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Migrating a Design to an UltraScale 
Device

Introduction to the UltraScale Architecture
The Xilinx® UltraScale™ architecture is the first ASIC-class All Programmable architecture to 
enable multi-hundred gigabit-per-second levels of system performance with smart 
processing, while efficiently routing and processing data on-chip. UltraScale 
architecture-based devices address a vast spectrum of high-bandwidth, high-utilization 
system requirements by using industry-leading technical innovations, including 
next-generation routing, ASIC-like clocking, 3D-on-3D ICs, multiprocessor SoC (MPSoC) 
technologies, and new power reduction features. The devices share many building blocks, 
providing scalability across process nodes and product families to leverage system-level 
investment across platforms.

Virtex® UltraScale+™ MPSoC devices provide the highest performance and integration 
capabilities in a FinFET node, including both the highest serial I/O and signal processing 
bandwidth, as well as the highest on-chip memory density. As the industry's most capable 
FPGA family, the Virtex UltraScale+ devices are ideal for applications including 1+Tb/s 
networking and data center and fully integrated radar/early-warning systems.

Virtex UltraScale+ MPSoC devices provide the greatest performance and integration at 20 
nm, including serial I/O bandwidth and logic capacity. As the industry's only high-end FPGA 
at the 20 nm process node, this family is ideal for applications including 400G networking, 
large scale ASIC prototyping, and emulation.

Kintex® UltraScale+ devices provide the best price/performance/watt balance in a FinFET 
node, delivering the most cost-effective solution for high-end capabilities, including 
transceiver and memory interface line rates as well as 100G connectivity cores. Our newest 
mid-range family is ideal for both packet processing and DSP-intensive functions and is well 
suited for applications including wireless MIMO technology, Nx100G networking, and data 
center.
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Introduction to the UltraScale Architecture
Kintex UltraScale devices provide the best price/performance/watt at 20 nm and include the 
highest signal processing bandwidth in a mid-range device, next-generation transceivers, 
and low-cost packaging for an optimum blend of capability and cost-effectiveness. The 
family is ideal for packet processing in 100G networking and data centers applications as 
well as DSP-intensive processing needed in next-generation medical imaging, 8k4k video, 
and heterogeneous wireless infrastructure.

Zynq® UltraScale+ MPSoC devices provide 64-bit processor scalability while combining 
real-time control with soft and hard engines for graphics, video, waveform, and packet 
processing. Integrating an ARM®-based system for advanced analytics and on-chip 
programmable logic for task acceleration creates unlimited possibilities for applications 
including 5G Wireless, next generation ADAS, and Industrial Internet-of-Things.

IMPORTANT: UNIMACROs are not supported in the UltraScale® device architecture. Replace any 
UNIMACROS with Xilinx Parameterized Macros (XPMs).

For details on XPMs, see Vivado Design Suite User Guide: System-Level Design Entry (UG895) 
[Ref 12]. 

For details on the various XPMs and their parameterization options, see the UltraScale 
Architecture Libraries Guide (UG974) [Ref 7].

Note: In the 2017.1 Vivado release and beyond, XPMs are enabled automatically in project mode, 
and in non-project mode are used automatically during synthesis/implementation.

Differences Between UltraScale FPGA Families
This document uses the Kintex UltraScale™ and Virtex UltraScale families as the basis for 
descriptions and examples. The following list defines some of the differences for the Kintex 
UltraScale+, Virtex UltraScale+, and Zynq UltraScale+ families:

• UltraRAM Support

• High-density I/Os (HD I/Os) with corresponding logic resources for Zynq UltraScale+ 
MPSoC devices and the Kintex UltraScale+ family

• MIPI D-PHY transmitter and receiver functions are supported in the HP I/Os specific to 
the Virtex UltraScale+ devices, Kintex UltraScale+ devices, and Zynq UltraScale+ 
MPSoCs

• Expanded functionality system monitor

For details on supported features in the HD I/O Banks, see the UltraScale Architecture 
SelectIO Resources User Guide (UG571) [Ref 1]
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Targeting Considerations for UltraScale Devices
Targeting Considerations for UltraScale Devices
This section covers topics associated with programmable logic design implementations that 
are not technology-specific. Consider the concepts described when evaluating existing 
design source for potential migration to UltraScale devices or when developing new code 
for use in UltraScale devices.

RECOMMENDED: See the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) 
[Ref 2] before starting on a new design or retargeting an existing design to ensure compliance with best 
practices in pinout selection, design creation, implementation, and debug.

UltraScale Device Selection
UltraScale devices and other architectures have a logic cell count as a means of defining the 
amount of general-purpose logic resources in different size devices. In UltraScale devices, 
the logic cell count is much higher than in other devices.

Although the number of logic cells is a good indicator of the available programmable LUT 
resources, it is not always the best indicator of the overall logic capacity of the device. 
UltraScale devices contain several hardened functions that in earlier FPGAs or other 
technologies might use LUTs, flip-flops, and other resources. For example, the use of the 
hardened Interlaken core, PCIe® Gen3 block, integrated FIFO, and other blocks might 
represent a significant LUT savings over earlier implementations and should be considered 
a part of the device selection process.

Because logic density is not the only factor in determining device selection, all other 
resources required for your design should also be evaluated.

RECOMMENDED: Initially compare all relevant resources in the Feature Summary tables in the 
UltraScale Architecture and Product Overview (DS890) [Ref 3].

Additional considerations that help determine the appropriate UltraScale device selection 
include:

• Block RAM/DSP: For designs requiring heavy block RAM or DSP use, Kintex® UltraScale 
devices have higher block RAM and DSP content for a given array size.

If targeting an UltraScale+ device, you might want to consider using UltraRAM for 
memory arrays larger than 128 Kb. For additional details on the UltraRAM, refer to the 
UltraScale Architecture Memory Resources User Guide (UG573) [Ref 4].

• I/O: The number of I/Os for a given array size, the bank sizes, arrangement, and 
capabilities differ from the 7 series devices. 
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Targeting Considerations for UltraScale Devices
When starting a new design, consider whether or not more functionality can be folded 
into the device to limit the number of I/Os required and also to improve overall system 
performance, cost, power, and capability.

• Speed Grade: In many cases, similar performance can be seen in UltraScale devices 
using a lesser speed grade. However, individual block speed as well as overall system 
performance should be analyzed before making a selection. When possible, implement 
the prior design, specifying the desired speed grade to determine if timing can be met 
before finalizing speed grade decisions.

Use of Control Signals 
The use of control signals (those signals that control synchronous elements such as clock, 
set, reset, and clock enable) can impact device density, utilization, and performance. 

When compared with prior architectures, the UltraScale architecture provides more 
flexibility regarding the number and types of control signals specified in the design. 
However, it is still best to be aware of the use and impact that control signals and control 
sets might have on design implementation.

Avoid Use of Both a Set and a Reset on a Register or Latch

As with prior generations of FPGAs, Flip-Flops in an UltraScale device cannot natively 
implement both a set signal and a reset signal without the use of additional logic. Thus, 
when using both a synchronous set and reset, an additional signal is added to the datapath. 
This could affect area and timing, depending on placement, fanout, and timing 
considerations. In some cases, that additional signal can be absorbed without increasing 
logic levels, and there is little net effect on the design. However, for an asynchronous set 
and reset, the effect on resource utilization and timing is more significant and should 
therefore be avoided.

