATLAB workspace. The names of the new
workspace variables are the ports names of the ChipScope™ block. If the signals connected to the
ChipScope block are named, these names are used to create the MATLAB workspace variables. If
78 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=78

ChipScope
signal names are not specified the port names will depend on the Use Trigger Ports as Data option.
If this option is selected, the default the workspace variables are named trig0_data0, trig1_data1, …
trigN-1_dataN-1. If the option is not selected, by default the names of the variables are data0 and
data1, ... dataN.

Known Issues
 Only one ChipScope™ block can be instantiated in a System Generator design. Simulink Goto

and From blocks can be used to easily route signals to the ChipScope block.

 A design or subsystem containing a ChipScope block must have at lease one output port. If an
output port does not exist, the ChipScope block is optimized away during VHDL synthesis.

More Information
Please refer to the following web page for further details on the ChipScope™ Pro software:
http://www.xilinx.com/chipscope.

For a step-by-step tutorial on how to use this block, please refer to the topic Using ChipScope Pro
Analyzer for Real-Time Hardware Debugging.
System Generator for DSP Reference Guide www.xilinx.com 79
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/chipscope
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=79

Chapter 1: Xilinx Blockset
CIC Compiler 2.0
This block is listed in the following Xilinx Blockset libraries: DSP and Index.

The Xilinx CIC Compiler provides the ability to design and implement Cascaded
Integrator-Comb (CIC) filters for a variety of Xilinx FPGA devices.

CIC filters, also known as Hogenauer filters, are multi-rate filters often used for
implementing large sample rate changes in digital systems. They are typically
employed in applications that have a large excess sample rate. That is, the system
sample rate is much larger than the bandwidth occupied by the processed signal as
in digital down converters (DDCs) and digital up converters (DUCs).
Implementations of CIC filters have structures that use only adders, subtractors,
and delay elements. These structures make CIC filters appealing for their

hardware-efficient implementations of multi-rate filtering.

Block Parameters Dialog Box

Basic tab

Parameters specific to the Basic tab are:

Filter Specification

 Filter type: The CIC core supports both interpolation and decimation architectures. When the
filter type is selected as decimator the input sample stream is down-sampled by the factor R.
When an interpolator is selected the input sample is up-sampled by R.

 Number of Stages: Number of integrator and comb stages. If N stages are specified, there are
N integrators and N comb stages in the filter. The valid range for this parameter is 3 to 6.

 Differential delay: Number of unit delays employed in each comb filter in the comb section of
either a decimator or interpolator. The valid range of this parameter is 1 or 2.

 Number of channels: Number of channels to support in implementation. The valid range of
this parameter is 1 to 16.

Sample Rate Change Specification

 Sample rate changes: Option to select between Fixed or Programmable.

 Fixed or Initial Rate(ir): Specifies initial or fixed sample rate change value for the CIC. The
valid range for this parameter is 4 to 8192.

 Minimum Rate (Range: 4..ir): The minimum rate change value for programmable rate
change. The valid range for this parameter is 4 to fixed rate (ir).

 Maximum Rate (Range: ir..8192): The maximum rate change value for programmable rate
change. The valid range for this parameter is fixed rate (ir) to 8192.

Hardware Oversampling Specification

Select format: Choose Maximum_Possible, Sample_Period, or Hardware_Oversampling_Rate

Sample period: When this option is selected, the nd (new data -active high) input port is placed on
the block. When nd is asserted, the data sample presented on the din port is loaded into the filter.

Hardware Oversampling Rate: Enter the hardware oversampling rate if you select
Hardware_Oversampling_Rate as the format.
80 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=80

CIC Compiler 2.0
Implementation tab

Numerical Precision

 Quantization: Can be specified as Full_Precision or Trunction.

 Output Data Width: Can be specified up to 48 bits for the Trunction option above.

Optional

 Use Xtreme DSP slice: This field specifies that if possible, use the XtremeDSP slice (DSP48
type element) in the target device.

 Use Streaming Interface: Specifies whether or not to use a streaming interface for multiple
channel implementations.

Control Options

 rst (synchronous reset active High).

 en (clock enable active High) port to the block.

 nd (new data - active high) When this signal is asserted, the data sample presented on din port
is loaded into the filter. This control port is only placed on the block when Sample Period is the
selected format. See Hardware Oversampling Specification on the Basic tab.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP CIC Compiler 2.0

Device Support

Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 81
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cic_compiler;v=none;d=cic_compiler_ds613.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=81

Chapter 1: Xilinx Blockset
CIC Compiler 3.0
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP and Index.

The Xilinx CIC Compiler provides the ability to design and implement
AXI4-Stream-compliant Cascaded Integrator-Comb (CIC) filters for a
variety of Xilinx FPGA devices.

CIC filters, also known as Hogenauer filters, are multi-rate filters often
used for implementing large sample rate changes in digital systems.
They are typically employed in applications that have a large excess
sample rate. That is, the system sample rate is much larger than the
bandwidth occupied by the processed signal as in digital down
converters (DDCs) and digital up converters (DUCs). Implementations
of CIC filters have structures that use only adders, subtractors, and delay
elements. These structures make CIC filters appealing for their
hardware-efficient implementations of multi-rate filtering.

Sample Rates and the CIC Compiler Block
The CIC Compiler block must always run at the system rate because the CIC Compiler block has a
programmable rate change option and Simulink cannot inherently support it. You should use the
"ready" output signal to indicate to downstream blocks when a new sample is available at the output
of the CIC Compiler block.

The CIC will downsample the data, but the sample rate will remain at the clock rate. If you look at
the output of the CIC Compiler block, you will see each output data repeated R times for a rate
change of R while the data_tvalid signal pulses once every R cycles. The downstream blocks can be
clocked at lower-than-system rates without any problems as long as the clock is never slower than
the rate change R.

There are several different ways this can be handled. You can leave the entire design running at the
system rate then use registers with enables, or enables on other blocks to capture data at the correct
time. Or alternatively, you can use a downsample block corresponding to the lowest rate change R,
then again use enable signals to handle the cases when there are larger rate changes.

If there are not many required rate changes, you can use MUX blocks and use a different
downsample block for each different rate change. This might be the case if the downstream blocks
are different depending on the rate change, basically creating different paths for each rate. Using
enables as described above will probably be the most efficient method.

If you are not using the CIC Compiler block in a programmable mode, you can place an up/down
sample block after the CIC Compiler to correctly pass on the sample rate to downstream blocks that
will inherit the rate and build the proper CE circuitry to automatically enable those downstream
blocks at the new rate.

Block Parameters Dialog Box

Filter Specification tab

Parameters specific to the Filter Specification tab are:

Filter Specification

 Filter Type: The CIC core supports both interpolation and decimation architectures. When the
filter type is selected as decimator the input sample stream is down-sampled by the factor R.
When an interpolator is selected the input sample is up-sampled by R.
82 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=82

CIC Compiler 3.0
 Number of Stages: Number of integrator and comb stages. If N stages are specified, there are
N integrators and N comb stages in the filter. The valid range for this parameter is 3 to 6.

 Differential Delay: Number of unit delays employed in each comb filter in the comb section
of either a decimator or interpolator. The valid range of this parameter is 1 or 2.

 Number of Channels: Number of channels to support in implementation. The valid range of
this parameter is 1 to 16.

Sample Rate Change Specification

 Sample Rate Changes: Option to select between Fixed or Programmable.

 Fixed or Initial Rate(ir): Specifies initial or fixed sample rate change value for the CIC. The
valid range for this parameter is 4 to 8192.

 Minimum Rate: The minimum rate change value for programmable rate change. The valid
range for this parameter is 4 to fixed rate (ir).

 Maximum Rate: The maximum rate change value for programmable rate change. The valid
range for this parameter is fixed rate (ir) to 8192.

Hardware Oversampling Specification

Select format: Choose Maximum_Possible, Sample_Period, or Hardware_Oversampling_Rate.
Selects which method is used to specify the hardware

oversampling rate. This value directly affects the level of parallelism of the block implementation
and resources used. When “Maximum Possible” is selected, the block uses the maximum
oversampling given the sample period of the signal connected to the Data field of the
s_axis_data_tdata port. When you select “Hardware Oversampling Rate”, you can specify the
oversampling rate. When “Sample Period” is selected, the block clock is connected to the system
clock and the value specified for the Sample Period parameter sets the input sample rate the block
supports. The Sample Period parameter also determines the hardware oversampling rate of the
block. When “Sample Period” is selected, the block is forced to use the s_axis_data_tvalid control
port.

Sample period: Integer number of clock cycles between input samples. When the multiple channels
have been specified, this value should be the integer number of clock cycles between the time
division multiplexed input sample data stream.

Hardware Oversampling Rate: Enter the hardware oversampling rate if you select
Hardware_Oversampling_Rate as the format.

Implementation tab

Numerical Precision

 Quantization: Can be specified as Full_Precision or Trunction.

 Output Data Width: Can be specified up to 48 bits for the Trunction option above.

Optional

 Use Xtreme DSP slice: This field specifies that if possible, use the XtremeDSP slice (DSP48
type element) in the target device.

 Use Streaming Interface: Specifies whether or not to use a streaming interface for multiple
channel implementations.

Control Options

 ACLKEN Specifies if the block has a clock enable port (the equivalent of selecting the Has
ACLKEN option in the CORE Generator GUI).
System Generator for DSP Reference Guide www.xilinx.com 83
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=83

Chapter 1: Xilinx Blockset
 ARESERTn Specifies that the block has a reset port. Active low synchronous clear. A
minimum ARESETn pulse of two cycles is required.

 Has TREADY Specifies if the block has a TREADY port for the Data Output Channel (the
equivalent of selecting the Has_DOUT_TREADY option in the CORE Generator GUI)

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP CIC Compiler 3.0

Device Support

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
84 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cic_compiler;v=v3_0;d=ds845_cic_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=84

Clock Enable Probe
Clock Enable Probe
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Xilinx Clock Enable (CE) Probe provides a mechanism for extracting derived
clock enable signals from Xilinx signals in System Generator models.

The probe accepts any Xilinx signal type as input, and produces a Bool output
signal. The Bool output can be used at any point in the design where Bools are acceptable. The
probe output is a cyclical pulse that mimics the behavior of an ideal clock enable signal used in the
hardware implementation of a multirate circuit. The frequency of the pulse is derived from the input
signal's sample period. The enable pulse is asserted at the end of the input signal's sample period for
the duration of one Simulink system period. For signals with a sample period equal to the Simulink
system period, the block's output is always one.

Shown below is an example model with an attached analysis scope that demonstrates the usage and
behavior of the Clock Enable Probe. The Simulink system sample period for the model is specified
in the System Generator token as 1.0 seconds. In addition to the Simulink system period, the model
has three other sample periods defined by the Down Sample blocks. Clock Enable Probes are placed
after each Down Sample block and extract the derived clock enable signal. The probe outputs are
run to output gateways and then to the scope for analysis. Also included in the model is CLK probe
that produces a Double representation of the hardware system clock. The scope output shows the
output from the four Clock Enable probes in addition to the CLK probe output.
System Generator for DSP Reference Guide www.xilinx.com 85
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=85

Chapter 1: Xilinx Blockset
Options

• Use clock enable signal without Multi-Cycle path constraints: Used to
disable multi-cycle path constraints on the generated signal from the
Clock Enable Probe block. This is typically applied when the signal bring
generated is used as separate timing signal that is not clock-enable
related.
86 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=86

Clock Probe
Clock Probe
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Clock Probe generates a double-precision representation of a clock signal
with a period equal to the Simulink system period.

The output clock signal has a 50/50 duty cycle with the clock asserted at the start of
the Simulink sample period. The Clock Probe's double output is useful only for
analysis, and cannot be translated into hardware.

There are no parameters for this block.
System Generator for DSP Reference Guide www.xilinx.com 87
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=87

Chapter 1: Xilinx Blockset
CMult
This block is listed in the following Xilinx Blockset libraries: Math, Floating-Point and Index.

The Xilinx CMult block implements a gain operator, with output equal to the product
of its input by a constant value. This value can be a MATLAB expression that
evaluates to a constant.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic Tab are as follows:

Constant

 Fixed-point: Use fixed-point data type

 Floating-point: Use floating-point data type

 Value: can be a constant or an expression. If the constant cannot be expressed exactly in the
specified fixed-point type, its value is rounded and saturated as needed. A positive value is
implemented as an unsigned number, a negative value as signed.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the constant, where bit
zero is the least significant bit.

 Binary point: position of the binary point.

Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width

Fraction width: Specify the fraction width

Output tab

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
arithmetic output will always be Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

User-Defined Precision

Floating-point Precision
88 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=88

CMult
 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Quantization

Refer to the section Overflow and Quantization.

Overflow

Refer to the section Overflow and Quantization.

Implementation tab

Parameters specific to the Implementation tab are:

 Use behavioral HDL description (otherwise use core): when selected, System Generator
uses behavioral HDL, otherwise it uses the Xilinx LogiCORE™ Multiplier. When this option
is not selected (false) System Generator internally uses the behavioral HDL model for
simulation if any of the following conditions are true:

a. The constant value is 0 (or is truncated to 0).

b. The constant value is less than 0 and its bit width is 1.

c. The bit width of the constant or the input is less than 1 or is greater than 64.

d. The bit width of the input data is 1 and its data type is xlFix.

Note: This option is true for all Virtex® and Spartan® device families. Also, for Floating-point
operations, the block always uses the Floating-point Operator core.

Core Parameters

 Implement using: specifies whether to use distributed RAM or block RAM.

 Test for optimum pipelining: checks if the Latency provided is at least equal to the optimum
pipeline length supported for the given configuration of the block. Latency values that pass this
test imply that the core produced is optimized for speed.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Multiplier v11.2

LogiCORE IP Floating-Point Operator v6.1

Device Support
Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-
3A/3AN/3A DSP/XA

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 89
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=mult_gen;v=none;d=mult_gen_ds255.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=89

Chapter 1: Xilinx Blockset
Complex Multiplier 3.1
This block is listed in the following Xilinx Blockset libraries: DSP and Index and Math.

The Xilinx Complex Multiplier block multiplies two complex numbers.

All operands and the results are represented in signed two’s complement
format. The operand widths and the result width are parameterizable.

Block Parameters Dialog Box

Page 1 tab

Parameters specific to the Basic tab are:

Multiplier Construction Options

 Use_LUTs: Use LUTs in the fabric.

 Use_Mults: Use embedded multipliers/XtremeDSP slices

Optimization Goal

Only available if Use_Mults is selected.

 Resources: Uses the 3-real-multiplier structure. However, a 4-real-multiplier structure is used
when the 3- l- multiplier structure uses more multiplier resources.

 Performance: Always uses the 4-real multiplier structure to allow the best frequency
performance to be achieved.

Output Product Range

Select the required MSB and LSB of the output product. The values are automatically set to provide
the full-precision product when the A and B operand widths are set. The output is sign-extended if
required. If rounding is required, set the Output LSB to a value greater than zero to enable the
rounding options.

Page 2 tab

Core Latency

You can adjust the block latency as required. The default is -1 which tells System Generator to
pipeline the underlying LogiCORE for maximul performance.

Output Rounding

If rounding is required, the Output LSB must be greater than zero.

 Truncate: Truncate the output.

 Random_Rounding: When this option is selected, a round_cy input port is added to the block
to allow a carry-in bit to be input. See the section of the Complex Multiplier 3.1 Product
Specification for a full explanation.
90 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=90

Complex Multiplier 3.1
Optional Ports

 en: Clock Enable – Activates an optional enable (en) pin on the block. When the enable signal
is not asserted the block holds its current state until the enable signal is asserted again or the
reset signal is asserted. Reset signal has precedence over the enable signal. The enable signal
has to run at a multiple of the block's sample rate. The signal driving the enable port must be
Boolean.

 rst: Reset – Activates an optional reset (rst) pin on the block. When the reset signal is
asserted the block goes back to its initial state. Reset signal has precedence over the optional
enable signal available on the block. The reset signal has to run at a multiple of the block's
sample rate. The signal driving the reset port must be Boolean.

LogiCORE™ Documentation
LogiCORE IP Complex Multiplier v3.1

Device Support
Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-
3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 91
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cmpy;v=none;d=cmpy_ds291.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=91

Chapter 1: Xilinx Blockset
Complex Multiplier 5.0
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP, Index and Math.

The Complex Multiplier 5.0 block implements AXI4-Stream compliant,
high-performance, optimized complex multipliers for Virtex-6 and Spartan-
6 devices based on user-specified options.

The two multiplicand inputs and optional rounding bit are input on
independent AXI4-Stream channels as slave interfaces and the resulting
product output using an AXI4-Stream master interface.

Within each channel, operands and the results are represented in signed
two’s complement format. The operand widths and the result width are
parameterizable.

Refer to the topic AXI Interface for more detailed information on the AXI Interface.

Block Parameters Dialog Box

Page 1 tab

Parameters specific to the Basic tab are:

Channel A Options:

 Has TLAST: Adds a tlast input port to the A channel of the block.

 Has TUSER: Adds a tuser input port to the A channel of the block.

Channel B Options:

 Has TLAST: Adds a tlast input port to the B channel of the block.

 Has TUSER: Adds a tuser input port to the B channel of the block.

Multiplier Construction Options

 Use_Mults: Use embedded multipliers/XtremeDSP slices

 Use_LUTs: Use LUTs in the fabric to construct multipliers.

Optimization Goal

Only available if Use_Mults is selected.

 Resources: Uses the 3-real-multiplier structure. However, a 4-real-multiplier structure is used
when the 3- l- multiplier structure uses more multiplier resources.

 Performance: Always uses the 4-real multiplier structure to allow the best frequency
performance to be achieved.

Flow Control Options

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.
92 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=92

Complex Multiplier 5.0
Page 2 tab

Output Product Range

Select the output bit width. The values are automatically set to provide the full-precision product
when the A and B operand widths are set. The output is sign-extended if required.

The natural output width for complex multiplication is (APortWidth + BPortWidth + 1). When the
Output Width is set to be less than this, the most significant bits of the result are those output; -the
remaining bits will either be truncated or rounded according to Output Rounding option selected.
That is to say, the output MSB is now fixed at (APortWidth + BPortWidth). For details please refer
to the Complex Multiplier v4.0 datasheet.

Output Rounding

If rounding is required, the Output LSB must be greater than zero.

 Truncate: Truncate the output.

 Random_Rounding: When this option is selected, a ctrl_tvalid and ctrl_tdata input port is
added to the block. Bit 0 if ctrl_tdata input determines the particular type if rounding for the
operation. See the section of the Complex Multiplier 4.0 Product Specification for a full
explanation.

Channel CTRL Options

The following options are activated when Random Rounding is selected.

 Has TLAST: Adds a ctrl_tlast input port to the block.

 Has TUSER: Adds a ctrl_user input port to the block.

 TUSER Width: Specifies the bit width of the ctrl_tuser input port.

Output TLAST Behavior

Determines the behavior of the dout_tlast output port.

 Null: Output is null.

 Pass_A_TLAST: Pass the value of the a_tlast input port to the dout_tlast output port.

 Pass B_TLAST: Pass the value of the b_tlast input port to the dout_tlast output port.

 Pass CTRL_TLAST: Pass the value of the ctrl_tlast input port to the dout_tlast output port.

 OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

 AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

Core Latency

 Latency Configuration

 Automatic: Block latency is automatically determined by System Generator by pipelining
the underlying LogiCORE for maximum performance.

 Manual: You can adjust the block latency specifying the minimum block latency.

 Minimum Latency: Entry field for manually specifying the minimum block latency.

Control Signals

 ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

 ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN. A
minimum ARESETn active pulse of two cycles is required, since the signal is internally
System Generator for DSP Reference Guide www.xilinx.com 93
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=93

Chapter 1: Xilinx Blockset
registered for performance. A pulse of one cycle resets the core, but the response to the pulse is
not in the cycle immediately following.

Advanced tab

Block Icon Display

 Display shortened port names: On by default. When unchecked, dout_tvalid, for example,
becomes m_axis_dout_tvalid.

How to Migrate from Complex Multiplier 3.1 to Complex Multiplier 5.0

Design Description

This example shows how to migrate from the non-axi Complex Multiplier block to AXI4 Complex
Multiplier block using the same or similar block parameters. Some of the parameters between non-
AXI4 and AXI4 versions might not be identical exactly due to some changes in certain features and
block interfaces.

The following model is used to illustrate the design migration. For more detail, refer to the datasheet
for this IP core
94 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=94

Complex Multiplier 5.0
System Generator for DSP Reference Guide www.xilinx.com 95
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=95

Chapter 1: Xilinx Blockset
Data Path and Control Signals:

One noticeable difference between the non-AXI and AXI4 version is the tvalid signal. The AXI4
version provides both the input and output tvalid control signals as shown by the figure above. For
the steaming application, these control signals might not be necessary. However, for some bursty
data flows, they can be used to gate the valid input and output data without having to use additional
decoding circuits.

For this particular example, the following control signals are utilized:

a_tvalid : is driven by the Master “d_valid” from the “DDS Compiler 5.0” block

b_tvalid : is driven by the Master “d_valid” from the “DDS Compiler 5.0 1” block

dout_tvalid: can be used to drive other input Slave tvalid signals

Note: The a_tvalid and b_tvalid are operated independently from each other.

LogiCORE™ Documentation
LogiCORE IP Complex Multiplier v5.0

Device Support

Virtex-7, Kintex-7, Virtex-6, Spartan-6
96 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cmpy;v=v5_0;d=ds793_cmpy.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=96

Concat
Concat
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, and
Index.

The Xilinx Concat block performs a concatenation of n bit vectors represented by
unsigned integer numbers, for example, n unsigned numbers with binary points at
position zero.

The Xilinx Reinterpret block provides capabilities that can extend the functionality of
the Concat block.

Block Interface
The block has n input ports, where n is some value between 2 and 1024, inclusively, and one output
port. The first and last input ports are labeled hi and low, respectively. Input ports between these
two ports are not labeled. The input to the hi port will occupy the most significant bits of the output
and the input to the lo port will occupy the least significant bits of the output.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this block are as follows:

 Number of Inputs: specifies number of inputs, between 2 and 1024, inclusively, to
concatenate together.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

The Concat block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 97
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=97

Chapter 1: Xilinx Blockset
Configurable Subsystem Manager
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Configurable Subsystem Manager extends Simulink's configurable
subsystem capabilities to allow a subsystem configurations to be selected for
hardware generation as well as for simulation.

This block can be used to create Simulink library blocks (subsystems) that have
special capabilities when used with the System Generator software. For details on

how configurable subsystems, refer to the topic Configurable Subsystems and System Generator.

System Generator will automatically insert Configurable Subsystem Manager blocks into library
subsystems that it generates through its “Import as Configurable Subsystem” capability. It is also
possible to hand-build library subsystems that take advantage of the Simulink and System Generator
configurable subsystem capabilities.

Recall that a configurable subsystem consists of a collection of sub-blocks, exactly one of which
"represents" the subsystem at any given time. (The so-called "block choice" for the subsystem
specifies which sub-block should be the representative.) The representative is the sub-block used to
produce results for the subsystem when simulating.

System Generator designs can be simulated, but can also be translated into hardware, and it is often
useful to identify a second block to be used as a configurable subsystem's "hardware representative".
The hardware representative is the sub-block used to translating the configurable subsystem into
hardware. For example, suppose a configurable subsystem consists of two sub-blocks, namely a
black box whose HDL implements a filter, and a subsystem that implements the same filter using
ordinary System Generator blocks. Then it is natural to use the subsystem as the representative and
the black box as the hardware representative, for example, to use the subsystem in simulations, and
the black box HDL to generate hardware.

The configurable subsystem manager specifies which sub-block in a System Generator configurable
subsystem should be the hardware representative. To specify the hardware representative, do the
following: 1) Place a manager inside one of the sub-blocks, and 2) Use the manager's When
generating, use parameter to select the hardware representative.

Note: It is only possible to use a configurable subsystem manager by placing it inside a sub-block of a
configurable subsystem. This means that at least one sub-block must be a subsystem.

Note: When several sub-blocks contain managers, the managers automatically synchronize so they agree on
the choice of hardware representative.
98 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=98

Configurable Subsystem Manager
Block Parameters

The dialog box for a configurable subsystem manager is shown below:

This block has one parameter, labeled When generating, use. The parameter specifies which sub-
block to use as the hardware representative. An example list of choices is shown below.

When Configurable Subsystem Block Choice is selected, the sub-block specified as the
representative for the configurable subsystem is also used for generating hardware. Otherwise, the
sub-block selected from the list is used as the hardware representative.
System Generator for DSP Reference Guide www.xilinx.com 99
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=99

Chapter 1: Xilinx Blockset
Constant
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Math,
Floating-Point and Index.

The Xilinx Constant block generates a constant that can be a fixed-point value, a
Boolean value, or a DSP48 instruction. This block is similar to the Simulink constant
block, but can be used to directly drive the inputs on Xilinx blocks.

DSP48 Instruction Mode

The constant block, when set to create a DSP48 instruction, is useful for generating DSP48 control
sequences. The the figure below shows an example. The example implements a 35x35-bit multiplier
using a sequence of four instructions in a DSP48 block. The constant blocks supply the desired
instructions to a multiplexer that selects each instruction in the desired sequence.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Constant Value

Specifies the value of the constant. When changed, the new value appears on the block icon. If
the constant data type is specified as fixed-point and cannot be expressed exactly in the
specified fixed-point type, its value is rounded and saturated as needed. A positive value is
implemented as an unsigned number, a negative value as signed.

Output Precision

 Specifies the data type of the output. Can be Boolean, Fixed-point, or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp), Unsigned or DSP48 instruction as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output
100 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=100

Constant
Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width

Fraction width: Specify the fraction width

Sample Period

 Sampled Constant: allows a sample period to be associated with the constant output and
inherited by blocks that the constant block drives. (This is useful mainly because the blocks
eventually target hardware and the Simulink sample periods are used to establish hardware
clock periods.)

DSP48 tab

DS48 Instruction

When DSP48 Instruction is selected for type, the DSP48 tab is activated. A detailed description of
the DSP48 can be found in the DSP48 block description.

 DSP48 operation: displays the selected DSP48 instruction.

 Operation select: allows the selection of a DSP48 instruction. Selecting custom reveals mask
parameters that allow the formation of an instruction in the form z_mux +/-(yx_mux + carry).

Custom Instruction

 Z Mux: specifies the 'Z' source to the DSP48's adder to be one of {'0', 'C', 'PCIN', 'P','C',
'PCIN>>17',' P>>17'}.

 Operand: specifies whether the DSP48's adder is to perform addition or subtraction.

 YX Muxes: specifies the 'YX' source to the DSP48's adder to be one of {'0','P', 'A:B', 'A*B',
'C', 'P+C', 'A:B+C' }. 'A:B' implies that A[17:0] is concatenated with B[17:0] to produce a 36-
bit value to be used as an input to the DSP48 adder.

 Carry input: specifies the 'carry' source to the DSP48's adder to be one of {'0', '1', 'CIN',
'~SIGN(P or PCIN)', '~SIGN(A:B or A*B)' ,. '~SIGND(A:B or A*B)'}. '~SIGN (P or PCIN)'
implies that the carry source is either P or PCIN depending on the Z Mux setting. '~SIGN(A*B
or A:B)' implies that the carry source is either A*B or A:B depending on the YX Mux setting.
The option '~SIGND (A*B or A:B)' selects a delayed version of '~SIGN(A*B or A:B)'.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 101
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=101

Chapter 1: Xilinx Blockset
Appendix: DSP48 Control Instruction Format

Instruction Field
Name

Location Mnemonic Description

YX Mux op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is MSB)

A*B Multiplication of inputs A and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C register

Z Mux op[6:4] 0 0

PCIN DSP48 cascaded input from PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted by 17

P>>17 DSP48 output register downshifted by
17

Operand op[7] + Add

- Subtract

Carry In op[8] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source

'~SIGN(P or PCIN) Symmetric round P or PCIN

'~SIGN(A:B or A*B) Symmetric round A:B or A*B

'~SIGND(A:B or A*B) Delayed symmetric round of A:B or
A*B
102 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=102

Convert
Convert
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, Math,
Floating-Point and Index.

The Xilinx Convert block converts each input sample to a number of a desired
arithmetic type. For example, a number can be converted to a signed (two's
complement) or unsigned value.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic Tab are as follows:

Output Precision

Specifies the output data type. Can be Boolean, Fixed-point, or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point, where bit zero is the least
significant bit.

 Binary point: specifies the bit location of the binary point, where bit zero is the least
significant bit.

Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width

Fraction width: Specify the fraction width

Quantization

Quantization errors occur when the number of fractional bits is insufficient to represent the
fractional portion of a value. The options are to Truncate (for example, to discard bits to the right of
the least significant representable bit), or to Round(unbiased: +/- inf) or Round (unbiased: even
values).

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the Matlab round() function. This method rounds the
value to the nearest desired bit away from zero and when there is a value at the midpoint between
two possible rounded values, the one with the larger magnitude is selected. For example, to round
01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly between 01.01 and 01.10 and the
latter is further from zero.
System Generator for DSP Reference Guide www.xilinx.com 103
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=103

Chapter 1: Xilinx Blockset
Round (unbiased: even values) also known as "Convergent Round (toward even)" or "Unbiased
Rounding". Symmetric rounding is biased because it rounds all ambiguous midpoints away from
zero which means the average magnitude of the rounded results is larger than the average magnitude
of the raw results. Convergent rounding removes this by alternating between a symmetric round
toward zero and symmetric round away from zero. That is, midpoints are rounded toward the nearest
even number. For example, to round 01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is
exactly between 01.01 and 01.10 and the latter is even. To round 01.1010 to a Fix_4_2, this yields
01.10, since 01.1010 is exactly between 01.10 and 01.11 and the former is even.

Overflow

Overflow errors occur when a value lies outside the representable range. For overflow the options
are to Saturate to the largest positive/smallest negative value, to Wrap (for example, to discard bits
to the left of the most significant representable bit), or to Flag as error (an overflow as a Simulink
error) during simulation. Flag as error is a simulation only feature. The hardware generated is the
same as when Wrap is selected.

Optional Ports

Provide enable port: Activates an optional enable (en) pin on the block. When the enable signal is
not asserted the block holds its current state until the enable signal is asserted again or the reset
signal is asserted.

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Pipeline for maximum performance: directs the block to use pipeline registers to achive the
maximum performance. Block latency might incrrease.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
104 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=104

Convolution Encoder 7.0
Convolution Encoder 7.0
This block is listed in the following Xilinx Blockset libraries: Communication and Index.

The Xilinx Convolution Encoder block implements an encoder for
convolution codes. Ordinarily used in tandem with a Viterbi decoder, this
block performs forward error correction (FEC) in digital communication
systems.

Values are encoded using a linear feed forward shift register which computes
modulo-two sums over a sliding window of input data, as shown in the
figure below. The length of the shift register is specified by the constraint
length. The convolution codes specify which bits in the data window
contribute to the modulo-two sum. Resetting the block will set the shift

register to zero. The encoder rate is the ratio of input to output bit length; thus, for example a rate 1/2
encoder outputs two bits for each input bit. Similarly, a rate 1/ 3 encoder outputs three bits for each
input bit.

Block Parameters Dialog Box
The following figure shows the block parameters dialog box.

page_0 tab

Parameters specific to the Basic tab are:

Data Rates

 Input Rate: Punctured: Only the input rate can be modified. Its value can range from 2 to 12,
resulting in a rate n/m encoder where n is the input rate and n<m<2n

 Output Rate: Not Punctured: Only the output rate can be modified. Its value can be integer
values from 2 to 7, resulting in a rate 1/2 or rate 1/7 encoder, respectively

Punctures

 Punctured: Determines whether the block is punctured

 Dual Output: Specifies a dual-channel punctured block

 Puncture Code0 and Code1: The two puncture pattern codes are used to remove bits from the
encoded data prior to output. The length of each puncture code must be equal to the puncture
input rate, and the total number of bits set to 1 in the two codes must equal the puncture output
rate (m) for the codes to be valid. A 0 in any position indicates that the output bit from the
encoder is not transmitted. See the associated LogiCORE data sheet for an example.
System Generator for DSP Reference Guide www.xilinx.com 105
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=105

Chapter 1: Xilinx Blockset
page_1 tab

Convolution

 Constraint length: Constraint Length: Equals n+1, where n is the length of the constraint
register in the encoder.

 Convolution code: Array of binary convolution codes. Output rate is derived from the array
length. Between 2 and 7 (inclusive) codes can be entered.

Optional Pins

 ND: When the ND (New Data) input is sampled logic-High, it signals that a new symbol on
DATA_IN should be sampled on the same rising clock edge.

 RFD: RFD (Ready for Data) indicates that the core is ready to sample new data on DIN.

 FD_IN: The FD_IN (First Data) input is present only on punctured blocks and is used to
indicate the start of a new puncture group.

 RFFD: When RFFD (Ready for First Data) is High, it indicates that FD_IN can be asserted.

 RDY: The RDY (Ready) output indicates valid data on DATA_OUT_V

 SCLR: When SCLR is asserted (High), all the core flip-flops are synchronously initialized.

 CE: When CE is deasserted (Low), all the synchronous inputs are ignored and the block
remains in its current state.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Convolution Encoder 7.0

Device Support
Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-
3A/3AN/3A DSP/XA
106 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=convolution;v=none;d=convolution_ds248.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=106

Convolution Encoder 8.0
Convolution Encoder 8.0
This block is listed in the following Xilinx Blockset libraries: AXI4, Communication and Index.

The Xilinx Convolution Encoder block implements an encoder
for convolution codes. Ordinarily used in tandem with a Viterbi
decoder, this block performs forward error correction (FEC) in
digital communication systems. This block adheres to the
AMBA® AXI4-Stream standard.

Values are encoded using a linear feed forward shift register
which computes modulo-two sums over a sliding window of
input data, as shown in the figure below. The length of the shift
register is specified by the constraint length. The convolution
codes specify which bits in the data window contribute to the
modulo-two sum. Resetting the block will set the shift register to
zero. The encoder rate is the ratio of input to output bit length;

thus, for example a rate 1/2 encoder outputs two bits for each input bit. Similarly, a rate 1/ 3 encoder
outputs three bits for each input bit.

Block Parameters Dialog Box
The following figure shows the block parameters dialog box.

page_0 tab

Parameters specific to the Basic tab are:

Data Rates

 Input Rate: Punctured: Only the input rate can be modified. Its value can range from 2 to 12,
resulting in a rate n/m encoder where n is the input rate and n<m<2n

 Output Rate: Not Punctured: Only the output rate can be modified. Its value can be integer
values from 2 to 7, resulting in a rate 1/2 or rate 1/7 encoder, respectively

Punctures

 Punctured: Determines whether the block is punctured

 Dual Output: Specifies a dual-channel punctured block

 Puncture Code0 and Code1: The two puncture pattern codes are used to remove bits from the
encoded data prior to output. The length of each puncture code must be equal to the puncture
input rate, and the total number of bits set to 1 in the two codes must equal the puncture output
rate (m) for the codes to be valid. A 0 in any position indicates that the output bit from the
encoder is not transmitted. See the associated LogiCORE data sheet for an example.
System Generator for DSP Reference Guide www.xilinx.com 107
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=107

Chapter 1: Xilinx Blockset
Radix

 Convolution code radix: Select Binary, Octal, or Decimal.

Note: This Radix option is curently disabled.

Convolution

 Constraint length: Constraint Length: Equals n+1, where n is the length of the constraint
register in the encoder.

 Convolution code: Array of binary convolution codes. Output rate is derived from the array
length. Between 2 and 7 (inclusive) codes can be entered.

Optional Pins

 Aclken: Adds a aclken pin to the block. This signal carries the clock enable and must be of
type Bool.

 Aresetn: Adds a aresetn pin to the block. This signal resets the block and must be of type
Bool. The signal must be asserted for at least 2 clock cycles, however, it does not have to be
asserted before the decoder can start decoding. If this pin is not selected, System Generator ties
this pin to inactive (high) on the core.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Convolution Encoder 8.0

Device Support

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
108 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=convolution;v=v8_0;d=pg026_convolution.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=108

CORDIC 4.0
CORDIC 4.0
This block is listed in the following Xilinx Blockset libraries: DSP and Index and Math.

The Xilinx CORDIC 4.0 block implements a generalized coordinate rotational
digital computer (CORDIC) algorithm.

The CORDIC core implements the following equation types:

Rotate

Translate

Sin_and_Cos

Sinh_and_Cosh

Arc_Tan

 Arc_Tanh

 Square_Root

Two architectural configurations are available for the CORDIC core:

 A fully parallel configuration with single-cycle data throughput at the expense of silicon area

 A word serial implementation with multiple-cycle throughput but occupying a small silicon
area

A coarse rotation is performed to rotate the input sample from the full circle into the first quadrant.
(The coarse rotation stage is required as the CORDIC algorithm is only valid over the first
quadrant). An inverse coarse rotation stage rotates the output sample into the correct quadrant.

The CORDIC algorithm introduces a scale factor to the amplitude of the result, and the CORDIC
core provides the option of automatically compensating for the CORDIC scale factor.

Block Parameters Dialog Box

Page 1 tab

Functional Selection:

 Rotate: When selected, the input vector, (X,Y), is rotated by the input angle using the
CORDIC algorithm. This generates the scaled output vector, Zi * (X’, Y’).

 Translate: When selected, the input vector (X,Y) is rotated using the CORDIC algorithm until
the Y component is zero. This generates the scaled output magnitude, Zi * Mag(X,Y), and the
output phase, Atan(Y/X).

 Sin_and_Cos: When selected, the unit vector is rotated, using the CORDIC algorithm, by
input angle. This generates the output vector (Cos(), Sin()).

 Sinh_and_Cosh: When selected, the CORDIC algorithm is used to move the vector (1,0)
through hyperbolic angle p along the hyperbolic curve . The hyperbolic angle represents the
log of the area under the vector (X, Y) and is unrelated to a trigonometric angle. This generates
the output vector (Cosh(p), Sinh(p)).

 Arc_Tan: When selected, the input vector (X,Y) is rotated (using the CORDIC algorithm)
until the Y component is zero. This generates the output angle, Atan(Y/X).

 Arc_Tanh: When selected, the CORDIC algorithm is used to move the input vector (X,Y)
along the hyperbolic curve until the Y component reaches zero. This generates the hyperbolic
“angle,” Atanh(Y/X). The hyperbolic angle represents the log of the area under the vector
(X,Y) and is unrelated to a trigonometric angle.
System Generator for DSP Reference Guide www.xilinx.com 109
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=109

Chapter 1: Xilinx Blockset
 Square_Root: When selected a simplified CORDIC algorithm is used to calculate the positive
square root of the input.

Architectural configuration

 Word_Serial: Select for a hardware result with a small area.

 Parallel: Select for a hardware result with high throughput

Pipelining mode

 No_Pipelining: The CORDIC core is implemented without pipelining.

 Optimal: The CORDIC core is implemented with as many stages of pipelining as possible
without using any additional LUTs.

 Maximum: The CORDIC core is implemented with a pipeline after every shift-add sub stage.

Page 2 tab

Data format

 SignedFraction: Default setting. The X and Y inputs and outputs are expressed as fixed-point
2’s complement numbers with an integer width of 2-bits

 UnsignedFraction: Available only for Square Root functional configuration. The X and Y
inputs and outputs are expressed as unsigned fixed-point numbers with an integer with of 1-bit.

 UnsignedInteger: Available only for Square Root functional configuration. The X and Y
inputs and outputs are expressed as unsigned integers.

Phase format

 Radians: The phase is expressed as a fixed-point 2’s complement number with an integer
width of 3-bits, in radian units.

 Scaled_Radians: The phase is expressed as fixed-point 2’s complement number with an
integer width of 3-bits, with pi-radian units. One scaled-radian equals Pi * 1 radians.

Output Options

 Output width: Controls the width of the output ports, X_OUT, Y_OUT, PHASE_OUT. The
Output Width can be configured in the range 8 to 48 bits.

Round mode

 Truncate: The X_OUT, Y_OUT, and PHASE_OUT outputs are truncated.

 Round_Pos_Inf: The X_OUT, Y_OUT, and PHASE_OUT outputs are rounded (1/2 rounded
up).

 Round_Pos_Neg_Inf: The outputs X_OUT, Y_OUT, and PHASE_OUT are rounded (1/2
rounded up, -1/2 rounded down).

 Nearest_Even: The X_OUT, Y_OUT, and PHASE_OUT outputs are rounded toward the
nearest even number (1/2 rounded down and 3/2 is rounded up).

Page 3 tab

Advanced Configuration Parameters

 Iterations: Controls the number of internal add-sub iterations to perform. When set to zero, the
number of iterations performed is determined automatically based on the required accuracy of
the output.
110 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=110

CORDIC 4.0
 Precision: Configures the internal precision of the add-sub iterations. When set to zero,
internal precision is determined automatically based on the required accuracy of the output and
the number of internal iterations.

 Coarse rotation: Controls the instantiation of the coarse rotation module. Instantiation of the
coarse rotation module is the default for the following functional configurations: Vector
rotation, Vector translation, Sin and Cos, and Arc Tan. If Coarse Rotation is turned off for these
functions then the input/output range is limited to the first quadrant (-Pi/4 to + Pi/4).

Coarse rotation is not required for the Sinh and Cosh, Arctanh, and Square Root configurations.
The standard CORDIC algorithm operates over the first quadrant. Coarse Rotation extends the
CORDIC operational range to the full circle by rotating the input sample into the first quadrant
and inverse rotating the output sample back into the appropriate quadrant.

 Compensation scaling: Controls the compensation scaling module used to compensate for
CORDIC magnitude scaling. CORDIC magnitude scaling affects the Vector Rotation and
Vector Translation functional configurations, and does not affect the SinCos, SinhCosh,
ArcTan, ArcTanh and Square Root functional configurations. For the latter configurations,
compensation scaling is set to No Scale Compensation.

Optional Pins

 en: When the enable signal is not asserted the block holds its current state until the enable
signal is asserted again or the reset signal is asserted. Reset signal has precedence over the
enable signal. The enable signal has to run at a multiple of the block 's sample rate. The signal
driving the enable port must be Boolean.

 rst: When the reset signal is asserted the block goes back to its initial state. Reset signal has
precedence over the optional enable signal available on the block. The reset signal has to run at
a multiple of the block's sample rate. The signal driving the reset port must be Boolean.

 nd: A new sample is on the input ports.

 rdy: New output data is ready.

 X out: Data output port.

 Y out: Data output port.

 Phase output: Data output port.

LogiCORE™ Documentation
LogiCORE IP CORDIC v4.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/XA/3AN/3A DSP
System Generator for DSP Reference Guide www.xilinx.com 111
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cordic;v=none;d=cordic_ds249.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=111

Chapter 1: Xilinx Blockset
CORDIC 5.0
This block is listed in the following Xilinx Blockset libraries: DSP and Index and Math.

The Xilinx CORDIC 5.0 block implements a generalized
coordinate rotational digital computer (CORDIC) algorithm and
is AXI compliant.

The CORDIC core implements the following equation types:

 Rotate

 Translate

 Sin_and_Cos

 Sinh_and_Cosh

 Arc_Tan

 Arc_Tanh

 Square_Root

Two architectural configurations are available for the CORDIC core:

 A fully parallel configuration with single-cycle data throughput at the expense of silicon area

 A word serial implementation with multiple-cycle throughput but occupying a small silicon
area

A coarse rotation is performed to rotate the input sample from the full circle into the first quadrant.
(The coarse rotation stage is required as the CORDIC algorithm is only valid over the first
quadrant). An inverse coarse rotation stage rotates the output sample into the correct quadrant.

The CORDIC algorithm introduces a scale factor to the amplitude of the result, and the CORDIC
core provides the option of automatically compensating for the CORDIC scale factor.

Changes from CORDIC 4.0 to CORDIC 5.0

AXI compliant

 The CORDIC 5.0 block is AXI compliant.

Ports Renamed

 en to aclken

 rst to aresetn

 rdy maps to dout_tready. cartesian_tready and phase_tready are automatically added when
their respective channels are added.

 x_in to cartesian_tdata_real
112 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=112

CORDIC 5.0
 y_in to cartesian_tdata_imag

 phase_in to phase_tdata_phase

 x_out to dout_tdata_real

 y_out to dout_tdata_imag

 phase_out to dout_tdata_phase

Port Changes

 The data output ports are not optional in CORDIC 5.0. The data output ports are selected based
on the Function selected.

 There are separate tuser, tlast and tready ports for the Cartesian and Phase input channels.

 The dout_tlast output port can be configured to provide tlast from the Cartesian input
channel, from the Phase input channel, or the AND and or the OR of all tlasts.

Optimization

 When you select Blocking mode for the AXI behavior, you can then select whether the core is
configured for minimum Resources or maximum Performance.

Displaying Port Names on the Block Icon

 You can select Display shortened port names to trim the length of the AXI port names on the
block icon.

Block Parameters Dialog Box

Page 1 tab

Functional selection:

 Rotate: When selected, the input vector, (real,imag), is rotated by the input angle using the
CORDIC algorithm. This generates the scaled output vector, Zi * (real’, imag’).

 Translate: When selected, the input vector (real,imag) is rotated using the CORDIC algorithm
until the imag component is zero. This generates the scaled output magnitude, Zi *
Mag(real,imag), and the output phase, Atan(imag/real).

 Sin_and_Cos: When selected, the unit vector is rotated, using the CORDIC algorithm, by
input angle. This generates the output vector (Cos(), Sin()).

 Sinh_and_Cosh: When selected, the CORDIC algorithm is used to move the vector (1,0)
through hyperbolic angle p along the hyperbolic curve. The hyperbolic angle represents the log
of the area under the vector (real, imag) and is unrelated to a trigonometric angle. This
generates the output vector (Cosh(p), Sinh(p)).

 Arc_Tan: When selected, the input vector (real,imag) is rotated (using the CORDIC
algorithm) until the imag component is zero. This generates the output angle, Atan(imag/real).

 Arc_Tanh: When selected, the CORDIC algorithm is used to move the input vector
(real,imag) along the hyperbolic curve until the imag component reaches zero. This generates
the hyperbolic “angle,” Atanh(imag/real). The hyperbolic angle represents the log of the area
under the vector (real,imag) and is unrelated to a trigonometric angle.

Square_Root: When selected a simplified CORDIC algorithm is used to calculate the positive
square root of the input.
System Generator for DSP Reference Guide www.xilinx.com 113
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=113

Chapter 1: Xilinx Blockset
Architectural configuration

 Word_Serial: Select for a hardware result with a small area.

 Parallel: Select for a hardware result with high throughput

Pipelining mode

 No_Pipelining: The CORDIC core is implemented without pipelining.

 Optimal: The CORDIC core is implemented with as many stages of pipelining as possible
without using any additional LUTs.

 Maximum: The CORDIC core is implemented with a pipeline after every shift-add sub stage.

Data format

 SignedFraction: Default setting. The real and imag inputs and outputs are expressed as fixed-
point 2’s complement numbers with an integer width of 2-bits

 UnsignedFraction: Available only for Square Root functional configuration. The real and
imag inputs and outputs are expressed as unsigned fixed-point numbers with an integer with of
1-bit.

 UnsignedInteger: Available only for Square Root functional configuration. The real and imag
inputs and outputs are expressed as unsigned integers.

Phase format

 Radians: The phase is expressed as a fixed-point 2’s complement number with an integer
width of 3-bits, in radian units.

 Scaled_Radians: The phase is expressed as fixed-point 2’s complement number with an
integer width of 3-bits, with pi-radian units. One scaled-radian equals Pi * 1 radians.

Input/Output Options

 Input width: Controls the width of the input ports cartesian_tdata_real,
cartesian_tdata_imag, and phase_tdata_phase. The Input width range 8 to 48 bits.

 Output width: Controls the width of the output ports dout_tdata_real, dout_tdata_imag,
and dout_tdata_phase. The Output width range 8 to 48 bits.

Round mode

 Truncate: The real, imag, and phase outputs are truncated.

 Round_Pos_Inf: The real, imag, and phase outputs are rounded (1/2 rounded up).

 Round_Pos_Neg_Inf: The real, imag, and phase outputs are rounded (1/2 rounded up, -1/2
rounded down).

 Nearest_Even: The real, imag, and phase outputs are rounded toward the nearest even number
(1/2 rounded down and 3/2 is rounded up).

Page 2 tab

Advanced Configuration Parameters

 Iterations: Controls the number of internal add-sub iterations to perform. When set to zero, the
number of iterations performed is determined automatically based on the required accuracy of
the output.
114 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=114

CORDIC 5.0
 Precision: Configures the internal precision of the add-sub iterations. When set to zero,
internal precision is determined automatically based on the required accuracy of the output and
the number of internal iterations.

 Compensation scaping: Controls the compensation scaling module used to compensate for
CORDIC magnitude scaling. CORDIC magnitude scaling affects the Vector Rotation and
Vector Translation functional configurations, and does not affect the SinCos, SinhCosh,
ArcTan, ArcTanh and Square Root functional configurations. For the latter configurations,
compensation scaling is set to No Scale Compensation.

 Coarse rotation: Controls the instantiation of the coarse rotation module. Instantiation of the
coarse rotation module is the default for the following functional configurations: Vector
rotation, Vector translation, Sin and Cos, and Arc Tan. If Coarse Rotation is turned off for these
functions then the input/output range is limited to the first quadrant (-Pi/4 to + Pi/4).

Coarse rotation is not required for the Sinh and Cosh, Arctanh, and Square Root configurations.
The standard CORDIC algorithm operates over the first quadrant. Coarse Rotation extends the
CORDIC operational range to the full circle by rotating the input sample into the first quadrant
and inverse rotating the output sample back into the appropriate quadrant.

Optional ports

Standard

 aclken: When this signal is not asserted, the block holds its current state until the signal is
asserted again or the aresetn signal is asserted. The aresetn signal has precedence over this
clock enable signal. This signal has to run at a multiple of the block 's sample rate. The signal
driving this port must be Boolean.

 aresetn: When this signal is asserted, the block goes back to its initial state. This reset signal
has precedence over the optional aclken signal available on the block. The reset signal has to
run at a multiple of the block's sample rate. The signal driving this port must be Boolean.

 tready: Adds dout_tready port if Blocking mode is activated.

Cartesian

 tlast: Adds a tlast input port to the Cartesian input channel.

 tuser: Adds a tuser input port to the Cartesian input channel.

tuser width: Specifies the bit width of the Cartesian tuser input port.

Phase

 tlast: Adds a tlast input port to the Phase input channel.

 tuser: Adds a tuser input port to the Phase input channel.

tuser width: Specifies the bit width of the Phase tuser input port.

Tlast behavior

 Null: Data output port.

 Pass_Cartesian_TLAST: Data output port.

 Pass_Phase_TLAST: Data output port.

 OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

 AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports

Flow control

AXI behavior
System Generator for DSP Reference Guide www.xilinx.com 115
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=115

Chapter 1: Xilinx Blockset
 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

Optimization

When NonBlocking mode is selected, the following optimization options are activated:

 Resources: core is configured for minimum resources.

 Performance: core is configured for maximum performance.

Implementation tab

Block Icon Display

Display shortened port names: this option is ON by default. When unselected, the full AXI name
of each port is displayed on the block icon.

LogiCORE™ Documentation

LogiCORE IP CORDIC v5.0

Device Support
Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
116 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=cordic;v=v5_0;d=ds858_cordic.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=116

Counter
Counter
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Math,
and Index.

The Xilinx Counter block implements a free running or count-limited type of an up,
down, or up/down counter. The counter output can be specified as a signed or unsigned
fixed-point number.

Free running counters are the least expensive in FPGA hardware. The free running up,
down, or up/down counter can also be configured to load the output of the counter with a value on
the input din port by selecting the Provide Load Pin option in the block's parameters.

The output for a free running up counter is calculated as follows:

Here N denotes the number of bits in the counter. The free running down counter calculations
replace addition with subtraction.

For the free running up/down counter, the counter performs addition when input up port is 1or
subtraction when the input up port is 0.

A count-limited counter is implemented by combining a free running counter with a comparator.
Count limited counters are limited to only 64 bits of output precision. Count limited types of a
counter can be configured to step between the initial and ending values, provided the step value
evenly divides the difference between the initial and ending values.

The output for a count limited up counter is calculated as follows:

The count-limited down counter calculation replaces addition with subtraction. For the count
limited up/down counter, the counter performs addition when input up port is 1 or subtraction when
input up port is 0.

The output for a free running up counter with load capability is calculated as follows:

Here N denotes the number of bits in the counter. The down counter calculations replace addition by
subtraction.
System Generator for DSP Reference Guide www.xilinx.com 117
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=117

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Counter type: specifies the counter to be a count-limited or free running counter.

 Number of bits: specifies the number of bits in the block output.

 Binary point: specifies the location of the binary point in the block output.

 Output type: specifies the block output to be either Signed or Unsigned.

 Initial value: specifies the initial value to be the output of the counter.

 Count to value: specifies the ending value, the number at which the count limited counter
resets. A value of Inf denotes the largest representable output in the specified precision. This
cannot be the same as the initial value.

 Step: specifies the increment or decrement value.

 Count direction: specifies the direction of the count (up or down) or provides an optional
input port up (when up/down is selected) for specifying the direction of the counter.

 Provide load Port: when checked, the block operates as a free running load counter with
explicit load and din port. The load capability is available only for the free running counter.

Implementation tab

Parameters specific to the Implementation tab are as follows:

Implementation Details

Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL. This
gives the downstream logic synthesis tool maximum freedom to optimize for performance or
area.Core Parameters

 Implement using: Core logic can be implemented in Fabric or in a DSP48, if a DSP48 is
available in the target device. The default is Fabric.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Binary Counter v11.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
118 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=c_counter_binary;v=none;d=counter_ds215.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=118

DDS Compiler 4.0
DDS Compiler 4.0
This block is listed in the following Xilinx Blockset libraries: DSP and Index.

The Xilinx DDS Compiler block is a direct digital synthesizer, also commonly
called a numerically controlled oscillator (NCO). The block uses a lookup table
scheme to generate sinusoids. A digital integrator (accumulator) generates a phase
that is mapped by the lookup table into the output sinusoidal waveform.

Architecture Overview
To understand the DDS Compiler, it is necessary to know how the block is implemented in FPGA
hardware. The following is a block diagram of the DDS Compiler core. The core consist of two main
parts, a Phase Generator part and a SIN/COS LUT part. These parts can be used independently or
together with an optional dither generator to create a DDS capability. A time-division multi-channel
capability is supported with independently configurable phase increment and offset parameters

Phase Generator

The Phase Generator consists of an accumulator followed by an optional adder to provide the
addition of a phase offset. When the core is customized, the phase increment and offset can be
independently configured to be either fixed, programmable or supplied by the pinc_in and poff_in
input ports respectively.

When set to programmable, registers are implemented with a bus interface consisting of addr,
reg_select, we, and data signals. The address input, addr, specifies the channel for which data is to
be written when in multi-channel mode, with reg_select specifying whether data is phase increment
or offset.
System Generator for DSP Reference Guide www.xilinx.com 119
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=119

Chapter 1: Xilinx Blockset
When set to fixed, the DDS output frequency is set when the core is customized and the frequency
cannot be adjusted once the core is embedded in a design.

When used in conjunction with the SIN/COS LUT, an optional dither generator can be configured to
provide increased SFDR at the expense of an increased noise floor.

SIN/COS LUT

The SIN/COS LUT transforms the phase generator output into a sine and cosine output. Efficient
memory usage is achieved using halfwave and quarterwave storage schemes. The presence of both
outputs and their negation are configurable when the core is customized. Precision can be increased
using optional Taylor Series Correction. This exploits XtremeDSP slices on FPGA families that
support them to achieve high SFDR with high speed operation.

Block Interface

Port functions on the DDS Compiler 4.0 block are as follows:

Input Ports

 we: write enable (active high). Enables a write operation to the offset frequency memory
and/or the programmable frequency memory. Which memory is written to is determined by the
reg_select port value. Maps to the we port on the underlying LogiCORE.

 reg_select: Address select for writing to the phase increment (PINC) memory and the phase offset
(POFF) memory. When reg_select=0, the pinc memory is selected. When reg_select =1, the
POFF memory is selected This port only appears when Phase Increment and Phase Offset are
Programmable.

 addr: this bus is used to address up to 16 channels for the currently selected memory. The number
of bits in addr is 1 for 2 channels, 2 for 3 or 4 channels, 3 for 5 to 8 channels, and 4 for 9 to 16.

 data: time-shared data bus. The data port is used for supplying values to the programmable
phase increment memory or programmable phase offset memory. The input value describes a
phase angle. This input can be an unsigned or signed purely fractional quantity. When
supplying the phase increment or phase offset, the phase is entered as a fraction of a cycle; that
is, for an 18-bit phase, the types are UFix 18.18 or Fix 18.18, which relates to the ranges
0<=phase<1.0 or -0.5<=phase<0.5 respectively. In the case of phase increment, the fraction
supplied is also the output frequency relative to the rate at which the core is clocked per
channel; that is, the rate at which the core is clocked divided by the number of channels.

 rst: synchronous reset. When '1', the internal memories of the block are reset. (POFF and PINC
memmories are not reset.) Maps to the SCLR (synchronous clear) input on the underlying
LogiCORE.

 en: user enable. When '1', the block is active. Maps to the CE port on the underlying
LogiCORE. (Does not apply to POFF and PINC memory write.)
120 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=120

DDS Compiler 4.0
 phase_in: used when the DDS Compiler is configured as SIN_COS_LUT_only. This is the
phase input to replace the phase signal created by the Phase Generator. This input is either an
unsigned or signed purely fractional quantity and provides the phase as a fraction of a cycle.

 pinc_in: streaming input for Phase Increment. This input allows for easy modulation of the
DDS output frequency. This input is either an unsigned or signed purely fractional quantity and
supplies the phase increment as a fraction of a cycle. This is also the output frequency as a
fraction of the rate at which the core is clocked per channel.

 poff_in: streaming input for Phase Offset. This input allows easy modulation of the DDS
output phase. This input is either an unsigned or signed fractional quantity and provides the
phase offset as a fraction of a cycle.

Output Ports

 rdy: output data ready - active High. Indicates when the output samples are valid.

 rfd: ready for data - active High. rfd is a dataflow control signal present on many Xilinx LogiCOREs.
In the context of the DDS, it is supplied only for consistency with other LogiCORE cores. This optional
port is always tied to VCC.

 channel: Channel index. Indicates which channel is currently available at the output when the
underlying core is configured for multi-channel operation. This is an unsigned number. It’s
width is determined by the number of channels that are specified by the Number of Channels
parameter on the Basic tab.

 sine: sine output value. Maps to the SINE output on the underlying LogiCORE.

 cosine: cosine output value. Maps to the COSINE output on the underlying LogiCORE.

 phase_out: appears when the Phase_Generator_only option is selected. This output is optional
on all other variants.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Configuration Options: This parameter allows for two parts of the DDS to be instantiated
separately or instantiated together. Select one of the following:

 Phase_Generator_and_SIN_COS_LUT

 SIN_COS_LUT_only

 Phase_Generator_only

System Requirements

 System Clock (Mhz): Specifies the frequency at which the block is clocked for the
purposes of making architectural decisions and calculating phase increment from the
specified output frequency. This is a fixed ratio off the System Clock.

 Number of Channels: The channels are time-multiplexed in the DDS which affects the
effective clock per channel. The DDS can support 1 to 16 time-multiplexed channels.

Parameter Selection: Choose System_Parameters or Hardware_Parameters

System Parameters
System Generator for DSP Reference Guide www.xilinx.com 121
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=121

Chapter 1: Xilinx Blockset
 Spurious Free Dynamic Range (dB): The targeted purity of the tone produced by the
DDS. This sets the output width as well as internal bus widths and various implementation
decisions.

 Frequency Resolution (Hz): This sets the precision of the PINC and POFF values. Very
precise values will require larger accumulators. Less precise values will cost less in
hardware resource.

Noise Shaping: Choose one - None, Phase_Dithering, Taylor_Series_Corrected, or Auto.

If the Configuration Options selection is SIN_COS_LUT_only, then None and
Taylor_Series_Corrected are the only valid options for Noise Shaping. If
Phase_Generator_Only is selected, then None is the only valid choice for Noise
Shaping.

Hardware Parameters

 Phase Width: Equivalent to frequency resolution, this sets the width of the internal phase
calculations.

 Output Width: Broadly equivalent to SFDR, this sets the output precision and the
minimum Phase Width allowable. However, the output accuracy is also affected by the
choice of Noise Shaping.

Output Selection: specifies the function(s) that the block will calculate; Sine, Cosine, or both
Sine_and_Cosine.

Polarity

 Negative Sine: negates the sine output.

 Negative Cosine: negates the cosine output.

Amplitude Mode

 Full_Range: Selects the maximum possible amplitude.

 Unit_Circle: Selects an exact power-of-two amplitude, which is about one half the Full_Range
amplitude.

Use explicit period: When checked, the DDS Compiler 4.0 uses the explicit sample period that is
specified in the dialog entry box below.

Implementation tab

Implementation Options

 Memory Type: Choose between Auto, Distributed_ROM, or Block_ROM.

 Optimization Goal: Choose between Auto, Area, or Speed.

 DSP48 Use: Choose between Minimal and Maximal. When set to Maximal,
XtremeDSP slices are used to achieve to maximum performance.

Latency Options

 Auto: The DDS is fully pipelined for optimal performance.

 Configurable: Allows you to specify less pipeline stages in the Latency pulldown menu
below. This generally results in less resources consumed.

Optional Pins

 Has phase out: When checked the DDS will have the phase_output port. This is an
output of the Phase_Generator half of the DDS, so it precedes the sine and cosine outputs
by the latency of the sine/cosine lookup table.
122 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=122

DDS Compiler 4.0
 rfd: When checked, the DDS will have an rfd port. This is for completeness. The DDS is
always ready for data, pinc_in and poff_in.

 rdy: When checked, the DDS will have the rdy output port which validates the sine and
cosine outputs.

 Channel Pin: When selected, the DDS Compiler will have a channel (output) port which
qualifies the channel to which the sine and/or cosine port outputs belong.

Output Frequency tab

 Phase Increment Programmability: specifies the phase increment to be Fixed,
Programmable or Streaming. The choice of Programmable adds channel, data, and we input
ports to the block.

The following fields are activated when Phase_Generator_and_SIN_COS_LUT is selected as
the Configuration Options field on the Basic tab, the Parameter Selection on the Basic tab is set
to Hardware Parameters and Phase Increment Programmability field on the Phase Offset
Angles tab is set to Fixed or Programmable.

 Output frequencies (Mhz): for each channel, an independent frequency can be entered
into an array. This field is activated when Parameter Selection on the Basic tab is set to
System Parameters and Phase Increment Programmability is Fixed or Programmable.

 Phase Angle Increment Values: This field is activated when
Phase_Generator_and_SIN_COS_LUT is selected as the Configuration Options field on
the Basic tab, the Parameter Selection on the Basic tab is set to Hardware Parameters
and Phase Increment Programmability field on the Phase Offset Angles tab is set to Fixed
or Programmable. Values must be entered in binary. The range is 0 to the weight of the
accumulator, for example, 2Phase_Width-1.

Phase Offset Angles tab

 Phase Offset Programmability: specifies the phase offset to be None, Fixed, Programmable
or Streaming. The choice of Fixed or Programmable adds the channel, data, and we input
ports to the block.

 Phase Offset Angles (x2pi radians): for each channel, an independent offset can be
entered into an array. The entered values are multiplied by 2 radians. This field is
activated when Parameter Selection on the Basic tab is set to System Parameters and
Phase Increment Programmability is Fixed or Programmable.

 Phase Angle Offset Values: for each channel, an independent offset can be entered into
an array. The entered values are multiplied by 2 radians. This field is activated when
Parameter Selection on the Basic tab is set to Hardware Parameters and Phase
Increment Programmability is Fixed or Programmable.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP DDS Compiler v4.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,

Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 123
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds;v=none;d=dds_ds558.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=123

Chapter 1: Xilinx Blockset
DDS Compiler 5.0
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP and Index.

The Xilinx DDS (Direct Digital Synthesizer) Compiler 5.0 block
implements high performance, optimized Phase Generation and Phase to
Sinusoid circuits with AXI4-Stream compliant interfaces for Virtex-6,
Spartan-6, Virtex-7 and Kintex-7 devices.

The core sources sinusoidal waveforms for use in many applications. A
DDS consists of a Phase Generator and a SIN/COS Lookup Table (phase
to sinusoid conversion). These parts are available individually or
combined using this core.

Refer to the topic AXI Interface for more detailed information on the
AXI Interface.

Architecture Overview
To understand the DDS Compiler, it is necessary to know how the block is implemented in FPGA
hardware. The following is a block diagram of the DDS Compiler core. The core consist of two main
parts, a Phase Generator part and a SIN/COS LUT part. These parts can be used independently or
together with an optional dither generator to create a DDS capability. A time-division multi-channel
capability is supported with independently configurable phase increment and offset parameters

Phase Generator

The Phase Generator consists of an accumulator followed by an optional adder to provide addition
of phase offset. When the core is customized the phase increment and offset can be independently
configured to be either fixed, programmable (using the CONFIG channel) or dynamic (using the
input PHASE channel).

When set to fixed the DDS output frequency is set when the core is customized and cannot be
adjusted once the core is embedded in a design.

When set to programmable, the CONFIG channel TDATA field will have a subfield for the input in
question (PINC or POFF) or both if both have been selected to be programmable. If neither PINC
nor POFF is set to programmable, there is no CONFIG channel.
124 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=124

DDS Compiler 5.0
When set to streaming, the input PHASE channel TDATA port (s_axis_phase_tdata) will have a
subfield for the input in question (PINC or POFF) or both if both have been selected to be streaming.
If neither PINC nor POFF is set to streaming, and the DDS is configured to have a Phase Generator
then there is no input PHASE channel. Note that when the DDS is configured to be a SIN/COS
Lookup only, the PHASE_IN field is input using the input PHASE channel TDATA port.

SIN/COS LUT

When configured as a SIN/COS Lookup only, the Phase Generator is not implemented, and the
PHASE_IN signal is input using the input PHASE channel, and transformed into the SINE and
COSINE outputs using a look-up table.

Efficient memory usage is achieved by exploiting the symmetry of sinusoid waveforms. The core
can be configured for SINE only output, COSINE only output or both (quadrature) output. Each
output can be configured independently to be negated. Precision can be increased using optional
Taylor Series Correction. This exploits XtremeDSP slices on FPGA families that support them to
achieve high SFDR with high speed operation.

AXI Ports that are Unique to this Block

Depending on the Configuration Options and Phase Increment/Offset Programmabilty options
selected, different subfield-ports for the PHASE channel or the CONFIG channel (or both channels)
are available on the block, as described in the table below.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Configuration Options: This parameter allows for two parts of the DDS to be instantiated
separately or instantiated together. Select one of the following:

 Phase_Generator_and_SIN_COS_LUT

 Phase_Generator_only

 SIN_COS_LUT_only

Configuration Option
Phase Increment Programmability Phase Offset Programmability

Option Selected Available Port Option Selected Available Port

Phase_Generator_only

Phase_Generator_and_SIN_
COS_LUT

Programmable s_axis_config_tdata_pinc Programmable s_axis_config_tdata_poff

Streaming s_axis_phase_tdata_pinc Streaming s_axis_phase_tdata_poff

Fixed NA Fixed NA

None NA

SIN_COS_LUT_only In this configuration, input port s_axis_phase_tdata_phase_in are available
System Generator for DSP Reference Guide www.xilinx.com 125
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=125

Chapter 1: Xilinx Blockset
System Requirements

 System Clock (Mhz): Specifies the frequency at which the block is clocked for the purposes
of making architectural decisions and calculating phase increment from the specified output
frequency. This is a fixed ratio off the System Clock.

 Number of Channels: The channels are time-multiplexed in the DDS which affects the
effective clock per channel. The DDS can support 1 to 16 time-multiplexed channels.

Parameter Selection: Choose System_Parameters or Hardware_Parameters

System Parameters

 Spurious Free Dynamic Range (dB): The targeted purity of the tone produced by the DDS.
This sets the output width as well as internal bus widths and various implementation decisions.

 Frequency Resolution (Hz): This sets the precision of the PINC and POFF values. Very
precise values will require larger accumulators. Less precise values will cost less in hardware
resource.

Noise Shaping: Choose one - None, Phase_Dithering, Taylor_Series_Corrected, or Auto.

If the Configuration Options selection is SIN_COS_LUT_only, then None and
Taylor_Series_Corrected are the only valid options for Noise Shaping. If
Phase_Generator_Only is selected, then None is the only valid choice for Noise
Shaping.

Hardware Parameters

 Phase Width: Equivalent to frequency resolution, this sets the width of the internal phase
calculations.

 Output Width: Broadly equivalent to SFDR, this sets the output precision and the minimum
Phase Width allowable. However, the output accuracy is also affected by the choice of Noise
Shaping.

Output Selection

 Sine_and_Cosine: Place both a Sine and Cosine output port on the block.

 Sine: Place only a Sine output port on the block.

 Cosine: Place only a Cosine output port on the block.

Polarity

 Negative Sine: negates the sine output.

 Negative Cosine: negates the cosine output.

Amplitude Mode

 Full_Range: Selects the maximum possible amplitude.

 Unit_Circle: Selects an exact power-of-two amplitude, which is about one half the Full_Range
amplitude.
126 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=126

DDS Compiler 5.0
Implementation tab

Implementation Options

 Memory Type: Choose between Auto, Distributed_ROM, or Block_ROM.

 Optimization Goal: Choose between Auto, Area, or Speed.

 DSP48 Use: Choose between Minimal and Maximal. When set to Maximal,
XtremeDSP slices are used to achieve to maximum performance.

Latency Options

 Auto: The DDS is fully pipelined for optimal performance.

 Configurable: Allows you to specify less pipeline stages in the Latency pulldown menu
below. This generally results in less resources consumed.

Control Signals

 Has phase out: When checked the DDS will have the phase_output port. This is an output of
the Phase_Generator half of the DDS, so it precedes the sine and cosine outputs by the latency
of the sine/cosine lookup table.

 ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

 ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN. A
minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the core, but the response to the pulse is
not in the cycle immediately following.

Explicit Sample Period

 Use explicit period: When checked, the DDS Compiler block uses the explicit sample period
that is specified in the dialog entry box below.

AXI Channel Options tab

AXI Channel Options

TLAST

Enabled when there is more than one DDS channel (as opposed to AXI channel), as TLAST is used
to denote the transfer of the last time-division multiplied channel of the DDS. Options are:

 Not_Required: In this mode, no TLAST appears on the input PHASE channel nor on the
output channels.

 Vector_Framing: In this mode, TLAST on the input PHASE channel and output channels
denotes the last.

 Packet_Framing: In this mode, TLAST is conveyed from the input PHASE channel to the
output channels with the same latency as TDATA. The DDS does not use or interpret the
TLAST signal in this mode.Thismode is intended as a service to ease system design for cases
where signals must accompany the datastream, but which have no application in the DDS.

 Config_Triggered: This is an enhanced variant of the Vector Framing option. In this option,
the TLAST on the input PHASE channel can trigger the adoption of new configuration data
from the CONFIG channel when there is new configuration data available. This allows the re-
configuration to be synchronized with the cycle of time-division-multiplexed DDS channels.

TREADY
System Generator for DSP Reference Guide www.xilinx.com 127
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=127

Chapter 1: Xilinx Blockset
 Output TREADY: When selected, the output channels will have a TREADY and hence
support the full AXI handshake protocol with inherent back-pressure. If there is an input
PHASE channel, its TREADY is also determined by this control, so that the datapath from
input PHASE channel to output channels as a whole supports backpressure or not.

TUSER Options

Select one of the following options for the Input, DATA Output, and PHASE Output.

 Not_Required: Neither of the above uses is required; the channel in question will not have a
TUSER field.

 Chan_ID_Field: In this mode, the TUSER field identifies the time-division-multiplexed
channel for the transfer.

 User_Field: In this mode, the block ignores the content of the TUSER field, but passes the
content untouched from the input PHASE channel to the output channels.

 User and Chan_ID_Field: In this mode, the TUSER field will have both a user field and a
chan_id field, with the chan_id field in the least significant bits. The minimal number of bits
required to describe the channel will determine the width of the chan_id field, e.g. 7 channels
will require 3 bits.

 User Field Width: This field determines the width of the bit field which is conveyed from
input to output untouched by the DDS.

Config Channel Options

 Synchronization Mode

 On_Vector: In this mode, the re-configuration data is applied when the channel starts a
new cycle of time-division-multiplexed channels.

 On_Packet: In this mode, available when TLAST is set to packet framing, the TLAST
channel will trigger the re-configuration. This mode is targeted at the case where it is to be
associated with the packets implied by the input TLAST indicator.

Output Frequency tab

 Phase Increment Programmability: specifies the phase increment to be Fixed,
Programmable or Streaming. The choice of Programmable adds channel, data, and we input
ports to the block.

The following fields are activated when Phase_Generator_and_SIN_COS_LUT is selected as
the Configuration Options field on the Basic tab, the Parameter Selection on the Basic tab is set
to Hardware Parameters and Phase Increment Programmability field on the Phase Offset
Angles tab is set to Fixed or Programmable.

 Output frequencies (Mhz): for each channel, an independent frequency can be entered
into an array. This field is activated when Parameter Selection on the Basic tab is set to
System Parameters and Phase Increment Programmability is Fixed or Programmable.

 Phase Angle Increment Values: This field is activated when
Phase_Generator_and_SIN_COS_LUT is selected as the Configuration Options field on
the Basic tab, the Parameter Selection on the Basic tab is set to Hardware Parameters
and Phase Increment Programmability field on the Phase Offset Angles tab is set to Fixed
or Programmable. Values must be entered in binary. The range is 0 to the weight of the
accumulator, for example, 2Phase_Width-1.
128 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=128

DDS Compiler 5.0
Phase Offset Angles tab

 Phase Offset Programmability: specifies the phase offset to be None, Fixed, Programmable
or Streaming. The choice of Fixed or Programmable adds the channel, data, and we input
ports to the block.

 Phase Offset Angles (x2pi radians): for each channel, an independent offset can be
entered into an array. The entered values are multiplied by 2 radians. This field is
activated when Parameter Selection on the Basic tab is set to System Parameters and
Phase Increment Programmability is Fixed or Programmable.

 Phase Angle Offset Values: for each channel, an independent offset can be entered into
an array. The entered values are multiplied by 2 radians. This field is activated when
Parameter Selection on the Basic tab is set to Hardware Parameters and Phase
Increment Programmability is Fixed or Programmable.

Advanced tab

Block Icon Display

 Display shortened port names: this option is ON by default. When unselected, the full AXI
name of each port is displayed on the block.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

How to Migrate from DDS Compiler 4.0 to DDS Compiler 5.0

Design Description

This example shows how to migrate from the non-axi DDS Compiler block to AXI4 DDS Compiler
block using the same or similar block parameters. Some of the parameters between non-AXI and
AXI4 versions might not be identical exactly due to some changes in certain features and block
interfaces. The following model is used to illustrate the design migration between these block. For
more detail, refer to the datasheet of this IP core.
System Generator for DSP Reference Guide www.xilinx.com 129
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=129

Chapter 1: Xilinx Blockset
Data Path and Control Signals:

Both versions have similar data paths and control signals. The “rdy” output signal is replaced by the
“data_tvalid” output signal. As shown by the simulation, these two control signals have the same
active high when outputs are valid. However, the propagation delay might not be the same and a
delay block might be required depending on your specific design applications.

data_tvalid (Master): can be used to drive other input Slave tvalid signal.

data_tready (Slave): are not used and being connected to a constant of one.

LogiCORE™ Documentation

LogiCORE IP DDS Compiler v5.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Spartan-6
130 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=none;d=ds794_dds_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=130

Delay
Delay
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Floating-Point,
Memory, and Index.

The Xilinx Delay block implements a fixed delay of L cycles.

The delay value is displayed on the block in the form z-L, which is the Z-transform of
the block’s transfer function. Any data provided to the input of the block will appear
at the output after L cycles. The rate and type of the data of the output is inherited
from the input. This block is used mainly for matching pipeline delays in other

portions of the circuit. The delay block differs from the register block in that the register allows a
latency of only 1 cycle and contains an initial value parameter. The delay block supports a specified
latency but no initial value other than zeros.The figure below shows the Delay block behavior when
L=4 and Period=1s.

For delays that need to be adjusted during run-time, you should use the Addressable Shift Register
block. Delays that are not an integer number of clock cycles are not supported and such delays
should not be used in synchronous design (with a few rare exceptions).

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Provide synchronous reset port: this option activates an optional reset (rst) pin on the block.
When the reset signal is asserted the block goes back to its initial state. Reset signal has
precedence over the optional enable signal available on the block. The reset signal has to run at
a multiple of the block's sample rate. The signal driving the reset port must be Boolean.

 Provide enable port: this option activates an optional enable (en) pin on the block. When the
enable signal is not asserted the block holds its current state until the enable signal is asserted
again or the reset signal is asserted. Reset signal has precedence over the enable signal. The
enable signal has to run at a multiple of the block 's sample rate. The signal driving the enable
port must be Boolean.
System Generator for DSP Reference Guide www.xilinx.com 131
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=131

Chapter 1: Xilinx Blockset
 Latency: Latency is the number of cycles of delay. The latency can be zero, provided that the
Provide enable port checkbox is not checked. The latency must be a non-negative integer. If
the latency is zero, the delay block collapses to a wire during logic synthesis. If the latency is
set to L=1, the block will generally be synthesized as a flip-flop (or multiple flip-flops if the
data width is greater than 1).

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Implement using behavioral HDL: uses behavioral HDL as the implementation. This allows
the downstream logic synthesis tool to choose the best implementation.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Logic Synthesis using Behavioral HDL

This setting is recommended if you are using Synplify Pro as the downstream logic synthesis tool.
The logic synthesis tool will implement the delay as it desires, performing optimizations such as
moving parts of the delay line back or forward into blockRAMs, DSP48s, or embedded IOB flip-
flops; employing the dedicated SRL cascade outputs for long delay lines based on the architecture
selected; and using flip-flops to terminate either or both ends of the delay line based on path delays.
Using this setting also allows the logic synthesis tool, if sophisticated enough, to perform retiming
by moving portions of the delay line back into combinational logic clouds.

Logic Synthesis using Structural HDL
If you do not check the box Implement using behavioral HDL, then structural HDL is used. This
is the default setting and results in a known, but less-flexible, implementation which is often better
for use with XST. In general, this setting produces structural HDL comprising an SRL (Shift-
Register LUT) delay of (L-1) cycles followed by a flip-flop, with the SRL and the flip-flop getting
packed into the same slice. For a latency greater than L=17, multiple SRL/flip-flop sets are
132 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=132

Delay
cascaded, albeit without using the dedicated cascade routes. For example, the following is the
synthesis result for a 1-bit wide delay block with a latency of L=32:

The first SRL provides a delay of 16 cycles and the associated flip-flop adds another cycle of delay.
The second SRL provides a delay of 14 cycles; this is evident because the address is set to
{A3,A2,A1,A0}=1101 (binary) = 13, and the latency through an SRL is the value of the address plus
one. The last flip-flop adds a cycle of delay, making the grand total L=16+1+14+1=32 cycles.

The SRL is an efficient way of implementing delays in the Xilinx architecture. An SRL and its
associated flip-flop that comprise a single logic cell can implement seventeen cycles of delay
whereas a delay line consisting only of flip-flops can implement only one cycle of delay per logic
cell.

The SRL has a setup time that is longer than that of a flip-flop. Therefore, for very fast designs with
a combinational path preceding the delay block, it can be advantageous, when using the structural
HDL setting, to precede the delay block with an additional delay block with a latency of L=1. This
System Generator for DSP Reference Guide www.xilinx.com 133
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=133

Chapter 1: Xilinx Blockset
ensures that the critical path is not burdened with the long setup time of the SRL. An example is
shown below.

The synthesis results of both designs are shown below, with the faster design highlighted in red:
134 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=134

Delay
Note that an equivalent to the faster design results from setting the latency of Inverter2 to 1 and
eliminating Delay3. This, however, is not equivalent to setting the latency of Inverter2 to 4 and
eliminating the delay blocks; this would yield a synthesis equivalent to the upper (slower) design.

Implementing Long Delays
For very long delays, of, say, greater than 128 cycles, especially when coupled with larger bus
widths, it might be better to use a block-RAM-based delay block. The delay block is implemented
using SRLs, which are part of the general fabric in the Xilinx. Very long delays should be
implemented in the embedded block RAMs to save fabric. Such a delay exploits the dual-port nature
of the blockRAM and can be implemented with a fixed or run-time-variable delay. Such a block is
basically a block RAM with some associated address counters. The model below shows a novel way
of implementing a long delay using LFSRs (linear feedback shift registers) for the address counters
in order to make the design faster, but conventional counters can be used as well. The difference in
value between the counters (minus the RAM latency) is the latency L of the delay line.

Re-settable Delays and Initial Values
If a delay line absolutely must be re-settable to zero, this can be done by using a string of L register
blocks to implement the delay or by creating a circuit that forces the output to be zero while the
delay line is “flushed”.

The delay block doesn’t support initial values, but the Addressable Shift Register block does. This
block, when used with a fixed address, is generally equivalent to the delay block and will synthesize
to an SRL-based delay line. The initial values pertain to initialization only and not to a reset. If using
the addressable shift register in “structural HDL mode” (e.g., the Use behavioral HDL checkbox is
not selected) then the delay line will not be terminated with a flip-flop, making it significantly
slower. This can be remedied by using behavioral mode or by putting a Register or Delay block
after the addressable shift register.
System Generator for DSP Reference Guide www.xilinx.com 135
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=135

Chapter 1: Xilinx Blockset
Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
136 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=136

Depuncture
Depuncture
This block is listed in the following Xilinx Blockset libraries: Communication and Index.

The Xilinx Depuncture block allows you to insert an arbitrary symbol into your
input data at the location specified by the depuncture code.

The Xilinx depuncture block accepts data of type UFixN_0 where N equals the
length of insert string x (the number of ones in the depuncture code) and produces output data of
type UFixK_0 where K equals the length of insert string multiplied by the length of the depuncture
code.

The Xilinx Depuncture block can be used to decode a range of punctured convolution codes. The
following diagram illustrates an application of this block to implement soft decision Viterbi
decoding of punctured convolution codes.

The previous diagram shows a matched filter block connected to a add_erasure subsystem which
attaches a 0 to the input data to mark it as a non-erasure signal. The output from the add_erasure
subsytem is then passed to a serial to parallel block. The serial to parallel block concatenates two
continuous soft inputs and presents it as a 8-bit word to the depuncture block. The depuncture block
inserts the symbol '0001' after the 4-bits from the MSB for code 0 ([1 0 1]) and 8-bits from the MSB
for code 1 ([1 1 0]) to form a 12-bit word. The output of the depuncture block is serialized as 4-bit
words using the parallel to serial block. The extract_erasure subsystem takes the input 4-bit word
and extracts 3-bits from the MSB to form a soft decision input data word and 1-bit from the LSB to
form the erasure signal for the Viterbi decoder.
System Generator for DSP Reference Guide www.xilinx.com 137
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=137

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the Xilinx Depuncturer block are:

 Depuncture code: specifies the depuncture pattern for inserting the string to the input.

 Symbol to insert: specifies the binary word to be inserted in the depuncture code.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
138 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=138

Disregard Subsystem
Disregard Subsystem
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

This block has been deprecated since System Generator version 6.2.

The block might be eliminated in a future version of System Generator. The
functionality supplied by this block is now available through System Generator's
support for Simulink's configurable subsystem which is discussed in the topic
Configurable Subsystems and System Generator. Configurable subsystems offer
several advantages over the Disregard Subsystem block.

The Disregard Subsystem block can be placed into any subsystem of your model to indicate that you
do not wish System Generator to generate hardware for that subsystem. This block can be used in
combination with the simulation multiplexer block to build alternative simulation models for a
portion of a design, for example, to provide a simulation model for a black box.

This block has no parameters.
System Generator for DSP Reference Guide www.xilinx.com 139
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=139

Chapter 1: Xilinx Blockset
Divide
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Math and Index.

The Xilinx Divide block performs both fixed-point and floating-point division with the
a input being the dividend and the b input the divisor. Both inputs must be of the same
data type.

Basic tab

Parameters specific to the Basic tab are as follows:

AXI Interface

Flow Control:

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.

Fixed-point Options

Algorithm Type:

 Radix2: This is non-restoring integer division using integer operands and allows a remainder
to be generated. This option is recommended for operand widths less than 16 bits. This option
supports both unsigned (two's complement) and signed divisor and dividend inputs.

 High_Radix: This option is recommended for operand widths greater than 16 bits, though the
implementation requires the use of DSP48 (or variant) primitives. This option only supports
signed (two's complement) divisor and dividend inputs.

 Output Fractional width: For Fixed-point division, this entry determines the number of bits
in the fractional part of the output.Optional ports

Dividend Channel Ports

 Has TLAST: Adds a TLAST port to the Input channel.

 Has TUSER: Adds a TUSER port to the Input channel.

Divisor Channel Ports

 Has TLAST: Adds a TLAST port to the Input channel.

 Has TUSER: Adds a TUSER port to the Input channel.

Control Options

 Provide enable port: Adds an enable port to the block interface.

 Has Result TREADY: Adds a TREADY port to the Result channel.

 Output TLAST behavior: Determines the behavior of the result_tlast output port.

 Null: Output is null.

 Pass_A_TLAST: Pass the value of the a_tlast input port to the dout_tlast output port.

 Pass B_TLAST: Pass the value of the b_tlast input port to the dout_tlast output port.

 Pass CTRL_TLAST: Pass the value of the ctrl_tlast input port to the dout_tlast output
port.
140 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=140

Divide
 OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

 AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

Exception Signals

 UNDERFLOW: Adds an output port that serves as an underflow flag.

 OVERFLOW: Adds an output port that serves as an overflow flag.

 INVALID_OP: Adds an output port that serves as an invalid operation flag.

 DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Divider Generator 4.0

LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 141
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=div_gen;v=v4_0;d=ds819_div_gen.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=141

Chapter 1: Xilinx Blockset
Divider Generator 3.0
This block is listed in the following Xilinx Blockset libraries: DSP, Math, and Index.

The Xilinx Divider Generator 3.0 block creates a circuit for integer division
based on Radix-2 non-restoring division, or High-Radix division with
prescaling.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

Common Options

 Dividend and quotient width: (integer) 2 to 32 (Radix-2). 2 to 54 (High Radix). Specifies the
width of both dividend and quotient.

 Divisor width: (integer): 2 to 32 (Radix-2). 2 to 54 (High Radix).

 Algorithm Type:

 Radix-2 non-restoring integer division using integer operands, allows a remainder to be
generated. This is recommended for operand widths less than around 16 bits. This option
supports both unsigned and signed (2’s complement) divisor and dividend inputs.

 High Radix division with prescaling. This is recommended for operand widths greater
than 16 bits, though the implementation requires the use of DSP48 (or variant) primitives.
This option only supports signed (2’s complement) divisor and dividend inputs.

 Remainder type:

 Remainder: Only supported for Radix 2.

 Fractional: Determines the number of bits in the fractional port output.

 Fractional Width:If Fractional Remainder type is selected, this entry determines the number
of bits in the fractional port output.

Radix2 Options

 Clocks per division: Determines the interval in clocks between new data being input (and
output).

High Radix Options

 Detect divide by zero: Determines if the core shall have a division-by-zero indication output
port.

 Latency configuration: Automatic (fully pipelined) or Manual (determined by following
field).
142 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=142

Divider Generator 3.0
 latency: This field determines the exact latency from input to output in terms of clock enabled
clock cycles.

Optional Ports

 en: Add enable port

 rst: Add reset port.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Divider Generator 3.0

Device Support

Virtex-7, Kintex-7,Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 143
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=div_gen;v=none;d=div_gen_ds530.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=143

Chapter 1: Xilinx Blockset
Divider Generator 4.0
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP, Math, and Index.

The Xilinx Divider Generator 4.0 block creates a circuit for
integer division based on Radix-2 non-restoring division, or
High-Radix division with prescaling.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

Common Options

 Algorithm Type:

 Radix-2 non-restoring integer division using integer operands, allows a remainder to be
generated. This is recommended for operand widths less than around 16 bits. This option
supports both unsigned and signed (2’s complement) divisor and dividend inputs.

 High_Radix division with prescaling. This is recommended for operand widths greater
than 16 bits, though the implementation requires the use of DSP48 (or variant) primitives.
This option only supports signed (2’s complement) divisor and dividend inputs.

Output channel

 Remainder type:

 Remainder: Only supported for Radix 2.

 Fractional: Determines the number of bits in the fractional port output.

 Fractional width:If Fractional Remainder type is selected, this entry determines the number
of bits in the fractional port output.

Radix2 Options

 Radix2 throughput: Determines the interval in clocks between new data being input (and
output). Choices are 1, 2, 4, and 8.

High Radix Options

 Detect divide by zero: Determines if the core shall have a division-by-zero indication output
port.
144 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=144

Divider Generator 4.0
AXI Interface

AXI behavior:

 NonBlocking: This

 Blocking: This

AXI implementation emphasis:

 Resources: Automatic (fully pipelined) or Manual (determined by following field).

 Performance: This

Latency Options

 Latency configuration: Automatic (fully pipelined) or Manual (determined by following
field).

 Latency: This field determines the exact latency from input to output in terms of clock
enabled clock cycles.

Optional Ports tab

Parameters specific to the Optional Ports tab are:

Optional Ports

Divided Channel Ports

 Has TUSEER: Adds a tuser input port to the dividend channel.

 Has TLAST: Adds a tlast output port to the dividend channel.

Divsor Channel Ports

 Has TUSEER: Adds a tuser input port to the divsor channel.

 Has TLAST: Adds a tlast output port to the divsor channel.

ACLKEN: Specifies that the block has a clock enable port (the equivalent of selecting the Has
ACLKEN option in the CORE Generator GUI).

ARESETn: Specifies that the block has a reset port. Active low synchronous clear. A minimum
ARESETn pulse of two cycles is required.

m_axis_dout_tready: Specifies that the block has a dout_tready output port.

Input TLAST combination for output: Determines the behavior of the dout_tlast output port.

 Null: Output is null.

 Pass_Dividend_TLAST: Pass the value of the dividend_tlast input port to the dout_tlast
output port.

 Pass Divsor_TLAST: Pass the value of the divisor_tlast input port to the dout_tlast output
port.

 OR_all_TLASTS: Pass the logical OR of all the present TLAST input ports.

 AND_all_TLASTS: Pass the logical AND of all the present TLAST input ports.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 145
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=145

Chapter 1: Xilinx Blockset
LogiCORE™ Documentation

LogiCORE IP Divider Generator 4.0

Device Support

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
146 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=div_gen;v=v4_0;d=ds819_div_gen.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=146

Down Sample
Down Sample
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Xilinx Down Sample block reduces the sample rate at the point where the block is
placed in your design.

The input signal is sampled at even intervals, at either the beginning (first value) or end
(last value) of a frame. The sampled value is presented on the output port and held until
the next sample is taken.

A Down Sample frame consists of l input samples, where l is sampling rate. An example frame for
a Down Sample block configured with a sampling rate of 4 is shown below.

The Down Sample block is realized in hardware using one of three possible implementations that
vary in terms of implementation efficiency. The block receives two clock enable signals in
hardware, Src_CE and Dest_CE. Src_CE is the faster clock enable signal and corresponds to the
input data stream rate. Dest_CE is the slower clock enable, corresponding to the output stream rate,
for example, down sampled data. These enable signals control the register sampling in hardware.

Zero Latency Down Sample
The zero latency Down Sample block must be configured to sample the first value of the frame. The
first sample in the input frame passes through the mux to the output port. A register samples this
value during the first sample duration and the mux switches to the register output at the start of the
second sample of the frame. The result is that the first sample in a frame is present on the output port
for the entire frame duration. This is the least efficient hardware implementation as the mux
introduces a combinational path from Din to Dout. A single bit register adjusts the timing of the
destination clock enable, so that it is asserted at the start of the sample period, instead of the end. The
hardware implementation is shown below:
System Generator for DSP Reference Guide www.xilinx.com 147
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=147

Chapter 1: Xilinx Blockset
Down Sample with Latency

If the Down Sample block is configured with latency greater than zero, a more efficient
implementation is used. One of two implementations is selected depending on whether the Down
Sample block is set to sample the first or last value in a frame.

