
Versal ACAP CPM DMA and
Bridge Mode for PCI Express
v2.1

Product Guide
Vivado Design Suite

PG347 (v2.1) May 4, 2021

https://www.xilinx.com

Table of Contents
Section I: Overview..5

Navigating Content by Design Process.. 5

Chapter 1: Introduction... 7
Introduction to the CPM4 ...7
Limitations.. 17
Licensing and Ordering...17

Chapter 2: Designing with the Core.. 18
Clocking... 18
Resets.. 19

Section II: QDMA Subsystem..21
Overview...21

QDMA Architecture.. 22
Limitations.. 35
Applications.. 36

Chapter 3: Product Specification...37
QDMA Operations.. 37
Port Descriptions..94
Register Space.. 107

Chapter 4: Design Flow Steps.. 120
QDMA AXI MM Interface to NoC and DDR Lab.. 120

Chapter 5: Application Software Development.................................... 136
Device Drivers...136
Linux DMA Software Architecture (PF/VF).. 137
Using the Drivers..138
Reference Software Driver Flow... 139

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=2

Chapter 6: Debugging..145
Finding Help on Xilinx.com... 145
Hardware Debug..146

Chapter 7: Upgrading.. 148

Section III: AXI Bridge Subsystem...149
Overview...149

Limitations.. 150

Chapter 8: Product Specification...151
AXI Bridge Operations...152
Port Description... 172
Register Space.. 174

Chapter 9: Design Flow Steps.. 176
AXI Bridge Lab.. 176

Chapter 10: Debugging... 177
Finding Help on Xilinx.com... 177
Hardware Debug..178

Chapter 11: Upgrading.. 180

Section IV: XDMA Subsystem... 181
Overview...181

Limitations.. 182
Architecture.. 183

Chapter 12: Product Specification.. 188
DMA Operations...188
Port Description... 194
Register Space.. 199

Chapter 13: Design Flow Steps..202
XDMA AXI MM Interface to NoC and DDR Lab... 202

Chapter 14: Application Software Development..................................219
Device Drivers...219

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=3

Linux Device Driver.. 220
Using the Driver... 220
Interrupt Processing..220
Example H2C Flow..221
Example C2H Flow..222

Chapter 15: Debugging... 223
Documentation...223
Solution Centers...223
Answer Records..223
Technical Support...224
Hardware Debug..224

Chapter 16: Upgrading.. 226

Appendix A: GT Selection and Pin Planning...227
CPM4 GT Selection.. 228
CPM4 Additional Considerations...230
GT Locations.. 230

Appendix B: Migrating... 234

Appendix C: Additional Resources and Legal Notices........................... 235
Xilinx Resources...235
Documentation Navigator and Design Hubs.. 235
References..236
Revision History...236
Please Read: Important Legal Notices... 237

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=4

Section I

Overview

Navigating Content by Design
Process

Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Introduction to the CPM4

• Use Modes

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs. Topics in this document that apply to this design process include:

• QDMA Subsystem

○ Register Space

○ Application Software Development

• AXI Bridge Subsystem

○ Register Space

• XDMA Subsystem

○ Register Space

○ Application Software Development

Section I: Overview

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 5Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=5

• Host Software Development: Developing the application code, accelerator development,
including library, XRT, and Graph API use. Topics in this document that apply to this design
process include:

• QDMA Subsystem

○ Register Space

○ Application Software Development

• AXI Bridge Subsystem

○ Register Space

• XDMA Subsystem

○ Register Space

○ Application Software Development

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• QDMA Subsystem: QDMA AXI MM Interface to NoC and DDR Lab

• XDMA Subsystem: XDMA AXI MM Interface to NoC and DDR Lab

Section I: Overview

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=6

Chapter 1

Introduction

Introduction to the CPM4
The integrated block for PCIe Rev. 4.0 with DMA and CCIX Rev. 1.0 (CPM4) is shown in the
following figure.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=7

Figure 1: CPM4 Sub-Block for PCIe Function (CPM4 PCIE)

CPM4 PCIe Controller #1

CPM4 PCIe Controller #0

ARM(*) CoreSight I/F Module

AXI4-ST

Data
Link

Layer

M
ux

/D
em

ux

Physical
Layer

Cfg
Reg

Space

Integrated PCIe RAM

Clock &
Reset

cfg

XPIPE Hard I/F
Up to 2 Quads

Gen1 (2.5 GT/s)
 16b@125 MHz
Gen2 (5.0 GT/s)
 16b@250 MHz
Gen3 (8.0 GT/s)
 16b@500 MHz
Gen4 (16.0 GT/s)
 32b@500 MHz

Transaction
Layer
(VC0,

CCIX VC1)

APB
Block

Program-
ming

Hard I/F

XP
IP

EI
M

Init
Ctrl

AXI4-ST

Data
Link

Layer

M
ux

/D
em

ux

CPM4 DMA

DMA Core

Physical
Layer

Cfg
Reg

Space

Integrated PCIe RAM

Clock &
Reset

cfg

512b
512b

512b

cfg

AXI4-ST TX

Integrated DMA RAM

AXI4-ST RX

512b

512b
cfg

XPIPE Hard I/F
Up to 4 Quads

Gen1 (2.5 GT/s)
 16b@125 MHz
Gen2 (5.0 GT/s)
 16b@250 MHz
Gen3 (8.0 GT/s)
16b@500 MHz
Gen4 (16.0 GT/s)
 32b@500 MHz

Transaction
Layer
(VC0,

CCIX VC1)

PCIe Core Clock In
PCIe Reset In
Global Event Inputs

XP
IP

EI
M

Misc Port

512b

512b

AXI4-
MM

Bridge

DMA

AXI4-MM
Switch

Init
Ctrl

XPIPE
Static
Switch

PS
Internal
Hard I/F

Programming Register Space

512b

512b
cfg

512b

256b

256b

256b

512b 512b

32b

attr_*0

dbg_0_0 dbg_0_1

attr_dma_*

AXI4-MM
Master1

AXI4-MM
Master0

AXI4-MM
Slave0

Enhanced
AXI4-ST + CFG

+
Fabric I/F

64/128/256/
512b

62.5/125/250
MHz

CCIX TL Hard I/
F #1
256b

500/625/
781.25 MHz

Enhanced
AXI4-ST +

CFG + Misc
DMA I/Os
Fabric I/F

64/128/256/
512b

62.5/125/
250 MHz

To
On Chip NOC

Hard I/F
62.5/125/

250/
390.625/500

MHz

CCIX TL
Hard I/F #0

256b
500/625/

781.25 MHz

To On Chip NOC
Hard I/F

32b AXI4-MM Lite
(MCAP)

To On Chip
NOC Hard I/F
32b AXI4-MM
Lite (MCAP)

attr_*1

dbg_1_0 dbg_1_1

32b

RX

TX

RX

TX

X22665-072320

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=8

CPM Components

The CPM includes multiple IP cores:

• Controllers for PCIe: The CPM contains two instances of the Xilinx controller for PCIe: PCIE
Controller 0 and PCIE Controller 1. Both controllers can have CCIX capabilities. However, only
PCIE Controller 0 is capable of acting as an AXI bridge and as a DMA master. The controllers
interface with the GTs through the XPIPE interface.

• Coherent Mesh Network: The CPM has a Coherent Mesh Network (CMN) (not shown) that
forms the cache coherent interconnect block in the CPM that is based on the ARM CMN600
IP. There are two instances of L2 cache and CHI PL Interface (CPI) blocks in the CPM (also not
shown).

• DMA / AXI Bridge: The CPM has two possible direct memory access (DMA) IP cores: DMA
Subsystem for PCIe (XDMA) and Queue DMA Subsystem for PCIe (QDMA). The DMA cores
are used for data transfer between the programmable logic (PL) to the host, and from the host
to PL. The DMA cores can also transfer data between the host and the network on chip (NoC)
which provides a high bandwidth to other NoC ports including the available DDR memory
controllers (DDRMC). The CPM has an AXI Bridge Subsystem for PCIe (AXI Bridge) IP for AXI-
to-host communication.

The CPM includes a clock/reset block that houses phase-locked loop (PLL) and clock dividers.
The CPM also includes the system-on-a-chip (SoC) debug component for transaction-level
debug. Several APB and AXI interfaces are used between blocks in the CPM for configuration.

DMA Data Transfers

DMA transfers can be categorized into two different datapaths.

• Data path from CPM to NoC to PL: All AXI Memory Mapped signals are connected from the
DMA to the AXI interconnect. These signals are then routed to the Non-Coherent
interconnect in the CPM block. They then connect to the PS interconnect and the NoC. From
the NoC, the signal can be directed to any block (DDR or block RAM) based on the user
design. The figure below shows the datapath to NoC in red.

• Data path from CPM directly to PL: All AXI4-Stream signals and other side band signals, like
clock and reset, are routed directly to the PL. The figure below shows the data path to the PL
in green.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=9

Figure 2: DMA Data Paths

Host

PL

X
P
I
P
E

GTs

PS

Interconnect

PCIe 0

CPM

BDF/ Queue ID to
SMID mapping

DMA

Interconnect

PCIe
Link

From DMA
and Bridge

To Bridge

Address
Trans

PS
Interconnect

NOC Interconnect

Memory Controller

DDR/HBM

SMID to BDF
Mapping

N
O

C Interconnect

PL

Data path from CPM directly to PL (green)
Data path from CPM to NoC to PL (red)

X22695-051419

Use Modes
There are several use modes for DMA functionality in the CPM. You can select one of three
options for data transport from host to programmable logic (PL), or PL to host: QDMA, AXI
Bridge, and XDMA.

To enable DMA transfers, customize the Control, Interfaces and Processing System (CIPS) IP core
as follows:

1. In the CPM4 Basic Configuration page, set the PCIe Controller 0 Mode to DMA.

2. Set the lane width value.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=10

3. In the CPM4 PCIE Controller 0 Configuration page, set the PCIe Functional Mode for the
desired DMA transfer mode:

• QDMA

• AXI Bridge

• XDMA

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=11

The sections below explain how you can further configure and use these different functional
modes for your application.

QDMA Functional Mode

QDMA mode enables the use of PCIE Controller 0 with QDMA enabled. QDMA mode provides
two connectivity variants: AXI Streaming, and AXI Memory Mapped. Both variants can be
enabled simultaneously.