You cannot implement (1) registers that contain both asynchronous reset and asynchronous 
set signals and/or (2) registers that contain an asynchronous control signal with a dynamic 
value. The Vivado Design Suite issues an error if either of these behaviors are described in 
RTL or if there is an instantiated FDCPE or LDCPE that allows this asynchronous behavior.

This construct can be described in RTL or instantiated as an FDCPE in HDL or EDIF formats.
UltraScale Architecture Migration 8
UG1026 (v1.5) April 24, 2017 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1026&Title=UltraScale%20Architecture%20Migration%3A%20Methodology%20Guide&releaseVersion=1.5&docPage=8


Targeting Considerations for UltraScale Devices
Examples Showing Coding Styles to Avoid and Appropriate Corrections

EXAMPLE 1 - Avoid this Coding Style

Shown below is a simple example of Verilog code describing asynchronous set and reset 
resulting in additional resources and timing paths:

always @(posedge reset, posedge set, posedge clk)
  if (reset)
    a_reg <= 1'b0;
  else if (set)
    a_reg <= 1'b1;
  else
    a_reg <= A;

Use this Coding Style Instead

If the set and reset signals are considered necessary for proper function, convert one or 
both to a synchronous specification, as shown in the example below:

always @(posedge clk)
  if (reset)
    a_reg <= 1'b0;
  else if (set)
    a_reg <= 1'b1;
  else
    a_reg <= A;

EXAMPLE 2 - Avoid this Coding Style

The following coding example consists of VHDL code describing an asynchronous control 
signal with a dynamic value, resulting in additional resources and timing paths:

process (clk, initc) begin
  if initc='1' then
    data_reg <= init_signal;
  elsif (clk'event and clk='1') then
    data_reg <= data_in;
  end if;
end process;

Use this Coding Style Instead

In this case, make initc synchronous to build an improved circuit:

process (clk) begin
  if (clk'event and clk='1') then 
    if (initc='1') then
      data_reg <= init_signal;
    else 
      data_reg <= data_in;
    end if;
  end if;
end process;
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Targeting Considerations for UltraScale Devices
Register Initialization

Many engineers use the inherent initialization of registers and latches in the FPGA through 
the global set/reset (GSR) signal by implicitly specifying initialization of an inferred register, 
thus creating a more robust and sometimes smaller circuit. With initialization, a different 
start-up state from reset state is allowed, which, in some cases, consumes less logic than an 
uninitialized state yields. (An example is a state machine with certain states that must be run 
at start-up but perhaps not on a subsequent reset.) Initialization also allows for the RTL 
description to more closely and accurately behave as the actual FPGA, creating a more 
accurate representation of the circuit. For this reason, it is best to use register initialization 
on any inferred register, shift register lookup table (SRL), or RAM, when possible.

In the following code example, the reg register is initialized with the value of 1:

signal reg: std_logic := '1';
  ...
process (clk) begin
  if (clk'event and clk='1') then
    if (rst='1') then
      reg <= '0';
    else
      reg <= val;
    end if;
  end if;
end process;

In the coding example above, the use of initialization eliminates the need to specify a set 
condition for the sole purpose of creating an initial condition of a logic one. Even if the 
initial condition matches the reset condition, it is still best to specify register initialization 
so that the simulation start-up state more accurately reflects the initial condition of the 
FPGA without requiring a reset condition.

Control Signal Polarity

The UltraScale architecture is enhanced over 7 series FPGAs and other prior architectures. 
Resets now have programmable inversion, allowing either an active-High or active-Low 
reset without any area or timing penalty. When there is a choice, it is best to use a single 
polarity reset (either all active-High or all active-Low) to avoid any possible impact on 
utilization. However, using mixed polarity resets causes less adverse impact on an UltraScale 
device design than on designs based on earlier-generation devices.

When coding or instantiating components with clock enable, however, use active-High 
enables. The enable pins do not have programmable inversion, and using an active-Low 
enable can have a negative impact on area and timing during implementation. Also, to get 
the best implementation, avoid inverting the enables when creating IP or instantiating 
UNISIM primitives.
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Targeting Considerations for UltraScale Devices
Limit Use of Low Fanout Control Signals

When compared with earlier devices, the UltraScale device configurable logic block (CLB) 
allows more flexibility in the use of control signals in the architectures. Even so, the number 
of unique control signals in the design should be limited to those necessary for design 
functionality and operation. Low-fanout, unique control signals can result in under utilized 
CLBs in terms of registers, SRLs, and LUT RAM. These control signals can have negative 
impacts on placement and timing. In general, do not implement a set, reset, or clock enable 
in the code unless it is required for the active functionality of the design.

Avoid Unnecessary Use of Sets or Resets

Unnecessary sets and resets in the code can prevent the inference of SRLs, RAM (LUT RAM 
or block RAM), and other logic structures that are otherwise possible. To maximize the 
efficiency of the architecture, code sets and resets only when they are necessary for the 
active functionality of the design. For example:

• A reset is not required when it is only used for initialization of the register because 
register initialization occurs automatically upon completion of configuration.

• A reset is not required when a circuit remains idle for long periods. A simple reset on 
the input registers eventually flushes out the data on the rest of the circuit.

• When the reset is held for multiple clock cycles, the inner registers are flushed during 
reset. So, the reset is not necessary on all registers. 

By reducing the use of unnecessary sets or resets, greater device utilization, better 
placement, improved performance, and reduced power can be achieved.

Sets for Multipliers or Adders/Subtractors in DSP48E2 Registers

UltraScale device DSP48E2 registers contain only resets and not sets. The DSP block can 
perform many different functions, including multiplication, addition/subtraction, 
comparators, counters, and general logic. To allow flexible use of the DSP48E2, do not 
describe a set condition on any registers expected to be mapped to this resource. Unless necessary, a 
set (value equals logic 1 upon an applied signal) should not be coded around multipliers, 
adders, counters, or other logic that can be implemented within a DSP48E2 slice.

Use of Synchronous Sets/Resets

If a set or reset is necessary for proper operation of the circuit, always code a synchronous 
reset. Synchronous sets/resets have improved timing characteristics and stability and can 
also result in smaller, better utilization within the FPGA.

Synchronous sets/resets can result in less logic (fewer LUTs), fewer restrictions on packing, 
and, often, faster circuits. The registers within blocks such as the DSP48E2 and 
RAMB36E2/RAMB18E2 cannot implement an asynchronous set and reset. 
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Targeting Considerations for UltraScale Devices
They cannot, therefore, be used with functional equivalence if an asynchronous set or reset 
exists in the RTL code. Synchronous resets provide enhanced flexibility with respect to 
register sharing within a CLB. In addition, placement is less affected, or in many cases, 
improved, so fewer routing resources are required. Additional benefits include overall 
device density, performance and power improvements, as well as reduced routing delay and 
capacitance.

High Fanout Signals

It is best to limit fanout of signals as much as possible. In some designs, however, high 
fanout nets will exist. In general, high fanout signals should not be split manually or 
replicated but coded as a single signal. If replication becomes necessary for timing or other 
reasons, the signal can be replicated during synthesis, or later, during physical optimization 
(phys_opt_design). This allows for greater flexibility to control replication many times, 
providing a better trade-off balance between additional resources and power for improved 
performance. Also, as placement and other factors change, the replication requirements 
might also change. Controlling this from the synthesis and implementation tools means 
that you do not have to modify and reverify the original code for such changes.