Sample First Value in Frame

In this case, two registers are required to correctly sample the input stream. The first register is
enabled by the adjusted clock enable signal so that it samples the input at the start of the input frame.
The second register samples the contents of the first register at the end of the sample period to ensure
output data is aligned correctly.

Sample Last Value in Frame

The most efficient implementation is used when the Down Sample block is configured to sample the
last value of the frame. In this case, a register samples the data input data at the end of the frame. The
sampled value is presented for the duration of the next frame.
148 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=148

Down Sample
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

 Sampling Rate (number of input samples per output sample): must be an integer greater or
equal to 2. This is the ratio of the output sample period to the input, and is essentially a sample
rate divider. For example, a ratio of 2 indicates a 2:1 division of the input sample rate. If a non-
integer ratio is desired, the Up Sample block can be used in combination with the Down
Sample block.

 Sample: The Down Sample block can sample either the first or last value of a frame. This
parameter will determine which of these two values is sampled.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCORE
The Down Sample block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 149
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=149

Chapter 1: Xilinx Blockset
DSP48
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The Xilinx DSP48 block is an efficient building block for DSP applications that use
Xilinx Virtex®-4 devices. The DSP48 combines an 18-bit by 18-bit signed
multiplier with a 48-bit adder and programmable mux to select the adder's input.

Operations can be selected dynamically. Optional input and multiplier pipeline
registers can be selected as well as registers for the subtract, carryin and opmode
ports. The DSP48 block can also target devices that do not contain the DSP48
hardware primitive if the Use synthesizable model option is selected.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 B or BCIN input: specifies if the B input should be taken directly from the b port or from the
cascaded bcin port. The bcin port can only be connected to another DSP48 block.

 Consolidate control port: when selected, combines the opmode, subtract, carry_in and
carry_in_sel ports into one 11-bit port. Bits 0 to 6 are the opmode, bit 7 is the subtract
port, bit 8 is the carry_in port, and bits 9 and 10 are the carry_in_sel port. This option
should be used when a constant block is used to generate a DSP48 instruction.

 Provide C port: when selected, the c port is made available. Otherwise, the c port is tied to '0'.

 Provide PCIN port: when selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP48 block.

 Provide PCOUT port: when selected, the pcout output port is made available. The pcout
port must be connected to the pcin port of another DSP48 block.
150 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=150

DSP48
 Provide BCOUT port: when selected, the bcout output port is made available. The bcout
port must be connected to the bcin port of another DSP48 block.

 Provide global reset port: when selected, the port rst is made available. This port is connected
to all available reset ports based on the pipeline selections.

 Provide global enable port: when selected, the optional en port is made available. This port is
connected to all available enable ports based on the pipeline selections.

Pipelining

Parameters specific to the Pipelining tab are as follows:

 Length of A pipeline: specifies the length of the pipeline on input register A. A pipeline of
length 0 removes the register on the input.

 Length of B/BCIN pipeline: specifies the length of the pipeline for the b input whether it is
read from b or bcin.

 Pipeline C: indicates whether the input from the c port should be registered.

 Pipeline P: indicates whether the outputs p and pcout should be registered.

 Pipeline multiplier: indicates whether the internal multiplier should register its output.

 Pipeline opmode: indicates whether the opmode port should be registered.

 Pipeline subtract: indicates whether the subtract port should be registered.

 Pipeline carry in: indicates whether the carry_in port should be registered.

 Pipeline carry in sel: indicates whether the carry_in_sel port should be registered.

Ports tab

Parameters specific to the Ports tab are as follows:

 Reset port for A: when selected, a port rst_a is made available. This resets the pipeline
register for port a when set to '1'.

 Reset port for B: when selected, a port rst_b is made available. This resets the pipeline
register for port b when set to '1'.

 Reset port for C: when selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

 Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

 Reset port for P: when selected, a port rst_p is made available. This resets the output
register when set to '1'.

 Reset port for carry in: when selected, a port rst_carryin is made available. This resets
the pipeline register for carry in when set to '1'.

 Reset port for controls (opmode, subtract, carry_in, carry_in_sel): when selected, a port
rst_ctrl is made available. This resets the pipeline register for the subtract register (if
available), opmode register (if available) and carry_in_sel register (if available) when set
to '1'.

 Enable port for A: when selected, an enable port ce_a for the port A pipeline register is
made available.

 Enable port for B: when selected, an enable port ce_b for the port B pipeline register is made
available.

 Enable port for C: when selected, an enable port ce_c for the port C register is made
available.
System Generator for DSP Reference Guide www.xilinx.com 151
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=151

Chapter 1: Xilinx Blockset
 Enable port for multiplier: when selected, an enable port ce_m for the multiplier register is
made available.

 Enable port for P: when selected, an enable port ce_p for the port P output register is made
available.

 Enable port for carry in: when selected, an enable port ce_carry_in for the carry in
register is made available.

 Enable port for controls (opmode, subtract, carry_in, carry_in_sel): when selected, the
enable ports ce_ctrl and ce_cinsub are made available. The port ce_ctrl controls the
opmode and carry in select registers while ce_cinsub controls the subtract register.

Implementation tab

 Use synthesizable model: when selected, the DSP48 is implemented from an RTL description
which might not map directly to the DSP48 hardware. This is useful if a design using the
DSP48 block is targeted at device families that do not contain DSP48 hardware primitives.

 Use adder only: when selected, the block is optimized in hardware for maximum performance
without using the multiplier. If an instruction using the multiplier is encountered in simulation,
an error is reported.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

DSP48 Macro

Generating Multiple Cycle-True Islands for Distinct Clocks

Xilinx XtremeDSP™
152 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=152

DSP48 Macro
DSP48 Macro
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The System Generator DSP48 Macro block provides a device independent
abstraction of the blocks DSP48, DSP48A, and DSP48E. Using this block
instead of using a technology-specific DSP slice helps makes the design more
portable between Xilinx technologies.

Depending on the target technology specified at compile time, the block wraps
one DSP48/DSP48E/DSP48A block along with reinterpret and convert blocks
for data type alignment, multiplexers to handle multiple opmodes and inputs,
and registers.

Note: In the remainder of the text on this block, DSP/DSP48A/DSP48E are collectively
referred to as XtremeDSP slice.

Block Interface
The DSP48 Macro block has a variable number of inputs and outputs determined from user-
specified parameter values. The input data ports are determined by the opmodes entered in the
Instructions field of the DSP48 Macro. Input port Sel appears if more than one opmode is specified
in the Instructions field. The Instructions field is discussed in greater detail in the topic on Entering
Opmodes in the DSP48 Macro block.

Port P, an output data port, is the only port appearing in all configurations of the DSP48 Macro.
Output ports PCOUT, BCOUT, ACOUT, CARRYOUT, and CARRYCASCOUT appear depending
on the user-selections.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

 Inputs to Port A: This field specifies symbolic port identifiers or operands appearing in the
Instructions field as connected to port A or port A:B on the XtremeDSP slice.

 Inputs to port B: This field specifies symbolic port identifiers or operands appearing in the
Instructions field as connected to port B.

 Inputs to port C: This field specifies symbolic port identifiers or operands appearing in the
Instructions field as connected to port C.

 Instructions: This field specifies instructions for the Macro. Refer to the topic on Entering
Opmodes in the DSP48 Macro Block.

Pipelining tab

 Pipeline Options: This field specifies the pipelining options on the XtremeDSP slice and
latency on the data presented to each port of the XtremeDSP slice. Available options include
'External Registers', 'No External Registers' and 'Custom'. When 'External Registers' is selected
multiplexer outputs (underneath DSP48 Macro) are registered (this allows high speed
operation). If the DSP48 Macro configures the XtremeDSP slice as an adder only (inferred
from the operations entered in the instructions field), then the latency is 3 else the latency is 4.
System Generator for DSP Reference Guide www.xilinx.com 153
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=153

Chapter 1: Xilinx Blockset
When 'No External Registers' is selected, multiplexer outputs are not registered and the latency
of the DSP48 Macro becomes two. When 'Custom' is selected all register instances inside and
outside of the XtremeDSP slice are inferred from the Custom Pipeline Options. If the
Instructions require the use of the XtremeDSP slice as adder and multiplier then it must be
configured to use Custom Pipleline Option.

 Custom Pipeline Options: This group of controls is active only when Pipeline Options is set
to Custom. Provides individual control for instancing the XtremeDSP slice and multiplexer
registers.

 Custom Pipeline Options([A,B,C,P,Ctrl,M,MuxA,MuxB,MuxC,MuxCtrl]): This field
enables you to specify Custom Pipeline Options as an array of integers.

Ports tab

The Ports tab consists of controls to expose the BCOUT, ACOUT, CARRYOUT,
CARRYCASCOUT, PCOUT and the various XtremeDSP slice Reset and Enable Ports.

Implementation tab

 Use DSP48: This field tells System Generator to use the XtremeDSP slice on Virtex®-4,
Virtex-5 or Spartan®-3A DSP, which ever is the target technology. If unchecked, a
synthesizable model of the XtremeDSP slice is used that can be used in other devices.

Entering Opmodes in the DSP48 Macro Block
The DSP48 is capable of performing different arithmetic operations on input data depending on the
input to its opmode port; this capability enables the DSP48 to operate like a dynamic operator unit.
The DSP48 Macro simplifies using the DSP48 as a dynamic operator unit. It orders multiple
operands and opmodes with multiplexers and appropriately aligns signals on the data ports. The
ordering of operands and opmode execution is determined by the order of opmodes entered in the
Instructions field. The Instructions field must contain at least one opmode and a maximum of eight
opmodes. This topic details all the issues involved with entering opmodes in the Instructions field of
the DSP48 Macro.

Opmode Format

A newline character is used to separate two different opmodes. Each opmode must strictly adhere to
the rules listed below:

 Each opmode is an assignment to P and must begin with 'P='

 The expression following the assignment operator('=') must be entirely made up of +/-/*
operators and symbolic port identifiers (see Operand Format) for operands.

 Only opmodes that can be implemented on the DSP48 are legal. A list of opmodes supported
on the DSP48 Macro is provided in Table 2.
154 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=154

DSP48 Macro
Consider the simple model shown below. The DSP48 Macro has three inputs defined as Xo, Yo, and
Zo. Because more than one Instruction opmode is specified in block dialog box, the Sel input port is
automatically added:

The figure below shows the DSP48 Macro dialog box for the above diagram. Three legal opmodes
are entered in the Instructions field.

When 0 is specified on the Sel input, the first instruction opmode is implemented. The value on Zo
is feed directly to output P. In this example, 5 will appear at the output.

When 1 is specified on Sel, the second Instruction opmode (Xo*Yo) is implemented. In this case, the
number 12 will appear at the output.

When 2 is specified on Sel, the third instruction (Xo*Yo+Zo) is implemented and the ouput in this
case goes to the number 17.
System Generator for DSP Reference Guide www.xilinx.com 155
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=155

Chapter 1: Xilinx Blockset
When this design is compiled, if the target technology is Virtex®-4, then a DSP48 slice is netlisted.
If Virtex-5 is specified, then a DSP48E slice is netlisted, and if the Spartan®-3A DSP technology is
specified, then a DSP48A slice is used in the implementation.

Operand Format

Each operand (symbolic port identifier) used in an opmode must follow the rules listed below:

 Each symbolic port identifier must begin with an alphabet[a-z,A-Z] and can be followed by
any number of alphanumeric characters or underscore('_').

 The symbolic port identifiers must not match any of the reserved port identifiers listed in Table
1 irrespective of case

 Each of the symbolic port identifiers must be listed once and only once in the Inputs to Port A,
Port B, or Port C fields. Multiple symbolic port identifiers in the same list must be separated
using a space or ';'.

In the figure above, Xo, Yo, and Zo are the symbolic port identifiers. Examples of legal symbolic
port identifiers/operands are a1, signal_1, delayed_signal etc. Examples of illegal symbolic port
identifiers include Cin, _port1, delay$%, 12signal etc.

Reserved Port Identifiers.

Reserved Port
Identifier

Port Type Memory Type

PCIN Input. Connected to port PCIN on the
DSP48

This port appears depending
on the opmode used. Refer to
Table 2, Opmodes 0x10-0x1f
use the PCIN Inport. The
PCIN port must be
connected to the PCOUT
port of another DSP48
block/DSP48 Macro block.

BCIN Input. Connected to port BCIN on the
DSP48

This port appears if in any of
the opmodes listed in Table
2, B(not A:B) is replaced
with BCIN. Must be
connected to the BCOUT
port of another DSP48
block/DSP48 Macro block.

PCIN>>17 Input. Connected to port PCIN on the
DSP48

Refer to Table 2. Opmodes
0x50-0x5f use this port
identifier. PCIN, is right
shifted by 17 and input to the
DSP48 adder through
DSP48's z multiplexer.

CIN Input. Connected to port carry_in on the
DSP48

This port appears if the
opmode contains Cin. Refer
to Table 2. Optional on all
opmodes except 0x00.

PCOUT Output. Connected to port PCOUT on
the DSP48

This port appears if PCOUT
on the Ports tab is selected.
156 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=156

DSP48 Macro
Opmode Selection

As stated previously, if more than one opmode is specified in the Instructions field, opmode
selection must be provided by the block. This is achieved through the use of the 'Sel' port that
appears when there is more than one opmode in the Instructions field. The 'Sel' port is connected to
multiplexers instanced underneath the mask; any signal connected to the Sel port must be of the
appropriate data type. The value of the Sel signal for each opmode listed in the Instructions field
corresponds to the position of the opmode. The first position is position 0, then second position is 1,
and so on.

Using Reserved Identifiers

There are two categories of reserved identifiers. Reserved identifiers that manifest as ports on the
DSP48 Macro block and reserved identifiers that do not. Descriptions and usage of each of the
reserved word identifiers is listed in the Table above. An example of using PCIN and BCIN reserved

ACOUT Output. Connected to port ACOUT on
the DSP48

This port appears if ACOUT
on the Ports tab is selected.

BCOUT Output. Connected to port BCOUT on
the DSP48

This port appears if BCOUT
on the Ports tab is selected.

rst_all Input. Connected to rst on the DSP48 as
well as all registers' reset

This port appears if Global
Reset on the Ports tab is
selected.

ce_all Input. Connected to en on the DSP48 as
well as all registers' enable

This port appears if 'Global
Enable' on the ports tab is
selected.

Sel Input Appears only when more
than one opmode instruction
is specified in the
Instructions field. Used to
select an opmode from the
list of opmodes in the
Instructions field.

P Output Always present.

P>>17 - Refer to Table 2. Opmodes
0x60-0x6f. P, right shifted by
17 is input to the DSP48
adder through the DSP48's z
multiplexer.

Reserved Port
Identifier

Port Type Memory Type
System Generator for DSP Reference Guide www.xilinx.com 157
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=157

Chapter 1: Xilinx Blockset
words is depicted in the following figure. The Instructions are: P=PCIN + A*BCIN

Mode Selection

The DSP48 Macro can be operated in two modes: Adder Mode and Multiplier Mode. Mode
selection depends on the DSP48 Macro opmodes used; the opmodes supported by each of the modes
is listed in Table 2. When A and B ports are routed as inputs to the DSP48's adder, they are
concatenated as one signed 36-bit input (refer to the DSP48 documentation). The DSP48's
multiplier interprets the ports as two disjoint signed 2's complement 18-bit inputs.

DSP48 Opmodes

In the following table, Cin is optional in all the Opmodes. A:B refers to all the symbolic port
identifiers in 'Inputs to Port A' field of DSP48 Macro block mask supplying inputs to the Adder of
DSP48 block. Symbols A, B, and C refer to symbolic identifiers in Inputs to Port A, Port B and Port
C fields respectively. All other symbols are reserved (refer to Reserved Port Identifier table above
for more details).

DSP48 Macro Pseudo Opmode
DSP48 Macro
Mode

Supported
for DSP48

Supported
for DSP48E

Supported
for DSP48A

P=Cin

P=+Cin

P=-Cin

---- Yes Yes Yes

P=P+Cin

P=-P-Cin

---- Yes Yes Yes

P = A:B + Cin Adder Yes Yes Yes

P = A*B + Cin

P = -A*B – Cin

Multiplier Yes Yes Yes

P=C+Cin

P=-C-Cin

---- Yes Yes Yes
158 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=158

DSP48 Macro
P=+C+P+Cin

P=-C-P-Cin

---- Yes Yes Yes

P=A:B + C + Cin

P = -A:B –C-Cin

Adder Yes Yes Yes

P = PCIN + Cin

P = PCIN –Cin

---- Yes Yes Yes(A:B +
C + Cin
only)

P=PCIN+P+Cin

P=PCIN-P-Cin

---- Yes Yes Yes

P=PCIN+A:B+Cin

P=PCIN-A:B-Cin

Adder Yes Yes Yes

P=PCIN+A*B+Cin

P=PCIN-A*B-Cin

Multiplier Yes Yes Yes

P=PCIN+C +Cin

P=PCIN-C –Cin

---- Yes Yes No

P=PCIN+C+P+Cin

P=PCIN-P-C-Cin

---- Yes Yes No

P=PCIN+A:B+C+Cin

P=PCIN-A:B-C-Cin

Adder Yes Yes No

P=P-Cin ---- Yes Yes Yes

P=P+P+Cin

P=P-P-Cin

---- Yes Yes Yes

P=P-A:B-Cin

P=P+A:B+Cin

Adder Yes Yes Yes

P=P+A*B+Cin Multiplier Yes Yes Yes

P=P+C+Cin

P=P-C-Cin

---- Yes Yes No

P=P+C+P+Cin

P=P-C-P-Cin

---- Yes Yes No

P=P+C+P+Cin

P=P-C-P-Cin

Adder Yes Yes No

P=C-Cin ---- Yes Yes Yes

P=C-P-Cin ---- Yes Yes Yes

P=C-A:B-Cin Adder Yes Yes Yes

P=C-A*B-Cin Multiplier Yes Yes Yes

P=C+C+Cin

P=C-C-Cin

---- Yes Yes No

DSP48 Macro Pseudo Opmode
DSP48 Macro
Mode

Supported
for DSP48

Supported
for DSP48E

Supported
for DSP48A
System Generator for DSP Reference Guide www.xilinx.com 159
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=159

Chapter 1: Xilinx Blockset
Entering Pipeline Options and Editing Custom Pipeline Options
Since the data paths for the A, B and C ports are different and can have a different number of
registers, time-alignment issues arise. Control signals also suffer from the same issue. This makes
the pipeline model extremely important. There are three pipeline options available in the DSP48
Macro block mask. These include 'External Registers', 'No External Registers' and 'Custom'.

P=C+C+P+Cin

P=C-C-P-Cin

---- Yes Yes No

P=PCIN>>17+Cin ,

P=PCIN>>17Cin

---- Yes Yes No

P=PCIN>>17+P+Cin

P=PCIN>>17-P-Cin

---- Yes Yes No

P=PCIN>>17+A:B+Cin

P=PCIN>>17-A:B-Cin

Adder Yes Yes No

P=PCIN>>17+A*B+Cin

P=PCIN>>17-A*B-Cin

Multiplier Yes Yes No

P=PCIN>>17+C+Cin

P=PCIN>>17-C-Cin

---- Yes Yes No

P=PCIN>>17+P+C+Cin

P=PCIN>>17-P-C-Cin

---- Yes Yes No

P=PCIN>>17+C+A:B+Cin

P=PCIN>>17-C-A:B-Cin

Adder Yes Yes No

P=P>>17+Cin

P=P>>17-Cin

---- Yes Yes No

P=P>>17+P+Cin

P=P>>17-P-Cin

---- Yes Yes No

P=P>>17+A:B+Cin

P=P>>17-A:B-Cin

Adder Yes Yes No

P=P>>17+A*B+Cin

P=P>>17-A*B-Cin

Multiplier Yes Yes No

P=P>>17+C+Cin

P=P>>17-C-Cin

---- Yes Yes No

P=P>>17+P+C+Cin

P=P>>17-P-C-Cin

---- Yes Yes No

P=P>>17+C+A:B +Cin

P=P>>17-C-A:B-Cin

Adder Yes Yes No

DSP48 Macro Pseudo Opmode
DSP48 Macro
Mode

Supported
for DSP48

Supported
for DSP48E

Supported
for DSP48A
160 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=160

DSP48 Macro
External Registers

This option aligns all the control and data signals by also using additional registers external to the
DSP48 block. These external registers are required to register the output of the multiplexers to
ensure high-speed operation. If all the opmodes entered into the DSP48 Macro instructions field are
such that, they require the use of multiplier, then the latency on the DSP48 Macro is 4. If none of the
instructions on the DSP48 Macro require the use of the multiplier, the latency on the DSP48 Macro
is 3.

No External Registers

This option aligns all the control and data signals without using registers external to the DSP48
block. The MREG is not selected in this mode. The latency of the DSP48 Macro is 2.

Custom

This option gives you control over instancing each register of the DSP48 Macro block. When this
option is selected the 'Custom Pipeline Options' group of controls becomes active and each of the
individual registers can be selected. When the DSP48 Macro contains instructions that require using
the multiplier in the DSP48 and the Adder with A:B as one of the inputs, Custom pipeline is the only
legal option.

DSP48 Macro Limitations
Though the DSP48 Macro eases the use of the DSP 48 block it is not without limitations:

 It does not support the DSP48's rounding features

 It supports carry-in only from fabric

 It does not support all input data types. Input data types that exceed the data type restrictions of
a single DSP48 are not supported currently. For example if, after alignment of inputs, the input
to Port A of DSP48 exceeds 18bits then it will result in an error

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

DSP48 block

Generating Multiple Cycle-True Islands for Distinct Clocks

Xilinx XtremeDSP™
System Generator for DSP Reference Guide www.xilinx.com 161
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=161

Chapter 1: Xilinx Blockset
DSP48 macro 2.0
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The System Generator DSP48 macro 2.0 block provides a device independent
abstraction of the blocks DSP48, DSP48A, and DSP48E. Using this block
instead of using a technology-specific DSP slice helps makes the design more
portable between Xilinx technologies.

The DSP48 Macro provides a simplified interface to the XtremeDSP slice by
the abstraction of all opmode, subtract, alumode and inmode controls to a single
SEL port. Futher, all CE and RST controls are grouped to a single CE and SCLR
port repectively. This abstraction enhances portability of HDL between device
families.

You can specify 1 to 64 instructions which are translated into the various control signals for the
XtremeDSP slice of the target device. The instructions are stored in a ROM from which the
appropriate instruction is selected using the SEL port.

Block Parameters

Instructions tab

The Instruction tab is used to define the operations that the LogiCORE is to implement. Each
instruction can be entered on a new line, or in a comma delimited list, and are enumerated from the
top down. You can specify a maximum of 64 instructions.

Refer to the topic Instructions Page (page 3) of the of the document LogiCORE IP DSP48 Macro 2.0
for details on all the parameters for this LogicCore IP..

Pipeline Options tab

The Pipeline Options tab is used to define the pipeline depth of the various input paths.

Pipeline Options

Specifies the pipeline method to be used; Automatic, By Tier and Expert.

Custom Pipeline options

Used to specify the pipeline depth of the various input paths.

Tier 1 to 6

When By Tier is selected for Pipeline Options these parameters are used to enable/disable the
registers across all the input paths for a given pipeline stage. The following restrictions are enforced:

 When P has been specified in an expression tier 6 will forced as asynchronous feedback is
not supported.

 On Spartan-3ADSP/6 tier 3 is forced when tier 5 and the pre-adder has been specified. The
registering of the pre-adder control signals cannot be separated from the second stage
adder control signals.
162 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=162

DSP48 macro 2.0
Individual registers

When you select Expert for the Pipeline Options, these parameters are used to enable/disable
individual register stages. The following restrictions are enforced.

 The P register is forced when P is specified in an expression. Asynchronous feedback is
not supported.

 On Spartan-3ADSP/6 pipeline stage 5 CARRYIN register isis tied to the stage 5 SEL
register. The Stage 3 SEL register is forced when the stage 5 SEL register and the pre-
adder are specified.

 On Virtex-4 pipeline stage 5 CARRYIN register is forced when a rounding function on
any multiplier input is specified.

Refer to the topic Detailed Pipe Implementaton (page 9) of the document LogiCORE IP DSP48
Macro 2.0 for details on all the parameters for this LogicCore IP.

Implementation tab

The Implementation tab is used to define implementation options.

Output Port Properties

 Precision: Specifies the precision of the P output port.

 Full: The bit width of the output port P is set to the full XtremeDSP Slide width of 48 bits.

 User_Defined: The output width of P can be set to any value up to 48 bits. When set to
less than 48 bits, the output is truncated (LSBs removed).

 Width: Specifies the User Defined output width of the P outout port

 Binary Point: Specifies the placement of the binary point of the P outout port

Special ports

 Use ACOUT: Use the optional cascade A output port.

 Use BCOUT: Use the optional cascade B output port.

 Use CARRYCASCOUT: Use the optional cascade carryout output port.

 Use PCOUT: Use the optional cascade Poutput port.

Control ports

Refer to the topic Implementaton Page (page 4) of the document LogiCORE IP DSP48 Macro 2.0
for details on all the parameters for this LogicCore IP.

Migrating a DSP48 Macro Block Design to DSP48 Macro 2.0

In Release 11.4, Xilinx introduced version 2.0 of the DSP Macro block. The following text describes
how to migrate an existing DSP Macro block design to DSP Macro 2.0.

One fundamental difference of the new DSP48 Macro 2.0 block compared to the previous version is
that internal input multiplexer circuits are removed from the core in order to streamline and
minimize the size of logic for this IP. This has some implications when migrating from an existing
design with DSP48 Macro to the new DSP48 Macro 2.0. You can no longer specify multiple input
operands (for example, A1, A2, B1, B2, etc…). Because of this, you must add a simple MUX circuit
when designing with the new DSP48 Macro 2.0 if there is more than one unique input operand as
shown in the following example.
System Generator for DSP Reference Guide www.xilinx.com 163
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=163

Chapter 1: Xilinx Blockset
DSP48 Macro-Based Signed 35x35 Multiplier

The following DSP48 Macro consists of multiple 18-bit input operands such as alo, ahi for input to
port A and blo, bhi for input to port B. The input operands and Opcode instructions are specified as
shown below. Notice that the multiple input operands are handled internally by the DSP48 Macro
block.

DSP48 Macro 2.0-Based Signed 35x35 Multiplier

The same model shown above can be migrated to the new DSP48 Macro 2.0 block. The following
simple steps and design guidelines are required when updating the design.
164 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=164

DSP48 macro 2.0
1. Make sure that input and output pipeline register selections between the old and the new block
are the same. You can do this by examining and comparing the Pipeline Options settings.

2. If there is more than one unique input operand required, you must provide MUX circuits as
shown in the fugure below.

3. Ensure that the new design provides the same functionality correctness and quality of results
compared to the old version. This can be accomplished by performing a quick Simulink
simulation and implementing the design.

4. When configuring and specifying a pre-adder mode using the DSP48 Macro 2.0 block in
System Generator, certain design parameters such as data width input operands are device
dependent. Refer to the document LogiCORE IP DSP48 Macro 2.0 for details on all the
parameters for this LogicCore IP.

4 inputs and 2 ouputs MUX circuit can be decoded as the following:

sel A inputs B inputs Opcode

0 alo blo A*B

1 alo bhi A*B+P>>17

2 ahi blo A*B+P

3 ahi bhi A*B+P>>17
System Generator for DSP Reference Guide www.xilinx.com 165
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=165

Chapter 1: Xilinx Blockset
You can find the above complete model at the following pathname:
<sysgen_path>/examples/dsp48/mult35x35/dsp48macro_mult35x35.mdl

LogiCORE™ Documentation
LogiCORE IP DSP48 Macro 2.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3ADSP/XA

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

DSP48 block

Generating Multiple Cycle-True Islands for Distinct Clocks

Xilinx XtremeDSP™
166 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=none;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=166

DSP48 Macro 2.1
DSP48 Macro 2.1
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The System Generator DSP48 macro 2.1 block provides a device independent
abstraction of the blocks DSP48, DSP48A, and DSP48E. Using this block instead
of using a technology-specific DSP slice helps makes the design more portable
between Xilinx technologies.

The DSP48 Macro provides a simplified interface to the XtremeDSP slice by the
abstraction of all opmode, subtract, alumode and inmode controls to a single SEL
port. Futher, all CE and RST controls are grouped to a single CE and SCLR port
repectively. This abstraction enhances portability of HDL between device
families.

You can specify 1 to 64 instructions which are translated into the various control signals for the
XtremeDSP slice of the target device. The instructions are stored in a ROM from which the
appropriate instruction is selected using the SEL port.

Block Parameters

Instructions tab

The Instruction tab is used to define the operations that the LogiCORE is to implement. Each
instruction can be entered on a new line, or in a comma delimited list, and are enumerated from the
top down. You can specify a maximum of 64 instructions.

Refer to the topic Instructions Page (page 3) of the document LogiCORE IP DSP48 Macro 2.1 for
details on all the parameters on this tab.

Pipeline Options tab

The Pipeline Options tab is used to define the pipeline depth of the various input paths.

Pipeline Options

Specifies the pipeline method to be used; Automatic, By Tier and Expert.

Custom Pipeline options

Used to specify the pipeline depth of the various input paths.

Tier 1 to 6

When By Tier is selected for Pipeline Options these parameters are used to enable/disable the
registers across all the input paths for a given pipeline stage. The following restrictions are enforced:

 When P has been specified in an expression tier 6 will forced as asynchronous feedback is
not supported.

 On Spartan-3ADSP/6 tier 3 isis forced when tier 5 and the pre-adder has been specified.
The registering of the pre-adder control signals cannot be separated from the second stage
adder control signals.
System Generator for DSP Reference Guide www.xilinx.com 167
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=v2_1;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=167

Chapter 1: Xilinx Blockset
Individual registers

When you select Expert for the Pipeline Options, these parameters are used to enable/disable
individual register stages. The following restrictions are enforced.

 The P register is forced when P is specified in an expression. Asynchronous feedback is
not supported.

 On Spartan-3ADSP/6 pipeline stage 5 CARRYIN register is tied to the stage 5 SEL
register. The Stage 3 SEL register is forced when the stage 5 SEL register and the pre-
adder are specified.

 On Virtex-4 pipeline stage 5 CARRYIN register is forced when a rounding function on
any multiplier input is specified.

Refer to the topic Detailed Pipe Implementaton (page 9) of the document LogiCORE IP DSP48
Macro 2.1 for details on all the parameters on this tab.

Implementation tab

The Implementation tab is used to define implementation options.

Output Port Properties

 Precision: Specifies the precision of the P output port.

 Full: The bit width of the output port P is set to the full XtremeDSP Slide width of 48 bits.

 User_Defined: The output width of P can be set to any value up to 48 bits. When set to
less than 48 bits, the output is truncated (LSBs removed).

 Width: Specifies the User Defined output width of the P outout port

 Binary Point: Specifies the placement of the binary point of the P outout port

Special ports

 Use ACOUT: Use the optional cascade A output port.

 Use BCOUT: Use the optional cascade B output port.

 Use CARRYCASCOUT: Use the optional cascade carryout output port.

 Use PCOUT: Use the optional cascade Poutput port.

Control ports

Refer to the topic Implementaton Page (page 4) of the document LogiCORE IP DSP48 Macro 2.1
for details on all the parameters on this tab.

Migrating a DSP48 Macro Block Design to DSP48 Macro 2.1

The following text describes how to migrate an existing DSP Macro block design to DSP Macro 2.1.

One fundamental difference of the new DSP48 Macro 2.1 block compared to the previous version is
that internal input multiplexer circuits are removed from the core in order to streamline and
minimize the size of logic for this IP. This has some implications when migrating from an existing
design with DSP48 Macro to the new DSP48 Macro 2.1. You can no longer specify multiple input
operands (for example, A1, A2, B1, B2, etc…). Because of this, you must add a simple MUX circuit
when designing with the new DSP48 Macro 2.1 if there is more than one unique input operand as
shown in the following example.

DSP48 Macro-Based Signed 35x35 Multiplier

The following DSP48 Macro consists of multiple 18-bit input operands such as alo, ahi for input to
port A and blo, bhi for input to port B. The input operands and Opcode instructions are specified as
168 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=v2_1;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=v2_1;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=v2_1;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=168

DSP48 Macro 2.1
shown below. Notice that the multiple input operands are handled internally by the DSP48 Macro
block.

DSP48 Macro 2.1-Based Signed 35x35 Multiplier

The same model shown above can be migrated to the new DSP48 Macro 2.1 block. The following
simple steps and design guidelines are required when updating the design.

1. Make sure that input and output pipeline register selections between the old and the new block
are the same. You can do this by examining and comparing the Pipeline Options settings.
System Generator for DSP Reference Guide www.xilinx.com 169
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=169

Chapter 1: Xilinx Blockset
2. If there is more than one unique input operand required, you must provide MUX circuits as
shown in the fugure below.

3. Ensure that the new design provides the same functionality correctness and quality of results
compared to the old version. This can be accomplished by performing a quick Simulink
simulation and implementing the design.

4. When configuring and specifying a pre-adder mode using the DSP48 Macro 2.1 block in
System Generator, certain design parameters such as data width input operands are device
dependent. Refer to the documentttcu fffffor details on all the parameters of this LogicCore IP.

4 inputs and 2 ouputs MUX circuit can be decoded as the following:

sel A inputs B inputs Opcode

0 alo blo A*B

1 alo bhi A*B+P>>17

2 ahi blo A*B+P

3 ahi bhi A*B+P>>17
170 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=170

DSP48 Macro 2.1
You can find the above complete model at the following pathname:
<sysgen_path>/examples/dsp48/mult35x35/dsp48macro_mult35x35.mdl

LogiCORE™ Documentation
LogiCORE IP DSP48 Macro 2.1

zDevice Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,

Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3ADSP/XA

See Also

The following topics give valuable insight into using and understanding the DSP48 block:

DSP48 block

Generating Multiple Cycle-True Islands for Distinct Clocks

Xilinx XtremeDSP™
System Generator for DSP Reference Guide www.xilinx.com 171
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xbip_dsp48_macro;v=v2_1;d=dsp48_macro_ds754.pdf
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=171

Chapter 1: Xilinx Blockset
DSP48A
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The Xilinx DSP48A block is an efficient building block for DSP applications that
use Xilinx Spartan-3A DSP devices. For those familiar with the DSP48 and the
DSP48E, the DSP48A is a ‘light’ version of primitive.

Key features for the DSP48A are a dedicated C-port and pre-adder. The DSP48A
combines an 18-bit by 18-bit signed multiplier with a 48-bit adder and
programmable mux to select the adder’s input. Operations can be selected
dynamically. Optional input and multiplier pipeline registers can be selected as
well as registers for the subtract, carryin and opmode ports. The DSP48A block can
also target devices that do not contain the DSP48A hardware primitive if the Use

synthesizable model option is selected.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

 Consolidate control port (opmode, carry_in, preadd select, preadd subtract): when
selected, combines the opmode, subtract, preadd select and preadd subtract
ports into one 8-bit port. Bits 0 to 3 are the opmode, bit 4 is the pre-add select port, bit
5 is the carry_in (if the carry in is set to direct), bit 6 is the pre-adder subtract
port, and bit 7 is the subtract port. This option should be used when the opmode block is
used to generate a DSP48A instruction.

 Provide C port: when selected, the c port is made available. Otherwise, the c port is tied to '0'.

 Provide D port: when selected, the d port is made available. Otherwise, the d port is tied to '0'.

 Provide PCIN port: when selected, the pcin port is exposed. The pcin port must be
connected to the pcout port of another DSP48A block.
172 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=172

DSP48A
 Provide PCOUT port: when selected, the pcout output port is made available. The pcout
port must be connected to the pcin port of another DSP48A block.

 Provide BCOUT port: when selected, the bcout output port is made available. The bcout
port must be connected to the b port of another DSP48A block.

 Provide CARRYIN port: when selected, the carryin port is made available.

 Provide CARRYOUT port: when selected, the carryout port is made available. The
carryout port must be connected to the carryin port of another DSP48A block.

 Provide global reset port: when selected, the port rst is made available. This port is
connected to all available reset ports based on the pipeline selections.

 Provide global enable port: when selected, the port en is made available. This port is
connected to all available enable ports based on the pipeline selections.

Pipelining tab

Parameters specific to the Pipelining tab are:

 Use A0 reg: indicates whether the A0 reg should be used.

 Use A1 reg: indicates whether the A1 reg should be used.

 Use B0 reg: indicates whether the B0 reg should be used.

 Use B1 reg: indicates whether the B1 reg should be used.

 Pipeline C: indicates whether the input from the c port should be registered.

 Pipeline D: indicates whether the input from the d port should be registered.

 Pipeline multiplier: indicates whether the internal multiplier should register its output.

 Pipeline P: indicates whether the outputs p and pcout should be registered.

 Pipeline opmode: indicates whether the opmode port should be registered.

 Pipeline carry in: indicates whether the carry in port should be registered.

Ports tab

Parameters specific to the Ports tab are:

 Reset port for A: when selected, a port rst_a is made available. This resets the pipeline
register for port a when set to '1'.

 Reset port for B: when selected, a port rst_b is made available. This resets the pipeline
register for port b when set to '1'.

 Reset port for D: when selected, a port rst_d is made available. This resets the pipeline
register for port c when set to '1'.

 Reset port for C: when selected, a port rst_c is made available. This resets the pipeline
register for port c when set to '1'.

 Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

 Reset port for P: when selected, a port rst_p is made available. This resets the output register
when set to '1'.

 Reset port for opmode: when selected, a port rst_opmode is made available. This resets
the pipeline register for the opmode port when set to '1'.

 Reset port for carry in: when selected, a port rst_carryin is made available. This resets the
pipeline register for carry in when set to '1'.
System Generator for DSP Reference Guide www.xilinx.com 173
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=173

Chapter 1: Xilinx Blockset
 Enable port for A: when selected, an enable port ce_a for the port A pipeline register is
made available.

 Enable port for B: when selected, an enable port ce_b for the port B pipeline register is made
available.

 Enable port for C: when selected, an enable port ce_c for the port C register is made
available.

 Enable port for D: when selected, an enable port ce_d for the port D pipeline register is
made available.

 Enable port for multiplier: when selected, an enable port ce_m for the multiplier register is
made available.

 Enable port for P: when selected, an enable port ce_p for the port P output register is made
available.

 Enable port for opmode: when selected, the enable port ce_opmode is made available.

 Enable port for carry in: when selected, an enable port ce_carry_in for the carry in
register is made available.

Implementation tab

Parameters specific to the Implementation tab are:

 Use synthesizable model: when selected, the DSP48A is implemented from an RTL
description which might not map directly to the DSP48A hardware. This is useful if a design
using the DSP48A block is targeted at device families that do not contain DSP48A hardware
primitives.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

DSP48 Macro

Generating Multiple Cycle-True Islands for Distinct Clocks

Virtex-5 XtremeDSP™ Design Considerations

Xilinx XtremeDSP™
174 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/userguides/ug193.pdf
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=174

DSP48E
DSP48E
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The Xilinx DSP48E block is an efficient building block for DSP applications that
use Xilinx Virtex®-5 devices. The DSP48E combines an 18-bit by 25-bit signed
multiplier with a 48-bit adder and programmable mux to select the adder's input.

Operations can be selected dynamically. Optional input and multiplier pipeline
registers can be selected as well as registers for the alumode, carryin and
opmode ports. The DSP48E block can also target devices that do not contain the
DSP48E hardware primitive if the Use synthesizable model option is selected on the
implementation tab.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

 A or ACIN input: specifies if the A input should be taken directly from the a port or from the
cascaded acin port. The acin port can only be connected to another DSP48 block.

 B or BCIN input: specifies if the B input should be taken directly from the b port or from the
cascaded bcin port. The bcin port can only be connected to another DSP48 block.
System Generator for DSP Reference Guide www.xilinx.com 175
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=175

Chapter 1: Xilinx Blockset
Pattern Detection

 Reset p register on pattern detection: if selected and the pattern is detected, reset the p
register on the next cycle

Pattern Input:

 Pattern Input from c port: when selected, the pattern used in pattern detection is read
from the c port.

 Using Pattern Attribute (48bit hex value): value is used in pattern detection logic which
is best described as an equality check on the output of the adder/subtractor/logic unit

 Pattern attribute: a 48-bit value that is used in the pattern detector.

Mask Input:

 Mask input from c port: when selected, the mask used in pattern detection is read from
the c port.

 Using Mask Attribute (48 bit hex value): 48-bit value used to mask out certain bits
during pattern detection.

 Mask attribute: a 48-bit value and used to mask out certain bits during a pattern
detection. A value of 0 passes the bit, and a value of 1 masks out the bit.48-bit value and
used to mask out certain bits during a pattern detection. A value of 0 passes the bit, and a
value of 1 masks out the bit.

Select rounding mask: Selects special masks that can be used for symmetric or convergent
rounding in the pattern detector. The choices are Select mask, Mode1, and Mode2.

Refer to following user guide for a detailed explanation of these parameters and attributes:
Virtex-5 FPGA XtremeDSP Design Considerations User Guide

Optional Ports tab

Parameters specific to the Optional Ports tab are:

Consolidate control port: when selected, combines the opmode, alumode, carry_in and
carry_in_sel ports into one 15-bit port. Bits 0 to 6 are the opmode, bits 7 to 10 are the
alumode port, bit 11 is the carry_in port, and bits 12 to 14 are the carry_in_sel port. This
option should be used when the opmode block is used to generate a DSP48E instruction.

Provide c port: when selected, the c port is made available. Otherwise, the c port is tied to '0'.

Provide global reset port: when selected, the port rst is made available. This port is connected to all
available reset ports based on the pipeline selections.

Provide global enable port: when selected, the optional en port is made available. This port is
connected to all available enable ports based on the pipeline selections.

Provide pcin port: when selected, the pcin port is exposed. The pcin port must be connected to
the pcout port of another DSP48 block.

Provide carry cascade in port: when selected, the carry cascade in port is exposed. This port can
only be connected to a carry cascade out port on another DSP48E block.

Provide multiplier sign cascade in port: when selected, the multiplier sign cascade in port
(multsigncascin) is exposed. This port can only be connected to a multiplier sign cascade out port of
another DSP48E block.

Provide carryout port: when selected, the carryout output port is made available. When the
mode of operation for the adder/subtractor is set to one 48-bit adder, the carryout port is 1-bit
wide. When the mode of operation is set to two 24 bit adders, the carryout port is 2 bits wide. The
MSB corresponds to the second adder's carryout and the LSB corresponds to the first adder's
176 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=176

DSP48E
carryout. When the mode of operation is set to four 12 bit adders, the carryout port is 4 bits wide
with the bits corresponding to the addition of the 48 bit input split into 4 12-bit sections.

Provide pattern detect port: when selected, the pattern detection output port is provided. When the
pattern, either from the mask or the c register, is matched the pattern detection port is set to '1'.

Provide pattern bar detect port: when selected, the pattern bar detection (patternbdetect) output
port is provided. When the inverse of the pattern, either from the mask or the c register, is matched
the pattern bar detection port is set to '1'.

Provide overflow port: when selected, the overflow output port is provided. This port indicates
when the operation in the DSP48E has overflowed beyond the bit P[N] where N is between 1 and 46.
N is determined by the number of 1s in the mask whether set by the GUI mask field or the c port
input.

Provide underflow port: when selected, the underflow output port is provided. This port indicates
when the operation in the DSP48E has underflowed. Underflow occurs when the number goes
below –P[N] where N is determined by the number of 1s in the mask whether set by the GUI mask
field or the c port input.

Provide ACOUT port: when selected, the acout output port is made available. The acout port
must be connected to the acin port of another DSP48E block.

Provide BCOUT port: when selected, the bcout output port is made available. The bcout port
must be connected to the bcin port of another DSP48E block.

Provide PCOUT port: when selected, the pcout output port is made available. The pcout port
must be connected to the pcin port of another DSP48 block.

Provide multiplier sign cascade out port: when selected, the multiplier sign cascade out port
(multsigncascout) is made available. This port can only be connected to the multiplier sign cascade
in port of another DSP48E block and is used to support 96-bit accumulators/adders and subtracters
which are built from two DSP48Es.

Provide carry cascade out port: when selected, the carry cascade out port (carrycascout) is
made available. This port can only be connected to the carry cascade in port of another DSP48E
block.

Pipelining tab

Parameters specific to the Pipelining tab are:

 Length of a/acin pipeline: specifies the length of the pipeline on input register A. A pipeline
of length 0 removes the register on the input.

 Length of b/bCIN pipeline: specifies the length of the pipeline for the b input whether it is
read from b or bcin.

 Length of acout pipeline: specifies the length of the pipeline between the a/acin input and
the acout output port. A pipeline of length 0 removes the register from the acout pipeline
length. Must be less than or equal to the length of the a/acin pipeline.

 Length of bcout pipeline: specifies the length of the pipeline between the b/bcin input and the
bcout output port. A pipeline of length 0 removes the register from the bcout pipeline length.
Must be less than or equal to the length of the b/bcin pipeline.

 Pipeline c: indicates whether the input from the c port should be registered.

 Pipeline p: indicates whether the outputs p and pcout should be registered.

 Pipeline multiplier: indicates whether the internal multiplier should register its output.

 Pipeline opmode: indicates whether the opmode port should be registered.
System Generator for DSP Reference Guide www.xilinx.com 177
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=177

Chapter 1: Xilinx Blockset
 Pipeline alumode: indicates whether the alumode port should be registered.

 Pipeline carry in: indicates whether the carry in port should be registered.

 Pipeline carry in select: indicates whether the carry in select port should be registered

Reset/Enable Ports

Parameters specific to the Reset/Enable tab are:

 Reset port for a/acin: when selected, a port rst_a is made available. This resets the pipeline
register for port a when set to '1'.

 Reset port for b/bcin: when selected, a port rst_b is made available. This resets the pipeline
register for port b when set to '1'.

 Reset port for c: when selected, a port rst_c is made available. This resets the pipeline register
for port c when set to '1'.

 Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

 Reset port for P: when selected, a port rst_p is made available. This resets the output register
when set to '1'.

 Reset port for carry in: when selected, a port rst_carryin is made available. This resets the
pipeline register for carry in when set to '1'.

 Reset port for alumode: when selected, a port rst_alumode is made available. This resets the
pipeline register for the alumode port when set to '1'.

 Reset port for controls (opmode and carry_in_sel): when selected, a port rst_ctrl is made
available. This resets the pipeline register for the opmode register (if available) and the
carry_in_sel register (if available) when set to '1'.

 Enable port for first a/acin register: when selected, an enable port ce_a1 for the first a
pipeline register is made available.

 Enable port for second a/acin register: when selected, an enable port ce_a2 for the second a
pipeline register is made available.

 Enable port for first b/bcin register: when selected, an enable port ce_b1 for the first b
pipeline register is made available.

 Enable port for second b/bcin register: when selected, an enable port ce_b2 for the second b
pipeline register is made available.

 Enable port for c: when selected, an enable port ce_c for the port C register is made available.

 Enable port for multiplier: when selected, an enable port ce_m for the multiplier register is
made available.

 Enable port for p: when selected, an enable port ce_p for the port P output register is made
available.

 Enable port for carry in: when selected, an enable port ce_carry_in for the carry in register is
made available.

 Enable port for alumode: when selected, an enable port ce_alumode for the alumode register
is made available.

 Enable port for multiplier carry in: when selected, an enable port mult_carry_in for the
multiplier register is made available.

 Enable port for controls (opmode and carry_in_sel): when selected, the enable port ce_ctrl
is made available. The port ce_ctrl controls the opmode and carry in select registers.
178 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=178

DSP48E
Implementation

Parameters specific to the Implementation tab are:

 Use synthesizable model: when selected, the DSP48E is implemented from an RTL
description which might not map directly to the DSP48E hardware. This is useful if a design
using the DSP48E block is targeted at device families that do not contain DSP48E hardware
primitives.

 Mode of operation for the adder/subtractor: this mode can be used to implement small add-
subtract functions at high speed and lower power with less logic utilization. The adder and
subtracter in the adder/subtracted/logic unit can also be split into two 24-bit fields or four12-bit
fields. This is achieved by setting the mode of operation to "Two 24-bit adders" or "Four 12-bit
adders". See the Virtex®-5 XtremeDSP Design Considerations for more details.

 Use adder only: when selected, the block is optimized in hardware for maximum performance
without using the multiplier. If an instruction using the multiplier is encountered in simulation,
an error is reported.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

Virtex-5 FPGA XtremeDSP Design Considerations User Guide

DSP48 Macro

Generating Multiple Cycle-True Islands for Distinct Clocks

Virtex-5 XtremeDSP™ Design Considerations

Xilinx XtremeDSP™
System Generator for DSP Reference Guide www.xilinx.com 179
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://direct.xilinx.com/bvdocs/userguides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=179

Chapter 1: Xilinx Blockset
DSP48E1
This block is listed in the following Xilinx Blockset libraries: Index, DSP.

The Xilinx DSP48E1 block is an efficient building block for DSP applications that
use Xilinx Virtex®-6 and 7 series devices. Enhancements to the DSP48E1 slice
provide improved flexibility and utilization, improved efficiency of applications,
reduced overall power consumption, and increased maximum frequency. The high
performance allows designers to implement multiple slower operations in a single
DSP48E1 slice using time-multiplexing methods.

The DSP48E1 slice supports many independent functions. These functions include
multiply, multiply accumulate (MACC), multiply add, three-input add, barrel shift,

wide-bus multiplexing, magnitude comparator, bit-wise logic functions, pattern detect, and wide
counter. The architecture also supports cascading multiple DSP48E1 slices to form wide math
functions, DSP filters, and complex arithmetic without the use of general FPGA logic..

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

Input configuration

 A or ACIN input: specifies if the A input should be taken directly from the a port or from the
cascaded acin port. The acin port can only be connected to another DSP48 block.

 B or BCIN input: specifies if the B input should be taken directly from the b port or from the
cascaded bcin port. The bcin port can only be connected to another DSP48 block.

DSP48E1 data-path configuration

 SIMD Mode of Adder/Subtractor/Accumulator: this mode can be used to implement small
add-subtract functions at high speed and lower power with less logic utilization. The adder and
180 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=180

DSP48E1
subtracter in the adder/subtracted/logic unit can also be split into Two 24-bit Units or Four
12-bit Units.

 Do not use multiplier: when selected, the block is optimized in hardware for maximum
performance without using the multiplier. If an instruction using the multiplier is encountered
in simulation, an error is reported.

 Use dynamic multiplier mode: When selected, it instructs the block to use the dynamic
multiplier mode. This indicates that the block is switching between A*B and A:B operations
on the fly and therefore needs to get the worst-case timing of the two paths.

 Use preadder: Use the 25-bit D data input to the pre-adder or alternative input to the
multiplier. The pre-adder implements D + A as determined by the INMODE3 signal.

Pattern Detection

 Reset p register on pattern detection: if selected and the pattern is detected, reset the p
register on the next cycle

Pattern Input:

 Pattern Input from c port: when selected, the pattern used in pattern detection is read
from the c port.

 Using Pattern Attribute (48bit hex value): value is used in pattern detection logic which
is best described as an equality check on the output of the adder/subtractor/logic unit

 Pattern attribute: a 48-bit value that is used in the pattern detector.

Mask Input:

 Mask input from c port: when selected, the mask used in pattern detection is read from
the c port.

 Using Mask Attribute (48 bit hex value): 48-bit value used to mask out certain bits
during pattern detection.

 Mode1: Selects rounding_mode 1.

 Mode2:Selects rounding_mode 2.

Refer to following user guide for a detailed explanation of these parameters and attributes:
Virtex-6 FPGA DSP48E1 Slice User Guide

Optional Ports tab

Parameters specific to the Optional Ports tab are:

Consolidate control port: when selected, combines the opmode, alumode, carry_in,
carry_in_sel, and inmode ports into one 20-bit port. Bits 0 to 6 are the opmode, bits 7 to 10
are the alumode port, bit 11 is the carry_in port, bits 12 to 14 are the carry_in_sel port,
and bits 15-19 are the inmode bits. This option should be used when the opmode block is used to
generate a DSP48E instruction.

Provide c port: when selected, the c port is made available. Otherwise, the c port is tied to '0'.

Provide global reset port: when selected, the port rst is made available. This port is connected to all
available reset ports based on the pipeline selections.

Provide global enable port: when selected, the optional en port is made available. This port is
connected to all available enable ports based on the pipeline selections.

Provide pcin port: when selected, the pcin port is exposed. The pcin port must be connected to
the pcout port of another DSP48 block.
System Generator for DSP Reference Guide www.xilinx.com 181
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=181

Chapter 1: Xilinx Blockset
Provide carry cascade in port: when selected, the carry cascade in port is exposed. This port can
only be connected to a carry cascade out port on another DSP48E block.

Provide multiplier sign cascade in port: when selected, the multiplier sign cascade in port
(multsigncascin) is exposed. This port can only be connected to a multiplier sign cascade out port of
another DSP48E block.

Provide carryout port: when selected, the carryout output port is made available. When the
mode of operation for the adder/subtractor is set to one 48-bit adder, the carryout port is 1-bit
wide. When the mode of operation is set to two 24 bit adders, the carryout port is 2 bits wide. The
MSB corresponds to the second adder's carryout and the LSB corresponds to the first adder's
carryout. When the mode of operation is set to four 12 bit adders, the carryout port is 4 bits wide
with the bits corresponding to the addition of the 48 bit input split into 4 12-bit sections.

Provide pattern detect port: when selected, the pattern detection output port is provided. When the
pattern, either from the mask or the c register, is matched the pattern detection port is set to '1'.

Provide pattern bar detect port: when selected, the pattern bar detection (patternbdetect) output
port is provided. When the inverse of the pattern, either from the mask or the c register, is matched
the pattern bar detection port is set to '1'.

Provide overflow port: when selected, the overflow output port is provided. This port indicates
when the operation in the DSP48E has overflowed beyond the bit P[N] where N is between 1 and 46.
N is determined by the number of 1s in the mask whether set by the GUI mask field or the c port
input.

Provide underflow port: when selected, the underflow output port is provided. This port indicates
when the operation in the DSP48E has underflowed. Underflow occurs when the number goes
below –P[N] where N is determined by the number of 1s in the mask whether set by the GUI mask
field or the c port input.

Provide ACOUT port: when selected, the acout output port is made available. The acout port
must be connected to the acin port of another DSP48E block.

Provide BCOUT port: when selected, the bcout output port is made available. The bcout port
must be connected to the bcin port of another DSP48E block.

Provide PCOUT port: when selected, the pcout output port is made available. The pcout port
must be connected to the pcin port of another DSP48 block.

Provide multiplier sign cascade out port: when selected, the multiplier sign cascade out port
(multsigncascout) is made available. This port can only be connected to the multiplier sign cascade
in port of another DSP48E block and is used to support 96-bit accumulators/adders and subtracters
which are built from two DSP48Es.

Provide carry cascade out port: when selected, the carry cascade out port (carrycascout) is
made available. This port can only be connected to the carry cascade in port of another DSP48E
block.

Pipelining tab

Parameters specific to the Pipelining tab are:

 Length of a/acin pipeline: specifies the length of the pipeline on input register A. A pipeline
of length 0 removes the register on the input.

 Length of b/bCIN pipeline: specifies the length of the pipeline for the b input whether it is
read from b or bcin.
182 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=182

DSP48E1
 Length of acout pipeline: specifies the length of the pipeline between the a/acin input and
the acout output port. A pipeline of length 0 removes the register from the acout pipeline
length. Must be less than or equal to the length of the a/acin pipeline.

 Length of bcout pipeline: specifies the length of the pipeline between the b/bcin input and the
bcout output port. A pipeline of length 0 removes the register from the bcout pipeline length.
Must be less than or equal to the length of the b/bcin pipeline.

 Pipeline c: indicates whether the input from the c port should be registered.

 Pipeline p: indicates whether the outputs p and pcout should be registered.

 Pipeline multiplier: indicates whether the internal multiplier should register its output.

 Pipeline opmode: indicates whether the opmode port should be registered.

 Pipeline alumode: indicates whether the alumode port should be registered.

 Pipeline carry in: indicates whether the carry in port should be registered.

 Pipeline carry in select: indicates whether the carry in select port should be registered

 Pipeline preadder input register d: indicates to add a pipeline register to the d input.

 Pipeline preadder output register ad: indicates to add a pipeline register to the ad output.

 Pipeline INMODE register: indicates to add a pipeline register to the INMODE input.

Reset/Enable Ports

Parameters specific to the Reset/Enable tab are:

Provide Reset Ports

 Reset port for a/acin: when selected, a port rst_a is made available. This resets the pipeline
register for port a when set to '1'.

 Reset port for b/bcin: when selected, a port rst_b is made available. This resets the pipeline
register for port b when set to '1'.

 Reset port for c: when selected, a port rst_c is made available. This resets the pipeline register
for port c when set to '1'.

 Reset port for multiplier: when selected, a port rst_m is made available. This resets the
pipeline register for the internal multiplier when set to '1'.

 Reset port for P: when selected, a port rst_p is made available. This resets the output register
when set to '1'.

 Reset port for carry in: when selected, a port rst_carryin is made available. This resets the
pipeline register for carry in when set to '1'.

 Reset port for alumode: when selected, a port rst_alumode is made available. This resets the
pipeline register for the alumode port when set to '1'.

 Reset port for controls (opmode and carry_in_sel): when selected, a port rst_ctrl is made
available. This resets the pipeline register for the opmode register (if available) and the
carry_in_sel register (if available) when set to '1'.

 Reset port for d and ad:

 Reset port for INMODE:

Provide Enable Ports

 Enable port for first a/acin register: when selected, an enable port ce_a1 for the first a
pipeline register is made available.

 Enable port for second a/acin register: when selected, an enable port ce_a2 for the second a
pipeline register is made available.
System Generator for DSP Reference Guide www.xilinx.com 183
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=183

Chapter 1: Xilinx Blockset
 Enable port for first b/bcin register: when selected, an enable port ce_b1 for the first b
pipeline register is made available.

 Enable port for second b/bcin register: when selected, an enable port ce_b2 for the second b
pipeline register is made available.

 Enable port for c: when selected, an enable port ce_c for the port C register is made available.

 Enable port for multiplier: when selected, an enable port ce_m for the multiplier register is
made available.

 Enable port for p: when selected, an enable port ce_p for the port P output register is made
available.

 Enable port for carry in: when selected, an enable port ce_carry_in for the carry in register is
made available.

 Enable port for alumode: when selected, an enable port ce_alumode for the alumode register
is made available.

 Enable port for multiplier carry in: when selected, an enable port mult_carry_in for the
multiplier register is made available.

 Enable port for controls (opmode and carry_in_sel): when selected, the enable port ce_ctrl
is made available. The port ce_ctrl controls the opmode and carry in select registers.

 Enable port for d: when selected, an enable port is added input register d.

 Enable port for ad: when selected, an enable port is add for the preadder output register ad.

 Enable port for INMODE: when selected, an enable port is added for the INMODE register.

Implementation

Parameters specific to the Implementation tab are:

 Use synthesizable model: when selected, the DSP48E is implemented from an RTL
description which might not map directly to the DSP48E hardware. This is useful if a design
using the DSP48E block is targeted at device families that do not contain DSP48E hardware
primitives.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

See Also
The following topics give valuable insight into using and understanding the DSP48 block:

Virtex-6 FPGA DSP48E1 Slice User Guide

DSP48 Macro

Generating Multiple Cycle-True Islands for Distinct Clocks

Xilinx XtremeDSP™
184 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/products/design_resources/dsp_central/grouping/index.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=184

Dual Port RAM
Dual Port RAM
This block is listed in the following Xilinx Blockset libraries: Control Logic, Memory, Floating-
Point and Index.

The Xilinx Dual Port RAM block implements a random access memory
(RAM). Dual ports enable simultaneous access to the memory space at
different sample rates using multiple data widths.

Block Interface
The block has two independent sets of ports for simultaneous reading and writing. Independent
address, data, and write enable ports allow shared access to a single memory space. By default, each
port set has one output port and three input ports for address, input data, and write enable.
Optionally, you can also add a port enable and synchronous reset signal to each input port set.

Form Factors

The Dual Port RAM block also supports various Form Factors (FF). Form factor is defined as:

FF = WB / WA where WB is data width of Port B and WA is Data Width of Port A.

The Depth of port B (DB) is inferred from the specified form factor as follows:

DB = DA / FF.

The data input ports on Port A and B can have different arithmetic type and binary point position for
a form factor of 1. For form factors greater than 1, the data input ports on Port A and Port B should
have an unsigned arithmetic type with binary point at 0. The output ports, labeled A and B, have the
same types as the corresponding input data ports.

The location in the memory block can be accessed for reading or writing by providing the valid
address on each individual address port. A valid address is an unsigned integer from 0 to d-1, where
d denotes the RAM depth (number of words in the RAM) for the particular port. An attempt to read
past the end of the memory is caught as an error in simulation. The initial RAM contents can be
specified through a block parameter. Each write enable port must be a boolean value. When the WE
port is 1, the value on the data input is written to the location indicated by the address line.

Write Mode

The output during a write operation depends on the write mode. When the WE is 0, the output port
has the value at the location specified by the address line. During a write operation (WE asserted),
the data presented on the input data port is stored in memory at the location selected by the port's
address input. During a write cycle, you can configure the behavior of each data out port A and B to
one of the following choices:

 Read after write

 Read before write

 No read on write
System Generator for DSP Reference Guide www.xilinx.com 185
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=185

Chapter 1: Xilinx Blockset
The write modes can be described with the help of the figure below. In the figure, the memory has
been set to an initial value of 5 and the address bit is specified as 4. When using No read on write
mode, the output is unaffected by the address line and the output is the same as the last output when
the WE was 0. For the other two modes, the output is obtained from the location specified by the
address line, and hence is the value of the location being written to. This means that the output can
be the old value which corresponds to Read after write.
186 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=186

Dual Port RAM
Collision Behavior

The result of simultaneous access to both ports is described below:

Read-Read Collisions

If both ports read simultaneously from the same memory cell, the read operation is successful.

Write-Write Collisions

If both ports try to write simultaneously to the same memory cell, both outputs are marked as invalid
(nan).

Write-Read Collisions

This collision occurs when one port writes and the other reads from the same memory cell. While
the memory contents are not corrupted, the validity of the output data on the read port depends on
the Write Mode of the write port.

 If the write port is in Read before write mode, the other port can reliably read the old memory
contents.

 If the write port is in Read after write or No read on write, data on the output of the read port
is invalid (nan).

You can set the Write Mode of each port using the Advanced tab of the block parameters dialog box.

Maximum Timing Performance

When implementing dual port RAM blocks on Virtex®4, Virtex-5, Virtex-6 and Spartan®-3A DSP
devices, maximum timing performance is possible if the following conditions are satisfied:

 The option Provide synchronous reset port for port A output register is un-checked.

 The option Provide synchronous reset port for port B output register is un-checked.

 The option Depth is less than 16,384.

 The option Latency is set to 2 or higher.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

 Depth: specifies the number of words in the memory for Port A, which must be a positive
integer. The Port B depth is inferred from the form factor specified by the input data widths.

 Initial value vector: specifies the initial memory contents. The size and precision of the
elements of the initial value vector are based on the data format specified for Port A. When the
vector is longer than the RAM, the vector's trailing elements are discarded. When the RAM is
longer than the vector, the RAM's trailing words are set to zero. The initial value vector is
saturated and rounded according to the precision specified on the data port A of RAM.

 Memory Type: option to select between block and distributed RAM. The distributed dual port
RAM is always set to use port A in Read Before Write mode and port B in read-only mode.

 Initial value for port A output Register: specifies the initial value for port A output register.
The initial value is saturated and rounded according to the precision specified on the data port
System Generator for DSP Reference Guide www.xilinx.com 187
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=187

Chapter 1: Xilinx Blockset
A of RAM. The option to set initial value is available only for Spartan®-3, Virtex®-4, Virtex-
5, Virtex-6, and Spartan-3A DSP devices.

 Initial value for port B output register: specifies the initial value for port B output register.
The initial value is saturated and rounded according to the precision specified on the data port
B of RAM. The option to set initial value is available only for Spartan®-3, Virtex-4, Virtex-5,
Virtex-6,and Spartan-3A DSP devices.

 Provide synchronous reset port for port A output register: when selected, allows access to
the reset port available on the port A output register of the Block RAM. The reset port is
available only when the latency of the Block RAM is set to 1.

 Provide synchronous reset port for port B output register: when selected, allows access to
the reset port available on the port B output register of the Block RAM. The reset port is
available only when the latency of the Block RAM is set to 1.

 Provide enable port for port A: when selected, allows access to the enable port for port A.
The enable port is available only when the latency of the block is greater than or equal to 1.

 Provide enable port for port B: when selected, allows access to the enable port for port B.
The enable port is available only when the latency of the block is greater than or equal to 1.

Advanced tab

Parameters specific to the Advanced tab are:

Port A:

 Read after write

 Read before write

 No read on write

Port B:

 Read after write

 Read before write

 No read on write

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
188 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=188

Dual Port RAM
Xilinx LogiCORE

This block always uses a Xilinx LogiCORE™: Dual Port Block Memory or Distributed Memory.
For the dual port block memory, the address width must be equal to ceil(log2(d)) where d denotes
the memory depth. The maximum width of data words in the block memory depends on the depth
specified; the maximum depth depends on the device family targeted. The tables above provide the
maximum data word width for a given block memory depth.

LogiCORE™ Documentation
LogiCORE IP Block Memory Generator v6.3

LogiCORE IP Distributed Memory Generator v6.3

LogiCORE IP Floating-Point Operator v6.1

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6,
Spartan-3E/XA, Spartan-3/XA, Spartan-3A/3AN/3A DSP

Floating-Point support is restricted to the following devices:

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 189
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=blk_mem_gen;v=v6_3;d=blk_mem_gen_ds512.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=v6_3;d=dist_mem_gen_ds322.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=189

Chapter 1: Xilinx Blockset
Maximum Width for Various Depth Ranges (Virtex®/Virtex-E/Spartan®-3)

Width for Various Depth Ranges (Virtex-4/Virtex-5/Spartan-3A DSP)

When the distributed memory parameter is selected, LogiCORE™ Distributed Memory is used. The
depth must be between 16 and 65536, inclusive for Spartan®-3, Virtex®-4, Virtex-5, Virtex-6, and
Spartan-3A DSP devices; depth must be between 16 to 4096, inclusive for the other FPGA families.
The word width must be between 1 and 1024, inclusive.

Depth Width

2 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Depth Width

2 to 8192 256

8193 to 16K 192

16K+1 to 32K 96

32K+1 to 64K 48

64K+1 to 128K 24

128K+1 to 256K 12

256K+1 to 512K 6

512K+1 to 1024K 3
190 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=190

EDK Processor
EDK Processor
This block is listed in the following Xilinx Blockset libraries: Index, Control Logic.

The EDK Processor block allows user logic developed in System Generator to be
attached to embedded processor systems created using the Xilinx Embedded
Development Kit (EDK).

The EDK Processor block supports two design flows: EDK pcore generation and
HDL netlisting. In the HDL netlisting flow, the embedded processor systems created

using the EDK are imported into System Generator models. In EDK pcore generation flow, the
System Generator models are exported as a pcore, which can be later imported into EDK projects
and attached to embedded processors.

Memory Map Interface
The EDK Processor block automatically generates a Shared Memory-based memory map interface
for the embedded processor and the user logic developed using System Generator to communicate
with each other. C device drivers are also automatically generated by the EDK Processor block in
order for the embedded processors to access the attached shared memories.

The figure above shows the memory map interface generated by the EDK Processor block. The user
logic developed in System Generator is connected to a set of shared memories. These shared
memories can be added to the EDK Processor block through the block dialog box described below.
The EDK Processor block automatically generates the other half of the shared memories and a
memory map interface that connects the shared memories to the MicroBlaze™ processor through
either a slave PLB v4.6 interface, o an AXI4 interface, depending on the user selection. By default,
the PLB v4.6 interface is selected. C device drivers are also automatically generated so that the
MicroBlaze processor can get access to these shared-memories, by their names or their locations on
the memory map interface.

The memory map interface is generated by the EDK Processor block in either the EDK pcore
generation flow or HDL netlisting flow. In the EDK pcore generation flow, only the hardware to the
right of the Bus Adaptor is netlisted into the exported pcore. In the HDL netlisting flow, all the
hardware shown in the figure above (including the MicroBlaze processor, the memory map
interface, the shared memories, and the user logic) is netlisted together, just like other System
Generator designs.

Refer to Hardware Software Co-Design for more details about the design and simulation techniques
offered by the EDK Processor block.
System Generator for DSP Reference Guide www.xilinx.com 191
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=191

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Configure processor for: The EDK Processor block can be configured for EDK pcore
generation or HDL netlisting. The EDK Import Wizard runs automatically when HDL
netlisting is chosen.

 Import: Launch the EDK Import Wizard.

 XPS project: Name of the imported XMP project file (.xmp file). Click Import... to browse
to a new XMP project file.

 Memory Map: A view that shows the shared memories associated with the processor. Right-
clicking on the Memory Map items reveals a menu of possible operations on the shared
memories: configure, delete, or re-synchronize the shared memories, refresh the tree view. Re-
synchronizing shared memories helps to keep the shared memories used by the user logic
consistent with the shared memories automatically generated by the EDK Processor block.

Note: The EDK Processor block does not support Shared Memory blocks with spaces in their names.

Click to add shared memories

Left-click to show details
192 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=192

EDK Processor
Advanced tab

Parameters specific to the Advanced tab are as follows:

Port Interface

Refer to the topic Exposing Processor Ports to System Generator for more information.

Implementation tab

Memory Map Interface

Parameters specific to the Implementation tab are as follows:

Memory Map Interface

 Bus Type: Select PLB v4.6 (Processor Local Bus v4.6) or AXI4 (Advanced eXtensible
Interface 4) as the peripheral bus. The default is PLB v4.6 (Processor Local Bus).

If PLB v4.6 is selected, the target MicroBlaze™ processor must have a PLB v4.6 bus
properly connected to the DPLB interface. If AXI4 is selected, the target MicroBlaze
processor must have an AXI interconnect properly connected to the M_AXI_DP interface.

For HDL netlisting mode, the bus type is automatically selected by System Generator when
importing an XPS project. The selection is determined based on the interconnect type of
the target MicroBlaze processor.

 Base Address: The bus address space is automatically adjusted and minimized. If you
know where you want the bus address space to start, enter the address and click Lock.
Otherwise, the base address is automatically determined for you.

 Dual Clocks: In the EDK Import flow, an extra clock will appear in the top-level netlist
called plb_clk (or axi_aclk for AXI4). The Processor and the PLB v4.6 bus adaptor
(AXI4 interconnect) is driven by the plb_clk, and the rest of the System Generator
design is driven by the sysgen_clk.

When netlisting for hardware co-simulation, the plb_clk (axi_aclk)is driven
directly by the board's input clock, while the sysgen_clk is controlled by the hardware
co-simulation module.

When exporting as a pcore, the generated pcore has an additional clock port that must be
connected in XPS to drive the System Generator design. Refer to topic Asynchronous
Support for EDK Processors for more information.

 Register Read-Back: Typically interfaces on the memory-map are uni-directional; the
registers can either be read-from or write-to from the processor. When Register Read-
Back is enabled, From-Registers that can be written-to from the processor can also be
read-from. Turning on this functionality will add more entries to the memory map and will
incur a speed and area penalty.
System Generator for DSP Reference Guide www.xilinx.com 193
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=193

Chapter 1: Xilinx Blockset
Constraints

 Constraint file: Pathname to the modified UCF file that automatically generated by
System Generator. After you successfully import an XPS project into System Generator,
and if the XPS project contains a UCF (User Constraint File), System Generator will parse
that UCF file and generate a modified UCF file based on the settings of the EDK
Processor block. You can examine the modifications made by System Generator by
clicking the View button to the right of the Constraint file text field. Should there be any
undesired modifications, you can modify the original UCF file and re-import the XPS
project.

 Inherit Device Type from System Generator: This option only works when the EDK
Processor block is set in HDL Import mode. When enabled, during netlisting time, System
Generator will push the device type selected on the System Generator Token to XPS and re-
synthesize a new processor subsystem. This option can cause netlisting to error out if the
imported XPS system uses board-specific resources or contain constraints that tie the system to
a specific board or device.

Software tab

 Initial Program Allows an Initial program (.ELF file) to be set on the EDK Processor block.
When a bitstream containing an EDK Processor is created using the Bitstream or Hardware
Co-simulation compilation target, the initial program file pointed to in this field is loaded onto
the program memory of the processor after the bitstream has been created.

 Enable Co-Debug with Xilinx SDK (Beta): When this option is checked (the default), there
is an extra co-debug circuit that is automatically inserted into the design under test. This co-
debug circuit allows System Generator and the MicroBlaze to get synchronized during
simulation.

You should uncheck this co-debug option when you are done with co-debug. This will remove
the co-debug circuit from the final netlist and bitstream.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Known Issues
 Only one EDK Processor block per design is supported.

 Only one MicroBlaze™ processor per design is supported. Use of multiple MicroBlaze
processors per design and the embedded PowerPC® processor are not supported.

 The Multiple Subsystem Generator block does not support designs that include an EDK
Processor block

 For the AXI4 interface, only in-frame burst transfers are supported; cross-frame burst transfer
is currently not supported. That is, each burst frame of data must be predicated by an address.

 AXI4 is not supported on Virtex 5, Spartan 5, and older devices.

Online Documentation for the MicroBlaze Processor
More information for the MicroBlaze™processor can be found at the following address:

http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
194 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=194

Expression
Expression
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Math,
and Index.

The Xilinx Expression block performs a bitwise logical expression.

The expression is specified with operators described in the table below. The number of
input ports is inferred from the expression. The input port labels are identified from the
expression, and the block is subsequently labeled accordingly. For example, the
expression: ~((a1 | a2) & (b1 ^ b2)) results in the following block with 4

input ports labeled 'a1', 'a2', 'b1', and 'b2'.

The expression is parsed and an equivalent statement is written in VHDL (or Verilog). Shown
below, in decreasing order of precedence, are the operators that can be used in the Expression block.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Expression: Bitwise logical expression.

 Align Binary Point: specifies that the block must align binary points automatically. If not
selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Operator Symbol

Precedence ()

NOT ~

AND &

OR |

XOR ^
System Generator for DSP Reference Guide www.xilinx.com 195
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=195

Chapter 1: Xilinx Blockset
Fast Fourier Transform 7.1
This block is listed in the following Xilinx Blockset libraries: DSP and Index.

The Xilinx Fast Fourier Transform 7.1 block implements an efficient algorithm
for computing the Discrete Fourier Transform (DFT).

The N-point (where, N = 2m, m = 3– 16) forward or inverse DFT (IDFT) is
computed on a vector of N complex values represented using data widths from
8 to 34, inclusive. The transform computation uses the Cooley-Tukey
decimate-in-time algorithm for the Burst I/O architectures, and Decimation In
Frequency for the Pipelined and Streaming I/O architectures. The FFT general
formula is explained below.

Theory of Operation
The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform (DFT)
of sample sizes that are a positive integer power of 2. The DFT of a sequence is defined as:

where N is the transform length and j is the square root of -1. The inverse DFT (IDFT) is:

Block Interface
Input Signals:

xn_re real component of input data stream. The signal driving xn_re can be a signed
data type of width S with binary point at S-1, where S is a value between 8
and 34, inclusive. eg: Fix_8_7, Fix_34_33

xn_im imaginary component of input data stream. The signal driving xn_im can be
a signed data type of width S with binary point at S-1, where S is a value
between 8 and 34, inclusive. eg: Fix_8_7, Fix_34_33

Note: Both xn_re and xn_im signals must have the same data type.

start marks the beginning of each data frame. The start signal can be asserted as
a pulse to start processing an input data frame or it can be tied to high. The
signal driving start must be Bool.
196 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=196

Fast Fourier Transform 7.1
Output Signals:

unload is used to read the output in natural order. The unload port is available only
for implementing the Radix-4 Burst I/O, Radix-2 Burst I/O, or Radix-2 Lite
Burst I/O architecture and Natural order output ordering is selected. The
unload signal is sampled after the block is done processing the input frame.
The block outputs data in natural order after the unload signal is asserted
high. The data is output a few cycles after unload is asserted - it is not
immediate. If the output ordering is Natural Order, the user must always use
unload to unload the data. If start is asserted before asserting unload, a new
transform is started and the last frame is overwritten. If output is in bit-/digit-
reversed order, there is no unload pin, and start must be asserted to both
unload the previous frame and load a new farme simultaneously.

fwd_inv 0 for inverse transform, 1 for forward transform. The signal driving fwd_inv
must be Bool. By default, the FFT is configured for forward transform.

fwd_inv_we when asserted, loads the transform type from the input port fwd for the next
input data frame. The signal driving fwd_inv_we must be Bool.

nfft provides the point size for the next input data frame. The nfft port is
available only when the checkbox for Run Time Configurable Transform
Length is selected. The signal driving nfft must be unsigned signal of width
5 with binary point at 0, UFix_5_0.

Point size of the transform: NFFT can be the size of the transform or any
smaller point size. For example, a 1024-point FFT can compute point sizes
1024, 512, 256, and so on. The value of NFFT is log2 (point size). This port
is only used with run-time configurable transform point size

nfft_we when asserted, resets the current operation of the block and loads the point
size from the input port nfft for the next input data frame. The nfft_we
port is available only when the checkbox for Run Time Configurable
Transform Length is selected. The signal driving nfft_we must be Bool.

cp_len provides the cyclic prefix length size for the next input data frame. The
cp_len port is available only when the checkbox for Cyclic prefix insertion
is selected and the Output ordering is set to Natural Order. The signal driving
cp_len must be unsigned signal of width N with binary point at 0, where N
is log2 of maximum number of sample points, UFix_N_0. cp_len can be
any number from zero to one less than the point size.

cp_len_we when asserted, loads the cyclix prefix length from the input port cp_len for
the next input data frame. The cp_len_we port is available only when the
checkbox for Cyclic prefix insertion is selected and the Output ordering is set
to Natural Order. The signal driving cp_len_we must be Bool

scale_sch provides the scaling schedule to be used for the input data frame. The
scale_sch port is available only for Fixed Point Scaled mode. Refer to
page 12 of the LogiCORE data sheet for a full description of this port.

scale_sch_we when asserted, loads the scaling schedule from the input port scale_sch
for the next input data frame. The scale_sch_we port is available only for
Fixed Point Scaled mode. The signal driving scale_sch_we must be Bool.
System Generator for DSP Reference Guide www.xilinx.com 197
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=197

Chapter 1: Xilinx Blockset
Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

xk_re real component of output data stream. xk_re is the same width and modes
as the input xn_re. The width of xk_re signal grows left from the xn_re
binary point in the Unscaled mode by (1+log2N) where N is the maximum
point size. This signal is valid only when dv goes high.

xk_im imaginary component of output data stream. xk_im is the same as the input
xn_im for Scaled and Block Floating Point mode. The width of xk_im
signal grows left from the xn_im binary point in the Unscaled mode by
(1+log2N) where N is the maximum point size. This signal is valid only when
dv goes high.

Note: Both xk_re and xk_im signals must have the same data type.

xn_index marks the index of the input data. The xn_index signal is marked as an
unsigned signal of width log2N with binary point at 0. (N is the maximum
point size.)

xk_index marks the index of the output data. The xk_index signal is marked as an
unsigned signal of width log2N with binary point at 0. (N is the maximum
point size.)

rfd active high after the start signal is asserted till the xn_index count
reaches N-1. (N is the maximum point size.) The rfd signal is marked as
Bool.

busy active high when the block is processing the current input data frame. The
busy signal is marked as Bool.

dv high indicates that the output data as valid. The dv signal is Bool.

edone active high one sample period before the block is ready to output the
processed data frame. edone is marked as Bool.

done active high when the block is ready to output the processed data frame. done
is marked as Bool.

cpv marks the output data as valid when cyclic prefix data is presented at the
output. The cpv port is available only when the checkbox for Cyclic prefix
insertion is selected and the Output ordering is set to Natural Order. cpv
signal is marked as Bool.

rfs active high when the block is ready to process the start input to begin data
loading. The rfs port is available only for Pipelined Streaming I/O
implementation, when the checkbox for Cyclic prefix insertion is selected and
the Output ordering is set to Natural Order. rfs signal is marked as Bool

ovflo marks the output data frame with active high signal if an overflow condition
was detected while processing the input data frame in the Scaled mode. This
signal is valid only when dv goes high. The ovflo signal is marked as Bool.

blk_exp specifies the exponent value for the output data frame in Block Floating Point
mode. The blk_exp signal only valid when dv goes high. blk_exp is
marked as an unsigned signal of width 5 with binary point at 0. This signal is
valid only when dv goes high.
198 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=198

Fast Fourier Transform 7.1
Basic tab

Parameters specific to the Basic tab are as follows:

 Transform length: one of N = 2(3..16) = 8 - 65536.

 Implementation Options: choose between pipelined,_streaming_io; radix_4_burst_io;
radix_2_burst_io; radix_2_lite_burst_io; or automatically_select.

Target clock frequency(MHz): Enter the target clock frequency.

Target data throughput(MSPS): Enter the target throughput.

Transform Length Options

 Run Time Configurable Transform Length: The transform length can be set through the nfft
port if this option is selected. Valid settings and the corresponding transform sizes are provided
in the section titled Transform Size in the associated LogiCORE IP Fast Fourier Transform
v7.1 Data Sheet

Advanced tab

Parameters specific to the Advanced tab are as follows:

Precision Options

 Phase factor width: choose a value between 8 and 34, inclusive to be used as bit widths for
phase factors.

Scaling options

Select between Unscaled, Scaled, and Block floating point output data types.

Rounding modes

 Rounding mode: choose between Truncation and Convergent rounding to be applied at the
output of each rank.

Output ordering

 Output ordering: choose between Bit/Digit reversed order or Natural order output.

 Cyclic prefix insertion: option to have optional input ports cp_len and cp_len_we for
dynamically specifying the cyclic prefix insertion for a transform output frame. Cyclic prefix
insertion takes a section of the output of the FFT and prefixes it to the beginning of the
transform. The resultant output data consists of the cyclic prefix (a copy of the end of the
output data) followed by the complete output data, all in natural order. Cyclic prefix insertion
is only available when output ordering is Natural Order.

Optional Pins

 en: Clock Enable – Activates an optional enable (en) pin on the block. When the enable signal
is not asserted, the block holds its current state until the enable signal is asserted again or the
reset signal is asserted. Reset signal has precedence over the enable signal. The enable signal
has to run at a multiple of the block's sample rate. The signal driving the enable port must be
Boolean.

 rst: Reset – Activates an optional reset (rst) pin on the block. When the reset signal is
asserted the block goes back to its initial state. Reset signal has precedence over the optional
enable signal available on the block. The reset signal has to run at a multiple of the block's
sample rate. The signal driving the reset port must be Boolean.

 ovflo: option to have an optional output port ovflo when Scaled scaling option is selected.

Input Data Timing
System Generator for DSP Reference Guide www.xilinx.com 199
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=xfft_ds260.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=xfft_ds260.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=199

Chapter 1: Xilinx Blockset
 No offset: the first sample pair is applied with the start pulse and read in on the transition
from xn_index=0 to xn_index=1.

 3 clock cycle offset (pre-v7.0 behavior): the first sample pair is read in on the transition from
xn_index=3 to xn_index=4 (3 cycles after start was applied).

Implementation tab

Parameters specific to the Implementation tab are as follows:

Memory Options

 Data: option to choose between Block RAM and Distributed RAM. This option is available
only for sample points 8 through 1024. This option is not available for Pipelined Streaming I/O
implementation.

 Phase factors: choose between Block RAM and Distributed RAM. This option is available
only for sample points 8 till 1024. This option is not available for Pipelined Streaming I/O
implementation.

 Number of stages using Block RAM: store data and phase factor in Block RAM and partially
in Distributed RAM. This option is available only for the Pipelined Streaming I/O
implementation.

 Reorder buffer: choose between Block RAM and Distributed RAM up to 1024 points
transform size.

 Hybrid Memories: click check box to Optimize Block RAM count using hybrid memories

Optimize Options

 Complex Multipliers: choose one of the following

 Use CLB logic

 Use 3-multiplier structure (resource optimization)

 Use 4-multiplier structure (performance optimization)

 Butterfly arithmetic: choose one of the following:

 Use CLB logic

 Use XTremeDSP slices

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Block Timing
To better understand the FFT blocks control behavior and timing, please consult the core data sheet.

LogiCORE™ Documentation

LogiCORE IP Fast Fourier Transform v7.1

LogiCORE IP Floating-Point Operator v6.1

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA

Floating-Point support is restricted to the following devices:
200 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=xfft_ds260.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=200

Fast Fourier Transform 7.1
Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 201
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=201

Chapter 1: Xilinx Blockset
Fast Fourier Transform 8.0
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP, Floating-Point and Index.

The Xilinx Fast Fourier Transform 8.0 block implements the
Cooley-Tukey FFT algorithm, a computationally efficient
method for calculating the Discrete Fourier Transform
(DFT). In addition, the block provides an AXI4-Stream-
compliant interface for Virtex-6 and Spartan-6 devices.

The FFT computes an N-point forward DFT or inverse DFT
(IDFT) where, N = 2m, m = 3– 16. For fixed-point inputs, the
input data is a vector of N complex values represented as dual
bx-bit two’s complement numbers, that is, bx bits for each of
the real and imaginary components of the data sample, where
bx is in the range 8 to 34 bit, inclusive. Similarly, the phase
factors bw can be 8 to 34 bits wide.

For single-precision floating-point inputs, the input data is a
vector of N complex values represented as dual 32-bit

floating-point numbers with the phase factors represented as 24- or 25-bit fixed-point numbers.

Refer to the topic AXI Interface for more detailed information on the AXI Interface.

Theory of Operation
The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform (DFT)
of sample sizes that are a positive integer power of 2. The DFT of a sequence is defined as:

where N is the transform length and j is the square root of -1. The inverse DFT (IDFT) is:

AXI Ports that are Unique to this Block

This Sysgen Generator block exposes the AXI CONFIG channel as a group of separate ports based
on sub-field names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

config_tdata_scale_sch A sub-field port that represents the Scaling Schedule field in the Configuration Channel
vector. Refer to the LogiCORE IP Fast Fourier Transform v8.0 Product Specification
starting on page 51 for an explanation of the bits in this field.

config_tdata_fwd_inv A sub-field port that represents the Forward Inverse field in the Configuration Channel
vector. Refer to the LogiCORE IP Fast Fourier Transform v8.0 Product Specification
starting on page 50 for an explanation of the bits in this field.

config_tdata_nfft A sub-field port that represents the Transform Size (NFFT) field in the Configuration
Channel vector. Refer to the LogiCORE IP Fast Fourier Transform v8.0 Product
Specification starting on page 50 for an explanation of the bits in this field.
202 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=202

Fast Fourier Transform 8.0
This Sysgen Generator block exposes the AXI DATA channel as separate ports based on the real and
imaginary sub-field names. The sub-field ports are described as follows:

DATA Channel Input Signals:

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Transform Length

 Transform_length: one of N = 2(3..16) = 8 - 65536.

Implementation Options

 Target Clock Frequency(MHz): Enter the target clock frequency.

 Target Data Throughput(MSPS): Enter the target throughput.

 Implementation Options: choose between automatically_select, pipelined,_streaming_io;
radix_4_burst_io; radix_2_burst_io; or radix_2_lite_burst_io.

Transform Length Options

Run Time Configurable Transform Length: The transform length can be set through the nfft port
if this option is selected. Valid settings and the corresponding transform sizes are provided in the
section titled Transform Size in the LogiCORE IP Fast Fourier Transform v8.0 Product
Specification

Advanced tab

Parameters specific to the Advanced tab are as follows:

Precision Options

config_tdata_cp_len A sub-field port that represents the Cyclic Prefix Length (CP_LEN) field in the
Configuration Channel vector. Refer to the LogiCORE IP Fast Fourier Transform v8.0
Product Specificationstarting on page 50 for an explanation of the bits in this field.

data_tdata_xn_im Represents the imaginary component of the Data Channel. The signal driving xn_im can be
a signed data type of width S with binary point at S-1, where S is a value between 8 and 34,
inclusive. eg: Fix_8_7, Fix_34_33.

Note: Both xn_re and xn_im signals must have the same data type.

Refer to the LogiCORE IP Fast Fourier Transform v8.0 Product Specificationstarting on
page 53 for an explanation of the bits in this field.

data_tdata_xn_re Represents the real component of the Data Channel. The signal driving xn_re can be a signed
data type of width S with binary point at S-1, where S is a value between 8 and 34, inclusive.
eg: Fix_8_7, Fix_34_33.

Note: Both xn_re and xn_im signals must have the same data type.

Refer to the LogiCORE IP Fast Fourier Transform v8.0 Product Specificationstarting on
page 53 for an explanation of the bits in this field.
System Generator for DSP Reference Guide www.xilinx.com 203
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=203

Chapter 1: Xilinx Blockset
 Phase Factor Width: choose a value between 8 and 34, inclusive to be used as bit widths for
phase factors.

Scaling Options

Select between Unscaled, Scaled, and Block Floating Point output data types.

Rounding Modes

 Truncation to be applied at the output of each rank

 Convergent Rounding to be applied at the output of each rank.

Control Signals

 ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the core are
enabled by this control signal.

 ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN. A
minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the core, but the response to the pulse is
not in the cycle immediately following.

Output Ordering

 Cyclic Prefix Insertion: Cyclic prefix insertion takes a section of the output of the FFT and
prefixes it to the beginning of the transform. The resultant output data consists of the cyclic
prefix (a copy of the end of the output data) followed by the complete output data, all in natural
order. Cyclic prefix insertion is only available when output ordering is Natural Order.

When cyclic prefix insertion is used, the length of the cyclic prefix can be set frame-by-frame
without interrupting frame processing. The cyclic prefix length can be any number of samples
from zero to one less than the point size. The cyclic prefix length is set by the CP_LEN field in
the Configuration channel. For example, when N = 1024, the cyclic prefix length can be from
0 to 1023 samples, and a CP_LEN value of 0010010110 produces a cyclic prefix consisting of
the last 150 samples of the output data.

 Output ordering - choose between Bit/Digit Reversed Order or Natural Order output.

Throttle Schemes

Select the trade off between performance and data timing requirements.

 Real Time: This mode typically gives a smaller and faster design, but has strict constraints on
when data must be provided and consumed

 Non Real Time: This mode has no such constraints, but the design might be larger and slower.

Optional Output Fields

 XK_INDEX: The XK_INDEX field (if present in the Data Output channel) gives the sample
number of the XK_RE/XK_IM data being presented at the same time. In the case of natural
order outputs, XK_INDEX increments from 0 to (point size) -1. When bit reversed outputs are
used, XK_INDEX covers the same range of numbers, but in a bit (or digit) reversed manner

 OVFLO: The Overflow (OVFLO) field in the Data Output and Status channels is only
available when the Scaled arithmetic is used. OVFLO is driven High during unloading if any
point in the data frame overflowed.

For a multichannel core, there is a separate OVFLO field for each channel. When an overflow
occurs in the core, the data is wrapped rather than saturated, resulting in the transformed data
becoming unusable for most applications

Block Icon Display
204 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=204

Fast Fourier Transform 8.0
Display shortened port names: On by default. When unchecked, data_tvalid, for example,
becomes m_axis_data_tvalid.

Implementation tab

Parameters specific to the Implementation tab are as follows:

Memory Options

 Data: option to choose between Block RAM and Distributed RAM. This option is available
only for sample points 8 through 1024. This option is not available for Pipelined Streaming I/O
implementation.

 Phase Factors: choose between Block RAM and Distributed RAM. This option is available
only for sample points 8 till 1024. This option is not available for Pipelined Streaming I/O
implementation.

 Number Of Stages Using Block RAM: store data and phase factor in Block RAM and
partially in Distributed RAM. This option is available only for the Pipelined Streaming I/O
implementation.

 Reorder Buffer: choose between Block RAM and Distributed RAM up to 1024 points
transform size.

 Hybrid Memories: click check box to Optimize Block RAM Count Using Hybrid
Memories

Optimize Options

 Complex Multipliers: choose one of the following

 Use CLB logic

 Use 3-multiplier structure (resource optimization)

 Use 4-multiplier structure (performance optimization)

 Butterfly Arithmetic: choose one of the following:

 Use CLB logic

 Use XTremeDSP Slices

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Block Timing

To better understand the FFT blocks control behavior and timing, please consult the core data sheet.

