
XHMC v1.0

LogiCORE IP Product Guide

Vivado Design Suite

PG216 October 4, 2017

XHMC v1.0 2
PG216 October 4, 2017 www.xilinx.com

Table of Contents

IP Facts

Chapter 1: Overview

Core Architecture. 6

Feature Summary. 10

Applications . 11

Chapter 2: Product Specification

Standards . 12

Performance and Resource Utilization. 12

Port Descriptions . 12

Register Space . 24

Chapter 3: Designing with the Core

General Design Guidelines . 30

Clocking. 30

Resets . 33

Power State Management. 35

Chapter 4: Design Flow Steps

Customizing and Generating the Core . 36

Constraining the Core . 43

Simulation . 45

Synthesis and Implementation . 45

Chapter 5: Example Design

Overview of the Example Design . 46

Simulating the Example Design. 51

Synthesizing and Implementing the Example Design . 52

Appendix A: Upgrading

Appendix B: Debugging

Finding Help on Xilinx.com . 54

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=2

XHMC v1.0 3
PG216 October 4, 2017 www.xilinx.com

Debug Tools . 55

Appendix C: Additional Resources and Legal Notices

Xilinx Resources . 56

Documentation Navigator and Design Hubs . 56

References . 56

Revision History . 57

Please Read: Important Legal Notices . 57

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=3

XHMC v1.0 4
PG216 October 4, 2017 www.xilinx.com Product Specification

Introduction

The Xilinx® LogiCORE™ IP HMC (XHMC)
Controller implements a high performance,
configurable Hybrid Memory Cube (HMC) host
controller that can interconnect with external
HMC devices. The core provides either a Xilinx
HMC Transaction Layer or an AXI4-MM
interface.

Features

• Fully compliant with the Hybrid Memory
Cube Specification Revision 1.x.

• Support 10 Gb/s, 12.5 Gb/s, 15 Gb/s
transceiver interface.

• Support either GTH or GTY transceiver use.

• Support both HMC link modes.

• Half-width link (8-lane) supported.

• Full-width link (16-lane) supported.

• Up to 240 Gb/s full-duplex bandwidth.

• Two interface modes:

° HMC core mode provides Xilinx HMC
Transaction Layer with host controller
only instantiation. Allows you to
develop your user layer to interface
between the user logic and controller IP.

° HMC user mode provides standard
AXI4-MM interface with Xilinx HMC user
layer logic.

• AXI4-Lite slave interface for configuration
access.

• Configurable internal bus width (2 – 12 flit).

• Support dynamic lane detection and
reversal.

• Support user defined lane-to-lane
mappings.

• Support dynamic lane polarity inversion.

• Optional user ID reorder logic.

• Optional data channel alignment bypass for
area optimization.

IP Facts

LogiCORE™ IP Facts Table

Core Specifics

Supported
Device Family(1)

UltraScale™
UltraScale+™, including Zynq® UltraScale+

Supported User
Interfaces Xilinx HMC Transaction Layer, AXI4-MM

Resources Performance and Resource Utilization web page

Provided with Core

Design Files Encrypted Verilog

Example Design Verilog

Test Bench Verilog

Constraints File Xilinx Design Constraints (XDC)

Simulation
Model

Third-party HMC device BFM (from Micron)
included

Supported
S/W Driver(2) N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support

Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP

catalog.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.3;t=vivado+release+notes
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.3;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xhmc.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xhmc.html
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=4

XHMC v1.0 5
PG216 October 4, 2017 www.xilinx.com

Chapter 1

Overview
The XHMC host controller is a high-bandwidth HMC memory link interconnect block which
allows Xilinx® device designers to access HMC memory over an the HMC link without the
workload of running the HMC link protocol. The XHMC IP is designed for use with Xilinx
Ultrascale™ and UltraScale+™ devices. The core instantiates the integrated GT blocks in
Ultrascale and UltraScale+ devices.

Although the core is a fully verified solution, the challenge associated with implementing a
complete design varies depending on the configuration and functionality of the
application.

Each XHMC bridges a single HMC link between a HMC device and the user applications
hosted by a Xilinx device. To connect multiple links which are usually provided by a HMC
device, you need to instantiate multiple XHMC controller IPs in the system. Figure 1-1
illustrates a typical multi-link architecture.

As shown in the figure, each XHMC host controller instance handles the HMC transactions
from/to an individual HMC link and provides the interface independently for the user

X-Ref Target - Figure 1-1

Figure 1‐1: Multi-link HMC System Architecture

HMC
Memory
Device

XHMC

Link_rst_n

Link 0

XHMC
Link1

Device
Configuration

Link_rst_n

p_rst_n

I2C Bus

User
Application

Xilinx Device

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=5

XHMC v1.0 6
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

applications. You can select the interface type when generating the IP. If you choose to
include XHMC User Layer logic, the IP provides the standard AXI4-Memory-Mapped
(AXI4-MM) interface. Otherwise, the IP provides the native Transaction Layer interface
based on the original HMC FLIT (flow control digit) based packet format. To bring up the
HMC link, a host controller requires the control over timing for the device reset and link
configuration. Since the device shares the chip reset and the configuration interface among
all provided links, special cares are needed. Each XHMC controller instance provides a reset
output pin (Link_rst_n) and feedback input (p_rst_n). You are required to OR all the
Link_rst_n pins towards to the same HMC device together to generated the chip reset
signal (p_rst_n) to the HMC device. The generated device reset signal needs to be
feedback to the controller as well. A controller release the link reset when it is ready to
advance its reset state machine. The release of the device release flags that all the
controllers are ready. An active reset feedback holds the reset state machine from
advancing. You can choose to configure the device as a whole or configure each link in the
system sequentially. Please refer to HMC Reset Sequence and HMC Controller Initialization
Sequence in Chapter 3 for details.

Core Architecture
The XHMC IP is fully compliant with HMC Consortium specification rev1.x [Ref 2]. The entire
HMC protocol and functions have been implemented exactly following the HMC
specification definition. Figure 1-2 shows the block diagram of the XHMC Controller IP.

The XHMC IP consists of:

• HMC User Layer

• HMC Protocol Core

° HMC Transaction Layer

° HMC Link Layer

• HMC Physical Layer

• GT wrapper with up to 16 GT channels

• CSR Configuration module

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=6

XHMC v1.0 7
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

XHMC User Layer

The XHMC User Layer provides the user with access to an HMC device through the
industrial standard AMBA AXI4 Memory Mapped bus interface (AXI4-MM). XHMC User
Layer handles the HMC packet framing/de-framing, as well as the HMC TAG management,
which renders the HMC protocol completely transparent to the user.

In the transmission direction, the responsibilities of the XHMC User Layer includes:

• AXI4-MM user interface control

• HMC packet framing from AXI4-MM request

• HMC TAG request and AWID/ARID registration

• Transaction layer FLITs data bus scheduling and multiplexing for transmit HMC packets

For the memory transactions that received from the same AXI4-MM port, the User Layer
preserves the order when delivering the corresponding HMC request packets to the
downstream layer (i.e., Transaction Layer). When multiple AXI4-MM ports are configured in
the system, the transaction orders among different AXI4-MM ports are not guaranteed.

X-Ref Target - Figure 1-2

Figure 1‐2: XHMC Host Controller Layered Block Diagram

TX
PHY

Layer

RX
PHY

Layer

HMC
Device

TX
Link

Layer

TX
Transaction

Layer

TX
User
Layer

RX
Link

Layer

RX
Transaction

Layer

RX
User
Layer

Retry Seq
&

Buffer

GT

Physical Layer Link Layer User LayerTransaction Layer

Tr
an

sa
ct

io
n

La
ye

r I
nt

er
fa

ce
 (N

at
iv

e
FL

IT
 In

te
rf

ac
e)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=7

XHMC v1.0 8
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

In the receiving direction, the HMC User Layer takes HMC packets from the HMC
Transaction Layer and performs following functions:

• HMC TAG lookup and free

• HMC packets dispatching and data bus unpacking

• HMC packet de-framing

• Response data reordering

If the response reordering function is enabled, the responses are returned to the user logic
in the BID/RID sequence which corresponding to the request's AWID/ARID. An AWID/ARID
aging timer is engaged in this configuration to avoid HMC traffic being stuck forever due to
any vanished AWID/ARID. The time period for AWID/ARID timeout is configurable and
should be much longer than normal HMC latency. In case a request's AWID/ARID was
timeout, the HMC user layer will generate a timeout response to the user logic with the
aging-out flag in BUSER/RUSER being set and you should discard all information in the
response.

XHMC Transaction Layer

The transaction layer is the upmost layer in architecture defined by the HMC specification.
The primary functionalities, according the specification, are:

• Input and output buffering

• Flow control

• FRP/RRP/RTC/SEQ field insertion/extraction

• Packet CRC generation

• RX packet validation - LNG/SEQ/CRC fields

• Retry buffer and retry sequence control

• Flow packets and error packet filtering

• Error Response packet handling

The XHMC defines the XHMC Transaction Layer Interface as the communication protocol
between any user layer implementation and the XHMC Transaction Layer. The datapath of
the XHMC Transaction Layer Interface is a FLIT based bus protocol with side band control
signals. The bus width is configurable in the unit of FLIT to accommodate the bandwidth
and system clock frequency requirement.

In the transmission direction, the XHMC stores the packets from the user layer in the
embedded FIFO (output buffer). Besides link retry, two scenarios prevents the packet at the
FIFO head to be forward to the downstream layers along the datapath. First, insufficient
memory/buffer space at the HMC side to receive an incoming packet. The controller holds
the packet forwarding when the available device token is less than 32 to guarantee that the

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=8

XHMC v1.0 9
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

device have enough space to receive the FLIT data along the downstream datapath. Second,
the full XHMC retry buffer holds any packet from dispatching. If the number of FLIT data
stored in the FIFO exceeds the programmable threshold, the XHMC Transaction Layer
back-pressures the user logic by deasserting the ready signal.

In the receiving direction, the XHMC Transaction Layer checks the integrity of every
receiving HMC packet. If any packet error is on the link, the transaction layer logic triggers
the link retry sequence and pauses the packet forwarding in the transmission datapath. The
transaction layer discards all flow packets and the packets with error. Any unsolicited error
response packet will be discarded as well and its error status information is written into an
error response FIFO to be read through error response interface. On the XHMC Transaction
Layer Interface, user logic should only receive valid HMC response packets.