In prior architectures, placing high fanout signals onto global resources or BUFGs was at 
times preferable and yielded better results. When targeting UltraScale devices, however, it 
is generally best not to do this. The Vivado® tools automatically use global resources when 
available and when determined to be beneficial for timing or routability. Instantiating or 
using BUFGs is therefore not necessary.

Use of DSP and Other Arithmetic-Intensive Code
Many DSP designs are well suited to the UltraScale architecture. To obtain best use of the 
architecture, the underlying features and capabilities must be understood so that design 
entry code can take advantage of these resources.

The DSP48E2 blocks use a signed arithmetic implementation. To best match the resource 
capabilities and, in general, to get the most efficient mapping, write code using signed 
values in the HDL source. If you use unsigned bus values in the code, the synthesis tools 
should still be able to use this resource, but they might not get the full bit precision of the 
component because of the unsigned-to-signed conversion. The multiplier within the 
DSP48E2 has an input bit precision of 18 bits by 27 bits signed data. Thus, the bit precision 
for unsigned data is 17 bits by 26 bits. For Verilog code, data is considered unsigned unless 
otherwise declared in the code.

If you expect the target design to contain a large number of adders, it is best to evaluate the 
design and make greater use of the DSP48E2 pre- and post-adders. For example, with FIR 
filters, use an adder cascade to build a systolic filter rather than using multiple, successive 
add functions (adder trees). If the filter is symmetric, you can evaluate using the dedicated 
pre-adder to further consolidate the function into fewer LUTs and flip-flops as well as fewer 
DSP blocks (in most cases, half the resources).
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Targeting Considerations for UltraScale Devices
If adder trees are necessary, the 6-input LUT architecture can efficiently create ternary 
addition (A + B + C = D) using the same amount of resources as a simple 2-input addition. 
This can help save and conserve carry logic resources, when needed. In many cases, there is 
no need to use these techniques. With awareness of these capabilities, you can decide on 
the proper trade-offs in advance and account for them in the RTL code, which results in a 
smoother and more efficient implementation from the start.

RAM Considerations
When retargeting block RAM and LUT RAM by inference, instantiated primitive, or Vivado IP 
Catalog, there are two methods by which to maximize use of block RAM and LUTs in the 
UltraScale architecture. Choose the one of the following:

• If a core was used for RAM generation, regenerate the IP for the UltraScale device.

• Recode the RAM for proper synthesis inference.

Either method can provide good results for utilization and performance. However, it is best 
to infer memory, where possible, to improve understanding of the code, simulation, and 
portability of the code.

Using FIFOs
Many designs require FIFOs to transfer data to different clock domains or to store data until 
needed by other portions of the design. When targeting such designs to an UltraScale 
device, consider using one of the dedicated FIFO structures for this purpose. The integrated 
FIFOs generally allow higher speed operation with lower power and area requirements 
when compared to soft solutions, while at the same time improving reliability or Mean Time 
Between Failures (MTBF). The UltraScale device FIFO can be incorporated into the design by 
direct instantiation or by using the Vivado IP Catalog FIFO Generator. 

Use of XOR Functions (CRC/Error Detection Correction)
Several error detection/correction, encryption, and other types of algorithms make use of 
wide XOR functions to realize the circuit. In prior-generation devices, this XOR circuitry was 
often implemented using LUTs and could represent a timing bottleneck and/or consume a 
disproportionate amount of power in the circuit. In the UltraScale architecture, a wide XOR 
function is added to the DSP48E2, which can efficiently implement parity, CRC, checksums, 
and other functions requiring large XOR computations. 

RECOMMENDED: To use the XOR function most efficiently, ensure proper pipelining around the 
function to use the registers in the DSP block.
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Targeting Considerations for UltraScale Devices
Asynchronous Data Synchronization
Most modern designs contain more than one clock domain. When a clock domain does not 
have a known phase relationship and/or incompatible frequencies, data transference across 
such domains must be managed appropriately. For buses of data, the integrated FIFO logic 
is the safest and most efficient means of bus-wide data transference. However, for a single 
signal, such as a reset that might not be synchronized to the desired clock domain, it is best 
to use proper synchronization techniques. Proper techniques include:

• Incorporating one or more synchronization register 

• Identifying the synchronization register(s) with the ASYNC_REG property so that the 
tools can use place and route techniques to improve MTBF and so analysis tools can 
identify domain crossings of interest for reliability studies

Use of LUTs as Pack-Thrus
To gain access to all the circuitry in the Slice/CLB, LUTs must sometimes be configured as 
simple buffers to allow data to pass through LUT inputs into the internal circuitry. In prior 
architectures, configurations were called route-thrus or pack-thrus. Such pack-thrus were 
often used to gain access to all the registers in the slice, which in register-intensive designs, 
could consume a portion of the logic resources. The UltraScale architecture is designed so 
that the LUTs and registers can be accessed independently from one another, eliminating a 
common use for pack-thrus and allowing for greater logic usage/utilization. 
Register-intensive designs are therefore simpler to implement in UltraScale architectures.

Clocking Considerations
The clocking architecture for UltraScale devices is designed with many changes and 
improvements over earlier architectures. This section provides high-level guidance on 
retargeting existing clocking structures from 7 series FPGAs to UltraScale devices. For more 
in-depth information about clocking architecture changes, see the UltraScale Architecture 
Clocking Resources User Guide (UG572)[Ref 5].

RECOMMENDED: Though in most cases, the clocking buffers and clock modifying blocks (that is, 
MMCM and PLL) automatically retarget to the UltraScale device clocking network, it is a good idea to 
review the clocking network for potential changes that might better suit the design in this architecture. 

The 7 series FPGA clocking buffers are retargeted to one of three types of UltraScale device 
clocking buffers, depending on use. These are BUFGCE, BUFGCTRL or BUFCE_DIV. In many 
cases, if multiple, redundant buffers appear in series or parallel, the Vivado Design Suite 
logic optimization algorithms (logic_opt) attempt to reduce these buffers to the 
minimum number to improve clock resource efficiency and improve any possible clock 
domain crossing timing. MMCMs and PLLs from 7 series FPGA designs are retargeted to the 
UltraScale device MMCME3, which is a superset of functionality for either of those 
clock-modifying components.
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Retargeting Considerations from 7 Series to UltraScale Devices
For clocks originating from Gigabit transceivers, a new clocking structure exists in the 
UltraScale architecture to facilitate the delivery of the clock to the FPGA resources. This 
involves using the BUFG_GT and BUFG_GT_SYNC components to connect and distribute the 
clock and cannot be automatically migrated from existing 7 series FPGA designs. For details 
on the clocking circuitry in UltraScale devices, see the appropriate UltraScale architecture 
GT transceivers user guide. For more information, the documentation available from the 
Support page; see Appendix A, Additional Resources and Legal Notices.

Retargeting Considerations from 7 Series to 
UltraScale Devices
The following section describes additional design implementation and constraints details to 
consider when retargeting an existing 7 series device design to an UltraScale device.

Use of Existing Soft IP, EDIF, or NGC Netlists 
RECOMMENDED: Regenerate or resynthesize existing soft IP or black box netlists in the design prior to 
implementation in UltraScale devices.

Many netlists targeting the 7 series architectures can be implemented without error when 
targeting UltraScale devices. However, when migrating from earlier architectures to the 
UltraScale architecture, it is best to regenerate any netlist or core to maximize efficiency 
and to ensure that new features and capabilities are fully realized. 