How to Migrate from Fast Fourier Transform 7.1 to Fast Fourier Transform 8.0

Design description

This example shows how to migrate from the non-AI4 FFT block to an AXI4 FFT block using the
same or similar block parameters. Some of the parameters between non-AXI4 and AXI4 versions
might not be identical exactly due to some changes in certain features and block interfaces. The
following model is used to illustrate the design migration between these blocks. For more detail,
refer to the datasheet of this IP core.
System Generator for DSP Reference Guide www.xilinx.com 205
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=205

Chapter 1: Xilinx Blockset
The Input Source subsystem generates tdata_imag, tdata_real, and dout_valid signals
for the Inverse FFT block. The outputs of these signals are then been reconstructed to the original
shapes by the Forward FFT.

Notice that there are some differences in latency between the AXI4 and non-AXI4 versions and this
is probably due to some internal differences in implementation. However, both the amplitude and
frequency are correct.
206 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=206

Fast Fourier Transform 8.0
Data path and control signals:

Data paths and control signals between the AXI and non-AXI versions are very similar and there are
no significant differences, some of which is described as follows:

config_tdata_fwd_inv: this signal replaces the fwd_inv signal, which is used to configure
the FFT as Inverse or Forward

config_tvalid: is used to signal that it is able to transfer the configuration data

data_tlast and data_tready: these two input control signals are not used and pulled to
proper logic.

data_tvalid: is used to gate both the input and output signals between Master and Slave blocks

LogiCORE™ Documentation

LogiCORE IP Fast Fourier Transform v8.0

LogiCORE IP Floating-Point Operator v6.1
System Generator for DSP Reference Guide www.xilinx.com 207
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=none;d=ds808_xfft.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=207

Chapter 1: Xilinx Blockset
Device Support

Virtex-7, Kintex-7, Virtex-6, Spartan-6
208 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=208

FDATool
FDATool
This block is listed in the following Xilinx Blockset libraries: DSP, Tools, and Index

The Xilinx FDATool block provides an interface to the FDATool software available as
part of the MATLAB Signal Processing Toolbox.

The block does not function properly and should not be used if the Signal Processing
Toolbox is not installed. This block provides a means of defining an FDATool object
and storing it as part of a System Generator model. FDATool provides a powerful

means for defining digital filters with a graphical user interface.

Example of Use
Copy an FDATool block into a subsystem where you would like to define a filter. Double-clicking
the block icon opens up an FDATool session and graphical user interface. The filter is stored in an
data structure internal to the FDATool interface block, and the coefficients can be extracted using
MATLAB helper functions provided as part of System Generator. The function call
xlfda_numerator('FDATool') returns the numerator of the transfer function (e.g., the
impulse response of a finite impulse response filter) of the FDATool block named 'FDATool'.
Similarly, the helper function xlfda_denominator('FDATool') retrieves the denominator
for a non-FIR filter.

A typical use of the FDATool block is as a companion to an FIR filter block, where the Coefficients
field of the filter block is set to xlfda_numerator('FDATool'). An example is shown in the
following diagram:

Note that xlfda_numerator() can equally well be used to initialize a memory block or a
'coefficient' variable for a masked subsystem containing an FIR filter.

This block does not use any hardware resources

FDA Tool Interface

Double-clicking the icon in your Simulink model opens up an FDATool session and its graphical
user interface. Upon closing the FDATool session, the underlying FDATool object is stored in the
UserData parameter of the Xilinx FDATool block. Use the xlfda_numerator() helper function
and get_param() to extract information from the object as desired.
System Generator for DSP Reference Guide www.xilinx.com 209
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=209

Chapter 1: Xilinx Blockset
FIFO
This block is listed in the following Xilinx Blockset libraries: Control Logic, Floating-Point,
Memory, and Index.

The Xilinx FIFO block implements an FIFO memory queue.

Values presented at the module's data-input port are written to the next available
empty memory location when the write-enable input is one. By asserting the read-
enable input port, data can be read out of the FIFO using the data output port (dout)
in the order in which they were written. The FIFO can be implemented using block
RAM,distributed RAM, SRL or built-in FIFO.

The full output port is asserted to one when no unused locations remain in the
module's internal memory. The percent_full output port indicates the percentage of the FIFO
that is full, represented with user-specified precision. When the empty output port is asserted the
FIFO is empty.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are:

FIFO Implementation:

Memory Type: This block implements FIFOs built from block RAM, distributed RAM, shift
registers, or the 7 series, Virtex-6 and Virtex-5 FPGA built-in FIFOs. Memory primitives are
arranged in an optimal configuration based on the selected width and depth of the FIFO. The
following table provides best-use recommendations for specific design requirements.

Performance Options:

 Standard FIFO: FIFO will operate in Standard Mode.

 First Word Fall Through: FIFO will operate in First-Word Fall-Through (FWFT) mode. The
First-Word Fall-Through feature provides the ability to look-ahead to the next word available
from the FIFO without issuing a read operation. When data is available in the FIFO, the first
word falls through the FIFO and appears automatically on the output. FWFT is useful in
applications that require low-latency access to data and to applications that require throttling
based on the contents of the data that are read. FWFT support is included in FIFOs created
with block RAM, distributed RAM, or built-in FIFOs in 7 series, Virtex-6 or Virtex-5 devices.
210 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=210

FIFO
Implementation Options:

 Use Embedded Registers (when possible):

In 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block RAM and FIFO macros, embedded
output registers are available to increase performance and add a pipeline register to the macros.
This feature can be leveraged to add one additional cycle of latency to the FIFO core (DOUT
bus and VALID outputs) or implement the output registers for FWFT FIFOs. The embedded
registers available in 7 series, and Virtex-6 FPGAs can be reset (DOUT) to a default or user
programmed value for common clock built-in FIFOs. See the topic Embedded Registers in
block RAM and FIFO Macros in the LogiCORE IP FIFO Generator 9.2 Product
Specification.

Depth: specifies the number of words that can be stored. Range 16-64K.

Bits of precision to use for %full signal: specifies the bit width of the %full port. The binary point
for this unsigned output is always at the top of the word. Thus, if for example precision is set to one,
the output can take two values: 0.0 and 0.5, the latter indicating the FIFO is at least 50% full.

Optional Ports:

 Provide reset port: Add reset port to the block.

 Provide enable port: Add enable port to the block.

 Provide data count port: Add data count port to the block. Provides the number of words in
the FIFO.

 Provide percent full port: Add a percent full output port to the block. Indicates the percentage
of the FIFO that is full using the user-specified precision. This optional port is turned on by
default for backward compatibility reasons.

 Provide almost empty port: Add almost empty (ae) port to the block.

 Provide almost full port: Add almost efull (af) port to the block.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP FIFO Generator 9.2

LogiCORE IP Floating-Point Operator v6.1

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4, Spartan-6,
Spartan-3A/3AN/3A DSP, Spartan-3E, Spartan-3

Floating-Point support is restricted to the following devices:

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Spartan-6,
System Generator for DSP Reference Guide www.xilinx.com 211
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=211

Chapter 1: Xilinx Blockset
FIR Compiler 5.0
This block is listed in the following Xilinx Blockset libraries: DSP and Index

The Xilinx FIR Compiler 5.0 block implements a Multiply Accumulate-based or
Distributed-Arithmetic FIR filter. It accepts a stream of input data and computes
filtered output with a fixed delay, based on the filter configuration. The MAC-
based filter is implemented using cascaded Xtreme DSP slices when available as
shown in the figure below.

Note: In rest of this topic, DSP48/DSP48E/DSP48A is referred to as Xtreme DSP slice.

Block Interface
The FIR Compiler 5.0 block can be configured to have a number of optional ports in addition to the
din and dout ports which appear in all filter configurations.

Input Ports

 din: data in port on the FIR Compiler. As shown below, the data for all channels is provided to
the FIR Compiler in a time multiplexed manner through this port.

 rst: synchronous reset port .

 en: synchronous enable port.

 nd: This port appears on the block only when the Hardware Oversampling Specification
format is specified as “Sample Period”.When this signal is asserted, the data sample presented
on the din port is accepted into the filter core. nd should not be asserted while rfd is Low; any
samples presented when rfd is Low are ignored by the core.

 filt_sel: Filter Selection input signal, F-bit wide where F = ceil(log2(filter sets)). Only present
when using multiple filter sets.

 coef_ld: Indicates the beginning of a new coefficient reload cycle.
212 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=212

FIR Compiler 5.0
 coef_we: Used for loading the coefficients into the filter to allow a host to halt loading until
ready to transmit on the interface.

 coef_din: Input data bus for reloading coefficients. K is the core coefficient width for most
filter types and coefficient width + 2 for interpolating filters where the symmetric coefficient
structure is exploited.

 coef_filt_sel: Filter Selection input signal for reloading coefficients, F-bit wide where F =
ceil(log2(filter sets)). Only present when using multiple filter sets and reloadable coefficients.

Output Ports

 dout: Note that for multi-channel implementations, this output is time-shared across all
channels.

 rdy: Indicates that a new filter output sample is available on the dout port.

 rfd: Indicator to signal that the core is ready to accept a new data sample.

 chan_in: indicates which channel the current input is destined for in multi-channel
implementations.

Note: When the FIR Compiler din port is sampled at a rate different than the Simulink System Period, the
chan_in input port is registered to ensure that the System Generator simulations are bit and cycle accurate.
This results in the chan_in output lagging behind the channel data on din port by 1 cycle. For example
when chan_in output says a value of 1, data sampled on din corresponds to channel 2. This behavior can
be corrected by going to the Chan In options area on the Detailed Implementation tab and selecting
“Generate chan_in value in advance” and then setting “Number of samples” to 1.

 chan_out : Standard binary count generated by the core that indicates the current filter output
channel number.

 dout_i: In-phase (I) data output component when using Hilbert transform.

 dout_q: Quadrature (Q) data output component when using Hilbert transform.

 data_valid: Indicator signal that can be used in conjunction with or in preference to rdy. The
signal indicates that a new filter output sample is available on the dout port that has been
generated from a complete data vector. Available for MAC-based FIR implementations

For more details, please refer to the LogiCORE™ data sheet

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Filter Specification tab

Parameters specific to the Filter Specification tab are as follows:

Filter Coefficients

 Coefficient Vector: Specifies the coefficient vector as a single MATLAB row vector. The
number of taps is inferred from the length of the MATLAB row vector. It is possible to enter
these coefficients using the FDATool block as well.

 Number of coefficients sets: The number of sets of filter coefficients to be implemented. The
value specified must divide without remainder into the number of coefficients.

Filter Specification

 Filter type:

 Single_Rate: The data rate of the input and the output are the same.
System Generator for DSP Reference Guide www.xilinx.com 213
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=213

Chapter 1: Xilinx Blockset
 Interpolation: The data rate of the output is faster than the input by a factor specified by
the Interpolation Rate value.

 Decimation: The data rate of the output is slower than the input by a factor specified in
the Decimation Rate Value.

 Interpolated: An interpolated FIR filter has a similar architecture to a conventional FIR
filter, but with the unit delay operator replaced by k-1 units of delay. k is referred to as the
zero-packing factor. The interpolated FIR should not be confused with an interpolation
filter. Interpolated filters are single-rate systems employed to produce efficient
realizations of narrow-band filters and, with some minor enhancements, wide-band filters
can be accommodated. The data rate of the input and the output are the same.

 Polyphase_Filter_Bank_Transmitter: Polyphase Filter Bank Transmitter structure is
used in conjunction with the Xilinx FFT Core to efficiently implement a multi-channel
frequency division multiplexed (FDM) digital transmitter.

 Polyphase_Filter_Bank_Receiver: Polyphase Filter Bank Transmitter structure is used
in conjunction with the Xilinx FFT Core to efficiently implement a multi-channel
frequency division multiplexed (FDM) digital transmitter.

 Rate change type:

This field is applicable to Interpolation and Decimation filter types.

 Integer: Specifies that the rate change is an integer factor.

 Fixed_Fractional: Specifies that the rate change is a fractional factor.

Note: Interpolation and Decimation filters that are configured in Fixed_Fractional mode, do not support
automatic input handshake and rate-propagation. The filter is therefore configured with Sample_period
set as the Hardware Oversampling mode and the input nd pin exposed, which specifies the input
handshaking. On the output side, no rate propagation takes place; all the output pins of the FIR Compiler
block are driven at the core rate, which is the system clock rate. See the Hardware Oversampling
Specification section in the document LogiCORE IP FIR Compiler v5.0 for details.

 Zero pack factor: Allows you to specify the number of 0’s inserted between the coefficient
specified by the coefficient vector. A zero packing factor of k inserts k-1 0s between the
supplied coefficient values. This parameter is only active when the Filter type is set to
Interpolated.

 Number of channels: The number of data channels to be processed by the FIR Compiler
block. The multiple channel data is passed to the core in a time-multiplexed manner. A
maximum of 64 channels is supported.

Hardware Oversampling Specification

 Select format:

 Maximum_Possible: Specifies that oversampling be automatically determined based on
the din sample rate.

 Sample_Period: Activates the Sample period dialog box below. Enter the Sample Period
specification. When this option is specified, the ND input port is placed on the block
interface. If this option is not specified, the ND input port is not displayed.

 Hardware Oversampling Rate: Activates the Hardware Oversampling Rate dialog box.
Enter the Hardware Oversampling Rate specification below.

Hardware Oversampling Rate: The hardware over sampling rate determines the degree of
parallelism. A rate of one produces a fully parallel filter. A rate of n (resp., n+1) for an n-bit input
signal produces a fully serial implementation for a non-symmetric (resp., symmetric) impulse
response. Intermediate values produce implementations with intermediate levels of parallelism.
214 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=fir_compiler_ds534.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=214

FIR Compiler 5.0
The figure below shows the timing diagram for Polyphase_Filter_Bank_Transmitter and an
example calculation for the Effective input sample period.

In the example shown above, there are 8 channels with a channel sample period of 16; this gives
an effective input sample period of 2. The effective input sample period and output sample
period will have the same value for the Polyphase Filter Bank Transmitter filter type.

The figure below demonstrates the input timing for a 3-Channel filter with the New Data port
selected. In this example there is a channel sample period of 9 giving an effective sample period
of 3. The input sample period, system clock period, interpolation and decimation rate determine
the number of available clock cycles for data sample processing, which directly affects the level
of parallelism in the core implementation.

Output Rate for Sample_Period mode For Sample_Period mode, no input handshake abstraction
and no rate-propagation takes place. All output pins of the FIR Compiler block are driven at the core
rate, which is the system clock rate. On the System Generator token under the General tab, if you
select Normalized sample periods as the Block icon display option, all the output pins on the FIR
Compiler block will display the rate as “1”. If you select Sample frequencies (MHz), then all the
output pins on the FIR Compiler block will display the effective core-rate, which is the system
clock-rate.
System Generator for DSP Reference Guide www.xilinx.com 215
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=215

Chapter 1: Xilinx Blockset
As an example, assume the following:

 Under the System Generator token Clocking tab:

 The FPGA clock period (ns) is specified as 2 (i.e. 500 MHz)

 The Simulink system period (sec) is specified as 1

 The Gateway In block specifies the Sample period as 2

 The FIR Compiler block specifies Hardware Oversampling format as Sample_Period

The output pins of the FIR Compiler block will display 1 as the normalized sample period and 500
MHz (the core rate, as well as the system clock rate) as sample frequency.

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Filter architecture Choose one of the following:

 Systolic_Multiply_Accumulate: This is a MAC-based architecture based on cascades of
multiplier/Xtreme DSP slices.

 Transpose_Multiply_Accumulate: The Transpose Multiply-Accumulate architecture
implements a Transposed Direct-Form filter.

 Distributed_Arithmetic: Distributed Arithmetic FIR.

Coefficient Options

 Use reloadable coefficients: Check to add the coefficient reload ports to the block.

Note: This block supports the xlGetReloadOrder function. See xlGetReloadOrder for details.

 Coefficients Structure: Specifies the coefficient structure. Depending on the coefficient
structure optimizations are made in the core to reduce the amount of hardware required to
implement a particular filter configuration. The selected structure can be any of the following:

 Inferred

 Non-Symmetric

 Symmetric

 Negative_Symmetric

 Half_Band

 Hilbert

The vector of coefficients specified must match the structure specified unless Inferred from
coefficients is selected in which case the structure is determined automatically from these
coefficients.

 Coefficient type: Specify Signed or Unsigned.

 Quantization: Specifies the quantization method to be used for quantizing the coefficients.
This can be set to one of the following:

 Integer_Coefficients

 Quantize_Only

 Maximize_Dynamic_Range

 Coefficient width: Specifies the number of bits used to represent the coefficients.

 Best Precision Fractional Bits:

 Coefficient fractional bits: Specifes the binary point location in the coefficients datapath
options
216 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=216

FIR Compiler 5.0
 Number of paths: Specifies the number of parallel data paths the filter is to process

 Output rounding mode: Choose one of the following:

 Full_Precision

 Truncate_LSBs

 Non_Symmetric_Rounding_Down

 Non_Symmetric_Rounding_Up

 Symmetric_Rounding_to_Zero

 Symmetric_Rounding_to_Infinity

 Convergent_Rounding_to_Even

 Convergent_Rounding_to_Odd

 Output width: Specify the output width. Edit box activated only if the Rounding mode is set
to a value other than Full_Precision.

 Allow rounding approximation: Check to specify that approximations can be used to save
resources when using Symmetric_Rounding.

Detailed Implementation tab

Parameters specific to the Detailed Implementaton tab are as follows:

 Optimization goal: Specifies if the core is required to operate at maximum possible speed
(“Speed” option) or minimum area (“Area” option). The “Area” option is the recommended
default and will normally achieve the best speed and area for the design, however in certain
configurations, the “Speed” setting might be required to improve performance at the expense
of overall resource usage (this setting normally adds pipeline registers in critical paths)

 Area

 Speed

Control Options

 rst: Provides a rst port on the block. This core always uses the sclr_deterministic option when
using rst. Please refer to the LogiCORE™ data sheet for more information on the
sclr_deterministion option.

 data_valid: Has a data valid output port.

 nd: Has a nd (new data) input port.

 ce: Provides a clock enable port on the block.

Chan In options

 Generate chan_in value in advance: Specifies that the filter will generate the CHAN_IN
value a number of input samples in advance.

 Number of samples: Specifies the number of inputs sample in advance that the CHAN_IN
value is generated.

Memory Options

The memory type for MAC implementations can either be user-selected or chosen automatically to
suit the best implementation options. Note that a choice of “Distributed” might result in a shift
register implementation where appropriate to the filter structure. Forcing the RAM selection to be
either Block or Distributed should be used with caution, as inappropriate use can lead to inefficient
resource usage - the default Automatic mode is recommended for most applications.

 Data buffer type: Specifies the type of memory used to store data samples.
System Generator for DSP Reference Guide www.xilinx.com 217
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=217

Chapter 1: Xilinx Blockset
 Coefficient buffer type: Specifies the type of memory used to store the coefficients.

 Input buffer type: Specifies the type of memory to be used to implement the data input buffer,
where present.

 Output buffer type: Specifies the type of memory to be used to implement the data output
buffer, where present.

 Preference for other storage: Specifies the type of memory to be used to implement general
storage in the datapath.

DSP Slice Column options

 Multi column support: For device families with DSP slices, implementations of large high
speed filters might require chaining of DSP slice elements across multiple columns. Where
applicable (the feature is only enabled for multi-column devices), you can select the method of
folding the filter structure across the multiple-columns, which can be Automatic (based on the
selected device for the project) or Custom (you select the length of the first and subsequent
columns).

 Column Configuration: Specifies the individual column lengths in a comma delimited list.
(See the data sheet for a more detailed explanation.)

 Inter-Column Pipe Length: Pipeline stages are required to connect between the columns,
with the level of pipelining required being depending on the required system clock rate, the
chosen device and other system-level parameters. The choice of this parameter is always left
for you to specify.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP FIR Compiler v5.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
218 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=fir_compiler_ds534.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=218

FIR Compiler 6.2
FIR Compiler 6.2
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP and Index

The Xilinx FIR Compiler 6.2 block provides users with a way to generate
highly parameterizable, area-efficient, high-performance FIR filters with an
AXI4-Stream-compliant interface.

Refer to the topic AXI Interface for more detailed information on the AXI
Interface.

AXI Ports that are Unique to this Block

This Sysgen Generator block exposes the AXI CONFIG channel as a group of separate ports based
on sub-field names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Filter Specification tab

Parameters specific to the Filter Specification tab are as follows:

Filter Coefficients

 Coefficient Vector: Specifies the coefficient vector as a single MATLAB row vector. The
number of taps is inferred from the length of the MATLAB row vector. If multiple coefficient
sets are specified, then each set is appended to the previous set in the vector. It is possible to
enter these coefficients using the FDATool block as well.

 Number of Coefficients Sets: The number of sets of filter coefficients to be implemented. The
value specified must divide without remainder into the number of coefficients.

Filter Specification

 Filter Type:

 Single_Rate: The data rate of the input and the output are the same.

 Interpolation: The data rate of the output is faster than the input by a factor specified by
the Interpolation Rate value.

 Decimation: The data rate of the output is slower than the input by a factor specified in
the Decimation Rate Value.

config_tdata_fsel A sub-field port that represents the fsel field in the Configuration Channel vector. fsel is used
to select the active filter set. This port is exposed when the number of coefficient sets is
greater than one. Refer to the FIR Compiler V6.2 Product Specification starting on page 5 for
an explanation of the bits in this field.
System Generator for DSP Reference Guide www.xilinx.com 219
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=219

Chapter 1: Xilinx Blockset
 Rate Change Type: This field is applicable to Interpolation and Decimation filter types. Used
to specify an Integer or Fixed_Fractional rate change.

Note: Interpolation and Decimation filters that are configured in Fixed_Fractional mode, do not support
automatic input handshake and rate-propagation. The filter is therefore configured with Sample_period
set as the Hardware Oversampling mode and the s_axis_data_tvalid input exposed, which specifies
the input handshaking. On the output side, no rate propagation takes place; all the output pins of the FIR
Compiler block are driven at the core rate, which is the system clock rate. See the Hardware Oversampling
Specification section in the document LogiCORE IP FIR Compiler v6.2 Product Specification for
details.

 Interpolation Rate Value: This field is applicable to all Interpolation filter types and
Decimation filter types for Fractional Rate Change implementations. The value provided in
this field defines the up-sampling factor, or P for Fixed Fractional Rate (P/Q) resampling filter
implementations.

 Decimation Rate Value: This field is applicable to the all Decimation and Interpolation filter
types for Fractional Rate Change implementations. The value provided in this field defines the
down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter implementations.

 Number of Channels: The number of data channels to be processed by the FIR Compiler
block. The multiple channel data is passed to the core in a time-multiplexed manner. A
maximum of 64 channels is supported.

Hardware Oversampling Specification

 Select format:

 Maximum_Possible: Specifies that oversampling be automatically determined based on
the din sample rate.

 Sample_Period: Activates the Sample period dialog box below. Enter the Sample Period
specification. Selecting this option exposes the s_axis_data_tvalid port (called ND port on
earlier versions of the core). With this port exposed, no input handshake abstraction and
no rate-propagation takes place.

 Hardware Oversampling Rate: Activates the Hardware Oversampling Rate dialog box.
Enter the Hardware Oversampling Rate specification below.

Hardware Oversampling Rate: The hardware over sampling rate determines the degree of
parallelism. A rate of one produces a fully parallel filter. A rate of n (resp., n+1) for an n-bit input
signal produces a fully serial implementation for a non-symmetric (resp., symmetric) impulse
response. Intermediate values produce implementations with intermediate levels of parallelism.

Output Rate for Sample_Period mode For Sample_Period mode, no input handshake abstraction
and no rate-propagation takes place. All output pins of the FIR Compiler block are driven at the core
rate, which is the system clock rate. On the System Generator token under the General tab, if you
select Normalized sample periods as the Block icon display option, all the output pins on the FIR
Compiler block will display the rate as “1”. If you select Sample frequencies (MHz), then all the
output pins on the FIR Compiler block will display the effective core-rate, which is the system
clock-rate.

As an example, assume the following:

 Under the System Generator token Clocking tab:

 The FPGA clock period (ns) is specified as 2 (i.e. 500 MHz)

 The Simulink system period (sec) is specified as 1

 The Gateway In block specifies the Sample period as 2

 The FIR Compiler block specifies Hardware Oversampling format as Sample_Period
220 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=220

FIR Compiler 6.2
The output pins of the FIR Compiler block will display 1 as the normalized sample period and 500
MHz (the core rate, as well as the system clock rate) as sample frequency.

Implementation tab

Parameters specific to the Implementation tab are as follows:

 Filter Architecture: Choose Systolic_Multiply_Accumulate or
Transpose_Multiply_Accumulate. The differences in these architectures are fully explained
in the associated FIR Compiler V6.2 Product Specification.

Coefficient Options

 Use Reloadable Coefficients: Check to add the coefficient reload ports to the block.

Note: The set of data loaded into the RELOAD channel will not take action until triggered by
a re-configuration synchronization event. Refer to the LogiCORE IP FIR Compiler v6.2
Product Specification starting on page 25 for a more detailed explanation of the RELOAD
Channel interface timing. This block supports the xlGetReloadOrder function. See
xlGetReloadOrder for details.

 Coefficient Type: Specify Signed or Unsigned.

 Quantization: Specifies the quantization method to be used for quantizing the coefficients.
This can be set to one of the following:

 Integer_Coefficients

 Quantize_Only

 Maximize_Dynamic_Range

 Coefficient Width: Specifies the number of bits used to represent the coefficients.

 Best Precision Fractional Bits: When selected, the coefficient fractional width is
automatically set to maximize the precision of the specified filter coefficients.

 Coefficient Fractional Bits: Specifies the binary point location in the coefficients datapath
options

 Coefficients Structure: Specifies the coefficient structure. Depending on the coefficient
structure optimizations are made in the core to reduce the amount of hardware required to
implement a particular filter configuration. The selected structure can be any of the following:

 Inferred

 Non-Symmetric

 Symmetric

 Negative_Symmetric

 Half_Band

The vector of coefficients specified must match the structure specified unless Inferred from
coefficients is selected in which case the structure is determined automatically from these
coefficients.

Datapath Options
System Generator for DSP Reference Guide www.xilinx.com 221
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=ds795_fir_compiler.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=221

Chapter 1: Xilinx Blockset
 Number of Paths: Specifies the number of parallel data paths the filter is to process. As shown
below, when more than one path is specified, the data_tdata input port is divided into sub-ports
that represent each parallel path:

 Output Rounding Mode: Choose one of the following:

 Full_Precision

 Truncate_LSBs

 Non_Symmetric_Rounding_Down

 Non_Symmetric_Rounding_Up

 Symmetric_Rounding_to_Zero

 Symmetric_Rounding_to_Infinity

 Convergent_Rounding_to_Even

 Convergent_Rounding_to_Odd

 Output Width: Specify the output width. Edit box activated only if the Rounding mode is set
to a value other than Full_Precision.

Detailed Implementation tab

Parameters specific to the Detailed Implementation tab are as follows:

 Optimization goal: Specifies if the core is required to operate at maximum possible speed
(“Speed” option) or minimum area (“Area” option). The “Area” option is the recommended
default and will normally achieve the best speed and area for the design, however in certain
configurations, the “Speed” setting might be required to improve performance at the expense
of overall resource usage (this setting normally adds pipeline registers in critical paths)

 Area

 Speed

Data Channel Options

 TLAST: TLAST can either be Not_Required, in which case the block will not have the port, or
Vector_Framing, where TLAST is expected to denote the last sample of an interleaved cycle of
data channels, or Packet_Framing, where the block does not interpret TLAST, but passes the
signal to the output DATA channel TLAST with the same latency as the datapath.

 Output TREADY: This field enables the data_tready port. With this port enabled, the block
will support back-pressure. Without the port, back-pressure is not supported, but resources are
saved and performance is likely to be higher.

 TUSER: Select one of the following options for the Input and the Output.

 Not_Required: Neither of the uses is required; the channel in question will not have a
TUSER field.
222 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=222

FIR Compiler 6.2
 User_Field: In this mode, the block ignores the content of the TUSER field, but passes the
content untouched from the input channel to the output channels.

 Chan_ID_Field: In this mode, the TUSER field identifies the time-division-multiplexed
channel for the transfer.

 User and Chan_ID_Field: In this mode, the TUSER field will have both a user field and
a chan_id field, with the chan_id field in the least significant bits. The minimal number of
bits required to describe the channel will determine the width of the chan_id field, e.g. 7
channels will require 3 bits.

Configuration Channel Options

 Synchronization Mode:

 On_Vector: Configuration packets, when available, are consumed and their contents
applied when the first sample of an interleaved data channel sequence is processed by the
block. When the block is configured to process a single data channel configuration packets
are consumed every processing cycle of the block.

 On_Packet: Further qualifies the consumption of configuration packets. Packets will only
be consumed once the block has received a transaction on the s_axis_data channel where
s_axis_data_tlast has been asserted.

• Configuration Method:

 Single: A single coefficient set is used to process all interleaved data channels.

 By_Channel: A unique coefficient set is specified for each interleaved data channel.

Reload Channel Options

 Num reload slots: Specifies the number of coefficient sets that can be loaded in advance.
Reloaded coefficients are only applied to the block once the configuration packet has been
consumed. (Range 1 to 256).

Control Options

 ACLKEN: Active-high clock enable. Available for MAC-based FIR implementations.

 ARESETn: Active-low synchronous clear input that always takes priority over ACLKEN. A
minimum ARESETn active pulse of two cycles is required, since the signal is internally
registered for performance. A pulse of one cycle resets the control and datapath of the core, but
the response to the pulse is not in the cycle immediately following.

DSP Slice Column Options

 Multi-Column Support: For device families with DSP slices, implementations of large high
speed filters might require chaining of DSP slice elements across multiple columns. Where
applicable (the feature is only enabled for multi-column devices), you can select the method of
folding the filter structure across the multiple-columns, which can be Automatic (based on the
selected device for the project) or Custom (you select the length of the first and subsequent
columns).

 Column Configuration: Specifies the individual column lengths in a comma delimited list.
(See the data sheet for a more detailed explanation.)

 Inter-Column Pipe Length: Pipeline stages are required to connect between the columns,
with the level of pipelining required being depending on the required system clock rate, the
chosen device and other system-level parameters. The choice of this parameter is always left
for you to specify.
System Generator for DSP Reference Guide www.xilinx.com 223
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=223

Chapter 1: Xilinx Blockset
Memory Options tab

The memory type for MAC implementations can either be user-selected or chosen automatically to
suit the best implementation options. Note that a choice of “Distributed” might result in a shift
register implementation where appropriate to the filter structure. Forcing the RAM selection to be
either Block or Distributed should be used with caution, as inappropriate use can lead to inefficient
resource usage - the default Automatic mode is recommended for most applications.

 Data Buffer Type: Specifies the type of memory used to store data samples.

 Coefficient Buffer Type: Specifies the type of memory used to store the coefficients.

 Input Buffer Type: Specifies the type of memory to be used to implement the data input
buffer, where present.

 Output Buffer type: Specifies the type of memory to be used to implement the data output
buffer, where present.

Preference for other storage: Specifies the type of memory to be used to implement general
storage in the datapath.

Advanced tab

Block Icon Display

Display shortened port names: On by default. When unchecked, data_tvalid, for example,
becomes m_axis_data_tvalid.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

How to Migrate from FIR Compiler 5.0 to FIR Compiler 6.2

Design description

This example shows how to migrate from the non-AXI4 FIR Compiler block to AXI4 FIR Compiler
block using the same or similar block parameters. Some of the parameters between non-AXI4 and
AXI4 versions might not be identical exactly due to some changes in certain features and block
interfaces. The following model is used to illustrate the design migration between these block. For
more detail, refer to the datasheet of this IP core.
224 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=224

FIR Compiler 6.2
Both FIR Compiler blocks are configured as a reloadable coefficient FIR filter. The first set of the
coefficients was specified and loaded by the core and the second set was loaded from an external
source.
System Generator for DSP Reference Guide www.xilinx.com 225
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=225

Chapter 1: Xilinx Blockset
The figure below shows output simulation from the non-AXI, reloadable FIR Compiler block.

Data Path and Control Signals:

As shown in the figure below, the sequence of events to reload new filter coefficients are quite
different between the non-AXI and AXI4 versions as briefly described next. Care must be taken to
ensure that the following loading sequences are taken place.

1. data_tdata: AXI FIR output data based on the initial set of coefficients specified by the core
([1,2,3,2,1])

2. reload_tdata and reload_tvalid: Next is to load a new set of coefficients ([7 8 9 8 7]) into the
reload_tdata input port. The reload_tvalid control signal must be high during this reload period.
In this case, it must be high for 5 clock cycles.

3. reload_tlast: this signal must be high on the last coefficient data to indicate that the last data has
been loaded

4. config_tvalid: finally, the reload data is now available for transfer. This control signal does not
have to strobe high immediately after the reload_tlast assertion
226 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=226

FIR Compiler 6.2
The figure below shows output simulation from the AXI4, reloadable FIR Compiler block.

LogiCORE™ Documentation

LogiCORE IP FIR Compiler v6.2

Device Support

Kintex-7, Virtex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 227
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=none;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=227

Chapter 1: Xilinx Blockset
FIR Compiler 6.3
This block is listed in the following Xilinx Blockset libraries: AXI4, DSP and Index

The Xilinx FIR Compiler 6.3 block provides users with a way to
generate highly parameterizable, area-efficient, high-performance FIR
filters with an AXI4-Stream-compliant interface.

Refer to the topic AXI Interface for more detailed information on the
AXI Interface.

AXI Ports that are Unique to this Block
This Sysgen Generator block exposes the AXI CONFIG channel as a group of separate ports based
on sub-field names. The sub-field ports are described as follows:

Configuration Channel Input Signals:

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Filter Specification tab

Parameters specific to the Filter Specification tab are as follows:

Filter Coefficients

 Coefficient Vector: Specifies the coefficient vector as a single MATLAB row vector. The
number of taps is inferred from the length of the MATLAB row vector. If multiple coefficient
sets are specified, then each set is appended to the previous set in the vector. It is possible to
enter these coefficients using the FDATool block as well.

 Number of Coefficients Sets: The number of sets of filter coefficients to be implemented. The
value specified must divide without remainder into the number of coefficients.

 Use Reloadable Coefficients: Check to add the coefficient reload ports to the block. The set of
data loaded into the reload channel will not take action until triggered by a re-configuration
synchronization event. Refer to the LogiCORE IP FIR Compiler v6.3 Product Specification
starting on page 25 for a more detailed explanation of the RELOAD Channel interface timing.
This block supports the xlGetReloadOrder function. See xlGetReloadOrder for details.

config_tdata_fsel A sub-field port that represents the fsel field in the Configuration Channel vector. fsel is used
to select the active filter set. This port is exposed when the number of coefficient sets is
greater than one. Refer to the LogiCORE IP FIR Compiler v6.3 Product Specification
starting on page 5 for an explanation of the bits in this field.
228 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=v6_3;d=ds795_fir_compiler.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=v6_3;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=228

FIR Compiler 6.3
Filter Specification

 Filter Type:

 Single_Rate: The data rate of the input and the output are the same.

 Interpolation: The data rate of the output is faster than the input by a factor specified by
the Interpolation Rate value.

 Decimation: The data rate of the output is slower than the input by a factor specified in
the Decimation Rate Value.

 Hilbert: Filter uses the Hilbert Transform.

 Interpolated: An interpolated FIR filter has a similar architecture to a conventional FIR
filter, but with the unit delay operator replaced by k-1 units of delay. k is referred to as the
zero-packing factor. The interpolated FIR should not be confused with an interpolation
filter. Interpolated filters are single-rate systems employed to produce efficient
realizations of narrow-band filters and, with some minor enhancements, wide-band filters
can be accommodated. The data rate of the input and the output are the same.

 Rate Change Type: This field is applicable to Interpolation and Decimation filter types. Used
to specify an Integer or Fixed_Fractional rate change.

Note: Interpolation and Decimation filters that are configured in Fixed_Fractional mode, do not support
automatic input handshake and rate-propagation. The filter is therefore configured with Sample_period
set as the Hardware Oversampling mode and the s_axis_data_tvalid input exposed, which specifies
the input handshaking. On the output side, no rate propagation takes place; all the output pins of the FIR
Compiler block are driven at the core rate, which is the system clock rate. See the Hardware Oversampling
Specification section in the document LogiCORE IP FIR Compiler v6.3 for details.

 Interpolation Rate Value: This field is applicable to all Interpolation filter types and
Decimation filter types for Fractional Rate Change implementations. The value provided in
this field defines the up-sampling factor, or P for Fixed Fractional Rate (P/Q) resampling filter
implementations.

 Decimation Rate Value: This field is applicable to the all Decimation and Interpolation filter
types for Fractional Rate Change implementations. The value provided in this field defines the
down-sampling factor, or Q for Fixed Fractional Rate (P/Q) resampling filter implementations.

 Zero pack factor: Allows you to specify the number of 0’s inserted between the coefficient
specified by the coefficient vector. A zero packing factor of k inserts k-1 0s between the
supplied coefficient values. This parameter is only active when the Filter type is set to
Interpolated.

Channel Specification tab
Parameters specific to the Channel Specification tab are as follows:

Interleaved Channel Specification

 Channel Sequence: Select Basic or Advanced. See the LogiCORE IP FIR Compiler v6.3
Product Specification for an explanation of the advanced channel specification feature.

 Number of Channels: The number of data channels to be processed by the FIR Compiler
block. The multiple channel data is passed to the core in a time-multiplexed manner. A
maximum of 64 channels is supported.

 Sequence ID List: A comma delimited list that specifies which channel sequences are
implemented.

Parallel Channel Specification
System Generator for DSP Reference Guide www.xilinx.com 229
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=v6_3;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=229

Chapter 1: Xilinx Blockset
 Number of Paths: Specifies the number of parallel data paths the filter is to process. As shown
below, when more than one path is specified, the data_tdata input port is divided into sub-ports
that represent each parallel path:

Hardware Oversampling Specification

 Select format:

 Maximum_Possible: Specifies that oversampling be automatically determined based on
the din sample rate.

 Sample_Period: Activates the Sample period dialog box below. Enter the Sample Period
specification. Selecting this option exposes the s_axis_data_tvalid port (called nd port on
earlier versions of the core). With this port exposed, no input handshake abstraction and
no rate-propagation takes place.

 Hardware Oversampling Rate: Activates the Hardware Oversampling Rate dialog box.
Enter the Hardware Oversampling Rate specification below.

Hardware Oversampling Rate: The hardware over sampling rate determines the degree of
parallelism. A rate of one produces a fully parallel filter. A rate of n (resp., n+1) for an n-bit input
signal produces a fully serial implementation for a non-symmetric (resp., symmetric) impulse
response. Intermediate values produce implementations with intermediate levels of parallelism.

Output Rate for Sample_Period mode For Sample_Period mode, no input handshake abstraction
and no rate-propagation takes place. All output pins of the FIR Compiler block are driven at the core
rate, which is the system clock rate. On the System Generator token under the General tab, if you
select Normalized sample periods as the Block icon display option, all the output pins on the FIR
Compiler block will display the rate as “1”. If you select Sample frequencies (MHz), then all the
output pins on the FIR Compiler block will display the effective core-rate, which is the system
clock-rate.

As an example, assume the following:

 Under the System Generator token Clocking tab:

 The FPGA clock period (ns) is specified as 2 (i.e. 500 MHz)

 The Simulink system period (sec) is specified as 1

 The Gateway In block specifies the Sample period as 2

 The FIR Compiler block specifies Hardware Oversampling format as Sample_Period

The output pins of the FIR Compiler block will display 1 as the normalized sample period and 500
MHz (the core rate, as well as the system clock rate) as sample frequency.
230 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=230

FIR Compiler 6.3
Implementation tab

Parameters specific to the Implementation tab are as follows:

 Filter Architecture: Choose Systolic_Multiply_Accumulate or
Transpose_Multiply_Accumulate. The differences in these architectures are fully explained
in the associated FIR Compiler V6.3 Product Specification.

Coefficient Options

 Coefficient Type: Specify Signed or Unsigned.

 Quantization: Specifies the quantization method to be used for quantizing the coefficients.
This can be set to one of the following:

 Integer_Coefficients

 Quantize_Only

 Maximize_Dynamic_Range

 Coefficient Width: Specifies the number of bits used to represent the coefficients.

 Best Precision Fractional Bits: When selected, the coefficient fractional width is
automatically set to maximize the precision of the specified filter coefficients.

 Coefficient Fractional Bits: Specifies the binary point location in the coefficients datapath
options

 Coefficients Structure: Specifies the coefficient structure. Depending on the coefficient
structure optimizations are made in the core to reduce the amount of hardware required to
implement a particular filter configuration. The selected structure can be any of the following:

 Inferred

 Non-Symmetric

 Symmetric

 Negative_Symmetric

 Half_Band

 Hilbert

The vector of coefficients specified must match the structure specified unless Inferred from
coefficients is selected in which case the structure is determined automatically from these
coefficients.

Datapath Options

 Output Rounding Mode: Choose one of the following:

 Full_Precision

 Truncate_LSBs

 Non_Symmetric_Rounding_Down

 Non_Symmetric_Rounding_Up

 Symmetric_Rounding_to_Zero

 Symmetric_Rounding_to_Infinity

 Convergent_Rounding_to_Even

 Convergent_Rounding_to_Odd

 Output Width: Specify the output width. Edit box activated only if the Rounding mode is set
to a value other than Full_Precision.
System Generator for DSP Reference Guide www.xilinx.com 231
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=231

Chapter 1: Xilinx Blockset
Detailed Implementation tab

Parameters specific to the Detailed Implementation tab are as follows:

 Filter Architecture

The following two filter architectures are supported.

 Systolic_Multiply_Accumulate

 Transpose_Multiply_Accumulate

 Optimization goal: Specifies if the core is required to operate at maximum possible speed
(“Speed” option) or minimum area (“Area” option). The “Area” option is the recommended
default and will normally achieve the best speed and area for the design, however in certain
configurations, the “Speed” setting might be required to improve performance at the expense
of overall resource usage (this setting normally adds pipeline registers in critical paths)

 Area

 Speed

 Speed_(Control_only)

 Speed_(Data_only)

Memory Options

The memory type for MAC implementations can either be user-selected or chosen automatically to
suit the best implementation options. Note that a choice of “Distributed” might result in a shift
register implementation where appropriate to the filter structure. Forcing the RAM selection to be
either Block or Distributed should be used with caution, as inappropriate use can lead to inefficient
resource usage - the default Automatic mode is recommended for most applications.

 Data Buffer Type: Specifies the type of memory used to store data samples.

 Coefficient Buffer Type: Specifies the type of memory used to store the coefficients.

 Input Buffer Type: Specifies the type of memory to be used to implement the data input
buffer, where present.

 Output Buffer type: Specifies the type of memory to be used to implement the data output
buffer, where present.

Preference for other storage: Specifies the type of memory to be used to implement general
storage in the datapath.

DSP Slice Column Options

 Multi-Column Support: For device families with DSP slices, implementations of large high
speed filters might require chaining of DSP slice elements across multiple columns. Where
applicable (the feature is only enabled for multi-column devices), you can select the method of
folding the filter structure across the multiple-columns, which can be Automatic (based on the
selected device for the project) or Custom (you select the length of the first and subsequent
columns).

 Column Configuration: Specifies the individual column lengths in a comma delimited list.
(See the data sheet for a more detailed explanation.)

 Inter-Column Pipe Length: Pipeline stages are required to connect between the columns,
with the level of pipelining required being depending on the required system clock rate, the
chosen device and other system-level parameters. The choice of this parameter is always left
for you to specify.
232 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=232

FIR Compiler 6.3
Interface tab

Data Channel Options

 TLAST: TLAST can either be Not_Required, in which case the block will not have the port, or
Vector_Framing, where TLAST is expected to denote the last sample of an interleaved cycle of
data channels, or Packet_Framing, where the block does not interpret TLAST, but passes the
signal to the output DATA channel TLAST with the same latency as the datapath.

 Output TREADY: This field enables the data_tready port. With this port enabled, the block
will support back-pressure. Without the port, back-pressure is not supported, but resources are
saved and performance is likely to be higher.

 TUSER: Select one of the following options for the Input and the Output.

 Not_Required: Neither of the uses is required; the channel in question will not have a
TUSER field.

 User_Field: In this mode, the block ignores the content of the TUSER field, but passes the
content untouched from the input channel to the output channels.

 Chan_ID_Field: In this mode, the TUSER field identifies the time-division-multiplexed
channel for the transfer.

 User and Chan_ID_Field: In this mode, the TUSER field will have both a user field and
a chan_id field, with the chan_id field in the least significant bits. The minimal number of
bits required to describe the channel will determine the width of the chan_id field, e.g. 7
channels will require 3 bits.

Configuration Channel Options

 Synchronization Mode:

 On_Vector: Configuration packets, when available, are consumed and their contents
applied when the first sample of an interleaved data channel sequence is processed by the
block. When the block is configured to process a single data channel configuration packets
are consumed every processing cycle of the block.

 On_Packet: Further qualifies the consumption of configuration packets. Packets will only
be consumed once the block has received a transaction on the s_axis_data channel where
s_axis_data_tlast has been asserted.

• Configuration Method:

 Single: A single coefficient set is used to process all interleaved data channels.

 By_Channel: A unique coefficient set is specified for each interleaved data channel.

Reload Channel Options

 Num reload slots: Specifies the number of coefficient sets that can be loaded in advance.
Reloaded coefficients are only applied to the block once the configuration packet has been
consumed. (Range 1 to 256).

Control Options

 ACLKEN: Active-high clock enable. Available for MAC-based FIR implementations.

 ARESETn (active low): Active-low synchronous clear input that always takes priority over
ACLKEN. A minimum ARESETn active pulse of two cycles is required, since the signal is
internally registered for performance. A pulse of one cycle resets the core, but the response to
the pulse is not in the cycle immediately following.
System Generator for DSP Reference Guide www.xilinx.com 233
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=233

Chapter 1: Xilinx Blockset
Advanced tab

Block Icon Display

Display shortened port names: On by default. When unchecked, data_tvalid, for example,
becomes m_axis_data_tvalid.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

How to Migrate from FIR Compiler 5.0 to FIR Compiler 6.3

Design description

This example shows how to migrate from the non-AXI4 FIR Compiler block to AXI4 FIR Compiler
block using the same or similar block parameters. Some of the parameters between non-AXI4 and
AXI4 versions might not be identical exactly due to some changes in certain features and block
interfaces. The following model is used to illustrate the design migration between these block. For
more detail, refer to the datasheet of this IP core.

Both FIR Compiler blocks are configured as a reloadable coefficient FIR filter. The first set of the
coefficients was specified and loaded by the core and the second set was loaded from an external
source.
234 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=234

FIR Compiler 6.3
The figure below shows output simulation from the non-AXI, reloadable FIR Compiler block.

Data Path and Control Signals:

As shown in the figure below, the sequence of events to reload new filter coefficients are quite
different between the non-AXI and AXI4 versions as are briefly described next. Care must be taken
to ensure that the following loading sequences are taken place.

1. data_tdata: AXI FIR output data based on the initial set of coefficients specified by the core
([1,2,3,2,1])

2. reload_tdata and reload_tvalid: Next is to load a new set of coefficients ([7 8 9 8 7]) into the
reload_tdata input port. The reload_tvalid control signal must be high during this reload period.
In this case, it must be high for 5 clock cycles.

3. reload_tlast: this signal must be high on the last coefficient data to indicate that the last data has
been loaded

4. config_tvalid: finally, the reload data is now available for transfer. This control signal does not
have to strobe high immediately after the reload_tlast assertion
System Generator for DSP Reference Guide www.xilinx.com 235
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=235

Chapter 1: Xilinx Blockset
The figure below shows output simulation from the AXI4, reloadable FIR Compiler block.

LogiCORE™ Documentation

LogiCORE IP FIR Compiler v6.3

Device Support

Kintex-7, Virtex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
236 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=v6_3;d=ds795_fir_compiler.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=236

From FIFO
From FIFO
This block is listed in the following Xilinx Blockset libraries: Shared Memory, Floating-Point and
Index.

The Xilinx From FIFO block implements the trailing half of a first-in-first-out memory
queue.

By asserting the read-enable input port re, data can be read from the FIFO using the data
output port dout. The empty output port is asserted when the FIFO is empty. The percent
full output port indicates the percentage of the FIFO that is full, represented with user-
specified precision.

The From FIFO is implemented in hardware using the FIFO Generator LogiCORE. System
Generator's hardware co-simulation interfaces allow the From FIFO block to be compiled and co-
simulated in FPGA hardware. When used in System Generator co-simulation hardware, shared
FIFOs facilitate high-speed transfers between the host PC and FPGA, and bolster the tool's real-time
hardware co-simulation capabilities.

During netlisting, each pair of From FIFO and To FIFO blocks with the same name are stitched
together as a BRAM-based FIFO block in the netlist. If a From FIFO or To FIFO block does not
form a pair with another block, it’s input and output ports are pushed to the top level of System
Generator design. A pair of matching blocks can exist anywhere in the hierarchy of the design,
however, if two or more From FIFIO or To FIFO blocks with the same name exist in the design,
then an error is issued.

For backward compatibility, you can set the MATLAB global variable xlSgSharedMemoryStitch
to “off” to bring System Generator back to the netlisting behavior before the 9.2 release. For
example, from the MATLAB command line, enter the following:

global xlSgSharedMemoryStitch;
xlSgSharedMemoryStitch = 'off';

Note: The notion of bit and cycle accuracy is preserved only within individual synchronous islands. The
shared FIFO block supports crossing clock domain boundaries and bit and cycle accuracy may not be
maintained.

Block Parameters

Basic tab

Parameters specific to the Basic tab are as follows:

 Shared memory name: name of the shared FIFO. All FIFOs with the same name share the
same physical FIFO.

 Ownership: indicates whether the memory is Locally owned or Owned elsewhere. A block
that is Locally owned is responsible for creating an instance of the FIFO. A block that is
Owned elsewhere attaches itself to a FIFO instance that has already been created.

FIFO Implementation

Memory Type: This block implements FIFOs built from block RAM, distributed RAM, shift
registers, or the 7 series, Virtex-6 and Virtex-5 FPGA built-in FIFOs. Memory primitives are
System Generator for DSP Reference Guide www.xilinx.com 237
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=237

Chapter 1: Xilinx Blockset
arranged in an optimal configuration based on the selected width and depth of the FIFO. The
following table provides best-use recommendations for specific design requirements.

Performance Options:

 Standard FIFO: FIFO will operate in Standard Mode.

 First Word Fall Through: FIFO will operate in First-Word Fall-Through (FWFT) mode. The
First-Word Fall-Through feature provides the ability to look-ahead to the next word available
from the FIFO without issuing a read operation. When data is available in the FIFO, the first
word falls through the FIFO and appears automatically on the output. FWFT is useful in
applications that require low-latency access to data and to applications that require throttling
based on the contents of the data that are read. FWFT support is included in FIFOs created
with block RAM, distributed RAM, or built-in FIFOs in the 7 series, Virtex-6 or Virtex-5
devices.

Implementation Options:

 Use Embedded Registers (when possible):

In 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block RAM and FIFO macros, embedded
output registers are available to increase performance and add a pipeline register to the macros.
This feature can be leveraged to add one additional cycle of latency to the FIFO core (DOUT
bus and VALID outputs) or implement the output registers for FWFT FIFOs. The embedded
registers available in 7 series, and Virtex-6 FPGAs can be reset (DOUT) to a default or user
programmed value for common clock built-in FIFOs. See the topic Embedded Registers in
block RAM and FIFO Macros in the LogiCORE IP FIFO Generator 9.2 Product
Specification.

Depth: specifies the number of words that can be stored. Range 16-64K.

Bits of precision to use for %full signal: specifies the bit width of the %full port. The binary point
for this unsigned output is always at the top of the word. Thus, if for example precision is set to one,
the output can take two values: 0.0 and 0.5, the latter indicating the FIFO is at least 50% full.

Optional Ports:

 Provide asynchronous reset port: Activates an optional asynchronous edge-triggered reset
(rst) port on the block. Prior to Release 11.2, this reset was level-triggered and the block would
remain in the reset mode if held high.

 Provide percent full port: Add a percent full output port to the block. Indicates the percentage
of the FIFO that is full using the user-specified precision. This optional port is turned on by
default for backward compatibility reasons.
238 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=238

From FIFO
Output tab

Output Type

 Specifies the data type of the output. Can be Fixed-point or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

 Single: specifies single precision (32 bits)

Parameters in this tab are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation

LogiCORE IP FIFO Generator 9.2

LogiCORE IP Floating-Point Operator v6.1

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3A/3AN/3A DSP, Spartan-3E, Spartan-3

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6

See Also
The following topics provide valuable insight into using and understanding the From FIFO block:

To FIFO
System Generator for DSP Reference Guide www.xilinx.com 239
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=239

Chapter 1: Xilinx Blockset
From Register
This block is listed in the following Xilinx Blockset libraries: Floating-Point and Index.

The Xilinx From Register block implements the trailing half of a D flip-flop based
register. The physical register can be shared among two designs or two portions of the
same design.

The block reads data from a register that is written to by the corresponding To Register
block. The dout port presents the output of the register. The bit width specified on the

mask must match the width of the corresponding To Register block.

Starting with the 9.2 release, during netlisting, each pair of From Register and To Register blocks
with the same name are stitched together as a single Register block in the netlist. If a From Register
or To Register block does not form a pair with another block, it’s input and output ports are pushed
to the top level of System Generator design. A pair of matching blocks can exist anywhere in the
hierarchy of the design, however, if two or more From Register or To Register blocks with the
same name exist in the design, then an error is issued.

For backward compatibility, you can set the MATLAB global variable xlSgSharedMemoryStitch
to “off” to bring System Generator back to the netlisting behavior before the 9.2 release. For
example, from the MATLAB command line, enter the following:

global xlSgSharedMemoryStitch;
xlSgSharedMemoryStitch = 'off';

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic Tab are as follows:

 Shared Memory Name: name of the shared register. There must be exactly one To Register
and exactly one From Register block for a particular register name. In addition, the name must
be distinct from all other shared memory names in the design.

 Initial value: specifies the initial value in the register.

 Ownership and initialization: indicates whether the register is Locally owned and initialized
or Owned and initialized elsewhere. A block that is locally owned is responsible for creating
an instance of the register. A block that is owned elsewhere attaches itself to a register instance
that has already been created. As a result, if two shared register blocks are used in two different
models during simulation, the model containing the locally owned block has to be started first.

Output tab

Output Precision

 Specifies the data type of the output. Can be Fixed-point or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.
240 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=240

From Register
 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

 Single: specifies single precision (32 bits)

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Crossing Clock Domain

When a To Register and From Register block pair are used to cross clock domain boundaries, a
single register is implemented in hardware. This register is clocked by the To Register block clock
domain. For example, assume a design has two clock domains, Domain_A and Domain_B. Also
assume that a shared register pair are used to cross the two clock domains shown below.

When the design is generated using the Multiple Subsystem Generator block, only one register is
included in the design. The clock and clock enable register signals are driven from the Domain_A
domain.

Crossing domains in this manner might be unsafe. To reduce the chance of metastability, include
two Register blocks immediately following the From Register block to re-synchronize the data to
the From Register's clock domain.

See Also
The following topics provide valuable insight into using and understanding the From Register
block:

To Register
System Generator for DSP Reference Guide www.xilinx.com 241
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=241

Chapter 1: Xilinx Blockset
Gateway In
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, Floating-
Point and Index.

The Xilinx Gateway In blocks are the inputs into the Xilinx portion of your
Simulink design. These blocks convert Simulink integer, double and fixed-point
data types into the System Generator fixed-point type. Each block defines a top-
level input port in the HDL design generated by System Generator.

While converting a double type to a System Generator fixed-point type, the Gateway In uses the
selected overflow and quantization options. For overflow, the options are to saturate to the largest
positive/smallest negative value, to wrap (for example, to discard bits to the left of the most
significant representable bit), or to flag an overflow as a Simulink error during simulation. For
quantization, the options are to round to the nearest representable value (or to the value furthest from
zero if there are two equidistant nearest representable values), or to truncate (for example, to discard
bits to the right of the least significant representable bit).

It is important to realize that overflow and quantization do not take place in hardware – they take
place in the block software itself, before entering the hardware phase.

Gateway Blocks
As listed below, the Xilinx Gateway In block is used to provide a number of functions:

 Converting data from Simulink integer, double and fixed-point types to the System Generator
fixed-point type during simulation in Simulink.

 Defining top-level input ports in the HDL design generated by System Generator.

 Defining testbench stimuli when the Create Testbench box is checked in the System
Generator token. In this case, during HDL code generation, the inputs to the block that occur
during Simulink simulation are logged as a logic vector in a data file. During HDL simulation,
an entity that is inserted in the top level testbench checks this vector and the corresponding
vectors produced by Gateway Out blocks against expected results.

 Naming the corresponding port in the top level HDL entity.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic Tab

Parameters specific to the Basic Tab are as follows:

Output Precision

Specifies the output data type. Can be Boolean, Fixed-point, or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point, where bit zero is the least
significant bit.
242 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=242

Gateway In
 Binary point: specifies the bit location of the binary point, where bit zero is the least
significant bit.

Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width

Fraction width: Specify the fraction width

Quantization

Quantization errors occur when the number of fractional bits is insufficient to represent the
fractional portion of a value. The options are to Truncate (for example, to discard bits to the right of
the least significant representable bit), or to Round(unbiased: +/- inf) or Round (unbiased: even
values).

Round(unbiased: +/- inf) also known as "Symmetric Round (towards +/- inf)" or "Symmetric
Round (away from zero)". This is similar to the Matlab round() function. This method rounds the
value to the nearest desired bit away from zero and when there is a value at the midpoint between
two possible rounded values, the one with the larger magnitude is selected. For example, to round
01.0110 to a Fix_4_2, this yields 01.10, since 01.0110 is exactly between 01.01 and 01.10 and the
latter is further from zero.

Overflow

Overflow errors occur when a value lies outside the representable range. For overflow the options
are to Saturate to the largest positive/smallest negative value, to Wrap (for example, to discard bits
to the left of the most significant representable bit), or to Flag as error (an overflow as a Simulink
error) during simulation. Flag as error is a simulation only feature. The hardware generated is the
same as when Wrap is selected.
System Generator for DSP Reference Guide www.xilinx.com 243
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=243

Chapter 1: Xilinx Blockset
Gateway Out
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, Floating-
Point and Index.

Xilinx Gateway Out blocks are the outputs from the Xilinx portion of your
Simulink design. This block converts the System Generator fixed-point or floating-
point data type into a Simulink integer, single, double or fixed-point data type.

According to its configuration, the Gateway Out block can either define an output
port for the top level of the HDL design generated by System Generator, or be used simply as a test
point that is trimmed from the hardware representation

Gateway Blocks
As listed below, the Xilinx Gateway Out block is used to provide the following functions:

 Convert data from a System Generator fixed-point or floating-point data type into a Simulink
integer, single, double or fixed-point data type.

 Define I/O ports for the top level of the HDL design generated by System Generator. A
Gateway Out block defines a top-level output port.

 Define testbench result vectors when the System Generator Create Testbench box is checked.
In this case, during HDL code generation, the outputs from the block that occur during
Simulink simulation are logged as logic vectors in a data file. For each top level port, an HDL
component is inserted in the top-level testbench that checks this vector against expected results
during HDL simulation.

 Name the corresponding output port on the top-level HDL entity.

Block Parameters
Parameters specific to the dialog box are as follows

 Propagate data type to output: This option is useful when you instantiate a System Generator
design as a sub-system into a Simulink design. Instead of using a Simulink double as the
output data type by default, the System Generator data type is propagated to an appropriate
Simulink data type according to the following table:

System Generator Data Type Simulink Data Type

XFloat_8_24 single

XFloat_11_53 double

Custom floating-point precision data type exponent width
and fraction width less than those for single precision

single

Custom floating-point precision data type with exponent
width or fraction width greater than that for single precision

double

XFix_<width>_<binpt> sfix<width>_EN<binpt>

UFix_<width>_<binpt> ufix<width>_EN<binpt>

XFix_<width>_0 where width is 8, 16 or 32 int<width> where width is 8, 16 or 32

UFix_<width>_0 where width is 8, 16 or 32 uint<width> where width is 8, 16 or 32
244 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=244

Gateway Out
 Translate into Output Port: Having this box unchecked prevents the gateway from becoming
an actual output port when translated into hardware. This checkbox is on by default, enabling
the output port. When this option is not selected, the Gateway Out block is used only during
debugging, where its purpose is to communicate with Simulink Sink blocks for probing
portions of the design. In this case, the Gateway Out block will turn gray in color, indicating
that the gateway will not be translated into an output port.

 IOB Timing Constraint: In hardware, a Gateway Out is realized as a set of input/output
buffers (IOBs). There are three ways to constrain the timing on IOBs. They are None, Data
Rate, and Data Rate, Set 'FAST' Attribute.

If None is selected, no timing constraints for the IOBs are put in the user constraint file (.xcf
if using the XST synthesis tool, .ncf otherwise) produced by System Generator. This means
the paths from the IOBs to synchronous elements are not constrained.

If Data Rate is selected, the IOBs are constrained at the data rate at which the IOBs operate.
The rate is determined by System Clock Period provided on the System Generator token and the
sample rate of the Gateway relative to the other sample periods in the design. For example, the
following OFFSET = OUT constraints are generated for a Gateway Out named 'Dout' that is
running at the system period of 10 ns:

Offset out constraints
NET "Dout(0)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(1)" OFFSET = OUT : 10.0 : AFTER "clk";
NET "Dout(2)" OFFSET = OUT : 10.0 : AFTER "clk";

If Data Rate, Set 'FAST' Attribute is selected, the OFFSET = OUT constraints described
above are produced. In addition, a FAST slew rate attribute is generated for each IOB. This
reduces delay but increases noise and power consumption. For the previous example, the
following additional attributes are added to the .xcf (or .ncf) file

NET "Dout(0)" FAST;
NET "Dout(1)" FAST;
NET "Dout(2)" FAST;

 Specify IOB Location Constraints: Checking this option allows IOB location constraints to
be specified.

 IOB Pad Locations, e.g. {'MSB', ..., 'LSB'}: IOB pin locations can be specified as a cell array
of strings in this edit box. The locations are package-specific. For the above example, if a
Virtex®-E 2000 in a FG680 package is used, the location constraints for the Dout bus can be
specified in the dialog box as {'B34', 'D33', 'B35'}. This is translated into constraints in the .xcf
(or .ncf) file in the following way:

Loc constraints
NET "Dout(0)" LOC = "B35";
NET "Dout(1)" LOC = "D33";
NET "Dout(2)" LOC = "B34";

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

XFix_<width>_0 where width is other than 8, 16 or 32 sfix<width>

UFix_<width>_0 where width is other than 8, 16 or 32 ufix<width>

System Generator Data Type Simulink Data Type
System Generator for DSP Reference Guide www.xilinx.com 245
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=245

Chapter 1: Xilinx Blockset
Indeterminate Probe
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The output of the Xilinx Indeterminate Probe indicates whether the input data is
indeterminate (MATLAB value NaN). An indeterminate data value corresponds to a
VHDL indeterminate logic data value of 'X'.

The probe accepts any Xilinx signal as input and produces a double signal as output. Indeterminate
data on the probe input will result in an assertion of the output signal indicated by a value one.
Otherwise, the probe output is zero.
246 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=246

Interleaver/De-interleaver 6.0
Interleaver/De-interleaver 6.0
This block is listed in the following Xilinx Blockset libraries: Communication and Index.

The Xilinx Interleaver Deinterleaver block implements an interleaver or a
deinterleaver. An interleaver is a device that rearranges the order of a
sequence of input symbols. The term symbol is used to describe a collection
of bits. In some applications, a symbol is a single bit. In others, a symbol is a
bus.

The classic use of interleaving is to randomize the location of errors
introduced in signal transmission. Interleaving spreads a burst of errors out so
that error correction circuits have a better chance of correcting the data.

If a particular interleaver is used at the transmit end of a channel, the inverse of that interleaver must
be used at the receive end to recover the original data. The inverse interleaver is referred to as a de-
interleaver.

Two types of interleaver/de-interleavers can be generated with this LogiCORE: Forney
Convolutional and Rectangular Block. Although they both perform the general interleaving function
of rearranging symbols, the way in which the symbols are rearranged and their methods of operation
are entirely different. For very large interleavers, it might be preferable to store the data symbols in
external memory. The core provides an option to store data symbols in internal FPGA RAM or in
external RAM.

Forney Convolutional Operation
In the figure below, shows the operation of a Forney Convolutional Interleaver. The core operates as
a series of delay line shift registers. Input symbols are presented to the input commutator arm on
DIN. Both commutator arms start at branch 0 and advance to the next branch after the next rising
clock edge. After the last branch (B-1) has been reached, the commutator arms both rotate back to
branch 0 and the process is repeated.

In the figure above, the branches increase in length by a uniform amount, L. The core allows
interleavers to be specified in this way, or the branch lengths can be passed in using a file, allowing
each branch to be any length.

Although branch 0 appears to be a zero-delay connection, there will still be a delay of a number of
clock cycles between DIN and DOUT because of the fundamental latency of the core. For clarity, this
is not illustrated in the figure.
System Generator for DSP Reference Guide www.xilinx.com 247
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=247

Chapter 1: Xilinx Blockset
The only difference between an interleaver and a de-interleaver is that branch 0 is the longest in the
deinterleaver and the branch length is decremented by L rather than incremented. Branch (B-1) has
length 0. This is illustrated in the figure below:

If a file is used to specify the branch lengths, as shown below, it is arbitrary whether the resulting
core is called an interleaver or de-interleaver. All that matters is that one must be the inverse of the
other. If a file is used, each branch length is individually controllable, This is illustrated in the figure
below. For the file syntax, please consult the LogiCORE product specification.

The reset pin (rst) sets the commutator arms to branch 0, but does not clear the branches of data.

Rectangular Block Operation
The Rectangular Block Interleaver works by writing the input data symbols into a rectangular
memory array in a certain order and then reading them out in a different, mixed-up order. The input
symbols must be grouped into blocks. Unlike the Convolutional Interleaver, where symbols can be
continuously input, the Rectangular Block Interleaver inputs one block of symbols and then outputs
that same block with the symbols rearranged. No new inputs can be accepted while the interleaved
symbols from the previous block are being output.
248 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=248

Interleaver/De-interleaver 6.0
The rectangular memory array is composed of a number of rows and columns as shown in the
following figure.

The Rectangular Block Interleaver operates as follows:

1. All the input symbols in an entire block are written row-wise, left to right, starting with the top
row.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read column-wise, top to bottom, starting with the left column.

The Rectangular Block De-interleaver operates in the reverse way:

1. All the input symbols in an entire block are written column-wise, top to bottom, starting with
the left column.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read row-wise, left to right, starting with the top row.

Refer to the Interleaver/De-Interleaver v6.0 Product Specification for examples and more detailed
information on the Rectangular Block Interleaver.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic Parameters Tab

Parameters specific to the Basic Parameters tab are as follows:

 Memory Style: Select Distributed if all the Block Memories are required elsewhere in the
design; select Block to use Block Memory where ever possible; select Automatic and let
Sysgen use the most appropriate style of memory for each case, based on the required memory
depth.

 Symbol Width: this is the bus width of the DIN and DOUT ports.

 Type: Select Forney Convolutional or Rectangular Block.

 Mode: Select Interleaver or Deinterleaver

 Symbol memory: Specifies whether or not the data symbols are stored in Internal FPGA
RAM or in External RAM.

Row\Column 0 1 ... (C-2) (C-1)

0

1

.

.

(R-2)

(R-1)
System Generator for DSP Reference Guide www.xilinx.com 249
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=249

Chapter 1: Xilinx Blockset
Forney Parameters Tab

Parameters specific to the Forney Parameters tab are as follows:

Dimensions

 Number of branches: 1 to 256 (inclusive)

Architecture

 ROM-based: Look-up table ROMs are used to compute some of the internal results in the
block

 Logic-based: Logic circuits are used to compute some of the internal results in the block

Which option is best depends on the other core parameters. You should try both options to determine
the best results. This parameter has no effect on the block behavior.

Configurations

 Number of configurations: If greater than 1, the block is generated with CONFIG_SEL and
NEW_CONFIG inputs. The parameters for each configuration are defined in a COE file. The
number of parameters defined must exactly match the number of configurations specified.

Length of Branches

 Value: 1 to MAX (inclusive). MAX depends on the number of branches and size of block
input. Branch length must be an array of either length one or number of branches. If the array
size is one, the value is used as a constant difference between consecutive branches. Otherwise,
each branch has a unique length.

 COE File: The branch lengths are specified from a file

 Branch length descriptions for Forney SID.

 constant_difference_between_consecutive_branches: specified by the Value parameter

 use_coe_file_to_define_branch_lengths: location of file is specified by the COE File
parameter

 coe_file_defines_individual_branch_lengths_for_every_branch_in_each_configuration
: location of file is specified by the COE File parameter

 coe_file_defines_branch_length_constant_for_each_configuration: location of file is
specified by the COE File parameter

Rectangular Parameters #1 Tab

Parameters specific to the Rectangular Parameters #1 tab are as follows:

Number of Rows

 Value: This parameter is relevant only when the Constant row type is selected. The number of
rows is fixed at this value.

 Row Port Width: This parameter is relevant only when the Variable row type is selected. It
sets the width of the ROW input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Rows: This parameter is relevant only when the Variable row type is
selected. In this case, the core has to potentially cope with a wide range of possible values for
the number of rows. If the smallest value that will actually occur is known, then the amount of
logic in the LogiCORE can sometimes be reduced.The largest possible value should be used
for this parameter to keep the core as small as possible.
250 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=250

Interleaver/De-interleaver 6.0
 Number of Values: This parameter is relevant only when the Selectable row type is selected.
This parameter defines how many valid selection values have been defined in the COE file.
You should only add the number of select values you need.

Row Type

 Constant: The number of rows is always equal to the Row Constant Value parameter.

 Variable: The number of rows is sampled from the ROW input at the start of each new block.
Row permutations are not supported for the variable row type.

 Selectable: ROW_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of rows provided in the COE file.

Number of Columns

 Value: This parameter is relevant only when the Constant column type is selected. The
number of columns is fixed at this value.

 COL Port Width: This parameter is relevant only when the Variable column type is selected.
It sets the width of the COL input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Columns: This parameter is relevant only when the Variable column
type is selected. In this case, the core has to potentially cope with a wide range of possible
values for the number of columns. If the smallest value that will actually occur is known, then
the amount of logic in the LogiCORE can sometimes be reduced.The largest possible value
should be used for this parameter to keep the core as small as possible.

 Number of Values: This parameter is relevant only when the Selectable column type is
selected. This parameter defines how many valid selection values have been defined in the
COE file. You should only add the number of select values you need.
System Generator for DSP Reference Guide www.xilinx.com 251
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=251

Chapter 1: Xilinx Blockset
Column Type

 Constant: The number of columns is always equal to the Column Constant Value parameter.

 Variable: The number of columns is sampled from the COL input at the start of each new
block. Column permutations are not supported for the variable column type.

 Selectable: COL_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of columns provided in the COE file.

Rectangular Parameters #2 Tab

Parameters specific to the Rectangular Parameters #2 tab are as follows:

Permutations Configuration

Row permutations:

 None: This tells System Generator that row permutations are not to be performed

 Use COE file: This tells System Generator that a row permute vector exists in the COE
file, and that row permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

Column permutations:

 None: This tells System Generator that column permutations are not to be performed

 Use COE file: This tells System Generator that a column permute vector exists in the COE
file, and that column permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

COE File: Specify the pathname to the COE file.

Block Size

 Value: This parameter is relevant only when the Constant block size type is selected. The
block size is fixed at this value.

 BLOCK_SIZE Port Width: This parameter is relevant only if the Variable block size type is
selected. It sets the width of the BLOCK_SIZE input bus. The smallest possible value should
be used to keep the core as small as possible.

Block Size Type

- Constant: The block size never changes. The block can be pruned (block size < row *
col). The block size must be chosen so that the last symbol is on the last row. An
unpruned interleaver will use a smaller quantity of FPGA resources than a pruned
one, so pruning should be used only if necessary.

- Rows*Columns: If the number of rows and columns is constant, selecting this option
has the same effect as setting the block size type to constant and entering a value of
rows * columns for the block size.

If the number of rows or columns is not constant, selecting this option means the core
will calculate the block size automatically whenever a new row or column value is
sampled. Pruning is impossible with this block size type.

- Variable: Block size is sampled from the BLOCK_SIZE input at the beginning of
every block. The value sampled on BLOCK_SIZE must be such that the last symbol
falls on the last row, as previously described.

If the block size is already available external to the core, selecting this option is usually
more efficient than selecting “rows * columns” for the block size type. Row and
column permutations are not supported for the Variable block size type.
252 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=252

Interleaver/De-interleaver 6.0
Port Parameters tab

Parameters specific to the Port Parameters tab are as follows:

Optional Pins

The following is a brief description of each optional port. Refer to the associated Interleaver
Deinterleaver 6.0 LogiCORE product specification for a more detailed description.

 ROW_VALID: This optional output is available when a variable number of rows is selected.

 BLOCK_SIZE_VALID: This optional output is available when the block size is not constant,
that is, if the block size type is either Variable or equal to Rows * Columns.

 CE: When CE is deasserted (Low), all the synchronous inputs are ignored and the block
remains in its current state.

 RFD: RFD (Ready for Data) indicates that the core is ready to sample new data on DIN.

 ROW_SEL_VALID: This optional output is available when a selectable number of rows is
chosen.

 BLOCK_START: This output is asserted High when the first symbol of a block appears on
DOUT.

 SCLR: When SCLR is asserted (High), all the block flip-flops are synchronously initialized.

 RFFD: When RFFD (Ready for First Data) is asserted High, it indicates that FD can be safely
asserted without affecting any processing for previous blocks.

 COL_VALID: This optional output is available when a variable number of columns is
selected. If an illegal value is sampled on the COL input, COL_VALID will go Low a
predefined number of clock cycles later.

 BLOCK_END: BLOCK_END is asserted High when the last symbol of a block appears on
DOUT.

 NDO: New Data Out (NDO) is a time-delayed version of the ND input. A new symbol is output
on DOUT for every symbol input on DIN

 FDO: First Data Out (FDO) is a time-delayed version of the FD input. FDO is asserted High
when the value sampled on DIN at the time of the FD pulse appears on DOUT.

 COL_SEL_VALID: This optional output is available when a selectable number of columns is
chosen.

 ND: When this optional New Data input is sampled logic-High, it signals the block that a new
symbol on DIN should be sampled on the same rising clock edge.

 RDY: The RDY (Ready) output is similar to NDO. It signals valid data on DOUT. The difference
from NDO is that RDY is not asserted until the input symbol sampled with the first FD pulse
finally appears on DOUT

Parameters specific to the Port Parameters tab are as follows:

 Pipelining: Pipelines the underlying LogiCORE for Minimum, Medium, or Maximum
performance

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 253
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=253

Chapter 1: Xilinx Blockset
How to Migrate an Interleaver De-Interleaver 5.1 block to 6.0

The following instructions apply to both the Interleaver and De-interleaver blocks. The following
figure illustrates the Interleaver Deinterleaver 5.1 input ports:

Driving the Now Exposed fd (First Data) Input Port

Unlike the 5.1 version of the block, the fd (First Data) input pin is now exposed on the v6.0 version.
It is now required to drive this input with correct signal sequences in relative to the nd (New Data)
input signal. A single pulse is required at the fd input and it has to be lined up with the nd signal as
shown in the figure below.
254 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=254

Interleaver/De-interleaver 6.0
To accomplish this, you can use a simple single-shot circuit (Rising Edge Detector) to detect a low-
to-high transition from vin. See the following diagram:

How to Specify Unique Lengths for Each Branch of the Interleaver DeInterleaver
v6.0 block

Assume the previous Interleaver Deinterleaver 5.1 block is setup with 3 branches with lengths 2, 4,
and 5 as shown below:
System Generator for DSP Reference Guide www.xilinx.com 255
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=255

Chapter 1: Xilinx Blockset
To setup the Interleaver Deinterleaver v6.0 block in a similar fashion, do the following:

1. Set the Symbol Width to the input data width of the din port, in this case 8.

2. Select the Deinterleaver mode.

3. Select the appropriate Branch length descriptions for Forney SID as shown below

4. Set the unique length of each branch using the coef.coe file. You can use the pwd command
to specify a relative pathname to the file:

LogiCORE™ Documentation
LogiCORE IP Interleaver/De-interleaver v6.0

radix=10;
branch_length_vector=2,4,5;
256 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=none;d=sid_ds250.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=256

Interleaver/De-interleaver 6.0
Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
System Generator for DSP Reference Guide www.xilinx.com 257
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=257

Chapter 1: Xilinx Blockset
Interleaver/De-interleaver 7.0
This block is listed in the following Xilinx Blockset libraries: AXI, Communication and Index.

The Xilinx Interleaver Deinterleaver block implements an
interleaver or a deinterleaver using an AXI4-compliant block
interface. An interleaver is a device that rearranges the order of
a sequence of input symbols. The term symbol is used to
describe a collection of bits. In some applications, a symbol is
a single bit. In others, a symbol is a bus.

The classic use of interleaving is to randomize the location of
errors introduced in signal transmission. Interleaving spreads a
burst of errors out so that error correction circuits have a better
chance of correcting the data.

If a particular interleaver is used at the transmit end of a
channel, the inverse of that interleaver must be used at the receive end to recover the original data.
The inverse interleaver is referred to as a de-interleaver.

Two types of interleaver/de-interleavers can be generated with this LogiCORE: Forney
Convolutional and Rectangular Block. Although they both perform the general interleaving function
of rearranging symbols, the way in which the symbols are rearranged and their methods of operation
are entirely different. For very large interleavers, it might be preferable to store the data symbols in
external memory. The core provides an option to store data symbols in internal FPGA RAM or in
external RAM.

Forney Convolutional Operation
In the figure below, shows the operation of a Forney Convolutional Interleaver. The core operates as
a series of delay line shift registers. Input symbols are presented to the input commutator arm on
DIN. Output symbols are extracted from the output commutator arm on DOUT. DIN and DOUT are
fields in the AXI Data Input and Data Output channels, respectively. Output symbols are extracted
from the output commutator arm on DOUT. Both commutator arms start at branch 0 and advance to
the next branch after the next rising clock edge. After the last branch (B-1) has been reached, the
commutator arms both rotate back to branch 0 and the process is repeated.

In the figure above, the branches increase in length by a uniform amount, L. The core allows
interleavers to be specified in this way, or the branch lengths can be passed in using a file, allowing
each branch to be any length.
258 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=258

Interleaver/De-interleaver 7.0
Although branch 0 appears to be a zero-delay connection, there will still be a delay of a number of
clock cycles between DIN and DOUT because of the fundamental latency of the core. For clarity, this
is not illustrated in the figure.

The only difference between an interleaver and a de-interleaver is that branch 0 is the longest in the
deinterleaver and the branch length is decremented by L rather than incremented. Branch (B-1) has
length 0. This is illustrated in the figure below:

If a file is used to specify the branch lengths, as shown below, it is arbitrary whether the resulting
core is called an interleaver or de-interleaver. All that matters is that one must be the inverse of the
other. If a file is used, each branch length is individually controllable. This is illustrated in the figure
below. For the file syntax, please consult the LogiCORE product specification.

The reset pin (aresetn) sets the commutator arms to branch 0, but does not clear the branches of
data.
System Generator for DSP Reference Guide www.xilinx.com 259
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=259

Chapter 1: Xilinx Blockset
Configuration Swapping

It is possible for the core to store a number of pre-defined configurations. Each configuration can
have a different number of branches and branch length constant. It is even possible for each
configuration to have every individual branch length defined by file.

The configuration can be changed at any time by sending a new CONFIG_SEL value on the AXI
Control Channel. This value takes effect when the next block starts. The core assumes all
configurations are either for an interleaver or de-interleaver, depending on what was selected in the
GUI. It is possible to switch between interleaving and de-interleaving by defining the individual
branch lengths for every branch of each configuration. The details for each configuration are
specified in a COE file.

For details, please consult the Configuration Swapping section of the document LogiCORE IP
Interleaver/De-interleaver v7.0 Product Specification.

Rectangular Block Operation
The Rectangular Block Interleaver works by writing the input data symbols into a rectangular
memory array in a certain order and then reading them out in a different, mixed-up order. The input
symbols must be grouped into blocks. Unlike the Convolutional Interleaver, where symbols can be
continuously input, the Rectangular Block Interleaver inputs one block of symbols and then outputs
that same block with the symbols rearranged. No new inputs can be accepted while the interleaved
symbols from the previous block are being output.

The rectangular memory array is composed of a number of rows and columns as shown in the
following figure.

The Rectangular Block Interleaver operates as follows:

1. All the input symbols in an entire block are written row-wise, left to right, starting with the top
row.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read column-wise, top to bottom, starting with the left column.

The Rectangular Block De-interleaver operates in the reverse way:

1. All the input symbols in an entire block are written column-wise, top to bottom, starting with
the left column.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read row-wise, left to right, starting with the top row.

Row\Column 0 1 ... (C-2) (C-1)

0

1

.

.

(R-2)

(R-1)
260 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_0;d=ds861_sid.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_0;d=ds861_sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=260

Interleaver/De-interleaver 7.0
Refer to the LogiCORE IP Interleaver/De-interleaver v7.0 Product Specification for examples and
more detailed information on the Rectangular Block Interleaver.

AXI Interface
The AXI SID v7.0 has the following interfaces:

 A non AXI-channel interface for ACLK, ACLKEN and ARESETn

 A non AXI-channel interface for external memory (if enabled)

 A non AXI-channel interface for miscellaneous events

 event_tlast_unexpected

 event_tlast_missing (available only in Rectangular mode)

 event_halted (optional, available when Master channel TREADY is enabled)

 event_col_valid (optional)

 event_col_sel_valid (optional)

 event_row_valid (optional)

 event_row_sel_valid (optional)

 event_block_size_valid (optional)

 An AXI slave channel to receive configuration information (s_axis_ctrl) consisting of:

 s_axis_ctrl_tvalid

 s_axis_ctrl_tready

 s_axis_ctrl_tdata

The control channel is only enabled when the core is configured in such a way to require it.

 An AXI slave channel to receive the data to be interleaved (s_axis_data) consisting of:

 s_axis_data_tvalid (This is the equivalent of ND pin of SID v6.0 block; No longer
optional)

 s_axis_data_tready

 s_axis_data_tdata

 s_axis_data_tlast

 An AXI master channel to send the data that has been interleaved (m_axis_data) consisting of:

 m_axis_data_tvalid

 m_axis_data_tready

 m_axis_data_tdata

 m_axis_data_tuser

 m_axis_data_tlast

AXI Ports that are Unique to this Block

This SystemGenerator block exposes the AXI Control and Data channels as a group of separate
ports based on the following sub-field names.

Note: Refer to the LogiCORE IP Interleaver/De-interleaver v7.0 Product Specificationfor an
explanation of the bits in the specified sub-field name.
System Generator for DSP Reference Guide www.xilinx.com 261
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_0;d=ds861_sid.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_0;d=ds861_sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=261

Chapter 1: Xilinx Blockset
Control Channel Input Signals:

s_axis_ctrl_tdata_config_sel

A sub-field port that represents the CONFIG_SEL field in the Control Channel vector. Available
when in Forney mode and Number of configurations is greater than one.

s_axis_ctrl_tdata_row

A sub-field port that represents the ROW field in the Control Channel vector. Available when in
Rectangular mode and Row type is Variable.

s_axis_ctrl_tdata_row_sel

A sub-field port that represents the ROW_SEL field in the Control Channel vector. Available when
in Rectangular mode and Row type is Selectable.

s_axis_ctrl_tdata_col

A sub-field port that represents the COL field in the Control Channel vector. Available when in
Rectangular mode and Column type is Variable.

s_axis_ctrl_tdata_col_sel

A sub-field port that represents the COL_SEL field in the Control Channel vector. Available when
in Rectangular mode and Column type is Selectable.

s_axis_ctrl_tdata_block_size

A sub-field port that represents the COL field in the Control Channel vector. Available when in
Rectangular mode and Block Size type is Variable.

DATA Channel Input Signals:

s_axis_data_tdata_din

Represents the DIN field of the Input Data Channel.

DATA Channel Output Signals:

m_axis_data_tdata_dout

Represents the DOUT field of the Output Data Channel.

TUSER Channel Output Signals:

m_axis_data_tuser_fdo

Represents the FDO field of the Output TUSER Channel. Available when in Forney mode and
Optional FDO pin has been selected on the GUI.

m_axis_data_tuser_rdy

Represents the RDY field of the Output TUSER Channel. Available when in Forney mode and
Optional RDY pin has been selected on the GUI.

m_axis_data_tuser_block_start

Represents the BLOCK_START field of the Output TUSER Channel. Available when in
Rectangular mode and Optional BLOCK_START pin has been selected on the GUI.

m_axis_data_tuser_block_end

Represents the BLOCK_END field of the Output TUSER Channel. Available when in Rectangular
mode and Optional BLOCK_END pin has been selected on the GUI.
262 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=262

Interleaver/De-interleaver 7.0
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic Parameters Tab

Parameters specific to the Basic Parameters tab are as follows:

 Memory Style: Select Distributed if all the Block Memories are required elsewhere in the
design; select Block to use Block Memory where ever possible; select Automatic and let
Sysgen use the most appropriate style of memory for each case, based on the required memory
depth.

 Symbol Width: this is the number of bits in the symbols to be processed.

 Type: Select Forney Convolutional or Rectangular Block.

 Mode: Select Interleaver or Deinterleaver

 Symbol memory: Specifies whether or not the data symbols are stored in Internal FPGA
RAM or in External RAM.

Forney Parameters Tab

Parameters specific to the Forney Parameters tab are as follows:

Dimensions

 Number of branches: 1 to 256 (inclusive)

Architecture

 ROM-based: Look-up table ROMs are used to compute some of the internal results in the
block

 Logic-based: Logic circuits are used to compute some of the internal results in the block

Which option is best depends on the other core parameters. You should try both options to determine
the best results. This parameter has no effect on the block behavior.

Configurations

 Number of configurations: If greater than 1, the block is generated with CONFIG_SEL and
NEW_CONFIG inputs. The parameters for each configuration are defined in a COE file. The
number of parameters defined must exactly match the number of configurations specified.

Length of Branches

 Branch length descriptions for Forney SID.

 constant_difference_between_consecutive_branches: specified by the Value parameter

 use_coe_file_to_define_branch_lengths: location of file is specified by the COE File
parameter

 coe_file_defines_individual_branch_lengths_for_every_branch_in_each_configuration
: location of file is specified by the COE File parameter

 coe_file_defines_branch_length_constant_for_each_configuration: location of file is
specified by the COE File parameter

 Value: 1 to MAX (inclusive). MAX depends on the number of branches and size of block
input. Branch length must be an array of either length one or number of branches. If the array
size is one, the value is used as a constant difference between consecutive branches. Otherwise,
each branch has a unique length.
System Generator for DSP Reference Guide www.xilinx.com 263
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=263

Chapter 1: Xilinx Blockset
 COE File: The branch lengths are specified from a file

Rectangular Parameters #1 Tab

Parameters specific to the Rectangular Parameters #1 tab are as follows:

Number of Rows

 Value: This parameter is relevant only when the Constant row type is selected. The number of
rows is fixed at this value.

 Row Port Width: This parameter is relevant only when the Variable row type is selected. It
sets the width of the ROW input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Rows: This parameter is relevant only when the Variable row type is
selected. In this case, the core has to potentially cope with a wide range of possible values for
the number of rows. If the smallest value that will actually occur is known, then the amount of
logic in the LogiCORE can sometimes be reduced.The largest possible value should be used
for this parameter to keep the core as small as possible.

 Number of Values: This parameter is relevant only when the Selectable row type is selected.
This parameter defines how many valid selection values have been defined in the COE file.
You should only add the number of select values you need.

Row Type

 Constant: The number of rows is always equal to the Row Constant Value parameter.

 Variable: The number of rows is sampled from the ROW input at the start of each new block.
Row permutations are not supported for the variable row type.

 Selectable: ROW_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of rows provided in the COE file.

Number of Columns

 Value: This parameter is relevant only when the Constant column type is selected. The
number of columns is fixed at this value.

 COL Port Width: This parameter is relevant only when the Variable column type is selected.
It sets the width of the COL input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Columns: This parameter is relevant only when the Variable column
type is selected. In this case, the core has to potentially cope with a wide range of possible
values for the number of columns. If the smallest value that will actually occur is known, then
the amount of logic in the LogiCORE can sometimes be reduced.The largest possible value
should be used for this parameter to keep the core as small as possible.

 Number of Values: This parameter is relevant only when the Selectable column type is
selected. This parameter defines how many valid selection values have been defined in the
COE file. You should only add the number of select values you need.

Column Type

 Constant: The number of columns is always equal to the Column Constant Value parameter.

 Variable: The number of columns is sampled from the COL input at the start of each new
block. Column permutations are not supported for the variable column type.

 Selectable: COL_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of columns provided in the COE file.
264 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=264

Interleaver/De-interleaver 7.0
Rectangular Parameters #2 Tab

Parameters specific to the Rectangular Parameters #2 tab are as follows:

Permutations Configuration

Row permutations:

 None: This tells System Generator that row permutations are not to be performed

 Use COE file: This tells System Generator that a row permute vector exists in the COE
file, and that row permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

Column permutations:

 None: This tells System Generator that column permutations are not to be performed

 Use COE file: This tells System Generator that a column permute vector exists in the COE
file, and that column permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

COE File: Specify the pathname to the COE file.

Block Size

 Value: This parameter is relevant only when the Constant block size type is selected. The
block size is fixed at this value.

 BLOCK_SIZE Port Width: This parameter is relevant only if the Variable block size type is
selected. It sets the width of the BLOCK_SIZE input bus. The smallest possible value should
be used to keep the core as small as possible.

Block Size Type

- Constant: The block size never changes. The block can be pruned (block size < row *
col). The block size must be chosen so that the last symbol is on the last row. An
unpruned interleaver will use a smaller quantity of FPGA resources than a pruned
one, so pruning should be used only if necessary.

- Rows*Columns: If the number of rows and columns is constant, selecting this option
has the same effect as setting the block size type to constant and entering a value of
rows * columns for the block size.

If the number of rows or columns is not constant, selecting this option means the core
will calculate the block size automatically whenever a new row or column value is
sampled. Pruning is impossible with this block size type.

- Variable: Block size is sampled from the BLOCK_SIZE input at the beginning of
every block. The value sampled on BLOCK_SIZE must be such that the last symbol
falls on the last row, as previously described.

If the block size is already available external to the core, selecting this option is usually
more efficient than selecting “rows * columns” for the block size type. Row and
column permutations are not supported for the Variable block size type.

Port Parameters #1 tab

Parameters specific to the Port Parameters tab are as follows:

Control Signals

 ACLKEN: When ACLKEN is deasserted (Low), all the synchronous inputs are ignored and the
block remains in its current state.
System Generator for DSP Reference Guide www.xilinx.com 265
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=265

Chapter 1: Xilinx Blockset
 ARESETn (Active Low).: Active-low synchronous clear input that always takes priority over
ACLKEN.

Status Signals

 COL_VALID: This optional output is available when a variable number of columns is
selected. If an illegal value is sampled on the s_axis_ctrl_tdata_col input,
event_col_valid will go Low a predefined number of clock cycles later.

 COL_SEL_VALID: This optional output (event_col_sel_valid) is available when a
selectable number of columns is chosen. The event pins are event_col_valid,
event_col_sel_valid, event_row_valid, event_row_sel_valid, event_block_size_valid (in the
same order as in the options on the GUI).

 ROW_VALID: This optional output is available when a selectable number of rows is chosen.

 ROW_SEL_VALID: This optional output is available when a selectable number of rows is
chosen.

 BLOCK_SIZE_VALID: This optional output is available when the block size is not constant,
that is, if the block size type is either Variable or equal to Rows * Columns.

Port Parameters #2 tab

Parameters specific to the Port Parameters #2 tab are as follows:

Data Output Channel Options

 TREADY: TREADY for the Data Input Channel. Used by the Symbol Interleaver/De-
interleaver to signal that it is ready to accept data.

 FDO: Adds a data_tuser_fdo (First Data Out) output port.

 RDY: Adds a data_tuser_rdy output port.

 BLOCK_START: Adds a data_tuser_block_start output port.

 BLOCK_END: Adds a data_tuser_block_end output port.