XHMC Link Layer

The XHMC Link Layer acts as an intermediate stage between the transaction layer and the
physical layer. In the transmission direction, the primary responsibility is to generate flow
control packets and sends them to the link partner when no data packet is available for
transmitting. In receiving direction, the HMC Link Layer detects the packet boundary and
passes the boundary information along with packet data to the transaction layer.

XHMC Physical Layer

The XHMC Physical Layer bridges the link layer logic and the Xilinx device transceivers (GT).
At the link layer to physical layer interface, the data is in the format of the HMC FILT, while
the actual data communication on the HMC link is in the format of raw data stream which
are distributed in multiple independent transceiver lanes. The physical layer conducts the
following functions:

• Link training with TS1 sequence

• Lane polarity detection and correction

• Data scrambling/ descrambling

• De-skew among multiple GT lanes

• Lane order detection and dynamic reverse the lane order if configured

• Stripe/De-striping HMC packet from/to GT lanes

GT wrapper

The XHMC IP integrates a GT wrapper which instantiates GT channels and the associated
common wrapper. The number of GT channels to be included depends on the user's
selection of HMC link mode.

The GT channel is the electrical sub-block that performs serial to parallel converter and
clock and data recovery from high speed HMC serial interface. The GT channel in the XHMC

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=9

XHMC v1.0 10
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

IP is operated in raw mode and buffer-bypass mode to reduce datapath latency. In addition,
the HMC Controller IP requires the HMC reference clock share with the same source as the
reference clock of the connected the HMC device.

CSR Configuration Module

The CSR configuration module provides control and status signals that allow application
processor to control and check the status of the HMC Controller during the HMC Controller
operation. The CSR configuration module is assessable through AMBA AXI4-Lite interface
as specified in Table 2-11. The traffic statistic counters report on the healthiness of the
HMC link so that you can do re-training or warm-reset for the HMC link if a high error rate
is detected. You may also be able to put the HMC link into sleep mode to reduce power
consumption in the period that no HMC memory access is expected. Detail CSR registers
are specified in Chapter 2.

Feature Summary
• Fully compliant with the HMC Consortium specification rev1.1

• Physical Layer

° Data Scrambling/descrambling and alignment

° Lane de-skew

° Lane reversal and polarity detection/inversion

• Link Layer

° FRP/RRP/SEQ insertion/extraction

° Flow packets (NULL/PRET/TRET/IRTRY) generation

° Link retry buffer and retry sequence control

• Transaction Layer

° Xilinx Transaction Layer interface (Native FLIT interface)

° Flow control and RTC token field insertion

° CRC generation and checking

° Error Response packet handling

• User Layer

° AXI4-MM user interface

° HMC packet framing/de-framing

° TAG management and lookup

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=10

XHMC v1.0 11
PG216 October 4, 2017 www.xilinx.com

Chapter 1: Overview

° Response reordering

• Support 10Gbps, 12.5Gbps, and 15Gbps serial link interface

• Support both full-width link (16-lanes) and half-width link (8-lanes)

• Programmable 2-FLITs to 12-FLITs HMC Core datapath width for clock speed and gate
count optimization.

Applications
Applications of this IP include:

• HPC/Server -VPU/GPU

• Graphics

• Networking systems

• Test equipment

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=11

XHMC v1.0 12
PG216 October 4, 2017 www.xilinx.com

Chapter 2

Product Specification

Standards
The XHMC IP revision 1.0 is fully compliant with the industry standard Hybrid Memory Cube
Specification 1.1 [Ref 2].

Performance and Resource Utilization
For full details about performance and resource utilization, visit the Performance and
Resource Utilization web page.

Port Descriptions
This section provides detailed port descriptions for the following interfaces:

• Clock Reset Interface

• HMC Device Interfaces

• User Interface

° Xilinx Transaction Layer Interface

° AXI4-MM Core Interface

• AXI4-Lite CSR Interface

• Other Core Interfaces

• Optional Debugging Ports

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xhmc.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=xhmc.html
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=12

XHMC v1.0 13
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

Clock Reset Interface

Table 2-1 defines the clock and reset signals of the XHMC IP.

The clk_in port is a free-running clock input which is used by HMC reset finite state
machine, partial CSR control and partial GT reset control. The clk_out port is the HMC
Controller system clock generated from HMC reference clock. The entire HMC Controller
datapath operates in this clock domain including both AXI4-MM user interface and Xilinx
Transaction Layer interface.

The rst port is a hard reset signal. The entire HMC Controller IP will be placed in reset state
if rst is asserted, including the soft reset CSR register. Until both rst and the soft reset
CSR are released, the HMC reset finite state machine starts the power-on sequence to bring
up HMC link. The l2_rst_mmcm, l3_rst_gtdn, and l4_rst_phydn ports are the reset
signals generated by reset finite state machine along the HMC power-on sequence. You
should not start the HMC memory access before the assertion of l4_rst_phydn.

HMC Device Interfaces

The HMC device interface is the interface that HMC host controller connects to HMC device.
Table 2-2 defines the ports of HMC device interfaces.

Table 2‐1: Clock Reset Interface Ports

Port Direction
Clock

Domain
Description Width

rst In Async Hard reset for the HMC controller IP. Active-High. 1

clk_in In Clock Free-running clock 1

clk_out Out Clock HMC controller system clock which is generated from HMC
reference clock 1

l2_rst_mmcm Out System Clock The reset signal which will be asserted until clk_out is ready.
Active-High. 1

l3_rst_gtdn Out System Clock The reset signal which will be asserted until GT initialization is
done. Active-High. 1

l4_rst_phydn Out System Clock The reset signal which will be asserted until HMC initialization
is done. Active-High. 1

Table 2‐2: HMC Device Interfaces Port Descriptions

Port Direction
Clock

Domain Description Width

refclk_p In Clock Reference clock of HMC link. Differential signal 1

refclk_n In Clock Reference clock of HMC link. Differential signal 1

refclk_out Out Clock Single end clock generated from differential reference clock
input. 1

txp
Out
(Pad)

Serial Clock Transmitting lanes to device. Differential signal 8/16

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=13

XHMC v1.0 14
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

User Interface

Xilinx Transaction Layer Interface (Native FLIT Interface)

If you elect not to include the User Layer Logic during IP generation, the XHMC Controller
IP provides the Transaction Layer interface for the user to access to HMC memory. The
Transaction Layer interface provides a flexible and efficient HMC packet interface so you
can design the application-specific interface controller to create and transmit HMC packets
as needed. Table 2-3 defines the Transaction Layer interface.

txn
Out
(Pad)

Serial Clock Transmitting lanes to device. Differential signal 8/16

rxp
In
(Pad)

Serial Clock Receiving lanes from device. Differential signal 8/16

rxn
In
(Pad)

Serial Clock Receiving lanes from device. Differential signal 8/16

p_rst_n_link Out
clk_in

System reset to device. If multiple HMC controllers are
instantiated for the HMC links of the same device, this output
neet to be AND together to generate the p_rst_n signal to the
target HMC device. Active low

1

p_rst_n_device In
Async

Feedback signal from the p_rst_n pin of the HMC device. Used
to synch up the reset sequence among multiple HMC controller
instances connected to the same HMC device.

1

lxrxps In Async Power-reduction to device 1

lxtxps Out clk_in Power-reduction from device 1

Table 2‐2: HMC Device Interfaces Port Descriptions (Cont’d)

Port Direction Clock
Domain

Description Width

Table 2‐3: Transaction Layer Interface Port Description

Port Direction Clock
Domain

Description Width

tltx_valid In System
clock

The user is driving a valid transfer. A transfer takes place when
both valid and ready are asserted 1

tltx_flit_dat In System
clock

Given the data are crescendoing to the header portion of a
FLIT, the content of the CUB field must be identical to the CUBE
ID of the HMC device. The fields of a FLIT tail can be any value
(zeros are suggested). The controller updates the fields at the
transaction layer.

128*N_FLIT

tltx_flit_vld In System
clock

The content of the associated FLIT in tltx_flit_dat is valid HMC
packet.
For data flits that are marked as invalid, you must set the data
to zeros.

N_FLIT

tltx_flit_sop In System
clock

The content of the associated FLIT in tltx_flit_dat is the start
FLIT of a HMC packet. N_FLIT

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=14

XHMC v1.0 15
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

The Transaction Layer interfaces provides HMC packet based access. The data transferred
across the interface is in HMC packet format. The user application has to be responsible for
HMC packet framing/deframing and manage and identify the traffic based on HMC TAG
field.

The transfer of HMC packet across the Transaction Layer interfaces must be the consecutive
FLITs and could cross multiple beats. A HMC packet can be started from any FLIT and ended
at any FLIT of the bus. The SOP/EOP/VLD flags indicated the boundary information of
packet streaming. No gap in middle of packet is allowed, which means VLD flag must be
asserted starting from SOP FLIT all the way to EOP FLIT. Zero or more FLITs gap is possible
between packets. There is no limitation for the number of packets to be transferred in the
same beat.

AXI4-MM Interface

If HMC AXI4-MM Mode is selected, the Xilinx HMC Controller IP provides standard
AXI4-MM user interfaces for the user logic to access the HMC memory. The AXI4-MM
interface includes five independent channels:

• Write Address Channel Interface: The interface through which the write command/
address of request from the user is delivered to the HMC device.

• Write Data Channel Interface: The interface through which the write data of request
from the user is delivered to the HMC device.

• Write Response Channel Interface: The interface through which write status
generated by the HMC device responses to the write request is transmitted to the user.

tltx_flit_eop In System
clock

The content of the associated FLIT in tltx_flit_dat is the end FLIT
of a HMC packet. N_FLIT

tltx_ready Out System
clock HMC is ready to accept data in current cycle. 1

tlrx_valid Out System
clock

HMC is driving a valid transfer. A transfer takes place when
both valid and ready are asserted. 1

tlrx_flit_dat Out System
clock

The HMC data bus for core to transfer HMC packet to the user
logic. 128*N_FLIT

tlrx_flit_vld Out System
clock

The content of the associated FLIT in tlrx_flit_dat is valid HMC
packet N_FLIT

tlrx_flit_sop Out System
clock

The content of the associated FLIT in tlrx_flit_dat is the start
FLIT of a HMC packet N_FLIT

tlrx_flit_eop Out System
clock

The content of the associated FLIT in tlrx_flit_dat is the end FLIT
of a HMC packet N_FLIT

tlrx_ready In System
clock The user logic is ready to accept data in current cycle 1

Table 2‐3: Transaction Layer Interface Port Description (Cont’d)

Port Direction Clock
Domain

Description Width

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=15

XHMC v1.0 16
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

The write response interface functions only when non-posted write requests are sent by
the user in write request interface.