NGC format netlists are no longer supported in the UltraScale architecture.  If your existing 
design contains NGC netlists, you must convert them to Electronic Data Interchange Format 
(EDIF) before targeting an UltraScale device. There is a utility in the Xilinx Tcl Store to assist 
with converting an NGC netlist to EDIF. To gain access to this utility, open the Xilinx Tcl Store 
and install the Project Utilities (projutils) application if it is not installed already. Once 
installed, the command convert_ngc is available to simplify this conversion. Type 
convert_ngc -help for details on running this command.

UltraScale Device IP Migration
In general, migrating a 7 series FPGA design containing Xilinx IP to an UltraScale device 
involves a simple upgrade of the IP or the creation of a new UltraScale device-specific 
version of the IP. Depending on the particular IP, there might be changes required to the 
design so that it works with the upgraded IP. Review of the change log for the IP to get 
details on the upgrade changes.
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Retargeting Considerations from 7 Series to UltraScale Devices
When migrating IP, you must take into account the following conditions:

• The IP has an upgrade path and reports the status as "IP part change" (or "IP board 
change") when running Report IP Status. The version of the IP does not change. In this 
case, review the change log. Look for changes specific to use of the IP with the 
UltraScale architecture that could include port and functionality changes. For example, 
when updating a transceiver from a 7 series device to an UltraScale device, if you have 
selected transceiver debug ports, the name and function of these ports will have 
changed. Refer to the product guide section on transceiver debug ports for the new 
part in this case.

• The IP does not have an upgrade path to the UltraScale architecture. Depending on the 
IP, another version might be available. See the Product Guide for the specific IP for 
more information.

RECOMMENDED: When migrating a 7 series FPGA design, first create or modify your project to target 
the UltraScale device. Next, upgrade the IP to the latest available version in the Vivado tools release 
you are using. Then generate a Report IP Status report, as shown in the figure below. See Table 1 for a 
list of commonly used IP.

This report shows whether there is an upgrade path or whether the IP is unsupported in the 
UltraScale architecture. From this report you can review the change logs for the IP, which 
contain an upgrade path. Each change log provides a summary of the changes for the 
specific IP and can contain specific information to determine if changes made for the 
UltraScale architecture are applicable. See also the related IP Product Guide for UltraScale 
device-specific details.

X-Ref Target - Figure 1-1

Figure 1: Report IP Status After Part Change to an UltraScale Device 
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Retargeting Considerations from 7 Series to UltraScale Devices
The following table provides a list of the commonly used IP with migration information for 
each.

Software Considerations
UltraScale devices are supported by the Vivado Design Suite tools. Consult the current 
release notes for system requirements (for example, operating system and memory 
requirements) as well as device support and other important information about the tool 
suite.

Baselining the Design
RECOMMENDED: During the initial stages of design retargeting, “baseline” the design using the 
method specified in the UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) 
[Ref 2]. 

Start with simple design constraints and a simple design flow and slowly expand upon those 
to ensure that the proper constraints are set in the design and that the best design flow is 
established for this new target. 

Table 1: UltraScale Device Migration Information for Commonly Used IP

IP Notes

Ten Gig Ethernet PCS PMA Can be upgraded

Port changes

Reset functional change

 7 Series PCIe 2.1 core (except 7 Series 
Virtex® XT core)

Cannot be upgraded

Create PCIe 3.1 for Ultrascale devices.

7 Series Virtex XT PCIe 3.0 core Minor port differences

As of this document release date, not yet 
auto-upgradable

MIG Cannot be upgraded

Must use MIG 5.0 for UltraScale devices

Transceiver Wizard Cannot be upgraded

Must use an UltraScale FPGA Transceiver Wizard

FIFO Can be upgraded

Port changes

Functional changes

Aurora Can be upgraded

Port changes
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Retargeting Considerations from 7 Series to UltraScale Devices
Use of Synthesis Attributes and Physical Constraints 

Often, synthesis attributes (KEEP, MAX_FANOUT, DONT_TOUCH, etc.) or physical constraints 
(LOC, PBLOCK, RLOC, PROHIBIT, etc.) that improved the results in earlier architectures 
might not apply and/or might degrade the results targeting another device. For this reason, 
it is best to reevaluate and potentially remove all synthesis attributes from the HDL code 
and/or Vivado synthesis XDC file. Similarly, it is best to evaluate and potentially remove all 
physical constraints from the implementation XDC file. Ensure that the need for attributes 
such as KEEP or MARK_DEBUG still exists and if not, remove them, as they might prohibit 
optimal results. After initial implementation and analysis, you can determine which, if any, 
of these attributes should be reintroduced. Before doing so, however, allow the tools to 
implement the design without such restrictions and see if the desired implementation 
occurs without intervention.

Specification of Timing Constraints 

Vivado synthesis and implementation tools use the SDC (Synopsys Design Constraints) 
syntax for timing constraint specification. If the Vivado Design Suite was used for the 7 
series FPGA design, in most cases, the same timing constraints can be carried forward to the 
UltraScale device implementation without modification. If the ISE® Design Suite was used 
previously, the timing constraints specified in UCF format must be translated into the XDC 
syntax. See the ISE to Vivado Design Suite Migration Guide (UG911) [Ref 6] for details.

One change to note in migrating constraints to an UltraScale device design is that 
PRIMITIVE_GROUP and/or PRIMITIVE_SUBGROUP properties for constraint processing 
might have changed. If you are using these in your design, see the UltraScale Architecture 
Libraries Guide (UG974) [Ref 7] for the correct PRIMITIVE_GROUP/PRIMITIVE_
SUBGROUP properties for the UNISIM components. This helps you ensure the constraints 
are bound to the proper cells. 

During most retargeting scenarios, modified IP and other design areas can impact the 
overall timing specification where timing paths change in name, reference points, and/or 
type, thus potentially invalidating constraints properly specified in a earlier target. 
Particularly for timing paths that refer to internal nodes of the design, ensure that the 
referenced node still exists and that the timing specification or exception is still applicable. 
Use check_timing to validate that the specified timing constraints are complete and 
accurate for the new target.
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7 Series Device Primitive Retargeting Considerations
Simplifying the Design Flow

As a design progresses, the design flow is often augmented with the use of different 
options or directives, use of different implementation steps (such as power_opt_design 
or phys_opt_design, or perhaps even more advanced control (such as pre- or post-Tcl 
processing). Crafting such a flow often leads to improved results for a given design 
targeting a given architecture. However, changes in the design and/or target architecture 
might require different tactics. So, it is not always the best strategy to use the same options 
and flow used when targeting 7 series device as you would when targeting an UltraScale 
device. 

RECOMMENDED: After the design and constraints are re-verified, run a default flow through the Vivado 
tools. Analyze the design for possible design or constraint changes to better facilitate progress towards 
the desired goals. After that is exhausted, start re-exploring different tool options and directives as well 
as flows.

7 Series Device Primitive Retargeting 
Considerations
The following primitives are identical between 7 series and UltraScale devices. There should 
be no changes in behavior, connectivity, or general use:

Some device primitives instantiated for the 7 series architecture are either not automatically 
retargeted to the UltraScale architecture, or they are retargeted with some notable 
differences. See the UltraScale Architecture Libraries Guide (UG974) [Ref 7], for more details 
on any UNISIM component and the respective user guide for specific details about any of 
these blocks when targeting UltraScale devices.

This following sections highlight a few of these older components.