Pipelining

 Pipelining: Pipelines the underlying LogiCORE for Minimum, Medium, or Maximum
performance

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Interleaver/De-interleaver v7.0

Device Support

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
266 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_0;d=ds861_sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=266

Interleaver/De-interleaver 7.1
Interleaver/De-interleaver 7.1
This block is listed in the following Xilinx Blockset libraries: AXI, Communication and Index.

The Xilinx Interleaver Deinterleaver block implements an
interleaver or a deinterleaver using an AXI4-compliant block
interface. An interleaver is a device that rearranges the order of
a sequence of input symbols. The term symbol is used to
describe a collection of bits. In some applications, a symbol is
a single bit. In others, a symbol is a bus.

The classic use of interleaving is to randomize the location of
errors introduced in signal transmission. Interleaving spreads a
burst of errors out so that error correction circuits have a better
chance of correcting the data.

If a particular interleaver is used at the transmit end of a
channel, the inverse of that interleaver must be used at the receive end to recover the original data.
The inverse interleaver is referred to as a de-interleaver.

Two types of interleaver/de-interleavers can be generated with this LogiCORE: Forney
Convolutional and Rectangular Block. Although they both perform the general interleaving function
of rearranging symbols, the way in which the symbols are rearranged and their methods of operation
are entirely different. For very large interleavers, it might be preferable to store the data symbols in
external memory. The core provides an option to store data symbols in internal FPGA RAM or in
external RAM.

Forney Convolutional Operation
In the figure below, shows the operation of a Forney Convolutional Interleaver. The core operates as
a series of delay line shift registers. Input symbols are presented to the input commutator arm on
DIN. Output symbols are extracted from the output commutator arm on DOUT. DIN and DOUT are
fields in the AXI Data Input and Data Output channels, respectively. Output symbols are extracted
from the output commutator arm on DOUT. Both commutator arms start at branch 0 and advance to
the next branch after the next rising clock edge. After the last branch (B-1) has been reached, the
commutator arms both rotate back to branch 0 and the process is repeated.

In the figure above, the branches increase in length by a uniform amount, L. The core allows
interleavers to be specified in this way, or the branch lengths can be passed in using a file, allowing
each branch to be any length.
System Generator for DSP Reference Guide www.xilinx.com 267
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=267

Chapter 1: Xilinx Blockset
Although branch 0 appears to be a zero-delay connection, there will still be a delay of a number of
clock cycles between DIN and DOUT because of the fundamental latency of the core. For clarity, this
is not illustrated in the figure.

The only difference between an interleaver and a de-interleaver is that branch 0 is the longest in the
deinterleaver and the branch length is decremented by L rather than incremented. Branch (B-1) has
length 0. This is illustrated in the figure below:

If a file is used to specify the branch lengths, as shown below, it is arbitrary whether the resulting
core is called an interleaver or de-interleaver. All that matters is that one must be the inverse of the
other. If a file is used, each branch length is individually controllable. This is illustrated in the figure
below. For the file syntax, please consult the LogiCORE product specification.

The reset pin (aresetn) sets the commutator arms to branch 0, but does not clear the branches of
data.
268 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=268

Interleaver/De-interleaver 7.1
Configuration Swapping

It is possible for the core to store a number of pre-defined configurations. Each configuration can
have a different number of branches and branch length constant. It is even possible for each
configuration to have every individual branch length defined by file.

The configuration can be changed at any time by sending a new CONFIG_SEL value on the AXI
Control Channel. This value takes effect when the next block starts. The core assumes all
configurations are either for an interleaver or de-interleaver, depending on what was selected in the
GUI. It is possible to switch between interleaving and de-interleaving by defining the individual
branch lengths for every branch of each configuration. The details for each configuration are
specified in a COE file.

For details, please consult the Configuration Swapping section of the LogiCORE IP Interleaver/De-
interleaver v7.1 Product Guide.

Rectangular Block Operation
The Rectangular Block Interleaver works by writing the input data symbols into a rectangular
memory array in a certain order and then reading them out in a different, mixed-up order. The input
symbols must be grouped into blocks. Unlike the Convolutional Interleaver, where symbols can be
continuously input, the Rectangular Block Interleaver inputs one block of symbols and then outputs
that same block with the symbols rearranged. No new inputs can be accepted while the interleaved
symbols from the previous block are being output.

The rectangular memory array is composed of a number of rows and columns as shown in the
following figure.

The Rectangular Block Interleaver operates as follows:

1. All the input symbols in an entire block are written row-wise, left to right, starting with the top
row.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read column-wise, top to bottom, starting with the left column.

The Rectangular Block De-interleaver operates in the reverse way:

1. All the input symbols in an entire block are written column-wise, top to bottom, starting with
the left column.

2. Inter-row permutations are performed if required.

3. Inter-column permutations are performed if required.

4. The entire block is read row-wise, left to right, starting with the top row.

Row\Column 0 1 ... (C-2) (C-1)

0

1

.

.

(R-2)

(R-1)
System Generator for DSP Reference Guide www.xilinx.com 269
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_1;d=pg049-sid.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_1;d=pg049-sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=269

Chapter 1: Xilinx Blockset
Refer to the LogiCORE IP Interleaver/De-interleaver v7.1 Product Guide for examples and more
detailed information on the Rectangular Block Interleaver.

AXI Interface
The AXI SID v7.1 has the following interfaces:

 A non AXI-channel interface for ACLK, ACLKEN and ARESETn

 A non AXI-channel interface for external memory (if enabled)

 A non AXI-channel interface for miscellaneous events

 event_tlast_unexpected

 event_tlast_missing (available only in Rectangular mode)

 event_halted (optional, available when Master channel TREADY is enabled)

 event_col_valid (optional)

 event_col_sel_valid (optional)

 event_row_valid (optional)

 event_row_sel_valid (optional)

 event_block_size_valid (optional)

 An AXI slave channel to receive configuration information (s_axis_ctrl) consisting of:

 s_axis_ctrl_tvalid

 s_axis_ctrl_tready

 s_axis_ctrl_tdata

The control channel is only enabled when the core is configured in such a way to require it.

 An AXI slave channel to receive the data to be interleaved (s_axis_data) consisting of:

 s_axis_data_tvalid (This is the equivalent of ND pin of SID v6.0 block; No longer
optional)

 s_axis_data_tready

 s_axis_data_tdata

 s_axis_data_tlast

 An AXI master channel to send the data that has been interleaved (m_axis_data) consisting of:

 m_axis_data_tvalid

 m_axis_data_tready

 m_axis_data_tdata

 m_axis_data_tuser

 m_axis_data_tlast

AXI Ports that are Unique to this Block

This SystemGenerator block exposes the AXI Control and Data channels as a group of separate
ports based on the following sub-field names.

Note: Refer to the Interleaver/De-Interleaver v7.1 Product Specification for an explanation of the bits in the
specified sub-field name.
270 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_1;d=pg049-sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=270

Interleaver/De-interleaver 7.1
Control Channel Input Signals:

s_axis_ctrl_tdata_config_sel

A sub-field port that represents the CONFIG_SEL field in the Control Channel vector. Available
when in Forney mode and Number of configurations is greater than one.

s_axis_ctrl_tdata_row

A sub-field port that represents the ROW field in the Control Channel vector. Available when in
Rectangular mode and Row type is Variable.

s_axis_ctrl_tdata_row_sel

A sub-field port that represents the ROW_SEL field in the Control Channel vector. Available when
in Rectangular mode and Row type is Selectable.

s_axis_ctrl_tdata_col

A sub-field port that represents the COL field in the Control Channel vector. Available when in
Rectangular mode and Column type is Variable.

s_axis_ctrl_tdata_col_sel

A sub-field port that represents the COL_SEL field in the Control Channel vector. Available when
in Rectangular mode and Column type is Selectable.

s_axis_ctrl_tdata_block_size

A sub-field port that represents the COL field in the Control Channel vector. Available when in
Rectangular mode and Block Size type is Variable.

DATA Channel Input Signals:

s_axis_data_tdata_din

Represents the DIN field of the Input Data Channel.

DATA Channel Output Signals:

m_axis_data_tdata_dout

Represents the DOUT field of the Output Data Channel.

TUSER Channel Output Signals:

m_axis_data_tuser_fdo

Represents the FDO field of the Output TUSER Channel. Available when in Forney mode and
Optional FDO pin has been selected on the GUI.

m_axis_data_tuser_rdy

Represents the RDY field of the Output TUSER Channel. Available when in Forney mode and
Optional RDY pin has been selected on the GUI.

m_axis_data_tuser_block_start

Represents the BLOCK_START field of the Output TUSER Channel. Available when in
Rectangular mode and Optional BLOCK_START pin has been selected on the GUI.

m_axis_data_tuser_block_end

Represents the BLOCK_END field of the Output TUSER Channel. Available when in Rectangular
mode and Optional BLOCK_END pin has been selected on the GUI.
System Generator for DSP Reference Guide www.xilinx.com 271
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=271

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic Parameters Tab

Parameters specific to the Basic Parameters tab are as follows:

 Memory Style: Select Distributed if all the Block Memories are required elsewhere in the
design; select Block to use Block Memory where ever possible; select Automatic and let
Sysgen use the most appropriate style of memory for each case, based on the required memory
depth.

 Symbol Width: this is the number of bits in the symbols to be processed.

 Type: Select Forney Convolutional or Rectangular Block.

 Mode: Select Interleaver or Deinterleaver

 Symbol memory: Specifies whether or not the data symbols are stored in Internal FPGA
RAM or in External RAM.

Forney Parameters Tab

Parameters specific to the Forney Parameters tab are as follows:

Dimensions

 Number of branches: 1 to 256 (inclusive)

Architecture

 ROM-based: Look-up table ROMs are used to compute some of the internal results in the
block

 Logic-based: Logic circuits are used to compute some of the internal results in the block

Which option is best depends on the other core parameters. You should try both options to determine
the best results. This parameter has no effect on the block behavior.

Configurations

 Number of configurations: If greater than 1, the block is generated with CONFIG_SEL and
NEW_CONFIG inputs. The parameters for each configuration are defined in a COE file. The
number of parameters defined must exactly match the number of configurations specified.

Length of Branches

 Branch length descriptions for Forney SID.

 constant_difference_between_consecutive_branches: specified by the Value parameter

 use_coe_file_to_define_branch_lengths: location of file is specified by the COE File
parameter

 coe_file_defines_individual_branch_lengths_for_every_branch_in_each_configuration
: location of file is specified by the COE File parameter

 coe_file_defines_branch_length_constant_for_each_configuration: location of file is
specified by the COE File parameter

 Value: 1 to MAX (inclusive). MAX depends on the number of branches and size of block
input. Branch length must be an array of either length one or number of branches. If the array
size is one, the value is used as a constant difference between consecutive branches. Otherwise,
each branch has a unique length.
272 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=272

Interleaver/De-interleaver 7.1
 COE File: The branch lengths are specified from a file

Rectangular Parameters #1 Tab

Parameters specific to the Rectangular Parameters #1 tab are as follows:

Number of Rows

 Value: This parameter is relevant only when the Constant row type is selected. The number of
rows is fixed at this value.

 Row Port Width: This parameter is relevant only when the Variable row type is selected. It
sets the width of the ROW input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Rows: This parameter is relevant only when the Variable row type is
selected. In this case, the core has to potentially cope with a wide range of possible values for
the number of rows. If the smallest value that will actually occur is known, then the amount of
logic in the LogiCORE can sometimes be reduced.The largest possible value should be used
for this parameter to keep the core as small as possible.

 Number of Values: This parameter is relevant only when the Selectable row type is selected.
This parameter defines how many valid selection values have been defined in the COE file.
You should only add the number of select values you need.

Row Type

 Constant: The number of rows is always equal to the Row Constant Value parameter.

 Variable: The number of rows is sampled from the ROW input at the start of each new block.
Row permutations are not supported for the variable row type.

 Selectable: ROW_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of rows provided in the COE file.

Number of Columns

 Value: This parameter is relevant only when the Constant column type is selected. The
number of columns is fixed at this value.

 COL Port Width: This parameter is relevant only when the Variable column type is selected.
It sets the width of the COL input bus. The smallest possible value should be used to keep the
underlying LogiCORE as small as possible.

 Minimum Number of Columns: This parameter is relevant only when the Variable column
type is selected. In this case, the core has to potentially cope with a wide range of possible
values for the number of columns. If the smallest value that will actually occur is known, then
the amount of logic in the LogiCORE can sometimes be reduced.The largest possible value
should be used for this parameter to keep the core as small as possible.

 Number of Values: This parameter is relevant only when the Selectable column type is
selected. This parameter defines how many valid selection values have been defined in the
COE file. You should only add the number of select values you need.

Column Type

 Constant: The number of columns is always equal to the Column Constant Value parameter.

 Variable: The number of columns is sampled from the COL input at the start of each new
block. Column permutations are not supported for the variable column type.

 Selectable: COL_SEL is sampled at the start of each new block. This value is then used to
select from one of the possible values for the number of columns provided in the COE file.
System Generator for DSP Reference Guide www.xilinx.com 273
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=273

Chapter 1: Xilinx Blockset
Rectangular Parameters #2 Tab

Parameters specific to the Rectangular Parameters #2 tab are as follows:

Permutations Configuration

Row permutations:

 None: This tells System Generator that row permutations are not to be performed

 Use COE file: This tells System Generator that a row permute vector exists in the COE
file, and that row permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

Column permutations:

 None: This tells System Generator that column permutations are not to be performed

 Use COE file: This tells System Generator that a column permute vector exists in the COE
file, and that column permutations are to be performed. Remember this is possible only for
unpruned interleaver/deinterleavers.

COE File: Specify the pathname to the COE file.

Block Size

 Value: This parameter is relevant only when the Constant block size type is selected. The
block size is fixed at this value.

 BLOCK_SIZE Port Width: This parameter is relevant only if the Variable block size type is
selected. It sets the width of the BLOCK_SIZE input bus. The smallest possible value should
be used to keep the core as small as possible.

Block Size Type

- Constant: The block size never changes. The block can be pruned (block size < row *
col). The block size must be chosen so that the last symbol is on the last row. An
unpruned interleaver will use a smaller quantity of FPGA resources than a pruned
one, so pruning should be used only if necessary.

- Rows*Columns: If the number of rows and columns is constant, selecting this option
has the same effect as setting the block size type to constant and entering a value of
rows * columns for the block size.

If the number of rows or columns is not constant, selecting this option means the core
will calculate the block size automatically whenever a new row or column value is
sampled. Pruning is impossible with this block size type.

- Variable: Block size is sampled from the BLOCK_SIZE input at the beginning of
every block. The value sampled on BLOCK_SIZE must be such that the last symbol
falls on the last row, as previously described.

If the block size is already available external to the core, selecting this option is usually
more efficient than selecting “rows * columns” for the block size type. Row and
column permutations are not supported for the Variable block size type.

Port Parameters #1 tab

Parameters specific to the Port Parameters tab are as follows:

Control Signals

 ACLKEN: When ACLKEN is deasserted (Low), all the synchronous inputs are ignored and the
block remains in its current state.
274 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=274

Interleaver/De-interleaver 7.1
 ARESETn (Active Low).: Active-low synchronous clear input that always takes priority over
ACLKEN.

Status Signals

 COL_VALID: This optional output is available when a variable number of columns is
selected. If an illegal value is sampled on the s_axis_ctrl_tdata_col input,
event_col_valid will go Low a predefined number of clock cycles later.

 COL_SEL_VALID: This optional output (event_col_sel_valid) is available when a
selectable number of columns is chosen. The event pins are event_col_valid,
event_col_sel_valid, event_row_valid, event_row_sel_valid, event_block_size_valid (in the
same order as in the options on the GUI).

 ROW_VALID: This optional output is available when a selectable number of rows is chosen.

 ROW_SEL_VALID: This optional output is available when a selectable number of rows is
chosen.

 BLOCK_SIZE_VALID: This optional output is available when the block size is not constant,
that is, if the block size type is either Variable or equal to Rows * Columns.

Port Parameters #2 tab

Parameters specific to the Port Parameters #2 tab are as follows:

Data Output Channel Options

 TREADY: TREADY for the Data Input Channel. Used by the Symbol Interleaver/De-
interleaver to signal that it is ready to accept data.

 FDO: Adds a data_tuser_fdo (First Data Out) output port.

 RDY: Adds a data_tuser_rdy output port.

 BLOCK_START: Adds a data_tuser_block_start output port.

 BLOCK_END: Adds a data_tuser_block_end output port.

Pipelining

 Pipelining: Pipelines the underlying LogiCORE for Minimum, Medium, or Maximum
performance

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Interleaver/De-interleaver v7.1

Device Support

Virtex-7, Kintex-7, Artix-7
System Generator for DSP Reference Guide www.xilinx.com 275
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sid;v=v7_1;d=pg049-sid.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=275

Chapter 1: Xilinx Blockset
Inverter
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Math,
and Index.

The Xilinx Inverter block calculates the bitwise logical complement of a fixed-point
number. The block is implemented as a synthesizable VHDL module.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
276 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=276

JTAG Co-Simulation
JTAG Co-Simulation

The Xilinx JTAG Co-Simulation block allows you to perform hardware co-
simulation using JTAG and a Parallel Cable IV or Platform USB. The JTAG
hardware co-simulation interface takes advantage of the ubiquity of JTAG to
extend System Generator's hardware in the simulation loop capability to numerous
other FPGA platforms.

The port interface of the co-simulation block varies. When a model is
implemented for JTAG hardware co-simulation, a new library is created that

contains a custom JTAG co-simulation block with ports that match the gateway names (or port
names if the subsystem is not the top level) from the original model. The co-simulation block
interacts with the FPGA hardware platform during a Simulink simulation. Simulation data that is
written to the input ports of the block are passed to the hardware by the block. Conversely, when
data is read from the co-simulation block's output ports, the block reads the appropriate values from
the hardware and drives them on the output ports so they can be interpreted in Simulink. In addition,
the block automatically opens, configures, steps, and closes the platform.

Refer to JTAG Hardware Co-Simulation for JTAG hardware requirements, and information on how
to support new platforms.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Clock source: You can select between Single stepped and Free running clock sources.
Selecting a Single stepped clock allows the block to step the board one clock cycle at a time.
Each clock cycle step corresponds to some duration of time in Simulink Using this clock
source ensures the behavior of the co-simulation hardware during simulation is bit and cycle
accurate when compared to the simulation behavior of the subsystem from which it originated.
Sometimes single stepping is not necessary and the board can be run with a Free Running
clock. In this case, the board will operate asynchronously to the Simulink simulation.

 Has combinational path: Sometimes it is necessary to have a direct combinational feedback
path from an output port on a hardware co-simulation block to an input port on the same block
(e.g., a wire connecting an output port to an input port on a given block). If you require a direct
feedback path from an output to input port, and your design does not include a combinational
path from any input port to any output port, un-checking this box will allow the feedback path
in the design.

 Bitstream name: Specifies the co-simulation FPGA configuration file for the JTAG hardware
co-simulation platform. When a new co-simulation block is created during compilation, this
parameter is automatically set so that it points to the appropriate configuration file. You need
only adjust this parameter if the location of the configuration file changes.

Advanced tab

 Skip device configuration: Selecting this option causes the co-simulation block to skip the
device configuration phase at the beginning of a simulation. Doing so is useful for co-
simulation designs that do not need to be reset (or reprogrammed) at the end of a simulation.
System Generator for DSP Reference Guide www.xilinx.com 277
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=277

Chapter 1: Xilinx Blockset
This checkbox should be used with caution since the co-simulation platform is not
programmed when this checkbox is selected. This means that it is possible to perform
hardware co-simulation without a co-simulation bitstream loaded on the hardware platform.

Cable tab

 Type Select one of the following: Auto Detect, Xilinx Parallel Cable IV, Xilinx Platform
USB, Xilinx Point-to-point Ethernet, Custom. When Auto Detect is selected, JTAG co-
simulation automatically scans through different JTAG cables (LPT1-LPT4, USB21-USB216)
and picks the first FPGA device that matches what the design is targeted for.

 Similarly, you can select Xilinx Parallel Cable IV, Xilinx Platform USB, or Custom to use
the different JTAG configuration cables.

 Speed: Sometimes you might need to run the programming cable at a frequency less than the
default (maximum) speed setting for hardware co-simulation. This menu allows you to choose
a cable speed that is suitable for your hardware setup. Normally the default speed will suffice,
however, it is recommended to try a slower cable speed if System Generator fails to configure
the device for co-simulation.

 Port Select the port name for the JTAG cable.

 Blink Cable LED When Xilnx Platform USB is selected, you can click on this button to
activate a blinking light next to the cable connector on the hardware board.

 Plug-in Parameters Specify the plug-in parameters for a Custom cable. This field uses the
same syntax as that used by ChipScope/iMPACT.

<plugin> <param1>=<value1> <param2>=<value2>

For example, see the figure below:

Refer to the Chipscope/iMPACT user documentation for further details on the cable plugin
parameters.

 Shared cable for concurrent access: This option allows the JTAG cable to be shared with
EDK XMD and ChipScope™ Pro Analyzer during a JTAG co-simulation. When the option is
checked, the JTAG co-simulation engine only acquires a lock on the cable access and then
immediately releases the lock when the access completes. Otherwise, the JTAG co-simulation
engine holds the lock throughout the simulation. Due to the significant overhead on locking
and unlocking the cable, this cable sharing option is disabled by default and only enabled when
you check the box.

Shared Memories tab

Displays the names of the shared memories that are detected in the design to be simulated.
278 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=278

JTAG Co-Simulation
Software tab

Parameters specific to the Network tab are as follows:

 Enable Co-Debug with Xilinx SDK: On by default, clicking this item off disables the SDK
Co-Debug feature in Sysgen

Xilinx Software Development Kit (SDK)

 Workspace: Specifies the pathname to the SDK workspace when SDK is started from Sysgen
using the Launch Xilinx SDK button.

 Launch Xilinx SDK: Starts Xilinx SDK for use in a Sysgen/SDK Co-Debug session

Software Initialization

 ELF file: Specifies the pathname to the SDK project ELF file.

 BMM file: Specifies the pathname to the SDK project BMM file.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 279
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=279

Chapter 1: Xilinx Blockset
LFSR
This block is listed in the following Xilinx Blockset libraries: Basic Elements, DSP, Memory, and
Index.

The Xilinx LFSR block implements a Linear Feedback Shift Register
(LFSR). This block supports both the Galois and Fibonacci structures using
either the XOR or XNOR gate and allows a re-loadable input to change the
current value of the register at any time. The LFSR output and re-loadable
input can be configured as either serial or parallel ports

Block Interface

As shown in the table above, there can be between 0 and 4 block input ports and exactly one output
port. If the configuration selected requires 0 inputs, the LFSR is set up to start at a specified initial
seed value and will step through a repeatable sequence of states determined by the LFSR structure
type, gate type and initial seed.

The optional din and load ports provide the ability to change the current value of the LFSR at
runtime. After the load completes, the LFSR behaves as with the 0 input case and start up a new
sequence based upon the newly loaded seed and the statically configured LFSR options for structure
and gate type.

The optional rst port will reload the statically specified initial seed of the LFSR and continue on as
before after the rst signal goes low. And when the optional en port goes low, the LFSR will remain
at its current value with no change until the en port goes high again.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Type: Fibonacci or Galois. This field specifies the structure of the feedback. Fibonacci has one
XOR (or XNOR) gate at the beginning of the register chain that XORs (or XNORs) the taps
together with the result going into the first register. Galois has one XOR(or XNOR) gate for
each tap and gates the last register in the chains output with the input to the register at that tap.

 Gate type: XOR or XNOR. This field specifies the gate used by the feedback signals.

 Number of bits in LFSR: This field specifies the number of registers in the LFSR chain. As a
result, this number specifies the size of the input and output when selected to be parallel.

Port Name Port Description Port Type

din Data input for re-loadable seed Optional serial or parallel input

load Load signal for din Optional boolean input

rst Reset signal Optional boolean input

en Enable signal Optional boolean input

dout Data output of LFSR Required serial or parallel output
280 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=280

LFSR
 Feedback polynomial: This field specifies the tap points of the feedback chain and the value
must be entered in hex with single quotes. The lsb of this polynomial always must be set to 1
and the msb is an implied 1 and is not specified in the hex input. Please see the Xilinx
application note titled Efficient Shift Registers, LFSR Counters, and Long Pseudo- Random
Sequence Generators for more information on how to specify this equation and for optimal
settings for the maximum repeating sequence.

 Initial value: This field specifies the initial seed value where the LFSR begins its repeating
sequence. The initial value might not be all zeroes when choosing the XOR gate type and
might not be all ones when choosing XNOR, as those values will stall the LFSR.

Advanced tab

Parameters specific to the Advanced tab are as follows:

 Parallel output: This field specifies whether all of the bits in the LFSR chain are connected to
the output or just the last register in the chain (serial or parallel).

 Use reloadable seed values: This field specifies whether or not an input is needed to reload a
dynamic LFSR seed value at runtime.

 Parallel input: This field specifies whether the reloadable input seed is shifted in one bit at a
time or if it happens in parallel.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 281
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=281

Chapter 1: Xilinx Blockset
Logical
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Math,
and Index.

The Xilinx Logical block performs bitwise logical operations on fixed-point numbers.
Operands are zero padded and sign extended as necessary to make binary point
positions coincide; then the logical operation is performed and the result is delivered
at the output port.

In hardware this block is implemented as synthesizable VHDL. If you build a tree of
logical gates, this synthesizable implementation is best as it facilitates logic collapsing in synthesis
and mapping.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Logical function: specifies one of the following bitwise logical operators: AND, NAND, OR,
NOR, XOR, XNOR.

 Number of inputs: specifies the number of inputs (2 - 1024).

Output Type tab

Parameters specific to the Output Type tab are as follows:

 Align binary point: specifies that the block must align binary points automatically. If not
selected, all inputs must have the same binary point position.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCORE
This block does not use a Xilinx LogiCORE™.
282 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=282

MCode
MCode
This block is listed in the following Xilinx Blockset libraries: Control Logic, Math, and Index.

The Xilinx MCode block is a container for executing a user-supplied MATLAB
function within Simulink. A parameter on the block specifies the M-function name.
The block executes the M-code to calculate block outputs during a Simulink
simulation. The same code is translated in a straightforward way into equivalent
behavioral VHDL/Verilog when hardware is generated.

The block's Simulink interface is derived from the MATLAB function signature, and from block
mask parameters. There is one input port for each parameter to the function, and one output port for
each value the function returns. Port names and ordering correspond to the names and ordering of
parameters and return values.

The MCode block supports a limited subset of the MATLAB language that is useful for
implementing arithmetic functions, finite state machines and control logic.

The MCode block has the following three primary coding guidelines that must be followed:

 All block inputs and outputs must be of Xilinx fixed-point type.

 The block must have at least one output port.

 The code for the block must exist on the MATLAB path or in the same directory as the
directory as the model that uses the block.

The topic Compiling MATLAB into an FPGA shows three examples of functions for the MCode
block. The first example (also described below) consists of a function xlmax which returns the
maximum of its inputs. The second illustrates how to do simple arithmetic. The third shows how to
build a finite state machine. These examples are linked from the topic titled Additional Examples
and Tutorials.

Configuring an MCode Block
The MATLAB Function parameter of an MCode block specifies the name of the block's M- code
function. This function must exist in one of the three locations at the time this parameter is set. The
three possible locations are:

 The directory where the model file is located.

 A subdirectory of the model directory named private.

 A directory in the MATLAB path.

The block icon displays the name of the M-function. To illustrate these ideas, consider the file
xlmax.m containing function xlmax:

function z = xlmax(x, y)
if x > y
z = x;

else
z = y;
end

An MCode block based on the function xlmax will have input ports x and y and output port z.
System Generator for DSP Reference Guide www.xilinx.com 283
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=283

Chapter 1: Xilinx Blockset
The following figure shows how to set up an MCode block to use function xlmax.

Once the model is compiled, the xlmax MCode block will appear like the block illustrated below.

MATLAB Language Support
The MCode block supports the following MATLAB language constructs:

 Assignment statements

 Simple and compound if/else/elseif end statements

 switch statements

 Arithmetic expressions involving only addition and subtraction

 Addition

 Subtraction

 Multiplication

 Division by a power of two
284 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=284

MCode
 Relational operators:

 Logical operators:

The MCode block supports the following MATLAB functions.

 Type conversion. The only supported data type is xfix, the Xilinx fixed-point type. The
xfix() type conversion function is used to convert to this type. The conversion is done
implicitly for integers but must be done explicitly for floating point constants. All values must
be scalar; arrays are not supported.

 Functions that return xfix properties:

 Bit-wise logical functions:

 Shift functions: xl_lsh() and xl_rsh()

 Slice function: xl_slice()

 Concatenate function: xl_concat()

 Reinterpret function: xl_force()

 Internal state variables: xl_state()

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

& And

| Or

~ Not

xl_nbits() Returns number of bits

xl_binpt() Returns binary point position

xl_arith() Returns arithmetic type

xl_and() Bit-wise and

xl_or() Bit-wise or

xl_xor() Bit-wise xor

xl_not() Bit-wise not
System Generator for DSP Reference Guide www.xilinx.com 285
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=285

Chapter 1: Xilinx Blockset
 MATLAB Functions:

Data Types

There are three kinds of xfix data types: unsigned fixed-point (xlUnsigned), signed fixed-
point(xlSigned), and boolean (xlBoolean). Arithmetic operations on these data types produce
signed and unsigned fixed-point values. Relational operators produce a boolean result. Relational
operands can be any xfix type, provided the mixture of types makes sense. Boolean variables can
be compared to boolean variables, but not to fixed-point numbers; boolean variables are
incompatible with arithmetic operators. Logical operators can only be applied to boolean variables.
Every operation is performed in full precision, for example, with the minimum precision needed to
guarantee that no information is lost.

Literal Constants

Integer, floating-point, and boolean literals are supported. Integer literals are automatically
converted to xfix values of appropriate width having a binary point position at zero. Floating-point
literals must be converted to the xfix type explicitly with the xfix() conversion function. The
predefined MATLAB values true and false are automatically converted to boolean literals.

Assignment

The left-hand side of an assignment can only contain one variable. A variable can be assigned more
than once.

Control Flow

The conditional expression of an if statement must evaluate to a boolean. Switch statements can
contain a case clause and an otherwise clause. The types of a switch selector and its cases must
be compatible; thus, the selector can be boolean provided its cases are. All cases in a switch must
be constant; equivalently, no case can depend on an input value.

When the same variable is assigned in several branches of a control statement, the types being
assigned must be compatible. For example,

if (u > v)
x = a;

else
x = b;

end

is acceptable only if a and b are both boolean or both arithmetic.

disp() Displays variable values

error() Displays message and abort function

isnan() Tests whether a number is NaN

NaN() Returns Not-a-Number

num2str() Converts a number to string

ones(1,N) Returns 1-by-N vector of ones

pi() Returns pi

zeros(1,N) Returns 1-by-N vector of zeros
286 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=286

MCode
Constant Expressions

An expression is constant provided its value does not depend on the value of any input argument.
Thus, for example, the variable c defined by

a = 1;
b = a + 2;
c = xfix({xlSigned, 10, 2}, b + 3.345);

can be used in any context that demands a constant.

xfix() Conversion

The xfix() conversion function converts a double to an xfix, or changes one xfix into
another having different characteristics. A call on the conversion function looks like the following

x = xfix(type_spec, value)

Here x is the variable that receives the xfix. type_spec is a cell array that specifies the type of
xfix to create, and value is the value being operated on. The value can be floating point or xfix
type. The type_spec cell array is defined using curly braces in the usual MATLAB method. For
example,

xfix({xlSigned, 20, 16, xlRound, xlWrap}, 3.1415926)

returns an xfix approximation to pi. The approximation is signed, occupies 20 bits (16 fractional),
quantizes by rounding, and wraps on overflow.

The type_spec consists of 1, 3, or 5 elements. Some elements can be omitted. When elements are
omitted, default element settings are used. The elements specify the following properties (in the
order presented): data type, width, binary point position, quantization mode,
and overflow mode. The data type can be xlBoolean, xlUnsigned, or xlSigned.
When the type is xlBoolean, additional elements are not needed (and must not be supplied). For
other types, width and binary point position must be supplied. The quantization
and overflow modes are optional, but when one is specified, the other must be as well. Three
values are possible for quantization: xlTruncate, xlRound, and xlRoundBanker. The
default is xlTruncate. Similarly, three values are possible for overflow: xlWrap,
xlSaturate, and xlThrowOverflow. For xlThrowOverflow, if an overflow occurs
during simulation, an exception occurs.

All values in a type_spec must be known at compilation time; equivalently, no type_spec value can
depend on an input to the function.

The following is a more elaborate example of an xfix() conversion:

width = 10, binpt = 4;
z = xfix({xlUnsigned, width, binpt}, x + y);

This assignment to x is the result of converting x + y to an unsigned fixed-point number that is 10
bits wide with 4 fractional bits using xlTruncate for quantization and xlWrap for overflow.

If several xfix() calls need the same type_spec value, you can assign the type_spec to a variable,
then use the variable for xfix() calls. For example, the following is allowed:

proto = {xlSigned, 10, 4};
x = xfix(proto, a);
y = xfix(proto, b);

xfix Properties: xl_arith, xl_nbits, and xl_binpt

Each xfix number has three properties: the arithmetic type, the bit width, and the binary point
position. The MCode blocks provide three functions to get these properties of a fixed- point number.
System Generator for DSP Reference Guide www.xilinx.com 287
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=287

Chapter 1: Xilinx Blockset
The results of these functions are constants and are evaluated when Simulink compiles the model.

Function a = xl_arith(x) returns the arithmetic type of the input number x. The return value
is either 1, 2, or 3 for xlUnsigned, xlSigned, or xlBoolean respectively.

Function n = xl_nbits(x) returns the width of the input number x.

Function b = xl_binpt(x) returns the binary point position of the input number x.

Bit-wise Operators: xl_or, xl_and, xl_xor, and xl_not

The MCode block provides four built-in functions for bit-wise logical operations: xl_or,
xl_and, xl_xor, and xl_not.

Function xl_or, xl_and, and xl_xor perform bit-wise logical or, and, and xor operations
respectively. Each function is in the form of

x = xl_op(a, b, …).

Each function takes at least two fixed-point numbers and returns a fixed-point number. All the input
arguments are aligned at the binary point position.

Function xl_not performs a bit-wise logical not operation. It is in the form of x = xl_not(a).
It only takes one xfix number as its input argument and returns a fixed- point number.

The following are some examples of these function calls:

X = xl_and(a, b);
Y = xl_or(a, b, c);
Z = xl_xor(a, b, c, d);
N = xl_not(x);

Shift Operators: xl_rsh, and xl_lsh

Functions xl_lsh and xl_rsh allow you to shift a sequence of bits of a fixed-point number. The
function is in the form:

x = xl_lsh(a, n) and x = xl_rsh(a, n) where a is a xfix value and n is the number
of bits to shift.

Left or right shift the fixed-point number by n number of bits. The right shift (xl_rsh) moves the
fixed-point number toward the least significant bit. The left shift (xl_lsh) function moves the
fixed-point number toward the most significant bit. Both shift functions are a full precision shift. No
bits are discarded and the precision of the output is adjusted as needed to accommodate the shifted
position of the binary point.

Here are some examples:

% left shift a 5 bits
a = xfix({xlSigned, 20, 16, xlRound, xlWrap}, 3.1415926)
b = xl_rsh(a, 5);

The output b is of type xlSigned with 21 bits and the binary point located at bit 21.
288 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=288

MCode
Slice Function: xl_slice

Function xl_slice allows you to access a sequence of bits of a fixed-point number. The function
is in the form:

x = xl_slice(a, from_bit, to_bit).

Each bit of a fixed-point number is consecutively indexed from zero for the LSB up to the MSB. For
example, given an 8-bit wide number with binary point position at zero, the LSB is indexed as 0 and
the MSB is indexed as 7. The block will throw an error if the from_bit or to_bit arguments are
out of the bit index range of the input number. The result of the function call is an unsigned fixed-
point number with zero binary point position.

Here are some examples:

% slice 7 bits from bit 10 to bit 4
b = xl_slice(a, 10, 4);
% to get MSB
c = xl_slice(a, xl_nbits(a)-1, xl_nbits(a)-1);

Concatenate Function: xl_concat

Function x = xl_concat(hi, mid, ..., low) concatenates two or more fixed-point
numbers to form a single fixed-point number. The first input argument occupies the most significant
bits, and the last input argument occupies the least significant bits. The output is an unsigned fixed-
point number with binary point position at zero.

Reinterpret Function: xl_force

Function x = xl_force(a, arith, binpt) forces the output to a new type with arith as
its new arithmetic type and binpt as its new binary point position. The arith argument can be
one of xlUnsigned, xlSigned, or xlBoolean. The binpt argument must be from 0 to the
bit width inclusively. Otherwise, the block will throw an error.

State Variables: xl_state

An MCode block can have internal state variables that hold their values from one simulation step to
the next. A state variable is declared with the MATLAB keyword persistent and must be initially
assigned with an xl_state function call.

The following code models a 4-bit accumulator:

function q = accum(din, rst)
init = 0;
persistent s, s = xl_state(init, {xlSigned, 4, 0});
q = s;
if rst
s = init;

else
s = s + din;

end

The state variable s is declared as persistent, and the first assignment to s is the result of the
xl_state invocation. The xl_state function takes two arguments. The first is the initial value
and must be a constant. The second is the precision of the state variable. It can be a type cell array
as described in the xfix function call. It can also be an xfix number. In the above code, if s =
xl_state(init, din), then state variable s will use din as the precision. The xl_state
function must be assigned to a persistent variable.
System Generator for DSP Reference Guide www.xilinx.com 289
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=289

Chapter 1: Xilinx Blockset
The xl_state function behaves in the following way:

1. In the first cycle of simulation, the xl_state function initializes the state variable with the
specified precision.

2. In the following cycles of simulation, the xl_state function retrieves the state value left
from the last clock cycle and assigns the value to the corresponding variable with the specified
precision.

v = xl_state(init, precision) returns the value of a state variable. The first input
argument init is the initial value, the second argument precision is the precision for this state
variable. The argument precision can be a cell arrary in the form of {type, nbits,
binpt} or {type, nbits, binpt, quantization,overflow}. The precision
argument can also be an xfix number.

v = xl_state(init, precision, maxlen) returns a vector object. The vector is
initialized with init and will have maxlen for the maximum length it can be. The vector is
initialized with init. For example, v = xl_state(zeros(1, 8), prec, 8) creates a
vector of 8 zeros, v = xl_state([], prec, 8) creates an empty vector with 8 as maximum
length, v = xl_state(0, prec, 8) creates a vector of one zero as content and with 8 as the
maximum length.

Conceptually, a vector state variable is a double ended queue. It has two ends, the front which is the
element at address 0 and the back which is the element at length – 1.

Methods available for vector are:

val = v(idx); Returns the value of element at address idx.

v(idx) = val; Assigns the element at address idx with val.

f = v.front; Returns the value of the front end. An error is thrown
if the vector is empty.

v.push_front(val); Pushes val to the front and then increases the vector
length by 1. An error is thrown if the vector is full.

v.pop_front; Pops one element from the front and decreases the
vector length by 1. An error is thrown if the vector is
empty.

b = v.back; Returns the value of the back end. An error is thrown
if the vector is empty.

v.push_back(val); Pushes val to the back and the increases the vector
length by 1. An error is thrown if the vector is full.

v.pop_back; Pops one element from the back and decreases the
vector length by 1. An error is thrown if the vector is
empty.

v.push_front_pop_back(val); Pushes val to the front and pops one element out from
the back. It's a shift operation. The length of the vector
is unchanged. The vector cannot be empty to perform
this operation.

full = v.full; Returns true if the vector is full, otherwise, false.

empty = v.empty; Returns true if the vector is empty, otherwise,
false.

len = v.length; Returns the number of elements in the vector.
290 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=290

MCode
A method of a vector that queries a state variable is called a query method. It has a return value. The
following methods are query method: v(idx), v.front, v.back, v.full, v.empty,
v.length, v.maxlen. A method of a vector that changes a state variable is called an update
method. An update method does not return any value. The following methods are update methods:
v(idx) = val, v.push_front(val), v.pop_front, v.push_back(val),
v.pop_back, and v.push_front_pop_back(val). All query methods of a vector must be
invoked before any update method is invocation during any simulation cycle. An error is thrown
during model compilation if this rule is broken.

The MCode block can map a vector state variable into a vector of registers, a delay line, an
addressable shift register, a single port ROM, or a single port RAM based on the usage of the state
variable. The xl_state function can also be used to convert a MATLAB 1-D array into a zero-
indexed constant array. If the MCode block cannot map a vector state variable into an FPGA device,
an error message is issued during model netlist time. The following are examples of using vector
state variables.

Delay Line

The state variable in the following function is mapped into a delay line.

function q = delay(d, lat)
persistent r, r = xl_state(zeros(1, lat), d, lat);
q = r.back;
r.push_front_pop_back(d);

Line of Registers

The state variable in the following function is mapped into a line of registers.

function s = sum4(d)
persistent r, r = xl_state(zeros(1, 4), d);
S = r(0) + r(1) + r(2) + r(3);
r.push_front_pop_back(d);

Vector of Constants

The state variable in the following function is mapped into a vector of constants.

function s = myadd(a, b, c, d, nbits, binpt)
p = {xlSigned, nbits, binpt, xlRound, xlSaturate};
persistent coef, coef = xl_state([3, 7, 3.5, 6.7], p);
s = a*coef(0) + b*coef(1) + c*coef(2) + c*coef(3);

Addressable Shift Register

The state variable in the following function is mapped into an addressable shift register.

function q = addrsr(d, addr, en, depth)
persistent r, r = xl_state(zeros(1, depth), d);
q = r(addr);
if en
r.push_front_pop_back(d);

end

Single Port ROM

The state variable in the following function is mapped into a single port ROM.

function q = addrsr(contents, addr, arith, nbits, binpt)
proto = {arith, nbits, binpt};
persistent mem, mem = xl_state(contents, proto);
System Generator for DSP Reference Guide www.xilinx.com 291
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=291

Chapter 1: Xilinx Blockset
q = mem(addr);

Single Port RAM

The state variable in the following function is mapped to a single port RAM in fabric (Distributed
RAM).

function dout = ram(addr, we, din, depth, nbits, binpt)
proto = {xlSigned, nbits, binpt};
persistent mem, mem = xl_state(zeros(1, depth), proto);
dout = mem(addr);
if we
mem(addr) = din;

end

The state variable in the following function is mapped to BlockRAM as a single port RAM.

function dout = ram(addr, we, din, depth, nbits, binpt,ram_enable)
proto = {xlSigned, nbits, binpt};
persistent mem, mem = xl_state(zeros(1, depth), proto);
persistent dout_temp, dout_temp = xl_state(0,proto);
dout = dout_temp;
dout_temp = mem(addr);
if we
mem(addr) = din;

end

MATLAB Functions

disp()

Displays the expression value. In order to see the printing on the MATLAB console, the option
Enable printing with disp must be checked on the Advanced tab of the MCode block parameters
dialog box. The argument can be a string, an xfix number, or an MCode state variable. If the
argument is an xfix number, it will print the type, binary value, and double precision value. For
example, if variable x is assigned with xfix({xlSigned, 10, 7}, 2.75), the disp(x)
will print the following line:

type: Fix_10_7, binary: 010.1100000, double: 2.75

If the argument is a vector state variable, disp() will print out the type, maximum length, current
length, and the binary and double values of all the elements. For each simulation step, when Enable
printing with disp is on and when a disp() function is invoked, a title line is printed for the
corresponding block. The title line includes the block name, Simulink simulation time, and FPGA
clock number.

The following MCode function shows several examples of using the disp() function.

function x = testdisp(a, b)
persistent dly, dly = xl_state(zeros(1, 8), a);
persistent rom, rom = xl_state([3, 2, 1, 0], a);
disp('Hello World!');
disp(['num2str(dly) is ', num2str(dly)]);
disp('disp(dly) is ');
disp(dly);
disp('disp(rom) is ');
disp(rom);
a2 = dly.back;
dly.push_front_pop_back(a);
x = a + b;
disp(['a = ', num2str(a), ', ', ...
292 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=292

MCode
'b = ', num2str(b), ', ', ...
'x = ', num2str(x)]);
disp(num2str(true));
disp('disp(10) is');
disp(10);
disp('disp(-10) is');
disp(-10);
disp('disp(a) is ');
disp(a);
disp('disp(a == b)');
disp(a==b);

The following lines are the result for the first simulation step.

xlmcode_testdisp/MCode (Simulink time: 0.000000, FPGA clock: 0)
Hello World!
num2str(dly) is [0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000]
disp(dly) is
type: Fix_11_7,
maxlen: 8,
length: 8,
0: binary 0000.0000000, double 0.000000,
1: binary 0000.0000000, double 0.000000,
2: binary 0000.0000000, double 0.000000,
3: binary 0000.0000000, double 0.000000,
4: binary 0000.0000000, double 0.000000,
5: binary 0000.0000000, double 0.000000,
6: binary 0000.0000000, double 0.000000,
7: binary 0000.0000000, double 0.000000,
disp(rom) is
type: Fix_11_7,
maxlen: 4,
length: 4,
0: binary 0011.0000000, double 3.0,
1: binary 0010.0000000, double 2.0,
2: binary 0001.0000000, double 1.0,
3: binary 0000.0000000, double 0.0,
a = 0.000000, b = 0.000000, x = 0.000000
1
disp(10) is
type: UFix_4_0, binary: 1010, double: 10.0
disp(-10) is
type: Fix_5_0, binary: 10110, double: -10.0
disp(a) is
type: Fix_11_7, binary: 0000.0000000, double: 0.000000
disp(a == b)
type: Bool, binary: 1, double: 1
System Generator for DSP Reference Guide www.xilinx.com 293
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=293

Chapter 1: Xilinx Blockset
You can find the above example in the topic Compiling MATLAB into an FPGA.

error()

Displays message and abort function. See Matlab help on this function for more detailed
information. Message formatting is not supported by the MCode block. For example:

if latency <=0
error('latency must be a positive');

end

isnan()

Returns true for Not-a-Number. isnan(X) returns true when X is Not-a-Number. X must be a
scalar value of double or Xilinx fixed-point number. This function is not supported for vectors or
matrices. For example:

if isnan(incr) & incr == 1
cnt = cnt + 1;

end

NaN()

The NaN() function generates an IEEE arithmetic representation for Not-a-Number. A NaN is
obtained as a result of mathematically undefined operations like 0.0/0.0 and inf-inf. NaN(1,N)
generates a 1-by-N vector of NaN values. Here are examples of using NaN.

if x < 0
z = NaN;

else
z = x + y;

end

num2Str()

Converts a number to a string. num2str(X) converts the X into a string. X can be a scalar value of
double, a Xilinx fixed-point number, or a vector state variable. The default number of digits is based
on the magnitude of the elements of X. Here's an example of num2str:

if opcode <=0 | opcode >= 10
error(['opcode is out of range: ', num2str(opcode)]);

end

ones()

The ones() function generates a specified number of one values. ones(1,N) generates a 1-by-
N vector of ones. ones(M,N) where M must be 1. It's usually used with xl_state() function
call. For example, the following line creates a 1-by-4 vector state variable initialized to [1, 1, 1, 1].

persitent m, m = xl_state(ones(1, 4), proto)

zeros()

The zeros() function generates a specified number of zero values. zeros(1,N) generates a 1-
by-N vector of zeros. zero(M,N) where M must be 1. It's usually used with xl_state()
function call. For example, the following line creates a 1-by-4 vector state variable initialized to [0,
0, 0, 0].

persitent m, m = xl_state(zeros(1, 4), proto)
294 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=294

MCode
FOR Loop

FOR statement is fully unrolled. The following function sums n samples.

function q = sum(din, n)
persistent regs, regs = xl_state(zeros(1, 4), din);
q = reg(0);
for i = 1:n-1
q = q + reg(i);

end
regs.push_front_pop_back(din);

The following function does a bit reverse.

function q = bitreverse(d)
q = xl_slice(d, 0, 0);
for i = 1:xl_nbits(d)-1
q = xl_concat(q, xl_slice(d, i, i));

end

Variable Availability

MATLAB code is sequential (for example, statements are executed in order). The MCode block
requires that every possible execution path assigns a value to a variable before it is used (except as
a left-hand side of an assignment). When this is the case, we say the variable is available for use.
The MCode block will throw an error if its M-code function accesses unavailable variables.

Consider the following M-code:

function [x, y, z] = test1(a, b)
x = a;
if a>b
x = a + b; y = a;

end
switch a
case 0

z = a + b;
case 1

z = a – b;
end

Here a, b, and x are available, but y and z are not. Variable y is not available because the if
statement has no else, and variable z is not available because the switch statement has no otherwise
part.

DEBUG MCode

There are two ways to debug your MCode. One is to insert disp() functions in your code and
enable printing; the other is to use the MATLAB debugger. For usage of the disp() function, please
reference the topic disp().

If you want to use the MATLAB debugger, you need to check the Enable MATLAB debugging
option on the Advanced tab of the MCode block parameters dialog box. Then you can open your
MATLAB function with the MATLAB editor, set break points, and debug your M-function. Just be
aware that every time you modify your script, you need to execute a clear functions
command in the MATLAB console.
System Generator for DSP Reference Guide www.xilinx.com 295
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=295

Chapter 1: Xilinx Blockset
To start debugging your M-function, you need to first check the Enable MATLAB debugging
checkbox on the Advanced tab of the MCode block parameters dialog, then click the OK or Apply
button.

Now you can edit the M-file with the MATLAB editor and set break points as needed.
296 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=296

MCode
During the Simulink simulation, the MATLAB debugger will stop at the break points you set when
the break points are reached.

When debugging, you can also examine the values of the variables by typing the variable names in
the MATLAB console.

There is one special case to consider when the function for an MCode block is executed from the
MATLAB debugger. A switch/case expression inside an MCode block must be type xfix,
however, executing a switch/case expression from the MATLAB console requires that the
expression be a double or char. To facilitate execution in the MATLAB console, a call to
double() must be added. For example, consider the follwing:

switch i
case 0
x = 1

case 1
x = 2

end

where i is type xfix. To run from the console this code must changed to

switch double(i)
case 0
x = 1

case 1
x = 2

end

The double() function call only has an effect when the M code is run from the console. The
MCode block ignores the double() call.
System Generator for DSP Reference Guide www.xilinx.com 297
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=297

Chapter 1: Xilinx Blockset
Passing Parameters

It is possible to use the same M-function in different MCode blocks, passing different parameters to
the M-function so that each block can behave differently. This is achieved by binding input
arguments to some values. To bind the input arguments, select the Interface tab on the block GUI.
After you bind those arguments to some values, these M-function arguments will not be shown as
input ports of the MCode block.

Consider for example, the following M-function:

function dout = xl_sconvert(din, nbits, binpt)
proto = {xlSigned, nbits, binpt};
dout = xfix(proto, din);

The following figures shows how the bindings are set for the din input of two separate
xl_sconvert blocks.
298 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=298

MCode
The following figure shows the block diagram after the model is compiled.

The parameters can only be of type double or they can be logical numbers.

Optional Input Ports

The parameter passing mechanism allows the MCode block to have optional input ports. Consider
for example, the following M-function:

function s = xl_m_addsub(a, b, sub)
if sub
s = a – b;

else
s = a + b;

end

If sub is set to be false, the MCode block that uses this M-function will have two input ports a
and b and will perform full precision addition. If it is set to an empty cell array {}, the block will
have three input ports a, b, and sub and will perform full precision addition or subtraction based on
the value of input port sub.

The following figure shows the block diagram of two blocks using the same xl_m_addsub
function, one having two input ports and one having three input ports.
System Generator for DSP Reference Guide www.xilinx.com 299
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=299

Chapter 1: Xilinx Blockset
Constructing a State Machine

There are two ways to build a state machine using an MCode block. One way is to specify a stateless
transition function using a MATLAB function and pair an MCode block with one or more state
register blocks. Usually the MCode block drives a register with the value representing the next state,
and the register feeds back the current state into the MCode block. For this to work, the precision of
the state output from the MCode block must be static, that is, independent of any inputs to the block.
Occasionally you might find you need to use xfix() conversions to force static precision. The
following code illustrates this:

function nextstate = fsm1(currentstate, din)
% some other code
nextstate = currentstate;
switch currentstate
case 0, if din==1, nextstate = 1; end

end
% a xfix call should be used at the end
nextstate = xfix({xlUnsigned, 2, 0}, nextstate);

Another way is to use state variables. The above function can be re-written as follows:

function currentstate = fsm1(din)
persistent state, state=xl_state(0,{xlUnsigned,2,0});
currentstate = state;
switch double(state)
case 0, if din==1; state = 1; end

end

Reset and Enable Signals for State Variables

The MCode block can automatically infer register reset and enable signals for state variables when
conditional assignments to the variables contain two or fewer branches.

For example, the following M-code infers an enable signal for conditional assignment of
persistent state variable r1:

function myFn = aFn(en, a)
persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
myFn = r1;
if en
r1 = r1 + a

else
r1 = r1

end

There are two branches in the conditional assignment to persistent state variable r1. A register is
used to perform the conditional assignment. The input of the register is connected to r1 + a, the
output of the register is r1. The register's enable signal is inferred; the enable signal is connected to
en, when en is asserted. Persistent state variable r1 is assigned to r1 + a when en evaluates to
false, the enable signal on the register is de-asserted resulting in the assignment of r1 to r1.
300 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=300

MCode
The following M-code will also infer an enable signal on the register used to perform the conditional
assignment:

function myFn = aFn(en, a)
persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
myFn = r1;
if en
r1 = r1 + a

end

An enable is inferred instead of a reset because the conditional assignment of persistent state
variable r1 is to a non-constant value, r1 + a.

If there were three branches in the conditional assignment of persistent state variable r1, the enable
signal would not be inferred. The following M-code illustrates the case where there are three
branches in the conditional assignment of persistent state variable r1 and the enable signal is not
inferred:

function myFn = aFn(en, en2, a, b)
persistent r1, r1 = xl_state(0, {xlUnsigned, 2, 0});
if en
r1 = r1 + a

elseif en2
r1 = r1 + b

else
r1 = r1

v

The reset signal can be inferred if a persistent state variable is conditionally assigned to a constant;
the reset is synchronous. Consider the following M-code example which infers a reset signal for the
assignment of persistent state variable r1 to init, a constant, when rst evaluates to true and r1
+ 1 otherwise:

function myFn = aFn(rst)
persistent r1, r1 = xl_state(0, {xlUnsigned, 4, 0});
myFn = r1;
init = 7;
if (rst)
r1 = init

else
r1 = r1 + 1

end

The M-code example above which infers reset can also be written as:

function myFn = aFn(rst)
persistent r1, r1 = xl_state(0, {xlUnsigned,4,0});
init = 1;
myFn = r1;
r1 = r1 +1
if (rst)
r1 = init

end

In both code examples above, the reset signal of the register containing persistent state variable r1
is assigned to rst. When rst evaluates to true, the register's reset input is asserted and the
persistent state variable is assigned to constant init. When rst evaluates to false, the register's
reset input is de-asserted and persistent state variable r1 is assigned to r1 + 1. Again, if the
conditional assignment of a persistent state variable contains three or more branches, a reset signal
is not inferred on the persistent state variable's register.
System Generator for DSP Reference Guide www.xilinx.com 301
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=301

Chapter 1: Xilinx Blockset
It is possible to infer reset and enable signals on the register of a single persistent state variable. The
following M-code example illustrates simultaneous inference of reset and enable signals for the
persistent state variable r1:

function myFn = aFn(rst,en)
persistent r1, r1 = xl_state(0, {xlUnsigned, 4, 0});
myFn = r1;
init = 0;
if rst
r1 = init

else
if en

r1 = r1 + 1
end

end

The reset input for the register of persistent state variable r1 is connected to rst; when rst
evaluates to true, the register's reset input is asserted and r1 is assigned to init. The enable input
of the register is connected to en; when en evaluates to true, the register's enable input is asserted
and r1 is assigned to r1 + 1. It is important to note that an inferred reset signal takes precedence
over an inferred enable signal regardless of the order of the conditional assignment statements.
Consider the second code example above; if both rst and en evaluate to true, persistent state
variable r1 would be assigned to init.

Inference of reset and enable signals also works for conditional assignment of persistent state
variables using switch statements, provided the switch statements contain two or less branches.

The MCode block performs dead code elimination and constant propagation compiler
optimizations when generating code for the FPGA. This can result in the inference of reset and/or
enable signals in conditional assignment of persistent state variables, when one of the branches is
never executed. For this to occur, the conditional must contain two branches that are executed after
dead code is eliminated and constant propagation is performed.

Inferring Registers

Registers are inferred in hardware by using persistent variables, however, the right coding style must
be used. Consider the two code segments in the following function:

function [out1, out2] = persistent_test02(in1, in2)
persistent ff1, ff1 = xl_state(0, {xlUnsigned, 2, 0});
persistent ff2, ff2 = xl_state(0, {xlUnsigned, 2, 0});
%code segment 1
out1 = ff1; %these two statements infer a register for ff1
ff1 = in1;
%code segment 2
ff2 = in2; %these two statements do NOT infer a register for ff2
out2 = ff2;
end

In code segment 1, the value of persistent variable ff1 is assigned to out1. Since ff1 is persistent , it
is assumed that its current value was assigned in the previous cycle. In the next statement, the value
of in1 is assigned to ff1 so it can be saved for the next cycle. This infers a register for ff1.

In code segment 2, the value of in2 is first assigned to persistent variable ff2, then assigned to out2.
These two statements can be completed in one cycle, so a register is not inferred. If you need to
insert delay into combinational logic, refer to the next topic.
302 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=302

MCode
Pipelining Combinational Logic

The generated FPGA bitstream for an MCode block might contain many levels of combinational
logic and hence a large critical path delay. To allow a downstream logic synthesis tool to
automatically pipeline the combinational logic, you can add delay blocks before the MCode block
inputs or after the MCode block outputs. These delay blocks should have the parameter Implement
using behavioral HDL set, which instructs the code generator to implement delay with
synthesizable HDL. You can then instruct the downstream logic synthesis tool to implement register
re-timing or register balancing. As an alternative approach, you can use the vector state variables to
model delays.

Shift Operations with Multiplication and Division

The MCode block can detect when a number is multiplied or divided by constants that are powers
of two. If detected, the MCode block will perform a shift operation. For example, multiplying by 4
is equivalent to left shifting 2 bits and dividing by 8 is equivalent to right shifting 3 bits. A shift is
implemented by adjusting the binary point, expanding the xfix container as needed. For example,
a Fix_8_4 number multiplied by 4 will result in a Fix_8_2 number, and a Fix_8_4 number
multiplied by 64 will result in a Fix_10_0 number.
System Generator for DSP Reference Guide www.xilinx.com 303
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=303

Chapter 1: Xilinx Blockset
Using the xl_state Function with Rounding Mode

The xl_state function call creates an xfix container for the state variable. The container's
precision is specified by the second argument passed to the xl_state function call. If precision
uses xlRound for its rounding mode, hardware resources is added to accomplish the rounding. If
rounding the initial value is all that is required, an xfix call to round a constant does not require
additional hardware resources. The rounded value can then be passed to the xl_state function.
For example:

init = xfix({xlSigned,8,5,xlRound,xlWrap}, 3.14159);
persistent s, s = xl_state(init, {xlSigned, 8, 5});

Block Parameters Dialog Box
The block parameters dialog box can be invoked by double-clicking the block icon in a Simulink
model.

As described earlier in this topic, the MATLAB function parameter on an MCode block tells the
name of the block's function, and the Interface tab specifies a list of constant inputs and their
values.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
304 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=304

ModelSim
ModelSim
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The System Generator Black Box block provides a way to incorporate existing HDL
files into a model. When the model is simulated, co-simulation can be used to allow
black boxes to participate. The ModelSim HDL co-simulation block configures and
controls co-simulation for one or several black boxes.

During a simulation, each ModelSim block spawns one copy of ModelSim, and
therefore uses one ModelSim license. If licenses are scarce, several black boxes can

share the same block.

In detail, the ModelSim block does the following:

 Constructs the additional VHDL and Verilog needed to allow black box HDL to be simulated
inside ModelSim.

 Spawns a ModelSim session when a Simulink simulation starts.

 Mediates the communication between Simulink and ModelSim.

 Reports if errors are detected when black box HDL is compiled.

 Terminates ModelSim, if appropriate, when the simulation is complete.

Note: The ModelSim block only supports symbolic radix in the ModelSim tool. In symbolic radix, ModelSim
displays the actual values of an enumerated type and also converts an object's value to an appropriate
representation for other radix forms. Please refer to the ModelSim documentation for more information on
symbolic radix.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Run co-simulation in directory: ModelSim is started in the directory named by this field. The
directory is created if necessary. All black box files are copied into this directory, as are the auxiliary
files System Generator produces for co-simulation. Existing files are overwritten silently. The
directory can be specified as an absolute or relative path. Relative paths are interpreted with respect
to the directory in which the Simulink .mdl file resides.

Open waveform viewer: When this checkbox is selected, the ModelSim waveform window opens
automatically, displaying a standard set of signals. The signals include all inputs and outputs of all
black boxes and all clock and clock enable signals supplied by System Generator. The signal display
can be customized with an auxiliary tcl script. To specify the script, select Add Custom Scripts and
enter the script name (e.g., myscript.do) in the Script to Run After vsim field. An example showing
a customized waveform viewer is included in
<ISE_Design_Suite_tree>/sysgen/examples/black_box/example5. This
example is in the topic Advanced Black Box Example Using ModelSim.

Leave ModelSim open at end of simulation: When this checkbox is selected, the ModelSim
session is left open after the Simulink simulation has finished.

Skip compilation (use previous results): When this checkbox is selected, the ModelSim
compilation phase is skipped in its entirety for all black boxes that are using the ModelSim block for
HDL co-simulation. To select this option is to assert that: (1) underneath the directory in which
System Generator for DSP Reference Guide www.xilinx.com 305
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=305

Chapter 1: Xilinx Blockset
ModelSim will run, there exists a ModelSim work directory, and (2) that the work directory contains
up-to-date ModelSim compilation results for all black box HDL. Selecting this option can greatly
reduce the time required to start-up the simulation, however, if it is selected when inappropriate, the
simulation can fail to run or run but produce false results.

Advanced tab

Parameters specific to the Advanced tab are as follows:

Include Verilog unisim library: Selecting this checkbox ensures that ModelSim includes the
Verilog UniSim library during simulation. Note: the Verilog unisim library must be mapped to
UNISIMS_VER in ModelSim. In addition, selecting this checkbox ensures the "glbl.v" module is
compiled and invoked during simulation.

Add custom scripts: The term “script” refers to a Tcl macro file (DO file) executed by ModelSim.
Selecting this checkbox activates the fields Script to Run Before Starting Compilation, Script to
Run in Place of "vsim", and Script to Run after "vsim". The DO file scripts named in these fields
are not run unless this checkbox is selected.

Script to run before starting compilation: Enter the name of a Tcl macro file (DO file) that is to
be executed by ModelSim before compiling black box HDL files.

Note: For information on how to write a ModelSim macro file (DO file) refer to the Chapter in the ModelSim
User’s Manual titled Tcl and macros (DO files).

Script to run in place of "vsim": ModelSim uses Tcl (tool command language) as the scripting
language for controlling and extending the tool. Enter the name of a ModelSim Tcl macro file (DO
file) that is to be executed by the ModelSim do command at the point when System Generator would
ordinarily instruct ModelSim to begin a simulation. To start the simulation after the macro file starts
executing, you must place a vsim command inside the macro file.

Normally, if this parameter is left blank, or Add custom scripts is not selected, then System
Generator instructs ModelSim to execute the default command vsim $toplevel -title {System
Generator Co-Simulation (from block $blockname} Here $toplevel is the name of the top level
entity for simulation (e.g., work.my_model_mti_block) and $blockname is the name of the
ModelSim block in the Simulink model associated with the current co-simulation. To avoid
problems, certain characters in the block name (e.g., newlines) are sanitized.

If this parameter is not blank and Add custom scripts is selected, then System Generator instead
instructs ModelSim to execute do $* $toplevel $blockname. Here $toplevel and $blockname are
as above and $* represents the literal text entered in the field. If, for example the literal text is
'foo.do', then ModelSim executes foo.do. This macro file can then reference $toplevel and
$blockname as $1 and $2, respectively. Thus, the command vsim $1 inside of the macro file foo.do
runs vsim on topLevel.

Script to run after "vsim": Enter the name of a Tcl macro file (DO file) that is to be executed by
ModelSim after all the HDL for black boxes has been successfully compiled, and after the
ModelSim simulation has completed successfully. If the Open Waveform Viewer checkbox has
been selected, System Generator issues all commands it ordinarily uses to open and customize the
waveform viewer before running this script. This allows you to customize the waveform viewer as
desired (either by adding signals to the default viewer or by creating a fully custom viewer). The
black box tutorial includes an example that customizes the waveform viewer.

It is often convenient to use relative paths in a custom script. Relative paths are interpreted with
respect to the directory that contains the model's MDL file. A relative path in the Run co-simulation
in directory field is also interpreted with respect to the directory that contains the model's MDL file.
Thus, for example, if Run co-Simulation in directory specifies ./modelsim as the directory in which
ModelSim should run, the relative path ../foo.do in a script definition field refers to a file named
foo.do in the directory that contains the .mdl.
306 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=306

ModelSim
Fine Points

The time scale in ModelSim matches that in Simulink, for example, one second of Simulink
simulation time corresponds to one second of ModelSim simulation time. This makes it easy to
compare times at which events occur in the two settings. The typically large Simulink time scale is
also useful because it allows System Generator to schedule events without running into problems
related to the timing characteristics of the HDL model. Users needn't worry too much about the
details System Generator event scheduling in co-simulation models. The following example is
offered to illustrate the broader points.

This example model shown here can be found in the System Generator directory
<ISE_Design_Suite_tree>/sysgen/example/black_box/example4. The
example is also discussed in the topic Importing a Verilog Module.

When the above model is run, the following waveforms are displayed by ModelSim:
System Generator for DSP Reference Guide www.xilinx.com 307
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=307

Chapter 1: Xilinx Blockset
At the time scale presented here (the above shows a time interval of six seconds), the rising clock
edge at three seconds and the corresponding transmission of data through each of the two black
boxes appear simultaneous, much as they do in the Simulink simulation. Looking at the model,
however, it is clear that the output of the first black box feeds the second black box. Both of the black
boxes in this model have combinational feed-throughs, for example, changes on inputs translate into
immediate changes on outputs. Zooming in toward the three second event reveals how System
Generator has resolved the dependencies. Note the displayed time interval has shrunk to ~20 ms.

The above figure reveals that System Generator has shifted the rising clock edge so it occurs before
the input value is collected from Simulink and presented to the first of the black boxes. It then allows
the value to propagate through the first black box and presents the result to the second at a slightly
later time. Zooming in still further shows that the HDL model for the first black box includes a
propagation delay which System Generator has effectively abstracted away through the use of large
308 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=308

ModelSim
time scales. The actual delay through the first black box (exactly1 ns) can be seen in the figure
below.

In propagating data through black box components, System Generator allocates 1/ 1000 of the
system clock period down to 1us, then shrinks the allocation to 1/100 of the system clock period
down to 5ns, and below that threshold resorts to delta-delay stepping, for example, issuing "run 0
ns" commands to ModelSim. If the HDL includes timing information (e.g,. transport delays) and the
Simulink System Period is set too low, then the simulation results are incorrect. The above model
begins to fail when the Simulink system period setting is reduced below 5e-7, which is the point at
which System Generator resorts to delta-delay stepping of the black boxes for data propagation.
System Generator for DSP Reference Guide www.xilinx.com 309
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=309

Chapter 1: Xilinx Blockset
Mult
This block is listed in the following Xilinx Blockset libraries: Math, Floating-Point and Index.

The Xilinx Mult block implements a multiplier. It computes the product of the data on
its two input ports, producing the result on its output port.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
output always has Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

User-Defined Precision

Fixed-point Precision

 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Quantization

Refer to the section Overflow and Quantization.

Overflow

Refer to the section Overflow and Quantization.

Optional Port

 Provide enable port

 Latency: This defines the number of sample periods by which the block's output is delayed.

Saturation and Rounding of User Data Types in a Multiplier

When saturation or rounding is selected on the user data type of a multiplier, latency is also
distributed so as to pipeline the saturation/rounding logic first and then additional registers are
added to the core. For example, if a latency of three is selected and rounding/saturation is
selected, then the first register is placed after the rounding or saturation logic and two registers
are placed to pipeline the core. Registers are added to the core until optimum pipelining is
reached and then further registers are placed after the rounding/saturation logic. However, if the
310 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=310

Mult
data type you select does not require additional saturation/rounding logic, then all the registers
are used to pipeline the core.

Implementation tab

Parameters specific to the Implementation tab are as follows:

Use behavioral HDL (otherwise use core): The block is implemented using behavioral HDL. This
gives the downstream logic synthesis tool maximum freedom to optimize for performance or area.

Note: For Floating-point operations, the block always uses the Floating-point Operator core.

Core Parameters

 Optimize for Speed|Area: directs the block to be optimized for either Speed or Area

 Use embedded multipliers: This field specifies that if possible, use the XtremeDSP slice
(DSP48 type embedded multiplier) in the target device.

 Test for optimum pipelining: Checks if the Latency provided is at least equal to the optimum
pipeline length. Latency values that pass this test imply that the core produced is optimized for
speed.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Multiplier v11.2

LogiCORE IP Floating-Point Operator v6.1

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 311
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=mult_gen;v=none;d=mult_gen_ds255.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=311

Chapter 1: Xilinx Blockset
Multiple Subsystem Generator
This block is listed in the following Xilinx Blockset libraries: Shared Memory and Index.

The Xilinx Multiple Subsystem Generator block wires two or more System
Generator designs into a single top-level HDL component that incorporates multiple
clock domains. This top-level component includes the logic associated with each
System Generator design and additional logic to allow the designs to communicate
with one another.

In software, this communication is handled using shared memory and shared
memory derivative blocks (e.g., Shared Memory, To/From FIFO, and To/From Register blocks). In
hardware, the designs are interfaced to hardware implementations (e.g., dual-port memory,
asynchronous FIFOs, and registers) of their shared memory counterparts, making it possible to
partition and implement systems with multiple clock domains.

Note: The Multiple Subsystem Generator block does not support designs that include an EDK Processor
block

Block Parameters
The block parameters dialog box can be invoked by double-clicking the Multiple Subsystem
Generator icon in your Simulink model.

Parameters specific to the Multiple Subsystem Generator block are:

 Part: Defines the FPGA part to be used.

 Target Directory: Defines where System Generator should write compilation results. Because
System Generator and the FPGA physical design tools typically create many files, it is best to
specify a separate target directory, for example, a directory other than the directory containing
your Simulink model files.

 Synthesis Tool: Specifies the tool to be used to synthesize the design. Tool choices are
Synplicity's Synplify Pro or Synplify, and Xilinx's XST.

 Hardware Description Language: Tells the type of HDL language (Verilog or VHDL) that
should be generated for each design.

Design Generation

The Multiple Subsystem Generator block performs the following steps when you press the
Generate button in the block's parameters dialog box:

1. It determines the System Generator designs that should be generated and wired together.

2. It configures each System Generator design with appropriate settings and generates the designs
individually.

3. It produces hardware implementations (e.g., core netlists) for the shared memory blocks.

4. It generates a top-level HDL file that includes the System Generator designs wired together
with the corresponding shared memory hardware implementations.

The Multiple Subsystem Generator block determines which subsystems to implement and wire
together by searching for subsystems that contain System Generator blocks that reside at the same
level of hierarchy as the Multiple Subsystem Generator block. Inclusion of the Multiple Subsystem
Generator block in a Simulink design is restricted in the following ways:

 System Generator blocks can not be included in the same level of hierarchy as the Multiple
Subsystem Generator block.
312 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=312

Multiple Subsystem Generator
 There must be at least two master System Generator tokens in subsystems located in the same
level of hierarchy as the Multiple Subsystem Generator block.

 Only one Multiple Subsystem Generator block can be included in a given level of hierarchy.

For example, consider the example block diagram shown below. This diagram comprises two
subsystems, and it is assumed that each subsystem contains a System Generator token along with
some amount of System Generator logic. Note that although only two subsystems are shown in the
diagram, the Multiple Subsystem Generator block can accommodate any number of subsystems. A
Multiple Subsystem Generator block is included in the same level of hierarchy as the two
subsystems. When a user chooses to generate the overall design using the Multiple Subsystem
Generator block, the subsystems are generated and then wired together.

A subsystem that includes a master System Generator token is implemented using the NGC
compilation target when the Generate button is pressed on the Multiple Subsystem Generator
block. Using the NGC compilation target has the advantage of allowing the resulting HDL netlist,
cores, and constraints to be delivered as a single netlist file. The HDL component that stitches the
designs together instantiates the System Generator designs as black boxes; the NGC files provide
the black box implementations. For the example shown above, three separate NGC files would be
generated – one corresponding to each subsystem.

Before a design is generated, it is configured with the Part, Synthesis Tool, and Hardware
Description Language parameters specified in the Multiple Subsystem Generator dialog box. These
settings override the settings of the master System Generator tokens. Note that the original System
Generator token settings are restored once generation is complete.

Subsystems that are wired together using the Multiple Subsystem Generator block can communicate
with one another using a pair of Shared Memory blocks, To/From FIFO blocks, or To/From Register
blocks. The block pairs must be partitioned so that one block resides in one subsystem (e.g., To
FIFO block) while the other partner half resides in a different subsystem (e.g., From FIFO block).

When the complete design is translated into hardware, the two FIFO halves are pulled out of their
respective subsystems. The System Generator logic that was previously attached to shared memory
ports (e.g., data in, data out) are then wired to new top-level ports for that design. This means that
one subsystem HDL component includes ports for one half of the shared memory, while the other
half has ports for the other shared memory side. A hardware implementation of the shared memory
is then created and wired to the top-level shared memory ports.
System Generator for DSP Reference Guide www.xilinx.com 313
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=313

Chapter 1: Xilinx Blockset
Note: The Multiple Subsystem Generator block does not currently support multiple shared memory blocks
referencing the same shared memory object in the same subsystem. For example, a To FIFO block cannot be
used to communicate to two From FIFO blocks placed in other subsystems.

Consider an example with two subsystems, A and B, where subsystem A contains a To FIFO block
and subsystem B contains a From FIFO block. The opposing halves of the FIFO specify the same
shared memory name, my_fifo. When the design is netlisted using the Multiple Subsystem
Generator block, the To FIFO and From FIFO blocks are removed from their respective subsystems,
and merged into a single core implementation (e.g., Asynchronous FIFO Core). This process is
shown in the figure below.

The table below provides the core or HDL component implementation that is used to implement
shared memory and shared memory derivative blocks.

Note: Shared memory blocks should be used as the only means of communication between the subsystems.
Do not use explicit System Generator signals to communicate between subsystems, as these are ultimately
translated into top-level ports on the top-level HDL component that is created by the Multiple Subsystem
Generator block.

All gateway ports included in the System Generator designs considered by the Multiple Subsystem
Generator block are included in the top-level HDL component port interface. In addition, individual
clock and clock enable ports are included in the port interface for each System Generator subsystem.
The clock and clock enable port names are differentiated by the design name, which prefixes the
port names. For example, assume the subsystem named Domain A has one input port named
inport_a and one output port named outport_a. Also assume the subsystem named Domain
B has one input port named inport_b and one output port named outport_b. The VHDL port
interface for the resulting top-level entity is provided below:

entity multiple_subsys_ex is
port (

domain_a_ce: in std_logic := '1';
domain_a_clk: in std_logic;

To Block From Block Hardware Implementation

Shared Memory Shared Memory Dual Port Block Memory

To FIFO To FIFO Fifo Generator

To Register To Register synth_reg_w_init.(vhd,v)
314 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=314

Multiple Subsystem Generator
domain_b_ce: in std_logic := '1';
domain_b_clk: in std_logic;
inport_a: in std_logic_vector(17 downto 0);
inport_b: in std_logic_vector(17 downto 0);
outport_a: out std_logic_vector(17 downto 0);
outport_b: out std_logic_vector(17 downto 0)

);

end multiple_subsys_ex;

Multiple Clock Support

Because each subsystem considered by the Multiple Subsystem Generator block has a master
System Generator token, it is possible to specify different clocking information (e.g., Simulink
system period, FPGA clock period) in each block. By specifying different Simulink system periods,
each System Generator design can run at a different rate during simulation, allowing you to
effectively model systems that utilize asynchronous clock domains.

The Multiple Subsystem Generator creates a separate clock port for each subsystem that was
generated. The clock ports are then routed to the corresponding clock port on the System Generator
design. When a design that uses multiple clocks is netlisted (for example, translated from a high-
level model into a lower level HDL description) the two shared memory halves are moved from
their respective subsystems into the upper level of hierarchy. The two halves of the shared memory
pair are then replaced with a single HDL component that implements the clock domain bridge (e.g.,
a dual-port memory). Clocks from the two domains are then connected to the opposing sides of the
bridge component, along with the necessary data and control signals.

Files Generated
The Multiple Subsystem Generator produces several low level files when the Generate button is
pushed. These files are written to the target directory specified on the Multiple Subsystem Generator
block dialog box. The key files produced by this block are defined in the following table:

File Name Type Description

<design>.vhd (or .v) Top-level HDL component that contains the System
Generator designs stitched together.

.edn files Besides writing HDL, the Multiple Subsystem Generator
runs CORE Generator™ to implement shared memory
hardware implementations. Coregen writes EDIF files
whose names typically look something like
multiplier_virtex2_6_0_83438798287b830b.edn.

globals This file consists of key/value pairs that describe the design.
The file is organized as a Perl hash table so that the keys and
values can be made available to Perl scripts using Perl evals.

<design>.xcf (or .ncf) This contains timing and port location constraints. These are
used by the Xilinx synthesis tool XST and the Xilinx
implementation tools. If the synthesis tool is set to something
other than XST, then the suffix is changed to .ncf.
System Generator for DSP Reference Guide www.xilinx.com 315
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=315

Chapter 1: Xilinx Blockset
hdlFiles This tells full list of HDL files written by the Multiple
Subsystem Generator block. The files are listed in the usual
HDL dependency order.

<design>.npl This allows the HDL and EDIF to be brought into the Xilinx
project management tool Project Navigator.

File Name Type Description
316 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=316

Mux
Mux
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic,
Floating-Point and Index.

The Xilinx Mux block implements a multiplexer. The block has one select
input (type unsigned) and a user-configurable number of data bus inputs,
ranging from 2 to 1024.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Number of inputs: specify a number between 2 and 32.

Optional Ports

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Output

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
arithmetic output will always be Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

User-Defined Precision

Fixed-point Precision

 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

 Number of bits: specifies the bit location of the binary point of the output number where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output
System Generator for DSP Reference Guide www.xilinx.com 317
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=317

Chapter 1: Xilinx Blockset
Quantization

Refer to the section Overflow and Quantization.

Overflow

Refer to the section Overflow and Quantization.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
318 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=318

Natural Logarithm
Natural Logarithm
This block is listed in the following Xilinx Blockset libraries: AXI, Index and Math.

The Xilinx Natural Logarithm block produces the natural logarithm of the input.

Block Parameters Dialog Box

Basic tab

Parameters specific to the Basic tab are:

Flow Control Options

 Blocking: In this mode, the block waits for data on the input, as indicated by TREADY, which
allows back-pressure.

 NonBlocking: In this mode, the block operates every cycle in which all inputs are valid, no
back-pressure.

Optional ports tab

Parameters specific to the Basic tab are:

Input Channel Ports:

 Has TLAST: Adds a tlast input port to the block.

 Has TUSER: Adds a tuser input port to the block.

Control Options:

 Provide enable port: Adds an enable port to the block interface.

 Has Result TREADY: Adds a TREADY port to the output channel.

Exception Signals:

 INVALID_OP: Adds an output port that serves as an invalid operation flag.

 DIVIDE_BY_ZERO: Adds an output port that serves as a divide-by-zero flag.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 319
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=319

Chapter 1: Xilinx Blockset
Negate
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Math and Index.

The Xilinx Negate block computes the arithmetic negation of its input.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Precision:

This parameter allows you to specify the output precision for fixed-point arithmetic. Floating point
output always has Full precision.

 Full: The block uses sufficient precision to represent the result without error.

 User Defined: If you don’t need full precision, this option allows you to specify a reduced
number of total bits and/or fractional bits.

Fixed-Point Output Type

Arithmetic Type

 Signed (2’s comp): The output is a Signed (2’s complement) number.

 Unsigned: The output is an Unsigned number.

Fixed-point Precision

 Number of bits: Specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: Position of the binary point. in the fixed-point output

Quantization

Refer to the section Overflow and Quantization.

Overflow

Refer to the section Overflow and Quantization.

Optional Port

 Provide enable port

Latency: This defines the number of sample periods by which the block's output is delayed.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
320 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=320

Network-based Ethernet Co-Simulation
Network-based Ethernet Co-Simulation
The Xilinx Network-based Ethernet Co-Simulation block provides an interface to
perform hardware co-simulation through an Ethernet connection over the IPv4
network infrastructure.

Refer to Network-Based Ethernet Hardware Co-Simulation for further details
about the interface, its prerequisites and setup procedures.

The port interface of the co-simulation block varies. When a model is implemented for network-
based Ethernet hardware co-simulation, a new library is created that contains a custom network-
based Ethernet co-simulation block with ports that match the gateway names (or port names if the
subsystem is not the top level) from the original model. The co-simulation block interacts with the
FPGA hardware platform during a Simulink simulation. Simulation data that is written to the input
ports of the block are passed to the hardware by the block. Conversely, when data is read from the
co-simulation block's output ports, the block reads the appropriate values from the hardware and
drives them on the output ports so they can be interpreted in Simulink. In addition, the block
automatically opens, configures, steps, and closes the platform.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Clock source: You can select between Single stepped and Free running clock sources.
Selecting a Single stepped clock allows the block to step the board one clock cycle at a time.
Each clock cycle step corresponds to some duration of time in Simulink. Using this clock
source ensures the behavior of the co-simulation hardware during simulation is bit and cycle
accurate when compared to the simulation behavior of the subsystem from which it originated.
Sometimes single stepping is not necessary and the board can be run with a Free Running
clock. In this case, the board will operate asynchronously to the Simulink simulation.

 Has Combination Path: Sometimes it is necessary to have a direct combinational feedback
path from an output port on a hardware co-simulation block to an input port on the same block
(e.g., a wire connecting an output port to an input port on a given block). If you require a direct
feedback path from an output to input port, and your design does not include a combinational
path from any input port to any output port, un-checking this box will allow the feedback path
in the design.

 Bitstream filename: Specifies the co-simulation FPGA configuration file for the network-
based Ethernet hardware co-simulation platform. When a new co-simulation block is created
during compilation, this parameter is automatically set so that it points to the appropriate
configuration file. You need only adjust this parameter if the location of the configuration file
changes.
System Generator for DSP Reference Guide www.xilinx.com 321
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=321

Chapter 1: Xilinx Blockset
Network tab

Parameters specific to the Network tab are as follows:

 FPGA IP address: Specify the IPv4 address associated with the target FPGA platform. The IP
address must be specified using IPv4 dotted decimal notation (e.g. 192.168.8.1). For details on
configuring the IP address, refer to the topic Installing Your Hardware Co-Simulation Board.

 Timeout: Specifies the timeout value, in milliseconds, for packet retransmission in case of
packet loss during the configuration and co-simulation process. The default value should
suffice in the general case, but be advised that a larger value might be needed if the network
connection is slow, with high latency, or congested.

 Number of retries: Specifies the number of retries for packet retransmission in case of packet
loss during the configuration and co-simulation process. The default value should suffice in the
general case, but be advised that a larger value might be needed if the network connection
experiences a considerably amount of packet loss.

See Also
 Ethernet Hardware Co-Simulation

Network-Based Ethernet Hardware Co-Simulation
322 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=322

Opmode
Opmode
This block is listed in the following Xilinx Blockset libraries: DSP and Index.

The Xilinx Opmode block generates a constant that is a DSP48A, DSP48, DS48E, or
DSP48E1 instruction. The instruction is an 11-bit value for the DSP48, 8-bit
forDSP48A, 15-bit value for the DSP48E and a 20-bit value for DSP48E1. The
instruction can consists of the opmode, carry-in, carry-in select, inmode and either the

subtract or alumode bits (depending upon the selection of DSP48 or DSP48E type).

The Opmode block is useful for generating DSP48A, DSP48, DS48E, or DSP48E1 control
sequences. The figure below shows an example. The example implements a 35x35-bit multiplier
using a sequence of four instructions in a DSP48 block. The opmode blocks supply the desired
instructions to a multiplexer that selects each instruction in the desired sequence.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Opmode tab

Parameters specific to the Opmode tab are as follows:

Instruction

 Device: specifies whether to generate an instruction for the DSP48A, DSP48, DSP48E, or
DSP48E1 device.

DSP48 Instruction

 Operation: displays the instruction that is generated by the block (instruction is also displayed
on the block).

 Operation select: selects the instruction.

 Preadder output: Allows you to select the equation for the DSP48E1 Preadder.

 B register configuration: Allows you to select the B register configuration for the DSP48E1.
Select either B1 or B2.
System Generator for DSP Reference Guide www.xilinx.com 323
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=323

Chapter 1: Xilinx Blockset
Custom Instruction

Note: The Custom Instruction field is activated when you select “Custom” in the Operation select field.

 Instruction: allows you to select the instruction for the DSP48A, DSP48, DS48E, or
DSP48E1.

 Z Mux: specifies the 'Z' source to the add/sub/logic unit to be one of {'0', 'C', 'PCIN', 'P','C',
'PCIN>>17',' P>>17'}.

 Operand: specifies whether the DSP48's adder is to perform addition or subtraction. In the
DSP48E, the operand selection is made in the instruction pulldown.

 XY Muxes: specifies the 'XY' source to the DSP48's adder to be one of {'0','P', 'A:B', 'A*B',
'C', 'P+C', 'A:B+C' }. 'A:B' implies that A is concatenated with B to produce a value to be used
as an input to the add/sub/logic unit.

 Carry Input: specifies the 'carry' source to the DSP48's add/sub/logic unit to be one of {'0', '1',
'CIN', '~SIGN(P or PCIN)', '~SIGN(A:B or A*B)' ,. '~SIGND(A:B or A*B)'}. '~SIGN (P or
PCIN)' implies that the carry source is either P or PCIN depending on the Z Mux setting.
'~SIGN(A*B or A:B)' implies that the carry source is either A*B or A:B depending on the YX
Mux setting. The option '~SIGND (A*B or A:B)' selects a delayed version of '~SIGN(A*B or
A:B)'.

 Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCORE
The Opmode block does not use a Xilinx LogiCORE™.

References
You should become familiar with the following DSP48 reference documents before using the
Opmode block:

DSP48A

XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide

DSP48

XtremeDSP for Virtex-4 FPGAs User Guide

DSP48E

Virtex-5 FPGA XtremeDSP Design Considerations User Guide

DSP48E1

Virtex-6 FPGA DSP48E1 Slice User Guide
324 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug431.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=324

Opmode
DSP48A Control Instruction Format

DSP48A Instruction

DSP48ACustom Instruction

Operation select Notes

C + A*B

PCIN + A*B

P + A*B

A* B

C + D:A:B

C -D:A:B

C

Custom Use equation described in the Custom Instruction Field.

Custom
Instruction Field

Location Mnemonic Notes

X Mux op[3:0] 0 0

P DSP48 output register

A*B Multiplication of inputs A and B

A*(D+B)

A*(D-B)

D:A:B

D:A:(D+B)

D:A:(D-B)

Z Mux op[6:4] 0 0

PCIN DSP48 cascaded input from PCOUT

P DSP48 output register

C DSP48 C input

Operand op[7] + Add

- Subtract

Carry In op[8] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source
System Generator for DSP Reference Guide www.xilinx.com 325
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=325

Chapter 1: Xilinx Blockset
DSP48 Control Instruction Format

DSP48 Instruction

DSP48 Custom Instruction

Operation select Notes

C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

Instruction Field
Name

Location Mnemonic Notes

XY Mux op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is MSB)

A*B Multiplication of inputs A and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C register

Z Mux op[6:4] 0 0

PCIN DSP48 cascaded input from PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted by 17

P>>17 DSP48 output register downshifted by
17

Operand op[7] + Add

- Subtract
326 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=326

Opmode
DSP48E Control Instruction Format
DSP48E Instruction

Carry In op[8] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source

'~SIGN(P or PCIN) Symmetric round P or PCIN

'~SIGN(A*B or A:B) Symmetric round A:B or A*B

'~SIGND(A*B or A:B) Delayed symmetric round of A:B or
A*B

Instruction Field
Name

Location Mnemonic Notes

Operation select Notes

C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.
System Generator for DSP Reference Guide www.xilinx.com 327
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=327

Chapter 1: Xilinx Blockset
DSP48E Custom Instruction

Instruction Field
Name

Location Mnemonic Notes

XY muxes op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is MSB)

A*B Multiplication of inputs A and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C register

Z mux op[6:4] 0 0

PCIN DSP48 cascaded input from PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted by 17

P>>17 DSP48 output register downshifted by
17

Alumode op[10:7] X+Z Add

Z-X Subtract

Carry input op[14:12] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source. This adds a CIN
port to the Opmode block whose value
is inserted into the mnemonic at bit
location 11.

Round PCIN toward
infinity

Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc
(parallel operation)

Larger add/sub/acc
(sequential operation)

Round A*B
328 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=328

Opmode
DSP48E1 Control Instruction Format

DSP48E1 Instruction

Operation select Notes

C + A*B

PCIN + A*B

P + A*B

A* B

C + A:B

C - A:B

C

Custom Use equation described in the Custom Instruction Field.

Preadder output Notes

Zero

A2

A1

D + A2

D + A1

D

-A2

-A1

D - A2

D - A1

B register configuration Notes

B1

B2
System Generator for DSP Reference Guide www.xilinx.com 329
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=329

Chapter 1: Xilinx Blockset
DSP48E1 Custom Instruction

Instruction Field
Name

Location Mnemonic Notes

Instruction X + Z

X +NOT(Z)

NOT(X+Z)

Z - X

X XOR Z

X XNOR Z

X AND Z

X OR Z

X AND NOT(Z)

X OR NOT (Z)

X NAND Z

Z mux op[6:4] 0 0

PCIN DSP48 cascaded input from PCOUT

P DSP48 output register

C DSP48 C input

PCIN>>17 Cascaded input downshifted by 17

P>>17 DSP48 output register downshifted by
17

Operand:
(Alumode)

op[10:7] X+Z Add

Z-X Subtract

XY muxes op[3:0] 0 0

P DSP48 output register

A:B Concat inputs A and B (A is MSB)

A*B Multiplication of inputs A and B

C DSP48 input C

P+C DSP48 input C plus P

A:B+C Concat inputs A and B plus C register

Carry input op[14:12] 0 or 1 Set carry in to 0 or 1

CIN Select cin as source. This adds a CIN
port to the Opmode block whose value
is inserted into the mnemonic at bit
location 11.

Round PCIN toward
infinity
330 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=330

Opmode
Round PCIN toward zero

Round P toward infinity

Round P toward zero

Larger add/sub/acc
(parallel operation)

Larger add/sub/acc
(sequential operation)

Round A*B

Instruction Field
Name

Location Mnemonic Notes
System Generator for DSP Reference Guide www.xilinx.com 331
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=331

Chapter 1: Xilinx Blockset
Parallel to Serial
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, and
Index.

The Parallel to Serial block takes an input word and splits it into N time-multiplexed
output words where N is the ratio of number of input bits to output bits. The order of
the output can be either least significant bit first or most significant bit first.

The following waveform illustrates the block's behavior:

This example illustrates the case where the input width is 4, output word size is 1, and the block is
configured to output the most significant word first.

Block Interface
The Parallel to Serial block has one input and one output port. The input port can be any size. The
output port size is indicated on the block parameters dialog box.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Output order: Most significant word first or least significant word first.

 Type: signed or unsigned.

 Number of bits: Output width. Must divide Number of Input Bits evenly.

 Binary Point: Binary point location.

The minimum latency of this block is 0.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
332 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=332

Pause Simulation
Pause Simulation
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Pause Simulation block pauses the simulation when the input is non-zero.
The block accepts any Xilinx signal type as input.

When the simulation is paused, it can be restarted by selecting the Start button on the
model toolbar.