• Read Address Channel Interface: The interface through which the read command/
address of request from the user is delivered to the HMC device.

• Read Response Channel Interface: The interface through which the returned data
generated by the HMC device response to the read requests are transmitted to the
user.

See the AMBA AXI and ACE Protocol Specification [Ref 1] for detail AXI4 interface protocols
and timing diagrams. Not all AXI4 functions are supported by HMC AXI4-MM interface.
Following are the limitations while using the HMC AXI4-MM interface:

• Burst size (AWSIZE/ARSIZE) is not used. The number of bytes to transfer in each data
transfer must be multiple number of FLIT (16-bytes) and can be up to the pre-defined
maximum HMC payload size.

• Burst type (AWBURST/ARBURST) is fixed to "INCR" burst type.

• Lock transaction (AWLOCK/ARLOCK) is not supported.

• Memory type (AWCACHE/ARCACHE) is not supported.

• Protection type (AWPROT/ARPROT) is not supported.

• Quality of Service (AWQOS/ARQOS) is not supported.

• Region identifier (AWREGION/ARREGION) is not supported.

• Write last (WLAST) is not used. HMC AXI4-MM user interface uses AWLEN to determine
the final write transfer in the burst.

Write Address Channel Interface

The Write Address Channel Interface is the interface through which the user can send
WRITE request command/address to HMC device. It is also the interface for the user to send
all ATOMIC requests.

Table 2-4 defines the ports in the write request interface of the core. For multiple AXI4-MM
interfaces, the bus width of each signal will be multiplied by the number of AXI4-MM
interfaces.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=16

XHMC v1.0 17
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

The Write Address Channel Interface can support up to 16 outstanding command/address
before deasserting the axi4mm_awready signal for interface back-pressure.

Write Data Channel Interface

Table 2-5 defines the ports in the write request interface of the core. For multiple AXI4-MM
interfaces, the bus width of each signal will be multiplied by the number of AXI4-MM
interfaces.

The WD in width column denotes the configurable interface data bus width, in unit of FLIT,
for every write data channel. WD can be any number equal to or smaller than the maximum
user write data size. If WD is equal to the maximum user write data size, the logic for write
data offset/packing can be eliminated to save the resources.

Table 2‐4: Write Address Channel Interface Port Descriptions

Port Direction
Clock

Domain Description Width

axi4mm_awvalid In System
clock

The user logic is driving a valid transfer. A transfer takes place
when both AWVALID and AWREADY are asserted. 1

axi4mm_awid In System
clock

The identifier uniquely identifies the write request in each
individual WR request interface. The AWID is mapped to a HMC
TAG which uniquely identifies a HMC request from HMC host
controller. When HMC device responses a request by attaching
the associated request TAG, the response can be directed to the
corresponding originated user interface and along with the
associated user-id (marked as BID) through TAG lookup.
The AWID must be the sequential numbers.
The user interface will be back-pressured by de-asserting the
AWREADY when all HMC TAGs are used and no TAG is
immediately available. For single user interface application, TAG
and AWID are one-to-one mapping.

 9

axi4mm_awuser In System
clock

Sideband information that is transmitted alongside the write
request address.
For HMCC Rev 1.x, the AWUSER is 9-bits wide and defined as
following:
• awuser[5:0]: HMC write request command
• awuser[8:6]: HMC device ID (CUB)

9

axi4mm_awaddr In System
clock

Memory address of the write request. HMC address is 16-bytes
aligned. The lower 4-bits in AWADDR is ignored by HMC
memory.

34

axi4mm_awlen In System
clock

WDATA burst length.
The number of WDATA transfer = AWLEN + 1

8

axi4mm_awready Out System
clock

HMC host controller can accept a request address info in
current cycle 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=17

XHMC v1.0 18
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

The axi4mm_wready is not asserted until one or more command/address has been
received from Write Address Channel Interface.

Write Response Channel Interface

The Write Response Channel Interface returns the result of write request to the user. Every
write request from the Write Address Channel Interface will produce a response in Write
Response Channel Interface, for both posted and non-posted write commands. The
response for non-posted write request will come from HMC device. The response for posted
write request is generated by the HMC Controller internally.

Table 2-6 defines the ports of write response channel interface. For multiple AXI4-MM
interfaces, the bus width of each signal will be multiplied by the number of AXI4-MM
interfaces.

Table 2‐5: Write Data Channel Interface Port Descriptions

Port Direction
Clock

Domain Description Width

axi4mm_wvalid In System
clock

The user is driving a valid transfer. A transfer takes place when
both WVALID and WREADY are asserted. 1

axi4mm_wid In System
clock

Unused.
The user must sends WR request data to data channel in the
same sequence as the WR address channel

 9

axi4mm_wdata In System
clock

The primary interface that is used to provide the WR data
which will be written into the address of HMC memory.
The width of WDATA data must be an integer multiples of the
FLIT size (128 bit). The multiplier must be a value of the power
of 2. The IP core supports the multiplier values of 2, 4, and 8.
The data also needs to be 16-bytes aligned with the associated
AWADDR. WDATA is packed until the burst number specified
by AWLEN is reached.
1-FLIT = 128-bits.

128*WD

axi4mm_wstrb In System
clock

The content of the associated FLIT in WDATA bus is valid and
will be transferred to HMC device.
For WDATA burst transferring, the number of WSTRB in the last
beat decides the number of data FLITs will be transferred. No
gap is allowed between data FLITs.

WD

axi4mm_wlast In System
clock

Boundary of a request.
Unused in current implementation.

1

axi4mm_wready Out System
clock HMC host controller can accept a request data in current cycle 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=18

XHMC v1.0 19
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

Read Address Channel Interface

The Read Address Channel Interface is the interface through which the user can send READ
request command/address to HMC device.

Table 2-7 defines the ports of read address channel interface. For multiple AXI4-MM
interfaces, the bus width of each signal will be multiplied by the number of AXI4-MM
interfaces.

Table 2‐6: Write Response Channel Interface Port Descriptions

Port Direction
Clock

Domain Description Width

axi4mm_bvalid Out System
clock

HMC is driving a valid transfer. A transfer takes place when both
BVALIDand BREADY are asserted. 1

axi4mm_bid Out System
clock

The identifier indicates which AWID in WR request channel that
this response is corresponding to. 9

axi4mm_buser Out System
clock

Status information that tells the user the processing result of WR
request.
For HMCC Rev 1.x, the buser is 18-bits wide:
• buser[5:0]: HMC response command
• buser[6]: DINV field
• buser[13:7]: ERRSTAT field
• buser[16:14]: source Link-ID
• buser[17]: request timer time-out. This bit is valid only when

the UID_REORDER parameter is enabled.

18

axi4mm_bready In System
clock The user logic can accept a response in the current cycle. 1

Table 2‐7: Read Address Channel Interface Port Descriptions

Port Direction
Clock

Domain
Description Width

axi4mm_arvalid In System
clock

The user is driving a valid transfer. A transfer takes place when
both ARVALID and ARREADY are asserted. 1

axi4mm_arid In System
clock

The identifier uniquely identifies the read request in each
individual RD request interface. The ARID is mapped to a HMC TAG
which uniquely identifies a HMC request from HMC host
controller. When HMC device responses a request by attaching the
associated request TAG, the response can be directed to the
corresponding originated user interface and along with the
associated user-id (marked as RID) through TAG lookup.
The ARID must be the sequential numbers.
The user interface will be back-pressured by de-asserting the
ARREADY when all HMC TAGs are used and no TAG is immediately
available. For single user interface application, TAG and ARID are
one-to-one mapping.

 9

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=19

XHMC v1.0 20
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

Read Response Channel Interface

The read response channel interface returns the data of read request to the user. Every read
request from read address channel interface will have a read response from HMC device.
For multiple AXI4-MM interfaces, the bus width of each signal will be multiplied by the
number of AXI4-MM interfaces.

Table 2-8 defines the ports of the read response channel interface. The RD in width column
denotes the configurable interface data bus width, in unit of FLIT, for every read data
channel. RD can be any number either equal to or smaller than the maximum user read data
size. If RD is equal to the maximum user read data size, the logic for read data offset/
unpacking can be eliminated to save the resources.

axi4mm_aruser In System
clock

Sideband information that is transmitted alongside the write
request address.
For HMCC Rev 1.x, the ARUSER is 9-bits wide and defined as
following:
• aruser[5:0]: HMC read request command
• aruser[8:6]: HMC device ID (CUB)

9

axi4mm_araddr In System
clock

Memory address of the read request. HMC address is 16-bytes
aligned. The lower 4-bits in ARADDR is ignored by HMC memory 34

axi4mm_aready Out System
clock

The HMC host controller can accept a request address info in the
current cycle 1

Table 2‐7: Read Address Channel Interface Port Descriptions (Cont’d)

Port Direction Clock
Domain

Description Width

Table 2‐8: Read Response Channel Interface Port Descriptions

Port Direction
Clock

Domain Description Width

axi4mm_rvalid Out System
clock

HMC is driving a valid transfer. A transfer takes place when both
RVALID and RREADY are asserted. 1

axi4mm_rid Out System
clock

The identifier indicates which ARID in RD request channel that
this response is corresponding to. 9

axi4mm_ruser Out System
clock

Status information that tells the user the processing result of RD
request.
For XHMC Rev 1.x, the ruser is 18-bits wide:
• ruser[5:0]: HMC response command
• ruser[6]: DINV fielddd
• ruser[13:7]: ERRSTAT field
• ruser[16:14]: source Link-ID
• ruser[17]: request timer time-out. This bit exists only when the

UID_REORDER parameter is enabled.

18

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=20

XHMC v1.0 21
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

AXI4-Lite CSR Interface

The CSR interface allows users to program management parameters and statistic counters
in the HMC controller. Note that user should follow and complete the XHMC controller
power-on sequences specified in HMC Controller Initialization Sequence in Chapter 3
before accessing any other CSR registers.

Table 2-9 defines the ports of AXI4-Lite CSR interface of the core. For write operation,
XHMC controller does not take action until both write address and data are presented on
the interface.