AND2B1L FDCE LUT3 RAM128X1D

BUFG FDPE LUT4 RAM256X1S

BUFGCE FDRE LUT5 RAM32M

BUFGCTRL FDSE LUT6 RAM32X1S

BUFGMUX KEEPER MUXF7 RAM64M

BUFGMUX_1 LDCE MUXF8 RAM64X1D

BUFGMUX_CTRL LDPE OR2L RAM64X1S

CFGLUT5 LUT1 PULLDOWN SRL16E

EFUSE_USR LUT2 PULLUP SRLC32E
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7 Series Device Primitive Retargeting Considerations
Advanced 7 Series Component Retargeting
GTPE2_CHANNEL, GTPE2_COMMON, GTHE2_CHANNEL, GTHE2_COMMON, GTXE2_CHANNEL, 
GTXE2_COMMON, IBUFDS_GTE2

The gigabit transceiver primitives, their associated buffers, and common circuitry are not 
supported in UltraScale and UltraScale+ devices. They are not retargeted because of base 
functionality differences with the serial transceiver circuitry in UltraScale and UltraScale+ 
devices. These capabilities have been replaced by the E3 series of transceiver components 
for UltraScale devices and the E4 series of transceiver components for UltraScale+ devices.

IMPORTANT: If your design contains these older components, replace them with a Vivado IP 
Catalog-generated equivalent interface, targeting the appropriate UltraScale device.

XADC

Some specifications for the UltraScale device SYSMONE1 and UltraScale+ device SYSMONE4 
differ from the 7 series device XADC component. When using an instantiated XADC in the 
design, see the UltraScale Architecture System Monitor User Guide (UG580) [Ref 8] to learn if 
any of these changes might impact the use of this component for the given application.

RECOMMENDED: If you determine that the SYSMONE1 or SYSMONE4 should be used, run the System 
Management wizard in the Vivado Design Suite IP catalog to integrate this function into your design.

7 Series Config/BSCAN Component Retargeting
Note: For additional details on the Configuration components, see the UltraScale Architecture 
Configuration User Guide (UG570) [Ref 9].

CAPTUREE2

In comparison with earlier devices, the capture feature in the UltraScale device has 
changed. As a result, there is no retargeting of the CAPTUREE2 primitive, and this causes an 
error in UltraScale device designs. Use the Vivado® logic analyzer for a more complete 
solution. See the “Readback Verification and CRC” section of the UltraScale Architecture 
Configuration User Guide (UG570) [Ref 9] for additional information. 

DNA_PORT

The DNA value is extended from 57 bits to 96 bits, and the primitive now reflects this new 
behavior. 

RECOMMENDED: Update any design containing a DNA_PORT to instantiate and use the DNA_PORTE2 
primitive, which allows proper functional simulation with this function.
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7 Series Device Primitive Retargeting Considerations
FRAME_ECCE2

7 series devices and UltraScale devices differ with respect to Configuration Frame Error 
Correction Circuitry or FRAME_ECC pinout and functionality. For this reason, the 
FRAME_ECCE2 component causes an error in UltraScale device designs. For designs still 
requiring this functionality, replace the FRAME_ECCE2 with the FRAME_ECCE3 component. 

RECOMMENDED: For details on the changes and use of this new component, see the UltraScale 
Architecture Configuration User Guide (UG570) [Ref 9].

ICAPE2

The Internal Configuration Access Port (ICAP) component differs in terms of pinout, 
functionality, and latency. For this reason, the ICAPE2 component does not automatically 
retarget, and an error results. For designs requiring ICAP functionality, use the ICAPE3 
component. 

RECOMMENDED: See the UltraScale Architecture Configuration User Guide (UG570) [Ref 9] for 
additional details on this component.

STARTUPE2 

Some additional pins and functionality are added to the STARTUP block, so there is now a 
STARTUPE3 block. In most cases, this block retargets cleanly. However, it is best to modify 
code, when convenient, to instantiate and use the new STARTUPE3 block.

RECOMMENDED: See the UltraScale Architecture Configuration User Guide (UG570) [Ref 9] for 
additional details on this component.

7 Series I/O Component Retargeting

IDELAYE2

The IDELAYE2 primitive is replaced with the IDELAYE3 primitive in the UltraScale 
architecture. The input delay line now consists of 512 taps instead of the previous 32, 
resulting, potentially, in less maximum delay. Refer to the appropriate UltraScale data sheet 
[Ref 11] for specifics. You can cascade IDELAYE3 with its associated ODELAYE3 output 
delay primitive for a longer delay, if required. In FIXED mode, the delay is now given in 
terms of ps rather than tap value. The delay line uses this value and the associated reference 
clock (via the IDELAYCTRL) to calculate how many taps are needed to generate the 
required delay at current PVT (process/voltage/temperature), with no user intervention 
required. In VAR_LOAD mode, programming the IDELAYE3 now requires a 9-bit value.
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7 Series Device Primitive Retargeting Considerations
The IDELAY can no longer connect directly to a clocking resource such as a BUFG or 
MMCM/PLL. If the 7 series FPGA design has such connectivity, you must modify it, using an 
MMCM/PLL for phase alignment and/or by shifting the data to get proper clock and data 
alignment.

Additionally, when the IDELAY is used in conjunction with an input register, IDDR or 
ISERDES, the reference clock (C) must be shared with the clock pin (C) of the register or 
IDDR or the CLK_DIV pin of the ISERDES component. The greater frequency range of the 
IDELAY reference clock in the UltraScale architecture should allow enough flexibility to 
accommodate a common clock between these components.

IN_FIFO

The IN_FIFO is replaced by an 8-deep FIFO that is optionally available inside the 
ISERDESE3 component. To gain access to this function, instantiate the ISERDESE3 and 
configure it to use this built-in capability.

ISERDESE2

The ISERDESE2 is replaced by the ISERDESE3 primitive. SerDes ratios of 4 and 8 are 
available when using DDR clocking, and 2 or 4 are available when using SDR clocking. 
Intermediate ratios require an FPGA logic gearbox. There is no longer a bitslip function 
available, and if required, this can be simply implemented in the FPGA logic. 

There is no longer a SDR register for the tri-state. To support SDR bi-directional signals or 
outputs with tri-state place a data flip-flop in the IOLOGIC (OFD by using an IOB constraint) 
and the 3-state flip-flop in fabric and assign it as close as possible to the IOB. If there is a 
single flip-flop driving multiple tri-states, the flip-flop should be replicated and each 
individual tri-state flip-flop assigned as close as possible to the IOB.

An 8-deep, bypass-able FIFO is added to the ISERDESE3, allowing parallel data to be read 
from the primitive using a clock that is a non-integer divide of the sampling clock. To ensure 
best use of the I/O data capture capabilities in UltraScale devices, instantiate and use the 
ISERDESE3 in the design.

ODELAYE2

The ODELAYE2 primitive is replaced with the ODELAYE3 primitive in the UltraScale 
architecture. The output delay line now consists of 512 taps instead of the previous 32, and 
has a maximum delay of 1.25 ns. No delay cascade is possible. In FIXED mode the delay is 
now given in terms of ps rather than tap value. The delay line uses this value and the 
associated reference clock (through the IDELAYCTRL) to calculate how many taps are 
needed to generate the required delay at current PVT, with no user intervention required. In 
VAR_LOAD mode, programming the IDELAYE3 now requires a 9-bit value. The attribute 
value DELAY_SRC="CLKIN" is not supported.
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7 Series Device Primitive Retargeting Considerations
Additionally, when the ODELAY is used in conjunction with an output register, ODDR or 
OSERDES, the reference clock (C) must be shared with the clock pin (C) of the register or 
ODDR or the CLK_DIV pin of the OSERDES component. The greater frequency range of the 
ODELAY reference clock in the UltraScale architecture should allow enough flexibility to 
accommodate a common clock between these components.