Block Parameters
There are no parameters for this block.
System Generator for DSP Reference Guide www.xilinx.com 333
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=333

Chapter 1: Xilinx Blockset
PicoBlaze Instruction Display
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The PicoBlaze Instruction Display block takes an encoded 18-bit PicoBlaze
instruction and a 10 bit address and displays the decoded instruction and the
program counter on the block icon. This feature is useful when debugging
PicoBlaze designs and can be used in conjunction with the Single-Step Simulation
block to step through each instruction.

Block Interface
The PicoBlaze Instruction Display block has two input ports. The instr port accepts an 18 bit
encoded instruction. The addr port accepts a 10 bit address value which is the program counter.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Version: PicoBlaze 2 or PicoBlaze 3.

 Disable Display: When selected, the display is no longer updated which will speed up your
simulation when not in debug mode.

Xilinx LogiCORE
The PicoBlaze Instruction Display block does not use a Xilinx LogiCORE™.
334 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=334

PicoBlaze Microcontroller
PicoBlaze Microcontroller
This block is listed in the following Xilinx Blockset libraries: Control Logic and Index.

The Xilinx PicoBlaze Microcontroller block implements an embedded 8-bit
microcontroller using the PicoBlaze macro.

The block supports Extended Spartan®-3 and Virtex®-5 FPGA. The block also
supports Spartan-6 and Virtex-6. 7 Series devices are currently only supported
by PicoBlaze 2.

The PicoBlaze 2 macro provides 49 instructions, 32 8-bit general-purpose
registers, 256 directly and indirectly addressable ports, and a maskable interrupt. By comparison,
the PicoBlaze 3 provides 53 instructions, 16 8-bit general-purpose registers, 256 directly and
indirectly addressable ports, and a maskable interrupt, as well as 64 bytes of internal scratch pad
memory accessible using the STORE and FETCH instructions. The PicoBlaze 3 embedded
controller and its instruction set are described in detail in the PicoBlaze 8-bit Embedded
Microcontroller User Guide, which can be found at:

http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf.

Ordinarily, a single block ROM containing 1024 or fewer 18-bit words serves as the program store.
The microcontroller and ROM are connected as shown below.

Block Interface
Both versions of the block have four input ports. The 8-bit data port, in_port, is read during an
INPUT operation. The value can be transferred into any of the 32 registers. The program can be
interrupted by setting the port brk to 1. The processor can be reset by setting rst to 1. This clears
registers and forces the processor to begin executing instructions at address 0. The 8-bit input port
instr accepts PicoBlaze instructions.

The PicoBlaze 2 block has five output ports. The PicoBlaze 3 block has six output ports. The 8-bit
output port out_port is written during an OUTPUT instruction. During a read/write, the port_id
output identifies the location from which a value is read/written. The output ports rs (read strobe)
and ws (write strobe) indicate whether a read (INPUT) or write (OUTPUT) operation is occurring.
addr is the address of the next instruction to be executed by the processor. The processor has no
internal program store. The output port addr specifies the next location from which an instruction
should be executed. The ack port (PicoBlaze 3 only) indicates when the interrupt service routine is
started (for example, the program counter is set to 0x3FF).

Block Parameters

Parameters specific to the PicoBlaze Microcontroller block are:

 Version: PicoBlaze 2 or PicoBlaze 3.

 Display Internal State: When checked, the registers and control flags are made available in
the MATLAB workspace. The information is present as a structure with the following naming
convention:
System Generator for DSP Reference Guide www.xilinx.com 335
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=335

Chapter 1: Xilinx Blockset
< design name >_< subsystem name >_< PicoBlaze block name >.

The structure contains a field for each register (for example, s00,s01, etc.) and the control flags
CARRY and ZERO.

 Display Values As: Tells the radix to use for displaying values.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

How to Use the PicoBlaze Assembler
Note: The Xilinx PicoBlaze Assembler is only available with the Windows Operating System. Third-party
PicoBlaze Assemblers are available for Linux, but are not shipped by Xilinx.

1. Write a PicoBlaze program. Save the program with a .psm file extension.

2. Run the assembler from the MATLAB command prompt. The command is:

xlpb_as –p <your_psm_file>.

The default is to assemble a program for PicoBlaze 3. To assemble a program for
PicoBlaze 2 use the –v 2 option. This script runs the PicoBlaze assembler and generates
a M-code program which should be used to populate the ROM or RAM used as the program
store.

Device Support
Virtex-7, Virtex-6, Virtex-5, Virtex-4, Virtex-II, Virtex-II Pro, Zynq-7000, Artix-7, Kintex-7,

Spartan-6, Spartan-3A, Spartan-3AN, Spartan-3

Known Issues
 The PicoBlaze assembler xlpb_as fails when the assembly code file is found in a directory

whose full path name contains more than 58 characters.

 Verilog netlisting is not supported for this block.

PicoBlaze Microprocessor Online Documentation
More information can be found at
http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.htm.
336 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=336

PicoBlaze6 Instruction Display
PicoBlaze6 Instruction Display
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The PicoBlaze6™ Instruction Display block takes an encoded 18-bit picoblaze6
instruction and PicoBlaze address output and displays the decoded instruction
and the program counter on the block icon. This feature is useful when
debugging PicoBlaze6 designs and can be used in conjunction with the Single-
Step Simulation block to step through each instruction.

Block Interface
The PicoBlaze6 Instruction Display block has two input ports. The instr port accepts an 18- bit
encoded instruction. The addr port accepts a picoblase6 (10-, 11-, or 12-bit) address value which is
the program counter.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Disable Display: When selected, the display is no longer updated which will speed up your
simulation when not in debug mode.

Xilinx LogiCORE
The PicoBlaze6 Instruction Display block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 337
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=337

Chapter 1: Xilinx Blockset
PicoBlaze6 Microcontroller
This block is listed in the following Xilinx Blockset libraries: Control Logic and Index.

The Xilinx PicoBlaze6™ Microcontroller block implements an 8-bit
microcontroller.

Applications requiring a complex, but non-time critical state machine as well
as data processing applications are candidates to employ this block. The
microcontroller is fully embedded into the device and requires no external
support. Any additional logic can be connected to the microcontroller inside
the device providing ultimate flexibility.

This block supports Spartan®-6, Virtex®-6 and 7-Series FPGAs. Some
architecture highlights are:

 Predictable performance, two clock cycles per instruction

 52 - 120 MIPS (dependent upon device type and speed grade)

 Fast interrupt response

 26 slices, 0.5 to 2 block RAM (depend on device and program size)

 32 8-bit general-purpose registers, divided in 2 banks which are independent of each other.

 Up to 256 byte internal RAM, configurable for 64,128 and 256 byte sizes.

 Internal 30-location CALL/RETURN stack, also detects for system underflow and overflow
conditions

 256 input and output ports supported

The Picoblaze 6 embedded controller and its instruction set are described in detail in the KCPSM6
user guide, which can be found at:

http://www.xilinx.com/products/intellectual-property/picoblaze.htm

Ordinarily, a single block ROM containing 4096 or fewer 18-bit words serves as the program store.
The microcontroller and ROM are connected as shown in the image.

.

338 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=338

PicoBlaze6 Microcontroller
Block Interface

Signal Direction Description

in_port[7:0] Input During an INPUT operation, data is transferred from the port
to a register.

Interrupt Input Interrupt. Must be at least two clock cycles in duration.

instr[17:0] Input Instruction Input

rst Input Reset input. This is an optional port for sysgen simulation,
but a required port in HDL. By default this is hidden and
would be tied to ground in HDL generation. If user wishes to
control this port it can be enabled through block
configuration.

sleep Input Sleep pin, when driven high would put picoblaze6 in sleep
mode, bram_enable signal would be low for the sleep period.
This is a power saving feature of picoblaze6. This port is
hidden by default and would be tied to ground in HDL
generation. If user wishes to control this port, it can be
enabled through block configuration.

out_port[7:0] Output Output Data Port

port_id[7:0] Output Port Address

read_strobe Output Read Strobe

write_strobe Output Write Strobe

k_write_strobe Output K write strobe, similar to write_strobe, is high for
OUTPUTK instruction.

interrupt_ack Output Interrupt Acknowledge

addr[11:0] Output Address of the next instruction. This is configurable from
block configuration. Accepted values are 1024
(addr[9:0]), 2048 (addr[10:0]) and 4096 (addr[11:0])

Please note same program instruction size should be set
on bram block.

bram_enable Output This output signal indicates when bram block should be
enabled for memory access. This is a power saving
feature of picoblaze6
System Generator for DSP Reference Guide www.xilinx.com 339
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=339

Chapter 1: Xilinx Blockset
Block Parameters

Parameters specific to the PicoBlaze6 Microcontroller block are:

 Program Size: accepted values are 1024, 2048 and 4096 instructions. Address pin width
increases with increased program size.

 Scratch Pad Size: accepted values are 64, 128,256 bytes. This is passed as generic to
generated HDL.

 HW Build: This is configurable 8 bit value which would be stored in the kcpsm6 and is
configurable one time only. User may get the value in a register by using instruction
HWBUILD. This is passed as generic to generated HDL.

 Interrupt Vector Location: Interrupt vector location where JUMP vector for interrupts is
written. This is configurable to any location (upto program size)…however preferred value is
nearly the end of program size to avoid any conflicts.

 Provide reset Port: This will expose reset port of the user, please note when reset port is
exposed sysgen will shift to HDL simulation for the block, thus may give some performance
degradation in simulation. Please use reset port only when required in design.

 Provide sleep port: This will expose sleep pin of picoblaze6 block. This is a power saving
feature of picoblaze6.

 Display Internal State: When checked, the registers and control flags are made available in
the MATLAB workspace. The information is present as a structure with the following naming
convention:
< design name >_< subsystem name >_< PicoBlaze6 block name >_reg.
The structure contains a field for each register (for example, BANKA_ s00, BANKA_s01,
etc.) and the control flags CARRY and ZERO.
< design name >_< subsystem name >_< PicoBlaze6 block name >_mem
The structure contains value of all scratch pad locations, up to configured memory location.

 Display Values As: Specifies the radix to use for displaying values.

 Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

How to Use the PicoBlaze Assembler
Note: The Xilinx PicoBlaze6 Assembler is only available with the Windows Operating System. Third-party
PicoBlaze6 Assemblers are available for Linux, but are not shipped by Xilinx.

1. Write a PicoBlaze6 program. Save the program with a .psm file extension.

2. Run the assembler from the MATLAB command prompt. The command is:

xlpb6_as -p <your_psm_file>

This script runs the PicoBlaze6 assembler and generates an M-code program which should be used
to populate the ROM or RAM used as the program store.
340 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=340

PicoBlaze6 Microcontroller
Device Support

Supported

Virtex-7, Virtex-6, Virtex-5, Virtex-4, Virtex-II, Virtex-II Pro, Zynq-7000, Artix-7, Kintex-7,

Spartan-6, Spartan-3A, Spartan-3AN, Spartan-3

PicoBlaze6 Microprocessor Online Documentation
More information can be found at:

http://www.xilinx.com/products/intellectual‐property/picoblaze.htm
System Generator for DSP Reference Guide www.xilinx.com 341
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=341

Chapter 1: Xilinx Blockset
Point-to-point Ethernet Co-Simulation
The Xilinx Point-to-point Ethernet Co-Simulation block provides an interface to
perform hardware co-simulation through a raw Ethernet connection.

Refer to the topic Ethernet Hardware Co-Simulation for further details about the
interface, its prerequisites and setup procedures.

A new Point-to-point Ethernet co-simulation block is created by selecting "Point-to-
point Ethernet Cosim" as the compilation target in a System Generator token. The resulting block
with have ports corresponding to the original gateways (or subsystem ports). The generated block
can then be used just like any other Sysgen block. The co-simulation block interacts with the FPGA
hardware platform during a Simulink simulation. Simulation data written to the input ports of the
block passes to the hardware using the block. Conversely, when data is read from the co-simulation
block's output ports, the block reads the appropriate values from the hardware and drives them on
the output ports so they can be interpreted in Simulink. In addition, the block automatically opens,
configures, steps, and closes the platform.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Clock source: You can select between Single stepped and Free running clock sources.
Selecting a Single stepped clock allows the block to step the board one clock cycle at a time.
Each clock cycle step corresponds to some duration of time in Simulink. Using this clock
source ensures the behavior of the co-simulation hardware during simulation is bit and cycle
accurate when compared to the simulation behavior of the subsystem from which it originated.
Sometimes single stepping is not necessary and the board can be run with a Free Running
clock. In this case, the board will operate asynchronously to the Simulink simulation.

 Has Combination Path: Sometimes it is necessary to have a direct combinational feedback
path from an output port on a hardware co-simulation block to an input port on the same block
(e.g., a wire connecting an output port to an input port on a given block). If you require a direct
feedback path from an output to input port, and your design does not include a combinational
path from any input port to any output port, un-checking this box will allow the feedback path
in the design.

 Bitstream filename: Specifies the co-simulation FPGA configuration file for the Point-to-
point Ethernet hardware co-simulation platform. When a new co-simulation block is created
during compilation, this parameter is automatically set so that it points to the appropriate
configuration file. You need only adjust this parameter if the location of the configuration file
changes.

Ethernet tab

Parameters specific to the Ethernet tab are as follows:

 Host interface: Specifies the host network interface card that is used to establish a connection
to the target FPGA platform for co-simulation. The pop-down list shows all active network
interface cards that can be used for point-to-point Ethernet co-simulation. The information
panel displays the MAC address, link speed, maximum frame size of the chosen interface, and
its corresponding connection name in the Windows environment. The list of available
342 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=342

Point-to-point Ethernet Co-Simulation
interfaces and the information panel might not reflect the up-to-date status, and in such case,
they can be updated by clicking Refresh button.

 FPGA interface MAC address: Specifies the Ethernet MAC address associated with the
target FPGA platform. The MAC address must be specified using six pairs of two-digit
hexadecimal number separated by colons (e.g. 00:0a:35:11:22:33). For JTAG-based
configuration, the MAC address can be arbitrarily assigned to each FPGA platform provided
there is no conflicting address in the Ethernet LAN. For configuration over the point-to-point
Ethernet connection, refer to Configuration using System ACE™ for details on configuring the
MAC address of the FPGA platform. This field might be automatically populated if System
Generator can detect the MAC address of a connected target platform.

Configuration tab

Parameters specific to the Configuration tab are as follows:

Cable

 Type Select one of the following: Auto Detect, Xilinx Parallel Cable IV, Xilinx Platform
USB, Xilinx Point-to-point Ethernet, Custom. When Auto Detect is selected, Point-to-point
co-simulation automatically scans through different JTAG cables (LPT1-LPT4, USB21-
USB216) and picks the first FPGA device that matches what the design is targeted for.

Similarly, you can select Xilinx Parallel Cable IV, Xilinx Platform USB, or Custom to use
the different JTAG configuration cables. If you want to configure the FPGA over the same
point-to-point Ethernet connection, you can choose the Xilinx Point-to-point Ethernet option.

 Speed Shows the speed of the selected cable.

 Port Shows the port name of the selected cable.

 Blink Cable LED When Xilnx Platform USB is selected, you can click on this button to
activate a blinking light next to the cable connector on the hardware board.

 Plug-in Parameters Specify the plug-in parameters for a Custom cable. This field uses the
same syntax as that used by ChipScope/iMPACT.

<plugin> <param1>=<value1> <param2>=<value2>

For example, see the figure below:

Refer to the ChipScope/iMPACT user documentation for further details on the cable plugin
parameters.

Configuration timeout (ms) Specifies the time (in milliseconds) when a timeout condition occurs
during the FPGA configuration process.

Shared Memories tab

Displays the names of the shared memories that are detected in the design to be simulated.
System Generator for DSP Reference Guide www.xilinx.com 343
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=343

Chapter 1: Xilinx Blockset
Software tab

Parameters specific to the Network tab are as follows:

 Enable Co-Debug with Xilinx SDK (Beta): On by default, clicking this item off disables the
SDK Co-Debug feature in Sysgen

Xilinx Software Development Kit (SDK)

 Workspace: Specifies the pathname to the SDK workspace when SDK is started from Sysgen
using the Launch Xilinx SDK button.

 Launch Xilinx SDK: Starts Xilinx SDK for use in a Sysgen/SDK Co-Debug session

Software Initialization

 ELF file: Specifies the pathname to the SDK project ELF file.

 BMM file: Specifies the pathname to the SDK project BMM file.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

See Also

Ethernet Hardware Co-Simulation

Point-to-Point Ethernet Hardware Co-SimulationConfiguration Using System ACE
344 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=344

Puncture
Puncture
This block is listed in the following Xilinx Blockset libraries: Communication and Index.

The Xilinx Puncture block removes a set of user-specified bits from the input words
of its data stream.

Based on the puncture code parameter, a binary vector that specifies which bits to
remove, it converts input data of type UFixN_0 (where N is equal to the length of the

puncture code) into output data of type UFixK_0 (where K is equal to the number of ones in the
puncture code). The output rate is identical to the input rate.

This block is commonly used in conjunction with a convolution encoder to implement punctured
convolution codes as shown in the figure below.

The system shown implements a rate ½ convolution encoder whose outputs are punctured to
produce four output bits for each three input bits. The top puncture block removes the center bit for
code 0 ([1 0 1]) and bottom puncture block removes the least significant bit for code 1 ([1 1 0]),
producing a 2-bit punctured output. These data streams are serialized into 1-bit in-phase and
quadrature data streams for baseband shaping.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Puncture Code: the puncture pattern represented as a bit vector, where a zero in position i
indicates bit i is to be removed.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 345
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=345

Chapter 1: Xilinx Blockset
Reciprocal
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Math and Index.

The Xilinx Reciprocal block performs the reciprocal on the input. Currently, only the
floating-point data type is supported.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Flow Control:

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.

Optional ports

Input Channel Ports

 Has TLAST: Adds a TLAST port to the Input channel.

 Has TUSER: Adds a TUSER port to the Input channel.

 Provide enable port: Adds an enable port to the block interface.

 Has Result TREADY: Adds a TREADY port to the Result channel.

Exception Signals

UNDERFLOW: Adds an output port that serves as an underflow flag.

DIVIDE_BY_ZERO:Adds an output port that serves as a divide-by-zero flag.

LogiCORE™ Documentation

LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
346 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=346

Reciprocal SquareRoot
Reciprocal SquareRoot
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Math and Index.

The Xilinx Reciprocal SquareRoot block performs the reciprocal squareroot on
the input. Currently, only the floating-point data type is supported.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Flow Control:

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.

Optional ports

Input Channel Ports

 Has TLAST: Adds a TLAST port to the Input channel.

 Has TUSER: Adds a TUSER port to the Input channel.

 Provide enable port: Adds an enable port to the block interface.

 Has Result TREADY: Adds a TREADY port to the Result channel.

Exception Signals

INVALID_OP: Adds an output port that serves as an invalid operation flag.

DIVIDE_BY_ZERO:Adds an output port that serves as a divide-by-zero flag.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 347
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=347

Chapter 1: Xilinx Blockset
Reed-Solomon Decoder 7.1
This block is listed in the following Xilinx Blockset libraries: Communication and Index.

The Reed-Solomon (RS) codes are block-based error correcting codes with a
wide range of applications in digital communications and storage.

They are used to correct errors in many systems such as digital storage
devices, wireless/ mobile communications, and digital video broadcasting.

The Reed-Solomon decoder processes blocks generated by a Reed-Solomon
encoder, attempting to correct errors and recover information symbols. The
number and type of errors that can be corrected depend on the characteristics
of the code.

Reed-Solomon codes are Bose-Chaudhuri-Hocquenghem (BCH) codes, which in turn are linear
block codes. An (n,k) linear block code is a k-dimensional sub-space of an n-dimensional vector
space over a finite field. Elements of the field are called symbols. For a Reed-Solomon code, n
ordinarily is 2s-1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The decoder handles both full length and shortened codes. It is also able to handle erasures,
that is, symbols that are known with high probability to contain errors.

When the decoder processes a block, there are three possibilities:

1. The information symbols are recovered. This is the case provided 2p+r <= n-k, where p is
the number of errors and r is the number of erasures.

2. The decoder reports it is unable to recover the information symbols.

3. The decoder fails to recover the information symbols but does not report an error.

The probability of each possibility depends on the code and the nature of the communications
channel. Simulink provides excellent tools for modeling channels and estimating these probabilities.

Block Interface
The Xilinx RS Decoder block has inputs data_in, sync and reset and outputs data_out,
blk_strt, blk_end, err_found, err_cnt, fail, ready and rfd. It also has optional
inputs n_in, erase, rst, and en, and optional output ports erase_cnt and data_del.

The following describes these ports in detail:

 data_in: presents blocks of n symbols to be decoded. The din signal must have type
UFIX_s_0, where s is the width in bits of each symbol.

 sync: tells the decoder when to begin processing symbols from data_in. The decoder
discards input symbols until the first time sync is asserted. The symbol on which sync is
asserted marks the beginning of the first n symbol block to be processed by the decoder. The
sync signal is ignored till the decoder is ready to accept another code block. The signal
driving sync must be Bool.

 erase: indicates the symbol currently presented on din should be treated as an erasure. The
signal driving erase must be Bool.

 n_in: n_in is sampled at the start of each block. The new block's length, n_block, is set to
n_in sampled. The n_in signal must have type UFIX_s_0, where s is the width in bits of
each symbol. Added to the block when you select Variable Block Length.

 rst: resets the decoder. This port is added to the block when you specify Synchronous Reset.
The signal driving rst must be Bool.

Note: reset must be asserted high for at least 1 sample period before the decoder can start decoding
code symbols.
348 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=348

Reed-Solomon Decoder 7.1
 en: carries the clock enable signal for the decoder. The signal driving en must be Bool.
Added to the block when you select the optional pin Clock Enable.

 data_out: produces the information and parity symbols resulting from decoding. The type of
data_out is the same as that for data_in.

 blk_strt: presents a 1 at the time data_out presents the first symbol of the block.
blk_strt produces a signal of UFIX_1_0 type.

 blk_end: presents a 0 at the time data_out presents the last symbol of the block. blk_end
produces a signal of UFIX_1_0 type.

 err_found: presents a value at the time data_out presents the last symbol of the block. The
value 1 if the decoder detected any errors or erasures during decoding. err_found must have
type UFIX_1_0.

 err_cnt: presents a value at the time data_out presents the last symbol of the block. The
value is the number of errors that were corrected. err_cnt must have type UFIX_b_0
where b is the number of bits needed to represent n-k.

 fail: presents a value at the time dout presents the last symbol of the block. The value is 1 if
the decoder was unable to recover the information symbols, and 0 otherwise. fail must have
type UFIX_1_0.

 ready: value is 1 when the decoder is ready to sample data_in input, and 0 otherwise.
ready must have type UFIX_1_0.

 rffd: value is 1 when the decoder is ready to sample the first symbol of a code block on
data_in input, and 0 otherwise. rffd must have type UFIX_1_0.

 info end: signals the last information symbol of the block on data_out.

 data_del: produces the un-decoded symbols alongside the decoded symbols on data_out.
The type of data_del is the same as that for data_in.

 erase_cnt: only available when erasure decoding is enabled. Presents a value at the time dout
presents the last symbol of the block. The value is the number of erasures that were corrected.
erase_cnt must have type UFIX_b_0 where b is the number of bits needed to represent n.

 bit_err_0_to_1: Number of bits received as 0 but corrected to 1.

 bit_err_1_to_0: Number of bits received as 1 but corrected to 0.

 bit_err_rdy: Signals that bit_err_0_to_1 and bit_err_1_to_0 is valid.

 mark_in: Marker bits for tagging data_in.

 mark_out: mark_in delayed by the block latency.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Attributes 1 tab

Parameters specific to the Basic tab are as follows:

Code Block Specification

 Code specification: specifies the type of RS Decoder desired. The choices are:

 Custom: allows you to set all the block parameters.

 DVB: implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.
System Generator for DSP Reference Guide www.xilinx.com 349
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=349

Chapter 1: Xilinx Blockset
 ATSC: implements ATSC (Advanced Television Systems Committee) standard (207, 187)
shortened RS code.

 CCSDS: implements CCSDS (Consultative Committee for Space Data Systems) standard
(255, 223) full length RS code.

 IESS-308 (All): implements IESS-308 (INTELSAT Earth Station Standard) specification
(all) shortened RS code.

 IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard) specification
(126, 112) shortened RS code.

 IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS code.

 IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS code.

 IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS code.

 IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS code.

 IEEE-802.16d: implements IEEE-802.16d specification (255, 239) full length RS code.

 Symbol width: tells the width in bits for symbols in the code. The encoder support widths
from 3 to 12.

 Field polynomial: specifies the polynomial from which the symbol field is derived. It must be
specified as a decimal number. This polynomial must be primitive. A value of zero indicates
the default polynomial should be used. Default polynomials are listed in the table below.

 Scaling Factor (h): (represented in the previous formula as h) specifies the scaling factor for
the code. Ordinarily, h is 1, but can be as large as 2S - 1 where s is the symbol width. The value
must be chosen so that h is primitive. That is, h must be relatively prime to 2S - 1.

 Generator Start: specifies the first root r of the generator polynomial. The generator
polynomial g(x), is given by:

where is a primitive element of the symbol field, and the scaling factor is described below.

 Variable Block Length: when checked, the block is given a n_in input.

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179
350 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=350

Reed-Solomon Decoder 7.1
 Symbols Per Block(n): tells the number of symbols in the blocks the encoder produces.
Acceptable numbers range from 3 to 2S -1, where s denotes the symbol width.

 Data Symbols(k): tells the number of information symbols each block contains. Acceptable
values range from max(n - 256, 1) to n - 2.

Variable Check Symbol Options

 Variable Number of Check Symbols (r):

 Define Supported R_IN Values

If only a subset of the possible values that could be sampled on R_IN is actually required, then
it is possible to reduce the size of the core slightly. For example, for the Intelsat standard, the
R_IN input is 5 bits wide but only requires r values of 14, 16, 18, and 20. The core size can be
slightly reduced by defining only these four values to be supported. If any other value is
sampled on R_IN, the core will not decode the data correctly.

 Number of Supported R_IN Values: Specify the number of supported R_IN values.

 Supported R_IN Definition File: This is a COE file that defines the R values to be
supported. It has the following format: radix=10; legal_r_vector=14,16,18,20; The
number of elements in the legal_r_vector must equal the specified Number of Supported
R_IN Values.

Attributes 2 tab

Implementation

 Optimization: choose between Area and Speed optimization.

State Machine

 Self Recovering: when checked, the block synchronously resets itself if it enters an illegal
state.

 Memory Style: Select between Distributed, Block and Automatic memory choices.

 Clocks Per Symbol: specifies the number of sample periods to use per input data symbol. This
can be increased to reduce the processing delay and support continuous decoding of code
words. The input data should be held for the number of clock symbols specified.

 Number Of Channels: specifies the number of separate time division multiplexed channels to
be processed by the encoder. The encoder supports up to 128 channels.

Puncture Options

 Number of Puncture Patterns: Specifies how many puncture patterns the LogiCORE needs
to handle. It is set to 0 if puncturing is not required

 Puncture Definition File: Specifies the name of the puncture definition file that is used to
define the puncture patterns.

Optional pins tab

 Info End: Marks the last information symbol of a block on data_out.

 Original Delayed Data: when checked, the block is given a data_del output.

 Erase: when checked, the block is given an erase input.

 Error Statistics: Adds the following three error statistics outputs:

 bit_err_0_to_1: Number of bits received as 1 but corrected to 0.

 bit_err_1_to_0: Number of bits received as 0 but corrected to 1.

 bit_err_rdy: Signals when bit_err_0_to_1 and bit_err_1_to_0 are valid.
System Generator for DSP Reference Guide www.xilinx.com 351
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=351

Chapter 1: Xilinx Blockset
 Marker Bits: Adds the following ports to the block:

 mark_in: Marker bits for tagging data_in.

 mark_out: mark_in delayed by the LogiCORE latency.

 Number of Marker Bits: Specifies the number of marker bits.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

This is a licensed core, available for purchase on the Xilinx web site at:
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSD.

LogiCORE™ Documentation
LogiCORE IP Reed-Solomon Decoder v7.1

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4
Spartan-6, Spartan-3, Spartan-3E,Spartan-3A/3AN/3A DSP
352 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=rs_decoder;v=none;d=rs_decoder_ds252.pdf
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSD
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=352

Reed-Solomon Decoder 8.0
Reed-Solomon Decoder 8.0
This block is listed in the following Xilinx Blockset libraries: AXI4, Communication and Index.

The Reed-Solomon (RS) codes are block-based
error correcting codes with a wide range of
applications in digital communications and storage.

They are used to correct errors in many systems
such as digital storage devices, wireless/ mobile
communications, and digital video broadcasting.

The Reed-Solomon decoder processes blocks
generated by a Reed-Solomon encoder, attempting
to correct errors and recover information symbols.
The number and type of errors that can be corrected
depend on the characteristics of the code.

Reed-Solomon codes are Bose-Chaudhuri-
Hocquenghem (BCH) codes, which in turn are
linear block codes. An (n,k) linear block code is a k-
dimensional sub-space of an n-dimensional vector
space over a finite field. Elements of the field are
called symbols. For a Reed-Solomon code, n

ordinarily is 2s-1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The decoder handles both full length and shortened codes. It is also able to handle erasures,
that is, symbols that are known with high probability to contain errors.

When the decoder processes a block, there are three possibilities:

1. The information symbols are recovered. This is the case provided 2p+r <= n-k, where p is
the number of errors and r is the number of erasures.

2. The decoder reports it is unable to recover the information symbols.

3. The decoder fails to recover the information symbols but does not report an error.

The probability of each possibility depends on the code and the nature of the communications
channel. Simulink provides excellent tools for modeling channels and estimating these probabilities.

Block Interface Channels and Pins

The Xilinx Reed-Solomon Decoder 8.0 block is AXI4 compliant. The following describes the
standard AXI channels and pins on the interface:

input Channel

 input_tvalid: TVALID for the input channel.

 input_tdata_erase: indicates the symbol currently presented on data_in should be treated
as an erasure. The signal driving this pin must be Bool.

 input_tdata_data_in: presents blocks of n symbols to be decoded. This signal must have type
UFIX_s_0, where s is the width in bits of each symbol.

 input_tlast: Marks the last symbol of the input block. Only used to generate event outputs.
Can be tied low or high if event outputs are not used.

 input_tready: TREADY for the input channel.

 input_tuser_mark_in: marker bits for tagging data on data_in. Added to the channel when
you select Marker Bits from the Optional Pins tab.
System Generator for DSP Reference Guide www.xilinx.com 353
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=353

Chapter 1: Xilinx Blockset
output Channel

 output_tready: TREADY for the output channel.

 output_tvalid: TVALID for the output channel.

 output_tdata_data_out: produces the information and parity symbols resulting from
decoding. The type of data_out is the same as that for data_in.

 output_tlast: Goes high when the last symbol of the last block is on tdata_data_out.
output_tlast produces a signal of type UFIX_1_0.

 output_tuser_mark_out: mark_in tagging bits delayed by the latency of the LogiCORE.
Added to the channel when you select Marker Bits on the Optional Pins tab.

 output_tdata_info: Added to the channel when you select Info on the Optional Pins tab. The
signal marks the last information symbol of a block on tdata_data_out.

 output_tdata_data_del: Added to the channel when you select Original Delayed Data on the
Optional Pins tab. The signal marks the last information symbol of a block on
tdata_data_out.

stat Channel

 stat_tready: TREADY for the stat channel.

 stat_tvalid: TVALID for the stat channel. You should tie this signal high if the downstream
slave is always able to accept data or if the stat channel is not used.

 stat_tdata_err_cnt: presents a value at the time data_out presents the last symbol of the
block. The value is the number of errors that were corrected. err_cnt must have type
UFIX_b_0 where b is the number of bits needed to represent n-k.

 stat_tdata_err_found: presents a value at the time output_tdata_data_out presents
the last symbol of the block. The value 1 if the decoder detected any errors or erasures during
decoding. err_found must have type UFIX_1_0.

 stat_tdata_fail: presents a value at the time output_tdata_data_out presents the last
symbol of the block. The value is 1 if the decoder was unable to recover the information
symbols, and 0 otherwise. This signal must be of type UFIX_1_0.

 stat_tdata_erase_cnt: : only available when erasure decoding is enabled. Presents a value at
the time dout presents the last symbol of the block. The value is the number of erasures that
were corrected This signal must be of type UFIX_b_0 where b is the number of bits needed to
represent n. Added to the channel when you select Erase from the Optional Pins tab.

 stat_tdata_bit_err_1_to_0: number of bits received as 1 but corrected to 0. Added to the
channel when you select Error Statistics from the Optional Pins tab. The element width is the
number of binary bits required to represent ((n-k) * Symbol_Width).

 stat_tdata_bit_err_0_to_1: number of bits received as 0 but corrected to 1. Added to the
channel when you select Error Statistics from the Optional Pins tab. The element width is the
number of binary bits required to represent ((n-k) * Symbol_Width).

 stat_tlast: added when Number of Channels parameter is greater than 1. Indicates that status
information for the last channel is present on output_tdata.

event Channel

 event_s_input_tlast_missing: this output flag indicates that the input_tlast was not asserted
when expected. You should leave this pin unconnected if it is not required.

 event_s_input_tlast_unexpected: this output flag indicates that the input_tlast was asserted
when not expected. You should leave this pin unconnected if it is not required.
354 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=354

Reed-Solomon Decoder 8.0
 event_s_ctrl_tdata_invalid: this output flag indicates that values provided on ctrl_tdata were
illegal. The block must be reset if this is asserted.You should leave this pin unconnected if it is
not required.

ctrl Channel

Note: This channel is only present when variable block length, number of check symbols or puncture is
selected as a block parameter

 ctrl_tready: TREADY for the ctrl channel.

 ctrl_tvalid: TVALID for the ctrl channel.

 ctrl_tdata: this input contains the block length, the number of check symbols and puncture
select, if applicable.

Other Optional Pins

 aresetn: resets the decoder. This pin is added to the block when you specify Synchronous
Reset on the Optional Pins tab. The signal driving rst must be Bool.

Note: aresetn must be asserted high for at least 1 sample period before the decoder can start decoding
code symbols.

 aclken: carries the clock enable signal for the decoder. The signal driving aclken must be
Bool. Added to the block when you select the optional pin Clock Enable.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Attributes 1 tab

Parameters specific to the Basic tab are as follows:

Code Block Specification

 Code specification: specifies the type of RS Decoder desired. The choices are:

 Custom: allows you to set all the block parameters.

 DVB: implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.

 ATSC: implements ATSC (Advanced Television Systems Committee) standard (207, 187)
shortened RS code.

 G.709: implements G.709 Optical Transport Network standard.

 CCSDS: implements CCSDS (Consultative Committee for Space Data Systems) standard
(255, 223) full length RS code.

 IESS-308 (All): implements IESS-308 (INTELSAT Earth Station Standard) specification
(all) shortened RS code.

 IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard) specification
(126, 112) shortened RS code.

 IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS code.

 IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS code.

 IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS code.

 IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS code.
System Generator for DSP Reference Guide www.xilinx.com 355
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=355

Chapter 1: Xilinx Blockset
 IEEE-802.16d: implements IEEE-802.16d specification (255, 239) full length RS code.

 Symbol width: tells the width in bits for symbols in the code. The encoder support widths
from 3 to 12.

 Field polynomial: specifies the polynomial from which the symbol field is derived. It must be
specified as a decimal number. This polynomial must be primitive. A value of zero indicates
the default polynomial should be used. Default polynomials are listed in the table below.

 Scaling Factor (h): (represented in the previous formula as h) specifies the scaling factor for
the code. Ordinarily, h is 1, but can be as large as 2S - 1 where s is the symbol width. The value
must be chosen so that h is primitive. That is, h must be relatively prime to 2S - 1.

 Generator Start: specifies the first root r of the generator polynomial. The generator
polynomial g(x), is given by:

where is a primitive element of the symbol field, and the scaling factor is described below.

 Variable Block Length: when checked, the block is given a ctrl input channel.

 Symbols Per Block(n): tells the number of symbols in the blocks the encoder produces.
Acceptable numbers range from 3 to 2S -1, where s denotes the symbol width.

 Data Symbols(k): tells the number of information symbols each block contains. Acceptable
values range from max(n - 256, 1) to n - 2.

Variable Check Symbol Options

 Variable Number of Check Symbols (r):

 Define Supported R_IN Values

If only a subset of the possible values that could be sampled on R_IN is actually required, then
it is possible to reduce the size of the core slightly. For example, for the Intelsat standard, the
R_IN input is 5 bits wide but only requires r values of 14, 16, 18, and 20. The core size can be
slightly reduced by defining only these four values to be supported. If any other value is
sampled on R_IN, the core will not decode the data correctly.

 Number of Supported R_IN Values: Specify the number of supported R_IN values.

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179
356 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=356

Reed-Solomon Decoder 8.0
 Supported R_IN Definition File: This is a COE file that defines the R values to be
supported. It has the following format: radix=10; legal_r_vector=14,16,18,20; The
number of elements in the legal_r_vector must equal the specified Number of Supported
R_IN Values.

Attributes 2 tab

Implementation

State Machine

 Self Recovering: when checked, the block synchronously resets itself if it enters an illegal
state.

 Memory Style: Select between Distributed, Block and Automatic memory choices.

 Number Of Channels: specifies the number of separate time division multiplexed channels to
be processed by the encoder. The encoder supports up to 128 channels.

 Output check symbols: If selected, then the entire n symbols of each block are output on the
output channel. If not selected, then only the k information symbols are output.

Puncture Options

 Number of Puncture Patterns: Specifies how many puncture patterns the LogiCORE needs
to handle. It is set to 0 if puncturing is not required

 Puncture Definition File: Specifies the name of the puncture definition file that is used to
define the puncture patterns.

Optional pins tab

 Clock Enable: Adds a aclken pin to the block. This signal carries the clock enable and must
be of type Bool.

 Info: Adds the output_tdata_info pin. Marks the last information symbol of a block on
tdata_data_out.

 Synchronous Reset: Adds a aresetn pin to the block. This signal resets the block and must be
of type Bool. The signal must be asserted for at least 2 clock cycles, however, it does not have
to be asserted before the decoder can start decoding.

 Original Delayed Data: when checked, the block is given a tdata_data_del output.
Indicates that a DAT_DEL field is in the output_tdata output.

 Erase: when checked, the block is given an input_tdata_erase input pin..

 Error Statistics: adds the following three error statistics outputs:

 bit_err_0_to_1: number of bits received as 1 but corrected to 0.

 bit_err_1_to_0: number of bits received as 0 but corrected to 1.

 Marker Bits: Adds the following pins to the block:

 input_tuser_mark_in: carries marker bits for tagging data on input_tdata_
data_in.

 output_tuser_mark_out: mark_in tagging bits delayed by the latency of the LogiCORE.

 Number of Marker Bits: specifies the number of marker bits.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

This is a licensed core, available for purchase on the Xilinx web site at:
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSD.
System Generator for DSP Reference Guide www.xilinx.com 357
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSD
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=357

Chapter 1: Xilinx Blockset
LogiCORE™ Documentation

LogiCORE IP Reed-Solomon Decoder v8.0

Device Support
Pre-Production families are:

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Spartan-6
358 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=rs_decoder;v=v8_0;d=ds862_rs_decoder.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=358

Reed-Solomon Encoder 7.1
Reed-Solomon Encoder 7.1
This block is listed in the following Xilinx Blockset libraries: Communications and Index.

The Reed-Solomon (RS) codes are block-based error correcting codes with a
wide range of applications in digital communications and storage.

They are used to correct errors in many systems such as digital storage
devices, wireless or mobile communications, and digital video broadcasting.

The Reed-Solomon encoder augments data blocks with redundant symbols so
that errors introduced during transmission can be corrected. Errors can occur
for a number of reasons (noise or interference, scratches on a CD, etc.). The
Reed-Solomon decoder attempts to correct errors and recover the original

data. The number and type of errors that can be corrected depends on the characteristics of the code.

A typical system is shown below:

Reed-Solomon codes are Bose-Chaudhuri-Hocquenghem (BCH) codes, which in turn are linear
block codes. An (n, k) linear block code is a k-dimensional sub space of an n-dimensional vector
space over a finite field. Elements of the field are called symbols. For a Reed-Solomon code, n
ordinarily is 2S -1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The encoder handles both full length and shortened codes.

The encoder is systematic. This means it constructs code blocks of length n from information blocks
of length k by adjoining n-k parity symbols.

A Reed-Solomon code is characterized by its field and generator polynomials. The field polynomial
is used to construct the symbol field, and the generator polynomial is used to calculate parity
symbols. The encoder allows both polynomials to be configured. The generator polynomial has the
form:

where is a primitive element of the finite field having n + 1 elements.

Block Interface
The Xilinx Reed-Solomon Encoder block has inputs data_in, bypass, and start, and outputs
data_out and info. It also has optional inputs n_in, r_in, nd, rst and en. It also has
optional outputs rdy, rfd, and rffd.

The following describes the ports in detail:

 data_in: presents blocks of symbols to be encoded. Each block consists of k information
symbols followed by n - k un-interpreted filler symbols. The din signal must have type
UFIX_s_0, where s is the width in bits of each symbol.
System Generator for DSP Reference Guide www.xilinx.com 359
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=359

Chapter 1: Xilinx Blockset
 start: tells the encoder when to begin processing symbols from din. The encoder discards
input symbols until the first time start is asserted. The symbol on which start is asserted
marks the beginning of the first n symbol blocks to be processed by the encoder. If start is
asserted for more than one sample period, the value at the last period is taken as the beginning
of the block. The start signal is ignored if bypass is asserted simultaneously. The signal
driving start must be Bool.

 bypass: when bypass is asserted, the value on din is passed unchanged to dout with a
delay of 4 (6 in the case of CCSDS) sample periods. The bypass signal has no effect on the
state of the encoder. The signal driving bypass must be Bool.

 n_in: This signal is used when the block size is varaible. n_in is sampled at the start of each
block. The new block's length, n_block, is set to n_in sampled. The n_in signal must have
type UFIX_s_0, where s is the width in bits of each symbol.

 r_in: This signal is used when the number of check symbols is variable. r_in is sampled at
the start of each block. The new block's length, r_block, is set to r_in sampled. The r_in
signal must have type UFIX_p_0, where p is the number of bits required to represent the
parity bits (n-k) in the default code word.

 nd: marks each data_in symbol as part of the information symbols for processing parity
symbols. The signal driving nd must be Bool.

 rst: carries the reset signal. The signal driving rst must be Bool.

 en: carries the enable signal. The signal driving en must be Bool.

 data_out: produces blocks of n symbols that represent the results of encoding blocks of k
information symbols read from data_in. The type of data_out is the same as that for
data_in.

 info: equals 1 (respectively, 0) when the value presented on data_out is an information
(respectively, parity) symbol. info must have type UFIX_1_0.

 rdy: marks each symbol produced on data_out as valid or invalid. rdy must have type
UFIX_1_0.

 rfd: equals 1 when the encoder is accepting and producing information symbols, and is 0
when producing parity symbols. rfd must have type UFIX_1_0.

 rffd: equals 1 when the encoder is ready to accept a new start pulse. rffd must have type
UFIX_1_0.
360 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=360

Reed-Solomon Encoder 7.1
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

Attributes tab

Code Block Specification

 Code specification: specifies the encoder type. The choices are:

 Custom: allows you to set all the block parameters.

 DVB: implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.

 ATSC: implements ATSC (Advanced Television Systems Committee) standard (207, 187)
shortened RS code.

 G_709: implements the G.709 standard for communicating data over an optical network.

 ETSI_BRAN: implements the ETSI (European Telecommunicaton Standards Institute)
standard for BRAN (Broadband Radio Access Networks).

 CCSDS: implements CCSDS (Consultative Committee for Space Data Systems) standard
(255, 223) full length RS code.

 ITU_J_83 Annex_B: implements ITU-J.83 Annex B specification (128, 122) extended
RS code.

 IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard) specification
(126, 112) shortened RS code.

 IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS code.

 IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS code.

 IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS code.

 IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS code.

 Variable Number of Check Symbols (r): when checked, the block is given an r_in and
n_in input.

 Variable Block Length: when checked, the block is given a n_in input.

 Symbol width: tells the width in bits for symbols in the code. The encoder supports widths
from 3 to 12.

 Field polynomial: specifies the polynomial from which the symbol field is derived. It must be
specified as a decimal number. This polynomial must be primitive. A value of zero indicates
the default polynomial should be used. Default polynomials are listed in the table below.

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285
System Generator for DSP Reference Guide www.xilinx.com 361
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=361

Chapter 1: Xilinx Blockset
 Scaling Factor (h): specifies the scaling factor for the code. Ordinarily the scaling factor is 1,
but can be as large as 2S - 1 where s is the symbol width. The value must be chosen so that h
is primitive, for example, the value must be relatively prime to 2S - 1.

 Generator start: specifies the first root r of the generator polynomial. The generator
polynomial g(x) is given by:

 Symbols Per Block (n): specifies the number of symbols in the blocks the encoder produces.
Acceptable numbers range from 3 to 2S -1, where s denotes the symbol width.

 Data Symbols (k): specifies the number of information symbols each block contains.
Acceptable values range from max(n - 256, 1) to n - 2.

Optional pins tab

Implementation

 Check Symbol Generator Optimization: allows you to select between

 Fixed Architecture: The check symbol generator is implemented using a highly efficient
fixed architecture.

 Area. The check symbol generator implementation is optimized for area and speed
efficiency. The range of input, N_IN, is reduced.

 Flexibility: The check symbol generator implementation is optimized to maximize the
range of input N_IN.

 Memory Style: allows you to select between Distributed, Block and Automatic memory
choices. This option is available only for CCSDS codes.

 Number of Channels: specifies the number of separate time division multiplexed channels to
be processed by the encoder. The encoder supports up to 128 channels.

Optional Pins

 CE: when checked, the block is given a ce (clock enable) input.

 RDY: when checked, the block is given a rdy (ready) output.

 ND: when checked, the block is given a nd (new data) input.

 RFD: when checked, the block is given a rfd (ready for data) output.

 SCLR: when checked, the block is given a sclr (synchronous clear) input.

 RFFD: when checked, the block is given a rffd (ready for first data) output.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179

Symbol Width Default Polynomials Array Representation
362 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=362

Reed-Solomon Encoder 7.1
This is a licensed core, available for purchase on the Xilinx web site at:
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSE.

LogiCORE™ Documentation
LogiCORE IP Reed-Solomon Encoder v7.1

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4
Spartan-6, Spartan-3, Spartan-3E,Spartan-3A/3AN/3A DSP
System Generator for DSP Reference Guide www.xilinx.com 363
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSE
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=rs_encoder;v=none;d=rs_encoder_ds251.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=363

Chapter 1: Xilinx Blockset
Reed-Solomon Encoder 8.0
This block is listed in the following Xilinx Blockset libraries: AXI4, Communications and Index.

The Reed-Solomon (RS) codes are block-based error
correcting codes with a wide range of applications in digital
communications and storage. This block adheres to the
AMBA® AXI4-Stream standard.

They are used to correct errors in many systems such as digital
storage devices, wireless or mobile communications, and
digital video broadcasting.

The Reed-Solomon encoder augments data blocks with
redundant symbols so that errors introduced during
transmission can be corrected. Errors can occur for a number of
reasons (noise or interference, scratches on a CD, etc.). The
Reed-Solomon decoder attempts to correct errors and recover

the original data. The number and type of errors that can be corrected depends on the characteristics
of the code.

A typical system is shown below:

Reed-Solomon codes are Bose-Chaudhuri-Hocquenghem (BCH) codes, which in turn are linear
block codes. An (n, k) linear block code is a k-dimensional sub space of an n-dimensional vector
space over a finite field. Elements of the field are called symbols. For a Reed-Solomon code, n
ordinarily is 2S -1, where s is the width in bits of each symbol. When the code is shortened, n is
smaller. The encoder handles both full length and shortened codes.

The encoder is systematic. This means it constructs code blocks of length n from information blocks
of length k by adjoining n-k parity symbols.

A Reed-Solomon code is characterized by its field and generator polynomials. The field polynomial
is used to construct the symbol field, and the generator polynomial is used to calculate parity
symbols. The encoder allows both polynomials to be configured. The generator polynomial has the
form:

where is a primitive element of the finite field having n + 1 elements.
364 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=364

Reed-Solomon Encoder 8.0
Block Interface Channels and Pins

The Xilinx Reed-Solomon Decoder 8.0 block is AXI4 compliant. The following describes the
standard AXI channels and pins on the interface:

input Channel

 input_tvalid: TVALID for the input channel.

 input_tdata_data_in: presents blocks of n symbols to be decoded. This signal must have type
UFIX_s_0, where s is the width in bits of each symbol.

 input_tlast: Marks the last symbol of the input block. Only used to generate event outputs.
Can be tied low or high if event outputs are not used.

 input_tready: TREADY for the input channel.

 input_tuser_user: marker bits for tagging data on input_tdata_data_in. Added to the channel
when you select Marker Bits from the Detailed Implementation tab.

output Channel

 output_tready: TREADY for the output channel. Added to the channel when you select
Output TREADY from the Optional Pins tab.

 output_tvalid: TVALID for the output channel.

 output_tdata_data_out: produces the information and parity symbols resulting from
decoding. The type of data_out is the same as that for data_in.

 output_tlast: Goes high when the last symbol of the last block is on tdata_data_out.
output_tlast produces a signal of type UFIX_1_0.

 output_tuser_tuser: This pin is available when user selects "Marker Bits" from the Detailed
Implementation tab.

event Channel

 event_s_input_tlast_missing: this output flag indicates that the input_tlast was not asserted
when expected. You should leave this pin unconnected if it is not required.

 event_s_input_tlast_unexpected: this output flag indicates that the input_tlast was asserted
when not expected. You should leave this pin unconnected if it is not required.

 event_s_ctrl_tdata_invalid: this output flag indicates that values provided on ctrl_tdata were
illegal. This pin is available when "Variable Block Length" or "Variable Number of Check
Symbols" are selected on the GUI.

ctrl Channel

Note: This channel is only present when variable block length or number of check symbols is selected as a
block parameter

 ctrl_tvalid: TVALID for the ctrl channel.

 ctrl_tdata_n_in: This signal is only present if “Variable Block Length” is selected in the GUI.
This allows the block length to be changed every block. The ctrl_tdata_n_in signal must have
type UFIX_s_0, where s is the width in bits of each symbol. Unless there is an R_IN field, the
number of check symbols is fixed, so varying n automatically varies k.

 ctrl_tdata_n_r: This field is only present if “Variable Number of Check Symbols” is selected
in the GUI. It allows the number of check symbols to be changed every block. The new block's
length, r_block, is set to ctrl_tdata_r_in sampled. The ctrl_tdata_r_in signal must have type
UFIX_p_0, where p is the number of bits required to represent the parity bits (n-k) in the
System Generator for DSP Reference Guide www.xilinx.com 365
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=365

Chapter 1: Xilinx Blockset
default code word, n being the "Symbols Per Block" and k being "Data Symbols". Selecting
this input significantly increases the size of the core.

Other Optional Pins
 aresetn: resets the encoder. This pin is added to the block when you specify ARESETn on the

Detailed Implementation tab. The signal driving ARESETn must be Bool.

Note: aresetn must be asserted low for at least 2 clock periods and at least 1 sample period before the
decoder can start decoding code symbols.

 aclken: carries the clock enable signal for the encoder. The signal driving aclken must be
Bool. Added to the block when you select the optional pin ACLKEN.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Attributes

Parameters specific to the Basic tab are as follows:

Code Block Specification

 Code specification: specifies the encoder type desired. The choices are:

 Custom: allows you to set all the block parameters.

 DVB: implements DVB (Digital Video Broadcasting) standard (204, 188) shortened RS
code.

 ATSC: implements ATSC (Advanced Television Systems Committee) standard (207, 187)
shortened RS code.

 G_709: implements G.709 Optical Transport Network standard.

 ETSI_BRAN: implements the ETSI Project standard for Broadband Radio Access
Networks (BRAN).

 CCSDS: implements CCSDS (Consultative Committee for Space Data Systems) standard
(255, 223) full length RS code.

 ITU_J_83_Annex_B: implements International Telecommunication Union(ITU)-J.83
Annex B specification (128, 122) extended RS code.

 IESS-308 (All): implements IESS-308 (INTELSAT Earth Station Standard) specification
(all) shortened RS code.

 IESS-308 (126): implements IESS-308 (INTELSAT Earth Station Standard) specification
(126, 112) shortened RS code.

 IESS-308 (194): implements IESS-308 specification (194, 178) shortened RS code.

 IESS-308 (208): implements IESS-308 specification (208, 192) shortened RS code.

 IESS-308 (219): implements IESS-308 specification (219, 201) shortened RS code.

 IESS-308 (225): implements IESS-308 specification (225, 205) shortened RS code.

 Variable Number of Check Symbols (r): false, true. When checked, the ctrl_tdata_r_in and
ctrl_tdata_n_in pins become available on the block.

 Variable Block Length: false, true. When checked, the ctrl_tdata_n_in pin becomes available
on the block.
366 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=366

Reed-Solomon Encoder 8.0
 Symbol width: tells the width in bits for symbols in the code. The encoder support widths
from 3 to 12.

 Field polynomial: specifies the polynomial from which the symbol field is derived. It must be
specified as a decimal number. This polynomial must be primitive. A value of zero indicates
the default polynomial should be used. Default polynomials are listed in the table below.

 Scaling Factor (h): (represented in the previous formula as h) specifies the scaling factor for
the code. Ordinarily, h is 1, but can be as large as 2S - 1 where s is the symbol width. The value
must be chosen so that h is primitive. That is, h must be relatively prime to 2S - 1.

 Generator Start: specifies the first root r of the generator polynomial. The generator
polynomial g(x), is given by:

where is a primitive element of the symbol field, and the scaling factor is described below.

 Symbols Per Block(n): tells the number of symbols in the blocks the encoder produces.
Acceptable numbers range from 3 to 2S -1, where s denotes the symbol width.

 Data Symbols(k): tells the number of information symbols each block contains. Acceptable
values range from max(n - 256, 1) to n - 2.

Symbol Width Default Polynomials Array Representation

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

9 x9 + x4+ 1 529

10 x10 + x3 + 1 1033

11 x11 + x2 + 1 2053

12 x12 + x6 + x4 + x + 1 4179
System Generator for DSP Reference Guide www.xilinx.com 367
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=367

Chapter 1: Xilinx Blockset
Detailed Implementation tab

Implementation

Check Symbol Generator Optimization

This option is available when "Variable Number of Check Symbols" option is selected on the
GUI.

 Fixed Architecture: The check symbol generator is implemented using a highly efficient
fixed architecture.

 Area: The check symbol generator implementation is optimized for area and speed
efficiency. The range of input, ctrl_tdata_n_in, is reduced.

 Flexibility: The check symbol generator implementation is optimized to maximize the
range of input of ctrl_tdata_n_in.

 Memory Style: Select between Distributed, Block and Automatic memory choices. This
option is available only for CCSDS codes.

 Number Of Channels: specifies the number of separate time division multiplexed channels to
be processed by the encoder. The encoder supports up to 128 channels.

Optional Pins

 ACLKEN: Adds a aclken pin to the block. This signal carries the clock enable and must be of
type Bool.

 Output TREADY: When selected, the output channels will have a TREADY and hence
support the full AXI handshake protocol with inherent back-pressure.

 ARESETn: Adds a aresetn pin to the block. This signal resets the block and must be of type
Bool. aresetn must be asserted low for at least 2 clock periods and at least 1 sample period before the
decoder can start decoding code symbols.

 Info bit: Adds the output_tdata_info pin. Marks the last information symbol of a block on
tdata_data_out.

 Marker Bits: Adds the following pins to the block:

 input_tuser_user: carries marker bits for tagging data on input_tdata_ data_in.

 output_tuser_user: mark_in tagging bits delayed by the latency of the LogiCORE.

 Number of Marker Bits: specifies the number of marker bits.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

This is a licensed core, available for purchase on the Xilinx web site at:
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSE.

LogiCORE™ Documentation
LogiCORE IP Reed-Solomon Encoder v8.0

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Spartan-6
368 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-RSE
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=rs_encoder;v=v8_0;d=pg025_rs_encoder.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=368

Register
Register
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic,
Floating-Point, Memory, and Index.

The Xilinx Register block models a D flip-flop-based register, having latency of one
sample period.

Block Interface
The block has one input port for the data and an optional input reset port. The initial output value is
specified by you in the block parameters dialog box (below). Data presented at the input will appear
at the output after one sample period. Upon reset, the register assumes the initial value specified in
the parameters dialog box.

The Register block differs from the Xilinx Delay block by providing an optional reset port and a user
specifiable initial value.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Initial value: specifies the initial value in the register.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 369
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=369

Chapter 1: Xilinx Blockset
Reinterpret
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Floating-Point, Math,
and Index.

The Xilinx Reinterpret block forces its output to a new type without any regard for
retaining the numerical value represented by the input.

The binary representation is passed through unchanged, so in hardware this block
consumes no resources. The number of bits in the output will always be the same as the

number of bits in the input.

The block allows for unsigned data to be reinterpreted as signed data, or, conversely, for signed data
to be reinterpreted as unsigned. It also allows for the reinterpretation of the data's scaling, through
the repositioning of the binary point within the data. The Xilinx Scale block provides an analogous
capability.

An example of this block's use is as follows: if the input type is 6 bits wide and signed, with 2
fractional bits and the output type is forced to be unsigned with 0 fractional bits, then an input of -
2.0 (1110.00 in binary, two's complement) would be translated into an output of 56 (111000 in
binary).

This block can be particularly useful in applications that combine it with the Xilinx Slice block or
the Xilinx Concat block. To illustrate the block's use, consider the following scenario:

Given two signals, one carrying signed data and the other carrying two unsigned bits (a
UFix_2_0), we want to design a system that concatenates the two bits from the second signal onto
the tail (least significant bits) of the signed signal.

We can do so using two Reinterpret blocks and one Concat block. The first Reinterpret block is used
to force the signed input signal to be treated as an unsigned value with its binary point at zero. The
result is then fed through the Concat block along with the other signal's UFix_2_0. The Concat
operation is then followed by a second Reinterpret that forces the output of the Concat block back
into a signed interpretation with the binary point appropriately repositioned.

Though three blocks are required in this construction, the hardware implementation is realized as
simply a bus concatenation, which has no cost in hardware.

Block Parameters

Parameters specific to the block are:

 Force Arithmetic Type: When checked, the Output Arithmetic Type parameter can be set and
the output type is forced to the arithmetic type chosen according to the setting of the Output
Arithmetic Type parameter. When unchecked, the arithmetic type of the output is unchanged
from the arithmetic type of the input.

 Output Arithmetic Type: The arithmetic type (unsigned or signed, 2's complement, Floating-
point) to which the output is to be forced.

 Force Binary Point: When checked, the Output Binary Point parameter can be set and the
binary point position of the output is forced to the position supplied in the Output Binary Point
parameter. When unchecked, the arithmetic type of the output is unchanged from the
arithmetic type of the input.

 Output Binary Point: The position to which the output's binary point is to be forced. The
supplied value must be an integer between zero and the number of bits in the input (inclusive).
370 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=370

Reinterpret
LogiCORE™ Documentation

LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 371
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=371

Chapter 1: Xilinx Blockset
Relational
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic,
Floating-Point, Math, and Index.

The Xilinx Relational block implements a comparator.

The supported comparisons are the following:

 equal-to (a = b)

 not-equal-to (a != b)

 less-than (a < b)

 greater-than (a > b)

 less-than-or-equal-to (a <= b)

 greater-than-or-equal-to (a >= b)

 The output of the block is a Bool.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The only parameter specific to the Relational block is:

 Comparison: specifies the comparison operation computed by the block.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6
372 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=372

Reset Generator
Reset Generator
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Reset Generator block captures the user's reset signal that is running at the
system sample rate, and produces one or more downsampled reset signal(s) running
at the rates specified on the block.

The downsampled reset signals are synchronized in the same way as they are during
startup. The RDY output signal indicates when the downsampled resets are no

longer asserted after the input reset is detected.

Block Parameters
The block parameters dialog box shown below can be invoked by double-clicking the icon in your
Simulink model.

You specify the design sample rates in MATLAB vector format as shown above. Any number of
ouputs can be specified.
System Generator for DSP Reference Guide www.xilinx.com 373
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=373

Chapter 1: Xilinx Blockset
Resource Estimator
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Resource Estimator block provides fast estimates of FPGA resources
required to implement a System Generator subsystem or model.

These estimates are computed by invoking block-specific estimators for Xilinx blocks,
and summing these values to obtain aggregated estimates of lookup tables (LUTs),
flip-flops (FFs), block memories (BRAM), 18x18 multipliers, tristate buffers, and
I/Os.

Every Xilinx block that requires FPGA resources has a mask parameter that stores a vector
containing its resource requirements. The Resource Estimator block can invoke underlying
functions to populate these vectors (e.g. after parameters or data types have been changed), or
aggregate previously computed values that have been stored in the vectors. Each block has a
checkbox control Define FPGA area for resource estimation that short-circuits
invocation of the estimator function and uses the estimates stored in the vector instead.

An estimator block can be placed in any subsystem of a model. When another estimator block is
situated in the sub-hierarchy below an estimator, the blocks interact as described below.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters in the Resource Estimator dialog box are:

 Slices: Slices utilized by the block. (A slice normally consists of two flip-flops, two LUTs and
associated mux, carry and control logic.)

 FFs: Flip-Flops utilized by the block.

 BRAMs: Block RAMs utilized by the block.

 LUTs: Look-up Tables utilized by the block.

 IOBs: Input/Output blocks consumed by the block.

 Embedded Mults: Embedded multipliers utilized by the block. (For example, the Virtex®-4
device contains embedded 18X18 multipliers.)

 TBUFs: Tristate Buffers utilized by the block.

 Use Area Above: When this box is checked, any resource estimation performed on this
subsystem will return the numbers entered in the edit boxes of the dialog box (The data
represented by these fields is equivalent to the FPGA Area field in the individual System
Generator blocks). Any blocks at the level of the subsystem where this block resides, or below,
will have no automatic resource estimation performed when this box is checked.

 Estimate Options: Allows selection of estimation method as one of the following: Estimate,
Quick, Post Map and Read Mrp. These options are explained in greater detail in the next topic.

 Estimate: Launches resource estimation

Perform Resource Estimation Buttons
The FPGA Area fields described above can either be manually entered or filled in by launching
resource estimation with Estimate Options set to one of the following:

 Estimate: Invokes block estimation functions top-down for each block and subsystem
recursively. Blocks that do not have an estimation function but can be implemented in
374 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=374

Resource Estimator
hardware (except shared memory blocks) are automatically estimated using post-map area. If
any block has the Define FPGA area for resource estimation option selected, its estimation
function is short-circuited and its current estimate is used. If Use area above option is selected
for a Resource Estimator block, this block's estimate is used for the entire subsystem
containing it, and no other block estimation functions are invoked for that portion of the model
hierarchy.

 Quick: Causes the Estimate button to sum all of the FPGA Area fields on the blocks and
subsystems at or below the current subsystem. No underlying estimation functions are
invoked.

 Post-Map Area: Causes the Estimate button to automatically invoke Xilinx map tool on the
entire subsystem and read back the results from the created Map Report File (MRP). In order
to use this option a System Generator token along with the resource estimator block must be
instanced in the subsystem being estimated.

 Read MRP: Causes the Estimate button to open a file browser. The results from a selected
MRP file are read into the Resource Estimator. This method of obtaining resource information
is available for subsystems that have been previously synthesized, translated and mapped. This
can be useful for complex Xilinx blocks that have no estimation function and will no longer
change in a design.

The numbers from the map report file and those inserted into the Resource Estimator dialog box area
fields might be slightly different (this applies to Post Map Area option also). Any IOB FF resources
found in the MRP file are added into the estimators FFs field. Along the same lines, half of the
MRP's IOB FF resources are added into the estimators Slices field and the estimators IOBs field will
always be set to 0 after performing a Post-Map Area MRP or Read MRP. Since the usefulness of this
feature generally occurs in estimating subsystems, IOB resources must be included in the CLB
utilization numbers to prevent incorrectly reporting IOB resources not used in the final design.

Blocks Supported by Resource Estimation

Blocks that have Fast Resource Estimation Functions:

Accumulator, Addressable Shift Register, AddSub, CMult (sequential version not supported),
Convert, Counter, Delay, Down Sample, Dual Port RAM, FIFO, FFT, FFTx, Gateway In, Gateway
Out, Inverter, LFSR, Logical, Mult (sequential version not supported), Mux (tristate version not
supported), Negate, Parallel to Serial, PicoBlaze Processor, Register, Relational, ROM, Serial To
Parallel, Shift, Sine Cosine, Single Port RAM, Threshold, Up Sample.

Blocks that Use Post Map Area Estimates:

System generator blocks that do not have fast resource estimation functions and use hardware are
estimated using post-map area. In order to avoid using this method enter in a constant or a user-
created estimation function into the FPGA Area field of the block and click on the Define FPGA
area for resource estimation checkbox.

Blocks that Do Not Use Any Hardware:

System Generator, Clear Quantization Error, Clock Enable Probe, Clock Probe, Concat, Constant,
Discard Subsystem, FDATool, Indeterminate Probe, ModelSim, Pause Simulation, PicoBlaze
Instruction Display, Quantization Error, Reinterpret, Sample Time, Scale, Simulation Multiplexer,
Single-Step Simulation, Slice, BitBasher.
System Generator for DSP Reference Guide www.xilinx.com 375
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=375

Chapter 1: Xilinx Blockset
Blocks with Special Handling:

Discard Subsystem (Resource Estimator will ignore any resources in a subsystem containing this
block). Shared memory blocks are not estimated. In designs containing Shared Memory blocks, use
the Multiple System Generator block to generate the HDL netlist files. Use ISE® software to create
the Map Report File for the design and use the Read MRP option to obtain the results contained in
the MRP file produced.

Viewing ISE Reports

When you select the Post Map Estimate option and click the Estimate, the Running Resource
Estimator dialog box appears as shown below. You can then click on the Show Reports button and
the associated ISE Reports are avilable for your viewing:

Known Issues for Resource Estimation
Resource estimation in System Generator has the following known issues:

 Estimations are based upon the data types for the inputs and outputs of each block that
Simulink calculates during the compilation phase. If significant trimming takes place in a
376 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=376

Resource Estimator
design that is not seen at the block level, the resource estimation tool will overestimate those
trimmed resources.

 Any logic that the synthesis tools can combine across blocks is overestimated. For example,
when using blocks that have no latency, there is a good chance combinational logic is
optimized across block boundaries.

 Multirate designs contain clock enable generation logic that is underestimated. System
Generator handles multirate designs by using one clock and generating a different clock enable
for each rate. In order to accurately predict the amount of logic in the clock enable drivers, the
estimator would need to look at the system as a whole instead of at the block level. Note, this
underestimation will also include resources associated with additional clock enable
connections that are made to each of the blocks that were not visible to the block estimation
functions.

 Shared Memory Blocks are not estimated. In designs containing Shared Memory blocks, the
estimates reported do not include the resources used be the Shared Memory blocks.
System Generator for DSP Reference Guide www.xilinx.com 377
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=377

Chapter 1: Xilinx Blockset
ROM
This block is listed in the following Xilinx Blockset libraries: Control Logic, Memory, Floating-
Point and Index.

The Xilinx ROM block is a single port read-only memory (ROM).

Values are stored by word and all words have the same arithmetic type, width, and
binary point position. Each word is associated with exactly one address. An address
can be any unsigned fixed-point integer from 0 to d-1, where d denotes the ROM
depth (number of words). The memory contents are specified through a block

parameter. The block has one input port for the memory address and one output port for data out.
The address port must be an unsigned fixed- point integer. The block has two possible Xilinx
LogiCORE™ implementations, using either distributed or block memory.

When implementing single port ROM blocks on Virtex®-4, Virtex-5, Virtex-6, Spartan-6, and
Spartan®-3A DSP devices, maximum timing performance is possible if the following conditions
are satisfied:

 The option Provide reset port for output register is un-checked

 The option Depth is less than 16,384

 The option Latency is set to 2 or higher

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Depth: specifies the number of words stored; must be a positive integer.

 Initial value vector: specifies the initial value. When the vector is longer than the ROM depth,
the vector's trailing elements are discarded. When the ROM is deeper than the vector length,
the ROM's trailing words are set to zero. The initial value vector is saturated or rounded
according to the data precision specified for the ROM.

 Memory Type: specifies block implementation to be distributed RAM or Block RAM.

 Provide reset port for output register: when selected, allows access to the reset port available
on the output register of the Block ROM. The reset port is available only when the latency of
the Block ROM is set to 1.

 Initial value for output register: specifies the initial value for output register. The initial
value is saturated and rounded according to the data precision specified for the ROM. The
option to set initial value is available only for Spartan®-3, Virtex-4, Virtex-5, Virtex-6,
Spartan-6 and Spartan-3A DSP devices.

Output

 Specifies the data type of the output. Can be Boolean, Fixed-point, or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision
378 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=378

ROM
 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

- Single: Specifies single precision (32 bits)

- Double: Specifies double precision (64 bits)

- Custom: Activates the field below so you can specify the Exponent width and the
Fraction width.

Exponent width: Specify the exponent width

 Fraction width: Specify the fraction width

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
The block always uses a Xilinx LogiCORE™: Single Port Block Memory or Distributed Memory.

For the block memory, the address width must be equal to ceil(log2(d)) where d denotes the memory
depth. The maximum width of data words in the block memory depends on the depth specified; the
maximum depth is depends on the device family targeted. The tables below provide the maximum
data word width for a given block memory depth.

LogiCORE IP Block Memory Generator v6.3

LogiCORE IP Distributed Memory Generator v6.3

LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 379
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=blk_mem_gen;v=v6_3;d=blk_mem_gen_ds512.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=v6_3;d=dist_mem_gen_ds322.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=379

Chapter 1: Xilinx Blockset
Maximum Width for Various Depth Ranges (Spartan®-3)

Width for Various Depth Ranges (Virtex-4/Virtex-5/Spartan-3A DSP)

When the distributed memory parameter is selected, LogiCORE Distributed Memory is used. The
depth must be between 16 and 65536, inclusive for Spartan-3, and Virtex-4, Virtex-5, and Spartan-
3A DSP; depth must be between 16 to 4096, inclusive for the other FPGA families. The word width
must be between 1 and 1024, inclusive.

Depth Width

2 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Depth Width

2 to 8192 256

8193 to 16K 192

16K+1 to 32K 96

32K+1 to 64K 48

64K+1 to 128K 24

128K+1 to 256K 12

256K+1 to 512K 6

512K+1 to 1024K 3
380 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=380

Register
Register
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic,
Memory, Floating-Point and Index.

The Xilinx Register block models a D flip-flop-based register, having latency of one
sample period.

Block Interface
The block has one input port for the data and an optional input reset port. The initial output value is
specified by you in the block parameters dialog box (below). Data presented at the input will appear
at the output after one sample period. Upon reset, the register assumes the initial value specified in
the parameters dialog box.

The Register block differs from the Xilinx Delay block by providing an optional reset port and a user
specifiable initial value.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Initial value: specifies the initial value in the register.

Optional Ports

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCORE
The Register block is implemented as a synthesizable VHDL module. It does not use a Xilinx
LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 381
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=381

Chapter 1: Xilinx Blockset
Sample Time
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Sample Time block reports the normalized sample period of its input. A signal's
normalized sample period is not equivalent to its Simulink absolute sample period. In
hardware, this block is implemented as a constant.
382 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=382

Scale
Scale
This block is listed in the following Xilinx Blockset libraries: Data Types, Math, and Index.

The Xilinx Scale block scales its input by a power of two. The power can be either
positive or negative. The block has one input and one output. The scale operation has
the effect of moving the binary point without changing the bits in the container

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The only parameter that is specific to the Scale block is Scale factor s. It can be a positive or negative
integer. The output of the block is i*2^k, where i is the input value and k is the scale factor. The
effect of scaling is to move the binary point, which in hardware has no cost (a shift, on the other
hand, might add logic).

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCore
The Scale block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 383
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=383

Chapter 1: Xilinx Blockset
Serial to Parallel
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, and
Index.

The Serial to Parallel block takes a series of inputs of any size and creates a single
output of a specified multiple of that size. The input series can be ordered either with
the most significant word first or the least significant word first.

The following waveform illustrates the block's behavior:

This example illustrates the case where the input width is 1, output width is 4, word size is 1 bit, and
the block is configured for most significant word first.

Block Interface
The Serial to Parallel block has one input and one output port. The input port can be any size. The
output port size is indicated on the block parameters dialog box.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Input order: Least or most significant word first.

 Arithmetic type: Signed or unsigned output.

 Number of bits: Output width which must be a multiple of the number of input bits.

 Binary point: Output binary point location

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

An error is reported when the number of output bits cannot be divided evenly by the number of input
bits. The minimum latency for this block is zero.
384 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=384

Shared Memory
Shared Memory
This block is listed in the following Xilinx Blockset libraries: Shared Memory, Floating-Point and
Index.

The Xilinx Shared Memory block implements a random access
memory (RAM) that can be shared among multiple designs or
sections of a design.

A Shared Memory Block is uniquely identified by its name. In the
blocks above, the shared memory has been named "Bar". Instances
of Shared Memory "Bar", whether within the same model or in

different models or even different instances of MATLAB, will share the same memory space.
System Generator's hardware co-simulation interfaces allow shared memory blocks to be compiled
and co-simulated in FPGA hardware. These interfaces make it possible for hardware-based shared
memory resources to map transparently to common address spaces on a host PC. When used in
System Generator co-simulation hardware, shared memories facilitate high-speed data transfers
between the host PC and FPGA, and bolster the tool's real-time hardware co-simulation capabilities.

Starting with the 9.2 release, during netlisting, each pair of Shared Memory blocks with the same
name are stitched together as a BRAM-based “Dual Port RAM block” in the netlist. For Shared
Memory blocks that do not form a pair, their input and output ports are pushed to the top level of
System Generator design. A pair of matching blocks can exist anywhere in the design hierarchy,
however, if more than two Shared Memory blocks with the same name exist in the design, then an
error is issued.

For backward compatibility, you can set the MATLAB global variable xlSgSharedMemoryStitch
to “off” to bring System Generator back to the netlisting behavior before the 9.2 release. For
example, from the MATLAB command line, enter the following:

global xlSgSharedMemoryStitch;
xlSgSharedMemoryStitch = 'off';

Block Interface
By default, the shared memory block has 3 inputs (addr, din and we) and 1 output (dout).
Access to the shared memory can be protected by setting the Access protection parameter to
Lockable. Setting access protection to Lockable causes two additional ports to appear; an input port
req and an output port grant.

The addr port should be driven by a signal of type UFIX_N_0, where N equals ceil(log2(depth)).
The memory word size is determined, at compile-time, by the bit width of the signal driving din.
Driving the write enable port (we) with 1 indicates that the value on the din port should be written
to the memory address pointed to by port addr.

When access protection is set to Lockable, the req and grant ports are used to control access to the
memory. Before a read or write can occur, a request must first be made by setting req to 1. When
grant becomes 1, the request for access has been allowed and read or write operations can proceed.
The figure below shows the relationship between the req, grant and we ports. The figure also
System Generator for DSP Reference Guide www.xilinx.com 385
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=385

Chapter 1: Xilinx Blockset
shows that the block output is suppressed until access to the memory is granted.

The output during a write operation depends on the write mode. When the we is 0, the output port
has the value at the location specified by the address line. During a write operation (we asserted), the
data presented on the input data port is stored in memory at the location selected by the port's
address input. During a write cycle, you can configure the behavior of the data out port to one of the
following choices:

 Read After Write

 Read Before Write

 No Read On Write

The write modes can be described with the help of the figure below. In the figure below, the memory
has been set to an initial value of 5 and the address bit is specified as 2. When using No Read On
Write mode, the output is unaffected by the address line and the output is the same as the last output
when we was 0. When we is 1, dout holds its previous value until we is 1. In the figure below, you
see dout reflecting the value of addr position 2, one cycle after we is set to 1.
386 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=386

Shared Memory
For the other two modes, the output is obtained from the location specified by the address line, and
hence is the value of the location being written to. This means that the output can be the old value
which corresponds to Read After Write.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Shared memory name: name of the shared memory. All memories with the same name share
the same physical memory.

Note: The EDK Processor block does not support Shared Memory blocks with spaces in their names.

 Depth: specifies the number of words in the memory. The word size is inferred from the bit
width of the data port din.

 Ownership and initialization: indicates whether the memory is Locally owned and initialized
or Owned and initialized elsewhere. If the memory is locally owned and initialized, the Initial
value vector parameter is made available. A block that is Locally owned and initialized is
responsible for creating an instance of the memory. A block that is Owned and initialized
elsewhere attaches itself to a memory instance that has already been created. As a result, if two
shared memory blocks are used in two different models during simulation, the model
containing the Locally owned and initialized block has to be started first.
System Generator for DSP Reference Guide www.xilinx.com 387
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=387

Chapter 1: Xilinx Blockset
 Initial value vector: specifies initial memory contents. The size and precision of the elements
of the initial value vector are inferred from the type of the data samples that drive din. When
the vector is longer than the RAM, the vector's trailing elements are discarded. When the RAM
is longer than the vector, the RAM's trailing words are set to zero. The initial value vector is
saturated and rounded according to the precision specified on the data port din.

 Access protection: either Lockable or Unprotected. An unprotected memory has no
restrictions concerning when a read or write can occur. In a locked shared memory, the block
can only be written to when granted access to the memory. When the grant port outputs a 1,
access is granted to the memory and the write request can proceed.

 Access mode: specifies the way in which the memory is used by the design. When Read and
write mode is used, the block is configured with din and dout ports. When Read only mode is
used, the block is configured with a dout port for memory read access. When Write only mode
is used, the block is configured with a din port for memory write access.

 Write mode: specifies the memory behavior to be Read after write, Read before write, or No
read on write. There are device specific restrictions on the applicability of these modes.

 Memory access timeout (sec): when the memory is running in hardware, this specifies the
maximum time to wait for the memory to respond to a request.

 Latency: can be set to 1 or 2.

Output tab

Output Precision

 Specifies the data type of the output. Can be Fixed-point or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

 Single: specifies single precision (32 bits)

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Block Memory Generator v6.3

Device Support

Virtex-7, Virtex-6, Virtex-5, Virtex-4, Virtex-II, Virtex-II Pro, Zynq-7000, Artix-7, Kintex-7,

Spartan-6, Spartan-3E/XA, Spartan-3/XA, Spartan-3A/3AN/3A DSP
388 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=blk_mem_gen;v=v6_3;d=blk_mem_gen_ds512.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=388

Shared Memory Read
Shared Memory Read
This block is listed in the following Xilinx Blockset libraries: Shared Memory and Index.

The Xilinx Shared Memory Read block provides a high-speed interface for reading
data from a Xilinx shared memory object. Both FIFO and lockable shared memory
objects are supported by the block.

The requested data is read out of the shared memory and into a Simulink scalar,
vector, or matrix signal which is written to the block's output port. The bracketed

text beneath the block indicates shared memory with which this block interfaces. The depth and
width displays on the block indicate the size of the shared memory. These values are updated at
runtime when the block makes the connection to the shared memory object.

The Shared Memory Read block performs several transactions with its associated shared memory
object when it is woken up during a simulation. The frequency at which the block is woken up is
determined by its Sample Time parameter. The type of transactions performed depends on whether
the block is associated with a FIFO or lockable shared memory object.

FIFO Transactions
The transactions with a shared FIFO object are listed below in their order of occurrence during a
simulation cycle:

 Wait for Data: The Shared Memory Read block waits for the shared FIFO object to become
empty. If the shared FIFO object is not empty after 15 seconds, the Shared Memory Read block
will time out and the simulation will terminate.

 Read Data: Once the block ensures a sufficient number of words are available, the Shared
Memory Read block will read data from the shared FIFO object.

Lockable Memory Transactions
The transactions with a lockable shared memory are listed below in their order of occurrence during
a simulation cycle:

 Acquire Lock: Before the Shared Memory Read block can read the shared memory contents,
it must acquire lock over the shared memory object. If the block fails to gain lock after 15
seconds, it will time out and the simulation will terminate.

 Read Data: Once lock is acquired, the Shared Memory Read block will read data from the
shared memory object.

 Release Lock: The Shared Memory Read block releases the lock after reading data from the
shared memory object.

The Shared Memory Read block is useful for simulation only and is ignored during netlisting. In
particular, the Shared Memory Read block can be applied to hardware co-simulation designs with
high throughput requirements. For more information on how this done, see the topic Real-Time
Signal Processing using Hardware Co-Simulation
System Generator for DSP Reference Guide www.xilinx.com 389
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=389

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Shared memory name: This parameter tells the unique string identifier for the Xilinx shared
memory object from which data should be read. The shared memory must be a shared FIFO or
lockable memory that is created and initialized elsewhere (for example, the Shared Memory
Read block does not create the specified shared memory object).

 Type: Tells whether the block should read from a Xilinx shared FIFO or Lockable memory
object.

 Sample time: Specifies how often this block should read from the shared memory.

Output Type tab

Parameters specific to the Output Type tab are as follows:

 Data type: Specifies how shared memory data words should be interpreted by the Shared
Memory Read block. The Simulink scalar, vector, or matrix signal that is generated are of the
chosen data type. The supported data types are int8, uint8, int16, uint16, int32, and uint32. The
width of the chosen data type must match the width of the data stored in the shared memory
object. For example, if the width of the shared memory data is 16 bits, then you can choose
int16 or uint16.

 Output dimensions: Specifies how the shared memory data image should be interpreted, by
giving the size of each available dimension. For a vectored output, only a single dimension (N)
must be specified. For a matrix output, specify the dimensions in a two-element array [M, N],
where M gives the number of rows, and N gives the number of columns. The total number of
elements in the output (N, or M*N) must not be greater than the depth of the shared memory.

 Use frame-based output: Specifies whether the output signal from the Shared Memory Read
block should be represented as a frame-based signal or a sample-based signal. Frame-based
signals represent consecutive sample-based signals that have been buffered together. For
example, a frame-based output would be suitable for driving a Simulink Unbuffer block. Note
that enabling frame-based output requires a two-dimensional output specified in the Output
Dimensions parameter.

See Also

Shared Memory Write

Real-Time Signal Processing using Hardware Co-Simulation
390 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=390

Shared Memory Write
Shared Memory Write
This block is listed in the following Xilinx Blockset libraries: Shared Memory and Index.

The Xilinx Shared Memory Write block provides a high-speed interface for writing
data into a Xilinx shared memory object. Both FIFO and lockable shared memory
objects are supported by the block.

The Shared Memory Write block input port should be driven by the Simulink
scalar, vector, or matrix signal containing the data you would like written into the

shared memory object. The bracketed text beneath the block indicates the shared memory with
which this block interfaces. The depth and width displays on the block indicate the size of the shared
memory - these values are updated at runtime when the block makes the connection to shared
memory. The width of the input data must match the width of the shared memory, and the total
number of elements in the input must not be bigger than the depth of the shared memory object.

The Shared Memory Write block performs several transactions with its associated shared memory
object when it is woken up during a simulation. The frequency at which the block is woken up is
determined by its sample period, which is inherited from the signal driving its input port. The type
of transactions performed depends on whether the block is associated with a FIFO or lockable
shared memory object.

FIFO Transactions
The transactions with a shared FIFO object are listed below in their order of occurrence during a
simulation cycle:

 Wait for Available Storage: The Shared Memory Write block waits for the shared FIFO
object to become empty. If the shared FIFO object is not empty after 15 seconds, the Shared
Memory Write block will time out and the simulation will terminate.

 Write Data: Once the block ensures a sufficient amount of available, the Shared Memory
Write block will write data into the shared FIFO object.

Lockable Memory Transactions
 Acquire Lock: Before the Shared Memory Write block can write to the shared memory

contents, it must acquire lock over the shared memory object. If the block fails to gain lock
after 15 seconds, it will time out and the simulation will terminate.

 Write Data: Once lock is acquired, the Shared Memory Write block will write data to the
shared memory object.

 Release Lock: The Shared Memory Write block releases the lock after writing data to the
shared memory object.

The Shared Memory Write block is useful for simulation only and is ignored during netlisting. In
particular, the Shared Memory Write block can be applied to hardware co-simulation designs with
high throughput requirements. For more information on how this done, see the topic Real-Time
Signal Processing using Hardware Co-Simulation.
System Generator for DSP Reference Guide www.xilinx.com 391
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=391

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the Shared Memory Write block are:

Shared Memory Name: This parameter gives the unique string identifier for the shared memory to
which the block should write the incoming data. The memory must be a lockable memory that is
created and initialized elsewhere (for example, the Shared Memory Write block does not create the
specified shared memory object).

Type: Tells whether the block should write to a Xilinx shared FIFO or Lockable memory object.

See Also
Shared Memory Read

Real-Time Signal Processing using Hardware Co-Simulation
392 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=392

Shift
Shift
This block is listed in the following Xilinx Blockset libraries: Control Logic, Data Types, Math and
Index.

The Xilinx Shift block performs a left or right shift on the input signal. The result will
have the same fixed-point container as that of the input.

Block Parameters
Parameters specific to the Shift block are:

 Shift direction: specifies a direction, Left or Right. The Right shift moves the input toward the
least significant bit within its container, with appropriate sign extension. Bits shifted out of the
container are discarded. The Left shift moves the input toward the most significant bit within
its container with zero padding of the least significant bits. Bits shifted out of the container are
discarded.

 Number of bits: specifies how many bits are shifted. If the number is negative, direction
selected with Shift direction is reversed.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

Xilinx LogiCORE
The Shift block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 393
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=393

Chapter 1: Xilinx Blockset
Simulation Multiplexer
This block appears only in the Index library of the Xilinx Blockset.

The Simulation Multiplexer has been deprecated in System Generator.

It is expected that the block is eliminated in a future version of the Xilinx Blockset. The
functionality supplied by this block is now available through System Generator's
support for Simulink's configurable subsystem capabilities. The use of configurable

subsystems offers several advantages over the use of Simulation Multiplexer blocks.

The Simulation Multiplexer is a System Generator block that allows two portions of a design to
work in parallel, with simulation results provided by the first portion and hardware provided by the
second.

This is useful, for example, when a subsystem is defined in the usual way with Simulink blocks, but
black box HDL is used to implement the subsystem in hardware. An example is shown below.

Using Subsystem for Simulation and Black Box for Hardware
The Simulation Multiplexer has two inputs ports. In the block parameters dialog box, one port can
be identified as For Simulation and a second as For Generation. The portion of the design that drives
the For Simulation port is used as the simulation model, and the portion that drives For Generation
is used to produce hardware. The same port can be used for both. In this case the portion of the
design that drives the combined For Simulation/For Generation port is used both for simulation and
to produce hardware, while the other portion is ignored. It should be noted that simulation results
from a design that contains a Simulation Multiplexer need not be bit and cycle accurate.

The Simulation Multiplexer is useful whenever there is a difference between what should be used
for simulation and what should be used in hardware. For example, a hardware co-simulation token
with an accompanying FPGA bitstream can be simulated but cannot be translated into hardware. If
the HDL used to produce the bitstream is available, a black box can incorporate the HDL. Driving a
Simulation Multiplexer's For Simulation port with the token and its For Generation port with the
black box makes it possible both to simulate the design and to produce hardware. Another use for
the multiplexer is to switch between black boxes that incorporate different types of HDL. One might
provide behavioral HDL to be used in simulation, and the other might provide RTL to be used for
implementation.
394 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=394

Simulation Multiplexer
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are:

For Simulation, Pass Through Data from Input Port: Determines which input port (either 1 or 2)
is used for simulation.

For Generation, Pass Through Data from Input Port: Determines which input port (either 1 or 2)
is used for generation.
System Generator for DSP Reference Guide www.xilinx.com 395
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=395

Chapter 1: Xilinx Blockset
Single Port RAM
This block is listed in the following Xilinx Blockset libraries: Control Logic, Floating-Point,
Memory, and Index.

The Xilinx Single Port RAM block implements a random access memory (RAM)
with one data input and one data output port.

Block Interface
The block has one output port and three input ports for address, input data, and write enable (WE).
Values in a Single Port RAM are stored by word, and all words have the same arithmetic type, width,
and binary point position.

A single-port RAM can be implemented using either block memory or distributed memory
resources in the FPGA. Each data word is associated with exactly one address that must be an
unsigned integer in the range 0 to d-1, where d denotes the RAM depth (number of words in the
RAM). An attempt to read past the end of the memory is caught as an error in the simulation, though
if a block memory implementation is chosen, it can be possible to read beyond the specified address
range in hardware (with unpredictable results). The initial RAM contents can be specified through
the block parameters.

The write enable signal must be Bool, and when its value is 1, the data input is written to the memory
location indicated by the address input. The output during a write operation depends on the choice
of memory implementation.

The behavior of the output port depends on the write mode selected (see below). When the WE is 0,
the output port has the value at the location specified by the address line.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this block are:

 Depth: the number of words in the memory; must be a positive integer.

 Initial value vector: the initial contents of the memory. When the vector length exceeds the
memory depth, values with index higher than depth are ignored. When the depth exceeds the
vector length, memory locations with addresses higher than the vector length are initialized to
zero. Initialization values are saturated and rounded (if necessary) according to the precision
specified on the data port.

 Write Mode: specifies memory behavior when WE is asserted. Supported modes are: Read
before write, Read after write, and No read On write. Read before write indicates the output
value reflects the state of the memory before the write operation. Read after write indicates the
output value reflects the state of the memory after the write operation. No read on write
indicates that the output value remains unchanged irrespective of change of address or state of
the memory. There are device specific restrictions on the applicability of these modes. Also
refer to the write modes and hardware notes topic below for more information.

 Memory Type: option to select between block and distributed RAM.
396 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=396

Single Port RAM
 Provide reset port for output register: exposes a reset port controlling the output register of
the Block RAM. Note: this port does not reset the memory contents to the initialization value.
The reset port is available only when the latency of the Block RAM is set to 1.

 Initial value for output register: the initial value for output register. The initial value is
saturated and rounded as necessary according to the precision specified on the data port of the
Block RAM.

Other parameters used by this block are explained in the Common Parameters topic at the beginning
of this chapter.

Write Modes
During a write operation (WE asserted), the data presented to the data input is stored in memory at
the location selected by the address input. You can configure the behavior of the data out port A
upon a write operation to one of the following modes:

 Read after write

 Read before write

 No read On write

These modes can be described with the help of the figure shown below. In the figure the memory has
been set to an initial value of 5 and the address bit is specified as 4. When using No read on write
mode, the output is unaffected by the address line and the output is the same as the last output when
the WE was 0. For the other two modes, the output is obtained from the location specified by the
address line, and hence is the value of the location being written to. This means that the output can
System Generator for DSP Reference Guide www.xilinx.com 397
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=397

Chapter 1: Xilinx Blockset
be either the old value (Read before write mode), or the new value (Read after write mode).

Hardware Notes
The distributed memory LogiCORE™ supports only the Read before write mode. The Xilinx Single
Port RAM block also allows distributed memory with write mode option set to Read after write
when specified latency is greater than 0. The Read after write mode for the distributed memory is
achieved by using extra hardware resources (a MUX at the distributed memory output to latch data
during a write operation).

When implementing single port RAM blocks on Virtex®-4, Virtex-5, Virtex-6, Spartan®-6 and
Spartan-3A DSP devices, maximum timing performance is possible if the following conditions are
satisfied:

 The option Provide reset port for output register is un-checked

 The option Depth is less than 16,384

 The option Latency is set to 2 or higher
398 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=398

Single Port RAM
Xilinx LogiCORE

The block always uses a Xilinx LogiCORE™: Single Port Block Memory or Distributed Memory.

For the block memory, the address width must be equal to ceil(log2(d)) where d denotes the memory
depth. The maximum width of data words in the block memory depends on the depth specified; the
maximum depth depends on the device family targeted. The tables below provide the maximum data
word width for a given block memory depth.

Maximum Width for Various Depth Ranges (Virtex®/Virtex-E/Spartan®-3)

Width for Various Depth Ranges (Virtex-4/Virtex-5/Spartan-3A DSP)

When the distributed memory parameter is selected, LogiCORE™ Distributed Memory is used. The
depth must be between 16 and 65536, inclusive for Spartan®-3, Virtex-™4, Virtex-5, Virtex-6,
Spartan-6 and Spartan-3A DSP; depth must be between 16 to 4096, inclusive for the other FPGA
families. The word width must be between 1 and 1024, inclusive.