• AXI Streaming: QDMA Streaming mode can be used in applications where the nature of the
data traffic is streaming with source and destination IDs instead of a specific memory address
location, such as network accelerators, network quality of service managers, or firewalls.

• AXI Memory Mapped: QDMA Memory Mapped mode can be used in applications where the
nature of the data traffic is addressable memory, such as moving data between a host and a
card, such as an acceleration platform.

The main difference between XDMA mode and QDMA mode is that while XDMA mode supports
up to 4 independent data streams, QDMA mode can support up to 2048 independent data
streams. Based on this strength, QDMA mode is typically used for applications that require many
queues or data streams that need to be virtually independent from each other. QDMA mode is
the only DMA mode that can support multiple functions, either physical functions or single root
I/O virtualization (SR-IOV) virtual functions.

QDMA mode can be used in conjunction with AXI Bridge mode. For more details on AXI Bridge
mode, which is described in the next section.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=12

AXI Bridge Functional Mode

AXI Bridge mode enables you to interface the CPM4 PCIE Controller 0 with an AXI4 Memory
Mapped domain. This use mode connects directly to the NoC which allows communication with
other peripherals within the Processing System (PS) and in the Programmable Logic (PL).

AXI Bridge mode is typically used for light traffic data paths such as write to or read from Control
and Status registers. AXI Bridge mode is also the only mode that can be configured for Root Port
application with AXI4 Memory Mapped interface used to interface with processor, typically the
PS.

AXI Bridge mode is also available in conjunction with XDMA mode or QDMA mode. To use
either of these DMA modes with AXI Bridge mode, customize the core as follows:

1. In the Basic tab, set PCIE0 Functional Mode to either XDMA or QDMA.

2. Set one or both of the following options:

• In the Basic tab, select the Enable Bridge Slave Mode checkbox. This option enables Slave
AXI interface within the IP which you can use to generate Write or Read transaction from
an AXI source peripheral to other PCIe devices.

• In the PCIe: BARs tab, select the BAR checkbox next to AXI Bridge Master. This option
enables the Master AXI interface within the IP which you can use to receive write or read
transaction from a PCIe source device to AXI peripherals.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=13

XDMA Functional Mode

XDMA mode enables use of PCIE Controller 0 with the XMDA enabled. XDMA mode provides
two connectivity variants: AXI Streaming, and AXI Memory Mapped. Only one variant can be
enabled at a time.

• AXI Streaming: XDMA Streaming mode can be used in applications where the nature of the
data traffic is streaming with source and destination IDs instead of a specific memory address
location, such as network accelerators, network quality of service managers, or firewalls.

• AXI Memory Mapped: XDMA Memory mapped mode can be used in applications where the
nature of the data traffic is addressable memory, such as moving data between a host and a
card, such as an acceleration platform.

XDMA mode can be used in conjunction with AXI Bridge mode. For more details on AXI Bridge
mode, see the AXI Bridge Functional Mode.

CPM4 Common Features
• Supports 64, 128, 256, and 512-bit data path.

• Supports x1, x2, x4, x8, or x16 link widths.

• Supports Gen1, Gen2, Gen3, and Gen4 link speeds.

Note: x16 Gen4 configuration is not available in the data path from CPM directly to PL. This is only used
with the CPM through AXI MM to NoC to PL data path.

QDMA Functional Mode

• 2048 queue sets

○ 2048 H2C descriptor rings.

○ 2048 C2H descriptor rings.

○ 2048 C2H Completion (CMPT) rings.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=14

• Supports both the AXI4 Memory Mapped and AXI4-Stream interfaces per queue (AXI4-
Stream not available when CPM4 configured for 16 GT/s data rate with x16 lane width).

• Supports Polling Mode (Status Descriptor Write Back) and Interrupt Mode.

• Interrupts

○ 2048 MSI-X vectors.

○ Up to 32 MSI-X vectors per PF, and 8 MSI-X vectors per VF.

○ Interrupt aggregation.

• C2H Stream interrupt moderation.

• C2H Stream Completion queue entry coalescence.

• Descriptor and DMA customization through user logic

○ Allows custom descriptor format.

○ Traffic Management.

• Supports SR-IOV with up to 4 Physical Functions (PF) and 252 Virtual Functions (VF)

○ Thin hypervisor model.

○ QID virtualization.

○ Allows only privileged/Physical functions to program contexts and registers.

○ Function level reset (FLR) support.

○ Mailbox.

• Rich programmability on a per queue basis, such as AXI4 Memory Mapped versus AXI4-
Stream interfaces.

AXI Bridge Functional Mode

AXI Bridge functional mode features are supported when AXI4 slave bridge is enabled in the
XDMA or QDMA use mode.

• Supports Multiple Vector Messaged Signaled Interrupts (MSI), MSI-X interrupt, and Legacy
interrupt.

• AXI4-MM Slave access to PCIe address space.

• PCIe access to AXI4-MM Master.

• Tracks and manages Transaction Layer Packets (TLPs) completion processing.

• Detects and indicates error conditions with interrupts in Root Port mode.

• Supports a single PCIe 32-bit or three 64-bit PCIe Base Address Registers (BARs) as Endpoint.

• Supports up to two PCIe 32-bit or a single PCIe 64-bit BAR as Root Port.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=15

XDMA Functional Mode

• 64-bit source, destination, and descriptor addresses.

• Up to four host-to-card (H2C/Read) data channels.

• Up to four card-to-host (C2H/Write) data channels.

• Selectable user interface.

○ Single AXI4 memory mapped (MM) user interface.

○ AXI4-Stream user interface (each channel has its own AXI4-Stream interface; AXI4-Stream
is not available when CPM4 configured for 16 GT/s data rate with x16 lane width).

• AXI4 Bridge Master interface allows for PCIe traffic to bypass the DMA engine.

• AXI4-Lite Slave interface allows access to DMA status registers.

• Scatter Gather descriptor list supporting unlimited list size.

• 256 MB max transfer size per descriptor.

• Legacy, MSI, and MSI-X interrupts.

• Block fetches of contiguous descriptors.

• Poll Mode.

• Descriptor Bypass interface.

• Arbitrary source and destination address.

• Parity check or Propagate Parity on DMA AXI interface.

Standards

The Versal ACAP CPM DMA and Bridge Mode for PCI Express adheres to the following
standards:

• AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

• PCI Express Base Specification v4.0 Version 1.0, and Errata updates

• PCI Local Bus Specification

• PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV) Specification

For details, see PCI-SIG Specifications (https://www.pcisig.com/specifications).

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 16Send Feedback

https://developer.arm.com/documentation/ihi0051/a/
https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=16

Limitations
Speed Change Related Issue

• Description: Repeated speed changes can result in the link not coming up to the intended
targeted speed.

• Workaround: A follow-on attempt should bring the link back.

Link Autonomous Bandwidth Status (LABS) Bit

• Description: While performing the link width changes as a Root Complex, the link width
change works as expected. However, the PCIe protocol requires a LABS bit which is not
getting set after the link width change.

Note: This is an informational bit and does not impact actual functionality.

• Workaround: None available.

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado®

Design Suite under the terms of the Xilinx End User License.

Information about other Xilinx® LogiCORE™ IP modules is available at the Xilinx Intellectual
Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.

Section I: Overview
Chapter 1: Introduction

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=17

Chapter 2

Designing with the Core

Clocking
Note: USER_CLK (user_clk) in this section refers to pcie(n)_user_clk, which is also described in the
Clock and Reset Interface section.

The CPM requires a 100, 125, or 250 MHz reference clock input. The following figure shows the
clocking architecture. The user_clk clock is available for use in the fabric logic. The user_clk
clock can be used as the system clock.

Figure 3: USER_CLK Clocking Architecture

CPM DPLL USER_CLKBUFG_GT

X22710-071520

All user interface signals are timed with respect to the same clock (user_clk) which can have a
frequency of 62.5, 125, or 250 MHz depending on the configured link speed and width. The
user_clk should be used to interface with the CPM. With the user logic, any available clocks
can be used.

Each link partner device shares the same reference clock source. The following figures show a
system using a 100 MHz reference clock. Even if the device is part of an embedded system, if the
system uses commercial PCI Express root complexes or switches along with typical motherboard
clocking schemes, synchronous clocking should be used.

Note: The following figures are high-level representations of the board layout. Ensure that coupling,
termination, and details are correct when laying out a board.

Section I: Overview
Chapter 2: Designing with the Core

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=18

Figure 4: Embedded System Using 100 MHz Reference Clock

Device
Endpoint

PCI Express
Switch or Root

Complex Device

PCI Express
Clock Oscillator

100 MHz

Transceivers

100 MHz

Embedded System Board

PCIe Link

PCIe Link

X22724-051419

Figure 5: Open System Add-In Card Using 100 MHz Reference Clock

P
C

Ie
 L

in
k

PCI Express Connector

Device Endpoint

Transceivers100 MHz with SSC
PCI Express Clock

PCI Express Add-In Card

+ _

P
C

Ie
 L

in
k

P
C

Ie
 L

in
k

P
C

Ie
 L

in
k

X22725-071620

Resets
The fundamental resets for the CPM PCIe controllers and associated GTs are perst0n and
perst1n. The resets are driven by the I/O inside the PS. In addition, there is a power-on-reset
for CPM driven by the platform management controller (PMC). When both PS and the power-on
reset from PMC are released, CPM PCIe controllers and the associated GTs will come out of
reset.

After the reset is released, the core attempts to link train and resumes normal operation.

Section I: Overview
Chapter 2: Designing with the Core

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=19

In addition, there is a pcie(n)_user_reset given from the CPM PCIe controller to the user
design present in the fabric logic. Whenever CPM PCIe controller goes through a reset, or there
is a link down, the CPM PCIe controller issues a pcie(n)_user_reset to the user design in
the programmable logic (PL) region. After the PCIe link is up, pcie(n)_user_reset is released
for the user design to come out of reset.

To reset the DMA block, deassert the dma_soft_resetn pin. This pin is active-Low, and by
default should be tied High. This will not reset the entire CPM PCIe controller but will reset only
the DMA (XDMA/QDMA/AXI Bridge) block.