OSERDESE2

The OSERDESE2 is replaced by the OSERDESE3 primitive. SerDes ratios of 4 and 8 are 
available when using DDR clocking, and 2 or 4 are available when using SDR clocking. 
Intermediate ratios require an FPGA fabric gearbox. To ensure best use of the capabilities of 
I/O data capture in UltraScale devices, instantiate and use the OSERDESE3 in the design.

OUT_FIFO

There is no direct equivalent to the OUT_FIFO in the UltraScale architecture. If a similar 
feature is needed, consider generating a LUT-based FIFO using the IP catalog to replace the 
function of the OUT_FIFO.

IDDR

The IDDR is replaced by the IDDRE1 in the UltraScale architecture. The functionality 
remains the same, but the clock enable (CE) and set (S) pins are removed, as their 
functionality is no longer available. There is a reset available, but it can only operate as an 
asynchronous reset.  If SRTYPE is set to "SYNC" it cannot be retargeted. All three existing 
capture modes (SAME_EDGE, OPPOSITE_EDGE, and SAME_EDGE_PIPELINED) are 
supported.

To ensure best use of the capabilities of I/O data capture in UltraScale devices, instantiate 
and use the IDDRE1 in the design.

ODDR

The ODDR is replaced by the ODDRE1 in the UltraScale architecture. The functionality 
remains the same, but the clock enable (CE), reset (R) and set (S) pins are removed, as their 
functionality is no longer available. The R and S pins are replaced with an SR pin that can 
either set or reset the component asynchronously, depending on programming. The INIT 
function must match that of the set or reset function meaning if you specify a reset, the 
INIT must be set to a zero or if you specify a set, it must be set to a one. Only the existing 
SAME_EDGE mode of operation is supported with the new primitive. Another difference is 
that when the set/reset function is released, the component cannot capture/transmit 
data until three clock cycles later.

To ensure best use of the capabilities of I/O data capture in UltraScale devices, instantiate 
and use the ODDRE1 in the design in order.
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7 Series Device Primitive Retargeting Considerations
7 Series RAM/ROM Retargeting

FIFO18E1/FIFO36E1

The hard-FIFO blocks are updated in the UltraScale architecture with new features and 
capabilities, as well as more compatibility to soft versions of the FIFO core. Consequently, 
there are pinout, functionality, and latency changes that do not allow automatic retargeting 
of this component. 

RECOMMENDED: For designs that contain FIFOE1 blocks, review the UltraScale Architecture Memory 
Resources User Guide (UG573) [Ref 4] for details about the changes to this block, and use a new 
FIFOE2 block in its place. Alternatively, you can use the FIFO Generator in the Vivado IP Catalog to 
make it easier to instantiate this block into the design.

RAMB18E1/RAMB36E1

The block RAM components for the UltraScale architecture are enhanced for greater 
functionality. However, these components are a superset of the features and functionality of 
the 7 series FPGA RAMBE1 blocks. Typically, designs containing these RAMBE1 blocks cleanly 
retarget to the UltraScale architecture with the same functionality and latency seen prior. 
However, it is best to review the use of any such components, as some of the enhancements 
made to the UltraScale device RAMBE2 blocks might yield a better solution in terms of area, 
performance, power, and other metrics. 

Note: In UltraScale devices only, if you are in the wide Simple Dual Port (SDP) mode (x72 for 
RAMB36 or x36 for RAMB18) and are using the output registers, you cannot have one port use the 
optional clock inversion while the other is not inverted. When targeting an UltraScale+ device, for 
larger memory arrays requiring four or more Block RAMs, you should consider migrating to one or 
more UltraRAMs if they are available in your target device.

7 Series Clock Component Retargeting

BUFG

Any BUFGs in the design are converted to BUFGCEs, with the clock enable (CE) pin 
constantly enabled. The functionality is the same, and in general, is the optimal resource in 
UltraScale devices.

BUFH/BUFHCE

The HROW buffers or BUFHs from 7 series FPGAs are deprecated because of the redesigned 
clocking network in UltraScale devices. Designs containing BUFHs are retargeted to BUFGs, 
which might exist in the final implementation or be combined with other BUFGs to form a 
proper clock network. Similarly, BUFHCEs are retargeted to BUFGCEs. In most cases, this 
retargeting provides a sufficient clocking structure. 
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7 Series Device Primitive Retargeting Considerations
However, it is a good idea to review the clocking topology with the UltraScale device 
clocking architecture in mind to see if further improvements or consolidation can occur. For 
more details about clocking resources, see the UltraScale Architecture Clocking Resources 
User Guide (UG572) [Ref 5].

BUFIO

The I/O Clock Buffer or BUFIO from 7 series FPGAs is deprecated because of the redesigned 
clocking network in UltraScale devices. Designs containing BUFIOs are retargeted to 
BUFGs, which might exist in the final implementation or be combined with other BUFGs to 
form a proper clock network. In most cases, this retargeting provides a sufficient clocking 
structure for low- to high-speed I/O clocking. However, it is a good idea to review the 
clocking topology with the UltraScale device clocking architecture in mind. For very high 
speed I/O interface implementations, the bit slice components have dedicated, low jitter 
clocking that can also be used in place of the BUFIO, but that must be used in conjunction 
with the bit slice components. For more details about clocking resources, see the UltraScale 
Architecture Clocking Resources User Guide (UG572) [Ref 5].

BUFR/BUFMR/BUFMRCE

The regional clock buffers (BUFR, BUFMR, BUFMRCE) from 7 series FPGAs are deprecated 
because of the redesigned clocking network in UltraScale devices. Designs containing any 
of these buffers are retargeted to BUFGCE_DIVs, which allow for the proper division 
functionality to be carried forward. In many cases, this retarget provides a sufficient 
clocking structure. However, it is a good idea to review the clocking topology with the 
UltraScale device clocking architecture in mind to see if further improvements or 
consolidation can occur. For more details about clocking resources, see the UltraScale 
Architecture Clocking Resources User Guide (UG572) [Ref 5].

MMCME2_ADV/MMCME2_BASE

The MMCM is improved to add additional functionality in UltraScale devices, so there is now 
an MMCME3 component. However, MMCME3is a pure superset of the MMCME2. Thus, any 
MMCME2 is expected to retarget automatically in an UltraScale device. If, however, the MMCM 
was created using the Clocking wizard or other IP, generate it to target the UltraScale device 
to ensure the most up-to-date representation of this resource. If the MMCME2 is directly 
instantiated in the design, updating to the MMCME3 is still recommended but can be done at 
your discretion.

PLLE2_ADV/PLLE2_BASE

The PLL in UltraScale devices is changed so that its functionality no longer maps directly to 
the PLLE2 found in 7 series FPGAs. For this reason, the software still retargets PLL 
implementations to an UltraScale device automatically, but it retargets to the MMCME3 (not 
the PLLE3)because the MMCME3 is a superset of the PLLE2 functionality. In most cases, this 
is adequate. 
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7 Series Device Primitive Retargeting Considerations
However, if you want to use PLLE3 with an UltraScale device, you must instantiate it directly 
into the design. Alternatively, you can use the Clocking wizard to provide the appropriate IP, 
including the PLLE3.