LogiCORE™ Documentation
LogiCORE IP Block Memory Generator v6.3

LogiCORE IP Distributed Memory Generator v6.3

LogiCORE IP Floating-Point Operator v6.1

Depth Width

2 to 2048 256

2049 to 4096 192

4097 to 8192 96

8193 to 16K 48

16K+1 to 32K 24

32K+1 to 64K 12

64K+1 to 128K 6

128K+1 to 256K 3

Depth Width

2 to 8192 256

8193 to 16K 192

16K+1 to 32K 96

32K+1 to 64K 48

64K+1 to 128K 24

128K+1 to 256K 12

256K+1 to 512K 6

512K+1 to 1024K 3
System Generator for DSP Reference Guide www.xilinx.com 399
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=blk_mem_gen;v=v6_3;d=blk_mem_gen_ds512.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=dist_mem_gen;v=v6_3;d=dist_mem_gen_ds322.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=399

Chapter 1: Xilinx Blockset
Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6
400 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=400

Single-Step Simulation
Single-Step Simulation
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Single-Step Simulation block pauses the simulation each
clock cycle when in single-step mode.

Double-clicking on the icon switches the block from single-step to
continuous mode. When the simulation is paused, it can be restarted by
selecting the Start button on the model toolbar .

Block Parameters
There are no parameters for this block.
System Generator for DSP Reference Guide www.xilinx.com 401
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=401

Chapter 1: Xilinx Blockset
Slice
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Control Logic, Data
Types, and Index

The Xilinx Slice block allows you to slice off a sequence of bits from your input data
and create a new data value. This value is presented as the output from the block. The
output data type is unsigned with its binary point at zero.

The block provides several mechanisms by which the sequence of bits can be specified. If the input
type is known at the time of parameterization, the various mechanisms do not offer any gain in
functionality. If, however, a Slice block is used in a design where the input data width or binary point
position are subject to change, the variety of mechanisms becomes useful. The block can be
configured, for example, always to extract only the top bit of the input, or only the integral bits, or
only the first three fractional bits. The following diagram illustrates how to extract all but the top 16
and bottom 8 bits of the input.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Width of slice (Number of bits): specifies the number of bits to extract.

 Boolean output: Tells whether single bit slices should be type Boolean.

 Specify range as: (Two bit locations | Upper bit location + width |Lower bit location + width).
Allows you to specify either the bit locations of both end-points of the slice or one end-point
along with number of bits to be taken in the slice.

 Offset of top bit: specifies the offset for the ending bit position from the LSB, MSB or binary
point.

 Offset of bottom bit: specifies the offset for the ending bit position from the LSB, MSB or
binary point.

 Relative to: specifies the bit slice position relative to the Most Significant Bit (MSB), Least
Significant Bit (LSB), or Binary point of the top or the bottom of the slice.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.
402 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=402

SquareRoot
SquareRoot
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Math and Index.

The Xilinx SquareRoot block performs the square root on the input. Currently, only the
floating-point data type is supported.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

Flow Control:

 Blocking: Selects “Blocking” mode. In this mode, the lack of data on one input channel does
block the execution of an operation if data is received on another input channel.

 NonBlocking: Selects “Non-Blocking” mode. In this mode, the lack of data on one input
channel does not block the execution of an operation if data is received on another input
channel.

Optional ports

Input Channel Ports

 Has TLAST: Adds a TLAST port to the Input channel.

 Has TUSER: Adds a TUSER port to the Input channel.

 Provide enable port: Adds an enable port to the block interface.

 Has Result TREADY: Adds a TREADY port to the Result channel.

Exception Signals

INVALID_OP: Adds an output port that serves as an invalid operation flag.

Other parameters used by this block are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support
Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6
System Generator for DSP Reference Guide www.xilinx.com 403
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=403

Chapter 1: Xilinx Blockset
System Generator
This token is listed in the following Xilinx Blockset libraries: Basic Elements, Tools, and Index.

The System Generator token serves as a control panel for controling system and
simulation parameters, and it is also used to invoke the code generator for netlisting.
Every Simulink model containing any element from the Xilinx Blockset must contain
at least one System Generator token. Once a System Generator token is added to a
model, it is possible to specify how code generation and simulation should be handled.

For a detailed discussion on how to use the token, see Compiling and Simulating Using
the System Generator Token.

Token Parameters
The parameters dialog box can be invoked by double-clicking the icon in your Simulink model.

Compilation tab

Parameters specific to the Compilation tab are as follows:

 Compilation: Specifies the type of compilation result that should be produced when the code
generator is invoked. See System Generator Compilation Types for more details.

 Part: Defines the FPGA part to be used.

 Synthesis tool: Specifies the tool to be used to synthesize the design. The possibilities are
Synplicity’s Synplify Pro, Synplify, and Xilinx’s XST.

 Hardware Description Language: Specifies the HDL language to be used for compilation of
the design. The possibilities are VHDL and Verilog.

 Target directory: Defines where System Generator should write compilation results. Because
System Generator and the FPGA physical design tools typically create many files, it is best to
create a separate target directory, for example, a directory other than the directory containing
your Simulink model files.

 Project type: Select which type of project file is to be generated, either Project Navigator or
PlanAhead. The generated PlanAhead project file can be found in the hdl_netlist or bitstream
subfolder.

 Synthesis strategy file: If PlanAhead Project type is selected, choose a Synthesis strategy
from the pre-defined strategies in the drop-down list.

 Implementation strategy file: If PlanAhead Project type is selected, choose an
Implementation strategy from the pre-defined strategies in the drop-down list.

 Create testbench: This instructs System Generator to create a HDL testbench. Simulating the
testbench in an HDL simulator compares Simulink simulation results with ones obtained from
the compiled version of the design. To construct test vectors, System Generator simulates the
design in Simulink, and saves the values seen at gateways. The top HDL file for the testbench
is named <name>_testbench.vhd/.v, where <name> is a name derived from the portion of the
design being tested.

Note: This option is not supported when shared-memory blocks are included in the design.
404 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=404

System Generator
 Create interface document: When this box is checked and the Generate button is activated
for netlisting, System Generator creates an HTM document that describes the design being
netlisted. This document is placed in a “documentation” subfolder under the netlist folder.

Adding Designer Comments to the Generated Document If you want to add personalized
comments to the auto-generated document, follow this procedure:

a. As shown below, double click on the Simulink canvas at the top-level and add a comment
that starts with Designer Comments:

b. Double click on the System Generator token, click the Create interface document box at
the bottom of the Compilation tab, then click Generate.

 When netlisting is complete, navigate to the documentation subfolder underneath the netlist
folder and double click on the HTM document. As shown below, a Designer Comments
section is created in the document and your personalized comments are included.Create
System Generator for DSP Reference Guide www.xilinx.com 405
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=405

Chapter 1: Xilinx Blockset
 Model Upgrade: Generates a Status Report that helps you identify and upgrade blocks that are
not the latest available in the System Generator 14.4/14.5 release. Using this feature is the first
step in preparing the model for migration to the Vivado Integrated Design Environment. The
preparation sequence is as follows:

a. Open the System Generator model in System Generator release 14.4/14.5.

The latest blocks with multiple versions are listed in the table below:

b. Double click on the System Generator token and then click the Model upgrade button as
shown below:

Block Name Latest Version in ISE

CIC Compiler CIC Compiler 3.0

CORDIC CORDIC5.0

Complex Multiplier Complex Multiplier 5.0

Convolution Encoder Convolution Encoder 8.0

Divider Generator 4.0 Divider Generator 4.0

DDS Compiler DDS Compiler 5.0

DSP Macro DSP Macro 2.1

FIR Compiler FIR Compiler 6.3

Fast Fourier Transform Fast Fourier Transform 8.0

Interleaver/De-Interleaver Interleaver/De-Interleaver 7.1

Reed-Soloman Decoder Reed-Soloman Decoder 8.0

Viterbi Decoder0 Viterbi Decoder 8.0
406 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=406

System Generator
c. Observe the elements in the generated Status Report, as shown below:

- Two blocks in this the model are upgradable.

- The Interleaver/De-interleaver 7.0 block has full Replace support. When you click
Upgrade in the Perform Upgrade column, the single block is upgraded to 7.1.

- The Complex Multiplier 3.1 block does not have full Replace support because
moving from the non-AXI 3.1 block to the AXI 5.0 block requires manual
intervention. When you click Upgrade in then column, a sub-system work-space is
create where you can manually re-connect the input/out signals to the new AXI ports.
System Generator for DSP Reference Guide www.xilinx.com 407
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=407

Chapter 1: Xilinx Blockset
Clocking tab

Parameters specific to the Compilation tab are as follows:

 FPGA clock period(ns): Defines the period in nanoseconds of the system clock. The value
need not be an integer. The period is passed to the Xilinx implementation tools through a
constraints file, where it is used as the global PERIOD constraint. Multicycle paths are
constrained to integer multiples of this value.

 Clock pin location: Defines the pin location for the hardware clock. This information is
passed to the Xilinx implementation tools through a constraints file. This option should not be
specified if the System Generator design is to be included as part of a larger HDL design.

 Multirate implementation:

 Clock Enables (default): Creates a clock enable generator circuit to drive the multirate
design.

 Hybrid DCM-CE: Creates a clock wrapper with a DCM that can drive up to three clock
ports at different rates for Virtex®-4, and Virtex-5, and up to two clock ports for Spartan-3A
DSP. The mapping of rates to the DCM output ports is done using the following priority
scheme: CLK0 > CLK2x > CLKdv > CLKfx. If the design contains more clocks than the
DCM can handle, the remaining clocks are supported through the Clock Enable
configuration.

A reset input port is exposed on the DCM clock wrapper to allow resetting the DCM and
a locked output port is exposed to help the external design synchronize the input data
with the single clk input pin.

 Expose Clock Ports: This option exposes multiple clock ports on the top-level of the
System Generator design so you can apply multiple synchronous clock inputs from
outside the design.

Refer to the topic Timing and Clocking for details

 DCM input clock period(ns): Specify if different than the FPGA clock period(ns) option
(system clock). The FPGA clock period (system clock) will then be derived from this
hardware-defined input.

 Provide clock enable clear pin: This instructs System Generator to provide a ce_clr port on
the top level clock wrapper. The ce_clr signal is used to reset the clock enable generation logic.
Capability to reset clock enable generations logic allows designs to have dynamic control for
specifying the beginning of data path sampling. See Resetting Auto-Generated Clock Enable
Logic for details.

 Simulink system period(sec): Defines the Simulink System Period, in units of seconds. The
Simulink system period is the greatest common divisor of the sample periods that appear in the
model. These sample periods are set explicitly in the block dialog boxes, inherited according to
Simulink propagation rules, or implied by a hardware oversampling rate in blocks with this
option. In the latter case, the implied sample time is in fact faster than the observable
simulation sample time for the block in Simulink. In hardware, a block having an
oversampling rate greater than one processes its inputs at a faster rate than the data. For
example, a sequential multiplier block with an over-sampling rate of eight implies a (Simulink)
sample period that is one eighth of the multiplier block’s actual sample time in Simulink. This
parameter can be modified only in a master block.

General tab

Parameters specific to the General tab are as follows:
408 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=408

System Generator
 Block icon display: Specifies the type of information to be displayed on each block icon in the
model after compilation is complete. The various display options are described below:

 Default: Displays the default block icon information on each block in the model. A
blocks’s default icon is derived from the xbsIndex library.

 Normalized Sample Periods: Displays the normalized sample periods for all the input
and output ports on each block. For example, if the Simulink System Period is set to 4 and
the sample period propagated to a block port is 4 then the normalized period that is
displayed for the block port is 1 and if the period propagated to the block port is 8 then the
sample period displayed would be 2 for example, a larger number indicates a slower rate.

 Sample frequencies (Mhz): Displays sample frequencies for each block.

 Pipeline stages: Displays the latency information from the input ports of each block. The
displayed pipeline stage might not be accurate for certain high-level blocks such as the
FFT, RS Encoder/ Decoder, Viterbi Decoder, etc. In this case the displayed pipeline
information can be used to determine whether a block has a combinational path from the
input to the output. For example, the Up Sample block in the figure below shows that it
System Generator for DSP Reference Guide www.xilinx.com 409
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=409

Chapter 1: Xilinx Blockset
has a combinational path from the input to the output port.

 HDL port names: Displays the HDL port name of each port on each block in the model.

 Input data types: Displays the data type of each input port on each block in the model.

 Output data types: Displays the data type of each output port on each block in the model.
410 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=410

Threshold
Threshold
This block is listed in the following Xilinx Blockset libraries: Basic Elements, Data Types, Math and
Index.

The Xilinx Threshold block tests the sign of the input number. If the input number is
negative, the output of the block is -1; otherwise, the output is 1. The output is a signed
fixed-point integer that is 2 bits long. The block has one input and one output.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

The block parameters do not control the output data type because the output is always a signed
fixed-point integer that is 2 bits long.

Xilinx LogiCORE
The Threshold block does not use a Xilinx LogiCORE™.
System Generator for DSP Reference Guide www.xilinx.com 411
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=411

Chapter 1: Xilinx Blockset
Time Division Demultiplexer
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Xilinx Time Division Demultiplexer block accepts input serially and
presents it to multiple outputs at a slower rate.

Block Interface
The block has one data input port and a user-configurable number of data outputs, ranging from 1 to
32. The data output ports have the same arithmetic type and precision as the input data port. The
time division demultiplexer block also has optional input-valid port (vin) and output-valid port
(vout). Both the valid ports are of type Bool. The block has two possible implementations, single or
multiple channel.

Single Channel Implementation

For single channel implementation, the time division demultiplexer block has one data input and
output port. Optional data valid input and output ports are also allowed. The length of the frame
sampling pattern establishes the length of the input data frame. The position of 1 indicates the input
value to be downsampled and the number of 1's correspond to the downsampling factor. The
behavior of the demultiplexer block in single channel mode can best be illustrated with the help of
the figure below. Based on the frame sampling pattern entered, the first and second input values of
every input data frame are sampled and presented to the output at the rate of 2.

For single channel implementation, the number of values to be sampled from a data frame should
evenly divide the size of the input frame. Every input data frame value can also be qualified by using
the optional valid port.

Multiple Channel Implementation

For multiple channel implementation, the time division demultiplexer block has one data input port
and multiple output ports equal to the number of 1's in the frame sampling pattern. Optional data
valid input and output ports are also allowed. The length of the frame sampling pattern establishes
the length of the input data frame. The position of 1 indicates the input value to be downsampled and
presented to the corresponding output data channel. The behavior of the demultiplexer block in
multiple channel mode can best be illustrated with the help of the figure below. Based on the frame
sampling pattern entered, the first and second input values of every input data frame are sampled and
presented to the corresponding output channel at the rate of 4.
412 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=412

Time Division Demultiplexer
For multiple channel implementation, the down sampling factor is always equal to the size of the
input frame. Every input data frame value can also be qualified by using the optional valid port.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this block are:

 Frame sampling pattern: specifies the size of the serial input data frame. The frame sampling
pattern must be a MATLAB vector containing only 1's and 0's.

 Implementation: specifies the demultiplexer behavior to be either in single or multiple channel
mode. The behaviors of these modes are explained above.

 Provide valid Port: when selected, the demultiplexer has optional input and output valid ports
(vin / vout). The vin port allows to qualify every input data value as part of the serial input data
frame. The vout port marks the state of the output ports as valid or not.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 413
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=413

Chapter 1: Xilinx Blockset
Time Division Multiplexer
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Xilinx Time Division Multiplexer block multiplexes values presented at
input ports into a single faster rate output stream.

Block Interface
The block has two to 32 input ports and one output port. All input ports must have the same
arithmetic type, precision, and rate. The output port has the same arithmetic type and precision as the
inputs. The output rate is nr, where n is the number of input ports and r is their common rate. The
block also has optional ports vin and vout that specify when input and output respectively are valid.
Both valid ports are of type Bool.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Number of Inputs: specifies the number of inputs (2 to 32).

 Provide valid Port: when selected, the multiplexer is augmented with input and output valid
ports named vin and vout respectively. When the vin port indicates that input values are
invalid, the vout port indicates the corresponding output frame is invalid

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
414 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=414

To FIFO
To FIFO
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Index.

The Xilinx To FIFO block implements the leading half of a first-in-
first-out memory queue.

Values presented at the module's data port are written to the next
available empty memory location when we input is one. The full
output port is asserted when the FIFO is full. The percent full output

port indicates the percentage of the FIFO that is full, represented with user-specified precision.

The To FIFO is implemented in hardware using the FIFO Generator LogiCORE. System
Generator's hardware co-simulation interfaces allow the To FIFO block to be compiled and co-
simulated in FPGA hardware. When used in System Generator co-simulation hardware, shared
FIFOs facilitate high-speed transfers between the host PC and FPGA, and bolster the tool's real-time
hardware co-simulation capabilities.

Each pair of From FIFO and To FIFO blocks with the same name are stitched together as a
BRAM-based FIFO block in the netlist. If a From FIFO or ToFIFO block does not form a pair
with another block, it’s input and output ports are pushed to the top level of System Generator
design. A pair of matching blocks can exist anywhere in the hierarchy of the design, however, if two
or more From FIFIO or To FIFO blocks with the same name exist in the design, then an error is
issued.

For backward compatibility, you can set the MATLAB global variable xlSgSharedMemoryStitch
to “off” to bring System Generator back to the netlisting behavior before the 9.2 release. For
example, from the MATLAB command line, enter the following:

global xlSgSharedMemoryStitch;
xlSgSharedMemoryStitch = 'off';

Note: The notion of bit and cycle accuracy is preserved only within individual synchronous islands. The
shared FIFO block supports crossing clock domain boundaries and bit and cycle accuracy may not be
maintained.

Block Parameters

Basic tab

Parameters specific to the Basic tab are as follows:

 Shared memory name: name of the shared FIFO. All FIFOs with the same name share the
same physical FIFO.

 Ownership: indicates whether the memory is Locally owned or Owned elsewhere. A block
that is Locally owned is responsible for creating an instance of the FIFO. A block that is
Owned elsewhere attaches itself to a FIFO instance that has already been created.

FIFO Implementation

Memory Type: This block implements FIFOs built from block RAM, distributed RAM, shift
registers, or the 7 series, Virtex-6 and Virtex-5 FPGA built-in FIFOs. Memory primitives are
System Generator for DSP Reference Guide www.xilinx.com 415
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=415

Chapter 1: Xilinx Blockset
arranged in an optimal configuration based on the selected width and depth of the FIFO. The
following table provides best-use recommendations for specific design requirements.

Performance Options:

 Standard FIFO: FIFO will operate in Standard Mode.

 First Word Fall Through: FIFO will operate in First-Word Fall-Through (FWFT) mode. The
First-Word Fall-Through feature provides the ability to look-ahead to the next word available
from the FIFO without issuing a read operation. When data is available in the FIFO, the first
word falls through the FIFO and appears automatically on the output. FWFT is useful in
applications that require low-latency access to data and to applications that require throttling
based on the contents of the data that are read. FWFT support is included in FIFOs created
with block RAM, distributed RAM, or built-in FIFOs in the 7 series, Virtex-6 or Virtex-5
devices.

Implementation Options:

 Use Embedded Registers (when possible):

In 7 series, Virtex-6, Virtex-5 and Virtex-4 FPGA block RAM and FIFO macros, embedded
output registers are available to increase performance and add a pipeline register to the macros.
This feature can be leveraged to add one additional cycle of latency to the FIFO core (DOUT
bus and VALID outputs) or implement the output registers for FWFT FIFOs. The embedded
registers available in 7 series, and Virtex-6 FPGAs can be reset (DOUT) to a default or user
programmed value for common clock built-in FIFOs. See the topic Embedded Registers in
block RAM and FIFO Macros in the LogiCORE IP FIFO Generator v9.2 Product
Specification.

Depth: specifies the number of words that can be stored. Range 16-64K.

Bits of precision to use for %full signal: specifies the bit width of the %full port. The binary point
for this unsigned output is always at the top of the word. Thus, if for example precision is set to one,
the output can take two values: 0.0 and 0.5, the latter indicating the FIFO is at least 50% full.

Optional Ports:

 Provide asynchronous reset port: Activates an optional asynchronous edge-triggered reset
(rst) port on the block. Prior to Release 11.2, this reset was level-triggered and the block would
remain in the reset mode if held high.

 Provide percent full port: Add a percent full output port to the block. Indicates the percentage
of the FIFO that is full using the user-specified precision. This optional port is turned on by
default for backward compatibility reasons.
416 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_1;d=fifo_generator_ds317.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_1;d=fifo_generator_ds317.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=416

To FIFO
Output tab

Output Type

 Specifies the data type of the output. Can be Fixed-point or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

 Single: specifies single precision (32 bits)

Parameters in this tab are explained in the topic
Common Options in Block Parameter Dialog Boxes.

LogiCORE™ Documentation

LogiCORE IP FIFO Generator 9.2

LogiCORE IP Floating-Point Operator v6.1

Device Support

Zynq-7000, Artix-7, Virtex-7, Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3A/3AN/3A DSP, Spartan-3E, Spartan-3

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix-7, Zynq-7000, Virtex-6, Spartan-6

See Also
From FIFO
System Generator for DSP Reference Guide www.xilinx.com 417
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=fifo_generator;v=v9_2;d=pg057-fifo-generator.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=417

Chapter 1: Xilinx Blockset
To Register
This block is listed in the following Xilinx Blockset libraries: Floating-Point and Index.

The Xilinx To Register block implements the leading half of a D flip-flop based
register, having latency of one sample period. The register can be shared among
multiple designs or sections of a design.

The block has two input ports. The din port accepts input data and sets the bit width of
the register. The initial output value is specified by you in the block parameters dialog

box (below). When the enable port en is asserted, data presented at the input appears at the output
dout after one sample period. When en is not asserted, the last value written to the register is
presented to the output port dout.

Starting with the 9.2 release, during netlisting, each pair of To Register and From Register blocks
with the same name are stitched together as a single Register block in the netlist. If a To Register
or From Register block does not form a pair with another block, it’s input and output ports are
pushed to the top level of System Generator design. A pair of matching blocks can exist anywhere
in the hierarchy of the design, however, if two or more To Register or From Register blocks with
the same name exist in the design, then an error is issued.

For backward compatibility, you can set the MATLAB global variable xlSgSharedMemoryStitch
to “off” to bring System Generator back to the netlisting behavior before the 9.2 release. For
example, from the MATLAB command line, enter the following:

global xlSgSharedMemoryStitch;
xlSgSharedMemoryStitch = 'off';

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Shared memory name: name of the shared register. There must be exactly one To Register
block for a particular physical register. In addition, the shared memory name must be distinct
from all other shared memory names in the design.

 Initial value: specifies the initial value in the register.

 Ownership and initialization: indicates whether the register is Locally owned and initialized
or Owned and initialized elsewhere. A block that is locally owned is responsible for creating
an instance of the register. A block that is owned elsewhere attaches itself to a register instance
that has already been created. As a result, if two shared register blocks are used in two different
models during simulation, the model containing the locally owned block has to be started first.
418 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=418

To Register
Output tab

Specify explicit output precision

Output Precision

 Specifies the data type of the output. Can be Fixed-point or Floating-point.

Arithmetic Type: If the Output Type is specified as Fixed-point, you can select Signed (2’s
comp) or Unsigned as the Arithmetic Type.

Fixed-point Precision

 Number of bits: specifies the bit location of the binary point of the output number, where
bit zero is the least significant bit.

 Binary point: position of the binary point. in the fixed-point output

Floating-point Precision

 Single: specifies single precision (32 bits)

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

Crossing Clock Domains
When a To Register and From Register block pair are used to cross clock domain boundaries, a
single register is implemented in hardware. This register is clocked by the To Register block clock
domain. For example, assume a design has two clock domains, Domain_A and Domain_B. Also
assume that a shared register pair are used to cross the two clock domains shown below.

When the design is generated using the Multiple Subsystem Generator block, only one register is
included in the design. The clock and clock enable register signals are driven from the Domain_A
domain.
System Generator for DSP Reference Guide www.xilinx.com 419
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=419

Chapter 1: Xilinx Blockset
Crossing domains in this manner can be unsafe. To reduce the chance of metastability, include two
Register blocks immediately following the From Register block to re-synchronize the data to the
From Register's clock domain.

LogiCORE™ Documentation
LogiCORE IP Floating-Point Operator v6.1

Device Support

Floating-Point support is restricted to the following devices:

Virtex-7, Kintex-7, Artix™-7, Zynq™-7000, Virtex-6, Spartan-6

See Also
The following topics provide valuable insight into using and understanding the To Register block:

Gateway In
420 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=v6_1;d=pg060-floating-point.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=420

Toolbar
Toolbar
This block is listed in the following Xilinx Blockset libraries: Tools and Index.

The Xilinx Toolbar block provides quick access to several useful utilities in System
Generator. The Toolbar simplifies the use of the zoom feature in Simulink and adds new
auto layout and route capabilities to Simulink models.

The Toolbar also houses several productivity improvement tools described below.

Block Interface

Double clicking on the Xilinx Toolbar block launches the GUI shown below.

The Toolbar can also be launched from the command line using xlTBUtils, a collection of functions
used by the Toolbar.

xlTBUtils('Toolbar');

Only one Toolbar GUI can be opened at a time, that is, the Toolbar GUI is a singleton. Regardless of
where a Toolbar block is placed, the Toolbar will always perform actions on the current Simulink
model in focus. In other words, if the Toolbar is invoked from model A, it can still be used on model
B so long as model B is in focus.

Toolbar Buttons

Toolbar Buttons Descriptions

Undo: Cancels the most recent change applied to the model layout by the Toolbar
and reverts the layout state to the one prior to this change. Can undo up to three
changes.

Reroute: Reroutes lines to enhance model readability.

If lines are selected, only those lines are rerouted. Otherwise all lines in the model
are rerouted.

Auto Layout: Relocates blocks and reroutes lines to enhance model readability.

Add Terms: Calls on the xlAddTerms function to add sources and sinks to the
current model in focus. System Generator blocks are sourced with a System
Generator constant block, while Simulink blocks are sourced with a Simulink
constant block. Terminators are used as sinks.
System Generator for DSP Reference Guide www.xilinx.com 421
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=421

Chapter 1: Xilinx Blockset
Toolbar Menus

References
1) E.R.Gansner, E.Koutsofios, S.C.North, KVo, "A Technique for Drawing Directed Graphs",
http://www.graphviz.org/Documentation/TSE93.pdf

2) The Reroute and Auto Layout buttons invoke an open source package called Graphviz. More
information on this package is also available at http://www.graphviz.org/

See Also

xlAddTerms, xlSBDBuilder, xlTBUtils

Help: Opens this document.

Zoom: Allows you to get either a closer view of a portion of the Simulink model
or a wider view of the model depending on the position of the slider or the value
of the zoom factor. You can either position the slider or edit the Zoom Factor. The
Zoom Factor is limited to be between 5 and 1000.

Toolbar Buttons Descriptions

Toolbar Buttons Descriptions

Tools

Create Plugins Launches the System Generator Board Description Builder tool.

Inspect Selected Opens up the Simulink Inspector with the properties of the blocks
that are currently selected. This is useful when trying to set the
size of several blocks, or the horizontal position of blocks drawn
on a model.

Toolbar Properties Launches the Properties Dialog Box shown in the figure below.
Allows you to set parameters for the Auto Layout and Reroute
tool. X and Y pitch indicate distances (in pixels) between blocks
placed next to each other in the X and Y directions respectively.

The toolbar uses the Simulink autorouter when Use simulink
autorouter is checked. Otherwise, a direct line is drawn from
source to destination.

Help Opens this document.
422 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.graphviz.org/Documentation/TSE93.pdf
http://www.graphviz.org/
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=422

Up Sample
Up Sample
This block is listed in the following Xilinx Blockset libraries: Basic Elements and Index.

The Xilinx Up Sample block increases the sample rate at the point where the block is
placed in your design. The output sample period is l/n, where l is the input sample
period and n is the sampling rate.

The input signal is up sampled so that within an input sample frame, an input sample is
either presented at the output n times if samples are copied, or presented once with (n-1) zeroes
interspersed if zero padding is used.

In hardware, the Up Sample block has two possible implementations. If the Copy Samples option is
selected on the block parameters dialog box, the Din port is connected directly to Dout and no
hardware is expended. Alternatively, if zero padding is selected, a mux is used to switch between the
input sample and inserted zeros. The corresponding circuit for the zero padding Up Sample block is
shown below.

Block Interface
The Up Sample block receives two clock enable signals, Src_CE and Dest_CE. Src_CE is the clock
enable signal corresponding to the input data stream rate. Dest_CE is the faster clock enable,
corresponding to the output data stream rate. Notice that the circuit uses a single flip-flop in addition
to the mux. The flip-flop is used to adjust the timing of Src_CE, so that the mux switches to the data
input sample at the start of the input sample period, and switches to the constant zero after the first
input sample. It is important to notice that the circuit has a combinational path from Din to Dout. As
a result, an Up Sample block configured to zero pad should be followed by a register whenever
possible.
System Generator for DSP Reference Guide www.xilinx.com 423
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=423

Chapter 1: Xilinx Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Sampling rate (number of output samples per input sample): must be an integer with a
value of 2 or greater. This is the ratio of the output sample period to the input, and is essentially
a sample rate multiplier. For example, a ratio of 2 indicates a doubling of the input sample rate.
If a non-integer ratio is desired, the Up Sample block can be used in combination with the
Down Sample block.

 Copy samples (otherwise zeros are inserted): allows you to choose what to do with the
additional samples produced by the increased clock rate. By selecting Copy Samples, the same
sample is duplicated (copied) during the extra sample times. If this checkbox is not selected,
the additional samples are zero.

Optional Ports

 Provide enable port. When checked, this option adds an en(enable) input port, if the
Latency is specified as a positive integer greater than zero.

 Latency: This defines the number of sample periods by which the block's output is delayed.
One sample period can correspond to multiple clock cycles in the corresponding FPGA
implementation (for example, when the hardware is over-clocked with respect to the Simulink
model). The user defined sample latency is handled in the Upsample block by placing shift
registers that are clock enabled at the input sample rate, on the input of the block. The behavior
of an Upsample block with non-zero latency is similar to putting a delay block, with equivalent
latency, at the input of an Upsample block with zero latency.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
424 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=424

VDMA Interface 4.0
VDMA Interface 4.0
This block is listed in the following Xilinx Blockset libraries: AXI4, Index and Memory.

The VDMA (Video Direct Memory Access) Interface block is
a bit-accurate simulation model containing up to 4 AXI
VDMA IP LogiCOREs connected to an AXI interconnect and
external memory.

As shown in the illustration below, the VDMA Interface
block’s AXI memory-mapped interface is connected to the
AXI Interconnect. DDR external memory is connected as the
only slave on the AXI Interconnect. All ports except memory-
mapped ports of the VDMA block are available on the VDMA
Interface block.

This block is also supported by the Hardware Co-Simulation
flow. The supported boards are SP601, SP605 and ML605 and
Kintex 7.

The block can now be configured using ‘Scatter Gather
Engine’ mode as well as ‘Direct Register’ mode.
X-Ref Target - Figure 1-1

The VDMA Interface block is a simulation-only model and when the netlist is generated, only the
block interface is netlisted as top-level gateways. A xlVDMACreateProject utility is provided that
takes a design with a VDMA Interface block and creates an ISE project with a top-level module that
stitches the System Generator design with an XPS sub-module that instantiates the actual VDMA,
AXI interconnect, and MIG IP.

Note: In the simulation model, the memory contents are initialized to 0, however, the memory in the actual
hardware might not be initialized to 0 unless you add hardware that does the initialization.

Preparing to Use This Block
1. Please read the AXI Video Direct Memory Access (axi_vdma) Product Guide to become

familiar with the behavior of the LogiCORE before using this block. AXI Video Direct Memory
Access (axi_vdma) v4.00.a Product Guide)

At the minimum, you should read the following information which is taken from the product
Guide:

AXI VDMA Operation (pages 101).
System Generator for DSP Reference Guide www.xilinx.com 425
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=425

Chapter 1: Xilinx Blockset
Four minimum steps starting on page 101 have to be implemented in the form of either M-Code
or discrete logic decoders. This section describes you how to specify valid pointers and control
information to control registers as follows:

a. Write a valid pointer to the channel’s CURDESC_PNTR register (Offset 0x08 for MM2S
and 0x38 for S2MM).

b. Write control information to the channel’s DMACR register (Offset 0x00 for MM2S and
0x30 for S2MM) to set interrupt enables if desired, frame count, delay count if desired, and
set DMACR.RS=1 to start the AXI VDMA channel running. Note there might be a lag
between when DMACR.RS=1 and when DMASR.Halted = 0. The AXI VDMA is running
when DMACR.RS = 1 and DMASR.Halted = 0.

c. Write a valid pointer to the channel’s TAILDESC_PNTR register (Offset 0x10 for MM2S
and 0x40 for S2MM). This will start the channel fetching and processing descriptors.

d. DMA scatter gather operations will continue until the descriptor at TAILDESC_PNTR is
processed, then the engine will Idle as indicated by DMASR.Idle = 1.

X-Ref Target - Figure 1-2

For MM2S and S2MM channels the descriptor chain must be made up of a MM2S_Frame_Store
and S2MM_Frame_Store descriptors respectively. By default on power up and after reset (soft or
hard) MM2S_Frame_Store and S2MM_Frame_Store registers are updated with the value specified
by C_NUM_FSTORES. The SG Engine will fetch descriptors and update an internal register set
with the descriptor information. The video timing information (vsize, hsize, stride, and frame delay)
from the first descriptor fetched after the TAILDESC pointer is written by the CPU is captured and
stored. All other video timing information in the other descriptors are ignored by the AXI VDMA.
Start Addresses from each descriptor are populated into MM2S_Frame_Store and
S2MM_Frame_Store internal address registers

Scatter Gather Descriptor (page 98)

When AXI VDMA is configured for Scatter/Gather Mode (C_INCLUDE_SG = 1), the Scatter
Gather engine is used to pull in video transfer control information. This is accomplished by defining
a linked list of transfer control information referred to as a descriptor chain in system memory. A
descriptor chain is required for each channel. The descriptor chain should be made up of
MM2S_FRMSTORE and S2MM_FRMSTORE descriptors, respectively, where each descriptor is
made up of seven 32-bit words. Each descriptor fields. For Register Direct Mode
(C_INCLUDE_SG = 0) the Scatter Gather engine is excluded and the video parameter and start

X-Ref Target - Figure 1-3
426 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=426

VDMA Interface 4.0
address registers are accessed through the AXI4-Lite Control Interface.

Note: Descriptors must be aligned on 8 32-bit word alignment. Example valid offsets are 0x00, 0x20, 0x40,
0x60, and so on.
X-Ref Target - Figure 1-4

X-Ref Target - Figure 1-6

VDMA Operations in Non Scatter Gather Mode (C_INCLUDE_SG = 0)

The following lists minimum steps, in order, required to being AXI VDMA operations in Non-
Scatter Gather Mode:

Starting VDMA Operations

a. Write control information to channel’s DMACR register (Offset 0x00 for MM2S and 0x30
for S2MM) to set interrupt enables if desired, frame count, delay count if desired, and set
DMACR.RS=1 to start the AXI VDMA channel running. Note there might be a lag
between when the CPU sets DMACR.RS=1 and when AXI VDMA sets DMASR.Halted =
0. The CPU can determine if the AXI VDMA is running when DMACR.RS = 1 and
DMASR.Halted = 0.

b. Write MM2S_FRAME_STORE or S2MM_FRAME_STORE start addresses to the
associated channel.

c. Write the Frame Delay, Stride, and Horizontal Size in any order for the associated channel.

X-Ref Target - Figure 1-5

X-Ref Target - Figure 1-7
System Generator for DSP Reference Guide www.xilinx.com 427
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=427

Chapter 1: Xilinx Blockset
d. Finally, write the Vertical Size. This will start VDMA operations for the associated
channel.

AXI VDMA register mapping for Scatter Gather Mode (C_INCLUDE_SG = 1)
428 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=428

VDMA Interface 4.0
AXI VDMA register mapping for Non-Scatter Gather Mode (C_INCLUDE_SG =0)

2. Before integrating the VDMA Interface block in a System Generator design, it is highly
recommended that you first familiarize yourself with the provided demos. In most cases, you
should be able to utilize these demos as your initial template and customize them to fit in your
specific application. The demos are listed as follows:

- Double Buffer demo

- Image Tile Reconstruction demo

- Corner Turn for 2D FFT demo

- Triple Buffer demo

- Giant FIFO Using VDMA Interface demo

3. When debugging a VDMA Interface block, it is helpful to use either a small image or a simple
input stimulus instead of a large image. This will help you reduce the design iteration time
significantly.
System Generator for DSP Reference Guide www.xilinx.com 429
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=429

Chapter 1: Xilinx Blockset
4. Lastly, if you get stuck or if you have questions and/or Beta feedback, send email to the
following address: sysgen_vdma_feedback@xilinx.com

xlVDMACreateProject utility
The xlVDMACreateProject utility takes a System Generator design with an VDMA Interface block,
and creates an ISE project with a top-level module that stitches the System Generator design with an
XPS sub-module that instantiates the actual VDMA, AXI interconnect, and MIG IP.

 VDMA

The created ISE and XPS projects are initially set up for one of the following boards, based on the
FPGA device chosen for the System Generator design:

 Xilinx ML605 for all Virtex-6 devices

 Xilinx SP601 for all Spartan-6 LX devices

 Xilinx SP605 for all Spartan-6 LXT devices

 Xilinx Kintex 7 for all Kintex devices.

Other device families are currently not supported.

To customize the ISE and XPS projects for a different board, do the following:

1. Open the generated ISE project in Project Navigator.

2. Double click the XPS sub-module to open the XPS GUI.

3. From the XPS GUI, customize the MIG and clock generator based on the DDR settings for the
target board.

4. Close the XPS GUI and go back to Project Navigator.

5. Edit the generated top-level HDL if the DCM/MMCM settings do not match the target board.

6. Edit the generated top-level UCF if the constraints for the system clock do not match the target
board.

 Usage:

xlVDMACreateProject(NetlistDirectory, TopLevelName, Options)

You should create the ISE and XPS projects for the System Generator design in the
NetlistDirectory directory. If a TopLevelName is specified, the top-level module uses the
given TopLevelName as entity name. Otherwise, the default entity name 'vdma_top' is used.

Optional options can be specified through the OPTIONS argument, which is a MATLAB struct. The
following options are supported:

Debug: If this value is true, ChipScope AXI monitors are inserted to various AXI interfaces in the
design: M_AXI_MM2S and M_AXI_S2MM interfaces between the VDMA and AXI interconnect
IP, and the S_AXI interface between the AXI interconnect and MIG IP.
430 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=430

VDMA Interface 4.0
Block Parameters

Basic tab

Parameters specific to the Basic tab are:

 Memory size: Specify the size of the external memory (16MB to 2GB).

 Number of VDMA interfaces: Specify the number of VDMA interfaces (1 to 4). If you
specify 3, for example, the first three Interface tabs are activated and you can customize each
interface separately. The fourth Interface tab is not activated.

Interface 1-4 tab

Parameters specific to the Interface 1-4 tabs are:

Parameters

 Stream interface: Select Master/Slave, Master, or Slave.

 Number of frame stores[1..16]: Select the number of frame stores.

 Use external frame sync: Check to use an external frame sync. This adds a fsync input port to
the block.

 Use Scatter Gather Engine:

 Flush on frame sync:

 Use Video Parameter Read for Direct Mode:

Master Stream Interface

Parameters

- Data width: Select the data width for the Master Stream Interface (8-256).

Video Line Buffer

- Depth: Select the depth for the Master Video Line Buffer (0-65535).

- Almost empty threshold[1..65536]: Select the threshold when the MM2S line buffer
“almost_empty” flag is asserted.

Slave Stream Interface

Parameters

- Data width: Select the data width for the Slave Stream Interface (8-256).

Video Line Buffer

- Depth: Select the depth for the Slave Video Line Buffer (0-65535).

- Almost empty threshold[1..65536]: Select the threshold when the MM2S line buffer
“almost_empty” flag is asserted.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 431
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=431

Chapter 1: Xilinx Blockset
LogiCORE™ Documentation

LogiCORE IP AXI Video Direct Memory Access v4.00.a

Device Support
Virtex-7, Kintex-7, Virtex-6, Spartan-6
432 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vdma;v=v4_00_a;d=pg020_axi_vdma.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=432

VDMA Interface 5.4
VDMA Interface 5.4
This block is listed in the following Xilinx Blockset libraries: AXI4, Index and Memory.

The VDMA (Video Direct Memory Access) Interface block is
a bit-accurate simulation model containing up to 4 AXI
VDMA IP LogiCOREs connected to an AXI interconnect and
external memory.

As shown in the illustration below, the VDMA Interface
block’s AXI memory-mapped interface is connected to the
AXI Interconnect. DDR external memory is connected as the
only slave on the AXI Interconnect. All ports except memory-
mapped ports of the VDMA block are available on the VDMA
Interface block.

This block is also supported by the Hardware Co-Simulation
flow. The supported boards are SP601, SP605 and ML605 and
Kintex 7.

The block can now be configured using ‘Scatter Gather
Engine’ mode as well as ‘Direct Register’ mode.
X-Ref Target - Figure 1-8

The VDMA Interface block is a simulation-only model and when the netlist is generated, only the
block interface is netlisted as top-level gateways. A xlVDMACreateProject utility is provided that
takes a design with a VDMA Interface block and creates an ISE project with a top-level module that
stitches the System Generator design with an XPS sub-module that instantiates the actual VDMA,
AXI interconnect, and MIG IP.

Note: In the simulation model, the memory contents are initialized to 0, however, the memory in the actual
hardware might not be initialized to 0 unless you add hardware that does the initialization.

Preparing to Use This Block
1. Please read the AXI Video Direct Memory Access (axi_vdma) Product Guide to become

familiar with the behavior of the LogiCORE before using this block.

LogiCORE IP AXI Video Direct Memory Access v5.04a

xlVDMACreateProject utility
The xlVDMACreateProject utility takes a System Generator design with an VDMA Interface block,
and creates an ISE project with a top-level module that stitches the System Generator design with an
System Generator for DSP Reference Guide www.xilinx.com 433
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vdma;v=v5_04_a;d=pg020_axi_vdma.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=433

Chapter 1: Xilinx Blockset
XPS sub-module that instantiates the actual VDMA, AXI interconnect, and MIG IP.

 VDMA

The created ISE and XPS projects are initially set up for one of the following boards, based on the
FPGA device chosen for the System Generator design:

 Xilinx ML605 for all Virtex-6 devices

 Xilinx SP601 for all Spartan-6 LX devices

 Xilinx SP605 for all Spartan-6 LXT devices

 Xilinx Kintex 7 for all Kintex devices.

Other device families are currently not supported.

To customize the ISE and XPS projects for a different board, do the following:

1. Open the generated ISE project in Project Navigator.

2. Double click the XPS sub-module to open the XPS GUI.

3. From the XPS GUI, customize the MIG and clock generator based on the DDR settings for the
target board.

4. Close the XPS GUI and go back to Project Navigator.

5. Edit the generated top-level HDL if the DCM/MMCM settings do not match the target board.

6. Edit the generated top-level UCF if the constraints for the system clock do not match the target
board.

 Usage:

xlVDMACreateProject(NetlistDirectory, TopLevelName, Options)

You should create the ISE and XPS projects for the System Generator design in the
NetlistDirectory directory. If a TopLevelName is specified, the top-level module uses the
given TopLevelName as entity name. Otherwise, the default entity name 'vdma_top' is used.

Optional options can be specified through the OPTIONS argument, which is a MATLAB struct. The
following options are supported:

Debug: If this value is true, ChipScope AXI monitors are inserted to various AXI interfaces in the
design: M_AXI_MM2S and M_AXI_S2MM interfaces between the VDMA and AXI interconnect
IP, and the S_AXI interface between the AXI interconnect and MIG IP.
434 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=434

VDMA Interface 5.4
Block Parameters

Basic tab

Parameters specific to the Basic tab are:

 Memory size: Specify the size of the external memory (16MB to 2GB).

 Number of VDMA interfaces: Specify the number of VDMA interfaces (1 to 4). If you
specify 3, for example, the first three Interface tabs are activated and you can customize each
interface separately. The fourth Interface tab is not activated.

Interface 1-4 tab

Parameters specific to the Interface 1-4 tabs are:

Parameters

 Stream interface: Select Master/Slave, Master, or Slave.

 Number of frame stores[1..32]: Select the number of frame stores. Increased from 16 to 32
over the 4.0 VDMA Interface block.

 Use external frame sync: Check to use an external frame sync. This adds a fsync input port to
the block.

 Use Scatter Gather Engine:

 Flush on frame sync:

 Use Video Parameter Read for Direct Mode:

Master Stream Interface

Parameters

- Data width: Select the data width for the Master Stream Interface (8-256).

 Frame sync on TUSER(0): Activated when Use external frame sync is selected. New
optional TUSER bus added to MM2S and S2MM AXIS interfaces with TUSER (0) being used
for a Start of Frame (SOF) or external frame sync. When enabled
(C_MM2S_SOF_ENABLE=1), t heMM2S channel will drive frame sync out on
m_axis_mm2s_tuser (0). When enable (C_S2MM_SOF_ENABLE=1), the S2MM channel
will sync to frame sync in on s_axis_s2mm_tuser (0). This adds 4 new parameters to set the
width of the TUSER buses, C_MM2S_SOF_ENABLE, C_S2MM_SOF_ENABLE,
C_M_AXIS_MM2S_TUSER_BITS, and C_S_AXIS_S2MM_TUSER_BITS.

Video Line Buffer

- Depth: Select the depth for the Master Video Line Buffer (0-65535).

- Almost empty threshold[1..65536]: Select the threshold when the MM2S line buffer
“almost_empty” flag is asserted.

Slave Stream Interface

Parameters

- Data width: Select the data width for the Slave Stream Interface (8-256).

Video Line Buffer

- Depth: Select the depth for the Slave Video Line Buffer (0-65535).

- Almost empty threshold[1..65536]: Select the threshold when the MM2S line buffer
“almost_empty” flag is asserted.
System Generator for DSP Reference Guide www.xilinx.com 435
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=435

Chapter 1: Xilinx Blockset
Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.

LogiCORE™ Documentation
LogiCORE IP AXI Video Direct Memory Access v5.04a

Device Support

Zynq-7000, Virtex-7, Kintex-7, Artix-7, Virtex-6, Spartan-6
436 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vdma;v=v5_04_a;d=pg020_axi_vdma.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=436

Viterbi Decoder 7.0
Viterbi Decoder 7.0
This block is listed in the following Xilinx Blockset libraries: Communications and Index.

Data encoded with a convolution encoder can be decoded using the Xilinx Viterbi
decoder block.

There are two steps to the decode process. The first weighs the cost of incoming
data against all possible data input combinations; either a Hamming or Euclidean
metric can be used to determine the cost. The second step traces back through the
trellis and determines the optimal path. The length of the trace through the trellis
can be controlled by the traceback length parameter.

The decoder achieves minimal error rates when using optimal convolution codes;
the table below shows various optimal codes. For correct operation, convolution codes used for
encoding must match with that for decoding.

Block Interface

The Viterbi decoder supports rates from 1/2 to 1/7 and consequently displays two to seven input
ports labeled din1 through din7. Hard coding requires each data input to be 1 bit wide. Soft coding
allows widths to be between 3 to 8 bits (inclusive). The vin port indicates that the values presented
on the din ports are valid. When using external puncturing, depending on the decoder rate, up to
seven erase ports become available. If an erase pin is high, the corresponding data pins are treated as
a null-symbol. For a given constraint length and traceback length, the block can function as a dual
decoder, for example, two convolution codes and two output rates. An input port labeled sel
indicates the convolution code to which the input data corresponds, when sel is 0 (respectively, 1)
the data is decoded using convolution code array 1 (respectively, 2).

Constraint length
Optimal convolution codes

for 1/2 rate (octal)
Optimal convolution codes for

1/3 rate (octal)

3 [7 5] [7 7 5]

4 [17 13] [17 13 15]

5 [37 33] [37 33 25]

6 57 65] [57 65 71]

7 [117 127] [117 127 155]

8 [357 233] [357 233 251]

9 [755 633] [755 633 447]
System Generator for DSP Reference Guide www.xilinx.com 437
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=437

Chapter 1: Xilinx Blockset
The Viterbi Decoder can have two to five output ports. The dout port outputs the 1 bit decoded result
and vout indicates that the value is valid. The ber port gives a measurement of the bit error rate of the
channel by counting the differences between the re-encoded dout and the delayed din values. The
number of errors detected is divided by 8 and output on the ber port. The ber_done port indicates
when the number of input samples for error count (as indicated on the mask) have been processed.
The norm signal indicates when normalization has occurred within the block. The norm port gives
immediate monitoring of errors on the channel. The more frequent the normalization (for example,
the norm port going high), the higher the rate of errors present.

Block Parameters

Page1 tab

Parameters specific to the Page1 tab are:

Viterbi Type

 Standard: This type is the basic Viterbi Decoder.

 Multi-Channel: This type allows many interlaced channels of data to be decoded using a
single Viterbi Decoder.

 Number of Channels: Used with the Muli-Channel selection, the number of channels to be
decoded can be any value between 2 and 32.

 Trellis Mode: This type is a trellis mode decoder using the TCM and SECTOR_IN inputs.

 Dual Decoder: When selected, the block behaves as a dual decoder with two sets of
convolutional codes. This makes the sel input port available.

Decoder Options

 Use Reduced Latency: The latency of the block depends on the traceback length and the
constraint length. If this reduced latency option is selected, then the latency of the block is
approximately halved and the latency is only 2 times the traceback length.

 Constraint length: Equals n+1, where n is the length of the constraint register in the encoder.

 Traceback length: Length of the traceback through the Viterbi trellis. Optimal length is 5 to 7
times the constraint length.

Page2 tab

Architecture

 Parallel: Large but fast Viterbi Decoder

 Serial: Small but processes the input data in a serial fashion. The number of clock cycles
needed to process each set of input symbols depends on the output rate and the soft width of
the data.
438 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=438

Viterbi Decoder 7.0
Best State

 Use Best State: Gives improved BER performance for highly punctured data.

 Best State Width: Indicates how many of the least significant bits to ignore when saving the
cost used to determine the best state.

Coding

 Soft Width: The input width of soft-coded data can be anything in the range 3 to 8. Larger
widths require more logic. If theblock is implemented in serial mode, larger soft widths also
increase the serial processing time.

 Soft Coding: Uses the Euclidean metric to cost the incoming data against the branches of the
Viterbi trellis.

 Hard Coding: Uses the Hamming difference between the input data bits and the branches of
the Viterbi trellis. Hard coding is only available for the standard parallel block.

Data Format

 Signed magnitude:

 Offset Binary (available for soft coding only):

See Table 1 in the associated LogiCORE Product Specification for the Signed Magnitude and
Offset-Binary data format for Soft Width 3.

Dual Rate Decoder

For a given constraint length and traceback-length, the block can function as a dual decoder. Two
sets of convolutional codes and output rates can be used internally to the decoder. The dual-decoder
offers significant chip area savings when two different decoders with the same constraint length are
required. The next two tabs allow you to specify the convolution codes for the dual decoder
capability.

Page3 tab

Convolution 0

 Output Rate 0: Output Rate 0 can be any value from 2 to 7.

 Convolution Code 0 Radix: The convolutional codes can be input and viewed in binary, octal,
or decimal.

 Convolution Code Array (0-6): First array of convolution codes. Output rate is derived from
the array length. Between 2 and 7 (inclusive) codes can be entered. When dual decoding is
used, a value of 0 (low) on the sel port corresponds to this array.

Page4 tab

The options on this tab are activated when you select Dual Decoder as the Viterbi Type on the
Page1 tab.

Convolution 1

 Output Rate 1: Output Rate 1 can be any value from 2 to 7. This is the second output rate used
if the decoder is dual. The incoming data is decoded at this rate when the SEL input is high.
Output Rate 1 is not used for the non-dual decoder.

 Convolution Code 1 Radix: The convolutional codes can be input and viewed in binary, octal,
or decimal.
System Generator for DSP Reference Guide www.xilinx.com 439
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=439

Chapter 1: Xilinx Blockset
 Convolution Code Array (0-6): First array of convolution codes. Output rate is derived from
the array length. Between 2 and 7 (inclusive) codes can be entered. When dual decoding is
used, a value of 1 (high) on the sel port corresponds to this array.

Page5 tab

Packet Options

Trellis Initialization

 None: There is no initialization on the trellis.

 State Zero: The trellis is initialized to state zero when the PACKET_START signal is asserted
(High). The costs of the states are all initialized in the ACS module to a maximum value except
for state zero.

 Equal States: All the states within the trellis are initialized to the same value when the
PACKET_START signal is asserted (High).

 User Input: The trellis is initialized to the state on PS_STATE when the PACKET_START
signal is asserted (High). The costs of the states are all initialized in the ACS module to a
maximum value except for the dynamically input state, which is initialized to zero when the
PACKET_START input is High.

Direct Traceback

The direct traceback allows you to specify the handling of the traceback and the end state of the
packet.

 Maximum Direct: Specifies the number of encoded bits to be traced directly. The range is 10
to 42.

 None: There is no direct traceback.

 State Zero: When the TB_BLOCK signal is asserted (High), the input data is traced back
directly without a training sequence from state zero.

 User Input: When the TB_BLOCK signal is asserted (High), the input data is traced back
directly without a training sequence from the user input TB_STATE. The value of the
TB_STATE is selected on the last clock edge of the TB_BLOCK signal High.

 Best State: When the TB_BLOCK signal is asserted (High), the input data is traced back
directly without a training sequence from the best state. The best state is generated internally to
the decoder from the costs on the ACS modules.

Page6 tab

Puncturing

 None: Input data has not been punctured.

 External (Erased Symbols): When selected an erase port is added to the block. The presence
of null-symbols (that is, symbols which have been deleted prior to transmission across the
channel) is indicated using the erasure input erase.

BER Options

 Use BER Symbol Count: This bit-error-rate (BER) option monitors the error rate on the
transmission channel.

 Number of BER Symbols: Specifies the number of input symbols over which the error count
takes place.
440 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=440

Viterbi Decoder 7.0
Page7 tab

Synchronization Options

 Use Synchronization: Check this box if an out of synchronization output is required.

 Use Dynamic Thresholds: If this check box is selected, then the synchronization inputs buses
NORM_THRESH and BER_THRESH are added to the block. These 16-bit input buses
correspond tothe BER thresh and Norm thresh, but allow the thresholds for synchronization
evaluation to be dynamically modified.

Static Thresholds

 BER Thresh: This is the preset threshold for synchronization evaluation. If the bit error count
reaches this threshold before the normalization threshold is obtained, then theblock is
considered to be out of synchronization and the OUT_OF_SYNC output is asserted.

 Norm Thresh: This is the preset threshold for synchronization evaluation. If the normalization
count reaches this threshold before the bit error threshold is obtained, then the block is
considered to be synchronized and the OUT_OF_SYNC output is deasserted.

Page8 tab

Optional Pins

 CE: Clock Enable – Core clock enable (active High). When this signal is active, the decoder
processes input data normally. When this signal is inactive, the decoder stops processing data
and maintains its state.

 RDY: Indicates valid data on output port DATA_OUT. This output is mandatory in the serial
case

 SCLR: Synchronous Clear – Synchronous reset (active High). Asserting SCLR synchronously
with CLK resets the decoder internal state.

 NORM: Indicates when normalization has taken place internal to the Add Compare Select
module

 Block Valid: Check this box if BLOCK_IN and BLOCK_OUT signals are required. These
signals track the movement of a block of data through the decoder. BLOCK_OUT corresponds
to BLOCK_IN delayed by the decoder latency.

Parameters used by this block are explained in the topic Common Options in Block Parameter
Dialog Boxes.
System Generator for DSP Reference Guide www.xilinx.com 441
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=441

Chapter 1: Xilinx Blockset
LogiCORE™ Documentation

LogiCORE IP Viterbi Decoder v7.0

Device Support

Virtex-7 and Kintex-7, Virtex-6, Virtex-5, Virtex-4,
Spartan-6, Spartan-3/XA, Spartan-3E/XA, Spartan-3A/3AN/3A DSP/XA
442 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=viterbi;v=none;d=viterbi_ds247.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=442

Viterbi Decoder 8.0
Viterbi Decoder 8.0
This block is listed in the following Xilinx Blockset libraries: AXI4, Communications and Index.

Data encoded with a convolution encoder can be decoded
using the Xilinx Viterbi decoder block. This block adheres to
the AMBA® AXI4-Stream standard.

There are two steps to the decode process. The first weighs
the cost of incoming data against all possible data input
combinations; either a Hamming or Euclidean metric can be
used to determine the cost. The second step traces back
through the trellis and determines the optimal path. The
length of the trace through the trellis can be controlled by the
traceback length parameter.

The decoder achieves minimal error rates when using optimal
convolution codes; the table below shows various optimal
codes. For correct operation, convolution codes used for

encoding must match with that for decoding.

Block Interface
The Xilinx Viterbi Decoder 8.0 block is AXI4 compliant. The following describes the standard AXI
channels and pins on the interface:

S_AXIS_DATA Channel

 s_axis_data_tvalid: TVALID for S_AXIS_DATA channel. Input pin, always available. This
port indicates the values presents on the inputdata ports are valid.

 s_axis_data_tready: TREADY for S_AXIS_DATA. Output pin, always available. This port
indicates that the core is ready to accept data.

 s_axis_data_tdata: Input TDATA. Different input data ports are available depending on the
Viterbi Type selected on Page1 tab of block-GUI.

When Trellis Mode is selected, 5 input data pins become available – these are
s_axis_data_tdata_tcm00, s_axis_data_tdata_tcm01, s_axis_data_tdata_tcm10,
s_axis_data_tdata_tcm11 and s_axis_data_tdata_sector.

Constraint length
Optimal convolution codes

for 1/2 rate (octal)
Optimal convolution codes for

1/3 rate (octal)

3 [7 5] [7 7 5]

4 [17 13] [17 13 15]

5 [37 33] [37 33 25]

6 57 65] [57 65 71]

7 [117 127] [117 127 155]

8 [357 233] [357 233 251]

9 [755 633] [755 633 447]
System Generator for DSP Reference Guide www.xilinx.com 443
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=443

Chapter 1: Xilinx Blockset
The width of the Trellis mode inputs (s_axis_data_tdata_tcm**) can range from 4 to 6
corresponding to a data width (Soft_Width value on Page2 tab) of 3 to 5. s_axis_data_tdata_sector
is always 4-bit wide. The decoder always functions as a rate 1/2 decoder when Trellis mode is
selected.

For any other Viterbi Type (Standard/Multi-Channel/Dual Decoder), the Decoder supports rates
from 1/2 to 1/7. Therefore, the block can have 2 to 7 input data ports labeled
s_axis_data_tdata_data_in0 … s_axis_data_tdata_data_in6. Hard Coding requires each
tdata_data_in<n> port to be 1 bit wide. Soft Coding allows these widths to be between 3 to 5 bits
(inclusive).

 s_axis_data_tuser: TUSER for S_AXIS_DATA. These ports are only present if External
Puncturing is selected or it is a Dual Decoder or Block Valid signal isused with the core.

s_axis_data_tuser_erase port becomes available, when External Puncturing is selected (on
Page2 tab). This input bus is used to indicate the presence of a null-symbol on the
corresponding data_in buses. For e.g. tuser_erase(0) corresponds to data_in0, tuser_erase(1)
corresponds to data_in1 etc.. If an erase bit is high, the data on the corresponding data_in bus is
treated as a null-symbol internally to the decoder. The width of the erase bus is equal to the
output rate of the decoder with a maximum value of 7.

s_axis_data_tuser_sel port becomes available when Dual Decoder is selected. This is used to
select the correct set of convolution codes for the decoding of the input data symbols in the dual
decoder case. When SEL is low, the input data is decoded using the first set of convolution
codes. When it is high, the second set of convolution codes is applied.

s_axis_data_tuser_block_in port becomes available when Block Valid option is selected on
Page 5 tab.

M_AXIS_DATA Channel

 m_axis_data_tvalid: TVALID for M_AXIS_DATA channel. Output pin, always available. It
indicates whether the output data is valid or not.

 m_axis_data_tready: TREADY for M_AXIS_DATA channel. Do not enable or tie high if
downstream slave is always able to accept data. It becomes available when TREADY option is
selected on Page 5 tab.

 m_axis_data_tdata: decoded TDATA for output data channel.

m_axis_data_tdata_data port represents the decoded output data and it is always 1 bit wide.

m_axis_data_tdata_sector port becomes available for Trellis Mode decoder. This port is
always 4-bit wide. The output SECTOR is a delayed version of the input SECTOR bus. Both
buses have a fixed width of 4 bits. The delay equals the delay through the Trellis Mode decoder.

 m_axis_data_tuser: TUSER for M_AXIS_DATA channel. These ports are only present if the
block is a Dual Decoder or it has normalization signal present or it has Block Valid option
checked.

m_axis_data_tuser_sel port becomes available when the block is configured as a Dual
Decoder. This signal is a delayed version of the input s_axis_data_tuser_sel signal. The delay
equals to the delay through the Dual Decoder.

m_axis_data_tuser_norm port becomes available when NORM option is checked on Page 5
tab. This port indicates when normalization has occurred within the core. It gives an immediate
indication of the rate of errors in the channel.

m_axis_data_tuser_block_out port becomes available when Block Valid option is checked on
Page 5 tab. This signal is a delayed version of the input s_axis_data_tuser_block_in signal. The
BLOCK_OUT signal shows the decoded data corresponding to the original BLOCK_IN set of
444 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=444

Viterbi Decoder 8.0
data points. The delay equals the delay through the decoder.

S_AXIS_DSTAT Channel

Note: These ports become available when Use BER Symbol Count is selected on Page 5 tab.

 s_axis_dstat_tvalid: TVALID for S_AXIS_DSTAT channel.

 s_axis_dstat_tready: TREADY for S_AXIS_DSTAT channel. Indicates that the core is ready
to accept data. Always high, except after a reset if there is not a TREADY on the output.

 s_axis_dstat_tdata_ber_range: TDATA for S_AXIS_DSTAT channel. This is the number of
symbols over which errors are counted in the BER block.

M_AXIS_DSTAT Channel

Note: These ports become available when Use BER Symbol Count is selected on Page 5 tab.

 m_axis_dstat_tvalid: TVALID for M_AXIS_DSTAT channel.

 m_axis_dstat_tready: TREADY for M_AXIS_DSTAT channel. Do not enable or tie high if
downstream slave is always able to accept data. It becomes available when TREADY option is
selected on Page 5 tab.

 m_axis_dstat_tdata_ber: TDATA for M_AXIS_DSTAT channel. The Bit Error Rate (BER)
bus output (fixed width 16) gives a measurement of the channel bit error rate by counting the
difference between the re-encoded DATA_OUT and the delayed DATA_IN to the decoder.

Other Optional Pins

 aresetn: The synchronous reset (aresetn) input can be used to re-initialize the core at any time,
regardless of the state of aclken signal. aresetn needs to be asserted low for at least two clock
cycles to initialize the circuit. This pin becomes available if ARESETN option is selected on
the Page 5 tab. It must be of type Bool. If this pin is not selected, System Generator ties this pin
to inactive (high) on the core.

 aclken: Carries the clock enable signal for the decoder. The signal driving aclken must be
Bool. This pin becomes available if ACLKEN option is selected on Page 5 tab.

Block Parameters

Page1 tab

Parameters specific to the Page1 tab are:

Viterbi Type

 Number of Channels: Used with the Muli-Channel selection, the number of channels to be
decoded can be any value between 2 and 32.

 Standard: This type is the basic Viterbi Decoder.

 Multi-Channel: This type allows many interlaced channels of data to be decoded using a
single Viterbi Decoder.

 Trellis Mode: This type is a trellis mode decoder using the TCM and SECTOR_IN inputs.

 Dual Decoder: When selected, the block behaves as a dual decoder with two sets of
convolutional codes. This makes the sel input port available.

Decoder Options
System Generator for DSP Reference Guide www.xilinx.com 445
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=445

Chapter 1: Xilinx Blockset
 Use Reduced Latency: The latency of the block depends on the traceback length and the
constraint length. If this reduced latency option is selected, then the latency of the block is
approximately halved and the latency is only 2 times the traceback length.

 Constraint length: Equals n+1, where n is the length of the constraint register in the encoder.

 Traceback length: Length of the traceback through the Viterbi trellis. Optimal length is 5 to 7
times the constraint length.

Page2 tab

Architecture

 Parallel: Large but fast Viterbi Decoder

 Serial: Small but processes the input data in a serial fashion. The number of clock cycles
needed to process each set of input symbols depends on the output rate and the soft width of
the data.
446 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=446

Viterbi Decoder 8.0
Best State

 Use Best State: Gives improved BER performance for highly punctured data.

 Best State Width: Indicates how many of the least significant bits to ignore when saving the
cost used to determine the best state.

Puncturing

 None: Input data has not been punctured.

 External (Erased Symbols): When selected an erase port is added to the block. The presence
of null-symbols (that is, symbols which have been deleted prior to transmission across the
channel) is indicated using the erasure input erase.

Coding

 Soft Width: The input width of soft-coded data can be anything in the range 3 to 5. Larger
widths require more logic. If theblock is implemented in serial mode, larger soft widths also
increase the serial processing time.

 Soft Coding: Uses the Euclidean metric to cost the incoming data against the branches of the
Viterbi trellis.

 Hard Coding: Uses the Hamming difference between the input data bits and the branches of
the Viterbi trellis. Hard coding is only available for the standard parallel block.

Data Format

 Signed Magnitude:

 Offset Binary (available for soft coding only):

See Table 1 in the associated LogiCORE Product Specification for the Signed Magnitude and
Offset-Binary data format for Soft Width 3.

Page3 tab

Convolution 0

 Output Rate 0: Output Rate 0 can be any value from 2 to 7.

 Convolution Code 0 Radix: The convolutional codes can be input and viewed in binary, octal,
or decimal.

 Convolution Code Array (0-6): First array of convolution codes. Output rate is derived from
the array length. Between 2 and 7 (inclusive) codes can be entered. When dual decoding is
used, a value of 0 (low) on the sel port corresponds to this array.

Page4 tab

The options on this tab are activated when you select Dual Decoder as the Viterbi Type on the
Page1 tab.

Convolution 1

 Output Rate 1: Output Rate 1 can be any value from 2 to 7. This is the second output rate used
if the decoder is dual. The incoming data is decoded at this rate when the SEL input is high.
Output Rate 1 is not used for the non-dual decoder.

 Convolution Code 1 Radix: The convolutional codes can be input and viewed in binary, octal,
or decimal.

 Convolution Code Array (0-6): First array of convolution codes. Output rate is derived from
the array length. Between 2 and 7 (inclusive) codes can be entered. When dual decoding is
used, a value of 1 (high) on the sel port corresponds to this array.
System Generator for DSP Reference Guide www.xilinx.com 447
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=447

Chapter 1: Xilinx Blockset
Page5 tab

BER Options

 Use BER Symbol Count: This bit-error-rate (BER) option monitors the error rate on the
transmission channel.

Optional Pins

 NORM: Indicates when normalization has taken place internal to the Add Compare Select
module

 Block Valid: Check this box if BLOCK_IN and BLOCK_OUT signals are required. These
signals track the movement of a block of data through the decoder. BLOCK_OUT corresponds
to BLOCK_IN delayed by the decoder latency.

 TREADY: Selecting this option makes m_axis_data_tready and m_axis_dstat_tready pins
available on the block.

 ACLKEN: carries the clock enable signal for the block The signal driving aclken must be
Bool.

 ARESETN: Adds a aresetn pin to the block. This signal resets the block and must be of type
Bool. aresetn must be asserted low for at least 2 clock periods and at least 1 sample period before the
decoder can start decoding code symbols.

Common Parameters used by this block, such as Display shortened port names, are explained in
the topic Common Options in Block Parameter Dialog Boxes.
448 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=448

Viterbi Decoder 8.0
LogiCORE™ Documentation

LogiCORE IP Viterbi Decoder v8.0

Device Support
Zynq-7000, Artix-7, Virtex -7, Kintex-7, Virtex-6, Spartan -6
System Generator for DSP Reference Guide www.xilinx.com 449
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=viterbi;v=v8_0;d=pg027_viterbi_decoder.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=449

Chapter 1: Xilinx Blockset
WaveScope
This block is listed in the following Xilinx Blockset libraries: Floating-Point, Tools and Index.

The System Generator WaveScope block provides a powerful and easy-to-use
waveform viewer for analyzing and debugging System Generator designs.

The viewer allows you to observe the time-changing values of any wires in the design
after the conclusion of the simulation. The signals can be formatted in a logic or

analog format and can be viewed in binary, hex, or decimal radices.

Quick Tutorial
The following is a simple example to show how to use the WaveScope with this simple model:

Note that the WaveScope block has been dropped into the model. You double-click on the
WaveScope block to open it, which brings up the blank waveform viewer. Now you can highlight
the three wires in the model by clicking on all three wires while holding down the Shift key. you
then push the Add Selected Nets button in the waveform viewer to add those wires to the
viewer. The WaveScope window now appears as shown:

The three signals appear in the viewer. Two of the signals have been automatically named because
they were not explicitly named in the model. Now you run the simulation using the Start button
on the model's window. This simulation has a period of 1s and runs for 10s. The waveform viewer
450 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=450

WaveScope
automatically updates. You can zoom out to the full view using the button and the viewer
appears as shown:

You can change the radix of the signal 'theta' to hex. You click on the name 'theta' or the associated
signal waveform to highlight it, then double-click on the highlighted signal (not on the name) to
bring up the formatting menu:
System Generator for DSP Reference Guide www.xilinx.com 451
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=451

Chapter 1: Xilinx Blockset
You select the hex radio button to format 'theta' as binary. In a similar fashion, you can format the
signal 'SineCosine/Out1' as analog and change the color to red:

You can now change the names of the signals by double-clicking on the signal names and entering
new names in the text box:

The new signal names are displayed in the model. By using the button, you can zoom in on a
portion of the simulation. You can bring the yellow cursor to the center of the screen using the
452 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=452

WaveScope
Cursor > Center Cursor menu option and observe the value for any signal under the cursor by
placing the mouse pointer on the cursor:

Block Interface

Double-clicking the WaveScope icon opens up the WaveScope window. If the WaveScope window
is closed, it will open automatically at the end of a simulation. The WaveScope window is a
powerful "scope" in which the simulation results can be displayed in several ways.

WaveScope displays the signal on a given net or nets. The signal can be viewed in more than one
way simultaneously, for example, viewing it both in logical and analog formats. Each signal can be
displayed either as logic or analog, and the values can be displayed in hexadecimal, binary, or
decimal radices. At the bottom of the display is the clock signal for reference.

The WaveScope window can be used to

 Choose which nets' signals to view

 Configure the signals' presentation

 View the signals

Selecting Nets

There are two ways to select nets to view in the WaveScope window. Select any output net(s) of a
Xilinx block (or the blocks themselves) in the Simulink window, then press the icon in the
WaveScope toolbar ("Add selected nets"). Multiple blocks/nets can be selected by holding the 'shift'
key while selecting. The signal for the selected net(s) will appear in the WaveScope window. For
any blocks that were selected, all of the inputs and outputs to the selected blocks are added to the
WaveScope window. There is no data for the WaveScope to display until the model is simulated.
After simulation, the data will appear in the WaveScope window.

Pressing the Add Selected Nets button in the tool bar multiple times will display the signal in the
WaveScope viewer multiple times.

The second method of choosing nets is to use the "Nets" menu. This contains a hierarchical list of
blocks and nets in your model. In a complex diagram it might be easier to use this menu to navigate
to a particular net.
System Generator for DSP Reference Guide www.xilinx.com 453
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=453

Chapter 1: Xilinx Blockset
At the bottom of the display you will see a clock signal representing the highest rate clock in the
design. This signal is always displayed whenever any signal is displayed.

Selecting and Moving Signals

Click on a signal or the corresponding net name with the left mouse button to select the signal. Once
a signal has been selected it can be moved in the display by dragging it to a different location. If you
wish to select several signals at once, use Shift-click or Control-click on the net names only; it will
not work with the signals themselves.

If you select multiple signals, which need not be contiguous signals in the display, and move them
in the display, they will all be moved to a contiguous block of signals. This is handy for displaying
several related signals together so they can all be seen at once.

You cannot select or move the clock signal in the WaveScope display. The clock signal will always
be the last signal displayed.

Deleting Signals from the WaveScope Window

If you decide not to view a signal after adding it to the WaveScope window, just select the signal and
press the Delete Signals button on the toolbar. The del key is the keyboard shortcut to this function,
and the Edit menu provides a "Delete" item as well.

The standard Cut, Copy and Paste functions are available for signals as well. Using the Copy and
Paste icons on the toolbar, keyboard shortcuts Control-X for cut, Control-C for copy and Control-
V for paste, or the Copy and Paste entries in the Edit menu, allows you to display a net multiple
times in the WaveScope.

You cannot copy, paste, or delete the clock signal from the WaveScope display.

Configuring the Signals' Presentation

Some signals are naturally viewed as numerical values in which the value is of primary concern, and
some as logical states in which the transition is the key datum. With WaveScope you can choose
which way to view the signal.

Select the signal(s) in question, then double-click on the signal. (Double-click on the signal itself,
not on the signal's name.) A menu will appear with four choices:

 Format – Select "logic" to show the signal as a logical signal with
transitions emphasized. The value is written after each transition.
Select "analog" to display the signal as a graph of the value. The
high and low values for the signal are display in the left of the graph
as well. The size of the analog signal can be changed by dragging
the bottom of the selected analog signal.

 Radix – Select "hex," "binary" or "dec" to choose the radix of the
displayed numbers. Numbers will always be displayed with the
proper radix point. For example, the decimal number 10.5 would be
displayed as A.8 in hex.

 Sign-Magnitude - Select "Sign-Magnitude" to have WaveScope
interpret the values as a sign-magnitude rather than a two's
complement number. Decimal values are always displayed in sign-
magnitude format.

 Color – Wavescope chooses a default value for a color. Use a colored button to select a new
color for all the selected signals.
454 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=454

WaveScope
A logic signal will, by default, have the values displayed in the graph. To turn this off, un-select the
Show values item in the Options menu.

You cannot change the clock signal's presentation.

Changing the Height of an Analog Signal

To change the size of the analog signal, grab the bottom edge of a selected analog signal (as shown)
and move the bottom up or down to make the analog signal smaller or bigger, respectively:

Changing the Signal Name

Double-click on a signal's name to change it. You can also change the name on the wire in the model.
In this case when the simulation is re-run or the WaveScope window is refreshed using the
button, the signal name is updated in the WaveScope window.

Rainbowing the Signals

It is easier to observe signals when they are separated in the visual spectrum. As signals are added,
a new color is selected from a rainbow palette. A group of signals can be re-rainbowed by selecting
a group of signals and pushing the rainbow button. To re-rainbow all of the signals, select them all
using Control-A and push the rainbow button:
System Generator for DSP Reference Guide www.xilinx.com 455
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=455

Chapter 1: Xilinx Blockset
Viewing the Signals

Once you have selected the signals and simulated the model, WaveScope starts displaying the
signals.

Zooming and Scrolling

You can zoom in and out with either the magnifying glass icons, the view menu, or the 'i' and 'o' keys
on your keyboard. You can also zoom to a box by dragging a rubberband box in the WaveScope
window. Arrow keys will scroll the display, or you can use your mouse in the sliders at the right and
below the signal display. Note that when there is sufficient room to display the signals in one
dimension or the other, the sliders will not display.

The control key allows for finer-resolution zooming and panning. Holding down the control key
while pushing the left and right arrow keys will pan by one clock cycle. Holding down the control
keys in conjunction with the 'i' and 'o' keys will zoom in and out by a smaller factor.

Changing the Recording Limits

There are times when you can want to display only a subset of your data. For instance, your
simulation can run for a long time, but you are only interested in looking at the last 1000 steps of the
simulation.

The more data that is displayed in the WaveScope, the slower the WaveScope preforms. One
possibility is to zoom in on the desired data, but if there is a lot of data the WaveScope will still be
slow. In this case a better solution is to reduce the Recording Limits of the WaveScope.

By default, WaveScope records all the values on a signal from start of a simulation to the finish. You
can change these limits by using the Options menu and selecting the Recording Limits submenu.
A dialog will open in which you can set the start and ending time for recording. As shown below, the
dialog is pre-populated with the current lowest and highest value. You can enter any number here.
The end time can be set to "Inf", as well, indicating no preset upper limit.

Once the recording limits are set, the WaveScope will only display values in that time range. You
cannot zoom back out of that range. When you rerun the simulation, only the values at times in that
range are recorded.
456 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=456

WaveScope
The Grid

Displaying the Grid – As shown below, clicking the "Toggle Grid" icon on the toolbar will
display vertical lines at each labeled x-axis value.

The Cursor

The cursor is helpful for visually aligning signals or marking a point of interest. The cursor can be
brought to the currently-viewed time span by clicking underneath the time axis. When moving the
pointer underneath the time axis, the mouse pointer changes to a cross, indicating that the cursor can
be moved to that location and moved around within the current view.

The cursor can also be brought to the center of the screen using the 'c' key or the Cursor > Center
Cursor menu option. Once on-screen, the cursor can be moved around by dragging it. When the
mouse pointer is placed over the cursor, the pointer will change to a cross to show that it can be
dragged.

When the mouse pointer is over the cursor, a tool tip shows the value of the signal underneath the
mouse pointer. This is valuable for displaying the value of an analog signal or the full value of a
logical signal when the zoom factor is such that the full value cannot be displayed on the signal:

As the cursor is dragged, the tool tip is updated. Note the mini-cursor underneath the scroll bar,
which appears as a yellow tick mark. When the cursor is not in the selected view, the mini-cursor
shows where the cursor resides on the time axis. To jump to the current cursor location, use the 'j'
key or the Cursor > Jump to Cursor menu option.
System Generator for DSP Reference Guide www.xilinx.com 457
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=457

Chapter 1: Xilinx Blockset
It is often helpful to be able to jump to the next signal transition without having to pan and search for
the transition. To jump to the next transition, place the cursor on the screen and select the signal of
interest. Press 'enter' or use the Cursor > Move Cursor Next menu option to move the cursor to the
next signal transition. If the cursor moves off screen the view is panned to keep the cursor on screen.

Crossprobing

When a signal(s) is selected in the WaveScope window, it is cross-probed by highlighting the
corresponding wire in the model in orange, as shown here:

If the highlighted signal is underneath some layers of hierarchy, the appropriate mother blocks is
highlighted in orange.

The Cursor Menu

There are four options in the cursor menu.

Center Cursor

This option will bring the cursor to the center of the currently-viewed time span. This action can also
be performed with the 'c' key.

Jump to Cursor

This option moves the current view to the cursor's location. This action can also be performed with
the 'j' key.
458 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=458

WaveScope
Move Cursor Next

This option moves the cursor to the next transition of the most recent of the currently-selected
signals. This action can also be performed with the 'enter' key.

Move Cursor Last

This option moves the cursor to the previous transition of the most recent of the currently-selected
signals. This action can also be performed with shift-enter.

The Options Menu

There are four options in the options menu.

Grid Lines

This option toggles display of the time grid.

Show Values

Show Values toggles the display of numerical values on the WaveScope. By default, WaveScope
will display values. Turn off the display with this option.

Run at End of Sim

This option toggles whether the WaveScope should run at the end of a simulation. By default, the
WaveScope will display. If you don't want the WaveScope to appear at the end of simulation, use
this option

Recording Limits

As explained above in Changing the Recording Limits, this option is used to restrict the simulation
time displayed in the WaveScope.
System Generator for DSP Reference Guide www.xilinx.com 459
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=459

Chapter 1: Xilinx Blockset
460 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=460

Chapter 2

Xilinx Reference Blockset

The following reference libraries are provided:

Communication

Control Logic

DSP

Communication Reference Designs

BPSK AWGN Channel

Convolutional Encoder

Multipath Fading Channel Model

White Gaussian Noise Generator

Control Logic Reference Designs

Mealy State Machine

Moore State Machine

Registered Mealy State Machine

Registered Moore State Machine

DSP Reference Designs

2 Channel Decimate by 2 MAC FIR Filter

2n+1-tap Linear Phase MAC FIR Filter

2n-tap Linear Phase MAC FIR Filter

2n-tap MAC FIR Filter

4-channel 8-tap Transpose FIR Filter

4n-tap MAC FIR Filter
System Generator for DSP Reference Guide www.xilinx.com 461
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=461

Chapter 2: Xilinx Reference Blockset
Imaging

Math

CIC Filter

Dual Port Memory Interpolation MAC FIR Filter

Interpolation Filter

m-channel n-tap Transpose FIR Filter

n-tap Dual Port Memory MAC FIR Filter

n-tap MAC FIR Filter

DSP Reference Designs

Imaging Reference Designs

5x5Filter

Virtex Line Buffer

Virtex2 5 Line Buffer

Virtex2 Line Buffer

Math Reference Designs

CORDIC ATAN

CORDIC DIVIDER

CORDIC LOG

CORDIC SINCOS

CORDIC SQRT
462 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=462

2 Channel Decimate by 2 MAC FIR Filter
2 Channel Decimate by 2 MAC FIR Filter
The Xilinx n-tap 2 Channel Decimate by 2 MAC FIR Filter reference block
implements a multiply-accumulate-based FIR filter. One dedicated multiplier and
one Dual Port Block RAM are used in the n-tap filter. The same MAC engine is used
to process both channels that are time division multiplexed (TDM) together.
Completely different coefficient sets can be specified for each channel as long as
they have the same number of coefficients. The filter also provides a fixed
decimation by 2 using a polyphase filter technique. The filter configuration helps

illustrate techniques for storing multiple coefficient sets and data samples in filter design. The Virtex
FPGA family (and Virtex family derivatives) provide dedicated circuitry for building fast, compact
adders, multipliers, and flexible memory architectures. The filter design takes advantage of these
silicon features by implementing a design that is compact and resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Data Input Bit Width: Width of input sample.

 Data Input Binary Point: Binary point location of input.

 Coefficient Vector (Ch.1): Specify coefficients for Channel 1 of the filter. Number of taps is
inferred from size of coefficient vector.

 Coefficient Vector (Ch.2): Specify coefficients for Channel 2 of the filter. Number of taps is
inferred from size of coefficient vector.

Note: Coefficient Vectors must be the same size. Pad coefficients if necessary to make them the same
size.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point per Coefficient: Binary point location for each coefficient.

Note: Coefficient Vectors must be the same size. Pad coefficients if necessary to make them the same
size.

 Sample Period: Sample period of input

Reference

J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438
System Generator for DSP Reference Guide www.xilinx.com 463
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=463

Chapter 2: Xilinx Reference Blockset
2n+1-tap Linear Phase MAC FIR Filter
The Xilinx 2n+1-tap Linear Phase MAC FIR Filter reference block implements a
multiply-accumulate-based FIR filter. The 2n+1-tap Linear Phase MAC FIR filter
exploits coefficient symmetry for an odd number of coefficients to increase filter
throughput. These filter designs exploit silicon features found in Virtex family
FPGAs such as dedicated circuitry for building fast, compact adders, multipliers,
and flexible memory architectures.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438.
464 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=464

2n-tap Linear Phase MAC FIR Filter
2n-tap Linear Phase MAC FIR Filter
The Xilinx 2n-tap linear phase MAC FIR filter reference block implements a
multiply-accumulate-based FIR filter. The block exploits coefficient symmetry
for an even number of coefficients to increase filter throughput. These filter
designs exploit silicon features found in Virtex family FPGAs such as dedicated
circuitry for building fast, compact adders, multipliers, and flexible memory
architectures.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438.
System Generator for DSP Reference Guide www.xilinx.com 465
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=465

Chapter 2: Xilinx Reference Blockset
2n-tap MAC FIR Filter
The Xilinx 2n-tap MAC FIR Filter reference block implements a multiply-
accumulate-based FIR filter. The three filter configurations help illustrate the tradeoffs
between filter throughput and device resource consumption. The Virtex FPGA family
(and Virtex family derivatives) provide dedicated circuitry for building fast, compact
adders, multipliers, and flexible memory architectures. Each filter design takes
advantage of these silicon features by implementing a design that is compact and

resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438.
466 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=466

4-channel 8-tap Transpose FIR Filter
4-channel 8-tap Transpose FIR Filter
The Xilinx 4-channel 8-tap Transpose FIR Filter reference block
implements a 4-channel 8-tap transpose FIR filter. The transpose structure
is well suited for data path processing in Xilinx FPGAs, and is easily
extended to produce larger filters (space accommodating). The filter takes
advantage of silicon features found in the Virtex family FPGAs such as
dedicated circuitry for building fast, compact adders, multipliers, and
flexible memory architectures.

Implementation details are provided in the filter design subsystems. To
read the annotations, place the block in a model, then right-click on the block and select Explore
from the popup menu. Double click on one of the sub-blocks to open the sub-block model and read
the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.
System Generator for DSP Reference Guide www.xilinx.com 467
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=467

Chapter 2: Xilinx Reference Blockset
4n-tap MAC FIR Filter
The Xilinx 4n-tap MAC FIR Filter reference block implements a multiply-
accumulate-based FIR filter. The three filter configurations help illustrate the
tradeoffs between filter throughput and device resource consumption. The Virtex
FPGA family (and Virtex family derivatives) provide dedicated circuitry for
building fast, compact adders, multipliers, and flexible memory architectures. Each
filter design takes advantage of these silicon features by implementing a design that
is compact and resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438.
468 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=468

5x5Filter
5x5Filter
The Xilinx 5x5 Filter reference block is implemented using 5 n-tap MAC FIR
Filters. The filters can be found in the DSP library of the Xilinx Reference
Blockset.

Nine different 2-D filters have been provided to filter grayscale images. The filter
can be selected by changing the mask parameter on the 5x5 Filter block The 2-
D filter coefficients are stored in a block RAM, and the model makes no specific
optimizations for these coefficients. You can substitute your own coefficients and
scale factor by modifying the mask of the 5x5 filter block, under the Initialization

tab.

The coefficients used are shown below for the 9 filters. The output of the filter is multiplied by the
scale factor named <filter name>Div.

edge = [0 0 0 0 0; ...
0 -1 -1 -1 0; ...
0 -1 -1 -1 0; ...
0 0 0 0 0];
edgeDiv = 1;

sobelX = [0 0 0 0 0; ...
0 -1 0 1 0; ...
0 -2 0 2 0; ...
0 -1 0 1 0; ...
0 0 0 0 0];
sobelXDiv = 1;

sobelY = [0 0 0 0 0; ...
0 1 2 1 0; ...
0 0 0 0 0; ...
0 -1 -2 -1 0; ...
0 0 0 0 0];
sobelYDiv = 1;

sobelXY = [0 0 0 0 0; ...
0 0 -1 -1 0; ...
0 1 0 -1 0; ...
0 1 1 0 0; ...
0 0 0 0 0];
sobelXYDiv = 1;

blur = [1 1 1 1 1; ...
1 0 0 0 1; ...
1 0 0 0 1; ...
1 0 0 0 1; ...
1 1 1 1 1];
blurDiv = 1/16;

smooth = [1 1 1 1 1; ...
1 5 5 5 1; ...
1 5 44 5 1; ...
1 5 5 5 1; ...
1 1 1 1 1];
smoothDiv = 1/100;
System Generator for DSP Reference Guide www.xilinx.com 469
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=469

Chapter 2: Xilinx Reference Blockset
sharpen = [0 0 0 0 0; ...
0 -2 -2 -2 0; ...
0 -2 32 -2 0; ...
0 -2 -2 -2 0; ...
0 0 0 0 0];
sharpenDiv = 1/16;

gaussian = [1 1 2 1 1; ...
1 2 4 2 1; ...
2 4 8 4 2; ...
1 2 4 2 1; ...
1 1 2 1 1];
gaussianDiv = 1/52;

identity = [0 0 0 0 0; ...
0 0 0 0 0; ...
0 0 1 0 0; ...
0 0 0 0 0; ...
0 0 0 0 0];
identityDiv = 1;

This filter occupies 309 slices, 5 dedicated multipliers, and 5 block rams of a Xilinx xc2v250-6 part
and operates at 213 MHz (advanced speeds files 1.96, ISE® 4.2.01i software).

The underlying 5-tap MAC FIR filters are clocked 5 times faster than the input rate. Therefore the
throughput of the design is 213 MHz / 5 = 42.6 million pixels/ second. For a 64x64 image, this is
42.6x10^6/(64x64) = 10,400 frames/sec. For a 256x256 image the throughput would be 650 frames
/sec, and for a 512x512 image it would be 162 frames/sec.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 5x5 Mask: The coefficients for an Edge, Sobel X, Sobel Y, Sobel X-Y, Blur, Smooth, Sharpen,
Gaussian, or Identity filter can be selected.

 Sample Period: The sample period at which the input signal runs at is required
470 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=470

BPSK AWGN Channel
BPSK AWGN Channel
The Xilinx BPSK AWGN Channel reference block adds scaled white Gaussian
noise to an input signal. The noise is created by the White Gaussian Noise
Generator reference block.

The noise is scaled based on the SNR to achieve the desired noise variance, as
shown below. The SNR is defined as (Eb/No) in dB for uncoded BPSK with unit
symbol energy (Es = 1). The SNR input is UFix8_4 and the valid range is from 0.0
to 15.9375 in steps of 0.0625dB.

To use the AWGN in a system with coding and/or to use the core with different
modulation formats, it is necessary to adjust the SNR value to accommodate the

difference in spectral efficiency. If we have BPSK modulation with rate 1/2 coding and keep Es = 1
and No constant, then Eb = 2 and Eb/No = SNR + 3 dB. If we have uncoded QPSK modulation with
I = +/-1 and Q = +/-1 and add independent noise sequences, then each channel looks like an
independent BPSK channel and the Eb/No = SNR. If we then add rate 1/2 coding to the QPSK case,
we have Eb/No = SNR + 3 dB.

The overall latency of the AWGN Channel is 15 clock cycles. Channel output is a 17 bit signed
number with 11 bits after the binary point. The input port snr can be any type. The reset port must be
Boolean and the input port din must be of unsigned 1-bit type with binary point position at zero.

Block Parameters
The block parameter is the decimal starting seed value.

Reference
[1] A. Ghazel, E. Boutillon, J. L. Danger, G. Gulak and H. Laamari, Design and Performance
Analysis of a High Speed AWGN Communication Channel Emulator, IEEE PACRIM Conference,
Victoria, B. C., Aug. 2001.

[2] Xilinx Data Sheet: Additive White Gaussian Noise (AWGN) Core v1.0, Xilinx, Inc. October 2002
System Generator for DSP Reference Guide www.xilinx.com 471
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=471

Chapter 2: Xilinx Reference Blockset
CIC Filter
Cascaded integrator-comb (CIC) filters are multirate filters used for realizing large
sample rate changes in digital systems. Both decimation and interpolation structures
are supported. CIC filters contain no multipliers; they consist only of adders,
subtractors and registers. They are typically employed in applications that have a
large excess sample rate; that is, the system sample rate is much larger than the

bandwidth occupied by the signal. CIC filters are frequently used in digital down-converters and
digital up-converters.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Interface
The CIC Block has a single data input port and a data output port:

 xn : data input port, can be between 1 and 128 bits (inclusive).

 yn : data output port

The two basic building blocks of a CIC filter are the integrator and the comb. A single integrator is
a single-pole IIR filter with a transfer function of:

H(z) = (1 - z-1)-1

The integrator's unity feedback coefficient is y[n] = y[n-1] + x[n].

A single comb filter is an odd-symmetric FIR filter described by:

y[n] = x[n] - x[n - RM]

M is the differential delay selected in the block dialog box, and R is the selected integer rate change
factor. The transfer function for a single comb stage is

H(z) = 1 -z-RM

As seen in the two figures below, the CIC filter cascades N integrator sections together with N comb
sections. To keep the integrator and comb structures independent of rate change, a rate change block
(for example, an up-sampler or down-sampler) is inserted between the sections. In the interpolator,
the up-sampler causes a rate increase by a factor of R by inserting R-1 zero-valued samples between
consecutive samples of the comb section output. In the decimator, the down-sampler reduces the
sample rate by a factor of R by taking subsamples of the output from the last integrator stage.
472 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=472

CIC Filter
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Input Bit Width: Width of input sample.

 Input Binary Point: Binary point location of input.