Section I: Overview
Chapter 2: Designing with the Core

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=20

Section II

QDMA Subsystem

Overview
The Queue Direct Memory Access (QDMA) subsystem is a PCI Express® (PCIe®) based DMA
engine that is optimized for both high bandwidth and high packet count data transfers. The
QDMA is composed of the Versal™ Integrated Block for PCI Express, and an extensive DMA and
bridge infrastructure that enables the ultimate in performance and flexibility.

The QDMA offers a wide range of setup and use options, many selectable on a per-queue basis,
such as memory-mapped DMA or stream DMA, interrupt mode and polling. The functional mode
provides many options for customizing the descriptor and DMA through user logic to provide
complex traffic management capabilities.

The primary mechanism to transfer data using the QDMA is for the QDMA engine to operate on
instructions (descriptors) provided by the host operating system. Using the descriptors, the
QDMA can move data in both the Host to Card (H2C) direction, or the Card to Host (C2H)
direction. You can select on a per-queue basis whether DMA traffic goes to an AXI4 memory
map (MM) interface or to an AXI4-Stream interface. In addition, the QDMA has the option to
implement both an AXI4 MM Master port and an AXI4 MM Slave port, allowing PCIe traffic to
bypass the DMA engine completely.

The main difference between QDMA and other DMA offerings is the concept of queues. The
idea of queues is derived from the “queue set” concepts of Remote Direct Memory Access
(RDMA) from high performance computing (HPC) interconnects. These queues can be
individually configured by interface type, and they function in many different modes. Based on
how the DMA descriptors are loaded for a single queue, each queue provides a very low
overhead option for setup and continuous update functionality. By assigning queues as resources
to multiple PCIe Physical Functions (PFs) and Virtual Functions (VFs), a single QDMA core and
PCI Express interface can be used across a wide variety of multifunction and virtualized
application spaces.

The QDMA can be used and exercised with a Xilinx® provided QDMA reference driver, and then
built out to meet a variety of application spaces.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=21

QDMA Architecture
The following figure shows the block diagram of the QDMA.

Figure 6: QDMA Architecture

Versal PCIe
(Configured as

Endpoint)

RQ / RC
Interface

CQ / CC
Interface

Descriptor
Engine

H2C MM
Engine

H2C Stream
Engine

C2H MM
Engine

PFCH Engine
& Cache

C2H Stream

Target Bridge

Control
Registers

NOC

IRQ Module

Dsc byp out

Dsc byp in

C2H/H2C
Bypass Out

H2C AXI-ST M

H2C AXI-MM M

C2H AXI-MM M

C2H AXI-ST S

CMPT AXI-ST S

AXI-MM
Slave S

AXI-MM
Master M

TM DSC STS

DSC CRDT

AXI-Lite
Slave

CFG MGT

CFG EXT

CMPT Engine

User
Logic
(PL)

CPM QDMA

X22645-111220

DMA Engines

Descriptor Engine

The Host to Card (H2C) and Card to Host (C2H) descriptors are fetched by the Descriptor Engine
in one of two modes: Internal mode, and Descriptor bypass mode. The descriptor engine
maintains per queue contexts where it tracks software (SW) producer index pointer (PIDX),
consumer index pointer (CIDX), base address of the queue (BADDR), and queue configurations
for each queue. The descriptor engine uses a round robin algorithm for fetching the descriptors.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=22

The descriptor engine has separate buffers for H2C and C2H queues, and ensures it never
fetches more descriptors than available space. The descriptor engine will have only one DMA
read outstanding per queue at a time and can read as many descriptors as can fit in a MRRS. The
descriptor engine is responsible for reordering the out of order completions and ensures that
descriptors for queues are always in order.

The descriptor bypass can be enabled on a per-queue basis and the fetched descriptors, after
buffering, are sent to the respective bypass output interface instead of directly to the H2C or
C2H engine. In internal mode, based on the context settings the descriptors are sent to delete
per H2C memory mapped (MM), C2H MM, H2C Stream, or C2H Stream engines.

The descriptor engine is also responsible for generating the status descriptor for the completion
of the DMA operations. With the exception of C2H Stream mode, all modes use this mechanism
to convey completion of each DMA operation so that software can reclaim descriptors and free
up any associated buffers. This is indicated by the CIDX field of the status descriptor.

RECOMMENDED: If a queue is associated with interrupt aggregation, Xilinx recommends that the status
descriptor be turned off, and instead the DMA status be received from the interrupt aggregation ring.

To put a limit on the number of fetched descriptors (for example, to limit the amount of buffering
required to store the descriptor), it is possible to turn-on and throttle credit on a per-queue basis.
In this mode, the descriptor engine fetches the descriptors up to available credit, and the total
number of descriptors fetched per queue is limited to the credit provided. The user logic can
return the credit through the dsc_crdt interface. The credit is in the granularity of the size of
the descriptor.

To help a user-developed traffic manager prioritize the workload, the available descriptor to be
fetched (incremental PIDX value) of the PIDX update is sent to the user logic on the
tm_dsc_sts interface. Using this interface it is possible to implement a design that can
prioritize and optimize the descriptor storage.

H2C MM Engine

The H2C MM Engine moves data from the host memory to card memory through the H2C AXI-
MM interface. The engine generates reads on PCIe, splitting descriptors into multiple read
requests based on the MRRS and the requirement that PCIe reads do not cross 4 KB boundaries.
Once completion data for a read request is received, an AXI write is generated on the H2C AXI-
MM interface. For source and destination addresses that are not aligned, the hardware will shift
the data and split writes on AXI-MM to prevent 4 KB boundary crossing. Each completed
descriptor is checked to determine whether a writeback and/or interrupt is required.

For Internal mode, the descriptor engine delivers memory mapped descriptors straight to the
H2C MM engine. The user logic can also inject the descriptor into the H2C descriptor bypass
interface to move data from host to card memory. This gives the ability to do interesting things
such as mixing control and DMA commands in the same queue. Control information can be sent
to a control processor indicating the completion of DMA operation.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=23

C2H MM Engine

The C2H MM Engine moves data from card memory to host memory through the C2H AXI-MM
interface. The engine generates AXI reads on the C2H AXI-MM bus, splitting descriptors into
multiple requests based on 4 KB boundaries. Once completion data for the read request is
received on the AXI4 interface, a PCIe write is generated using the data from the AXI read as the
contents of the write. For source and destination addresses that are not aligned, the hardware
will shift the data and split writes on PCIe to obey Maximum Payload Size (MPS) and prevent 4
KB boundary crossings. Each completed descriptor is checked to determine whether a writeback
and/or interrupt is required.

For Internal mode, the descriptor engine delivers memory mapped descriptors straight to the
C2H MM engine. As with H2C MM Engine, the user logic can also inject the descriptor into the
C2H descriptor bypass interface to move data from card to host memory.

For multi-function configuration support, the PCIe function number information will be provided
in the aruser bits of the AXI-MM interface bus to help virtualization of card memory by the
user logic. A parity bus, separate from the data and user bus, is also provided for end-to-end
parity support.

H2C Stream Engine

The H2C stream engine moves data from the host to the H2C Stream interface. For internal
mode, descriptors are delivered straight to the H2C stream engine; for a queue in bypass mode,
the descriptors can be reformatted and fed to the bypass input interface. The engine is
responsible for breaking up DMA reads to MRRS size, guaranteeing the space for completions,
and also makes sure completions are reordered to ensure H2C stream data is delivered to user
logic in-order.

The engine has sufficient buffering for up to 256 descriptor reads and up to 32 KB of data. DMA
fetches the data and aligns to the first byte to transfer on the AXI4 interface side. This allows
every descriptor to have random offset and random length. The total length of all descriptors put
together must be less than 64 KB.

For internal mode queues, each descriptor defines a single AXI4-Stream packet to be transferred
to the H2C AXI-ST interface. A packet with multiple descriptors straddling is not allowed due to
the lack of per queue storage. However, packets with multiple descriptors straddling can be
implemented using the descriptor bypass mode. In this mode, the H2C DMA engine can be
initiated when the user logic has enough descriptors to form a packet. The DMA engine is
initiated by delivering the multiple descriptors straddled packet along with other H2C ST packet
descriptors through the bypass interface, making sure they are not interleaved. Also, through the
bypass interface, the user logic can control the generation of the status descriptor.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=24

C2H Stream Engine

The C2H streaming engine is responsible for receiving data from the user logic and writing to the
Host memory address provided by the C2H descriptor for a given Queue.

The C2H engine has two major blocks to accomplish C2H streaming DMA, Descriptor Prefetch
Cache (PFCH), and the C2H-ST DMA Write Engine. The PFCH has per queue context to enhance
the performance of its function and the software that is expected to program it.

PFCH cache has three main modes, on a per queue basis, called Simple Bypass Mode, Internal
Cache Mode, and Cached Bypass Mode.

• In Simple Bypass Mode, the engine does not track anything for the queue, and the user logic
can define its own method to receive descriptors. The user logic is then responsible for
delivering the packet and associated descriptor through the simple bypass interface. The
ordering of the descriptors fetched by a queue in the bypass interface and the C2H stream
interface must be maintained across all queues in bypass mode.

• In Internal Cache Mode and Cached Bypass Mode, the PFCH module offers storage for up to
512 descriptors and these descriptors can be used by up to 64 different queues. In this mode,
the engine controls the descriptors to be fetched by managing the C2H descriptor queue
credit on demand based on received packets in the pipeline. Pre-fetch mode can be enabled
on a per queue basis, and when enabled, causes the descriptors to be opportunistically pre-
fetched so that descriptors are available before the packet data is available. The status can be
found in prefetch context. This significantly reduces the latency by allowing packet data to be
transferred to the PCIe integrated block almost immediately, instead of having to wait for the
relevant descriptor to be fetched. The size of the data buffer is fixed for a queue (PFCH
context) and the engine can scatter the packet across as many as seven descriptors. In cached
bypass mode descriptor is bypassed to user logic for further processing, such as address
translation, and sent back on the bypass in interface. This mode does not assume any ordering
descriptor and C2H stream packet interface, and the pre-fetch engine can match the packet
and descriptors. When pre-fetch mode is enabled, do not give credits to IP. The pre-fetch
engine takes care of credit management.