Retargeting 7 Series Registers and Latches

FDCE, FDPE, FDRE, FDSE

In comparison with 7 series FPGAs, UltraScale devices include a significant enhancement to 
the registers:

• 7 series device registers only supported an active-High reset.

• UltraScale devices include an optional inversion on the set/reset pin. This allows native 
implementation of an active-High or active-Low reset on the primitive. This inversion is 
represented and controlled by an attribute on the FD components:

FDCE: IS_CLR_INVERTED
FDPE: IS_PRE_INVERTED
FDRE: IS_R_INVERTED
FDSE: IS_S_INVERTED

There is no requirement to set this attribute if an inverter is described prior to the set or 
reset. The software automatically sets the attribute to yield the correct and optimal results.

RECOMMENDED: For registered 3-stated output paths, UltraScale devices no longer contain a 
dedicated register on the 3-state path. Use a CLB register for the 3-state. Refer to Xilinx Answer #62490 
(UltraScale I/O - Recommended design methodology for SDR 3-state flip-flops) [Ref 10] for more 
details.

Slice/CLB Primitives
CARRY4

Because the size of the UltraScale device CLB doubled in comparison with the 7 series 
device slice, the carry logic also doubled to form a new component, the CARRY8. Designs 
that use CARRY4 components are automatically mapped efficiently into the new CARRY8 
component. 

RECOMMENDED: Eventually, change any CARRY4s instantiated in the design to the native CARRY8 
components. There is no immediate need to do this in most cases, however, the primary exception 
would be encountered in a design in which several single CARRY4s exist and where dense packing is 
required. In this case, modify the code to use CARRY8s instead of CARRY4s, where the packing of the 
two prior CARRY4s are defined in the code. This allows for denser designs that use several small carry 
chains.
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SelectIO Considerations
SelectIO Considerations
The architecture for SelectIO™ interface for UltraScale devices is redesigned and improved. 
This section provides high-level guidance on retargeting existing designs from 7 series 
devices to UltraScale devices for the SelectIO interface. For more in-depth information 
about SelectIO architecture changes, see the UltraScale Architecture SelectIO Resources User 
Guide (UG571) [Ref 1].

DCI Considerations

DCI Support

For both 7 series and UltraScale devices, DCI (digitally controlled impedance) is supported 
only in HP I/Os. 

For UltraScale devices, only one resistor of 240 Ω  to GND is required on the VRP pin to 
support this feature, regardless of the type and value of DCI termination desired.

Termination Circuit Resistor Requirements

In 7 series FPGAs, DCI calibrates each leg of the split-termination circuit to be directly equal 
to the external resistor values. For example, a 7 series device with a target parallel 
termination of 50 Ω  to VCCO/2 requires 100 Ω  external resistors on the VRN and VRP pins. 

In UltraScale devices, only one 240 Ω  resistor is required at the VRP pin. The exact values of 
the split-termination or single-termination resistors are determined by the 
user-controllable ODT attribute.

Possible ODT values for split-termination DCI standards (HSTL and SSTL)

IMPORTANT: The ODT value represents the desired Thevenin resistance to VCCO/2 for 
split-termination DCI standards.

Possible ODT values for single-termination POD standards

RTT_40 RTT_48 RTT_60 RTT_NONE

RTT_40 RTT_48 RTT_60 RTT_NONE
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SelectIO Considerations
Possible ODT values for single-termination HSUL standards

IMPORTANT: The ODT value represents the desired resistance to VCCO for single-termination DCI 
standards.

Source Driver Termination 

Source Driver termination must be specified through the OUTPUT_IMPEDANCE attribute for 
the I/O standards that support the controlled impedance driver. 

Controlled impedance driver support is extended to all the following I/O standards:

See the UltraScale Architecture SelectIO Resources User Guide (UG571) [Ref 1] for details 
about the OUTPUT_IMPEDANCE attribute.

T_DCI Standards
The 7 series architecture supported T_DCI standards for bidirectional I/O configurations 
with 3-state support for internal input split-termination. Those T_DCI standards are not 
supported in UltraScale devices. 

Many of the UltraScale architecture DCI standards are, however, capable of supporting 
similar bidirectional configurations. The table below lists the T_DCI standards that are 
transparently ported or migrated to an equivalent UltraScale architecture standard when 
designing with the Vivado Design Suite.

RTT_120 RTT_240 RTT_NONE

HSTL_I_DCI

DIFF_HSTL_I_DCI

LVDCI_18

HSUL_12_DCI

DIFF_HSUL_12_DCI

SSTL18_I_DCI

DIFF_SSTL18_I_DCI

HSTL_I_DCI_18

DIFF_HSTL_I_DCI_18

LVDCI_15

POD12_DCI

DIFF_POD12_DCI

SSTL15_DCI

DIFF_SSTL15_DCI

HSTL_I_DCI_12

DIFF_HSTL_I_DCI_12

HSLVDCI_18

POD10_DCI

DIFF_POD10_DCI

SSTL135_DCI

DIFF_SSTL135_DCI

HSLVDCI_15

SSTL12_DCI

DIFF_SSTL12_DCI
UltraScale Architecture Migration 28
UG1026 (v1.5) April 24, 2017 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1026&Title=UltraScale%20Architecture%20Migration%3A%20Methodology%20Guide&releaseVersion=1.5&docPage=28


SelectIO Considerations
Uncalibrated Input Termination
IN_TERM is not a supported attribute in UltraScale devices. ODT must be used instead to 
specify the input termination value for HR I/Os. HP I/Os also have support for uncalibrated 
input termination that is accessed with the ODT attribute in UltraScale devices.

Uncalibrated Source Termination
Similar to DCI I/O standards, the option to choose the value of driver termination in 
UltraScale devices is available in non-DCI SSTL, HSTL, HSUL and POD standards. This is 
supported in HP I/Os only. This feature is accessed through the OUTPUT_IMPEDANCE 
attribute as well. 

The following table shows a list of I/O standards that support uncalibrated source 
termination in HP I/O banks.

Table 2: T_DCI I/O Standards for Migration Between Architectures

7 Series Architecture I/O Standard UltraScale Architecture Equivalent I/O Standard

DIFF_HSTL_II_T_DCI No Migration 

DIFF_HSTL_II_T_DCI_18 No Migration

DIFF_SSTL18_II_T_DCI No Migration

DIFF_SSTL15_T_DCI DIFF_SSTL15_DCI

DIFF_SSTL135_T_DCI DIFF_SSTL135_DCI

DIFF_SSTL12_T_DCI DIFF_SSTL12_DCI

HSTL_II_T_DCI No Migration

HSTL_II_T_DCI_18 No Migration

SSTL18_II_T_DCI No Migration

SSTL15_T_DCI SSTL15_DCI

SSTL135_T_DCI SSTL135_DCI

SSTL12_T_DCI SSTL12_DCI

Table 3: I/O Standards that Support Uncalibrated Source Termination in HP I/O Banks

HSTL_I DIFF_HSTL_I SSTL18_I DIFF_SSTL18_I POD12 DIFF_POD12

HSTL_I_18 DIFF_HSTL_I_18 SSTL15 DIFF_SSTL15 POD10 DIFF_POD10

HSTL_I_12 DIFF_HSTL_I_12 SSTL135 DIFF_SSTL135 HSUL_12 DIFF_HSUL_12

SSTL12 DIFF_SSTL12
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SelectIO Considerations
I/O Standards No Longer Supported

The following I/O standards are not supported in the UltraScale architecture:

The following Class II I/O standards are not supported in HP I/Os:

VREF-based Inputs Standards
In 7-series devices, VREF-based input standards do not have a VCCO requirement and can 
be placed in banks with any VCCO, if the on-die input termination feature was not used. 
However, in the UltraScale architecture, the following VREF based input standards have a 
VCCO requirement and can only be placed in banks that have a compatible VCCO. This 
requirement applies even when on-die input termination (ODT) or internal VREF features 
are not used. 