Note: The s_axi_aresetn AXI4-Lite reset signal affects only the AXI4-Lite interface control logic.

The CSR registers are not cleared to default value by asserting AXI4-Lite reset.

axi4mm_rdata Out System
clock

The primary interface that is used to provide the RD data which
has been read from the address in HMC memory.
The width of RDATA data must be an integer multiples of the FLIT
size (128 bit). The multiplier must be a value of the power of 2.
The IP core supports the multiplier values of 2, 4, and 8. The data
also needs to be 16-bytes aligned with the associated ARADDR.
The payload of HMC response packet is unpacked and sent to
the user logic through RDATA interface.
1-FLIT = 128-bits.

128*RD

axi4mm_rlast Out System
clock Indicates the last transfer in a read response burst. 1

axi4mm_rready In System
clock The user logic can accept a response in current cycle. 1

Table 2‐8: Read Response Channel Interface Port Descriptions (Cont’d)

Port Direction Clock
Domain

Description Width

Table 2‐9: AXI4-Lite CSR Interface Port Description

Port Direction
Clock

Domain Description Width

s_axi_aclk In
Clock
(AXI4L clock)

AXI4-Lite clock 1

s_axi_aresetn In AXI4L clock AXI4-Lite reset, active-Low 1

s_axi_awvalid In AXI4L clock Write Address Channel - Valid 1

s_axi_awaddr In AXI4L clock Write Address Channel - Address 10

s_axi_awready Out AXI4L clock Write Address Channel - Ready 1

s_axi_wvalid In AXI4L clock Write Data Channel - Valid 1

s_axi_wdata In AXI4L clock Write Data Channel - Data 32

s_axi_wstrb In AXI4L clock Write Data Channel - Strobe 4

s_axi_wready Out AXI4L clock Write Data Channel - Ready 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=21

XHMC v1.0 22
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

Other Core Interface

Optional Ports for Debugging

The HMC Controller core provides options to enable additional ports for transceiver (GT)
related debugging. The following four sets of debugging ports can be enabled
independently through HMC IP GUI:

• GT Dynamic Reconfiguration Port for Channel

• GT Dynamic Reconfiguration Port for Common

• Additional GT Control and Status Ports

• GT Ports for In-system IBERT

s_axi_bvalid Out AXI4L clock Write Response Channel - Valid 1

s_axi_bresp Out AXI4L clock Write Response Channel - Response 2

s_axi_bready In AXI4L clock Write Response Channel - Ready 1

s_axi_arvalid In AXI4L clock Read Address Channel - Valid 1

s_axi_araddr In AXI4L clock Read Address Channel - Address 10

s_axi_arready Out AXI4L clock Read Address Channel - Ready 1

s_axi_rvalid Out AXI4L clock Read Response Channel - Valid 1

s_axi_rdata Out AXI4L clock Read Response Channel - Data 32

s_axi_rresp Out AXI4L clock Read Response Channel - Response 2

s_axi_rready In AXI4L clock Read Response Channel - Ready 1

Table 2‐9: AXI4-Lite CSR Interface Port Description (Cont’d)

Port Direction Clock
Domain

Description Width

Table 2‐10: Other Core Interfaces Port Description

Port Direction Clock
Domain

Description Width

errresp_valid Out System
clock

Error-Response data is valid for the user. A transfer take place
when both valid and ready are asserted 1

errresp_data Out System
clock

Error-Response data
• [9:7]: HMC CUB who generates Error-Response packet
• [6:0]: ERRSTAT vector in Error-Response packet

10

errresp_ready In System
clock The user logic is ready to accept data in current cycle 1

hmc_int Out
AXI4L
clock

Interrupt 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=22

XHMC v1.0 23
PG216 October 4, 2017 www.xilinx.com

Chapter 2: Product Specification

1. All four ports are standard GT ports. Refer to the UltraScale Architecture GTH
Transceivers User Guide [Ref 5] and UltraScale Architecture GTY Transceivers User Guide
[Ref 6] for more information on the GT ports.

The GT ports for In-system IBERT is a subset of the additional GT control and status ports
used to connect the HMC core to In-system IBERT. To connect HMC IP to an In-system IBERT,
the following four ports 4 ports are needed:

• eyescanreset

• txdiffctrl

• txprecursor

• txpostcursor

You can also use the TX control port to tune the GT TX parameters as necessary.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=23

Chapter 2: Product Specification

XHMC v1.0 24
PG216 October 4, 2017 www.xilinx.com

Register Space
The register access types are defined as following:

• Read-Write (RW) - Readable and writable register.

• Read Only (RO) - Readable register and write has no effect.

• Write-1-Clear (W1C) - Readable and write 1 to clear the content.

Note: All bits and addresses not defined in the register table are reserved, RO, and set to value of 0 unless otherwise stated.

Table 2‐11: XHMC Configuration Registers

Register Addr Field R/W Type Width Default Description

gt_reset_ctrl 0x0 RW 32 HMC host controller configuration register.

csr_gt_reset_all RW 0 1 software reset all hardware logic

csr_sys_sleep RW 8 0 put system into sleep mode

reserved RW 27-9 0

cfg_open_loop RW 28 0 Host controller open loop mode. Once set, the host controller
ignores the token limit on the TX direction.

cfg_retry_disable RW 29 0
Enable or disable retry function.
• 0: retry enabled
• 1: retry disabled

cfg_scrambler_disable RW 30 0
Enable or disable scrambler.
• 0: Scrambler enabled
• 1: Scrambler disabled

csr_rst_sim_enable RW 31 0 Speedup reset sequence for simulation.

sys_status 0x4 RO 32 System status information register.

state_gt_reset_done RO 0 0 GT reset done on both TX and RX directions.

state_gt_reset_tx_dn RO 1 0 GT TX portion reset done.

state_gt_reset_rx_dn RO 2 0 GT RX portion reset done.

https://www.xilinx.com

Chapter 2: Product Specification

XHMC v1.0 25
PG216 October 4, 2017 www.xilinx.com

state_gt_speed RO 7-4 0

GT Speed information:
• 0: 10 G
• 1: 12.5 G
• 2: 15 G
• others: reserved

flit_n RO 11-8 0 The internal data bus width in FLITs.

full_width RO 12 1 HMC using full width.

hmc_conf 0x10 RW 32 HMC host controller configuration register.

warm_reset RW 0 0 Warm reset HCM host controller.

init_continue RW 1 0 The user starts the initialization process by asserting this field.

max_blk_sz RW 3-2 2

Maximum block size configuration.
• 0: 32-byte
• 1: 64-byte
• 2: 128-byte
• 3: Reserved

dev_cube_id RW 6:4 0

HMC device CUBE ID, which must be set before (or at the time of)
asserting the init_continue bit. The value must be identical to the
Cube ID value that specified in the Request Identification Register
of the corresponding HMC device.

csr_sys_retrain RW 8 0 Force retraining the HMC link.

hmc_status 0x14 RO 32 HMC status information register.

stat_invert_polarity RO 15-0 0
Per Lane polarity status information.
• 0: none-inverted
• 1: inverted

stat_lane_reversal RO 16 0 Lane reversal status.

stat_init_done RO 17 0 Initialization done status.

stat_deskew_done RO 18 0 Deskew done status.

stat_phy_reset_done RO 19 0 PHY reset done status.

Table 2‐11: XHMC Configuration Registers (Cont’d)

Register Addr Field R/W Type Width Default Description

https://www.xilinx.com

Chapter 2: Product Specification

XHMC v1.0 26
PG216 October 4, 2017 www.xilinx.com

hmc_imr 0x18 RW 32 HMC interrupt mask register.

retry_tmr_expire_en RW 0 0 Enable retry timeout interrupt.

retry_failed_en RW 1 0 Enable retry failed interrupt.

inbuf_ovf_det_en RW 2 0 Enable input buffer overflow detected interrupt.

erresp_int_en RW 3 0 Enable error response interrupt.

hmc_isr 0x1c 32 HMC interrupt status register.

retry_tmr_expire W1C 0 0 Retry timeout interrupt.

retry_failed W1C 1 0 Retry failed interrupt.

inbuf_ovf_det W1C 2 0 Input buffer overflow detected interrupt.

errresp_int W1C 2 0 Error response interrupt indicating an error response packet is
available for processing.

retry_conf 0x24 32 HMC retry configuration register.

cfg_retry_tmout RW 15-0 0x100 Retry timeout threshold.

cfg_retry_limit RW 19-16 0x4 Retry attempt limit.

retry_thrd 0x28 32 HMC retry threshold register.

cfg_tx_irtry_n RW 15-0 0x20
IRTRY packet transmission number.
This number has to be greater than the HMC device RX IRTRY
count setting.

cfg_rx_irtry_n RW 31-16 0x10
IRTRY packet receiving threshold.
The number of HMC device TX IRTRY count has to be greater than
(this threshold + HMC core data path FLIT number + 7).

crc_err_cnt 0x2c 32 Debugging error status register (CRC).

dbg_crc_err_cnt W1C 31-0 0 Number of packets with CRC check error. Write all 1s to clear.

dln_err_cnt 0x30 32 Debugging error status register (DLN).

dbg_dln_err_cnt W1C 31-0 0 Number of packets with DLN check error. Write all 1s to clear.

seq_err_cnt 0x34 32 Debugging error status register (SEQ).