Completion Engine

The Completion (CMPT) Engine is used to write to the completion queues. Although the
Completion Engine can be used with an AXI-MM interface and Stream DMA engines, the C2H
Stream DMA engine is designed to work closely with the Completion Engine. The Completion
Engine can also be used to pass immediate data to the Completion Ring. The Completion Engine
can be used to write Completions of up to 64B in the Completion ring. When used with a DMA
engine, the completion is used by the driver to determine how many bytes of data were
transferred with every packet. This allows the driver to reclaim the descriptors.

The Completion Engine maintains the Completion Context. This context is programmed by the
Driver and is maintained on a per-queue basis. The Completion Context stores information like
the base address of the Completion Ring, PIDX, CIDX and a number of aspects of the Completion
Engine, which can be controlled by setting the fields of the Completion Context.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=25

The engine also can be configured on a per-queue basis to generate an interrupt or a completion
status update, or both, based on the needs of the software. If the interrupts for multiple queues
are aggregated into the interrupt aggregation ring, the status descriptor information is available
in the interrupt aggregation ring as well.

The CMPT Engine has a cache of up to 64 entries to coalesce the multiple smaller CMPT writes
into 64B writes to improve the PCIe efficiency. At any time, completions can be simultaneously
coalesced for up to 64 queues. Beyond this, any additional queue that needs to write a CMPT
entry will cause the eviction of the least recently used queue from the cache. The depth of the
cache used for this purpose is configurable with possible values of 8, 16, 32, and 64.

Bridge Interfaces

AXI Memory Mapped Bridge Master Interface

The AXI MM Bridge Master interface is used for high bandwidth access to AXI Memory Mapped
space from the host. The interface supports up to 32 outstanding AXI reads and writes. One or
more PCIe BAR of any physical function (PF) or virtual function (VF) can be mapped to the AXI-
MM bridge master interface. This selection must be made prior to design compilation. The
function ID, BAR ID, VF group, and VF group offset will be made available as part of aruser and
awuser of the AXI-MM interface allowing the user logic to identify the source of each memory
access. The m_axib_awuser/m_axib_aruser[54:0] user bits mapping is listed in AXI
Bridge Master Ports.

Virtual function group (VFG) refers to the VF group number. It is equivalent to the PF number
associated with the corresponding VF. VFG_OFFSET refers to the VF number with respect to a
particular PF. Note that this is not the FIRST_VF_OFFSET of each PF.

For example, if both PF0 and PF1 have 8 VFs, FIRST_VF_OFFSET for PF0 and PF1 is 4 and 11.
Below is the mapping for VFG and VFG_OFFSET.

Table 1: AXI-MM Interface Virtual Function Group

Function
Number PF Number VFG VFG_OFFSET

0 0 0 0

1 1 0 0

4 0 0 0 (Because FIRST_VF_OFFSET for PF0 is 4, the first VF of
PF0 starts at FN_NUM=4 and VFG_OFFSET=0 indicates
this is the first VF for PF0)

5 0 0 1 (VFG_OFFSET=1 indicates this is the second VF for
PF0)

...

12 1 1 0 (VFG=1 indicates this VF is associated with PF1)

13 1 1 1

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=26

Each host initiated access can be uniquely mapped to the 64 bit AXI address space through the
PCIe to AXI BAR translation.

Since all functions share the same AXI Master address space, a mechanism is needed to map
requests from different functions to a distinct address space on the AXI master side. An example
provided below shows how PCIe to AXI translation vector is used. Note that all VFs belonging to
the same PF share the same PCIe to AXI translation vector. Therefore, the AXI address space of
each VF is concatenated together. Use VFG_OFFSET to calculate the actual starting address of
AXI for a particular VF.

To summarize, m_axib_awaddr is determined as:

• For PF, m_axib_awaddr = pcie2axi_vec + axib_offset.

• For VF, m_axib_awaddr = pcie2axi_vec + (VFG_OFFSET + 1)*vf_bar_size +
axib_offset.

Where pcie2axi_vec is PCIe to AXI BAR translation (that can be set when the IP core is
configured from the Vivado IP Catalog).

And axib_offset is the address offset in the requested target space.

PCIe to AXI BARs

For each physical function, the PCIe configuration space consists of a set of five 32-bit memory
BARs and one 32-bit Expansion ROM BAR. When SR-IOV is enabled, an additional five 32-bit
BARs are enabled for each Virtual Function. These BARs provide address translation to the AXI4
memory mapped space capability, interface routing, and AXI4 request attribute configuration.
Any pairs of BARs can be configured as a single 64-bit BAR. Each BAR can be configured to route
its requests to the QDMA register space, or the AXI MM bridge master interface.

Request Memory Type

The memory type can be set for each PCIe BAR through attributes
attr_dma_pciebar2axibar_*_cache_pf*.

• AxCache[0] is set to 1 for modifiable, and 0 for non-modifiable.

• AxCache[1] is set to 1 for cacheable, and 0 for non-cacheable.

AXI Memory Mapped Bridge Slave Interface

The AXI-MM Bridge Slave interface is used for high bandwidth memory transfers between the
user logic and the Host. AXI to PCIe translation is supported through the AXI to PCIe BARs. The
interface will split requests as necessary to obey PCIe MPS and 4 KB boundary crossing
requirements. Up to 32 outstanding read and write requests are supported.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=27

AXI to PCIe BARs

In the Bridge Slave interface, there is one BARs which can be configured as 32 bits or 64 bits.
This BAR provide address translation from AXI address space to PCIe address space. The address
translation is configured through BDF table programming. Refer to Slave Bride section for BDF
programming.

Interrupt Module
The IRQ module aggregates interrupts from various sources. The interrupt sources are queue-
based interrupts, user interrupts and error interrupts.

Queue-based interrupts and user interrupts are allowed on PFs and VFs, but error interrupts are
allowed only on PFs. If the SR-IOV is not enabled, each PF has the choice of MSI-X or Legacy
Interrupts. With SR-IOV enabled, only MSI-X interrupts are supported across all functions.

MSI-X interrupt is enabled by default. Host system (Root Complex) will enable one or all of the
interrupt types supported in hardware. If MSI-X is enabled, it takes precedence.

Up to eight interrupts per function are available. To allow many queues on a given function and
each to have interrupts, the QDMA offers a novel way of aggregating interrupts from multiple
queues to a single interrupt vector. In this way, all 2048 queues could in principle be mapped to a
single interrupt vector. QDMA offers 256 interrupt aggregation rings that can be flexibly
allocated among the 256 available functions.

PCIe Block Interface

PCIe CQ/CC

The PCIe Completer Request (CQ)/Completer Completion (CC) modules receive and process TLP
requests from the remote PCIe agent. This interface to the PCIE Controller operates in address
aligned mode. The module uses the BAR information from the Integrated Block for IPPCIE
Controller to determine where the request should be forwarded. The possible destinations for
these requests are:

• DMA configuration module

• AXI4 MM Bridge interface to Network on Chip (NoC)

Non-posted requests are expected to receive completions from the destination, which are
forwarded to the remote PCIe agent. For further details, see the Versal ACAP CPM Mode for PCI
Express Product Guide (PG346).

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=28

PCIe RQ/RC

The PCIe Requester Request (RQ)/Requester Completion (RC) interface generates PCIeTLPs on
the RQ bus and processes PCIe Completion TLPs from the RC bus. This interface to the PCIE
Controller operates in DWord aligned mode. With a 512-bit interface, straddling will be enabled.
While straddling is supported, all combinations of RQ straddled transactions may not be
implemented. For further details, see the Versal ACAP CPM Mode for PCI Express Product Guide
(PG346).

PCIe Configuration

Several factors can throttle outgoing non-posted transactions. Outgoing non-posted transactions
are throttled based on flow control information from the PCIE Controller to prevent head of line
blocking of posted requests. The DMA will meter non-posted transactions based on the PCIe
Receive FIFO space.

General Design of Queues
The multi-queue DMA engine of the QDMA uses RDMA model queue pairs to allow RNIC
implementation in the user logic. Each queue set consists of Host to Card (H2C), Card to Host
(C2H), and a C2H Stream Completion (CMPT). The elements of each queue are descriptors.

H2C and C2H are always written by the driver/software; hardware always reads from these
queues. H2C carries the descriptors for the DMA read operations from Host. C2H carries the
descriptors for the DMA write operations to the Host.

In internal mode, H2C descriptors carry address and length information and are called gather
descriptors. They support 32 bits of metadata that can be passed from software to hardware
along with every descriptor. The descriptor can be memory mapped (where it carries host
address, card address, and length of DMA transfer) or streaming (only host address, and length of
DMA transfer) based on context settings. Through descriptor bypass, an arbitrary descriptor
format can be defined, where software can pass immediate data and/or additional metadata
along with packet.

C2H queue memory mapped descriptors include the card address, the host address and the
length. In streaming internal cached mode, descriptors carry only the host address. The buffer
size of the descriptor, which is programmed by the driver, is expected to be of fixed size for the
whole queue. Actual data transferred associated with each descriptor does not need to be the
full length of the buffer size.

The software advertises valid descriptors for H2C and C2H queues by writing its producer index
(PIDX) to the hardware. The status descriptor is the last entry of the descriptor ring, except for a
C2H stream ring. The status descriptor carries the consumer index (CIDX) of the hardware so
that the driver knows when to reclaim the descriptor and deallocate the buffers in the host.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=29

For the C2H stream mode, C2H descriptors will be reclaimed based on the CMPT queue entry.
Typically, this carries one entry per C2H packet, indicating one or more C2H descriptors is
consumed. The CMPT queue entry carries enough information for software to claim all the
descriptors consumed. Through external logic, this can be extended to carry other kinds of
completions or information to the host.

CMPT entries written by the hardware to the ring can be detected by the driver using either the
color bit in the descriptor or the status descriptor at the end of the CMPT ring. Each CMPT entry
can carry metadata for a C2H stream packet and can also serve as a custom completion or
immediate notification for the user application.

The base address of all ring buffers (H2C, C2H, and CMPT) should be aligned to a 4 KB address.

Figure 7: Queue Ring Architecture

Driver Objects

H2C/
TXQ

C2H/
RXQ

CMPT

Qset0

H2C/
TXQ

C2H/
RXQ

CMPT

Qset2047

X20520-061418

The software can program 16 different ring sizes. The ring size for each queue can be selected
from context programing. The last queue entry is the descriptor status, and the number of
allowable entries is (queue size -1).