Note: * Applies only to UltraScale+.

External VREF
VREF is a dedicated pin in UltraScale devices. There is one dedicated VREF per bank (or 
Mini-bank, where applicable).

For HD I/O banks, external VREF is not supported and is instead generated inside the 
device. The internally generated VREF is sourced from the VCCO supply rail. HD I/O banks 
are only supported in Zynq UltraScale+ MPSoCs and Kintex UltraScale+ devices.

DIFF_HSTL_II_T_DCI

DIFF_HSTL_II_T_DCI_18

DIFF_SSTL18_II_T_DCI

DIFF_SSTL15_T_DCI

DIFF_SSTL135_T_DCI

DIFF_SSTL12_T_DCI

HSTL_II_T_DCI

HSTL_II_T_DCI_18

SSTL18_II_T_DCI

SSTL15_T_DCI

SSTL135_T_DCI

SSTL12_T_DCI

MOBILE_DDR

DIFF_MOBILE_DDR

PCI33_3

DIFF_HSTL_II

DIFF_HSTL_II_18

DIFF_SSTL18_II

HSTL_II

HSTL_II_18

SSTL18_II

HSUL_12

HSUL_12_DCI

HSLVDCI_18

HSLVDCI_15

HSTL_I

HSTL_II

HSTL_I_DCI

HSTL_I_18

HSTL_II_18

HSTL_I_DCI_18

HSTL_I_12

HSTL_I_DCI_12

SSTL18_I

SSTL18_II

SSTL15

SSTL15_R

SSTL135

SSTL135_R

SSTL12

SSTL18_I_DCI

SSTL15_DCI

SSTL135_DCI

SSTL12_DCI

POD10

POD12

POD10_DCI

POD12_DCI

MIPI_DPHY_DCI*
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SelectIO Considerations
SelectIO Interface UNISIM Primitives
All 7 series FPGA SelectIO interface UNISIM primitives are supported in UltraScale devices. 
There are also a few new UltraScale device-specific UNISIM primitives that support new 
features. These are IBUFE3, IBUFDSE3, IOBUFE3, IOBUFDSE3 , HPIO_VREF, 
IBUF_ANALOG. 

In addition, there are new UltraScale+ device-specific UNISIM primitives that support the 
new MIPI D-PHY feature. These are IBUFDS_DPHY and OBUFDS_DPHY.

• DCITERMDISABLE and INTERMDISABLE ports:

° Dynamic input termination control port DCITERMDISABLE  controls both DCI and 
uncalibrated on-die input terminations in HP I/Os in UltraScale devices.

° In UltraScale devices (as in 7 series devices), dynamic input termination control port 
INTERMDISABLE controls the uncalibrated termination in HR I/Os.

• IBUFDISABLE ports:

° In UltraScale devices, if IBUFDISABLE is asserted in a UNISIM, with IBUFDISABLE 
port enabled (and T is 1, if applicable), and output O to the internal logic is logic 
Low. This is a difference in behavior from 7 series devices, in which IBUFDISABLE 
assertion caused output O to the internal logic to be logic High. 

VCCAUX_IO
UltraScale devices differ from 7 series FPGAs in that the auxiliary I/O (VCCAUX_IO) voltage 
supply rail does not support two voltage levels. The only voltage level supported is the 
nominal level of 1.8 V.

SLEW Attribute
In UltraScale devices, the SLEW attribute supports a new value of "MEDIUM" in HP I/Os.

Differential Input Termination
Though DIFF_TERM attribute is supported, it automatically maps to a new attribute called 
DIFF_TERM_ADV in UltraScale devices. 

• DIFF_TERM = TRUE automatically maps to DIFF_TERM_ADV = TERM_100 ( 100 ohm 
differential termination)

• DIFF_TERM = FALSE automatically maps to DIFF_TERM_ADV = TERM_NONE 
(default, no termination)

The allowed values for DIFF_TERM_ADV attribute are:

• DIFF_TERM_ADV = TERM_NONE (default) 

• DIFF_TERM_ADV = TERM_100 
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New Primitive Considerations
New Features and Enhancements
For details about new features and enhancements, see the UltraScale Architecture SelectIO 
Resources User Guide (UG571) [Ref 1].

New Primitive Considerations 
The following section lists a few new primitives available in the UltraScale architecture that 
do not have direct counterparts in 7 series FPGAs. These are listed in order of priority for 
addition to a retargeted design, with the goal of achieving better characteristics under 
certain conditions. More information about using any of these components can be found in 
the UltraScale Architecture Libraries Guide (UG974) [Ref 7].

Slice/CLB Primitives

MUXF9

The doubling of the UltraScale device CLB size (compared to the 7 series device slice) 
allowed the addition of the MUXF9. This MUX allows a single LUT logic level 32-to-1 MUX 
implementation in a single CLB. Alternatively, you can build certain large condition 
expressions, a 9-input LUT or a 1-bit wide by 512-bit deep ROM, using this component. The 
outcome is efficient utilization of all the LUTs in a CLB.

RAM512X1S/RAM256X1D

The larger CLB also facilitates the building of larger distributed or LUT RAM configurations, 
allowing for asynchronous read, synchronous write operation. Now 512-bit deep, 
single-port and 256-bit deep, simple dual-port functions can be natively built within a 
single CLB.

RAM32M16/RAM64M8

Larger configurations of multi-port (one write-port, several read-ports) can also be 
configured into a single UltraScale device CLB. Investigate using the RAM32M16 or 
RAM64M8 for any multi-port RAM access needs.
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Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx 
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips. 

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx 
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other 
topics, which you can use to learn key concepts and address frequently asked questions. To 
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page 
on the Xilinx website.
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Appendix A: Additional Resources and Legal Notices
References
1. UltraScale Architecture SelectIO Resources User Guide (UG571)

2. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

3. UltraScale Architecture and Product Overview (DS890)

4. UltraScale Architecture Memory Resources User Guide (UG573)

5. UltraScale Architecture Clocking Resources User Guide (UG572)

6. ISE to Vivado Design Suite Migration Guide (UG911)

7. UltraScale Architecture Libraries Guide (UG974)

8. UltraScale Architecture System Monitor User Guide (UG580)

9. UltraScale Architecture Configuration User Guide (UG570)

10. Xilinx Answer Record 62490 

11. UltraScale and UltraScale+ Architecture data sheets available on the Xilinx support site.

12. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

Training Resources
Xilinx® provides a variety of training courses and QuickTake videos to help you learn more 
about the concepts presented in this document. Use these links to explore related training 
resources: 

1. UltraFast Design Methodology Training Course

2. Essentials of FPGA Design Training Course

3. Vivado Design Suite QuickTake Video Tutorials
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Appendix A: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the 
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS 
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether 
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related 
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, 
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage 
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had 
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to 
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display 
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, 
please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to 
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be 
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products 
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF 
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A 
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY 
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY 
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY 
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT 
LIABILITY.
© Copyright 2013-2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, UltraScale, and other 
designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are 
trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
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