 Filter Type: Interpolator or Decimator

 Sample Rate Change: 8 to 16384 (inclusive)

 Number of Stages: 1 to 32 (inclusive)

 Differential Delay: 1 to 4 (inclusive)

 Pipeline Differentiators: On or Off

Reference
E. B. Hogenauer. An economical class of digital filters for decimation and interpolation. IEEE
Transactions on Acoustics, Speech and Signal Processing, ASSP- 29(2):155{162, 1981
System Generator for DSP Reference Guide www.xilinx.com 473
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=473

Chapter 2: Xilinx Reference Blockset
Convolutional Encoder
The Xilinx Convolutional Encoder Model block implements an encoder for
convolutional codes. Ordinarily used in tandem with a Viterbi decoder, this block
performs forward error correction (FEC) in digital communication systems.

Values are encoded using a linear feed forward shift register which computes
modulo-two sums over a sliding window of input data, as shown in the figure
below. The length of the shift register is specified by the constraint length. The

convolution codes specify which bits in the data window contribute to the modulo-two sum.
Resetting the block will set the shift register to zero. The encoder rate is the ratio of input to output
bit length; thus, for example a rate 1/2 encoder outputs two bits for each input bit. Similarly, a rate
1/ 3 encoder outputs three bits for each input bit.

Implementation

The block is implemented using a form of parameterizable mux-based collapsing. In this method
constants drive logic blocks. Here the constant is the convolution code which is used to determine
which register in the linear feed forward shift register is to be used in computing the output. All logic
driven by a constant is optimized away by the down stream logic synthesis tool.
474 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=474

Convolutional Encoder
Block Interface

The block currently has three input ports and three output ports. The din port must have type
UFix1_0. It accepts the values to be encoded. The vin port indicates that the values presented on
din are valid. Only valid values are encoded. The rst port will reset the convolution encoder when
high. To add an enable port, you can open the subsystem and change the constant "Enable" to an
input port. The output ports dout1 and dout2 output the encoded data. The port dout1
corresponds to the first code in the array, dout2 to the second, and so on. To add additional output
ports, open the subsystem and follow the directions in the model. The output port vout indicates
the validity of output values.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Constraint Length: Equals n+1, where n is the length of the constraint register in the encoder

 Convolutional code array (octal): Array of octal convolution codes. Output rate is derived
from the array length. Between 2 and 7 (inclusive) codes can be entered
System Generator for DSP Reference Guide www.xilinx.com 475
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=475

Chapter 2: Xilinx Reference Blockset
CORDIC ATAN
The Xilinx CORDIC ATAN reference block implements a rectangular-to-polar
coordinate conversion using a fully parallel CORDIC (COordinate Rotation DIgital
Computer) algorithm in Circular Vectoring mode.

That is, given a complex-input <x,y>, it computes a new vector <m,a>, where
magnitude m = K x sqrt (x2 + y2), and the angle a = arctan(y/x). As is common, the
magnitude scale factor K = 1.646760... is not compensated in the processor, for
example, the magnitude output should be scaled by this factor. The CORDIC

processor is implemented using building blocks from the Xilinx blockset.

The CORDIC ATAN algorithm is implemented in the following 3 steps:

1. Coarse Angle Rotation. The algorithm converges only for angles between -pi/2 and pi/2, so if x
< zero, the input vector is reflected to the 1st or 3rd quadrant by making the x-coordinate non-
negative.

2. Fine Angle Rotation. For rectangular-to-polar conversion, the resulting vector is rotated
through progressively smaller angles, such that y goes to zero. In the i-th stage, the angular
rotation is by either +/- atan(1/2i), depending on whether or not its input y is less than or greater
than zero.

3. Angle Correction. If there was a reflection applied in Step 1, this step applies the appropriate
angle correction by subtracting it from +/- pi.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Number of Processing Elements: specifies the number of iterative stages used for fine angle
rotation.

 X,Y Data Width: specifies the width of the inputs x and y. The inputs x, and y should be
signed data type having the same data width.

 X,Y Binary Point Position: specifies the binary point position for inputs x and y. The inputs x
and y should be signed data type with the same binary point position.

 Latency for each Processing element: This parameter sets the pipeline latency after each
circular rotation stage.

The latency of the CORDIC arc tangent block is calculated based on the formula specified as
follows: Latency = 3 + sum (latency of Processing Elements)

Reference
1) J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. On Electronic
Computers, Vol. EC-8, 1959, pp. 330-334.

2) J. S. Walther, A Unified Algorithm for Elementary Functions, Spring Joint Computer Conference
(1971) pp. 379-385.

3) Yu Hen Hu, CORDIC-Based VLSI Architectures for Digital Signal Processing, IEEE Signal
Processing Magazine, pp. 17-34, July 1992.
476 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=476

CORDIC DIVIDER
CORDIC DIVIDER
The Xilinx CORDIC DIVIDER reference block implements a divider circuit using
a fully parallel CORDIC (COordinate Rotation DIgital Computer) algorithm in
Linear Vectoring mode.

That is, given a input <x,y>, it computes the output y/x. The CORDIC processor is
implemented using building blocks from the Xilinx blockset.

The CORDIC divider algorithm is implemented in the following 4 steps:

1. Co-ordinate Rotation. The CORDIC algorithm converges only for positive values of x. The
input vector is always mapped to the 1st quadrant by making the x and y coordinate non-
negative. The divider circuit has been designed to converge for all values of X and Y, except for
the most negative value.

2. Normalization. The CORDIC algorithm converges only for y less than or equal to 2x. The
inputs x and y are shifted to the left until they have a 1 in the most significant bit (MSB). The
relative shift of y over x is recorded and passed on to the co-ordinate correction stage.

3. Linear Rotations. For ratio calculation, the resulting vector is rotated through progressively
smaller angles, such that y goes to zero. In the final stage, the rotation yields y/x.

4. Co-ordinate Correction. Based on the co-ordinate axis and a relative shift applied to y over x,
this step assigns the appropriate sign to the resulting ratio and multiplies it with 2^(relative shift
of y over x).

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Number of Processing Elements specifies the number of iterative stages used for linear
rotation.

 X,Y Data Width: specifies the width of the inputs x and y. The inputs x and y should be signed
data type with the same data width.

 X,Y Binary Point Position: specifies the binary point position for inputs x and y. The inputs x
and y should be signed data type with the same binary point position.

 Latency for each Processing element: This parameter sets the pipeline latency after each
iterative linear rotation stage.

The latency of the CORDIC divider block is calculated based on the formula specified as follows:
Latency = 4 + data width + sum (latency of Processing Elements)

Reference
1. J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. On Electronic

Computers, Vol. EC-8, 1959, pp. 330-334.

2. J. S. Walther, A Unified Algorithm for Elementary Functions, Spring Joint Computer
Conference (1971) pp. 379-385.

3. Yu Hen Hu, CORDIC-Based VLSI Architectures for Digital Signal Processing, IEEE Signal
Processing Magazine, pp. 17-34, July 1992.
System Generator for DSP Reference Guide www.xilinx.com 477
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=477

Chapter 2: Xilinx Reference Blockset
CORDIC LOG
The Xilinx CORDIC LOG reference block implements a natural logarithm circuit
using a fully parallel CORDIC (COordinate Rotation DIgital Computer)
algorithm in Hyperbolic Vectoring mode.

That is, given a input x, it computes the output log (x) and also provides a flag for
adding complex pi value to the output if a complex output is desired. The
CORDIC processor is implemented using building blocks from the Xilinx
blockset.

The natural logarithm is calculated indirectly by the CORDIC algorithm by applying the identities
listed below.

log (w) = 2 x tanh-1[(w-1) / (w+1)]

log (w x 2E) = log (w) + E x log (2)

The CORDIC LOG algorithm is implemented in the following 4 steps:

1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If x <
zero, the input data is converted to a non-negative number. If x = 0, a zero detect flag is passed
along to the last stage which can be exposed at the output stage. The log circuit has been
designed to converge for all values of x, except for the most negative value.

2. Normalization: The CORDIC algorithm converges only for x, between the values 0.5
(inclusive) and 1. During normalization, the input X is shifted to the left till it has a 1 in the most
significant bit. The log output is derived using the identity log(w) = 2 x tanh-1{ (w-l) / (w+1) }.
Based on this identity, the input w gets mapped to, x = w + 1 and y = w - 1.

3. Linear Rotations: For tanh-1{(w-l) / (w+1)} calculation, the resulting vector is rotated
through progressively smaller angles, such that y goes to zero.

4. Co-ordinate Correction: If the input was negative a CMPLX_PI flag is provided at the output
for adding PI if a complex output is desired. If a left shift was applied to X, this step adjusts the
output by using the equation log (w x 2E) = log (w) + E x log (2).

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Number of Processing Elements (integer value starting from 1): specifies the number of
iterative stages used for hyperbolic rotation.

 Input Data Width: specifies the width of input x. The inputs x should be signed data type
having the same data width.

 Input Binary Point Position: specifies the binary point position for input x. The input x
should be signed data type with the same binary point position.

 Latency for each Processing Element [1001]: This parameter sets the pipeline latency after
each circular rotation stage.

The latency of the CORDIC LOG block is calculated based on the formula specified as follows:
Latency = 2+ Data Width+sum (latency of Processing Elements).
478 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=478

CORDIC LOG
Reference

1. J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. On Electronic
Computers, Vol. EC-8, 1959, pp. 330-334.

2. J. S. Walther, A Unified Algorithm for Elementary Functions, Spring Joint Computer
Conference (1971) pp. 379-385.

3. Yu Hen Hu, CORDIC-Based VLSI Architectures for Digital Signal Processing, IEEE Signal
Processing Magazine, pp. 17-34, July 1992.
System Generator for DSP Reference Guide www.xilinx.com 479
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=479

Chapter 2: Xilinx Reference Blockset
CORDIC SINCOS
The Xilinx CORDIC SINCOS reference block implements Sine and Cosine
generator circuit using a fully parallel CORDIC (COordinate Rotation DIgital
Computer) algorithm in Circular Rotation mode.

That is, given input angle z, it computes the output cosine (z) and sine (z). The
CORDIC processor is implemented using building blocks from the Xilinx blockset.
The CORDIC sine cosine algorithm is implemented in the following 3 steps:

1. Coarse Angle Rotation. The algorithm converges only for angles between -pi/2 and pi/2. If z
> pi/2, the input angle is reflected to the 1st quadrant by subtracting pi/2 from the input angle.
When z < -pi/2, the input angle is reflected back to the 3rd quadrant by adding pi/2 to the input
angle. The sine cosine circuit has been designed to converge for all values of z, except for the
most negative value.

2. Fine Angle Rotation. By setting x equal to 1/1.646760 and y equal to 0, the rotational mode
CORDIC processor yields cosine and sine of the input angle z.

3. Co-ordinate Correction. If there was a reflection applied in Step 1, this step applies the
appropriate correction.

For z > pi/2: using z = t + pi/2, then
sin (z) = sin(t).cos(pi/2) + cos(t).sin(pi/2) = cos(t)
cos (z) = cos(t).cos(pi/2) - sin(t).sin(pi/2) = -sin(t)

For z < pi/2: using z = t - pi/2, then
sin (z) = sin(t).cos(-pi/2) + cos(t).sin(-pi/2) = -cos(t)
cos (z) = cos(t).cos(-pi/2) - sin(t).sin(-pi/2) = sin(t)

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Number of Processing Elements: specifies the number of iterative stages used for linear
rotation.

 Input Data Width: specifies the width of the input z. The input z should be signed data type
with the same data width as specified.

 Input Binary Point Position: specifies the binary point position for input z. The input z
should be signed data type with the same binary point position. The binary point should be
chosen to provide enough bits for representing pi/2.

 Latency for each Processing element: This parameter sets the pipeline latency after each
iterative circular rotation stage. The latency of the CORDIC SINCOS block is calculated based
on the formula specified as follows: Latency = 3 + sum (latency of Processing Elements)

Reference
1) J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. On Electronic
Computers, Vol. EC-8, 1959, pp. 330-334. 2) J. S. Walther, A Unified Algorithm for Elementary
Functions, Spring Joint Computer Conference (1971) pp. 379-385. 3) Yu Hen Hu, CORDIC-Based
VLSI Architectures for Digital Signal Processing, IEEE Signal Processing Magazine, pp. 17-34,
July 1992.
480 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=480

CORDIC SQRT
CORDIC SQRT
The Xilinx CORDIC SQRT reference block implements a square root circuit
using a fully parallel CORDIC (COordinate Rotation DIgital Computer)
algorithm in Hyperbolic Vectoring mode.

That is, given input x, it computes the output sqrt (x). The CORDIC processor is
implemented using building blocks from the Xilinx blockset.

The square root is calculated indirectly by the CORDIC algorithm by applying
the identity listed as follows. sqrt (w) = sqrt { (w + 0.25)2 - (w - 0.25)2 }

The CORDIC square root algorithm is implemented in the following 4 steps:

1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If x <
zero, the input data is converted to a non-negative number. If x = 0, a zero detect flag is passed
to the co-ordinate correction stage. The square root circuit has been designed to converge for all
values of x, except for the most negative value.

2. Normalization: The CORDIC algorithm converges only for x between 0.25 (inclusive) and 1.
During normalization, the input x is shifted to the left till it has a 1 in the most significant non-
signed bit. If the left shift results in an odd number of shift values, a right shift is performed
resulting in an even number of left shifts. The shift value is divided by 2 and passed on to the co-
ordinate correction stage. The square root is derived using the identity sqrt (w) = sqrt {(w +
0.25)2 - (w - 0.25)2}. Based on this identity the input x gets mapped to, X = x + 0.25 and Y = x
- 0.25.

3. Hyperbolic Rotations: For sqrt (X2 - Y2) calculation, the resulting vector is rotated through
progressively smaller angles, such that Ygoes to zero.

4. Co-ordinate Correction: If the input was negative and a left shift was applied to x, this step
assigns the appropriate sign to the output and multiplies it with 2-shift. If the input was zero, the
zero detect flag is used to set the output to 0.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Number of Processing Elements (integer value starting from 1): specifies the number of
iterative stages used for linear rotation.

 Input Data Width: specifies the width of the inputs x. The input x should be signed data type
with the same data width as specified.

 Input Binary Point Position: specifies the binary point position for input x. The input x
should be signed data type with the specified binary point position.

 Latency for each Processing Element [1001]: This parameter sets the pipeline latency after
each iterative hyperbolic rotation stage.

The latency of the CORDIC square root block is calculated based on the formula specified
below:

Latency = 7 + (data width – binary point)

 + mod { (data width – binary point) , 2 }

 + sum (latency of Processing Elements)
System Generator for DSP Reference Guide www.xilinx.com 481
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=481

Chapter 2: Xilinx Reference Blockset
Reference

 1) J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. On Electronic
Computers, Vol. EC-8, 1959, pp. 330-334.

 2) J. S. Walther, A Unified Algorithm for Elementary Functions, Spring Joint Computer
Conference (1971) pp. 379-385.

 3) Yu Hen Hu, CORDIC-Based VLSI Architectures for Digital Signal Processing, IEEE Signal
Processing Magazine, pp. 17-34, July 1992.
482 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=482

Dual Port Memory Interpolation MAC FIR Filter
Dual Port Memory Interpolation MAC FIR Filter
The Xilinx Dual Port Memory Interpolation MAC FIR filter reference block
implements a multiply-accumulate-based FIR filter to perform a user-selectable
interpolation. One dedicated multiplier and one Dual Port Block RAM are used in the
n-tap filter. The filter configuration helps illustrate a cyclic RAM buffer technique for
storing cofficients and data samples in a single block ram. The filter allows users to
select the interpolation factor they require. The Virtex FPGA family (and Virtex
family derivatives) provide dedicated circuitry for building fast, compact adders,

multipliers, and flexible memory architectures. The filter design takes advantage of these silicon
features by implementing a design that is compact and resource-efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Data Input Bit Width: Width of input sample.

 Data Input Binary Point: Binary point location of input.

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point Per Coefficient: Binary point location for each coefficient.

 Interpolation Ratio: Select the Interpolation Ratio of the filter (2 to 10, inclusive).

 Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438.
System Generator for DSP Reference Guide www.xilinx.com 483
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=483

Chapter 2: Xilinx Reference Blockset
Interpolation Filter
The Xilinx n-tap Interpolation Filter reference block implements a multiply-
accumulate-based FIR filter to perform a user selected interpolation. One dedicated
multiplier and one Dual Port Block RAM are used in the n-tap filter. The filter
configuration helps illustrate a cyclic RAM buffer technique for storing coefficients
and data samples in a single block ram. The filter allows users to select the
interpolation factor they require. The Virtex FPGA family (and Virtex family

derivatives) provide dedicated circuitry for building fast, compact adders, multipliers, and flexible
memory architectures. The filter design takes advantage of these silicon features by implementing a
design that is compact and resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Input Data Bit Width: Width of input sample.

 Input Data Binary Point: Binary point location of input.

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point per Coefficient: Binary point location for each coefficient.

 Interpolation Factor: Select the Interpolation Ratio of the filter. Range from 2 to 10.

 Sample Period: Sample period of input.

Reference
J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th International
Field-Programmable Logic and Applications Conference (FPL). Montpellier, France, September
2002. Lecture Notes in Computer Science 2438
484 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=484

m-channel n-tap Transpose FIR Filter
m-channel n-tap Transpose FIR Filter
The Xilinx m-channel n-tap Transpose FIR Filter uses a fully parallel architecture
with Time Division Multiplexing. The Virtex FPGA family (and Virtex family
derivatives) provide dedicated shift register circuitry called the SRL16E, which
are exploited in the architecture to achieve optimal implementation of the
multichannel architecture. The Time Division Multiplexer and Time Division
Demux can be selected to be implemented or not. Embedded Multipliers are used
for the multipliers.

As the number of coefficients changes so to does the structure underneath as it is a dynamically built
model.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Input Bit Width: Width of input sample.

 Input Binary Point: Binary point location of input.

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Coefficients Bit Width: Bit width of each coefficient.

 Coefficients Binary Point: Binary point location for each coefficient.

 Number of Channels: Specify the number of channels desired. There is no limit to the number
of channels supported.

 Time Division Multiplexer Front End: The TDM front-end circuit can be implemented or
not (if the incoming data is already TDM)

 Time Division DeMultiplexer Back End: The TDD back-end circuit can be implemented or
not (if you desire a TDM output). This is useful if the filter feeds another multichannel
structure.

 Input Sample Period: Sample period of input.
System Generator for DSP Reference Guide www.xilinx.com 485
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=485

Chapter 2: Xilinx Reference Blockset
Mealy State Machine
A “Mealy machine” is a finite state machine whose output is a function of
state transition, for example, a function of the machine’s current state and
current input. A Mealy machine can be described with the following
block diagram:

There are many ways to implement such state machines in System Generator (e.g., using the MCode
block to implement the transition function, and registers to implement state variables). This
reference block provides a method for implementing a Mealy machine using block and distributed
memory. The implementation is very fast and efficient. For example, a state machine with 8 states,
1 input, and 2 outputs that are registered can be realized with a single block RAM that runs at more
than 150 MHz in a Xilinx Virtex device.

The transition function and output mapping are each represented as an N x M matrix, where N is the
number of states, and M is the size of the input alphabet (e.g., M = 2 for a binary input). It is
convenient to number rows and columns from 0 to N – 1 and 0 to M – 1 respectively. Each state is
represented as an unsigned integer from 0 to N - 1, and each alphabet character is represented as an
unsigned integer from 0 to M - 1. The row index of each matrix represents the current state, and the
column index represents the input character

For the purpose of discussion, let F be the N x M transition function matrix, and O be the N x M
output function matrix. Then F(i,j) is the next state when the current state is i and the current input
character is j, and O(i,j) is the corresponding output of the Mealy machine.
486 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=486

Mealy State Machine
Example

Consider the problem of designing a Mealy machine to recognize the pattern '1011' in a serial stream
of bits. The state transition diagram and equivalent transition table are shown below.

The table lists the next state and output that result from the current state and input. For example, if
the current state is 3 and the input is 1, the next state is 1 and the output is 1, indicating the detection
of the desired sequence.

The Mealy State Machine block is configured with next state and output matrices obtained from the
next state/output table discussed above. These matrices are constructed as shown below:

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.
System Generator for DSP Reference Guide www.xilinx.com 487
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=487

Chapter 2: Xilinx Reference Blockset
The next state logic, state register, and output logic are implemented using high speed dedicated
block RAM. The output logic is implemented using a distributed RAM configured as a lookup table,
and therefore has zero latency.

The number of bits used to implement a Mealy state machine is given by the equations:

depth = (2k)(2i) = 2k+i

width = k+o

N = depth*width = (k+o)(2k+i)

where

N = total number of block RAM bits

s = number of states

k = ceil(log2(s))

i = number of input bits

o = number of output bits
488 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=488

Mealy State Machine
The following table gives examples of block RAM sizes necessary for various state machines:

The block RAM width and depth limitations are described in the online help for the Single Port
RAM block.

Number of States
Number of Input

Bits
Number of Output

Bits
Block RAM Bits

Needed

2 5 10 704

4 1 2 32

8 6 7 5120

16 5 4 4096

32 4 3 4096

52 1 11 2176

100 4 5 24576
System Generator for DSP Reference Guide www.xilinx.com 489
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=489

Chapter 2: Xilinx Reference Blockset
Moore State Machine
A "Moore machine" is a finite state machine whose output is only a
function of the machine's current state. A Moore state machine can be
described with the following block diagram:

There are many ways to implement such state machines in System Generator (e.g., using the MCode
block to implement the transition function, and registers to implement state variables). This
reference block provides a method for implementing a Moore machine using block and distributed
memory. The implementation is very fast and efficient. For example, a state machine with 8 states,
1 input, and 2 outputs that are registered can be realized with a single block RAM that runs at more
than 150 MHz in a Xilinx Virtex device.

The transition function and output mapping are each represented as an N x M matrix, where N is the
number of states, and M represents the number of possible input values (e.g., M = 2 for a one bit
input). It is convenient to number rows and columns from 0 to N – 1 and 0 to M – 1 respectively.
Each state is represented as an unsigned integer from 0 to N - 1, and each alphabet character is
represented as an unsigned integer from 0 to M - 1. The row index of each matrix represents the
current state, and the column index represents the input character.

For the purpose of discussion, let F be the N x M transition function matrix, and O be the N x M
output function matrix. Then F(i,j) is the next state when the current state is i and the current input
character is j, and O(i,j) is the corresponding output of the Moore machine.
490 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=490

Moore State Machine
Example

Consider the problem of designing a Moore machine to recognize the pattern '1011' in a serial
stream of bits. The state transition diagram and equivalent transition table are shown below:

The table lists the next state and output that result from the current state and input. For example, if
the current state is 4, the output is 1 indicating the detection of the desired sequence, and if the input
is 1 the next state is state 1.

The Registered Moore State Machine block is configured with next state matrix and output array
obtained from the next state/output table discussed above. They are constructed as follows:

The rows of the matrices correspond to the current state. The next state matrix has one column for
each input value. The output array has only one column since the input value does not affect the
output of the state machine.
System Generator for DSP Reference Guide www.xilinx.com 491
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=491

Chapter 2: Xilinx Reference Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The next state logic and state register in this block are implemented with high speed dedicated block
RAM. The output logic is implemented using a distributed RAM configured as a lookup table, and
therefore has zero latency.

The number of bits used to implement a Moore state machine is given by the equations:

ds = (2k)(2i) = 2k+i

ws = k

Ns = ds*ws = (k)(2k+i)

where

Ns = total number of next state logic block RAM bits

s = number of states

k = ceil(log2(s))

i = number of input bits

ds = depth of state logic block RAM

ws = width of state logic block RAM

The following table gives examples of block RAM sizes necessary for various state machines:

The block RAM width and depth limitations are described in the core datasheet for the Single Port
Block Memory.

Number of States
Number of Input

Bits
Block RAM Bits

Needed

2 5 64

4 1 8

8 6 1536

16 5 2048

32 4 2560

52 1 768

100 4 14336
492 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=492

Multipath Fading Channel Model
Multipath Fading Channel Model
The Multipath Fading Channel Model block implements a model of
a fading communication channel. The model supports both Single
Input/Single Output (SISO) and Multiple Input/Multiple Output
(MIMO) channels. The model provides functionality similar to the
Simulink 'Multipath Rayleigh Fading Channel' block in a hardware
realizable form. This enables high speed hardware co-simulation of
entire communication links.

Theory
The block implements the Kronecker model. This model is suitable for systems with antenna arrays
not exceeding four elements. The primary model parameters are:

 MT: The number of antennas in the transmit array. For SISO systems this is 1.

 MR: The number of antennas in the receive array. For SISO systems this is 1.

 N; The number of discrete paths between the arrays. For frequency flat channels this is 1.

The model can be represented by the discrete time equation:

Where:

 x(.): Transmit symbol column vector (MT complex elements, time varying).

 T: Sample interval.

 n: Sample index.

 dk: Delay for path k.

 Hk(.): Channel coefficient matrix (MR×MT complex elements, time varying).

 gk: Gain for path k.

 y(.): Receive symbol column vector (MR complex elements, time varying).

The channel coefficient matrix can be further defined in terms of the spatial covariance matrices of
the antenna arrays:

Where:

 RT,k: Transmit array spatial covariance matrix for path k.

 HU,k(.): Uncorrelated channel coefficient matrix for path k (MR×MT elements, time varying).

 RR,k: Receive array spatial covariance matrix for path k.
System Generator for DSP Reference Guide www.xilinx.com 493
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=493

Chapter 2: Xilinx Reference Blockset
Implementation

The above equations can be rephrased as sparse matrix operations. This allows the elimination of the
path summation. The model can then be implemented as follows:

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Paths tab

Parameters specific to the Paths tab are as follows:

 Path Delay Vector: Specify the delay spread for each path in the model. Each element
represents the number of samples to delay the path by. The value must be an N element vector.

 Path Gain Vector: Specify the gain for each path in the model. Each element represents the
linear gain of the path. The value must be an N element vector

Covariance tab

To support frequency selective channels (N>1), these parameters can be specified as three
dimensional arrays. The first two dimensions specify the square covariance matrix, the third
specifies the path. If a two dimensional array is specified for a frequency selective channel, it is
automatically replicated to produce a three dimensional array. The third dimension is optional for
frequency flat (N=1) channels.

 Transmit Array Spatial Covariance Matrices: Specify the transmit antenna array covariance
matrix for each path. The value can be a MT×MT matrix, or a MT×MT×N array.

 Receive Array Spatial Covariance Matrices: Specify the receive antenna array covariance
matrix for each path. The value can be a MR×MR matrix, or a MR×MR×N array.

Fading tab

 Spectrum Data: Specify the fading phase and frequency response of each physical path. The
number of physical paths is the product of the number of discrete paths (N), and the number of
paths between each element of the transmit and receive antenna arrays (MT×MR). Spectrum
data must be a multidimensional structure with dimensions MR×MT×N.
494 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=494

Multipath Fading Channel Model
 Rate: Specify the interpolation rate from maximum Doppler frequency (FDMAX) to channel
sample frequency (FS). It can be determined as follows:

Internal tab

 Datapath Width in Bits: Specify the width in bits of all internal datapaths.

 Transmit Multiply Binary Point: Specify the binary point position at the output of the RT
multiply block.

 Fading Multiply Binary Point: Specify the binary point position at the output of the fading
multiply block.

 Receive Multiply Binary Point: Specify the binary point position at the output of the RR
multiply block.

 Covariance Matrix Binary Point: Specify the binary point position of the covariance matrix
coefficients.

 Random Seed: Specify the 61-bit (16 hexadecimal digits) seed of the phase noise random
number generator.

Functions
The model includes two MATLAB functions to simply parameter generation.

create_r_la

The 'create_r_la(M,P,phi0,d,lambda,AS)' function generates a covariance matrix from steering
vectors as described in Reference [1] at the end of this block description.

 M: Specify the number of antennas in the array (transmit or receive).

 P: Specify the number of random paths to integrate over to generate the matrix (a value of
50000 gives good results).

 phi0: Specify the mean angle of departure (for transmit arrays) or arrival (for receive arrays).
Value is in radians.

 d: Specify antenna spacing as a vector of antenna positions along a baseline. If this value is
specified as a scalar value, the function assumes a uniform linear array (ULA) with the
elements evenly distributed about the baseline origin.

 lambda: Specify the wavelength, in meters.

 AS: Specify the angular spread around the mean angle in radians.

For example, to create a matrix for a 3 element ULA with element spacing of /2 at 2GHz with an
angular spread of 15°:

lambda=2.0e9/2.99e8;
create_r_la(3,50000,0,lambda/2,lambda,15*(2*pi/360))

calc_path_data

The 'calc_path_data(spec_type,spec_fd)' function generates spectrum data for a
model.
System Generator for DSP Reference Guide www.xilinx.com 495
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=495

Chapter 2: Xilinx Reference Blockset
 spec_type: Specify the spectrum type for each physical path in the model. This value must be
a multidimensional array with dimensions MR×MT×N. Each element specifies the spectrum
type for the physical path.

 spec_fd: Specify the spectrum Doppler frequency for each physical path, normalized to the
maximum Doppler frequency (FDMAX). This value can be a multidimensional array with
dimensions MR×MT×N or scalar, in which case the value is applied to all physical paths. If
omitted a value of unity is assumed.

The value of each spectrum type element specifies the spectrum shape to use for that physical path.
Four spectrum types are supported.

 Type 0: Specify a null physical path. The path coefficients are zero, and the path exhibits no
transmission.

 Type 1: Specify an impulse physical path. An impulse path has a single impulse in its
spectrum. They can be used to represent the line-of-sight (LOS) paths in a channel model (such
as required by Rician channels).

 Type 2: Specify a classic spectrum physical path. The classic spectrum is also known as the
Jakes or Clarke spectrum. It is used to model wireless links with mobile stations [2] [3] [4] and
is defined as:

 Type 3: Specify a rounded spectrum physical path. The rounded spectrum is used to model
wireless links with fixed stations [5] and is defined as:

Once generated, each spectrum is normalized to unity power.

For example, to create and plot spectrum data for a MT=4, MR=3 and N=2 channel, where the two
paths combine to give Rician fading (for example, impulse and classic). We assume that the mobile
station (MS) is receding from the base station (BS) at 0.707×vMS (giving fd=0.707 for the LOS
physical paths):

Mt=4; Mr=3; N=2;
spec_type=cat(3,ones(Mr,Mt)*1 ,ones(Mr,Mt)*2);
spec_fd =cat(3,ones(Mr,Mt)*0.707,ones(Mr,Mt)*1);
spec_data=calc_path_data(spec_type,spec_fd);
plot([spec_data.spectrum]);

Data Format
Internally the model uses a three signal interface for transferring complex vector quantities between
blocks. This interface allows matrix/vector operations to be chained together. Vectors are transferred
as streams of interleaved real and imaginary samples tagged with frame and repetition handshaking
signals. This interface allows vectors to be repeated multiple times per frame. This feature can be
used to simplify matrix-vector multiplies, where the vector values are required repeatedly, once per
matrix row.

The three signal interface is as follows:
496 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=496

Multipath Fading Channel Model
 reim: Stream of interleaved real and imaginary (I and Q) samples for each vector. Potentially
each vector is transferred multiple times, as indicated by the rd signal.

 fd: Indicates the start of each vector frame.

 rd: Indicates the start of each vector repetition.

The diagram below shows how a 3-element vector would be represented before multiplication by a
3×3 matrix. The vector is repeated 3 times (once for each matrix row) greatly simplifying the
multiplication logic.

Input

Input data is presented on the in_fd, in_rd, and in_reim ports. Vector repetition is not required at the
input, hence the in_rd signal is ignored, and only the first 2×MT samples are used. For example, for
a MT=2 channel:
System Generator for DSP Reference Guide www.xilinx.com 497
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=497

Chapter 2: Xilinx Reference Blockset
Output

Output data is presented on the out_fd, out_rd, and out_reim ports. The data is repeated throughout
the frame. For example, for a MR=3 channel.:

Timing
The number of samples between successive fd pulses (TVEC), must be sufficient for the internal
blocks to process the data. The number of cycles required by each block is a function of the MT,
MR, N, and RATE parameters as follows:

 RT Multiply: Requires 2×MT×MT×N cycles

 Fading Multiply: Requires 2×MT×MR×N×ceil(64/RATE) cycles

 RR Multiply: Requires 2×MR×MR×N cycles

Hence, the minimum value of TVEC is:

The model will produce an error during simulation if this constraint is not met.

Initialization
The model requires approximate 3×R input frames for the fading coefficient generator to initialize.
During this period the channel coefficients, and consequentially the output data, is zero.

Demonstrations

Two demonstrations are included that show how the model can be used. Each includes notes on how
parameters can be calculated.

 SISO Channel Model : A demo showing a SISO channel based on 3GPP TS 25.104, Annex
B.2, Case 4.

 MIMO Channel Model : A demo showing a frequency flat MIMO channel.

Hardware Co-Simulation Example
An example of how to use the model for hardware co-simulation is included in the
<ISE_Design_Suite_tree>/sysgen/examples/mfcm_hwcosim directory. The
directory contains three files:
498 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=498

Multipath Fading Channel Model
 mfcm_hw.mdl : Model specifying the hardware component of the co-simulation design.
Design consists of a shared memory for data input, a channel model, and a shared memory for
data output.

 mfcm_hw_cw.bit: The 'mfcm_hw.mdl' design compiled for the XtremeDSP kit.

 mfcm_cosim.mdl : Model specifying the software component of the co-simulation. The shared
memory blocks are used to pass packets of data to the hardware for processing, and to receive
packets of processed data. By default this design will use the pre-generated 'mfcm_hw_cw.bit'
– this will have to be regenerated for different hardware targets.

Reference

1. A. Forenza and R.W. Heath Jr. Impact of Antenna Geometry on MIMO Communication in
Indoor Clustered Channels, Wireless Networking and Communications Group, ECE
Department, The University of Texas at Austin.

2. 3GPP TS 25.101 V6.7.0 (2005-03) Annex B, User Equipment (UE) radio transmission and
reception (FDD), Technical Specification Group Radio Access Network, 3rd Generation
Partnership Project.

3. 3GPP TS 25.104 V6.8.0 (2004-12) Annex B, Base Station (BS) radio transmission and
reception (FDD), Technical Specification Group Radio Access Network, 3rd Generation
Partnership Project.

4. 3GPP TR 25.943 V6.0.0 (2004-12), Deployment aspects, Technical Specification Group Radio
Access Network, 3rd Generation Partnership Project.

5. IEEE 802.16.3c-01/29r4 (2001-07-16) Channel Models for Fixed Wireless Applications, IEEE
802.16 Broadband Wireless Access Working Group.
System Generator for DSP Reference Guide www.xilinx.com 499
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=499

Chapter 2: Xilinx Reference Blockset
n-tap Dual Port Memory MAC FIR Filter
The Xilinx n-tap Dual Port Block RAM MAC FIR Filter reference block implements
a multiply-accumulate-based FIR filter. One dedicated multiplier and one dual port
block RAM are used in the filter. The filter configuration illustrates a technique for
storing coefficients and data samples in filter design. The Virtex FPGA family (and
Virtex family derivatives) provide dedicated circuitry for building fast, compact
adders, multipliers, and flexible memory architectures. The filter design takes
advantage of these silicon features by implementing a design that is compact and

resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Data Input Bit Width: Width of input sample.

 Data Input Binary Point: Binary point location of input.

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point per Coefficient: Binary point location for each coefficient.

 Sample Period: Sample period of input.

Reference
 J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th

International Field-Programmable Logic and Applications Conference (FPL). Montpellier,
France, September 2002. Lecture Notes in Computer Science 2438
500 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=500

n-tap MAC FIR Filter
n-tap MAC FIR Filter
The Xilinx n-tap MAC FIR Filter reference block implements a multiply-
accumulate-based FIR filter. The three filter configurations help illustrate the
trade-offs between filter throughput and device resource consumption. The Virtex
FPGA family (and Virtex family derivatives) provide dedicated circuitry for
building fast, compact adders, multipliers, and flexible memory architectures.
Each filter design takes advantage of these silicon features by implementing a
design that is compact and resource efficient.

Implementation details are provided in the filter design subsystems. To read the annotations, place
the block in a model, then right-click on the block and select Explore from the popup menu. Double
click on one of the sub-blocks to open the sub-block model and read the annotations.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Coefficients: Specify coefficients for the filter. Number of taps is inferred from size of
coefficient vector.

 Number of Bits per Coefficient: Bit width of each coefficient.

 Binary Point for Coefficient: Binary point location for each coefficient.

 Number of Bits per Input Sample: Width of input sample.

 Binary Point for Input Samples: Binary point location of input.

 Input Sample Period: Sample period of input.

Reference
[1] J. Hwang and J. Ballagh. Building Custom FIR Filters Using System Generator. 12th
International Field-Programmable Logic and Applications Conference (FPL). Montpellier, France,
September 2002. Lecture Notes in Computer Science 2438
System Generator for DSP Reference Guide www.xilinx.com 501
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=501

Chapter 2: Xilinx Reference Blockset
Registered Mealy State Machine
A "Mealy machine" is a finite state machine whose output is a function of
state transition, for example, a function of the machine's current state and
current input. A "registered Mealy machine" is one having registered
output, and can be described with the following block diagram:

There are many ways to implement such state machines in System Generator (e.g., using the MCode
block to implement the transition function, and registers to implement state variables). This
reference block provides a method for implementing a Mealy machine using block and distributed
memory. The implementation is very fast and efficient. For example, a state machine with 8 states,
1 input, and 2 outputs that are registered can be realized with a single block RAM that runs at more
than 150 MHz in a Xilinx Virtex device.

The transition function and output mapping are each represented as an N x M matrix, where N is the
number of states, and M is the size of the input alphabet (e.g., M = 2 for a binary input). It is
convenient to number rows and columns from 0 to N – 1 and 0 to M – 1 respectively. Each state is
represented as an unsigned integer from 0 to N - 1, and each alphabet character is represented as an
unsigned integer from 0 to M - 1. The row index of each matrix represents the current state, and the
column index represents the input character

For the purpose of discussion, let F be the N x M transition function matrix, and O be the N x M
output function matrix. Then F(i,j) is the next state when the current state is i and the current input
character is j, and O(i,j) is the corresponding output of the Mealy machine.
502 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=502

Registered Mealy State Machine
Example

Consider the problem of designing a Mealy machine to recognize the pattern '1011' in a serial stream
of bits. The state transition diagram and equivalent transition table are shown below.

The table lists the next state and output that result from the current state and input. For instance, if
the current state is 3 and the input is 1, the next state is 1 and the output is 1, indicating the detection
of the desired sequence.

The Registered Mealy State Machine block is configured with next state and output matrices
obtained from the next state/output table discussed above. These matrices are constructed as shown
below:

Rows of the matrices correspond to states, and columns correspond to input values.
System Generator for DSP Reference Guide www.xilinx.com 503
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=503

Chapter 2: Xilinx Reference Blockset
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The next state logic, state register, output logic, and output register are implemented using high
speed dedicated block RAM. Of the four blocks in the state machine library, this is the fastest and
most area efficient. However, the output is registered and thus the input does not affect the output
instantaneously.

The number of bits used to implement a Mealy state machine is given by the equations:

depth = (2k)(2i) = 2k+i

width = k+o

N = depth*width = (k+o)(2k+i)

where

N = total number of block RAM bits

s = number of states

k = ceil(log2(s))

i = number of input bits

o = number of output bits

The following table gives examples of block RAM sizes necessary for various state machines:

Number of States
Number of Input

Bits
Number of Output

Bits
Block RAM Bits

Needed

2 5 10 704

4 1 2 32

8 6 7 5120

16 5 4 4096

32 4 3 4096

52 1 11 2176

100 4 5 24576
504 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=504

Registered Moore State Machine
Registered Moore State Machine
A "Moore machine" is a finite state machine whose output is only a
function of the machine's current state. A "registered Moore machine" is
one having registered output, and can be described with the following
block diagram:

There are many ways to implement such state machines in System Generator, e.g., using the Mcode
block. This reference block provides a method for implementing a Moore machine using block and
distributed memory. The implementation is very fast and efficient. For example, a state machine
with 8 states, 1 input, and 2 outputs that are registered can be realized with a single block RAM that
runs at more than 150 MHz in a Xilinx Virtex device.

The transition function and output mapping are each represented as an N x M matrix, where N is the
number of states, and M is the size of the input alphabet (e.g., M = 2 for a binary input). It is
convenient to number rows and columns from 0 to N – 1 and 0 to M – 1 respectively. Each state is
represented as an unsigned integer from 0 to N - 1, and each alphabet character is represented as an
unsigned integer from 0 to M - 1. The row index of each matrix represents the current state, and the
column index represents the input character.

For the purpose of discussion, let F be the N x M transition function matrix, and O be the N x M
output function matrix. Then F(i,j) is the next state when the current state is i and the current input
character is j, and O(i,j) is the corresponding output of the Mealy machine.
System Generator for DSP Reference Guide www.xilinx.com 505
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=505

Chapter 2: Xilinx Reference Blockset
Example

Consider the problem of designing a Moore machine to recognize the pattern '1011' in a serial
stream of bits. The state transition diagram and equivalent transition table are shown below..

The table lists the next state and output that result from the current state and input. For example, if
the current state is 4, the output is 1 indicating the detection of the desired sequence, and if the input
is 1 the next state is state 1.

The Registered Moore State Machine block is configured with next state matrix and output array
obtained from the next state/output table discussed above. They are constructed as shown below:

The rows of the matrices correspond to the current state. The next state matrix has one column for
each input value. The output array has only one column since the input value does not affect the
output of the state machine.
506 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=506

Registered Moore State Machine
Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The next state logic and state register in this block are implemented with high speed dedicated block
RAM.

The number of bits used to implement a Moore state machine is given by the equations:

ds = (2k)(2i) = 2k+i

ws = k

Ns = ds*ws = (k)(2k+i)

where

Ns = total number of next state logic block RAM bits

s = number of states

k = ceil(log2(s))

i = number of input bits

ds = depth of state logic block RAM

ws = width of state logic block RAM

The following table gives examples of block RAM sizes necessary for various state machines:

The block RAM width and depth limitations are described in the core datasheet for the Single Port
Block Memory.

Number of States
Number of Input

Bits
Block RAM Bits

Needed

2 5 64

4 1 8

8 6 1536

16 5 2048

32 4 2560

52 1 768

100 4 14336
System Generator for DSP Reference Guide www.xilinx.com 507
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=507

Chapter 2: Xilinx Reference Blockset
Virtex Line Buffer
The Xilinx Virtex Line Buffer reference block delays a sequential stream of pixels
by the specified buffer depth.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Buffer Depth: Number of samples the stream of pixels is delayed.

 Sample Period: Sample rate at which the block will run
508 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=508

Virtex2 Line Buffer
Virtex2 Line Buffer
The Xilinx Virtex2 Line Buffer reference block delays a sequential stream of
pixels by the specified buffer depth. It is optimized for the Virtex2 family since it
uses the Read Before Write option on the underlying Single Port RAM block

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Buffer Depth: Number of samples the stream of pixels is delayed.

 Sample Period: Sample rate at which the block will run.
System Generator for DSP Reference Guide www.xilinx.com 509
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=509

Chapter 2: Xilinx Reference Blockset
Virtex2 5 Line Buffer
The Xilinx Virtex2 5 Line Buffer reference block buffers a sequential stream of
pixels to construct 5 lines of output. Each line is delayed by N samples, where N
is the length of the line. Line 1 is delayed 4*N samples, each of the following lines
are delay by N fewer samples, and line 5 is a copy of the input.

This block uses Virtex2 Line Buffer block which is located in the Imaging library
of the Xilinx Reference Blockset.

Block Parameters

The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to this reference block are as follows:

 Line Size: Number of samples each line is delayed.

 Sample Period: Sample rate at which the block will run.
510 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=510

White Gaussian Noise Generator
White Gaussian Noise Generator
The The Xilinx White Gaussian Noise Generator (WGNG) generates white
Gaussian noise using a combination of the Box-Muller algorithm and the Central
Limit Theorem following the general approach described in [1] (reference listed
below).

The Box-Muller algorithm generates a unit normal random variable using a
transformation of two independent random variables that are uniformly
distributed over [0,1]. This is accomplished by storing Box-Muller function
values in ROMs and addressing them with uniform random variables.

The uniform random variables are produced by multiple-bit leap-forward LFSRs. A standard LFSR
generates one output per clock cycle. K-bit leap-forward LFSRs are able to generate k outputs in a
single cycle. For example, a 4-bit leap-forward LFSR outputs a discrete uniform random variable
between 0 and 15. A portion of the 48-bit block parameter seed initializes each LFSR allowing
customization. The outputs of four parallel Box-Muller subsystems are averaged to obtain a
probability density function (PDF) that is Gaussian to within 0.2% out to 4.8sigma. The overall
latency of the WGNG is 10 clock cycles. The output port noise is a 12 bit signed number with 7 bits
after the binary point.

4-bit Leap-Forward LFSR
System Generator for DSP Reference Guide www.xilinx.com 511
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=511

Chapter 2: Xilinx Reference Blockset
Box-Muller Method

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

The block parameter is a decimal starting seed value.

Reference
A. Ghazel, E. Boutillon, J. L. Danger, G. Gulak and H. Laamari, Design and Performance Analysis
of a High Speed AWGN Communication Channel Emulator, IEEE PACRIM Conference, Victoria,
B. C., Aug. 2001.
512 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=512

Chapter 3

Xilinx XtremeDSP Kit Blockset

Blocks related to the XtremeDSP Kit include the following:

Library Description

XtremeDSP Analog to
Digital Converter

Allows System Generator components to connect to the two analog input
channels on the Nallatech BenAdda board when a model is prepared for
hardware co-simulation

XtremeDSP Co-
Simulation

 Can be used in place of a Simulink subsystem that was compiled for
XtremeDSP co-simulation.

XtremeDSP Digital to
Analog Converter

Allows System Generator components to connect to the two analog output
channels on the Nallatech BenAdda board when a model is prepared for
hardware co-simulation.

XtremeDSP External
RAM

Allows System Generator components to connect to the external 256K x 16
ZBT SRAM on the Nallatech BenAdda board when a model is prepared for
hardware co-simulation.

XtremeDSP LED
Flasher

 Allows System Generator models to use the tri-color LEDs on the
BenADDA board when a model is prepared for co-simulation.
System Generator for DSP Reference Guide www.xilinx.com 513
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=513

Chapter 3: Xilinx XtremeDSP Kit Blockset
XtremeDSP Analog to Digital Converter
The Xilinx XtremeDSP ADC block allows System Generator components to
connect to the two analog input channels on the Nallatech BenAdda board when a
model is prepared for hardware co-simulation. Separate ADC blocks, ADC1 and
ADC2 are provided for analog input channels one and two, respectively.

In Simulink, the ADC block is modeled using an input gateway that drives a
register. The ADC block accepts a double signal as input and produces a signed

14-bit Xilinx fixed-point signal as output. The output signal uses 13 fractional bits.

In hardware, a component that is driven by the ADC block output is driven by one of the two 14-bit
AD6644 analog to digital converter devices on the BenAdda board. When a System Generator
model that uses an ADC block is translated into hardware, the ADC block is translated into a top-
level input port on the model HDL. The appropriate pin location constraints are added in the
BenAdda constraints file, thereby ensuring the port is driven appropriately by the ADC component.

A free running clock should be used when a hardware co-simulation model contains an ADC block.
In addition, the programmable clock speed should not be set higher than 64 MHz.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the ADC block are:

 Sample Period: specifies the sample period for the block.

Data Sheet
A data sheet for the AD6644 device is provided in the XtremeDSP development kit install directory.
If FUSE denotes the directory containing the Nallatech FUSE software, the data sheet can be found
in the following location:

FUSE\XtremeDSP Development Kit\Docs\Datasheets\ADC ad6644.pdf
514 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=514

XtremeDSP Co-Simulation
XtremeDSP Co-Simulation
The Xilinx XtremeDSP Co-simulation block can be used in place of a Simulink
subsystem that was compiled for XtremeDSP co-simulation. During simulation, the
block behaves exactly as the subsystem from which it originated, except that the
simulation data is processed in hardware instead of software.

The port interface of the co-simulation block will vary. When a model is compiled
for co-simulation, a new library is created that contains a custom XtremeDSP
hardware co-simulation block. This block has input and output ports that match the

gateway names (or port names if the subsystem is not the top level) from the original model.

The hardware co-simulation block interacts with the XtremeDSP development kit board during a
Simulink simulation. Simulation data that is written to the input ports of the block are passed to the
hardware by the block. Conversely, when data is read from the co-simulation block's output ports,
the block reads the appropriate values from the hardware and drives them on the output ports so they
can be interpreted in Simulink. In addition, the block automatically opens, configures, steps, and
closes the development kit board.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Basic tab

Parameters specific to the Basic tab are as follows:

 Clock source: You can select between Single stepped and Free running clock sources.
Selecting a Single Stepped clock allows the block to step the board one clock cycle at a time.
Each clock cycle step corresponds to some duration of time in Simulink Using this clock
source ensures the behavior of the co-simulation hardware during simulation is bit and cycle
accurate when compared to the simulation behavior of the subsystem from which it originated.
Sometimes single stepping is not necessary and the board can be run with a Free Running
clock. In this case, the board will operate asynchronously to the Simulink simulation.

 Frequency (MHz): When Free Running clock mode is selected, you can specify the operating
frequency that the free running clock should be programmed to run at during simulation. The
selected clock frequency is rounded to the nearest valid frequency available from the
programmable oscillator. Note: You must take care to specify a frequency that does not exceed
the maximum operating frequency of the model's FPGA implementation. The valid operating
frequencies of the programmable oscillator are listed below:

20 MHz; 25 MHz; 30 MHz; 33.33 MHz; 40 MHz; 45 MHz; 50 MHz; 60 MHz; 66.66 MHz; 70
MHz; 75 MHz; 80 MHz; 90 MHz; 100 MHz; 120 MHz.

 Card number: Specifies the index of the XtremeDSP development kit card to use for
hardware co-simulation. A default value of 1 should be used unless you have multiple
XtremeDSP kit boards installed.

 Bus: Allows you to choose the interface in which the co-simulation block communicates with
the XtremeDSP development kit board during a Simulink simulation. You can select between
PCI and USB interfaces.

 Has combinational path: Sometimes it is necessary to have a direct combinational feedback
path from an output port on a hardware co-simulation block to an input port on the same block
(e.g., a wire connecting an output port to an input port on a given block). If you require a direct
feedback path from an output to input port, and your design does not include a combinational
System Generator for DSP Reference Guide www.xilinx.com 515
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=515

Chapter 3: Xilinx XtremeDSP Kit Blockset
path from any input port to any output port, un-checking this box allows the feedback path in
the design.

 Bitstream name: Specifies the co-simulation FPGA configuration file for the XtremeDSP
development kit board. When a new co-simulation block is instantiated during compilation,
this parameter is automatically set so that it points to the appropriate configuration file. You
need only adjust this parameter if the location of the configuration file changes.
516 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=516

XtremeDSP Digital to Analog Converter
XtremeDSP Digital to Analog Converter
The Xilinx XtremeDSP DAC block allows System Generator components to
connect to the two analog output channels on the Nallatech BenAdda board when a
model is prepared for hardware co-simulation. Separate DAC blocks DAC1 and
DAC2 are provided for analog output channels one and two respectively.

In Simulink, the DAC block is modeled by a register block that drives an output
gateway. All DAC control signals are appropriately wired to constants. The DAC block must be
driven by a 14-bit Xilinx fixed-point signal, with the binary point at position 13. The output port of
the DAC block produces a signal of type double.

In hardware, a component that drives a DAC block input will drive one of the two 14-bit AD9772A
digital to analog converter devices on the BenAdda board. When a System Generator model that
uses DAC block is translated into hardware, the DAC block is translated into a top-level output port
on the model HDL. The appropriate pin location constraints are added in the BenAdda constraints
file, thereby ensuring the output port drives the appropriate DAC pins.

A free running clock should be used when a hardware co-simulation model contains a DAC block.
In addition, the programmable clock speed should not be set higher than 64 MHz.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the DAC block are:

 Sample Period: specifies the sample period for the block.

Data Sheet
A data sheet for the AD9772A device is provided in the directory to which the XtremeDSP
development kit has been installed. If FUSE denotes the directory containing the FUSE software,
the data sheet can be found in the following location:

FUSE\XtremeDSP Development Kit\Docs\Datasheets\DAC AD9772A.pdf
System Generator for DSP Reference Guide www.xilinx.com 517
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=517

Chapter 3: Xilinx XtremeDSP Kit Blockset
XtremeDSP External RAM
The Xilinx XtremeDSP External RAM block allows System Generator
components to connect to the external 256K x 16 ZBT SRAM on the
Nallatech BenAdda board when a model is prepared for hardware co-
simulation.

The block provides a Simulink simulation model for the memory device. The ports on the block look
and behave like ports on a traditional synchronous RAM device. The address port should be driven
by an unsigned 18-bit Xilinx fixed-point signal having binary point at position 0. The we port should
be driven by a Xilinx Boolean signal. The data port should be driven by a 16-bit Xilinx fixed-point
signal. The block drives 16-bit Xilinx fixed-point data values on its output port.

In hardware, components that read from and write to the block in Simulink read from and write to
the Micron ZBT SRAM device on the BenAdda board. When a System Generator model that uses
an external RAM block is translated into hardware, the ports on the RAM block are translated into
top-level input and output ports on the model HDL. The appropriate pin location constraints for
these ports are included in the BenAdda constraints file. The ZBT SRAM device uses the same
clock as the System Generator portion of the hardware co-simulation implementation.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.

Parameters specific to the block are as follows:

 Output Data Type: selects the output data type of the RAM. You can choose between
unsigned and signed (two's complement) data types.

 Data Width: specifies the width of the input data.

 Data Binary Point: selects the binary point position of the data values stored as the memory
contents. The binary point position must be between 0 and 16 (the data width)
518 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=518

XtremeDSP LED Flasher
XtremeDSP LED Flasher
The Xilinx XtremeDSP LED Flasher block allows System Generator models to
use the tri-color LEDs on the BenADDA board when a model is prepared for co-
simulation. When the model is co-simulated, the LEDs will cycle through red,
green and yellow colors. The LEDs are driven by the two most significant bits of
a 27-bit free running counter. To see the LEDs cycle through the three colors, you
should select a free running clock during model simulation.

Block Parameters
The block parameters dialog box can be invoked by double-clicking the icon in your Simulink
model.
System Generator for DSP Reference Guide www.xilinx.com 519
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=519

Chapter 3: Xilinx XtremeDSP Kit Blockset
520 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=520

Chapter 4

System Generator Utilities

xlAddTerms Automatically adds sinks and sources to System
Generator models.

xlCache Used to manage the System Generator caches.

xlConfigureSolver Configures the Simulink solver settings of a model to
provide optimal performance during System
Generator simulation.

xlfda_denominator Returns the denominator of the filter object in an
FDATool block.

xlfda_numerator Returns the numerator of the filter object in an
FDATool block.

xlGenerateButton Provides a programmatic way to invoke the System
Generator code generator.

xlgetparam and xlsetparam Used to get and set parameter values in a System
Generator block.

xlgetparams Used to get all parameter values in a System
Generator block.

xlGetReloadOrder The xlGetReloadOrder function obtains the reload
order of the FIR Compiler block (versions 5.0 and
greater).

xlInstallPlugin Used to install a System Generator hardware co-
simulation plugin.

xlLoadChipScopeData Loads a chipscope™ data .prn file to the workspace.

xlSBDBuilder Launches the System Generator Board support
Description builder tool.

xlSetNonMemMap Marks a gateway block as non-memory mapped.

xlSetUseHDL Sets the 'Use behavioral HDL' option of blocks in a
model of a subsystem.

xlSwitchLibrary Replaces the HDL library references in the target
directory with the specified library name.

xlTBUtils Provides access to several useful procedures
available to the Xilinx Toolbar block, such as layout,
redrawlines and getselected.
System Generator for DSP Reference Guide www.xilinx.com 521
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=521

Chapter 4: System Generator Utilities
xlTimingAnalysis Launches the System Generator Timing Analyzer
with the specified timing data.

xlUpdateModel Manages System Generator versions.

xlVDMACreateProject Takes a System Generator design with a VDMA
Interface block, and creates an ISE project with a
top-level module that stitches the System
Generator design with an XPS sub-module that
instantiates the actual VDMA, AXI interconnect,
and MIG IP.

xlVersion Displays which versions of System Generator are
installed on your computer.

xlAddTerms Automatically adds sinks and sources to System
Generator models.

xlCache Used to manage the System Generator caches.

xlConfigureSolver Configures the Simulink solver settings of a model to
provide optimal performance during System
Generator simulation.

xlfda_denominator Returns the denominator of the filter object in an
FDATool block.

xlfda_numerator Returns the numerator of the filter object in an
FDATool block.

xlGenerateButton Provides a programmatic way to invoke the System
Generator code generator.

xlgetparam and xlsetparam Used to get and set parameter values in a System
Generator block.

xlgetparams Used to get all parameter values in a System
Generator block.

xlGetReloadOrder The xlGetReloadOrder function obtains the reload
order of the FIR Compiler block (versions 5.0 and
greater).
522 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=522

xlAddTerms
xlAddTerms
xlAddTerms is similar to the addterms command in Simulink, in that it adds blocks to terminate or
drive unconnected ports in a model. With xlAddTerms, output ports are terminated with a Simulink
terminator block, and input ports are correctly driven with either a Simulink or System Generator
constant block. Additionally System Generator gateway blocks can also be conditionally added.

The optionStruct argument can be configured to instruct xlAddTerms to set a block's property (e.g.
set a constant block's value to 5) or to use different source or terminator blocks.

Syntax
xlAddTerms(arg1,optionStruct)

Description
In the following description, 'source block' refers to the block that is used to drive an unconnected
port. And 'term block' refers to the block that is used to terminate an unconnected port.

xlAddTerms(arg1,optionStruct)

xlAddTerms takes either 1 or 2 arguments. The second argument, optionStruct argument is optional.
The first argument can be the name of a system, or a block list.

arg1 Description

gcs A string-handle of the current system

'top/test1' A string-handle of a system called test1. In this case,
xlAddTerms is passed a handle to a system. This will run
xlAddTerms on all the blocks under test1, including all
children blocks of subsystems.

{'top/test1'} A block list of string handles. In this case, xlAddTerms is
passed a handle to a block. This will run xlAddTerms only on
the block called test1, and will not process child blocks.

{'t/b1';'t/b2';'t/b3'} A block list of string handles.

[1;2;3] A block list of numeric handles.
System Generator for DSP Reference Guide www.xilinx.com 523
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=523

Chapter 4: System Generator Utilities
The optionStruct argument is optional, but when included, should be a MATLAB structure. The
following table describes the possible values in the structure. The structure field names (as is true
with all MATLAB structure field names) are case sensitive.

optionStruct Description

Source xlAddTerms can terminate in-ports using any source block (refer to
SourceWith field). The parameters of the source block can be
specified using the Source field of the optionStruct by passing the
parameters as sub-fields of the Source field. The Source field
prompts xlAddTerms to do a series of set_params on the source
block. Since it is possible to change the type of the source block, it is
left to the user to ensure that the parameters here are relevant to the
source block in use.

E.g. when a Simulink constant block is used as a Source Block,
setting the block's value to 10 can be done with:

Source.value = '10'

And when a System Generator Constant block is used as a Source
Block, setting the constant block to have a value of 10 and of type
UFIX_32_0 can be done with:

Source.const = '10';
Source.arith_type='Unsigned';
Source.bin_pt=0;
Source.n_bits=32;

SourceWith The SourceWith field allows the source block to be specified. Default
is to use a constant block. SourceWith has two sub-fields which must
be specified.

SourceWithBlock: A string specifying the full path and name of the
block to be used. e.g. 'built-in/Constant' or 'xbsIndex_r3/AddSub'.

SourceWithPort: A string specifying the port number used to connect.
E.g. '1' or '3' Specifying '1' instructs xlAddTerms to connect using port
1, etc.

TermWith The TermWith Field allows the term block to be specified. Default is
to use a Simulink terminator block. TermWith has two sub-fields
which must be specified.

TermWithBlock: A string specifying the full path and name of the
block to be used. e.g. 'built-in/Terminator' or 'xbsIndex_r3/AddSub'.

TermWithPort:

A string specifying the port number used to connect. E.g. '1' or '3'

Specifying '1' instructs xlAddTerms to connect using port 1, etc.

UseGatewayIns Instructs xlAddTerms to insert System Generator gateway ins when
required. The existence of the field is used to denote insertion of
gateway ins. This field must not be present if gateway ins are not to be
used.
524 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=524

xlAddTerms
Examples
Example 1: Runs xlAddTerms on the current system, with the default parameters: constant source
blocks are used, and gateways are not added. Subsystems are recursively terminated.

xlAddTerms(gcs);

Example 2: runs xlAddTerms on all the blocks in the subsystem tt./mySubsystem.

xlAddTerms(find_system('tt/mySubsystem','SearchDepth',1));

Example 3: runs xlAddTerms on the current system, setting the source block's constant value to 1,
using gateway outs and changing the term block to use a Simulink display block.

s.Source.const = '10';
s.UseGatewayOuts = 1;
s.TermWith.Block = 'built-in/Display';
s.TermWith.Port = '1';
s.RecurseSubSystem = 1;
xlAddTerms(gcs,s);

Remarks
Note that field names are case sensitive. When using the fields 'Source', 'GatewayIn' and
'GatewayOut', users have to ensure that the parameter names to be set are valid.

See Also

Toolbar, xlTBUtils

GatewayIn If gateway ins are inserted, their parameters can be set using this field,
in a similar way as for Source and Term.

For example,

GatewayIn.arith_type='Unsigned';
GatewayIn.n_bits='32'
GatewayIn.bin_pt='0'

will set the gateway in to output a ufix_32_0.

UseGatewayOuts Instructs xlAddTerms to insert System Generator gateway outs when
required. The existence of the field is used to denote insertion of
gateway outs. This field must not be present if gateway outs are not to
be used.

GatewayOut If gateway outs are inserted, their parameters can be set using this field,
in a similar way as for Source and Term.

For example,

GatewayOut.arith_type='Unsigned';
GatewayOut.n_bits='32'
Gatewayout.bin_pt='0'

will set the gateway out to take an input of ufix_32_0.

RecurseSubSystems Instructs xlAddTerm to recursively run xlAddTerm under all child
subsystems. Expects a scalar number, 1 or 0.

optionStruct Description
System Generator for DSP Reference Guide www.xilinx.com 525
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=525

Chapter 4: System Generator Utilities
xlCache
Used to manage the System Generator caches.

Syntax
[core, sg, usertemp] = xlCache ('getpath')
xlCache ('clearall')
xlCache ('clearcorecache')
xlCache ('cleardiskcache')
xlCache ('cleartargetcache')
xlCache ('clearusertemp')
[maxsize] = xlCache ('getdiskcachesize')
[maxentries] = xlCache ('getdiskcacheentries')

Description
This function is used to manage the System Generator caches. The different forms of the function
are described as follows:

[core, sg, usertemp] = xlCache ('getpath')

Returns the location for the System Generator core cache, disk cache and usertemp directory.

xlCache ('clearall')

Clears the System Generator core cache, disk cache, the usertemp location, then reloads the
compilation target plugin cache from disk.

xlCache ('clearcorecache')

Clears the core cache. The core cache speeds up execution by storing cores generated from Xilinx
Core Generator, then recalls those files when reuse is possible.

xlCache ('cleardiskcache')

Clears the disk cache. The disk cache speeds up execution by tagging and storing files related to
simulation and generation, then recalls those files during subsequent simulation and generation
rather than rerunning the time consuming tools used to create those files.

xlCache ('cleartargetcache')

Rehashes the compilation target plugin cache. The compilation target plugin cache needs to be
rehashed when a new compilation target plugin is added, or an existing target is changed.

xlCache ('clearusertemp')

Clears the contents in the usertemp directory. The usertemp directory is used by System Generator
to store temporary files used during simulation or netlisting. They are kept on disk for debugging
purposes and can be safely deleted without any impact on performance.

[maxsize] = xlCache ('getdiskcachesize')

Returns the maximum amount of disk space used by the disk cache. By default, the disk cache uses
500MB of disk space to store files. You should set the SYSGEN_CACHE_SIZE environment
variable to the size of the cache in megabytes. You should set this number to a higher value when
working on several large designs.
526 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=526

xlCache
[maxentries] = xlCache ('getdiskcacheentries')

Returns the maximum number of entries in the cache. The default is 20,000 entries. To set the size
of the cache entry database, you should set the SYSGEN_CACHE_ENTRIES environment variable
to the desired number of entries. Setting this number too small will adversely affect cache
performance. You should set this number to a higher value when working on several large designs.

See Also
Configuring the System Generator Cache,
System Generator for DSP Reference Guide www.xilinx.com 527
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=527

Chapter 4: System Generator Utilities
xlConfigureSolver
The xlConfigureSolver function configures the Simulink solver settings of a model to provide
optimal performance during System Generator simulation.

Syntax
xlConfigureSolver(<model_handle>);

Description

The xlConfigureSolver function configures the model referred to by <model_handle>.
<model_handle> canbe a string or numeric handle to a Simulink model. Library models are not
supported by this function since they have no simulation solver parameters to configure.

For optimal performance during System Generator simulation, the following Simulink simulation
configuration parameters are set:
'SolverType' = 'Variable-step'
'Solver' = 'VariableStepDiscrete'
'SolverMode' = 'SingleTasking'

Examples
To illustrate how the xlConfigureSolver function works, do the following:

1. Open the following MDL file: sysgen/examples/chipscope/chip.mdl

2. Enter the following at the MATLAB command line: gcs
ans = chip
this is the Model “string” handle

3. Now enter the following from the MATLAB command line:

>> xlConfigureSolver(gcs)
Set 'SolverType' to 'Variable-step'
Set 'Solver' to 'VariableStepDiscrete'
Set 'SolverMode' to 'SingleTasking'
Set 'SingleTaskRateTransMsg' to 'None'
Set 'InlineParams' to 'on'
528 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=528

xlfda_denominator
xlfda_denominator
The xlfda_denomiator function returns the denominator of the filter object stored in the Xilinx
FDATool block.

Syntax
[den] = xlfda_denominator(FDATool_name);

Description

Returns the denominator of the filter object stored in the Xilinx FDATool block named
FDATool_name, or throws an error if the named block does not exist. The block name can be local
(e.g. 'FDATool'), relative (e.g. '../../FDATool'), or absolute (e.g. 'untitled/foo/bar/FDATool').

See Also
xlfda_numerator, FDATool
System Generator for DSP Reference Guide www.xilinx.com 529
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=529

Chapter 4: System Generator Utilities
xlfda_numerator
The xlfda_numerator function returns the numerator of the filter object stored in the Xilinx FDATool
block.

Syntax
[num] = xlfda_numerator(FDATool_name);

Description

Returns the numerator of the filter object stored in the Xilinx FDATool block named
FDATool_name, or throws an error if the named block does not exist. The block name can be local
(e.g. 'FDATool'), relative (e.g. '../../FDATool'), or absolute (e.g. 'untitled/foo/bar/FDATool').

See Also
xlfda_denominator, FDATool
530 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=530

xlGenerateButton
xlGenerateButton
The xlGenerateButton function provides a programmatic way to invoke the System Generator code
generator.

Syntax
status = xlGenerateButton(sysgenblock)

Description
IxlGenerateButton invokes the System Generator code generator and returns a status code. Invoking
xlGenerateButton with a System Generator block as an argument is functionally equivalent to
opening the System Generator GUI for that token, and clicking on the Generate button. The
following is list of possible status codes returned by xlGenerateButton.

See Also
xlgetparam and xlsetparam, xlgetparams, System Generator block

Status Description

1 Canceled

2 Simulation running

3 Check param error

4 Compile/generate netlist error

5 Netlister error

6 Post netlister script error

7 Post netlist error

8 Post generation error

9 External view mismatch when importing as a configurable subsystem
System Generator for DSP Reference Guide www.xilinx.com 531
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=531

Chapter 4: System Generator Utilities
xlgetparam and xlsetparam
Used to get and set parameter values in the System Generator token. Both functions are similar to
the Simulink get_param and set_param commands and should be used for the System Generator
token instead of the Simulink functions.

Syntax
[value1, value2, ...] = xlgetparam(sysgenblock, param1, param2, ...)

xlsetparam(sysgenblock, param1, value1, param2, value2, ...)

Description

The System Generator token differs from other blocks in one significant manner; multiple sets of
parameters are stored for an instance of a System Generator token. The different sets of parameters
stored correspond to different compilation targets available to the System Generator token. The
'compilation' parameter is the switch used to toggle between different compilation targets stored in
the System Generator token. In order to get or set parameters associated with a particular
compilation type, it is necessary to first use xlsetparam to change the 'compilation' parameter to the
correct compilation target, before getting or setting further values.

[value1, value2, ...] = xlgetparam(sysgenblock, param1, param2, ...)

The first input argument of xlgetparam should be a handle to the System Generator block.
Subsequent arguments are taken as names of parameters. The output returned is an array that
matched the number of input parameters. If a requested parameter does not exist, the returned value
of xlgetparam is empty. The xlgetparams function can be used to get all the parameters for
the current compilation target.

xlsetparam(sysgenblock, param1, value1, param2, value2, ...)

The xlsetparam function also takes a handle to a System Generator token as the first argument.
Subsequent arguments must be provided in pairs, the first should be the parameter name and the
second the parameter value.

Specifying the Compilation Parameter

The 'compilation' parameter on the System Generator token captures the compilation type chosen;
for example 'HDL Netlist' or 'NGC Netlist'. As previously stated, when a compilation type is
changed, the System Generator token will remember all the options chosen for that particular
compilation type. For example, when 'HDL Netlist' is chosen, the corresponding target directory
could be set to 'hdl_dir', but when 'NGC Netlist' is chosen, the target directory could point to a
different location, for example 'ngc_dir'. Changing the compilation type causes the System
Generator token to recall previous options made for that compilation type. If the compilation type is
selected for the first time, default values are use to populate the rest of the options on the System
Generator Token.

When using xlsetparam to set the compilation type of a System Generator token, be aware of the
above behaviour, since the order in which parameters are set is important; be careful to first set a
block's 'compilation' type before setting any other parameters.
532 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=532

xlgetparam and xlsetparam
When xlsetparam is used to set the 'compilation' parameter, it must be the only parameter that is
being set on that command. For example. the form below is not permitted:

 xlsetparam(sysgenblock,'compilation','HDL Netlist', 'synthesis_tool', 'XST')

Examples

Example 1: Changing the synthesis tool used for HDL netlist.

xlsetparam(sysgenblock, 'compilation', 'HDL Netlist');
xlsetparam(sysgenblock, 'synthesis_tool', 'XST')

The first xlsetparam is used to set the compilation target to 'HDL Netlist'. The second
xlsetparam is used to change the synthesis tool used to 'XST'.

Example 2: Getting family and part information.

[fam,part]=xlgetparam(sysgenblock,'xilinxfamily','part')
fam =
Virtex2
part =
xc2v1000

See Also
xlGenerateButton, xlgetparams
System Generator for DSP Reference Guide www.xilinx.com 533
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=533

Chapter 4: System Generator Utilities
xlgetparams
The xlgetparams command is used to get all parameter values in a System Generator token
associated with the current compilation type. The xlgetparams command can be used in
conjunction with the xlgetparam and xlsetparam commands to change or retrieve a System
Generator token's parameters.

Syntax
paramstruct = xlgetparams(sysgenblock_handle);

To get the sysgenblock_handle, enter gbc or gcbh at the MATLAB command line.

paramstruct = xlgetparams('chip/ System Generator');
paramstruct = xlgetparams(gcb);
paramstruct = xlgetparams(gcbh);

Description
All the parameters available to a System Generator block can be retrieved using the xletparams
command. For more information regarding the parameters, please refer to the System Generator
token documentation.

paramstruct = xlgetparams(sysgenblock);

The first input argument of xlgetparams should be a handle to the System Generator token. The
function returns a MATLAB structure that lists the parameter value pairs.

Examples
To illustrate how the xlparams function works, do the following:

1. Open the following MDL file: sysgen/examples/chipscope/chip.mdl

2. Select the System Generator token

3. Enter the following at the MATLAB command line: gcb
ans = chip/ System Generator
this is the System Genertor token “string” handle

4. Now enter the following from the MATLAB command line: gcbh
ans = 4.3431
this is the System Genertor token “numeric” handle

5. Now enter the following from the MATLAB command line:
xlgetparams(gcb)
the function returns all the parameters associated with the Bitstream compilation type:

compilation: 'Bitstream'
compilation_lut: [1x1 struct]
simulink_period: '1'
incr_netlist: 'off'
trim_vbits: 'Everywhere in SubSystem'
dbl_ovrd: 'According to Block Masks'
deprecated_control: 'off'
block_icon_display: 'Default'
xilinxfamily: 'virtex5'
part: 'xc5vsx50t'
speed: '-1'
package: 'ff1136'
synthesis_tool: 'XST'
534 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=534

xlgetparams
directory: './bitstream'
testbench: 'off'
sysclk_period: '10'
core_generation: 'According to Block Masks'
run_coregen: 'off'
eval_field: '0'
clock_loc: 'AH15'
clock_wrapper: 'Clock Enables'
dcm_input_clock_period: '100'
synthesis_language: 'VHDL'
ce_clr: 0
preserve_hierarchy: 0
postgeneration_fcn: 'xlBitstreamPostGeneration'
settings_fcn: 'xlTopLevelNetlistGUI'

The compilation_lut parameter is another structure that lists the other compilation types that
are stored in this System Generator token. Using xlsetparam to set the compilation type allows
the parameters associated with that compilation type to be visible to either xlgetparams or
xlgetparam.

See Also
xlGenerateButton, xlgetparam and xlsetparam
System Generator for DSP Reference Guide www.xilinx.com 535
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=535

Chapter 4: System Generator Utilities
xlGetReloadOrder
The xlGetReloadOrder function obtains the reload order of the FIR Compiler block (versions 5.0
and greater).

Syntax
A = xlGetReloadOrder(block_handle, paramStruct, returnType))

Description

block_handle

FIR Compiler block handle in the design. If a FIR Compiler block is selected, then this function can
be invoked as follows:

xlGetReloadOrder(gcbh)

This is the only mandatory parameter for this function

paramStruct

Name value pairs of abstracted parameters. For example, if "Hardware Oversampling Specification"
format is set to "Maximum_Possible" then the reload order returned could be incorrect unless the
"hardwareoversamplingrate" is explicitly specified as say 4. e.g >>options = ...

struct('ratespecification','Hardware_Oversampling_Rate','hardwareoversamplingrate',4)

>> xlGetReloadOrder(gcbh, options)

This parameter is an optional parameter and the default value is struct()

returnType

This specifies the reload order information format. This can either be an 'address_vector' or
'transform_matrix'. For example if A is a row vector of coefficients, then coefficients sorted in
reload order can be obtained as :

reload_order_coefficients = ...

A(xlGetReloadOrder(gcbh, struct(), 'address_vector'))

Here reload_order_coefficients specifies the order in which coefficients contained in A should be
passed to the FIR Compiler through the reload channel.

Alternatively transform matrix can also be used :

reload_order_coefficients = xlGetReloadOrder(gcbh,...
struct(),'transform_matrix')*A'

This is an optional parameter and the default value is 'transform_matrix'
536 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=536

xlGetReloadOrder
Example

To illustrate how the xlGetReloadOrder can be used, do the following:

1. Open the model located at the following pathname:
<sysgen_path>/examples/demos/sysgenReloadable.mdl

2. Select the FIR Compiler block.

3. From the MATLAB command line, type xlGetReloadOrder(gcbh),
The following reload order of coefficients should appear:

0 0 1
0 1 0
1 0 0

Note: Note: the Return type was not specified and it defaulted to ‘tranform_matrix’. The
specified coefficients are “1 2 3 2 1”. Since the filter is inferred as a symmetric filter, only 3 out of 5
coefficients need to be loaded. Then the order should be the 3rd element first, followed by the 2nd, then the
1st, for example, 3 2 1.

4. With the same FIR Compiler settings, change the Return type from ‘transform_matrix’
to ‘address_vector’ as follows:
xlGetReloadOrder(gcbh, struct(), 'address_vector'),

The same reload order of coefficients should appear but with a different
format:

ans =

3
2
1

5. Now, try to change the filter’s coefficient structure. Double click on the FIR Compiler block,
click on the Implementation tab, select “Non_Symmetric” for the Coefficient Structure, then
Click OK.

6. Verify that the FIR Compiler b is selected and enter the same command from the previous step.
Observe the different loading order and numbers of coefficient being loaded:

ans =

5
4
3
2
1

Note: The specified coefficients are “1 2 3 2 1”. Since the filter is now explicitly set to non_symmetric
filter, all 5 coefficients are loaded with the reload order as shown above (5th(1), 4th(2), 3rd(3), 2nd(2),
1st(1))

See Also

FIR Compiler 5.0 block
System Generator for DSP Reference Guide www.xilinx.com 537
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=537

Chapter 4: System Generator Utilities
xlInstallPlugin
This function installs the specified System Generator hardware co-simulation plugin. Once the
installer has completed, the new compilation target can be selected from the System Generator token
dialog box.

Syntax
xlInstallPlugin('<plugin_name>')

Description
This function accepts one parameter, plugin, which contains the name of the plugin file to install.
The plugin parameter can include path information if desired, and the .zip extension is optional.

Examples
Example 1:

xlInstallPlugin('plugin.zip')

Example 2:

xlInstallPlugin('plugin')

See Also
Supporting New Platforms, xlSBDBuilder
538 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=538

xlLoadChipScopeData
xlLoadChipScopeData
The xlLoadChipScopeData function loads a ChipScope Pro™ .prn file, creates workspace variables
and conditionally plots the results.

Syntax
status = xlLoadChipScopeData(filename);
status = xlLoadChipScopeData(filename, plotResults);
status = xlLoadChipScopeData(filename, plotResults, captureIndex);

Description

Load the .prn file specified in filename, and plot the results if plotResults is specified and set to true.
Returns a status of 0 on success. Only ASCII .prn files are supported.

The captureIndex is an optional parameter that is used in conjunction with the ChipScope repetitive
trigger feature. If captureIndex is specified, this function waits until the .prn file with the specified
capture index is generated by ChipScope before reading the file content.

Note: Only signed and unsigned decimal numbers are supported. Make sure to set the data format to signed or
unsigned decimal in ChipScope Analyzer.

Examples
Example 1:

xlLoadChipScopeData('SineWave.prn',0);

See Also
ChipScope block
System Generator for DSP Reference Guide www.xilinx.com 539
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=539

Chapter 4: System Generator Utilities
xlSBDBuilder
The System Generator Board Description (SBD) Builder application aids the designing of new
JTAG hardware co-simulation plugins by providing a graphical user interface that prompts for
relevant information about the co-simulation platform.

Syntax
xlSBDBuilder;

Description
After invoking SBDBuilder, the main dialog box will appear as shown below:

Once the main dialog box is open, you can create a board support package by filling in the required
fields described below:

Board Name: Tells a descriptive name of the board. This is the name that is listed in System
Generator when selecting your JTAG hardware co-simulation platform for compilation.

System Clock: JTAG hardware co-simulation requires an on-board clock to drive the System
Generator design. The fields described below specify information about the board's system clock:

 Frequency (MHz): Specifies the frequency of the on-board system clock in MHz.

 Pin Location: Specifies the FPGA input pin to which the system clock is connected.
540 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=540

xlSBDBuilder
JTAG Options: System Generator needs to know several things about the FPGA board's JTAG
chain to be able to program the FPGA for hardware co-simulation. The topic Obtaining Platform
Information describes how and where to find the information required for these fields. If you are
unsure of the specifications of your board, please refer to the manufacturer's documentation. The
fields specific to JTAG Options are described below:

 Boundary Scan Position: Specifies the position of the target FPGA on the JTAG chain. This
value should be indexed from 1. (e.g. the first device in the chain has an index of 1, the second
device has an index of 2, etc.)

 IR Lengths: Specifies the lengths of the instruction registers for all of the devices on the JTAG
chain. This list can be delimited by spaces, commas, or semicolons.

 Detect: This action attempts to identify the IR Lengths automatically by querying the FPGA
board. The board must be powered and connected to a Parallel Cable IV for this to function
properly. Any unknown devices on the JTAG chain are represented with a "?" in the list, and
must be specified manually.

Targetable Devices: This table displays a list of available FPGAs on the board for programming.
This is not a description of all of the devices on the JTAG chain, but rather a description of the
possible devices that can exist at the aforementioned boundary scan position. For most boards, only
one device needs to be specified, but some boards can have alternate, e.g., a choice between an
xcv1000 or an xcv2000 in the same socket. Use the Add and Delete buttons described below to
build the device list:

 Add: Brings up a menu to select a new device for the board. As shown in the figure below,
devices are organized by family, then part name, then speed, and finally the package type.

 Delete: Remove the selected device from the list.

Non-Memory-Mapped Ports: You can add support for your own board-specific ports when
creating a board support package. Board-specific ports are useful when you have on-board
components (e.g., external memories, DACs, or ADCs) that you would like the FPGA to interface to
during hardware co-simulation. Board specific ports are also referred to as non-memory-mapped
because when the design is compiled for hardware co-simulation, these ports are mapped to their
physical locations, rather than creating Simulink ports. See Specifying Non-Memory Mapped Ports
for more information. The Add, Edit, and Delete buttons provide the controls needed for
configuring non-memory mapped ports.

 Add: Brings up the dialog to enter information about the new port.

 Edit: Make changes to the selected port.

 Delete: Remove the selected port from the list.

Help: Displays this documentation.

Load: Fill in the form with values stored in an SBDBuilder Saved Description XML file. This
file is automatically saved with every plugin that you create, so it is useful for reloading old plugin
files for easy modification.
System Generator for DSP Reference Guide www.xilinx.com 541
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=541

Chapter 4: System Generator Utilities
Save Zip: Prompts you for a filename and a target pathname. This will create a zip file with all of the
plugin files for System Generator. The zip is in a suitable format for passing to the System Generator
xlInstallPlugin function.

Exit: Quit the application.

See Also
Supporting New Platforms, xlInstallPlugin
542 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=542

xlSetNonMemMap
xlSetNonMemMap
Sets a Gateway In or Gateway Out block to be used as a non memory mapped port when doing
hardware co-simulation. This option is often used when a Gateway is intended to be routed to
hardware external to the FPGA, instead of being routed to the hardware co-simulation memory map.

Syntax
xlSetNonMemMap(block, company, project)

Description
A call to xlSetNonMemMap must be made with at least three parameters. The first is the name or
handle of the gateway that is to be marked as non memory mapped. The marking of a gateway as
non memory mapped is predicated upon a company and project name. The second and third
parameters are strings that identify the company and project names.

Examples
Example 1:

xlSetNonMemMap(gcbh, 'Xilinx', 'jtaghwcosim');

The first parameter in the example returns the handle of the block that is currently selected. That
gateway is marked as non memory mapped when generating for Xilinx JTAG hardware co-
simulation.

Example 2:

xlSetNonMemMap(gcbh, 'Nallatech, 'xdspkit');

The first parameter in the example returns the handle of the block that is currently selected. That
gateway is marked as non memory mapped when generating for Nallatech's xTreme DSP kit.

See Also
Using Hardware Co-Simulation, Supporting New Platforms
System Generator for DSP Reference Guide www.xilinx.com 543
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=543

Chapter 4: System Generator Utilities
xlSetUseHDL
This function sets the 'Use behavioral HDL' option of blocks in a model or subsystem.

Syntax
xlSetUseHDL(system, mode)

Description
The model or system specified in the parameter system is set to either use cores or behavioral HDL,
depending on the mode. Mode is a number, where 0 refers to using cores, and 1 refers to using
behavioral HDL.

Examples
Example 1:

xlSetUseHDL(gcs,0)

This call sets the currently selected system to use cores.

See Also
xlSetNonMemMap, xlSBDBuilder
544 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=544

xlSwitchLibrary
xlSwitchLibrary
Replaces the HDL library references in the target directory with the specified library name.

Syntax
xlSwitchLibrary(<target_directory>, <from_library_name>,
<to_library_name>)

Description
Replaces all HDL library references to <from_library_name>, with <to_library_name> in a System
Generator design located in directory <target_directory>.

Examples

Example 1:

The following command runs xlSwitchLibrary on a target directory created by System
Generator named '.\netlist' and switches the default library from 'work' to 'design1':

>> xlSwitchLibrary('.\netlist_w_dcm', 'work', 'design1')
INFO: Switching HDL library references in design 'basicmult_dcm_mcw'
...
INFO: A backup of the original files can be found at
'D:\Matlab\work\Basic\netlist_w_dcm\switch_lib_backup.TlOy'.
INFO: Processing file 'basicmult.vhd' ...
INFO: Processing file 'basicmult_mcw.vhd' ...
INFO: Processing file 'basicmult_dcm_mcw.vhd' ...
INFO: Processing file 'xst_basicmult.prj' ...
INFO: Processing file 'vcom.do' ...
INFO: Processing file 'vsim.do' ...
INFO: Processing file 'pn_behavioral.do' ...
INFO: Processing file 'pn_posttranslate.do' ...
INFO: Processing file 'pn_postmap.do' ...
INFO: Processing file 'pn_postpar.do' ...
INFO: Processing file 'basicmult_dcm_mcw.ise' ...
System Generator for DSP Reference Guide www.xilinx.com 545
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=545

Chapter 4: System Generator Utilities
xlTBUtils
The xlTBUtils command provides access to several features of the Xilinx block. This includes
access to the layout, rerouting functions and to functions that return selected blocks and lines.

Syntax
xlTBUtils(function, args)
e.g.
xlTBUtils('ToolBar')
xlTBUtils('Layout',struct('verbose',1,'autoroute',0))
xlTBUtils('Layout',optionStruct)
xlTBUtils('Redrawlines',struct('autoroute',0))
xlTBUtils('RedrawLines',optionStruct)
[lines,blks]=xlTBUtils('GetSelected','All')

Description

xlTBUtils(function [,args])

xlTBUtils is a collection of functions that are used by the Xilinx Toolbar block. The function
argument specifies the name of the function to execute. Further arguments (if required) can be
tagged on as supplementary arguments to the function call. Note that the function argument string is
not case sensitive. Possible values are enumerated below and explained further in the relevant
subtopics.

'xlTBUtils('Layout',optionStruct)

Automatically places and routes a Simulink model. optionStruct is a MATLAB struct data-type, that
contains the parameters for Layout. The optionStruct argument is optional.

Layout expects circuits to be placed left to right. After placement, Layout uses Simulink to autoroute
the wire connections. Simulink will route avoiding anything visible on screen, including block
labels. Setting "ignore_labels" will 'allow' Simulink to route over labels – after which it is possible
to manually move the labels to a more reasonable location. Note that field names are case sensitive.

Function Description

'ToolBar' Launches the Xilinx Toolbar GUI. If the GUI is already open, it is brought to the
front.

'Layout' Runs the layout algorithm on a model to place and reroute lines on the model.
Layout can be customized using the option structure that is detailed below.

'RedrawLines' Runs the routing algorithm on a model to reroute lines on the model.
RedrawLines can be customized using the option structure detailed below.

'GetSelected' Returns MATLAB Simulink handles to blocks and lines that are selected on the
system in focus

Field Names Description [Default values]

x_pitch,
y_pitch

The gaps (pitch) between block (pixels). x_pitch specifies the amount of
spacing to leave between blocks horizontally, and y_pitch specifies vertical
spacing. [30].

x_start,
y_start

Left (x_start) and top(y_start) margin spacing (pixels). The amount of spacing to
leave on the left and top of a model. [10].
546 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=546

xlTBUtils
xlTBUtils('RedrawLines',optionStruct)

The RedrawLines command will redraw all lines in a Simulink model. If there are lines selected,
only selected lines are redrawn otherwise all lines are redrawn. If a branch is selected, the entire line
is redrawn; main trunk and all other sub-branches.

[lines,blks]=xlTBUtils('GetSelected',arg)

The GetSelected command returns handles to selected blocks and lines of the system in focus. The
argument arg is optional. It should be a one of the string values described in the table below.

The GetSelected command will return an array with two items, an array of a structure containing
line information (lines) and an array of block handles (blks). If the 'lines' argument is used, blks is an
empty array; similarly when the 'blocks' argument is used, lines is an empty array.

autoroute Turns on Simulink auto-routing of lines. (1 | 0) [1]

ignore_labels When auto-routing lines, Simulink will attempt to auto-route around text
labels. Setting ignore_labels to 1 will minimize text label size during the
routing process.

sys Name of the system to layout. [gcs]

verbose When set to 1, a wait bar is shown during the layout process.

Field Names Description [Default values]

Field Names Description [Default values]

autoroute Turns on Simulink auto-routing of lines. (1 | 0) [1]

sys Name of the system to layout. [gcs]

Field Names Description [Default values]

'all' Gets both selected lines and blocks (default).

'lines' Gets only selected lines.

'blocks' Gets only selected blocks.
System Generator for DSP Reference Guide www.xilinx.com 547
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=547

Chapter 4: System Generator Utilities
Examples

Example 1a: Performing Layouts

a.verbose = 1;
a.autoroute= 0;
xlTBUtils('Layout',a);

This will invoke the layout tool with verbose on and autoroute off.

Example 1b: Performing Layouts

xlTBUtils('Layout',struct('verbose',1,'autoroute',0));

This will also invoke the layout tool with verbose on and autoroute off.

Example 2: Redrawing lines

xlTBUtils('Redrawlines',struct('autoroute',0));

This will redraw the lines of the current system, with auto-routing off.

Example 3: Getting selected lines and blocks

[lines,blks]=xlTBUtils('GetSelected')
lines =

1x3 struct array with fields:
Handle
Name
Parent
SrcBlock
SrcPort
DstBlock
DstPort
Points
Branch

blks =

1.0e+003 *

3.0320
3.0480

This will return all selected lines and blocks in the current system. In this case, 3 lines and 2 blocks
were selected. The first line handle can be accessed using the command

lines(1).Handle

ans =

3.0740e+003

The handle to the first block can be accessed using the command

blks(1)
ans =
3.0320e+003
548 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=548

xlTBUtils
Remarks

The actions performed by Layout and RedrawLines will not be in the undo stack. Save a copy of the
model before performing the actions, in order to revert to the original model.

This product contains certain software code or other information ("AT&T Software") proprietary
to AT&T Corp. ("AT&T"). The AT&T Software is provided to you "AS IS". YOU ASSUME
TOTAL RESPONSIBILITY AND RISK FOR USE OF THE AT&T SOFTWARE. AT&T DOES
NOT MAKE, AND EXPRESSLY DISCLAIMS, ANY EXPRESS OR IMPLIED WARRANTIES
OF ANY KIND WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
WARRANTIES OF TITLE OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHTS, ANY WARRANTIES ARISING BY USAGE OF TRADE, COURSE OF DEALING OR
COURSE OF PERFORMANCE, OR ANY WARRANTY THAT THE AT&T SOFTWARE IS
"ERROR FREE" OR WILL MEET YOUR REQUIREMENTS.

Unless you accept a license to use the AT&T Software, you shall not reverse compile, disassemble
or otherwise reverse engineer this product to ascertain the source code for any AT&T Software.

© AT&T Corp. All rights reserved. AT&T is a registered trademark of AT&T Corp.

See Also
Toolbar, xlAddTerms
System Generator for DSP Reference Guide www.xilinx.com 549
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=549

Chapter 4: System Generator Utilities
xlTimingAnalysis
The System Generator timing analyzer GUI is typically launched by using the Timing and Power
Analysis compilation target from the System Generator GUI in MATLAB. The xlTimingAnalysis
MATLAB command is another way of launching the timing analyzer GUI. The Timing and Power
Analysis compilation target causes the tool to compile the design, run place and route, and perform
other operations prior to displaying the timing analyzer GUI. By using the xlTimingAnalysis
command, it is possible to launch the GUI on previously generated timing data without performing
the additional operations of the compilation target.

Syntax
xlTimingAnalysis(target_directory);

Description
Calling xlTimingAnalysis with the name of a directory that contains timing data will launch the
System Generate Timing Analyzer GUI.

The timing analyzer GUI will display the data that is contained in the timing.twx and
name_translations data files in the specified target directory.

The target directory name can be either a relative or an absolute path name.

Example
>> xlTimingAnalysis('timing')

Where 'timing' is the name of the target directory in which a prior timing analysis was carried out.
550 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=550

xlUpdateModel
xlUpdateModel
If you have a model that was created in System Generator v7.1 or earlier, you must update the model
to be compatible with v9.1.01 and beyond. To update a model, you run the MATLAB command
xlUpdateModel that invokes a conversion script.