For example, if queue size is 8, which contains the entry index 0 to 7, the last entry (index 7) is
reserved for status. This index should never be used for PIDX update, and PIDX update should
never be equal to CIDX. For this case, if CIDX is 0, the maximum PIDX update would be 6.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=30

In the example above, if traffic has already started and the CIDX is 4, the maximum PIDX update
is 3.

H2C and C2H Queues

H2C/C2H queues are rings located in host memory. For both type of queues, the producer is
software and consumer is the descriptor engine. The software maintains producer index (PIDX)
and a copy of hardware consumer index (HW CIDX) to avoid overwriting unread descriptors. The
descriptor engine also maintains consumer index (CIDX) and a copy of SW PIDX, which is to
make sure the engine does not read unwritten descriptors. The last entry in the queue is
dedicated for the status descriptor where the engine writes the HW CIDX and other status.

The engine maintains a total of 2048 H2C and 2048 C2H contexts in local memory. The context
stores properties of the queue, such as base address (BADDR), SW PIDX, CIDX, and depth of the
queue.

Figure 8: Simple H2C and C2H Queue

PIDX CIDX BASE Size

SW PIDX

Posted write
SW PIDX

Read request
BADDR + CIDX CTXT

Base

Base +
Size

Size -1 Descriptors

Posted write
HW CIDX

Status desc

HW CIDX

6

2 3

4

5

DMA Engine OperationDriver Operation

1

X20895-111120

The figure above shows the H2C and C2H fetch operation.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=31

1. For H2C, the driver writes payload into host buffer, forms the H2C descriptor with the
payload buffer information and puts it into H2C queue at the PIDX location. For C2H, the
driver forms the descriptor with available buffer space reserved to receive the packet write
from the DMA.

2. The driver sends the posted write to PIDX register in the descriptor engine for the associated
Queue ID (QID) with its current PIDX value.

3. Upon reception of the PIDX update, the engine calculates the absolute QID of the pointer
update based on address offset and function ID. Using the QID, the engine will fetch the
context for the absolute QID from the memory associated with the QDMA.

4. The engine determines the number of descriptors that are allowed to be fetched based on
the context. The engine calculates the descriptor address using the base address (BADDR),
CIDX, and descriptor size, and the engine issues the DMA read request.

5. After the descriptor engine receives the read completion from the host memory, the
descriptor engine delivers them to the H2C Engine or C2H Engine in internal mode. In case of
bypass, the descriptors are sent out to the associated descriptor bypass output interface.

6. For memory mapped or H2C stream queues programmed as internal mode, after the fetched
descriptor is completely processed, the engine writes the CIDX value to the status descriptor.
For queues programmed as bypass mode, user logic controls the write back through bypass in
interface. The status descriptor could be moderated based on context settings. C2H stream
queues always use the CMPT ring for the completions.

For C2H, the fetch operation is implicit through the CMPT ring.

Completion Queue

The Completion (CMPT) queue is a ring located in host memory. The consumer is software, and
the producer is the CMPT engine. The software maintains the consumer index (CIDX) and a copy
of hardware producer index (HW PIDX) to avoid reading unwritten completions. The CMPT
engine also maintains PIDX and a copy of software consumer index (SW CIDX) to make sure that
the engine does not overwrite unread completions. The last entry in the queue is dedicated for
the status descriptor which is where the engine writes the hardware producer index (HW PIDX)
and other status.

The engine maintains a total of 2048 CMPT contexts in local memory. The context stores
properties of the queue, such as base address, SW CIDX, PIDX, and depth of the queue.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=32

Figure 9: Simple Completion Queue Flow

PIDX CIDX BASE Size

HW PIDX
DMA Write
BASE +
PIDX

WRB CTXT

Base

Base +
Size

Size -1

Posted write
HW PIDX

Interrupt

Status
descriptor

SW CIDX

1

2

4

3

5

DMA Engine OperationDriver Operation

Posted write
SW CIDX

6
X20893-101518

C2H stream is expected to use the CMPT queue for completions to host, but it can also be used
for other types of completions or for sending messages to the driver. The message through the
CMPT is guaranteed to not bypass the corresponding C2H stream packet DMA.

The simple flow of DMA CMPT queue operation with respect to the numbering above follows:

1. The CMPT engine receives the completion message through the CMPT interface, but the
QID for the completion message comes from the C2H stream interface. The engine reads the
QID index of CMPT context RAM.

2. The DMA writes the CMPT entry to address BASE+PIDX.

3. If all conditions are met, optionally writes PIDX to the status descriptor of the CMPT queue
with color bit.

4. If interrupt mode is enabled, the CMPT engine generates the interrupt event message to the
interrupt module.

5. The driver can be in polling or interrupt mode. Either way, the driver identifies the new
CMPT entry either by matching the color bit or by comparing the PIDX value in the status
descriptor against its current software CIDX value.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=33

6. The driver updates CIDX for that queue. This allows the hardware to reuse the descriptors
again. After the software finishes processing the CMPT, that is, before it stops polling or
leaving the interrupt handler, the driver issues a write to CIDX update register for the
associated queue.

SR-IOV Support
The QDMA provides an optional feature to support Single Root I/O Virtualization (SR-IOV). The
PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV) specification (available from PCI-
SIG Specifications (www.pcisig.com/specifications) standardizes the method for bypassing the
VMM involvement in datapath transactions and allows a single endpoint to appear as multiple
separate endpoints. SR-IOV classifies the functions as:

• Physical Functions (PF): Full featured PCIe® functions which include SR-IOV capabilities
among others.

• Virtual Functions (VF): PCIe functions featuring configuration space with Base Address
Registers (BARs) but lacking the full configuration resources and controlled by the PF
configuration. The main role of the VF is data transfer.

Apart from PCIe defined configuration space, QDMA Subsystem for PCI Express virtualizes data
path operations, such as pointer updates for queues, and interrupts. The rest of the management
and configuration functionality is deferred to the physical function driver. The Drivers that do not
have sufficient privilege must communicate with the privileged Driver through the mailbox
interface which is provided in part of the QDMA Subsystem for PCI Express.

Security is an important aspect of virtualization. The QDMA Subsystem for PCI Express offers
the following security functionality:

• QDMA allows only privileged PF to configure the per queue context and registers. VFs inform
the corresponding PFs of any queue context programming.

• Drivers are allowed to do pointer updates only for the queue allocated to them.

• The system IOMMU can be turned on to check that the DMA access is being requested by
PFs or VFs. The ARID comes from queue context programmed by a privileged function.

Any PF or VF can communicate to a PF (not itself) through mailbox. Each function implements
one 128B inbox and 128B outbox. These mailboxes are visible to the driver in the DMA BAR
(typically BAR0) of its own function. At any given time, any function can have one outgoing
mailbox and one incoming mailbox message outstanding per function.

The diagram below shows how a typical system can use QDMA with different functions and
operating systems. Different Queues can be allocated to different functions, and each function
can transfer DMA packets independent of each other.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 34Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=34

Figure 10: QDMA in a System

Virtual Machine

APP APP

Guest OS
Kernel

Q0 Q1

Virtual Machine

APP APP

Guest OS
Kernel

Q0 Q1

Legacy VM

APP APP

Guest OS
Kernel

Q0 Q1

Physical Machine

APP APP

Kernel

Q0 Q1

Hypervisor

VF0 VF1 PF0 PF1

QC
QC

QC
QC

QC
QC

QC
QC

MM ARB Stream ARB

QDMA

AXI-MM AXI-ST

X21108-062218

Limitations
The limitation of the QDMA is as follows:

• The DMA supports a maximum of 256 Queues on any VF function.

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=35

Applications
The QDMA is used in a broad range of networking, computing, and data storage applications. A
common usage example for the QDMA is to implement Data Center and Telco applications, such
as Compute acceleration, Smart NIC, NVMe, RDMA-enabled NIC (RNIC), server virtualization,
and NFV in the user logic. Multiple applications can be implemented to share the QDMA by
assigning different queue sets and PCIe functions to each application. These Queues can then be
scaled in the user logic to implement rate limiting, traffic priority, and custom work queue entry
(WQE).

Section II: QDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=36

Chapter 3

Product Specification

QDMA Operations
Descriptor Engine
The descriptor engine is responsible for managing the consumer side of the Host to Card (H2C)
and Card to Host (C2H) descriptor ring buffers for each queue. The context for each queue
determines how the descriptor engine will process each queue individually. When descriptors are
available and other conditions are met, the descriptor engine will issue read requests to PCIe to
fetch the descriptors. Received descriptors are offloaded to either the descriptor bypass out
interface (bypass mode) or delivered directly to a DMA engine (internal mode). When a H2C
Stream or Memory Mapped DMA engine completes a descriptor, status can be written back to
the status descriptor, an interrupt, and/or a marker response can be generated to inform
software and user logic of the current DMA progress. The descriptor engine also provides a
Traffic Manager Interface which notifies user logic of certain status for each queue. This allows
the user logic to make informed decisions if customization and optimization of DMA behavior is
desired.

Descriptor Context

The Descriptor Engine stores per queue configuration, status and control information in
descriptor context that can be stored in block RAM or UltraRAM, and the context is indexed by
H2C or C2H QID. Prior to enabling the queue, the hardware and credit context must first be
cleared. After this is done, the software context can be programmed and the qen bit can be set
to enable the queue. After the queue is enabled, the software context should only be updated
through the direct mapped address space to update the Producer Index and Interrupt ARM bit,
unless the queue is being disabled. The hardware context and credit context contain only status.
It is only necessary to interact with the hardware and credit contexts as part of queue
initialization in order to clear them to all zeros. Once the queue is enabled, context is dynamically
updated by hardware. Any modification of the context through the indirect bus when the queue
is enabled can result in unexpected behavior. Reading the context when the queue is enabled is
not recommended as it can result in reduced performance.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=37

Software Descriptor Context Structure (0x0 C2H and 0x1 H2C)

The descriptor context is used by the descriptor engine. All descriptor rings must be aligned to
the 4K address.

Table 2: Software Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[127:64] 64 dsc_base 4K aligned Base address of Descriptor Ring.