Table 2‐11: XHMC Configuration Registers (Cont’d)

Register Addr Field R/W Type Width Default Description

https://www.xilinx.com

Chapter 2: Product Specification

XHMC v1.0 27
PG216 October 4, 2017 www.xilinx.com

dbg_seq_err_cnt W1C 31-0 0 Number of packets with sequence check error. Write all 1s to clear.

rxbuf_full_thrd 0x38 32 RX input buffer control register.

cfg_rxbuf_full_thrd RW 31-0 16
If the number of available entries in the buffer is equal to, or is
less than this threshold, FIFO assert full status. The value must be
less than or equal to the maximum number of entries of the FIFO.

txbuf_full_thrd 0x3c 32 TX output buffer control register.

cfg_txbuf_full_thrd RW 31-0 16

If the number of available entries in the buffer is equal to, or is
less than this threshold, FIFO assert the full status. The value must
be less than or equal to the maximum number of entries of the
FIFO.

csr_misc_out1 0x40 32 MISC OUT register 1.

csr_misc_out1 RW 31-0 0 Miscellaneous output register. Used to control peripheral devices,
such as, the User Layer.

csr_misc_out2 0x44 32 MISC OUT register 2.

csr_misc_out2 RW 31-0 0 Miscellaneous output register. Used to control peripheral devices,
such as, the User Layer.

phy_ctrl_state 0x50 32

phy_ctrl_state RO 2-0 0

Internal PHY control state machine for link training:
0: PHY_IDLE
1: PHY_DESCRAM_INIT
2: PHY_SEND_TS1
3: PHY_DESKEW
4: PHY_SEND_NULL
5: PHY_LINK_UP

dbg_ultx_flit_cnt 0x64 32

dbg_ultx_flit_cnt RO 31-0 0 Number of FLITs sent from the User Layer TX port to the
Transaction Layer.

dbg_tltx_flit_cnt 0x68 32

Table 2‐11: XHMC Configuration Registers (Cont’d)

Register Addr Field R/W Type Width Default Description

https://www.xilinx.com

Chapter 2: Product Specification

XHMC v1.0 28
PG216 October 4, 2017 www.xilinx.com

dbg_tltx_flit_cnt RO 31-0 0 Number of FLITs sent from the Transaction Layer TX port to the
Link Layer.

dbg_lltx_flit_cnt 0x6c 32

dbg_lltx_flit_cnt RO 31-0 0 Number of FLITs sent from the Link Layer TX port to the Physical
Layer.

dbg_ulrx_flit_cnt 0x70 32

dbg_ulrx_flit_cnt RO 31-0 0 Number of FLITs sent from the Transaction Layer to the User Layer
RX port.

dbg_tlrx_flit_cnt 0x74 32

dbg_tlrx_flit_cnt RO 31-0 0 Number of FLITs sent from the Link Layer to the Transaction Layer
RX port.

dbg_llrx_flit_cnt 0x78 32

dbg_llrx_flit_cnt RO 31-0 0 Number of FLITs sent from the Physical Layer to the Link Layer RX
port.

dbg_tret_tx_cnt 0x90 32

dbg_tret_tx_cnt RO 31-0 0 Number of TRET packets sent to the HMC device.

dbg_pret_tx_cnt 0x94 32

dbg_pret_tx_cnt RO 31-0 0 Number of PRET packets sent to the HMC device.

dbg_irtry_tx_cnt 0x98 32

dbg_irtry_tx_cnt RO 31-0 Number of IRTRY packets sent to the HMC device.

dbg_tret_rx_cnt 0x9c 32

dbg_tret_rx_cnt RO 31-0 Number of TRET packets received from the HMC device.

dbg_pret_rx_cnt 0xA0 32

dbg_pret_rx_cnt RO 31-0 Number of PRET packets received from the HMC device.

dbg_irtry_rx_cnt 0xA4 32

dbg_irtry_rx_cnt RO 31-0 Number of IRTRY packets received from the HMC device.

Table 2‐11: XHMC Configuration Registers (Cont’d)

Register Addr Field R/W Type Width Default Description

https://www.xilinx.com

Chapter 2: Product Specification

XHMC v1.0 29
PG216 October 4, 2017 www.xilinx.com

dbg_retry_reqcnt 0xA8 32

dbg_retry_reqcnt RO 31-0 Number of Retry requests sent to the HMC device.

dbg_retry_respcnt 0xAc 32

dbg_retry_respcnt RO 31-0 Number of Retry responses sent to the HMC device.

cfg_token_init 0xB0 32 HMC Controller initial token count for the device TX.

cfg_token_init RW 9-0 0

Specify the initial RX token count at the host controller side. The
maximum token count is 1023.
This register must be configured before asserting init_continue
after hard reset.

stt_token_cnt 0xB4 32 HMC Controller remaining TX Token count.

stt_token_cnt RO 9-0 0 Current available token count for sending a packet from the HMC
controller to the HMC device.

Table 2‐11: XHMC Configuration Registers (Cont’d)

Register Addr Field R/W Type Width Default Description

https://www.xilinx.com

XHMC v1.0 30
PG216 October 4, 2017 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

General Design Guidelines
For more information about clock, transceiver, and I/O placement rules, see:

• UltraScale Architecture SelectIO™ Resources User Guide (UG571) [Ref 3]

• UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 4]

• UltraScale Architecture GTH/GTY Transceivers User Guide (UG576, UG578) [Ref 5] [Ref 6].

Clocking
The HMC link throughput is highly sensitive to the roundtrip latency of retry pointers and
return tokens. Any datapath that has clock crossing will introduce more latency. In order to
reach the best performance, Xilinx® HMC (XHMC) Controller IP implements the common
clock scheme so that the entire datapath in HMC. Figure 3-1 shows the common clock
scheme of HMC Controller with 15G GT wrapper. The HMC core and HMC user layer is
operating in the clk_sys clock domain. The whole 15G GT wrapper is operating in the
clk_gt clock domain which is synchronous and aligned to clk_sys clock domain. The
synchronous gearbox is added to adopt the data width difference between GT channel and
HMC lane in physical layer.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=30

XHMC v1.0 31
PG216 October 4, 2017 www.xilinx.com

Chapter 3: Designing with the Core

The XHMC host controller IP takes three input clocks, namely:

• clk_in: The clock serves as the free running clock for both controller logic and the GT
sub-core for all reset related logic. The user must guarantee the clock is stable before
release the reset of the XHMC core. For different devices, the GT sub-core sets the
allowable frequency range for this clock. For details, see UltraScale Architecture GTH/
GTY Transceivers User Guide (UG576, UG578) [Ref 5] [Ref 6].

• refclk_p/n: The differential clock inputs of the transceiver serves as the reference clock
to the GT sub-core. XHMC requires the clock to be from the same source of the
reference clock for the HMC device on the board.

• s_axi_aclk: The independent clock to access the internal register space of XHMC IP
through AXI4-Lite interface. The CSR needs to access the registers in both clk_in and
clk_sys domain. The clock domain crossing is carefully handled by the XHMC IP. The
users are free to use any clock source to drive the AXI4-Lite interface. In the case that
the s_axi_aclk is asynchronous with clk_in or clk_sys, the IP instantiates
modules from the Xilinx XPM_CDC library to handle the domain crossing. The Vivado
Design Suite automatic detects the modules from the XPM_CDC library and sets the
corresponding timing constraints. The user logic does not need to constrain the clock
relationship inside the IP.

Figure 3-1 illustrates the clocking scheme of the XHMC IP. Depends on the IP configuration,
the XHMC IP generates one or three clocks for the internal logic. XHMC IP takes the user

X-Ref Target - Figure 3-1

Figure 3‐1: XHMC Clock Scheme

refclk_p

refclk_n

MMCM

IBUFDS_
GTE3

BUFG_GT

QPLL-0
refclk

BUFG
master_userclk

BUFG

BUFG

Synchronous
Gearbox

clk_sys

clk_gt

clk_align

Gearbox_en

gt_userclk

refclk_out

GT Lanes

clk_in

s_axi_aclk

HMC
Host

 Controller

AXI Lite
CSR

clk_out

refclk_out

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=31

XHMC v1.0 32
PG216 October 4, 2017 www.xilinx.com

Chapter 3: Designing with the Core

clock output from the assigned GT master channel (TX) and uses a single MMCM to
generator those clocks. The internal clocks includes:

• clk_sys: The major clock that drives the entire HMC transaction layer logic, as well as
the optional AXI4MM user layer interface logic. You can determine the frequency of this
clock with the following formula:

Where Nlane stands for Number of lanes which is configurable through HMC LINK MODE
user parameter. For a full-width HMC Link, Nlane is 16. For a half-width HMC link, Nlane
is 8. Rlane is the link rate of the HMC link (i.e., 10G, 12.5G, and 15G). Wsys is the
configured internal system data bus width in the unit of bit.

• clk_gt: The user clock which drives the user logic of the GT transceiver. You can
calculate the frequency of the clock based on the following formula. When the
frequencies of clk_sys and clk_gt are different, XHMC IP generate the GearBox
logic to match the date rate between the GT boundary and the XHMC physical layer
logic.

Where Rlane is the HMC Lane Rate and Wgt is the data width configured for GT. Table 3-1
gives the typical HMC link configurations and the corresponding system clock
frequency.

• clk_align: The internally generated clock to flag the aligned edges of clk_sys and
clk_gt. This clock only exists in the design when GearBox is enabled.

When GearBox is enabled, XHMC IP sets the MMCM output clocks in the same
CLOCK_DELAY_GROUP to reduce the clock skew on timing paths. By doing so, the GearBox
works in a synchronous fashion.

Table 3‐1: XHMC Clock Configurations

Link
Width

Link
Mode

XHMC Data
Width

System Clock
(MHz)

GT Data
Width

GT User Clock
(MHz)

GearBox

10G Half 128*2 312.5 32 312.5 No

Full 128*4 312.5 32 312.5 No

12.5G Half 128*3 260.4 40 312.5 Yes

Full 128*5 312.5 40 312.5 No

15G Half 128*3 312.5 32 468.75 Yes

Full 128*6 312.5 32 468.75 Yes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=32

XHMC v1.0 33
PG216 October 4, 2017 www.xilinx.com

Chapter 3: Designing with the Core

Resets
Xilinx HMC Controller IP provides three different types of resets:

• Hard reset: Hard reset is an input pin which brings the entire XHMC Controller IP to an
initial state. Asserting the hard reset clears all settings, including CSR registers, controls
and data flops in the controller to the default values.

• Soft reset: Soft reset is a CSR register which clears up whole HMC Controller datapath
similar to hard reset, but all setting to CSR registers will be maintained.

• Warm reset: Warm reset re-initializes the HMC link state machines and tokens to allow
online activity again. Pending HMC traffic in buffers will be resumed after warm reset is
completed. There may be packets lost during warm reset process and causes system
fail. It is recommended that the user suspends all requests and waits for all responses
being flushed out in HMC Controller before asserting warm reset.

HMC Reset Sequence

XHMC provides sophisticated reset finite state machine to coordinate the reset sequence
for both the Controller and device.

Figure 3-2 shows the reset FSM that XHMC implemented to bring up HMC link after hard
reset or soft reset deassertion. The reset FSM sets both the controller and device in reset
state at the beginning, then brings up the controller's GT transmit direction control path
and followed by releasing device's reset signal. It waits until the user logic finishes the HMC
device configuration and initialization, then it brings up the controller's GT receiving
direction control path for clock/data recovery. After the GT receiving datapath is ready, it
starts the physical layer link initialization sequence to establish the HMC link. The link layer,
transaction layer, and user layer stay in reset state until HMC link is up and running. The
user logic can either poll the CSR status register or monitor the l4_rst_phydn output pin
for HMC link status. Once the link up status is asserted, the link is ready to accept memory
transactions.