Please be advised that the conversion script does not automatically save an old version of your
model as it updates the design nor save a new version of your model after conversion. You can either
make a back up copy of your model before running the conversion script, or you can save the
updated model with a new name.

Some models can require some manual modification after running xlUpdateModel. The
function will point out any necessary changes that must be made manually.

Syntax
xlUpdateModel('my_model_name');
xlUpdateModel('my_model_name', 'lib');
xlUpdateModel('my_model_name', 'assert');

Description

Updating v2.x and Prior Models

If you are upgrading from versions of System Generator earlier than v3.1, you must obtain System
Generator v7.x and update your models to v7.x before you can update them to v9.1.01.

Updating v3.x, v6.x and v7.x Models

This section describes the process of upgrading a Xilinx System Generator v3.x, v6.x or v7.x model
to work with v9.1.01.

Note: Any reference to v3.x or v6.x in this section can be used interchangeably with v7.x.

The basic steps for upgrading a v7.x model to v9.1.01 is as follows: 1) Save a backup copy of your
v7.1 model and user-defined libraries that your model uses 2) Run xlUpdateModel on any
libraries first and then on your model 3) Read the report produced by xlUpdateModel and follow
the instructions 4) Check that your model runs under v9.1.01.

These steps are described in greater detail below.

1. Save a backup copy of your v7.1 model and user-defined libraries that your model uses.

2. Run the xlUpdateModel Function

From the MATLAB console, cd into the directory containing your model. If the name of your
model is designName.mdl, type xlUpdateModel('designName').

The xlUpdateModel function performs the following tasks:

 Updates each block in your v7.x design to a corresponding v9.1.01 block with equivalent
settings.

 Writes a report explaining all of the changes that were made. This report enumerates
changes you might need to make by hand to complete the update.

In most cases, xlUpdateModel produces an equivalent v9.1.01 model. However, there are a
few constructs that might require you to edit your model. It is important that you read the report
and follow the remaining steps in this section.

3. Read the xlUpdateModel report and Follow the Instructions
System Generator for DSP Reference Guide www.xilinx.com 551
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=551

Chapter 4: System Generator Utilities
If the report contains the issues listed below, manual intervention is required to complete the
conversion.

a. Xilinx System Generator v7.x models containing removed blocks

The following blocks have been removed from System Generator: CIC, Clear Quantization
Error, Digital Up Converter, J.83 Modulator, Quantization Error, Sync.

b. Xilinx System Generator v7.x Models that Contain Deprecated Blocks

The DDSv4.0 block still exist in System Generator, but has been deprecated:

c. Xilinx System Generator v7.x Models Utilizing Explicit Sample Periods

The explicit sample period fields have been removed from most non-source blocks in
System Generator v9.1.01. Source blocks (e.g., Counter block) continue to allow the
specification of explicit sample periods. When upgrading models containing feedback
loops, Assert blocks must typically be added by hand after xlUpdateModel has been run.
This is necessary in order to help System Generator determine appropriate rates and types
for the path. The following error message is an indication that an Assert block is required:

“The data rates could not be established for the feedback paths through this block. You
might need to add Assert blocks to instruct the system”

In such a case, you should augment each feedback loop with an Assert block, and specify
rates and types explicitly on this block.

The update script will annotate the converted model wherever the v7.1 model asserted an
explicit period. In the converted model, you will most often not need to insert Assert
blocks. To find out where you need them, try to update the diagram (the Update Diagram
control is under the Edit menu). If rates do not resolve, you will need to insert one or more
Assert blocks.

The update script can be configured to automatically insert Assert blocks immediately
following blocks configured with an explicit sample period setting. To use this option, run
the following command:

xlUpdateModel(designName,'assert')

4. Save and Close the updated model.

If you did not previously make a backup copy of the old model, you can save the updated
model under a new name to preserve the old model.

5. Verify that Your model Runs Under System Generator v9.1.01.

If you have followed the instructions in the previous steps, your model should run with
System Generator v9.1.01. Open the model with System Generator v9.1.01 and run it.
552 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=552

xlUpdateModel
Examples

Example 1:

>> xlUpdateModel('my_model_name');

Update the file my_model_name.mdl that is located in the current working directory.

Example 2:

>> xlUpdateModel('my_model_name','lib');

Update the file my_model_name.mdl that is located in the current working directory, along with
the libraries that are associated with the model.

Example 3:

>> xlUpdateModel('my_model_name','assert’);

Update the file my_model_name.mdl that is located in the current working directory. Add
Assert blocks where necessary.
System Generator for DSP Reference Guide www.xilinx.com 553
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=553

Chapter 4: System Generator Utilities
xlVDMACreateProject
The xlVDMACreateProject utility takes a System Generator design with a VDMA Interface block,
and creates an ISE project with a top-level module that stitches the System Generator design with an
XPS sub-module that instantiates the actual VDMA, AXI interconnect, and MIG IP.

 VDMA

The created ISE and XPS projects are initially set up for one of the following boards, based on the
FPGA device chosen for the System Generator design:

 Xilinx ML605 for all Virtex-6 devices

 Xilinx SP601 for all Spartan-6 LX devices

 Xilinx SP605 for all Spartan-6 LXT devices

Other device families are currently not supported.

To customize the ISE and XPS projects for a different board, do the following:

1. Open the generated ISE project in Project Navigator.

2. Double click the XPS sub-module to open the XPS GUI.

3. From the XPS GUI, customize the MIG and clock generator based on the DDR settings for the
target board.

4. Close the XPS GUI and go back to Project Navigator.

5. Edit the generated top-level HDL if the DCM/MMCM settings do not match the target board.

6. Edit the generated top-level UCF if the constraints for the system clock do not match the target
board.

 Usage:

 xlVDMACreateProject(NetlistDirectory, TopLevelName, Options)

You should create the ISE and XPS projects for the System Generator design in the
NetlistDirectory directory. If a TopLevelName is specified, the top-level module uses the
given TopLevelName as entity name. Otherwise, the default entity name 'vdma_top' is used.

Optional options can be specified through the OPTIONS argument, which is a MATLAB struct. The
following options are supported:

Debug: If this value is true, ChipScope AXI monitors are inserted to various AXI interfaces in the
design: M_AXI_MM2S and M_AXI_S2MM interfaces between the VDMA and AXI interconnect
IP, and the S_AXI interface between the AXI interconnect and MIG IP.
554 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=554

xlVersion
xlVersion
It is possible to have multiple versions of System Generator installed. The MATLAB command
xlVersion displays which versions are installed, and makes it possible to switch from one to
another. Occasionally, it is necessary to restart MATLAB to make it possible to switch versions; the
xlVersion command will instruct you to do so in these cases.

If you install System Generator 8.1 after you install 8.2, you need to install 8.2 again in order to
make xlVersion work.

Syntax
xlVersion;
xlVersion ver;
xlVersion –add directory;

Description

A call to xlVersion with no parameters will display the current version of System Generator
installed, and also all available versions.

The ver option specifies the version of System Generator to switch to.

The –add option allows a directory to be specified. The directory is expected to hold a System
Generator installation. The specified instance of System Generator is loaded as the current working
System Generator installation.

See Also
Real-Time Signal Processing using Hardware Co-Simulation
System Generator for DSP Reference Guide www.xilinx.com 555
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=555

Chapter 4: System Generator Utilities
556 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=556

Chapter 5

System Generator GUI Utilities

Xilinx BlockAdd Facilitates the rapid addition of Xilinx blocks (and a
limited set of Simulink blocks) to a Simulink model.

Xilinx Tools > Save as blockAdd
default

Facilitates the rapid addition of pre-configured
Xilinx blocks to a Simulink model. This feature
allows you to pre-configure a block, then add
multiple copies of the pre-configured block using the
BlockAdd feature.

Xilinx BlockConnect Facilitates the rapid connection of blocks in a
Simulink model.

Xilinx Tools > Terminate Facilitates the rapid addition of Simulink terminator
blocks on open output ports and/or Xilinx Constant
Blocks on open input ports.
System Generator for DSP Reference Guide www.xilinx.com 557
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=557

Chapter 5: System Generator GUI Utilities
Xilinx BlockAdd
Facilitates the rapid addition of Xilinx blocks (and a limited set of Simulink blocks) to a Simulink
model.

How to Invoke

Method 1

Right-click on the Simulink canvas and select Xilinx BlockAdd.

Method 2

Execute the short cut Ctrl 1 (one).

Method 3

From the Simulink model pull down menu, select the following item:

Tools > Xilinx > BlockAdd Ctrl 1

How to Use
Right-click on the Simulink canvas and select Xilinx BlockAdd.

Right-click on the Simulink canvas and select Xilinx BlockAdd.

1. Right-Click 2. Select

2. Double-Click 1. Scroll to block
558 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=558

Xilinx BlockAdd
As shown below, to rapidly scroll to a block, enter the first few letters of the block name in the top
entry box. To add multiple blocks, select each block using Shift-Click, then press Enter.

To add multiple copies of the same block, add a block, select the block, press Ctrl-C, then Ctrl-V,
Ctrl-V, etc.

To dismiss the Add block window, press Esc.

2. Shift-Click 1. Enter letter(s)
3. Press Enter
System Generator for DSP Reference Guide www.xilinx.com 559
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=559

Chapter 5: System Generator GUI Utilities
Xilinx Tools > Save as blockAdd default
Facilitates the rapid addition of pre-configured Xilinx blocks to a Simulink model. This feature
allows you to pre-configure a block, then add multiple copies of the pre-configured block using the
BlockAdd feature.

How to Use
Assume you need to add multiple Gateway In blocks of type Boolean to a model.

1. Add one Gateway In block to the model.

2. Double click on the Gateway In block, change the Output type to Boolean and click OK.

3. Select the modified Gateway In block, right-click and select Xilinx Tools > Save as blockAdd
default.

4. Now, every time you add addition Gateway In blocks to the model using the BlockAdd feature,
the block is of Output type Boolean.

How to Restore the Block Default

1. Select a block with pre-configured (changed) defaults.

2. Right-click and select Xilinx Tools > Clear blockAdd defaults.
560 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=560

Xilinx BlockConnect
Xilinx BlockConnect
Facilitates the rapid connection of blocks in a Simulink model.

Simple Connections
1. As shown below, select an open port of a block, right click, and select Xilinx BlockConnect.

2. BlockConnect proposes the nearest connection with a green line. To confirm, you can double
click the selected connection in the table. The connection then turns black. Otherwise, select
another connection in the table to see if the new green line connection is correct.

1. Right-click 2. Select

2. Double-click1. Verify connection
System Generator for DSP Reference Guide www.xilinx.com 561
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=561

Chapter 5: System Generator GUI Utilities
Smart Connections

As shown below, a “lightling bolt” icon indicates a “smart” connection. Smart connections have
intellegence built in to help you manage the connection. For example, right-clicking on a block with
an AXI interface allows you to (1) group/separate the AXI signals to/from a bus. Or (2) connect to
other ports with the same number of AXI connections.

No port data type checking is performed and any AXI ports with the same number of ports are
allowed to connect.

In another smart connection example below, right clicking on the Accumulator block output,
selecting BlockConnect, and double clicking on Scope creates a smart connection to the Scope
block. The Gateway Out block is added automatically. .

If a second connection is made to this Scope block, a second port is automatically added to the
Scope. The driving signal name is also used to name the signal driving the scope.

Means “smart” connection
562 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=562

Xilinx Tools > Terminate
Xilinx Tools > Terminate
Facilitates the rapid addition of Simulink terminator blocks on open output ports and/or Xilinx
Constant Blocks on open input ports.

How to Use

Terminating Open Outputs

Consider the following model with open input and output ports:

Right-click on the DDS Compiler 5.0 block in this case and select:

Xilinx Tools > Terminate > Outputs

The following graphic illustrates the resulting terminated outputs.
System Generator for DSP Reference Guide www.xilinx.com 563
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=563

Chapter 5: System Generator GUI Utilities
Terminating Open Inputs

Consider the following model with an open input port:

Right-click on the DDS Compiler 5.0 block and select:

Xilinx Tools > Terminate > Inputs

The following graphic illustrates the resulting terminated input.
564 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=564

Xilinx Tools > Terminate
Verifying Input Port Data Type Requirements

System Generator connects each open input port to a Xilinx Constant Block. The new Constant
blocks are set to the following default values:

Type: Signed (2’s comp)

Constant value: 0

Number of bits: 16

Binary point: 14

This terminate tool does not do data type checking on the input ports. If an open port requires a
different data type, for example a Boolean data type, you’ll need to double-click on the Constant
block and change the Output Type to Boolean.

To check for data type mismatches, click on the Simulink model canvas and enter Ctrl-D. System
Generator will report on all the data type mismatches, if there are any.
System Generator for DSP Reference Guide www.xilinx.com 565
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=565

Chapter 5: System Generator GUI Utilities
566 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=566

Chapter 6

Programmatic Access

System Generator API for Programmatic Generation

Introduction
A script of System Generator for programmatic generation (PG API script) is a MATLAB M-
function file that builds a System Generator subsystem by instantiating and interconnecting xBlock,
xSignal, xInport, and xOutport objects. It is a programmatic way of constructing System
Generator diagrams (for example, subsystems). As is demonstrated below with examples, the top-
level function of a System Generator programmatic script is its entry point and must be invoked
through an xBlock contructor. Upon constructor exit, MATLAB adds the corresponding System
Generator subsystem to the corresponding model. If no model is opened, a new “untitled” model is
created and the System Generator subsystem is inserted into it.

The xBlock constructor creates an xBlock object. The object can be created from a library block
or it can be a subsystem. An xSignal object corresponds to a wire that connects a source block to
a target. An xInport object instantiates a Simulink Inport and an xOutport object instantiates a
Simulink Outport

The API also has one helper function, xlsub2script which converts a Simulink diagram to a
programmatic generation script.

The API works in three modes: learning mode, production mode, and debugging mode. The learning
mode allows you to type in the commands without having a physical script file. It is very useful
when you learn the API. In this mode, all blocks, ports and subsystems are added into a Simulink
model named “untiled”. Please remember to run xBlock without any argument or to close the
untitled model before starting a new learning session. The production mode has an M-function file
and is invoked through the xBlock constructor. You will have a subsystem generated. The
subsystem can be either in the existing model or can be inserted in a new model. The debugging
mode works the same as the production mode except that every time a new object is created or a new
connection is established, the Simulink diagram is rerouted. It is very useful when you debug the
script that you set some break points in the script or single step the script.
System Generator for DSP Reference Guide www.xilinx.com 567
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=567

Chapter 6: Programmatic Access
xBlock

The xBlock constructor creates an xBlock object. The object can be created from a library block
or it can be a subsystem. The xBlock constructor can be used in three ways:

 to add a leaf block to the current subsystem,

 to add a subsystem to the current subsystem,

 to attach a top-level subsystem to a model.

The xBlock takes four arguments and is invoked as follows.

block = xBlock(source, params, inports, outports);

If the source argument is a string, it is expected to be a library block name. If the source block is in
the xbsIndex_r4 library or in the Simulink built-in library, you can use the block name without the
library name. For example, calling xBlock('AddSub', ...) is equivalent to
xBlock('xbsIndex_r4/AddSub',...). For a source block that is not in the xbsIndex_r4
library or built-in library, you need to use the full path, for example,
xBlock('xbsTest_r4/Assert Relation', ...). If the source argument is a function
handle, it is interpreted as a PG API function. If it is a MATLAB struct, it is treated as a
configuration struc to specify how to attach the top-level to a model.

The params argument sets up the parameters. It can be a cell array for position-based binding or a
MATLAB struct for name-based binding. If the source parameter is a block in a library, this
argument must be a cell array. If the source parameter is a function pointer, this argument must be a
cell array.

The inports and outports arguments specify how subsystem input and output ports are bound.
The binding can be a cell array for position-based binding or a MATLAB struct for name-based
binding. When specifying an inport/outport binding, an element of a cell array can be an xSignal,
an xInport, or an xOutport object. If the port binding argument is a MATLAB struct, a field of
the struct is a port name of the block, a value of the struct is the object that the port is bound to.

The two port binding arguments are optional. If the arguments are missing when constructing the
xBlock object, the port binding can be specified through the bindPort method of an xBlock
object. The bindPort method is invoked as follows:

block.bindPort(inports, outports)

where inports and outports arguments specify the input and output port binding. In this case,
the object block is create by xBlock with only two arguments, the source and the parameter
binding.

Other xBlock methods include the following.

 names = block.getOutportNames returns a cell array of outport names,

 names = block.getInportNames returns a cell array of inport names,

 nin = block.getNumInports returns the number of inports,

 nout = block.getNumoutports returns the number of outports.

 insigs = block.getInSignals returns a cell array of in coming signals

 outsigs = block.getOutSignals returns a cell array of out going signals
568 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=568

System Generator API for Programmatic Generation
xInport

An xInport object represents a subsystem input port.

The constructor

port = xInport(port_name)

creates an xInport object with name port_name,

[port1, port2, port3, ...] = xInport(name1, name2, name2, ...)

creates a list of input port with names, and

port = xInport

creates an input port with an automatically generated name.

An xInport object can be passed for port binding.

METHODS

outsigs = port.getOutSignals

returns a cell array of out going signals.

xOutport
An xOutport object represents a subsystem output port.

The constructor

port = xOutport(port_name)

creates an xOutport object with name port_name,

[port1, port2, port3, ...] = xOutport(name1, name2, name2, ...)

creates a list of output port with names, and

port = xOutport

creates an output port with an automatically generated name.

An xOutport object can be passed for port binding.

METHODS

port.bind(obj)

connects the object to port, where port is an xOutport object and obj is an xSignal or xInport object.

insigs = port.getInSignals

returns a cell array of incoming signals.
System Generator for DSP Reference Guide www.xilinx.com 569
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=569

Chapter 6: Programmatic Access
xSignal

An xSignal represents a signal object that connects a source to targets.

The constructor

sig = xSignal(sig_name)

creates an xSignal object with name sig_name,

[sig1, sig2, sig3, ...] = xSignal(name1, name2, name2, ...)

creates a list of signals with names, and

sig = xSignal

creates an xSignal for which a name is automatically generated.

An xSignal object can be passed for port binding.

METHODS

sig.bind(obj)

connects the obj to sig, where sig is an xSignal object and obj is an xSignal or an xInport object.

src = sig.getSrc

returns a cell array of the source objects that are driving the xSignal object. The cell array can
have at most one element. If the source is an input port, the source object is an xInport object. If the
source is an output port of a block, the source object is a struct, having two fields block and port. The
block field is an xBlock object and the port field is the port index.

dst = sig.getDst

returns a cell array of the destination objects that the xSignal object is driving. Each element can
be either a struct or an xOutport object. It is defined same as the return value of the getSrc method.

xlsub2script
xlsub2script is a helper function that converts a subsystem into the top level of a Sysgen script.

xlsub2script(subsystem) converts the subsystem into the top-level script. The argument
can also be a model.

By default, the generated M-function file is named after the name of the subsystem with white
spaces replaced with underscores. Once the xlsub2script finishes, a help message will guide
you how to use the generated script. The main purpose of this xlsub2script function is to make
learning Sysgen Script easier. This is also a nice utility that allows you to construct a subsystem
using graphic means and then convert the subsystem to a PG API M-function.

xlsub2script(block), where block is a leaf block, prints out the xBlock call that creates
the block.
570 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=570

System Generator API for Programmatic Generation
The following are the limitations of xlsub2script.

 If the subsystem has mask initialization code that contains function calls such as gcb,
set_param, get_param, add_block, and so on, the function will error out and you must
modify the mask initialization code to remove those Simulink calls.

 If there is an access to global variables inside the subsystem, you need add corresponding mask
parameters to the top subsystem that you run the xlsub2script.

 If a block’s link is broken, that block is skipped.

xlsub2script can also be invoked as the following:

 xlsub2script(subsyste, options)

where options is a MATLAB struct. The options struct can have two fields: forcewrite,
and basevars.

If xlsub2script is invoked for the same subsystem the second time, xlsub2script will try
to overwrite the existing M-function file. By default, xlsub2script will pop up a question
dialog asking whether to overwrite the file or not. If the forcewrite field of the options
argument is set to be true or 1, xlsub2script will overwrite the M-function file without asking.

Sometimes a subsystem is depended on some variables in the MATLAB base workspace. In that
case, when you run xlsub2script, you want xlsub2script to pick these base workspace
variables and generate the proper code to handle base workspace variables. The basevars field of
the options argument is for that purpose. If you want xlsub2script to pick up every variable
in the base workspace, you need to set the basevars field to be 'all'. If you want
xlsub2script to selectively pick up some variables, you can set the basevars field to be a cell
array of strings, where each string is a variable name.

The following are examples of calling xlsub2script with the options argument:

xlsub2script(subsystem, struct('forcewrite', true));
xlsub2script(subsystem, struct('forcewrite', true, 'basevars',

'all'));
options.basevars = {'var1', 'var2', 'var3');
xlsub2script(subsystem, options);
xlsub2script(subsystem, struct('basevars', {{'var1', 'var2',

'var3'}}));

Note: In MATLAB, if the field of a struct is a cell array, when you call the struct() function call, you need the
extra {}.
System Generator for DSP Reference Guide www.xilinx.com 571
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=571

Chapter 6: Programmatic Access
xBlockHelp

xBlockHelp(<block_name>) prints out the parameter names and the acceptable values for
the corresponding parameters. When you execute xBlockHelp without a parameter, the available
blocks in the xbsIndex_r4 library are listed..

For example, when you execute the following in the MATLAB command line:

 xBlockHelp('AddSub')

 You'll get the following table in the transcript:

'xbsIndex_r4/AddSub' Parameter Table

Parameter Acceptable value Type
============ ================== ========
mode 'Addition' String
 'Subtraction'
 'Addition or Subtraction'
------------ ------------------ --------
use_carryin 'off' String
 'on'
------------ ------------------ --------
use_carryout 'off' String
 'on'
------------ ------------------ --------
en 'off' String
 'on'
------------ ------------------ --------
latency An Int value Int
------------ ------------------ --------
precision 'Full' String
 'User Defined'
------------ ------------------ --------
arith_type 'Signed (2's comp)' String
 'Unsigned'
------------ ------------------ --------
n_bits An Int value Int
------------ ------------------ --------
bin_pt An Int value Int
------------ ------------------ --------
quantization 'Truncate' String
 'Round (unbiased: +/- Inf)'
------------ ------------------ --------
overflow 'Wrap' String
 'Saturate'
 'Flag as error'
------------ ------------------ --------
use_behavioral_HDL 'off' String
 'on'
------------ ------------------ --------
pipelined 'off' String
 'on'
------------ ------------------ --------
use_rpm 'off' String
 'on'
------------ ------------------ --------
572 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=572

PG API Examples
PG API Examples

Hello World
In this example, you will run the PG API in the learning mode where you can type the commands in
the MATLAB command shell.

1. To start a new learning session, in MATLAB command console, run: xBlock.

2. Type the following three commands in MATLAB command console to create a new subsystem
named 'Subsystem' inside a new model named 'untitled'.

[a, b] = xInport('a', 'b');
s = xOutport('s');
adder = xBlock('AddSub', struct('latency', 1), {a, b}, {s});

The above commands create the subsystem with two Simulink Inports a and b, an adder block
having a latency of one, and a Simulink Outport s. The two Inports source the adder which in turn
sources the subsystem outport. The AddSub parameter refers to the AddSub block inside the
xbsIndex_r4 library. By default, if the full block path is not specified, xBlock will search
xbsIndex_r4 and built-in libraries in turn. The library must be loaded before using xBlock. So
please use load_system to load the library before invoking xBlock.

Debugging tip: If you type adder in the MATLAB console, System Generator will print a brief
description of the adder block to the MATLAB console and the block is highlighted in the Simulink
diagram. Similarly, you can type a, b, and s to highlight subsystem Inports and Outports.
System Generator for DSP Reference Guide www.xilinx.com 573
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=573

Chapter 6: Programmatic Access
MACC

1. Run this example in the learning mode. To start a new learning session, run: xBlock.

2. Type the following commands in the MATLAB console window to create a multiply-
accumulate function in a new subsystem.

[a, b] = xInport('a', 'b');
mac = xOutport('mac');
m = xSignal;
mult = xBlock('Mult', struct('latency', 0, 'use_behavioral_HDL', 'on'),
{a, b}, {m});
acc = xBlock('Accumulator', struct('rst', 'off', 'use_behavioral_HDL',
'on'), {m}, {mac});

By directing System Generator to generate behavioral HDL, the two blocks should be packed into a
single DSP48 block. As of this writing, XST will do so only if you force the multiplier block to be
combinational.

Note: If you don’t close the model that is created in example 1, example 2 is created in a model named
untiltled1. Otherwise, a new model untitled is created for this example.

Debugging tip: The PG API provides functions to get information about blocks and signals in the
generated subsystem. After each of the following commands, observe the output in the MATLAB
console and the effect on the Simulink diagram.

mult_ins = mult.getInSignals
mult_ins{1}
mult_ins{2}
src_a = mult_ins{1}.getSrc
src_a{1}
m_dst = m.getDst
m_dst{1}
m_dst{1}.block
574 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=574

PG API Examples
MACC in a Masked Subsystem

If you want a particular subsystem to be generated by the PG API and pass parameters from the
mask parameters of that subsystem to PG API, you need to run the PG API in production mode,
where you need to have a physical M-function file and pass that function to the xBlock
constructor.

1. First create the top-level PG API M-function file MACC_sub.m with the following lines.

function MACC_sub(latency, nbits)
[a, b] = xInport('a', 'b');
mac = xOutport('mac');
if latency <= 0
 error('latency must be positive');
elseif latency == 1
 a_in = a; b_in = b;
else
 [a_in, b_in] = xSignal;
 dblock1 = xBlock('Delay', struct('latency', latency - 1,
'reg_retiming', 'on'), {a}, {a_in});
 block2 = xBlock('Delay', struct('latency', latency - 1,
'reg_retiming', 'on'), {b}, {b_in});
end
m = xSignal;
mult = xBlock('Mult', struct('latency', 0, 'use_behavioral_HDL', 'on'),
{a_in, b_in}, {m});
acc = xBlock('Accumulator', struct('rst', 'off', 'n_bits', nbits,
'use_behavioral_HDL', 'on'), {m}, {mac});
System Generator for DSP Reference Guide www.xilinx.com 575
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=575

Chapter 6: Programmatic Access
2. To mask the subsystem defined by the script, add two mask parameters latency and nbits.

3. Then put the following lines to the mask initialization of the subsystem.

config.source = str2func('MACC_sub');
config.toplevel = gcb;
xBlock(config, {latency, nbits});

In the production mode, the first argument of the xBlock constructor is a MATLAB struct for
configuration, which must have a source field and a toplevel field. The source field is a function
pointer points to the M-function and the toplevel is string specifying the Simulink subsystem. If the
top-level field is 1, an untitled model is created and a subsystem inside that model is created.

Alternatively you can use the MATLAB struct call to create the toplevel configuration:

xBlock(struct('source', str2func(MACC_sub), 'toplevel', gcb),{latency,
nbits});

Then click OK.
576 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=576

PG API Examples
You’ll get the following subsystem.

4. Set the mask parameters as shown in the following figure, then click OK:

The following diagram is generated:
System Generator for DSP Reference Guide www.xilinx.com 577
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=577

Chapter 6: Programmatic Access
Debugging Tip: Open MACC_sub.m in the MATLAB editor to debug the function. By default the
xBlock constructor will do an auto layout in the end. If you want to see the auto layout every time
a block is added, invoke the toplevel xBlock as the following:

config.source = str2func('MACC_sub');
config.toplevel = gcb;
config.debug = 1;
xBlock(config, {latency, nbits});

By setting the debug field of the configuration struct to be 1, you’re running the PG API in debug
mode where every action will trigger an auto layout.

Caching Tip: Most often you only want to re-generate the subsystem if needed. The xBlock
constructor has a caching mechanism. You can specify the list of dependent files in a cell array, and
set the 'depend' field of the toplevel configuration with this list. If any file in the 'depend' list is
changed, or the argument list that passed to the toplevel function is changed, the subsystem is re-
generated. If you want to have the caching capability for the MACC_sub, invoke the toplevel
xBlock as the following:

config.source = str2func('MACC_sub');
config.toplevel = gcb;
config.depend = {'MACC_sub.m'};
xBlock(config, {latency, nbits});

The depend field of the configuration struct is a cell array. Each element of the array is a file name.
You can put a p-file name or an M-file name. You can also put a name without a suffix. The xBlock
will use the first in the path.
578 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=578

PG API Error/Warning Handling & Messages
PG API Error/Warning Handling & Messages

xBlock Error Messages

xInport Error Messages

Condition Error Message(s)

When calling
xBlock(NoSubSourceBlock, …)
and the source block does not exist

Source block NoSubSourceBlock cannot be found.

When calling
xBlock(sourceblock,
parameterBinding), and the
parameters are illegal, xBlock will report
the Illegal parameterization error. For
example, xBlock(‘AddSub’,
struct(‘latency’, -1));

Illegal parameterization: Latency

Latency is set to a value of -1, but the value must be
greater than or equal to 0

When the input port binding list contains
objects other than xSignal or
xInport:

Only objects of xInport or xSignal can appear in
inport binding list.

When the output port binding list contains
objects other than xSignal or
xOutport:

Only objects of xOutport or xSignal can appear in
outport binding list.

If the first argument of xBlock is a
function pointer, the 2nd argument of
xBlock is expected to be a cell array,
otherwise, an error is thrown:

Cell array is expected for the second argument of
the xBlock call

If the source configuration struct has
toplevel defined, it must point to a
Simulink subsystem and it must be a char
array, otherwise, an error is thrown:

Top level must be a char array

If an object in the outport binding list has
already been driven by something, for
example, if you try to have two driving
sources, an error is thrown. (Note: the
error message is not intuitive, we will fix
it later.)

Source of xSignal object already exists

Condition Error Message(s)

If you try to create an xInport object
with the same name the second time, an
error is thrown. For example, if you call p
= xInport(‘a’, ‘a’).

A new block named 'untitled/Subsystem/a' cannot
be added.
System Generator for DSP Reference Guide www.xilinx.com 579
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=579

Chapter 6: Programmatic Access
xOutport Error Messages

xSignal Error Messages

xsub2script Error Messages

M-Code Access to Hardware Co-Simulation
Hardware co-simulation in System Generator brings on-chip acceleration and verification
capabilities into the Simulink simulation environment. In the typical System Generator flow, a
System Generator model is first compiled for a hardware co-simulation platform, during which a

Condition Error Message(s)

If you try to create an xOutport object
with the same name the second time, an
error is thrown. For example, if you call p
= xOutport(‘a’, ‘a’).

A new block named 'untitled/Subsystem/a' cannot
be added.

If you try to bind an xOutport object
twice, an error is thrown. For example, the
following sequence of calls will cause an
error: [a, b] = xInport(‘a’, ‘b’); c =
xOutport(‘c’); c.bind(a); c.bind(b);

The destination port already has a line connection.

Condition Error Message(s)

If you try to bind an xSignal object with
two sources, an error is thrown. For
example, the following sequence of calls
will cause an error: [a, b] = xInport(‘a’,
‘b’); sig = xSignal; sig.bind(a);
sig.bind(b);

Source of xSignal object already exists.

Condition Error Message(s)

xlsub2script is invoked without any
argument.

An argument is expected for xlsub2script

The first argument is not a subsystem or
the model is not opened.

The first argument must be a model, subsystem, or
a block. Please make sure the model is opened or
the argument is a valid string for a model or a block.

A subsystem has simulink function calls
in its mask initialization code.

Subsystem has Simulink function calls, such as gcb,
get_param, set_param, add_block. Please remove
these calls and run xlsub2script again or you can
pick a different subsystem to run xlsub2script.

The subsystem has Goto blocks. You have the following Goto blocks, please modify
the model to remove them and run xlsub2script
again.
580 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=580

M-Code Access to Hardware Co-Simulation
hardware implementation (bitstream) of the design is generated and associated to a hardware co-
simulation block. The block is inserted into a Simulink model and its ports are connected with
appropriate source and sink blocks. The whole model is simulated while the compiled System
Generator design is executed on an FPGA device.

Alternatively, it is possible to programmatically control the hardware created through the System
Generator hardware co-simulation flow using MATLAB M-code (M-Hwcosim). The M-Hwcosim
interfaces allow for MATLAB objects that correspond to the hardware to be created in pure M-code,
independent of the Simulink framework. These objects can then be used to read and write data into
hardware.

This capability is useful for providing a scripting interface to hardware co-simulation, allowing for
the hardware to be used in a scripted test-bench or deployed as hardware acceleration in M-code.
Apart from supporting the scheduling semantics of a System Generator simulation, M-Hwcosim
also gives the flexibility for any arbitrary schedule to be used. This flexibility can be exploited to
improve the performance of a simulation, if the user has apriori knowledge of how the design works.
Additionally, the M-Hwcosim objects provide accessibility to the hardware from the MATLAB
console, allowing for the hardware internal state to be introspected interactively.

Compiling Hardware for Use with M-Hwcosim
Compiling hardware for use in M-Hwcosim follows the same flow as the typical System Generator
hardware co-simulation flow. You start off with a System Generator model in Simulink, select a
hardware co-simulation target in the System Generator token and click "Generate". At the end of the
generation, a hardware co-simulation library is created.

Among other files in the netlist directory, a bit file and an hwc file can be found. The bit file
corresponds to the FPGA implementation, and the hwc file contains information required for M-
Hwcosim. Both bit file and hwc file are paired by name, e.g. mydesign_cw.bit and
mydesign_cw.hwc.

The hwc file specifies additional meta information for describing the design and the chosen
hardware co-simulation interface. With the meta information, a hardware co-simulation instance can
be instantiated using M-Hwcosim, through which a user can interact with the co-simulation engine.

M-Hwcosim inherits the same concepts of ports, shared memories, and fixed point notations as
found in the existing co-simulation block. Every design exposes its top-level ports and embedded
shared memories for external access.

M-Hwcosim Simulation Semantics
The simulation semantics for M-Hwcosim differs from that used during hardware co-simulation in
a System Generator block diagram; the M-Hwcosim simulation semantics is more flexible and is
capable of emulating the simulation semantics used in the block-based hardware co-simulation.

In the block-based hardware co-simulation, a rigid simulation semantic is imposed; before
advancing a clock cycle, all the input ports of the hardware co-simulation are written to. Next all the
output ports are read and the clock is advanced. In M-Hwcosim the scheduling of when ports are
read or written to, is left to the user. For instance it would be possible to create a program that would
only write data to certain ports on every other cycle, or to only read the outputs after a certain
number of clock cycles. This flexibility allows users to optimize the transfer of data for better
performance.
System Generator for DSP Reference Guide www.xilinx.com 581
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=581

Chapter 6: Programmatic Access
Data Representation

M-Hwcosim uses fixed point data types internally, while it consumes and produces double precision
floating point values to external entities. All data samples passing through a port or a memory
location in a shared memory are fixed point numbers. Each sample has a preset data width and an
implicit binary point position that are fixed at the compilation time. Data conversions (from double
precision to fixed point) happen on the boundary of M-Hwcosim. In the current implementation,
quantization of the input data is handled by rounding, and overflow is handled by saturation.

Interfacing to Hardware from M-Code
When a model has been compiled for hardware co-simulation, the generated bitstream can be used
in both a model-based Simulink flow, or in M-code executed in MATLAB. The general sequence of
operations to access a bitstream in hardware typically follows the sequence described below.

1. Configure the hardware co-simulation interface. Note that the hardware co-simulation
configuration is persistent and is saved in the hwc file. If the co-simulation interface is not
changed, there is no need to re-run this step.

2. Create a M-Hwcosim instance for a particular design

3. Open the M-Hwcosim interface

4. Repeatedly run the following sub-steps until the simulation ends

a. Write simulation data to input ports

b. Read simulation data from output ports

c. Advance the design clock by one cycle

5. Close the M-Hwcosim interface

6. Release the M-Hwcosim instance
582 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=582

M-Code Access to Hardware Co-Simulation
M-Hwcosim Examples

Tutorial Example: Using MATLAB Hardware Co-Simulation (M-Hwcosim)

The following step-by-step tutorial will show you how to perform MATLAB hardware co-
simulation using a simple AddSub model that is comprised of two inputs and one output -- two
operands (x1, x2) and one summation output (y).

Note: This step-by-step tutorial assumes that you have already installed and configured both the hardware and
software required to run on an ML506 platform for Ethernet Hardware Co-Simulation. Refer to the topic
Installing an ML506 Platform for Ethernet Hardware Co-Simulation for more information of how to
install and configure this platform.

The AddSubExample design is located at the following pathname:

<ISE_Design_Suite_tree>/sysgen/examples/mhwcosim/AddSubExample.mdl

1. 1.Open the model in MATLAB and observe the following blocks:

2. Double-click on the System Generator token to bring up the following dialog box.
System Generator for DSP Reference Guide www.xilinx.com 583
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=583

Chapter 6: Programmatic Access
As shown above, the Create testbench checkbox is checked to tell the hardware co-simulation
compilation flow to auto generate an M-code script <design>_
hwcosim_test.m and golden test data files <design>_<port>_hwcosim_
test.dat for each gateway based on the Simulink simulation. After a few moments, a sub-
directory named netlist is created in the current working directory containing the generated
files. For more information about the auto testbench generation, refer to the topic Automatic
Generation of M-Hwcosim Testbench.

3. Click Generate to begin generating the hardware co-simulation netlist. So far, the design flows
are exactly the same as those for the Simulink hardware co-simulation.

4. Once netlist generation is complete, you are now ready to perform MATLAB Hardware Co-
simulation. Run the provided M-code script at pathname
./examples/mhwcosim/AddSubExample/AddSubExample.mdl/mhcosim.m by
either typing mhwcosim in the MATLAB console or right-clicking on the file and selecting the
Run as shown below:

Note: This M-code script is created by slightly modifying the auto-generated M-code script to print out some
simulation results.

5. The first time the model is simulated, you should see the following configuration dialog box
pop up. Set parameters according to your computer and cable type as shown below and click
OK.
584 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=584

M-Code Access to Hardware Co-Simulation
6. After about 30 seconds, you should observe the simulation results in the MATLAB console as
shown below:

Summary

In addition to the Simulink hardware co-simulation, System Generator provides another
methodology to perform hardware co-simulation by offering MATLAB hardware co-simulation.
This feature enables you to programmatically control the hardware, created through the System
Generator hardware co-simulation flow, using MATLAB M-code (M-Hwcosim). The M-Hwcosim
interfaces allow for MATLAB objects that correspond to the hardware to be created in pure M-code,
independent of the Simulink framework. These objects can then be used to read and write data into
hardware. For more details on how to use Read and Write and other supported functions, refer to the
topic M-Hwcosim MATLAB Class.

This capability is also useful for providing a scripting interface to hardware co-simulation that
allows the hardware to be used in a scripted test-bench or deployed as hardware acceleration in M-
code. In certain design applications, you might find some improvement in performance using this
method of hardware co-simulation.
System Generator for DSP Reference Guide www.xilinx.com 585
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=585

Chapter 6: Programmatic Access
Example 2

This M-code uses an alternative form of syntax to perform the simulation described in the previous
example. This form uses the exec instruction and provides better simulation performance by
reducing the number of name-based lookups required to identify ports on a block, and also by
folding the execution of code in an M-code for-loop into a single instruction, which reduces the
over-head associated with interpreting the M-code.

% Configure the co-simulation interface. Note: This needs only to be
% done once, since the configuration is stored back into the hwc file
% This will launch a configuration GUI.
xlHwcosimConfig('mydesign.hwc');

% Define the number of simulation cycles.
nCycles = 1000;

% Creates a hardware co-simulation instance from the project
% 'mydesign.hwc'.
h = Hwcosim('mydesign.hwc');

% Opens and configures the hardware co-simulation interface.
open(h);

% Initializes the 'op' input port with a constant value zero.
write(h, 'op', 0);

% Initializes an execution definition that covers the input ports,
% x1 and x2, and the output ports y. It returns an execution
% identifier for use in subsequent exec instructions.
execId = initExec(h, {'x1', 'x2'}, {'y'});

% Simulate the design using the exec instruction.
% The input data are given as a 2-D matrix. Each row of the matrix
% gives the simulation data of an input port for all the cycles.
% For example, row i column j stores the data for the i-th port at
% (j-1)th cycle.
result = exec(h, execId, nCycles, rand(2, nCycles));

% Releases the hardware co-simulation instance.
% The hardware co-simulation interface is closed implicitly.
release(h);
586 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=586

M-Code Access to Hardware Co-Simulation
Example 3

This example shows how M-code is used to access Shared Memories in an M-Hwcosim flow. The
example assumes that a System Generator model, with a Shared Memory called 'MyMem', and two
SharedFifos called 'WriteFofo' and 'ReadFifo', has been compiled into a hardware co-simulation
block.

Note: The model and source code for this example can be found at pathname
<ISE_Design_Suite_tree>/sysgen/examples/mhwcosim/ShMemExample

% Creates a hardware co-simulation instance from the project
'shmem.hwc'.
h = Hwcosim('shmem.hwc');

% Opens and configures the hardware co-simulation interface.
open(h);

% Creates a shared memory instance 'MyMem'. It connects the
corresponding
% shared memory running in hardware.
m = Shmem('MyMem');

% Creates a shared FIFO instance 'WriteFifo' for writing data to the
% hardware. Similarly, creates another shared FIFO instance 'ReadFifo'
for
% reading data from the hardware.
wf = Shfifo('WriteFifo');
rf = Shfifo('ReadFifo');

% Writes random numbers to memory address 0 to 49 of MyMem.
m(0:49) = rand(1, 50);

% Read the value at memory address 100 of MyMem.
y = m(100);

% Writes 10 random numbers to WriteFifo if it has 10 or more empty
space.
if wf.Available >= 10
 write(wf, 10, rand(1, 10));
end

% Reads 5 values from ReadFifo if it has 5 or more data.
if rf.Available >= 5
 d = read(rf, 5);
end

% Releases the shared memory instances.
release(m);
release(wf);
release(rf);

% Releases the hardware co-simulation instance.
release(h);
System Generator for DSP Reference Guide www.xilinx.com 587
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=587

Chapter 6: Programmatic Access
Automatic Generation of M-Hwcosim Testbench

M-Hwcosim enables the testbench generation for hardware co-simulation. When the Create
testbench option is checked in the System Generator GUI, the hardware co-simulation compilation
flow generates an M-code script (<design>_hwcosim_test.m) and golden test data files
(<design>_<port>_hwcosim_test.dat) for each gateway based on the Simulink
simulation. The M-code script uses the M-Hwcosim API to implement a testbench that simulates the
design in hardware and verifies the results against the golden test data. Any simulation mismatch is
reported in a result file (<design>_hwcosim_test.results).

As shown below in Example 4, the testbench code generated is easily readable and can be used as a
basis for your own simulation code.

Note: The model for this example can be found at pathname
<ISE_Design_Suite_tree>/sysgen/examples/mhwcosim/MultiRatesExample

Example 4

function multi_rates_cw_hwcosim_test
 try
 % Define the number of hardware cycles for the simulation.
 ncycles = 10;

 % Load input and output test reference data.
 testdata_in2 = load('multi_rates_cw_in2_hwcosim_test.dat');
 testdata_in3 = load('multi_rates_cw_in3_hwcosim_test.dat');
 testdata_in7 = load('multi_rates_cw_in7_hwcosim_test.dat');
 testdata_pb00 = load('multi_rates_cw_pb00_hwcosim_test.dat');
 testdata_pb01 = load('multi_rates_cw_pb01_hwcosim_test.dat');
 testdata_pb02 = load('multi_rates_cw_pb02_hwcosim_test.dat');
 testdata_pb03 = load('multi_rates_cw_pb03_hwcosim_test.dat');
 testdata_pb04 = load('multi_rates_cw_pb04_hwcosim_test.dat');

 % Pre-allocate memory for test results.
 result_pb00 = zeros(size(testdata_pb00));
 result_pb01 = zeros(size(testdata_pb01));
 result_pb02 = zeros(size(testdata_pb02));
 result_pb03 = zeros(size(testdata_pb03));
 result_pb04 = zeros(size(testdata_pb04));

 % Initialize sample index counter for each sample period to be
 % scheduled.
 insp_2 = 1;
 insp_3 = 1;
 insp_7 = 1;
 outsp_1 = 1;
 outsp_2 = 1;
 outsp_3 = 1;
 outsp_7 = 1;

 % Define hardware co-simulation project file.
 project = 'multi_rates_cw.hwc';

 % Create a hardware co-simulation instance.
 h = Hwcosim(project);

 % Open the co-simulation interface and configure the hardware.
 try
 open(h);
588 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=588

M-Code Access to Hardware Co-Simulation
 catch
 % If an error occurs, launch the configuration GUI for the user
 % to change interface settings, and then retry the process again.
 release(h);
 xlHwcosimConfig(project, true);
 drawnow;
 h = Hwcosim(project);
 open(h);
 end

 % Simulate for the specified number of cycles.
 for i = 0:(ncycles-1)

 % Write data to input ports based their sample period.
 if mod(i, 2) == 0
 h('in2') = testdata_in2(insp_2);
 insp_2 = insp_2 + 1;
 end
 if mod(i, 3) == 0
 h('in3') = testdata_in3(insp_3);
 insp_3 = insp_3 + 1;
 end
 if mod(i, 7) == 0
 h('in7') = testdata_in7(insp_7);
 insp_7 = insp_7 + 1;
 end

 % Read data from output ports based their sample period.
 result_pb00(outsp_1) = h('pb00');
 result_pb04(outsp_1) = h('pb04');
 outsp_1 = outsp_1 + 1;
 if mod(i, 2) == 0
 result_pb01(outsp_2) = h('pb01');
 outsp_2 = outsp_2 + 1;
 end
 if mod(i, 3) == 0
 result_pb02(outsp_3) = h('pb02');
 outsp_3 = outsp_3 + 1;
 end
 if mod(i, 7) == 0
 result_pb03(outsp_7) = h('pb03');
 outsp_7 = outsp_7 + 1;
 end

 % Advance the hardware clock for one cycle.
 run(h);

 end

 % Release the hardware co-simulation instance.
 release(h);

 % Check simulation result for each output port.
 logfile = 'multi_rates_cw_hwcosim_test.results';
 logfd = fopen(logfile, 'w');
 sim_ok = true;
 sim_ok = sim_ok & check_result(logfd, 'pb00', testdata_pb00,
result_pb00);
System Generator for DSP Reference Guide www.xilinx.com 589
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=589

Chapter 6: Programmatic Access
 sim_ok = sim_ok & check_result(logfd, 'pb01', testdata_pb01,
result_pb01);
 sim_ok = sim_ok & check_result(logfd, 'pb02', testdata_pb02,
result_pb02);
 sim_ok = sim_ok & check_result(logfd, 'pb03', testdata_pb03,
result_pb03);
 sim_ok = sim_ok & check_result(logfd, 'pb04', testdata_pb04,
result_pb04);
 fclose(logfd);
 if ~sim_ok
 error('Found errors in simulation results. Please refer to ''%s''
for details.', logfile);
 end

 catch
 err = lasterr;
 try release(h); end
 error('Error running hardware co-simulation testbench. %s', err);
 end

%---

function ok = check_result(fd, portname, expected, actual)
 ok = false;

 fprintf(fd, ['\n' repmat('=', 1, 95), '\n']);
 fprintf(fd, 'Output: %s\n\n', portname);

 % Check the number of data values.
 nvals_expected = numel(expected);
 nvals_actual = numel(actual);
 if nvals_expected ~= nvals_actual
 fprintf(fd, ['The number of simulation output values (%d) differs '
...
 'from the number of reference values (%d).\n'], ...
 nvals_actual, nvals_expected);
 return;
 end

 % Check for simulation mismatches.
 mismatches = find(expected ~= actual);
 num_mismatches = numel(mismatches);
 if num_mismatches > 0
 fprintf(fd, 'Number of simulation mismatches = %d\n',
num_mismatches);
 fprintf(fd, '\n');
 fprintf(fd, 'Simulation mismatches:\n');
 fprintf(fd, '----------------------\n');
 fprintf(fd, '%10s %40s %40s\n', 'Cycle', 'Expected values', 'Actual
values');
 fprintf(fd, '%10d %40.16f %40.16f\n', ...
 [mismatches-1; expected(mismatches); actual(mismatches)]);
 return;
 end

 ok = true;
 fprintf(fd, 'Simulation OK\n');
590 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=590

M-Code Access to Hardware Co-Simulation
Resource Management

M-Hwcosim manages resources that it holds for an hardware co-simulation instance. It releases the
held resources upon the invocation of the release instruction or when MATLAB exits. However, it is
recommended to perform an explicit cleanup of resources when the simulation finishes or throws an
error. To allow proper cleanup in case of errors, it is suggested to enclose M-Hwcosim instructions
in a MATLAB try-catch block as illustrated below.

 try
 % M-Hwcosim instructions here
 catch
 err = lasterror;
 % Release any Hwcosim, Shmem, or Shfifo instances
 try release(hwcosim_instance); end
 try release(shmem_instance); end
 try release(shfifo_instance); end
 rethrow(err);
 end

The following commands can be used to release all hardware co-simulation or shared memory
instances.

xlHwcosim('release'); % Release all Hwcosim instances
xlHwcosim('releaseMem'); % Release all Shmem instances
xlHwcosim('releaseFifo'); % Release all Shfifo instances

M-Hwcosim MATLAB Class

Hwcosim

The Hwcosim MATLAB class provides a higher level abstraction of the hardware co-simulation
engine. Each instantiated Hwcosim object represents a hardware co-simulation instance. It
encapsulates the properties, such as the unique identifier, associated with the instance. Most of the
instruction invocations take the Hwcosim object as an input argument. For further convenience,
alternative shorthand is provided for certain operations. Similarly, the Shmem and Shfifo class are
provided for accessing shared memory and shared FIFO related operations, respectively.

Actions Syntax

Constructor h = Hwcosim(project)

Destructor release(h)

Open hardware open(h)

Close hardware close(h)

Write data write(h, inPorts, inData)

h(inPorts) = inData

Read data outData = read(h, outPorts)

outData = h(outPorts)

Run run(h)

run(h, n)
System Generator for DSP Reference Guide www.xilinx.com 591
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=591

Chapter 6: Programmatic Access
Constructor

Syntax

h = Hwcosim(project);

Description

Creates an Hwcosim instance. Note that an instance is a reference to the hardware co-simulation
project and does not signify an explicit link to hardware; creating a Hwcosim object informs the
Hwcosim engine where to locate the FPGA bitstream, it does not download the bitstream into the
FPGA. The bitstream is only downloaded to the hardware after an open command is issued.

The project argument should point to the hwc file that describes the hardware co-simulation.

Destructor

Syntax

release(h);

Description

Releases the resources used by the Hwcosim object h. If a link to hardware is still open, release will
first close the hardware.

Open hardware

Syntax

open(h);

Description

Opens the connection between the host PC and the FPGA. Before this function can be called, the
hardware co-simulation interface must be configured. Use the xlHwcosimConfig utility to configure
the hardware co-simulation interface. The argument, h, is an Hwcosim object.

Close hardware

Syntax

close(h);

Description

Closes the connection between the host PC and the FPGA. The argument, h, is an Hwcosim object.

Vectorized Execution outData = exec(h, execId, nCycles, inData)

Get properties data = get(h, prop)

Actions Syntax
592 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=592

M-Code Access to Hardware Co-Simulation
Write data

Syntax

h('portName') = inData;

h({inPortNames}) = [inData];

h([inPortIndices]) = [inData];

write(h, 'portName', inData);

write(h, {inPortNames}, [inData]);

write(h, [inPortIndices], [inData]);

Description

Access to ports can be done by name or by index. Port names and indices can be extracted from an
Hwcosim instance by getting the Inport property of the Hwcosim object. When ports are referred by
name, a cell-array of port names is expected to be followed by an array of data that correspond to the
ports. Similarly when ports are referred by index, an array of port indices is expected to be followed
by an array of data.

Note: For a large number of read and write operations, specifying multiple ports by names is not encouraged
for the sake of performance. It is recommended to resolve a sequence of port names into an equivalent index
sequence using the get instruction, and then use the index sequence for subsequent read and write operations.

Read data

Syntax

outData = h('portName');

[outData] = h({outPortNames});

[outData] = h([outPortIndices]);

outData = read(h, 'portName');

[outData] = read(h, {outPortNames});

[outData] = read(h, [outPortIndices]);

Description

Access to ports can be done by name or by index. Port names and indices can be extracted from an
Hwcosim instance by getting the Outport property of the Hwcosim object. When ports are referred
by name, a cell-array of port names is expected to be followed by an array of data that correspond to
the ports. Similarly when ports are referred by index, an array of port indices is expected to be
followed by an array of data

Note: For a large number of read and write operations, specifying multiple ports by names is not encouraged
for the sake of performance. It is recommended to resolve a sequence of port names into an equivalent index
sequence using the get instruction, and then use the index sequence for subsequent read and write operations.
System Generator for DSP Reference Guide www.xilinx.com 593
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=593

Chapter 6: Programmatic Access
Run

Syntax

run(h);

run(h, n);

Description

When the hardware co-simulation object is configured to run in single-step mode, the run command
is used to advance the clock. run(h) will advance the clock by one cycle. run(h,n) will advance the
clock by n cycles.

When the hardware co-simulation object is configured to run in free-running mode, the run
command has no effect on the clock of the hardware co-simulation. However in JTAG hardware co-
simulation, write commands are buffered for efficiency reasons, and the run command can be used
to flush the write buffer

Note: Currently the run command has no effect on Ethernet hardware co-simulation in free-running mode; but
this behaviour might change in the future.

Get properties

Syntax

get(h);

getrun(h, prop);

Description

Get returns the properties associated with the Hwcosim object h. The properties are returned as a
MATLAB struct with the following fields.

Create Exec Id

Syntax

execId = initExec(h, inPorts, outPorts);

getrun(h, prop);

Description

The exec instruction is designed to minimize the overheads inherited in the MATLAB environment.
It condenses a sequence of operations into a single invocation of the underlying hardware co-
simulation engine, and thus reduces the overheads on interpreting M-codes, and switching between
M-codes and the engine. It can provide a significant performance improvement on simulation,
compared to using a repetitive sequence of individual write, read, and run instructions.

prop Description

Id Internal use

Inport A struct describing all the input ports

Outport A struct describing all the output ports

Execution A struct describing the execution schedule

SharedMemory A struct describing the available shared
memories in the object
594 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=594

M-Code Access to Hardware Co-Simulation
An execution definition is initialized using the initExec instruction, before subsequent executions of
that definition can be invoked. Defining an execution is to specify which input and output ports
involve in the execution. An execution can be defined on a subset of input and output ports. Only
involved ports are read or written during the execution, while other input ports are expected to be
driven by the same values, and other output ports are simply ignored.

The inPorts and outPorts argument in initExec can either be cell-arrays of portnames or arrays or
port indexes.

Note: Having initExec and exec instructions separated is solely for performance concerns. The initialization
phase is performed before subsequent executions so that it is only a one-time overhead. It is particularly
important when we need to break down a simulation into multiple executions under certain circumstances, for
example, when the memory cannot hold the input data for all simulation cycles.

An execution operates on a cycle basis, where input and output data are given on every cycle. In
multi-rate designs, the internal operations are scheduled on a period of the GCD rate (the common
sample period) of involved ports. The number of cycles is required to be a multiple of the LCM rate
(the minimum execution length) of involved ports.

Special care is required when mixing the exec with individual read, write, and run instructions.
Before an execution, the samplings of all involved input and output ports should be aligned on their
common sample period boundary. In other words, it is expected to sample the involved ports at the
first cycle of the execution. Provided this condition holds, the alignment of sampling is guaranteed
for the involved ports when the execution completes, because the execution length is a multiple of
the LCM rate.

The figure below illustrates an execution which involves two input ports operating at a sample
period of 2 and 4 cycles respectively, and one output port with a sample period of 8 cycles. The
common sample period is set to GCD(2,4,8) = 2 cycles, which implies a sequence of write, read, and
run operations is invoked on every 2 cycles starting from the first cycle of the execution. The
minimum execution length is LCM(2,4,8) = 8 cycles, and thus the execution must be run for a
multiple of 8 cycles.
System Generator for DSP Reference Guide www.xilinx.com 595
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=595

Chapter 6: Programmatic Access
Vectorized execution

Syntax

outData = exec(h, execId, nCycles, inData);

Description

The exec instruction is designed to minimize the overheads inherited in the MATLAB environment.
It condenses a sequence of operations into a single invocation of the underlying engine, and thus
reduces the overheads on interpreting M-codes, and switching between M-codes and the engine. It
can provide a significant performance improvement on simulation, compared to using a repetitive
sequence of individual write, read, and run instructions.

The execId argument is constructed through a call to initExec. nCycles specifies the number of
simulation cycles to be run and inData contains the data used to drive the ports at each cycle. inData
is a 2D matrix [M,N] where length(M) corresponds to the number of inPorts specified in initExec,
and length(n) corresponds to the nCycles. All port data for the same execution cycle is stored in the
same column. For example, the [m,n] element of the inData matrix corresponds to the (n-1)-th cycle
data sample for the m-th input ports specified in the execution.

M-Hwcosim Shared Memory MATLAB Class

Shmem

The Shmem MATLAB class provides an interface into shared memories embedded in hardware co-
simulation objects.

Constructor

Syntax

m = Shmem(memName));

Description

Creates an object handle to a Shared Memory or Shared Register object. The argument is the name
of the shared memory as defined in the System Generator model. This is a global object and only
one shared memory of a particular name can exist at a time.

Destructor

Syntax

Actions Syntax

Constructor m = Shmem(memName)

Destructor release(m)

Write data write(m, addresses, inData)

m(addresses) = inData

Read data outData = read(m, addresses)

outData = m(addresses)

Set properties set(m, prop, data)

Get properties data = get(m, prop)
596 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=596

M-Code Access to Hardware Co-Simulation
release(m);

Description

Releases the resources used by the Shmem object.

Write data

Syntax

write(m, addresses, inData);

m(addresses) = inData;

Description

When writing to a shared memory, addresses can be an integer or an array of integers specifying the
address to write to.

When writing to a shared register, addresses should be set to 0.

Read data

Syntax

outData = read(m, addresses);

outData = m(addresses);

Description

When reading from a shared memory, addresses can be an integer or an array of integers specifying
the address to read from.

When reading from a shared register, addresses should be set to 0.

Set properties

Syntax

set(m, prop, data);

Description

Used to set the properties of the Shmem object.

Get properties

Syntax

data=get(m);

data=get(m, prop);

Description

Used to get the properties of the Shmem object
System Generator for DSP Reference Guide www.xilinx.com 597
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=597

Chapter 6: Programmatic Access
M-Hwcosim Shared FIFO MATLAB Class

Shfifo

The Shfifo MATLAB class provides an interface into shared FIFOs embedded in hardware co-
simulation objects.

Constructor

Syntax

m = Shfifo(fifoName));

Description

Creates an object handle to a Shared FIFO object. The argument is the name of the shared FIFO as
defined in the System Generator model. This is a global object and only one shared memory of a
particular name can exist at a time.

Destructor

Syntax

release(m);

Description

Releases the resources used by the Shfifo object.

Write data

Syntax

write(m, numValues, inData);

Description

When writing to a Shared FIFO, numValues is an integer that specifies the number of data to write
into the FIFO. inData is an array where that data to be written is stored.

Read data

Syntax

outData = read(m, numValues);

Description

When reading to a Shared FIFO, numValues is an integer that specifies the number of data to read
from the FIFO. outData is an array where that data read is stored.

Actions Syntax

Constructor m = Shfifo(memName)

Destructor release(m)

Write data write(m, numValues, inData)

Read data outData = read(m, numValues)

Set properties set(m, prop, data)

Get properties data = get(m, prop)
598 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=598

M-Code Access to Hardware Co-Simulation
Set properties

Syntax

set(m, prop, data);

Description

Used to set the properties of the Shfifo object.

Get properties

Syntax

data=get(m);

data=get(m, prop);

Description

Used to get the properties of the shfifo object, such as the full flag of the FIFO.

M-Hwcosim Utility Functions

xlHwcosim

Syntax

xlHwcosim('release');

xlHwcosim('releaseMem');

xlHwcosim('releaseFifo');

Description

When a M-Hwcosim, Shared Memory or Shared FIFO objects are created global system resources
are used to register each of these objects. These objects are typically freed when a release command
is called on the object. xlHwcosim provides an easy way to release all resources used by M-
Hwcosim in the event of an unexpected error. The release functions for each of the objects should be
used if possible since the xlHwcosim call release the resources for all instances of a particular type
of object.

xlHwcosim('release') release all instances of Hwcosim objects.

xlHwcosim('releaseMem') release all instances of Shmem objects

xlHwcosim('releaseFifo'); release all instances of Shfifo objects

xlHwcosimConfig

Syntax

 xlHwcosimGetDesignInfo;

 xlHwcosimGetDesignInfo('netlist')

 xlHwcosimGetDesignInfo('c:/design/macfir_cw.hwc')

Description

xlHwcosimConfig launches a graphical front-end (shown below) to configure the settings of the
Hardware Co-simulation interface. It is equivalent to the block GUI launched by double clicking a
System Generator for DSP Reference Guide www.xilinx.com 599
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=599

Chapter 6: Programmatic Access
Hardware Co-simulation block in Simulink. Its invocation is similar to xlHwcosimGetDesignInfo.

xlHwcosimGetDesignInfo

Syntax

 xlHwcosimGetDesignInfo;

 xlHwcosimGetDesignInfo('netlist')

 xlHwcosimGetDesignInfo('c:/design/macfir_cw.hwc')

Description

xlHwcosimGetDesignInfo is used to retrieve the information of a design in a hwc file. By default, it
takes a hwc file as input, and returns the design information in a MATLAB struct array. If no hwc
file is specified, it searches for the project file in the current directory. If a directory is provided it
searches for a hwc file in the given directory.
600 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=600

M-Code Access to Hardware Co-Simulation
xlHwcosimSimulate

Syntax

 outData = xlHwcosimSimulate(project, nCycles, inData)

 [o1, o2, ...] = xlHwcosimSimulate(project, nCycles, i1, i2, ...)

 outData = xlHwcosimSimulate(project, nCycles, struct('Inport',
inPorts, 'Outport', outPorts, inData)

Description

xlHwcosimSimulate provides a one-liner function call to simulate a design with predefined input
values. The simulation is done on a cycle basis. The function takes a sequence of data values, one for
each input port on each cycle, and returns a sequence of results, one for each output port on each
cycle. By default, all input and output ports are involved, and data values are mapped to ports in the
ascending order of port indices.

xlHwcosimSimulate is good for simplicity and fits for common simulation purposes, but is limited
in several aspects:

 No user-defined simulation semantics

 All simulation cycles are executed as a whole, for example, cannot set a breakpoint in a
simulation cycle

 No shared memory access
System Generator for DSP Reference Guide www.xilinx.com 601
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=601

Chapter 6: Programmatic Access
602 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=602

Index
Numerics
2 Channel Decimate by 2 MAC FIR Filter

Reference Design 463

2n+1-tap Linear Phase MAC FIR Filter Refer-
ence Design 464

2n-tap Linear Phase MAC FIR Filter Refer-
ence Design 465

2n-tap MAC FIR Filter Reference Design 466

2Registered Mealy State Machine Reference
Design 502

4-channel 8-tap Transpose FIR Filter Refer-
ence Design 467

4n-tap MAC FIR Filter Reference Design 468

5x5Filter Reference Design 469

A
Absolute block 52

Accumulator block 54

Addressable Shift Register block 56

AddSub block 58

Assert block 60

AXI FIFO block 63

B
Basic Element Blocks 21, 22

BitBasher block 66

Black Box block 69

Block Color

meaning of block backgorund color 20

Block Parameters

common options 47

Block Upgrading

upgrading to the latest revision 406

Blockset Libraries

organization of 20

BPSK AWGN Channel Reference Design
471

C
ChipScope block 77

ChipScope Pro Analyzer

hardware and software requirements 77

importing data into MATLAB Work-
space 78

known issues 79

project file 78

CIC Compiler 2.0 block 80

CIC Compiler 3.0 block 82

CIC Filter Reference Design 472

Clock Enable Probe block 85

Clock Probe block 87

Clocking Options

Expose Clock Ports 408

Hybrid DCM-CE 408

CMult block 88

Color

meaning of block background color 20

Common Options

block parameters 47

Communication Blocks 24

Compiling for

M-Hwcosim 581

Complex Multiplier 3.1 block 90

Complex Multiplier 5.0 block 92

Concat block 97

Configurable Subsystem Manager block 98

Constant block 100

Control Logic blocks 25

Convert block 103

Convolution Encoder 7.0 block 105

Convolution Encoder 8.0 block 107

Convolutional Encoder Reference Design
474

CORDIC 4.0 block 109

CORDIC 5.0 block 112

CORDIC ATAN Reference Design 476

CORDIC DIVIDER Reference Design 477

CORDIC LOG Reference Design 478

CORDIC SINCOS Reference Design 480

CORDIC SQRT Reference Design 481

Counter block 117

D
Data Type blocks 27

DCM locked pin 408

DCM reset pin 408

DDS Compiler 4.0 block 119

DDS Compiler 5.0 block 124

Delay block 131

Depuncture block 137

Disregard Subsystem block 139

Divide block 140

Divider Generator 3.0 block 142

Divider Generator 4.0 block 144

Down Sample block 147

DSP Blocks 28

DSP48 block 150

DSP48 macro 2.0 block 162

DSP48 Macro 2.1 block 167

DSP48 Macro block 153

DSP48A block 172

DSP48E block 175

DSP48E1 block 180

Dual Port Memory Interpolation MAC FIR
Filter Reference Design 483

Dual Port RAM block 185

E
EDK Processor block 191

Examples

M-Hwcosin 583

Expression block 195

F
Fast Fourier Transform 7.1 block 196

Fast Fourier Transform 8.0 block 202

FDATool block 209

FIFO block 210

FIR Compiler 5.0 block 212

FIR Compiler 6.2 block 219

FIR Compiler 6.3 block 228

Floating-Point Blocks 30

for 581

From FIFO block 237

From Register block 240

G
Gateway In block 242

Gateway Out block 244

H
Hardware Co-Sim

M-code access to 580

Hardware Co-Simulation

M-code access to 580
System Generator for DSP Reference Guide www.xilinx.com 603
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=603

I
Indeterminate Probe block 246

Index Blocks 32

Interleaver Deinterleaver 6.0 block 247

Interleaver Deinterleaver 7.0 block 258

Interleaver Deinterleaver 7.1 block 267

Interpolation Filter Reference Design 484

Inverter block 276

J
JTAG Co-Simulation block 277

L
LFSR block 280

Logical block 282

M
Math blocks 41

MATLAB Class

Hwcosim 591

Shfifo 598

Shmem 596

m-channel n-tap Transpose FIR Filter Refer-
ence Design 485

M-Code

access to Hardware Co-Sim 580

interfacing to hardware 582

MCode block 283

Mealy State Machine Reference Design 486

Memory blocks 43

Memory Map View

EDK Processor Block 192

Memory Stitching

From Register block 240

Shared Memory block 385

To Register block 418

M-Hwcosim

automatic generation of testbench 588

compiling hardware for 581

data representation 582

examples 583

MATLAB class 591

shared FIFO MATLAB class 598

shared memory MATLAB Class 596

simulation semantics 581

utility functions 599

Model Upgrade

upgrading blocks to the latest revision
406

ModelSim block 305

Moore State Machine Reference Design 490

Mult block 310

Multipath Fading Channel Model Reference
Design 493

Multiple Subsystem Generator block 312

Mux block 317

N
Natural Logarithm block 319

Negate block 320

Network Ethernet Co-simulation block 321

n-tap Dual Port Memory MAC FIR Filter Ref-
erence Design 500

n-tap MAC FIR Filter Reference Design 501

O
Opmode block 323

P
Parallel to Serial block 332

Parameters

common options 47

Pause Simulation block 333

PG API 567

Error/Warning Messages 579

Introduction 567

xBlock 568

xBlockHelp 572

xInput 569

xlsub2script 570

xOutput 569

xSignal 570

PG API Examples

Hello World 573

MACC 574

MACC in a Masked Sybsystem 575

PicoBlaze Instruction Display block 334

PicoBlaze Microcontroller block 335

PicoBlaze6 Instruction Display block 337

PicoBlaze6 Microcontroller block 338

Pipelining

saturation and rounding logic

multipliers 310

PLB v4.6 Support

EDK Processor Block 193

Setting the Base Memory Space Address
193

Point-to-Point Ethernet Co-Simulation block
342

Programmatic Generation

of System Generator block diagrams
567

Puncture block 345

R
Reciprocal block 346

Reciprocal SquareRoot block 347

Reed-Solomon Decoder 7.1 block 348

Reed-Solomon Decoder 8.0 block 353

Reed-Solomon Encoder 7.1 block 359

Reed-Solomon Encoder 8.0 block 364

Register block 369, 381

Registered Moore State Machine Reference
Design 505

Reinterpret block 370

Relational block 372

Reset Generator block 373

Resource Estimator block 374

ROM block 378

Rounding logic

pipelining 310

S
Sample Time block 382

Saturation Logic

pipelining 310

Scale block 383

Serial to Parallel block 384

Shared Memory block 385

Shared Memory blocks 44

Shared Memory Read block 389

Shared Memory Stitching

From Register block 240

Shared Memory block 385

To Register block 418

Shared Memory Write block 391

Shift block 393

Simulation Multiplexer block 394

Simulink Blocks

supported by System Generator 46

Single Port RAM block 396

Single-Step Simulation block 401

Slice block 402

SquareRoot block 403

Synchronous Clocking
604 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=604

Expose Clock Ports option 408

Hybrid DCM-CE option 408

System Generator GUI Utilities

Xilinx BlockAdd 558, 561

Xilinx Tools > Save as blockAdd default
560

System Generator token 404

System Generator Utilities

xlAddTerms 523

xlCache 526

xlconfiguresolver 528

xlfda_denominator 529

xlfda_numerator 530

xlGenerateButton 531

xlgetparam 532, 534

xlGetReloadOrder 536

xlInstallPlugin 538

xlLoadChipScopeData 539

xlSBDBuilder 540

xlSetNonMemMap 543

xlsetparam 532

xlSetUseHDL 544

xlSwitchLibrary 545

xlTBUtils 546

xlTimingAnalysis 550

xlUpdateModel 551

xlVDMACreateProject 554

xlVersion 555

T
Threshold block 411

Time Division Demultiplexer block 412

Time Division Multiplexer block 414

To FIFO block 415

To Register block 418

Tool Blocks 44

Toolbar block 421

Tutorials

M-Hwcosim

Using MATLAB Hardware Co-
Simulation 583

U
UG638 (v 14.1) April 24, 2012 1

Up Sample block 423

Utility Functions

for M-Hwcosim 599

V
VDMA Interface 4.0 block 425

VDMA Interface 5.4 block 433

Virtex Line Buffer (Imaging) Reference De-
sign 508

Virtex2 5 Line Buffer (Imaging) Reference
Design 510

Virtex2 Line Buffer (Imaging) Reference De-
sign 509

Viterbi Decoder 7.0 block 437

Viterbi Decoder 8.0 block 443

W
WaveScope block 450

White Gaussian Noise Generator (Communi-
cation) Reference Design 511

X
xBlock 568

Xilinx Block Libraries

Basic Element blocks 21, 22

Communication blocks 24

Control Logic blocks 25

Data Type blocks 27

DSP blocks 28

Floating-Point blocks 30

Index blocks 32

Math blocks 41

Memory blocks 43

Shared Memory blocks 44

Tool blocks 44

Xilinx BlockAdd 558, 561

Xilinx Blockset

Absolute 52

Accumulator 54

Addressable Shift Register 56

AddSub 58

Assert 60

AXI FIFO 63

BitBasher 66

Black Box 69

ChipScope 77

CIC Compiler 2.0 80

CIC Compiler 3.0 82

Clock Enable Probe 85

Clock Probe 87

CMult 88

Complex Multiplier 3.1 90

Complex Multiplier 5.0 92

Concat 97

Configurable Subsystem Manager 98

Constant 100

Convert 103

Convolution Encoder 7.0 105

Convolution Encoder 8.0 107

CORDIC 4.0 109

CORDIC 5.0 112

Counter 117

DDS Compiler 4.0 119

DDS Compiler 5.0 124

Delay 131

Depuncture 137

Disregard Subsystem 139

Divide 140

Divider Generator 3.0 142

Divider Generator 4.0 144

Down Sample 147

DSP48 150

DSP48 Macro 153

DSP48 macro 2.0 162

DSP48 Macro 2.1 167

DSP48A 172

DSP48E 175

DSP48E1 180

Dual Port RAM 185

EDK Processor 191

Expression 195

Fast Fourier Transform 7.1 196

Fast Fourier Transform 8.0 202

FDATool 209

FIFO 210

FIR Compiler 5.0 212

FIR Compiler 6.2 219

FIR Compiler 6.3 228

From FIFO 237

From Register 240

Gateway In 242

Gateway Out 244

Indeterminate Probe 246

Interleaver Deinterleaver 6.0 247

Interleaver Deinterleaver 7.0 258

Interleaver Deinterleaver 7.1 267

Inverter 276

JTAG Co-Simulation 277

LFSR 280

Logical 282

MCode 283

ModelSim 305

Mult 310

Multiple Subsystem Generator 312

Mux 317

Negate 320
System Generator for DSP Reference Guide www.xilinx.com 605
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=605

Network Ethernet Co-simulation 321

Opmode 323

Parallel to Serial 332

Pause Simulation 333

PicoBlaze Instruction Display 334

PicoBlaze Microcontroller 335

PicoBlaze6 Instruction Display 337

PicoBlaze6 Microcontroller 338

Point-to-Point Ethernet Co-Simulation
342

Puncture 345

Reciprocal 346

Reciprocal SquareRoot 347

Reed-Solomon Decoder 7.1 348

Reed-Solomon Decoder 8.0 353

Reed-Solomon Encoder 7.1 359

Reed-Solomon Encoder 8.0 364

Register 369, 381

Reinterpret 370

Relational 372

Reset Generator 373

Resource Estimator 374

ROM 378

Sample Time 382

Scale 383

Serial to Parallel 384

Shared Memory 385

Shared Memory Read 389

Shared Memory Write 391

Shift 393

Simulation Multiplexer 394

Single Port RAM 396

Single-Step Simulation 401

Slice 402

SquareRoot 403

System Generator 404

Threshold 411

Time Division Demultiplexer 412

Time Division Multiplexer 414

To FIFO 415

To Register 418

Toolbar 421

Up Sample 423

VDMA Interface 4.0 425

VDMA Interface 5.4 433

Viterbi Decoder 7.0 437

Viterbi Decoder 8.0 443

WaveScope 450

XtremeDSP Analog to Digital Converter
514

XtremeDSP Co-Simulation 515

XtremeDSP Digital to Analog Converter
517

XtremeDSP External RAM 518

XtremeDSP LED Flasher 519

Xilinx Blockset Libraries

organization of blocks 20

Xilinx Blockset Natural Logarithm 319

Xilinx Reference Design Library

2 Channel Decimate by 2 MAC FIR Fil-
ter 463

2n+1-tap Linear Phase MAC FIR Filter
464

2n-tap Linear Phase MAC FIR Filter
465

2n-tap MAC FIR Filter 466

4-channel 8-tap Transpose FIR Filter
467

4n-tap MAC FIR Filter 468

5x5Filter 469

BPSK AWGN Channel 471

CIC Filter 472

Communication Designs 461

Control Logic Designs 461

Convolutional Encoder 474

CORDIC ATAN 476

CORDIC DIVIDER 477

CORDIC LOG 478

CORDIC SINCOS 480

CORDIC SQRT 481

DSP Designs 461

Dual Port Memory Interpolation MAC
FIR Filter 483

Imaging Designs 462

Interpolation Filter 484

Math Designs 462

m-channel n-tap Transpose FIR Filter
485

Mealy State Machine 486

Moore State Machine 490

Multipath Fading Channel Model 493

n-tap Dual Port Memory MAC FIR Filter
500

n-tap MAC FIR Filter 501

Registered Mealy State Machine 502

Registered Moore State Machine 505

Virtex Line Buffer (Imaging) 508

Virtex2 5 Line Buffer (Imaging) 510

Virtex2 Line Buffer (Imaging) 509

White Gaussian Noise Generator (Com-
munication) 511

Xilinx Tools > Save as blockAdd default 560

xInput 569

xlAddTerms 523

xlBlockHelp 572

xlCache 526

xlconfiguresolver 528

xlfda_denominator 529

xlfda_numerator 530

xlGenerateButton 531

xlgetparam 532, 534

xlGetReloadOrder 536

xlInstallPlugin 538

xlLoadChipScopeData 539

xlSBDBuilder 540

xlSetNonMemMap 543

xlsetparam 532

xlSetUseHDL 544

xlsub2script 570

xlSwitchLibrary 545

xlTBUtils 546

xlTimingAnalysis 550

xlUpdateModel 551

xlVDMACreateProject 554

xlVersion 555

xOutput 569

xSignal 570

XtremeDSP Analog to Digital Converter
block 514

XtremeDSP Co-Simulation block 515

XtremeDSP Digital to Analog Converter
block 517

XtremeDSP External RAM block 518

XtremeDSP LED Flasher block 519
606 www.xilinx.com System Generator for DSP Reference Guide
UG638 (v14.5) March 20, 2013

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug638&Title=System%20Generator%20for%20DSP%20Reference%20Guide&releaseVersion=14.5&docPage=606

	Return to Menu
	System Generator for DSP Reference Guide
	Table of Contents
	Xilinx Blockset
	Organization of Blockset Libraries
	AXI4 Blocks
	Basic Element Blocks
	Communication Blocks
	Control Logic Blocks
	Data Type Blocks
	DSP Blocks
	Floating-Point Blocks
	Index Blocks
	Math Blocks
	Memory Blocks
	Shared Memory Blocks
	Tool Blocks
	Simulink Blocks Supported by System Generator

	Common Options in Block Parameter Dialog Boxes
	Avoid Naming Your Design the Same as a Xilinx Block
	Precision
	Arithmetic Type
	Number of Bits
	Binary Point
	Overflow and Quantization
	Latency
	Provide Synchronous Reset Port
	Provide Enable Port
	Sample Period
	Use Behavioral HDL (otherwise use core)
	Use XtremeDSP Slice
	FPGA Area (Slices, FFs, LUTs, IOBs, Embedded Mults, TBUFs) / Use Area Above For Estimation
	Display shortened port names

	Block Reference Pages
	Absolute
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Accumulator
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Addressable Shift Register
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	AddSub
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Assert
	Block Parameters
	Using the Assert block to Resolve Rates and Types
	LogiCORE™ Documentation
	Device Support

	AXI FIFO
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	BitBasher
	Block Parameters
	Supported Verilog Constructs
	Limitations

	Black Box
	Requirements on HDL for Black Boxes
	The Black Box Configuration Wizard
	The Black Box Configuration M-Function
	Sample Periods
	Block Parameters
	Data Type Translation for HDL Co-Simulation
	An Example
	Device Support
	See Also

	ChipScope
	Hardware and Software Requirements
	Block Parameters
	ChipScope Project File
	Importing Data Into MATLAB Workspace From ChipScope
	Known Issues
	More Information

	CIC Compiler 2.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	CIC Compiler 3.0
	Sample Rates and the CIC Compiler Block
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Clock Enable Probe
	Options

	Clock Probe
	CMult
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Complex Multiplier 3.1
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Complex Multiplier 5.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Concat
	Block Interface
	Block Parameters

	Configurable Subsystem Manager
	Block Parameters

	Constant
	Block Parameters
	Appendix: DSP48 Control Instruction Format

	Convert
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Convolution Encoder 7.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Convolution Encoder 8.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	CORDIC 4.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	CORDIC 5.0
	Changes from CORDIC 4.0 to CORDIC 5.0
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Counter
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	DDS Compiler 4.0
	Architecture Overview
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	DDS Compiler 5.0
	Architecture Overview
	AXI Ports that are Unique to this Block
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Delay
	Block Parameters
	Logic Synthesis using Behavioral HDL
	Logic Synthesis using Structural HDL
	Implementing Long Delays
	Re-settable Delays and Initial Values
	Device Support

	Depuncture
	Block Parameters

	Disregard Subsystem
	Divide
	LogiCORE™ Documentation
	Device Support

	Divider Generator 3.0
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Divider Generator 4.0
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Down Sample
	Zero Latency Down Sample
	Down Sample with Latency
	Block Parameters
	Xilinx LogiCORE

	DSP48
	Block Parameters
	See Also

	DSP48 Macro
	Block Interface
	Block Parameters
	Entering Opmodes in the DSP48 Macro Block
	Entering Pipeline Options and Editing Custom Pipeline Options
	DSP48 Macro Limitations
	See Also

	DSP48 macro 2.0
	Block Parameters
	LogiCORE™ Documentation
	Device Support
	See Also

	DSP48 Macro 2.1
	Block Parameters
	LogiCORE™ Documentation
	zDevice Support
	See Also

	DSP48A
	Block Parameters
	See Also

	DSP48E
	Block Parameters
	See Also

	DSP48E1
	Block Parameters
	See Also

	Dual Port RAM
	Block Interface
	Block Parameters
	Xilinx LogiCORE
	LogiCORE™ Documentation
	Device Support

	EDK Processor
	Memory Map Interface
	Block Parameters
	Known Issues
	Online Documentation for the MicroBlaze Processor

	Expression
	Block Parameters

	Fast Fourier Transform 7.1
	Theory of Operation
	Block Interface
	Block Parameters
	Block Timing
	LogiCORE™ Documentation
	Device Support

	Fast Fourier Transform 8.0
	Theory of Operation
	AXI Ports that are Unique to this Block
	Block Parameters
	Block Timing
	LogiCORE™ Documentation
	Device Support

	FDATool
	Example of Use
	FDA Tool Interface

	FIFO
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	FIR Compiler 5.0
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	FIR Compiler 6.2
	AXI Ports that are Unique to this Block
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	FIR Compiler 6.3
	AXI Ports that are Unique to this Block
	Block Parameters
	Channel Specification tab
	LogiCORE™ Documentation
	Device Support

	From FIFO
	Block Parameters
	LogiCORE™ Documentation
	Device Support
	See Also

	From Register
	Block Parameters
	Crossing Clock Domain
	See Also

	Gateway In
	Gateway Blocks
	Block Parameters

	Gateway Out
	Gateway Blocks
	Block Parameters

	Indeterminate Probe
	Interleaver/De-interleaver 6.0
	Forney Convolutional Operation
	Rectangular Block Operation
	Block Parameters
	How to Migrate an Interleaver De-Interleaver 5.1 block to 6.0
	LogiCORE™ Documentation
	Device Support

	Interleaver/De-interleaver 7.0
	Forney Convolutional Operation
	Configuration Swapping
	Rectangular Block Operation
	AXI Interface
	AXI Ports that are Unique to this Block
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Interleaver/De-interleaver 7.1
	Forney Convolutional Operation
	Configuration Swapping
	Rectangular Block Operation
	AXI Interface
	AXI Ports that are Unique to this Block
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Inverter
	Block Parameters

	JTAG Co-Simulation
	Block Parameters

	LFSR
	Block Interface
	Block Parameters

	Logical
	Block Parameters
	Xilinx LogiCORE

	MCode
	Configuring an MCode Block
	MATLAB Language Support
	Block Parameters Dialog Box

	ModelSim
	Block Parameters
	Fine Points

	Mult
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Multiple Subsystem Generator
	Block Parameters
	Design Generation
	Multiple Clock Support
	Files Generated

	Mux
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Natural Logarithm
	Block Parameters Dialog Box
	LogiCORE™ Documentation
	Device Support

	Negate
	Block Parameters

	Network-based Ethernet Co-Simulation
	Block Parameters
	See Also

	Opmode
	Block Parameters
	Xilinx LogiCORE
	References
	DSP48A Control Instruction Format
	DSP48 Control Instruction Format
	DSP48E Control Instruction Format
	DSP48E1 Control Instruction Format

	Parallel to Serial
	Block Interface
	Block Parameters

	Pause Simulation
	Block Parameters

	PicoBlaze Instruction Display
	Block Interface
	Block Parameters
	Xilinx LogiCORE

	PicoBlaze Microcontroller
	Block Interface
	Block Parameters
	How to Use the PicoBlaze Assembler
	Device Support
	Known Issues
	PicoBlaze Microprocessor Online Documentation

	PicoBlaze6 Instruction Display
	Block Interface
	Block Parameters
	Xilinx LogiCORE

	PicoBlaze6 Microcontroller
	Block Interface
	Block Parameters
	How to Use the PicoBlaze Assembler
	Device Support
	PicoBlaze6 Microprocessor Online Documentation

	Point-to-point Ethernet Co-Simulation
	Block Parameters
	See Also

	Puncture
	Block Parameters

	Reciprocal
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reciprocal SquareRoot
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reed-Solomon Decoder 7.1
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reed-Solomon Decoder 8.0
	Block Interface Channels and Pins
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reed-Solomon Encoder 7.1
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reed-Solomon Encoder 8.0
	Block Interface Channels and Pins
	Other Optional Pins
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Register
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reinterpret
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Relational
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Reset Generator
	Block Parameters

	Resource Estimator
	Block Parameters
	Perform Resource Estimation Buttons
	Blocks Supported by Resource Estimation
	Viewing ISE Reports
	Known Issues for Resource Estimation

	ROM
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Register
	Block Interface
	Block Parameters
	Xilinx LogiCORE

	Sample Time
	Scale
	Block Parameters
	Xilinx LogiCore

	Serial to Parallel
	Block Interface
	Block Parameters

	Shared Memory
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Shared Memory Read
	FIFO Transactions
	Lockable Memory Transactions
	Block Parameters
	See Also

	Shared Memory Write
	FIFO Transactions
	Lockable Memory Transactions
	Block Parameters
	See Also

	Shift
	Block Parameters
	Xilinx LogiCORE

	Simulation Multiplexer
	Using Subsystem for Simulation and Black Box for Hardware
	Block Parameters

	Single Port RAM
	Block Interface
	Block Parameters
	Write Modes
	Hardware Notes
	Xilinx LogiCORE
	LogiCORE™ Documentation
	Device Support

	Single-Step Simulation
	Block Parameters

	Slice
	Block Parameters

	SquareRoot
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	System Generator
	Token Parameters

	Threshold
	Block Parameters
	Xilinx LogiCORE

	Time Division Demultiplexer
	Block Interface
	Block Parameters

	Time Division Multiplexer
	Block Interface
	Block Parameters

	To FIFO
	Block Parameters
	LogiCORE™ Documentation
	Device Support
	See Also

	To Register
	Block Parameters
	Crossing Clock Domains
	LogiCORE™ Documentation
	Device Support
	See Also

	Toolbar
	Block Interface
	Toolbar Menus
	References
	See Also

	Up Sample
	Block Interface
	Block Parameters

	VDMA Interface 4.0
	Preparing to Use This Block
	xlVDMACreateProject utility
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	VDMA Interface 5.4
	Preparing to Use This Block
	xlVDMACreateProject utility
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Viterbi Decoder 7.0
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	Viterbi Decoder 8.0
	Block Interface
	Block Parameters
	LogiCORE™ Documentation
	Device Support

	WaveScope
	Quick Tutorial
	Block Interface

	Xilinx Reference Blockset
	Communication
	Control Logic
	DSP
	Imaging
	Math
	2 Channel Decimate by 2 MAC FIR Filter
	Block Parameters
	Reference

	2n+1-tap Linear Phase MAC FIR Filter
	Block Parameters
	Reference

	2n-tap Linear Phase MAC FIR Filter
	Block Parameters
	Reference

	2n-tap MAC FIR Filter
	Block Parameters
	Reference

	4-channel 8-tap Transpose FIR Filter
	Block Parameters

	4n-tap MAC FIR Filter
	Block Parameters
	Reference

	5x5Filter
	Block Parameters

	BPSK AWGN Channel
	Block Parameters
	Reference

	CIC Filter
	Block Interface
	Block Parameters
	Reference

	Convolutional Encoder
	Implementation
	Block Interface
	Block Parameters

	CORDIC ATAN
	Block Parameters
	Reference

	CORDIC DIVIDER
	Block Parameters
	Reference

	CORDIC LOG
	Block Parameters
	Reference

	CORDIC SINCOS
	Block Parameters
	Reference

	CORDIC SQRT
	Block Parameters
	Reference

	Dual Port Memory Interpolation MAC FIR Filter
	Block Parameters
	Reference

	Interpolation Filter
	Block Parameters
	Reference

	m-channel n-tap Transpose FIR Filter
	Block Parameters

	Mealy State Machine
	Example
	Block Parameters

	Moore State Machine
	Example
	Block Parameters

	Multipath Fading Channel Model
	Theory
	Implementation
	Block Parameters
	Functions
	Data Format
	Input
	Output
	Timing
	Initialization
	Demonstrations
	Hardware Co-Simulation Example
	Reference

	n-tap Dual Port Memory MAC FIR Filter
	Block Parameters
	Reference

	n-tap MAC FIR Filter
	Block Parameters
	Reference

	Registered Mealy State Machine
	Example
	Block Parameters

	Registered Moore State Machine
	Example
	Block Parameters

	Virtex Line Buffer
	Block Parameters

	Virtex2 Line Buffer
	Block Parameters

	Virtex2 5 Line Buffer
	Block Parameters

	White Gaussian Noise Generator
	4-bit Leap-Forward LFSR
	Box-Muller Method
	Block Parameters
	Reference

	Xilinx XtremeDSP Kit Blockset
	XtremeDSP Analog to Digital Converter
	Block Parameters
	Data Sheet

	XtremeDSP Co-Simulation
	Block Parameters

	XtremeDSP Digital to Analog Converter
	Block Parameters
	Data Sheet

	XtremeDSP External RAM
	Block Parameters

	XtremeDSP LED Flasher
	Block Parameters

	System Generator Utilities
	xlAddTerms
	Syntax
	Description
	Examples
	Remarks
	See Also

	xlCache
	Syntax
	Description
	See Also

	xlConfigureSolver
	Syntax
	Description
	Examples

	xlfda_denominator
	Syntax
	Description
	See Also

	xlfda_numerator
	Syntax
	Description
	See Also

	xlGenerateButton
	Syntax
	Description
	See Also

	xlgetparam and xlsetparam
	Syntax
	Description
	Examples
	See Also

	xlgetparams
	Syntax
	Description
	Examples
	See Also

	xlGetReloadOrder
	Syntax
	Description
	See Also

	xlInstallPlugin
	Syntax
	Description
	Examples
	See Also

	xlLoadChipScopeData
	Syntax
	Description
	Examples
	See Also

	xlSBDBuilder
	Syntax
	Description
	See Also

	xlSetNonMemMap
	Syntax
	Description
	Examples
	See Also

	xlSetUseHDL
	Syntax
	Description
	Examples
	See Also

	xlSwitchLibrary
	Syntax
	Description
	Examples

	xlTBUtils
	Syntax
	Description
	Examples
	Remarks
	See Also

	xlTimingAnalysis
	Syntax
	Description
	Example

	xlUpdateModel
	Syntax
	Description
	Examples

	xlVDMACreateProject
	xlVersion
	Syntax
	Description
	See Also

	System Generator GUI Utilities
	Xilinx BlockAdd
	How to Invoke
	How to Use

	Xilinx Tools > Save as blockAdd default
	How to Use
	How to Restore the Block Default

	Xilinx BlockConnect
	Simple Connections
	Smart Connections

	Xilinx Tools > Terminate
	How to Use

	Programmatic Access
	System Generator API for Programmatic Generation
	Introduction
	xBlock
	xInport
	xOutport
	xSignal
	xlsub2script
	xBlockHelp

	PG API Examples
	Hello World
	MACC
	MACC in a Masked Subsystem

	PG API Error/Warning Handling & Messages
	xBlock Error Messages
	xInport Error Messages
	xOutport Error Messages
	xSignal Error Messages
	xsub2script Error Messages

	M-Code Access to Hardware Co-Simulation
	Compiling Hardware for Use with M-Hwcosim
	M-Hwcosim Simulation Semantics
	Data Representation
	Interfacing to Hardware from M-Code
	M-Hwcosim Examples
	Automatic Generation of M-Hwcosim Testbench
	Resource Management
	M-Hwcosim MATLAB Class
	M-Hwcosim Shared Memory MATLAB Class
	M-Hwcosim Shared FIFO MATLAB Class
	M-Hwcosim Utility Functions

	Index