[63] 1 is_mm This field is applicable only for internal mode. If this
field is set then the descriptors will be delivered to
associated H2C or C2H MM engine.

[62] 1 mrkr_dis If set, disables the marker response in internal mode.
Not applicable for C2H ST.

[61] 1 irq_req Interrupt due to error waiting to be sent (waiting for
irq_arm). This bit should be cleared when the queue
context is initialized.
Not applicable for C2H ST.

[60] 1 err_wb_sent A writeback/interrupt was sent for an error. Once this
bit is set no more writebacks or interrupts will be sent
for the queue. This bit should be cleared when the
queue context is initialized.
Not applicable for C2H ST.

[59:58] 2 err Error status.
Bit[1] dma – An error occurred during DMA operation.
Check engine status registers.
Bit[0] dsc – An error occured during descriptor fetch or
update. Check descriptor engine status registers. This
field should be set to 0 when the queue context is
initialized.

[57] 1 irq_no_last No interrupt was sent and pidx/cidx was idle in internal
mode. When the irq_arm bit is set, the interrupt will be
sent. This bit will clear automatically when the interrupt
is sent or if the PIDX of the queue is updated.
This bit should be initialized to 0 when the queue
context is initialized.
Not applicable for C2H ST.

[56:54] 3 port_id Port_id
The port id that will be sent on user interfaces for
events associated with this queue.

[53] 1 irq_en Interrupt enable.
An interrupt to the host will be sent on host status
updates.
Set to 0 for C2H ST.

[52] 1 wbk_en Writeback enable.
A memory write to the status descriptor will be sent on
host status updates.

[51] 1 mm_chn Set to 0.

[50] 1 bypass If set, the queue will operate under Bypass mode,
otherwise it will be in Internal mode.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=38

Table 2: Software Descriptor Context Structure Definition (cont'd)

Bit Bit Width Field Name Description
[49:48] 2 dsc_sz Descriptor size. 0: 8B, 1:16B; 2:32B; 3:rsv

32B is required for Memory Mapped DMA.
16B is required for H2C Stream DMA.
8B is required for C2H Stream DMA.

[47:44] 4 rng_sz Descriptor ring size index to ring size registers.

[43:36] 8 fnc_id Function ID.
The function to which this queue belongs.

[35] 1 wbi_intvl_en Write back/Interrupt interval.
Enables periodic status updates based on the number
of descriptors processed.
Applicable to Internal mode.
Not Applicable to C2H ST. The writeback interval is
determined by QDMA_GLBL_DSC_CFG.wb_acc_int.

[34] 1 wbi_chk Writeback/Interrupt after pending check.
Enable status updates when the queue has completed
all available descriptors.
Applicable to Internal mode.

[33] 1 fcrd_en Enable fetch credit.
The number of descriptors fetched will be qualified by
the number of credits given to this queue.
Set to 1 for C2H ST.

[32] 1 qen Indicates that the queue is enabled.

[31:17] 15 rsv Reserved.

[16] 1 irq_arm Interrupt Arm. When this bit is set, the queue is allowed
to generate an interrupt.

[15:0] 16 pidx Producer Index.

Hardware Descriptor Context Structure (0x2 C2H and 0x3 H2C)

Table 3: Hardware Descriptor Structure Definition

Bit Bit Width Field Name Description
[47:43] 5 reserved Reserved

[42] 1 fetch_pnd Descriptor fetch pending.

[41] 1 idl_stp_b Queue invalid and no descriptors pending.
This bit is set when the queue is enabled. The bit is
cleared when the queue has been disabled (software
context qen bit) and no more descriptor are pending.

[40] 1 dsc_pnd Descriptors pending. Descriptors are defined to be
pending if the last CIDX completed does not match the
current PIDX.

[39:32] 8 reserved Reserved

[31:16] 16 crd_use Credits consumed. Applicable if fetch credits are
enabled in the software context.

[15:0] 16 cidx Consumer Index of last fetched descriptor.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=39

Credit Descriptor Context Structure

Table 4: Credit Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[31:16] 16 reserved Reserved

[15:0] 16 credt Fetch credits received.
Applicable if fetch credits are enabled in the software
context.

The credit descriptor context is for internal DMA use only and can be read from the indirect bus
for debug. This context stores credits for each queue that have been received through the
Descriptor Credit Interface with the CREDIT_ADD operation. If the credit operation has the
fence bit, credits are added only as the read request for the descriptor is generated.

Descriptor Fetch

Figure 11: Descriptor Fetch Flow

Pointer updates

TM updates

SW/Driver
QDMA

Descriptor
Engine

Customer
logic

Credit return

Descriptor Read req

Read completion

Descriptor Bypass Out

1

2

3

4

5

6

X21062-111020

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=40

1. The descriptor engine is informed of the availability of descriptors through an update to a
queue’s descriptor PIDX. This portion of the context is direct mapped to the
QDMA_DMAP_SEL_H2C_DSC_PIDX and QDMA_DMAP_SEL_C2H_DSC_PIDX address
space.

2. On a PIDX update, the descriptor engine evaluates the number of descriptors available based
on the last fetched consumer index (CIDX). The availability of new descriptors is
communicated to the user logic through the Traffic Manager Status Interface.

3. If fetch crediting is enabled, the user logic is required to provide a credit for each descriptor
that should be fetched.

4. If descriptors are available and either fetch credits are disabled or are non-zero, the
descriptor engine will generate a descriptor fetch to PCIe. The number of fetched descriptors
is further qualified by the PCIe Max Read Request Size (MRRS) and descriptor fetch credits, if
enabled. A descriptor fetch can also be stalled due to insufficient completion space. In each
direction, C2H and H2C are allocated 256 entries for descriptor fetch completions. Each
entry is the width of the datapath. If sufficient space is available, the fetch is allowed to
proceed. A given queue can only have one descriptor fetch pending on PCIe at any time.

5. The host receives the read request and provides the descriptor read completion to the
descriptor engine.

6. Descriptors are stored in a buffer until they can be offloaded. If the queue is configured in
bypass mode, the descriptors are sent to the Descriptor Bypass Output port. Otherwise they
are delivered directly to a DMA engine. Once delivered, the descriptor fetch completion
buffer space is deallocated.

Note: Available descriptors are always a ring size of -2. At any time, the software should not update the
PIDX to more than a ring size of -2.

For example, if queue size is 8, which contains the entry index 0 to 7, the last entry (index 7) is
reserved for status. This index should never be used for the PIDX update, and the PIDX update
should never be equal to CIDX. For this case, if CIDX is 0, the maximum PIDX update would be 6.

Internal Mode

A queue can be configured to operate in Descriptor Bypass mode or Internal mode by setting the
software context bypass field. In internal mode, the queue requires no external user logic to
handle descriptors. Descriptors that are fetched by the descriptor engine are delivered directly to
the appropriate DMA engine and processed. Internal mode allows credit fetching and status
updates to the user logic for run time customization of the descriptor fetch behavior.

Internal Mode Writeback and Interrupts (AXI MM and H2C ST)

Status writebacks and/or interrupts are generated automatically by hardware based on the queue
context. When wbi_intvl_en is set, writebacks/interrupts will be sent based on the interval
selected in the register QDMA_GLBL_DSC_CFG.wb_intvl. Due to the slow nature of interrupts,
in interval mode, interrupts may be late or skip intervals. If the wbi_chk context bit is set, a
writeback/interrupt will be sent when the descriptor engine has detected that the last descriptor

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=41

at the current PIDX has completed. It is recommended the wbi_chk bit be set for all internal
mode operation, including when interval mode is enabled. An interrupt will not be generated
until the irq_arm bit has been set by software. Once an interrupt has been sent the irq_arm
bit is cleared by hardware. Should an interrupt be needed when the irq_arm bit is not set, the
interrupt will be held in a pending state until the irq_arm bit is set.

Descriptor completion is defined to be when the descriptor data transfer has completed and its
write data has been acknowledged on AXI (H2C bresp for AXI MM, Valid/Ready of ST), or been
accepted by the PCIe Controller’s transaction layer for transmission (C2H MM).

Descriptor Bypass Mode

Descriptor Bypass mode also supports crediting and status updates to user logic. In addition,
Descriptor Bypass mode allows the user logic to customize processing of descriptors and status
updates. Descriptors fetched by the descriptor engine are delivered to user logic through the
descriptor bypass out interface. This allows user logic to pre-process or store the descriptors, if
desired. On the descriptor bypass out interface, the descriptors can be a custom format (adhering
to the descriptor size). To perform DMA operations, the user logic drives descriptors (must be
QDMA format) into the descriptor bypass input interface.

If the user logic already has descriptors, which must be in QDMA format, it can be provided
directly to the DMA through the descriptor bypass ports. The user logic does not need to fetch
descriptors from the host if the descriptors are already in the user logic. The user logic should not
send credits through the descriptor credit interface.

Descriptor Bypass Mode Writeback/Interrupts

In bypass mode, the user logic has explicit control over status updates to the host, and marker
responses back to user logic. Along with each descriptor submitted to the Descriptor Bypass
Input Port for a Memory Mapped Engine (H2C and C2H) or H2C Stream DMA engine, there is a
CIDX, and sdi field. The CIDX is used to identify which descriptor has completed in any status
update (host writeback, marker response, or coalesced interrupt) generated at the completion of
the descriptor. If the sdi field of the descriptor was input, then a writeback to the host will be
generated if the context wbk_en bit is set. An interrupt can also be sent if the sdi bit is set if the
context irq_en and irq_arm bits are set.

If interrupts are enabled, the user logic must monitor the traffic manager output for the
irq_arm. After the irq_arm bit has been observed for the queue, a descriptor with the sdi bit
will be sent to the DMA. Once a descriptor with the sdi bit has been sent, another irq_arm
assertion must be observed before another descriptor with the sdi bit can be sent. If the user
sets the sdi bit when the arm bit has not be properly observed, an interrupt may or may not be
sent, and software might hang indefinitely waiting for an interrupt. When interrupts are not
enabled, setting the sdi bit has no restriction. However excessive writeback events can severely
reduce the descriptor engine performance and consume write bandwidth to the host.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=42

Descriptor completion is defined to be when the descriptor data transfer has completed and its
write data has been acknowledged on AXI4 (H2C bresp for AXI MM, Valid/Ready of ST), or
been accepted by the PCIe Controller’s transaction layer for transmission (C2H MM).