HMC Controller Initialization Sequence

To establish the HMC link between a XHMC controller IP and the HMC device, the user logic
needs to configure both the XHMC IP and the HMC device following the correct sequence.
The IP implements the initialization sequence as a hardware finite state machine. The user
logic can refer the state machine as provided in the example design. To bring up the HMC
link, the XHMC core must be initialized with the following sequence of steps:

1. Keep the XHMC IP in the reset state by asserting the hardware reset pin of the XHMC
untile the free running clock is stable.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=33

XHMC v1.0 34
PG216 October 4, 2017 www.xilinx.com

Chapter 3: Designing with the Core

2. Deassert XHMC reset input. The XHMC CSR which works in the free running clock
domain is now accessable. You can configure the XHMC hardware through
XHMC_ad000. For example:

° For simulation speedup, write (XHMC_ad000[31] = 1'b1)

° To disable HMC scrambling/descrambling, write (XHMC_ad000[30] = 1'b1)

° To set the controller in the open-loop mode (ignore the TX token limitation on the
TX direction, write (XHMC_ad000[28] = 1'b1)

X-Ref Target - Figure 3-2

Figure 3‐2: XHMC Controller Reset Finite State Machine

Hard Reset

INIT

sw_rst == 1?Yes

GTTX_EN

Set:
- HMC controller reset
- HMC device reset

No

Release:
- GT-TX reset

QPLL0 lock?No

QPLL0_RDY Release:
- MMCM reset
- TX BufBypass reset

Yes

txbufbypass
done?

TXBUFBYP_DN

Yes

No

Release:
- HMC device reset

tINIT timer
done?

GTTX_DN

No

Yes

init_conti
== 1?

No

GTRX_EN

Yes

Release:
- GT-RX reset

RXBUFBYP_CLR Release:
- RX BufBypass reset

rxbufbypass
done?

Yes

No

GTRX_DN Release:
- HMC PL reset

phy_init_dn
==1?

LINK_UP

Yes

No

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=34

XHMC v1.0 35
PG216 October 4, 2017 www.xilinx.com

Chapter 3: Designing with the Core

3. De-assert XHMC software reset by writing (XHMC_ad000[0] = 1'b0)

4. Polling GT TX reset status

° Keep polling until (XHMC_ad004[1] == 1'b1)

5. Configure HMC device through I2C and enable the internal initialization of the HMC
device.

6. Enable XHMC link initialization by writing (XHMC_ad010[1] = 1'b1)

7. Keep polling link status until (XHMC_ad014[17] == 1'b1)

° HMC link is up and XHMC is ready for input requests

Power State Management
Beside the normal operation mode (active mode), the HMCC defines two low-power states
for an HMC device, namely, sleep mode, and a minimum power state called down mode.

The XHMC controller IP provides the CSR entry (XHMC_ad000[1]) for the users to control
the state. In order to enter sleep mode from normal operation (active mode), set the
csr_sys_sleep (XHMC_ad000[1]) in the configuration register to 1. After detecting the
configuration, XHMC toggles the power state management pin, lxtxps, from HIGH to
LOW, which brings the connect HMC link into the sleep mode. XHMC also monitors its
lxrxps input pins. When XHMC detects that the pin has changed to LOW, it puts the
internal reset finite state machine into the sleep state as well.

To bring the link back to normal operation from sleep mode, follow this sequence of steps:

1. Make sure the controller initialization is diabled (XHMC_ad010[1] = 1'b0). The setting
will hold the physical layer initialization state machine in the initial state.

2. Deassert the csr_sys_sleep (XHMC_ad000[1] = 1'b0). XHMC now toggles the
lxtxps output pin to the HMC device to wake up the device. The internal reset state
machine then reset the GT RX datapath.

3. Wait for the GT exist from the reset state (XHMC_ad000[0] == 1'b1).

4. Enable the controller's initialization by assert (XHMC_ad010[1] = 1'b1).

5. Wait for the link status (XHMC_ad014[17] == 1'b1).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=35

XHMC v1.0 36
PG216 October 4, 2017 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 9]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 10]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the Vivado IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 9].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
The layout depicted here might vary from the current version.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=36

XHMC v1.0 37
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

Core Customization Parameters

The available parameters for customizing this core are shown in Figure 4-1 and described
below.

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
The layout depicted here might vary from the current version.

Component Name

The base name of the output files generated for the core. The name must begin with a letter
and can be composed of these characters: a to z, 0 to 9, and "_."

Mode

Allows you to select the Basic or Advanced mode of the configuration of core.

X-Ref Target - Figure 4-1

Figure 4‐1: Basic Parameters

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=37

XHMC v1.0 38
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

Basic Tab

Click the tab to set the basic parameters for the XHMC IP.

HMC Protocol Version

Allows you to select the protocol revision of HMC deceive. The current XHMC IP supports
HMCC protocol revision 1.x.

HMC Link Mode

Allows you to select the link mode of the controller. The link mode decides the number of
GT lanes for the HMC link. A half-width link consists of 8 GT lanes. A full-width link uses 16
GT lanes.

HMC Link Speed

Allows you to select the supported link speed use the drop-down list. The options are
10 Gb/s, 12.5 Gb/s, and 15 Gb/s.

Reference Clock Freq

Select the reference clock frequency for the GT sub IP of the XHMC controller. The XHMC IP
requires that the reference clock of the controller and the reference clock of the HMC device
are from the same clock source in order to simplify the design. The XHMC only provides the
valid reference clock frequencies that are supported by the HMC device in this list.

RECOMMENDED: It is highly recommended, but not necessary, to use the same reference frequency for
both the controller and the device.

Free Running Clock Freq

Specify the clock frequency of the free running clock in the textbox. The free running clock
drives the reset logic of both the controller and the GT sub core. The frequency range is
1 MHz to 200 MHz, which is set by the GT sub-core. The default value is 125 MHz. The
parameter is passed to the GT Wizard IP when creating the sub-core. The XHMC controller
IP uses the parameter to calculate the timing constraint in the example design. The
parameter has no functional impact for the controller IP.

AXI Slave Clock Freq

Specify the clock frequency of the clock frequency of the AXI slave interface. There is no
hard restriction of the frequency.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=38

XHMC v1.0 39
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

Transceiver Type

Select the target GT type. Please check the availability of the GT resource for the target
device.

GT Start Location

Select the start location of the GT lanes.

The naming of the location follows the convention of Xilinx GT, which uses XY coordinate
system to describe the column number and the relative position within that column. For a
given device/package combination, the transceiver with the coordinates X0Y0 is located at
the lowest position of the lowest available bank. The XHMC expects consecutive GT
allocation within the same super logic region (SLR) and the same column, and always regard
the GT lane at the lowest position as the start location.

According to the setting of Link Mode and Transceiver Type, the XHMC IP customization
GUI calculates all the possible start locations for the target device/package. Refer the list in
the drop-down menu for the feasibility of the GT allocation plan.

Internal Data Bus Width (flits)

Select the internal Data Bus width from the drop-down menu. The unit (flit) uses the HMCC
convention, which is 128 bit.

The XHMC provides flexible data bus width configuration for you to interface with the
parent design. However, the data bus width configuration has multiple folders on the
system area, power consumption and performance.

CAUTION! Be cautious when choosing a value other than the recommendation.

As discussed in Clocking in Chapter 3, the XHMC always matches the bandwidth of the
internal data bus with the link bandwidth. To achieve this, the XHMC adjust the system clock
based on the value specified here and the calculated HMC link bandwidth. For the same link
bandwidth, the wider the data bus, the controller uses the slower system clock and requires
larger chip area. On the other hand, narrower data bus saves the area but place tighter
pressure for timing closure.

See Figure 3-1 for the typical setting, which generally provides the best performance per
area tradeoff.

The HMC design supports the internal data bus width from 2 to 12 filts. Starting from
Vivado 2016.4, the HMC IP GUI excludes the configurations that have a high probability of
causing timing failure. As a general rule, the IP GUI enables the bus width configurations
which constrains the system clock to under 312.5 MHz for 20nm devices or 375 MHz for
16nm devices.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=39

XHMC v1.0 40
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

Use Dynamic Polarity Reversal

The XHMC IP automatically detects the polarity of each HMC lanes on the receiving
direction. When checked, the controller reverts the polarity of a receiving lane if reversed
polarity is detected during the link training. The IP generation enables the feature by
default, and changing the setting is disabled in the Basic Mode.

Use Dynamic Lane Reversal

When checked, the XHMC includes the hardware logic to reverse the lane order on the
receiving direction. For the data stream from each GT lane, the controller allocates a
dedicated datapath for the lane at the Physical Layer. During the link training stage, if the
controller detected the training sequence of HMC Lane 0 (0xF03x) at Lane 0 and the training
sequence of HMC Lane 8/15 (0xF0Cx) at Lane 8/15, the lane order detecting logic marks the
lane order as reversed. You can check the status of the lane order through the controller's
CSR. If the lane reversal logic is included, the controller sets the logic mapping of the lane
order dynamically.

IMPORTANT: The lane reversal logic is in the critical path of the packet processing. Enabling the
feature may have negative impact on the timing closure.

Static Lane Mapping

When checked, the IP customization GUI displays an addition table in which you can
customize the mapping between the HMC lanes and the GT lanes. The GT sub-core uses the
fixed convention to order the multi-lane link; for example, Lane 0 starts at the lane at the
lowest physical position. Given the HMC to Xilinx device lane mapping does not follow the
same convention, you must specify the order here. The IP assigns the mapping between the
GT lanes and the datapaths at the physical layer according to the table. For example, if the
Nth Lane from the HMC device is connected to the GT at the lowest location (i.e., X0Y0,
GT Lane 0), the XHMC connects the Nth datapath at the physical layer to GT Lane 0, as well.

Include User Layer Logic with AXI4MM Interface

When checked, the Vivado Integrated Design Environment (IDE) includes the User Layer
Logic of the design. Use the AXI4-MM interface to access the XHMC link. If the option is not
checked, the XHMC provides the native Transaction Layer Interface. When the option is
checked, the Vivado IDE displays additional options for the User Layer setting for
customizing the core.

User Layer setting

The User Layer setting is visible when Include User Layer Logic with AXI4MM Interface is
checked. The settings affects to User Layer only.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=40

XHMC v1.0 41
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

Number of AXI4MM User Ports

Specify the number of AXI4MM User Ports in the text box. The current revision of the
controller IP supports only a single AXI4-Memory Mapped interface port.

User-layer TX Memory Depth

Specify the depth of the packet buffer at the transmitting direction. The buffer provides
temporary storage of the HMC requests that parsed from the AXI4MM transactions. The
XHMC Transaction Layer takes the requests from the buffer whenever it is able to process it.
The XHMC always allocates the physical memory resource to a buffer in depth 512.
Reducing the value in the text box does not save the area but provides earlier back-pressure
feedback when congestions happen downstream.

AXI4MM Write Data Width (flits)

Specify the data width of AXI4MM write channel. The XHMC requires the data width is an
integer multiple of a FLIT size (128 bit). The multiplier must be a value of the power of 2. The
IP core supports the multiplier values of 2, 4, and 8.

Maximum Write Data Width (flits)

Specify the maximum size of the memory write transaction. The size should not exceed the
maximum payload size of HMC request packet. According to the actual maximum write
transaction size, user can reduce the Maximum Write Data Width here to reduce the area for
the User Layer logic.

AXI4MM Read Data Width (flits)

Specify the data width of AXI4MM read channel. The XHMC requires the data width is an
integer multiples of a FLIT size (128 bit). The multiplier must be a value of the power of 2.
The IP core supports the multiplier values of 2, 4, and 8.

Maximum Read Data Width (flits)

Specify the maximum size of the memory write transaction. The size should not exceed the
maximum payload size of HMC request packet. According to the actual maximum write
transaction size, you can reduce the Maximum Write Data Width here to reduce the area for
the User Layer logic.

If Write Address Aligned

When checked, the address write address must aligned to the write data width. The XHMC
bypasses the alignment hardware to save area.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=41

XHMC v1.0 42
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

If Read Address Aligned

When checked, the address write address must align to the write data width. The XHMC
bypasses the alignment hardware to save area.

Enable User ID Re-ordering

When checked, the User Layer reorders the response order according to the user ID. The
response at the AXI4-MM interface preserves the order of the requests.

GT Setting Tab

The GT Setting tab allows you to customize a limited number of parameters of the GT
sub-core.

GT Data Width

Select the GT Data Width. The XHMC uses the value selected here to configure both the
User Data width and the internal data width of the GT sub-core. Combined with the GT line
rate, the setting determines the user clock speed of the GT sub-core.

Enable GT Dynamic Reconfiguration Port for Channel

When checked, the generated IP expose the Dynamic Reconfiguration Port (DRP) of GT
Channels. You can use the DRP to change the GT reconfiguration during the run time.

Enable GT Dynamic Reconfiguration Port for Common

When checked, the generated IP exposes the Dynamic Reconfiguration Port (DRP) of GT
Commons. You can use the DRP to change the GT reconfiguration during the run time.

Enable Additional GT Control and Status Ports

When checked, the generated IP exposes the GT Control and Status Ports which are defined
by Xilinx GT Wizard IP. For details, please refer to the GT Wizard product guide [Ref 7].

Output Generation

Figure 4-2 shows the directory structure of a generated core. See Chapter 5, Example
Design for descriptions of the contents of each directory.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=42

XHMC v1.0 43
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 8].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

The XHMC controller IP requires minimum amount of user efforts to constraint the design.

X-Ref Target - Figure 4-2

Figure 4‐2: XHMC IP Directory Structure

project_1/project_1.src/sources_1/xhmc_0

doc source sim ip_0 xhmc_v1_0 xhmc_v1_0_0synth

gtwizard_ultrascale

xhmc_0_example/xhmc_0_example.src

constrs_1sim_1 source_1

imports imports

xhmc_0sim xhmc_0

example_design simulation

tests

micron_bfm

xhmc_0

ip

example_design

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=43

XHMC v1.0 44
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

One special GT constraint and several physical implementation contraints are provided with
the example design in a Xilinx Device Constraints (XDC) file. Pinouts and hierarchy names in
the generated XDC correspond to the provided example design.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of an XDC or specific constraints, see Vivado Design Suite
User Guide: Using Constraints (UG903) [Ref 11].

Constraints provided with the integrated block solution have been tested in hardware and
provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support
is not provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections

The device selection portion of the XDC informs the implementation tools which part,
package, and speed grade to target for the design. The device selection section always
contains a part selection line, but can also contain part or package-specific options. An
example part selection line follows:

CONFIG PART = XCUV190-FFGC2104-2

Clock Frequencies

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Management

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Clock Placement

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Banking

This section is not applicable for this IP core.

Transceiver Placement

The XHMC IP takes a single reference clock input from the IO pad to drive all the GT Quads
used to form the HMC link. Since the reference clock for a Quad (Q(n)) can be sourced from
its own external reference clock pin paires, or a Quad that is up to two Quads below or
above. Moreover, for UltraSclde devices that is using stacked silicon interconnect (SSI)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=44

XHMC v1.0 45
PG216 October 4, 2017 www.xilinx.com

Chapter 4: Design Flow Steps

technology, the reference clock sharing is limited within its own super logic region (SLR).
This generally places the requirement that the transceivers belong to be consecutive Quads
in the same SLR.

I/O Standard and Placement

See Chapter 3, Designing with the Core, for detailed information about clock requirements.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 10].

For information regarding simulating the example design, see Simulating the Example Design
in Chapter 5.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 8].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=45

XHMC v1.0 46
PG216 October 4, 2017 www.xilinx.com

Chapter 5

Example Design
This chapter contains information about the example design provided in the Vivado®
Design Suite.

Overview of the Example Design
The XHMC IP provides a synthesizable example design along with the IP repository. To
create the associated example design for a given IP configuration, right-click the IP in the
Source Window, and select Open IP Example Design.

As illustrated in Figure 5-1, a generated XHMC core consists of the GT sub-core, XHMC
Physical Layer (PL), Link Layer (LL), and Transaction Layer (TL). According to the IP interface
configuration, the user layer logic can be either embedded inside the XHMC core or
instantiated at the example design with the source codes encrypted. Besides the XHMC
core modules, the example design includes a system control state machine (TGEN FSM), a
Traffic data generation (TGEN DATA GEN), AXI4MM write channel control (TGEN WREQ),
AXI4MM read channel control (TGEN RREQ), a hardware state machine, and IIC interface
logic for device initialization.

The example design provides the reference for XHMC structural integration and the system
control flow for bringing up a HMC link. The example uses a centralized state machine to

X-Ref Target - Figure 5-1

Figure 5‐1: XHMC Example Design Block Diagram

XHMC
PL,LL,TL

XHMC
UL GT

TGEN
FSM

HMC
IIC

TGEN
WREQ

TGEN
RREQ

TGEN
DATA GEN

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=46

XHMC v1.0 47
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

illustrate the necessary steps to bring up the HMC link. As illustrated in Figure 5-2, the
entire flow can be roughly divided into three phases:

• Reset phase

• Initialization phase

• Traffic test phase

The reset phase consists of three sub-state. For a real system, the state machine puts the
system in the WT_CLKDRV state after the system reset. The WT_CLKDRV state waits for the
stable on-board clock generation, i.e., the free running clock, the reference for both the
device GT and the HMC device. The state is bypassed if the simulation flag is set to save the
simulation time. Once the on-board clocks are stable, the state machine enters HMC_INIT
states. The HMC_INIT state does nothing except release the software reset as defined in the
XHMC CSR register space, which brings the XHMC IP out of its reset state. The state
machine then releases the reset of the GT TX portion. The system waits for the GT to output
a stable TX user clock (WT_GTTX). The XHMC core use the GT TX user clock to generate the
system clock. After the user clock is stable, the system is ready for initialization phase.

The first step during the initialization phase is to configure both the HMC device and the
XHMC IP. The example waits for the device configuration (at DEV_INIT state), and sets the
necessary XHMC IP configurations in the XHMC_CFG state. There is no mandatory order
between the device and controller configuration. For device configuration, you can refer to
the HMC_IIC module for the detailed initialization sequence. Once the HMC device has the
init_continue register set, the device starts to send PRBS pattern on the link. Only after this

X-Ref Target - Figure 5-2

Figure 5‐2: Example Design Control State Machine

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=47

XHMC v1.0 48
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

point, the GT RX portion can be enabled (EN_GTRX). The state machine keeps polling the GT
RX reset status in WT_GTRX. Once the GT RX is ready, the state machine assert the
init_continue field in the CSR. The both sides of the HMC link are now ready to launch the
handshaking protocol to establish the link. The state machine keeps polling the link status
in WT_PHYDN state. Given the status shows the controller enters into the link up state, the
HMC link is ready to accept memory transactions. The example design adds one extra state
after the controller sees link up. Namely, the WT_TOKEN state waits until the TX token count
in the CSR space matches the expected value, which is an indication that the link partners
finish the initialization at the link layer.

The example design generates a simple traffic stimulus to excite the HMC link. In the
GEN_DATA state, the example design randomly generate several (configurable) AXI4-MM
write transactions and AXI4MM read transactions. The generated transactions are stored in
the block memory. In the TRG_WREG state, the TGEN _WREQ module send all the generated
WRITE requests to the controller and waits until receiving the all response packets. The state
machine then enters the TGEN_RREQ state, in which the TGEN_RREQ module sends all the
pre-generated read transactions to the controller. Once all the requests are received, the
example design checks the status from both the traffic test and the statistic counters from
the CSR space. According to the information gathered in this phase, the test ends in a
different final state. Refer to Table 5-1 for the state description.

Table 5‐1: HMC Example Design Finite State Machine

State Name
State

Encoding
State Usage State Type Debugging Hints

FSM_IDLE 0 Wait for free running clock
and releasing from reset Initial state

Waiting for system reset or
free running clock is not
presenting.

FSM_WT_CLKDRV 1 Wait for external clocks ready
(refclk)

System bring
up

Check external reference
clock configuration.
If no clock configuration
necessary, tie the input pin
clkdrv_init_done of tgen to
1'b1.

FSM_HMC_INIT 2

Release the reset of the HMC
controller through the
AXI4-Lite CSR interface. The
control releases the reset to
the GT TX part accordingly.