Marker Response

Marker responses can be generated for any descriptor by setting the mrkr_req bit. Marker
responses are generated after the descriptor is completed. Similar to host writebacks, excessive
marker response requests can reduce descriptor engine performance. Marker responses to the
user logic can also be sent with the sbi bit if configured in the context. The Marker responses
are sent on Queue Status ports which can be identified by the queue id.

Descriptor completion is defined as when the descriptor data transfer has completed and its
write data is acknowledged on AXI (H2C bresp for AXI MM, Valid/Ready of ST), or is accepted
by the PCIe Controller’s transaction layer for transmission (C2H MM).

Traffic Manager Output Interface

The traffic manager interface provides details of a queue’s status to user logic, allowing user logic
to manage descriptor fetching and execution. In normal operation, for an enabled queue, each
time the irq_arm bit is asserted or PIDX of a queue is updated, the descriptor engine asserts
tm_dsc_sts_valid. The tm_dsc_sts_avl signal indicates the number of new descriptors
available since the last update. Through this mechanism, user logic can track the amount of work
available for each queue. This can be used for prioritizing fetches through the descriptor engine’s
fetch crediting mechanism or other user optimizations. On the valid cycle, the
tm_dsc_sts_irq_arm indicates that the irq_arm bit was zero and was set. In bypass mode,
this is essentially a credit for an interrupt for this queue. When a queue is invalidated by software
or due to error, the tm_dsc_sts_qinv bit will be set. If this bit is observed, the descriptor
engine will have halted new descriptor fetches for that queue. In this case, the contents on
tm_dsc_sts_avl indicate the number of available fetch credits held by the descriptor engine.
This information can be used to help user logic reconcile the number of credits given to the
descriptor engine, and the number of descriptors it should expect to receive. Even after
tm_dsc_sts_qin is asserted, valid descriptors already in the fetch pipeline will continue to be
delivered to the DMA engine (internal mode) or delivered to the descriptor bypass output port
(bypass mode).

Other fields of the tm_dsc_sts interface identify the queue id, DMA direction (H2C or C2H),
internal or bypass mode, stream or memory mapped mode, queue enable status, queue error
status, and port ID.

While the tm_dsc_sts interface is a valid/ready interface, it should not be back-pressured for
optimal performance. Since multiple events trigger a tm_dsc_sts cycle, if internal buffering is
filled, descriptor fetching will be halted to prevent generation of new events.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=43

Descriptor Credit Input Interface

The credit interface is relevant when a queue’s fcrd_en context bit is set. It allows the user
logic to prioritize and meter descriptors fetched for each queue. You can specify the DMA
direction, qid, and credit value. For a typical use case, the descriptor engine uses credit inputs to
fetch descriptors. Internally, credits received and consumed are tracked for each queue. If credits
are added when the queue is not enabled, the credits will be returned through the Traffic
Manager Output Interface with tm_dsc_sts_qinv asserted, and the credits in
tm_dsc_sts_avl are not valid. Monitor tm_dsc_sts interface to keep an account for each
queue on how many credits are consumed.

Errors

Errors can potentially occur during both descriptor fetch and descriptor execution. In both cases,
once an error is detected for a queue it will invalidate the queue, log an error bit in the context,
stop fetching new descriptors for the queue which encountered the error, and can also log errors
in status registers. If enabled for writeback, interrupts, or marker response, the DMA will
generate a status update to these interfaces. Once this is done, no additional writeback,
interrupts, or marker responses (internal mode) will be sent for the queue until the queue context
is cleared. As a result of the queue invalidation due to an error, a Traffic Manager Output cycle
will also be generated to indicate the error and queue invalidation. After the queue is invalidated,
if there is an error you can determine the cause by reading the error registers and context for
that queue. You must clear and remove that queue, and then add the queue back later when
needed.

Although additional descriptor fetches will be halted, fetches already in the pipeline will continue
to be processed and descriptors will be delivered to a DMA engine or Descriptor Bypass Out
interface as usual. If the descriptor fetch itself encounters an error, the descriptor will be marked
with an error bit. If the error bit is set, the contents of the descriptor should be considered
invalid. It is possible that subsequent descriptor fetches for the same queue do not encounter an
error and will not have the error bit set.

Memory Mapped DMA
In memory mapped DMA operations, both the source and destination of the DMA are memory
mapped space. In an H2C transfer, the source address belongs to PCIe address space while the
destination address belongs to AXI MM address space. In a C2H transfer, the source address
belongs to AXI MM address space while the destination address belongs to PCIe address space.
PCIe-to-PCIe, and AXI MM-to-AXI MM DMAs are not supported. Aside from the direction of the
DMA, transfer H2C and C2H DMA behave similarly and share the same descriptor format.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=44

Operation

The memory mapped DMA engines (H2C and C2H) are enabled by setting the run bit in the
Memory Mapped Engine Control Register. When the run bit is deasserted, descriptors can be
dropped. Any descriptors that have already started the source buffer fetch will continue to be
processed. Reassertion of the run bit will result in resetting internal engine state and should only
be done when the engine is quiesced. Descriptors are received from either the descriptor engine
directly or the Descriptor Bypass Input interface. Any queue that is in internal mode should not
be given descriptors through the Descriptor Bypass Input interface. Any descriptor sent to an
MM engine that is not running will be dropped. For configurations where a mix of Internal Mode
queues and Bypass Mode queues are enabled, round robin arbitration is performed to establish
order.

The DMA Memory Mapped engine first generates the read request to the source interface,
splitting the descriptor at alignment boundaries specific to the interface. Both PCIe and AXI read
interfaces can be configured to split at different alignments. Completion space for read data is
preallocated when the read is issued. Likewise for the write requests, the DMA engine will split
at appropriate alignments. On the AXI interface each engine will use a single AXI ID. The DMA
engine will reorder the read completion/write data to the order in which the reads were issued.
Once sufficient read completion data is received the write request will be issued to the
destination interface in the same order that the read data was requested. Before the request is
retired, the destination interfaces must accept all the write data and provide a completion
response. For PCIe the write completion is issued when the write request has been accepted by
the transaction layer and will be sent on the link next. For the AXI Memory Mapped interface,
the bresp is the completion criteria. Once the completion criteria has been met, the host
writeback, interrupt and/or marker response is generated for the descriptor as appropriate.

The DMA Memory Mapped engines also support the no_dma field of the Descriptor Bypass
Input, and zero-length DMA. Both cases are treated identically in the engine. The descriptors
propagate through the DMA engine as all other descriptors, so descriptor ordering within a
queue is still observed. However no DMA read or write requests are generated. The status
update (writeback, interrupt, and/or marker response) for zero-length/no_dma descriptors is
processed when all previous descriptors have completed their status update checks.

Errors

There are two primary error categories for the DMA Memory Mapped Engine. The first is an
error bit that is set with an incoming descriptor. In this case, the DMA operation of the descriptor
is not processed but the descriptor will proceed through the engine to status update phase with
an error indication. This should result in a writeback, interrupt, and/or marker response
depending on context and configuration. It will also result in the queue being invalidated. The
second category of errors for the DMA Memory Mapped Engine are errors encountered during
the execution of the DMA itself. This can include PCIe read completions errors, and AXI bresp
errors (H2C), or AXI bresp errors and PCIe write errors due to bus master enable or function
level reset (FLR), as well as RAM ECC errors. The first enabled error is logged in the DMA engine.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=45

Please refer to the Memory Mapped Engine error logs. If an error occurs on the read, the DMA
write will be aborted if possible. If the error was detected when pulling write data from RAM, it is
not possible to abort the request. Instead invalid data parity will be generated to ensure the
destination is aware of the problem. After the descriptor which encountered the error has gone
through the DMA engine, it will proceed to generate status updates with an error indication. As
with descriptor errors, it will result in the queue being invalidated.

AXI Memory Mapped Descriptor for H2C and C2H
(32B)
Table 5: AXI Memory Mapped Descriptor Structure for H2C and C2H

Bit Bit Width Field Name Description
[255:192] 64 reserved Reserved

[191:128] 64 dst_addr Destination Address

[127:92] 36 reserved Reserved

[91:64] 28 lengthInByte Read length in byte

[63:0] 64 src_addr Source Address

Internal mode memory mapped DMA must configure the descriptor queue to be 32B and follow
the above descritor format. In bypass mode, the descriptor format is defined by the user logic,
which must drive the H2C or C2H MM bypass input port.

AXI Memory Mapped Writeback Status Structure for H2C and C2H

The MM writeback status register is located after the last entry of the (H2C or C2H) descriptor.

Table 6: AXI Memory Mapped Writeback Status Structure for H2C and C2H

Bit Bit Width Field Name Description
[63:48] 16 reserved Reserved

[47:32] 16 pidx Producer Index at time of writeback

[31:16] 16 cidx Consumer Index

[15:2] 14 reserved Reserved

[1:0] 2 err Error
bit 1: Descriptor fetch error
bit 0: DMA error

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=46

Stream Mode DMA

H2C Stream Engine

The H2C Stream Engine is responsible for transferring streaming data from the host and
delivering it to the user logic. The H2C Stream Engine operates on H2C stream descriptors. Each
descriptor specifies the start address and the length of the data to be transferred to the user
logic. The H2C Stream Engine parses the descriptor and issues read requests to the host over
PCIe, splitting the read requests at the MRRS boundary. There can be up to 256 requests
outstanding in the H2C Stream Engine to hide the host read latency. The H2C Stream Engine
implements a re-ordering buffer of 32 KB to re-order the TLPs as they come back. Data is issued
to the user logic in order of the requests sent to PCIe.

If the status descriptor is enabled in the associated H2C context, the engine could additionally
send a status write back to host once it is done issuing data to the user logic.

Internal and Bypass Modes

Each queue in QDMA can be programmed in either of the two H2C Stream modes: internal and
bypass. This is done by specifying the mode in the queue context. The H2C Stream Engine knows
whether the descriptor being processed is for a queue in internal or bypass mode.

The following figures show the internal mode and bypass mode flows.