Controller
bring up

Check the AXI4-Lite clock,
reset and connections.

FSM_WT_GTTX 3 Wait for GT finish TX reset
sequence.

Controller
bring up

Check the GT configuration
such as free running clock
frequency, reference clock
configuration, GT location
and GT type.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=48

XHMC v1.0 49
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

FSM_DEV_INIT 4

Assert device_init_en to
enable the external HMC
device configuration.
Wait for the completion of
the configuration sequence
flagged by device_init_done.

HMC device
configuration

Check the IIC access to the
HMC device.

FSM_HMCC_CFG0 5

Assert init_continue at the
controller side.
Set CUBE_ID field in the CSR
(address 0x10 bit[6:4])

Controller
bring up

Check the AXI4-Lite clock,
reset and connections.

FSM_EN_GTRX 6 Release the GT RX portion Controller
bring up

Check the AXI4-Lite clock,
reset and connections.

FSM_WT_GTRX 7 Wait for GT RX reset done Controller
bring up

Check the AXI4-Lite clock,
reset and connections.

FSM_WT_PHYDN 8 Wait for controller finishing
link training Link training

Check GT configuration, i.e.
Lane order. Using Chioscpoe
to proble phy_ctrl_state and
read device link state register
can further help to determine
the root cause. The encoding
of the phy_ctrl _state is as
following:
0: IDLE.
1: Decrambler locking.
2: Link training with TS1.
3: Lane deskew.
4: Send NULL and wait for the
reception of NULL frame from
all GT lanes.
5: Link up states.

FSM_WT_TOKEN 9
Wait for controller to receive
all expected token from
device

Sanity check

This a sanity check for the
transaction layer
initialization. Given stuck at
this state, please check:
1. The configuration
mismatch between the traffic
generator and HMC device.
2. Link quality.

FSM_GEN_DATA 10 Generate test packest Traffic test

FSM_TRG_WREQ 11 Send Write request to HMC Traffic test

Check the link status at the
HMC device side. Cube ID
mismatch can be a cause that
hangs the state.

FSM_TRG_RREQ 12 Send Read Request to HMC Traffic test Check link status, i.e. errors

Table 5‐1: HMC Example Design Finite State Machine (Cont’d)

State Name State
Encoding

State Usage State Type Debugging Hints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=49

XHMC v1.0 50
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

All the open sourced example design files are located at prj_dir/prj_name.src/
source_1/imports/example_design. You can modify the example design and reuse
the code for the XHMC integration.

FSM_CHK_CRC 13 Read CRC error count from
CSR Sanity check

FSM_CHK_DLN 14 Read Duplicate length error
count from CSR Sanity check

FSM_CHK_SEQ 15 Read Sequence error count
from CSR Sanity check

FSM_CHK_IRTRY_RX 16 Read number of IRTRY
received Sanity check

FSM_CHK_IRTRY_TX 17 Read number of IRTRY
Transmitted Sanity check

FSM_CHK_IRTRY_REQ 18 Read number of IRTRY
request transmitted Sanity check

FSM_CHK_IRTRY_RSQ 19 Read number of IRTRY
response transmitted Sanity check

FSM_CHK_TOKEN 20 Read read remaining TX
token count from CSR Sanity check

FSM_DONE 21 Dispatch to final state
according to the status

Intermediate
state

FSM_FAIL 22 Test status Traffic test failed finished
with in the response packets.

FSM_ERR_DECT 23 Test status Traffic test passed with
ERROR (CRC, DLN, SEQ).

FSM_IRTRY_DECT 24 Test status Traffic test passed with IRTRY
detected.

FSM_TOKEN_MISS 25 Test status Traffic test passed but
missing tokens.

FSM_PASS 31 Test status Traffic test passed without
any error.

Table 5‐1: HMC Example Design Finite State Machine (Cont’d)

State Name State
Encoding

State Usage State Type Debugging Hints

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=50

XHMC v1.0 51
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the
XHMC controller. To enable the simulation, the XHMC IP repository includes the Micron's
HMC device BFM models.

The currently supported simulators are:

• Vivado® simulator

• Cadence Incisive Enterprise Simulator (IES)

• Synopsys Verilog Compiler Simulator (VCS)

• Mentor Graphics Questa Advanced Simulator

The simulator uses the example design test bench to run the simulation. The simulation can
be run as follows:

1. In the Sources Window, right-click the example project file (.xci), and select Open IP
Example Design.

The example project is created.

2. In the Flow Navigator, under Simulation, select Simulation Settings.

3. Set the Target simulator to Incisive Enterprise Simulator (IES) or Verilog Compiler
Simulator.

5. In the simulator tab, select Run Simulation > Run behavioral simulation.

6. When prompted, click Yes to change and then run the simulator.

IMPORTANT: The post-synthesis and post-implementation upon the example design is not supported
directly for the current IP revision. To enable the netlist-based simulation, change the simulation
structure in the example design test bench to remove any hierarchical references. In addition, the time
consuming state like the device configuration through IIC bus renders extremely long simulation time
and could possibly cause the simulation timeout before the real end of the simulation.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=51

XHMC v1.0 52
PG216 October 4, 2017 www.xilinx.com

Chapter 5: Example Design

Synthesizing and Implementing the Example Design
To run synthesis and implementation on the example design in the Vivado Design Suite
environment:

1. Go to the XCI file, right-click, and select Open IP Example Design.

A new Vivado tool window opens with the project name "example_project" within the
project directory.

2. In the Flow Navigator, click Run Synthesis and Run Implementation.

TIP: Click Run Implementation first to run both synthesis and implementation.
Click Generate Bitstream to run synthesis, implementation, and then bitstream.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=52

XHMC v1.0 53
PG216 October 4, 2017 www.xilinx.com

Appendix A

Upgrading
This appendix is not application for this release of the core.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=53

XHMC v1.0 54
PG216 October 4, 2017 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the XHMC, the Xilinx Support web
page contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the XHMC. This guide, along with
documentation related to all products that aid in the design process, can be found on the
Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=54

XHMC v1.0 55
PG216 October 4, 2017 www.xilinx.com

Appendix B: Debugging

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 13].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=55

XHMC v1.0 56
PG216 October 4, 2017 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

References
These documents provide supplemental material useful with this product guide:

1. AMBA AXI and ACE Protocol Specification

2. Hybrid Memory Cube Specification 1.1 (HMCC)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support
https://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.hybridmemorycube.org/
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=56

XHMC v1.0 57
PG216 October 4, 2017 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

3. UltraScale Architecture SelectIO Resources User Guide (UG571)

4. UltraScale Architecture Clocking Resources User Guide (UG572)

5. UltraScale Architecture GTH Transceivers User Guide (UG576)

6. UltraScale Architecture GTY Transceivers User Guide (UG578)

7. UltraScale FPGAs Transceivers Wizard LogiCORE IP Product Guide (PG182)

8. Vivado Design Suite User Guide: Designing with IP (UG896)

9. Vivado Design Suite User Guide: Getting Started (UG910)

10. Vivado Design Suite User Guide: Logic Simulation (UG900)

11. Vivado Design Suite User Guide: Using Constraints (UG903)

12. ISE to Vivado Design Suite Migration Guide (UG911)

13. Vivado Design Suite User Guide: Programming and Debugging (UG908)

14. Vivado Design Suite User Guide: Implementation (UG904)

15. LogiCORE IP AXI Interconnect Product Guide (PG059)

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and

Date Version Revision

10/04/2017 1.0 Removed HMC Controller support from AXI4-MM user interface and
updated port descriptions.

04/05/2017 1.0 Updated multiplier values for AXI4MM Write Data Width (flits) and AXI4MM
Read Data Width (flits).

11/30/2016 1.0 Added Option Ports for Debugging section and updated Internal Data Bus
Width (flits) section.

10/05/2016 1.0 Initial Xilinx Release.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/user_guides/ug571-ultrascale-selectio.pdf
https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/support/documentation/ip_documentation/gtwizard_ultrascale/v1_6/pg182-gtwizard-ultrascale.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_interconnect;v=latest;d=pg059-axi-interconnect.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=57

XHMC v1.0 58
PG216 October 4, 2017 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2016-2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG216&Title=XHMC%20v1.0&releaseVersion=1.0&docPage=58

	XHMC v1.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Core Architecture
	XHMC User Layer
	XHMC Transaction Layer
	XHMC Link Layer
	XHMC Physical Layer
	GT wrapper
	CSR Configuration Module

	Feature Summary
	Applications

	Ch. 2: Product Specification
	Standards
	Performance and Resource Utilization
	Port Descriptions
	Clock Reset Interface
	HMC Device Interfaces
	User Interface
	Xilinx Transaction Layer Interface (Native FLIT Interface)
	AXI4-MM Interface
	Write Address Channel Interface
	Write Data Channel Interface
	Write Response Channel Interface
	Read Address Channel Interface
	Read Response Channel Interface

	AXI4-Lite CSR Interface
	Other Core Interface
	Optional Ports for Debugging

	Register Space

	Ch. 3: Designing with the Core
	General Design Guidelines
	Clocking
	Resets
	HMC Reset Sequence
	HMC Controller Initialization Sequence

	Power State Management

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Core Customization Parameters
	Component Name
	Mode

	Basic Tab
	HMC Protocol Version
	HMC Link Mode
	HMC Link Speed
	Reference Clock Freq
	Free Running Clock Freq
	AXI Slave Clock Freq
	Transceiver Type
	GT Start Location
	Internal Data Bus Width (flits)
	Use Dynamic Polarity Reversal
	Use Dynamic Lane Reversal
	Static Lane Mapping
	Include User Layer Logic with AXI4MM Interface
	User Layer setting
	Number of AXI4MM User Ports
	User-layer TX Memory Depth
	AXI4MM Write Data Width (flits)
	Maximum Write Data Width (flits)
	AXI4MM Read Data Width (flits)
	Maximum Read Data Width (flits)
	If Write Address Aligned
	If Read Address Aligned
	Enable User ID Re-ordering

	GT Setting Tab
	GT Data Width
	Enable GT Dynamic Reconfiguration Port for Channel
	Enable GT Dynamic Reconfiguration Port for Common
	Enable Additional GT Control and Status Ports

	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: Example Design
	Overview of the Example Design
	Simulating the Example Design
	Synthesizing and Implementing the Example Design

	Appx. A: Upgrading
	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