Figure 12: H2C Internal Mode Flow

SW QDMA

descriptor fetch

pointer updates

descriptor completion

DMA read

DMA completion

User

payload on AXI-STWrite status descriptor

X20643-062118

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=47

Figure 13: H2C Bypass Mode Flow

SW QDMA

Credit return

Pointer updates

User

Traffic Manager pointer updates

Descriptor fetch

Descriptor completion
Descriptor to bypass out

Send descriptor to

bypass in

DMA read

DMA completion
Payload on AXI-ST

Write status descriptor

X20644-062118

For a queue in internal mode, after the descriptor is fetched from the host, it is fed straight to the
H2C Stream Engine for processing. In this case, a packet of data cannot span over multiple
descriptors. Thus for a queue in internal mode, each descriptor generates exactly one AXI4-
Stream packet on the QDMA H2C AXI4-Stream output. If the packet is present in host memory
in non-contiguous space, then it has to be defined by more than one descriptor and this requires
that the queue be programmed in bypass mode.

In the bypass mode, after the descriptors are fetched from the host, they are sent straight to the
user logic via the QDMA bypass output port. The QDMA does not parse these descriptors at all.
The user logic can store these descriptors and then send the required information from these
descriptors back to QDMA using the QDMA H2C Stream descriptor bypass-in interface. Using
this information, the QDMA constructs descriptors which are then fed to the H2C Stream Engine
for processing.

When fcrd_en is enabled in the software context, DMA will wait for the user application to
provide credits, "Credit return" in the picture above. When fcrd_enis not set, the DMA uses a
pointer update, fetches descriptors and sends the pointer out. The user application should not
send in credits. "Credit return" in the above picture does not apply in this case.

The following are the advantages of using the bypass mode:

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=48

• The user logic can have a custom descriptor format. This is possible because QDMA does not
parse descriptors for queues in bypass mode. The user logic parses these descriptors and
provides the information required by the QDMA on the H2C Stream bypass-in interface.

• Immediate data can be passed from the software to the user logic without DMA operation.

• The user logic can do traffic management by sending the descriptors to the QDMA when it is
ready to sink all the data. Descriptors can be cached in local RAM.

• Perform address translation.

There are some requirements imposed on the user logic when using the bypass mode. Because
the bypass mode allows a packet to span multiple descriptors, the user logic needs to indicate to
QDMA which descriptor marks the Start-Of-Packet (SOP) and which marks the End-Of-Packet
(EOP). At the QDMA H2C Stream bypass-in interface, among other pieces of information, the
user logic needs to provide: Address, Length, SOP, and EOP. It is required that once the user logic
feeds SOP descriptor information into QDMA, it must eventually feed EOP descriptor
information also. Descriptors for these multi-descriptor packets must be fed in sequentially.
Other descriptors not belonging to the packet must not be interleaved within the multi-
descriptor packet. The user logic must accumulate the descriptors up to the EOP descriptor,
before feeding them back to QDMA. Not doing so can result in a hang. The QDMA will generate
a TLAST at the QDMA H2C AXI Stream data output once it issues the the last beat for the EOP
descriptor. This is guaranteed because the user is required to submit the descriptors for a given
packet sequentially.

The H2C stream interface is shared by all the queues, and has the potential for a head of line
blocking issue if the user logic does not reserve the space to sink the packet. Quality of service
can be severely affected if the packet sizes are large. The Stream engine is designed to saturate
PCIe for packet sizes as low as 128B, so Xilinx recommends that you restrict the packet size to be
host page size or maximum transfer unit as required by the user application.

A performance control provided in the H2C Stream Engine is the ability to stall requests from
being issued to the PCIe RQ/RC if a certain amount of data is outstanding on the PCIe side as
seen by the H2C Stream Engine. To use this feature, the SW must program a threshold value in
the H2C_REQ_THROT (0xE24) register. After the H2C Stream Engine has more data outstanding
to be delivered to the user logic than this threshold, it stops sending further read requests to the
PCIe RQ/RC. This feature is disabled by default and can be enabled with the H2C_REQ_THROT
(0xE24) register. This feature helps improve the C2H Stream performance, because the H2C
Stream Engine can make requests at a much faster rate than the C2H Stream Engine. This can
potentially use up the PCIe side resources for H2C traffic which results in C2H traffic suffering.
The H2C_REQ_THROT (0xE24) register also allows the SW to separately enable and program the
threshold of the maximum number of read requests that can be outstanding in the H2C Stream
engine. Thus, this register can be used to individually enable and program the thresholds for the
outstanding requests and data in the H2C Stream engine.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=49

H2C Stream Descriptor (16B)

Table 7: H2C Descriptor Structure

Bit Bit Width Field Name Description
[127:96] 32 addr_h Address High. Higher 32 bits of the source address in

Host

[95:64] 32 addr_l Address Low. Lower 32 bits of the source address in
Host

[63:48] 16 reserved Reserved

[47:32] 16 len Packet Length. Length of the data to be fetched for this
descriptor.
This is also the packet length since in internal mode, a
packet cannot span multiple descriptors.
The maximum length of the packet can be 64K-1 bytes.

[31:0] 32 metadata Metadata. QDMA passes this field on the H2C-ST TUSER
along with the data on every beat. For a queue in
internal mode, it can be used to pass messages from
SW to user logic along with the data.

This H2C descriptor format is only applicable for internal mode. For bypass mode, the user logic
can define its own format as needed by the user application.

Descriptor Metadata

Similar to bypass mode, the internal mode also provides a mechanism to pass information directly
from the software to the user logic. In addition to address and length, the H2C Stream descriptor
also has a 32b metadata field. This field is not used by the QDMA for the DMA operation.
Instead, it is passed on to the user logic on the H2C AXI4-Stream tuser on every beat of the
packet. Passing metadata on the tuser is not supported for a queue in bypass mode and
consequently there is no input to provide the metadata on the QDMA H2C Stream bypass-in
interface.

Zero Length Descriptor

The length field in a descriptor can be zero. In this case, the H2C Stream Engine will issue a zero
byte read request on PCIe. After the QDMA receives the completion for the request, the H2C
Stream Engine will send out one beat of data with tlast on the QDMA H2C AXI4-Stream
interface. The zero byte packet will be indicated on the interface by setting the zero_b_dma bit
in the tuser. The user logic must set both the SOP and EOP for a zero byte descriptor. If not
done, an error will be flagged by the H2C Stream Engine.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=50

H2C Stream Status Descriptor Writeback

When feeding the descriptor information on the bypass input interface, the user logic can
request the QDMA to send a status write back to the host when it is done fetching the data from
the host. The user logic can also request that a status be issued to it when the DMA is done.
These behaviors can be controlled using the sdi and mrkr_req inputs in the bypass input
interface.

The H2C writeback status register is located after the last entry of the H2C descriptor list.

Note: The format of the H2C-ST status descriptor written to the descriptor ring is different from that
written into the interrupt coalesce entry.

Table 8: AXI4-Stream H2C Writeback Status Descriptor Structure

Bit Bit Width Field Name Description
[63:32] 32 reserved Reserved

[47:32] 16 pidx Producer Index

[31:16] 16 cidx Consumer Index

[15:2] 14 reserved Reserved (Producer Index)

[1:0] 2 error Error
0x0 : No Error
0x1 : Descriptor or data error was encountered on this
queue
0x2 and 0x3 : Reserved

H2C Stream Data Aligner

The H2C engine has a data aligner that aligns the data to zero Bytes (0B) boundary before issuing
it to the user logic. This allows the start address of a descriptor to be arbitrarily aligned and still
receive the data on the H2C AXI4-Stream data bus without any holes at the beginning of the
data. The user logic can send a batch of descriptors from SOP to EOP with arbitrary address and
length alignments for each descriptor. The aligner will align and pack the data from the different
descriptors and will issue a continuous stream of data on the H2C AXI4-Stream data bus. The
tlast on that interface will be asserted when the last beat for the EOP descriptor is being
issued.

Handling Descriptors With Errors

If an error is encountered while fetching a descriptor, the QDMA Descriptor Engine flags the
descriptor with error. For a queue in internal mode, the H2C Stream Engine handles the error
descriptor by not performing any PCIe or DMA activity. Instead, it waits for the error descriptor
to pass through the pipeline and forces a writeback after it is done. For a queue in bypass mode,
it is the responsibility of the user logic to not issue a batch of descriptors with an error descriptor.
Instead, it must send just one descriptor with error input asserted on the H2C Stream bypass-in
interface and set the SOP, EOP, no_dma signal, and sdi or mrkr-req signal to make the H2C
Stream Engine send a writeback to Host.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=51

Handling Errors in Data From PCIe

If the H2C Stream Engine encounters an error coming from PCIe on the data, it keeps the error
sticky across the full packet. The error is indicated to the user on the err bit on the H2C Stream
Data Output. Once the H2C Stream sends out the last beat of a packet that saw a PCIe data
error, it also sends a Writeback to the Software to inform it about the error.

C2H Stream Engine

The C2H Stream Engine DMA writes the stream packets to the host memory into the descriptor
provided by the host driver through the C2H descriptor queue.

The Prefetch Engine is responsible for calculating the number of descriptors needed for the DMA
that is writing the packet. The buffer size is fixed per queue basis. For internal and cached bypass
mode, the prefetch module can fetch up to 512 descriptors for a maximum of 64 different
queues at any given time.

The Prefetch Engine also offers low latency feature pfch_en = 1, where the engine can
prefetch up to qdma_c2h_pfch_cfg.num_pfch descriptors upon receiving the packet, so that
subsequent packets can avoid the PCIe latency.

The QDMA requires software to post full ring size so the C2H stream engine can fetch the
needed number of descriptors for all received packets. If there are not enough descriptors in the
descriptor ring, the QDMA will stall the packet transfer. For performance reasons, the software is
required to post the PIDX as soon as possible to ensure there are always enough descriptors in
the ring.

C2H stream packet data length is limited to 31 * descriptor size.

C2H Stream Descriptor (8B)

Table 9: AXI4-Stream C2H Descriptor Structure

Bit Bit Width Field Name Description
[63:0] 64 addr Destination Address

C2H Prefetch Engine

The prefetch engine interacts between the descriptor fetch engine and C2H DMA write engine
to pair up the descriptor and its payload.

Table 10: C2H Prefetch Context Structure

Bit Bit Width Field Name Description
[45] 1 valid Context is valid

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=52

Table 10: C2H Prefetch Context Structure (cont'd)

Bit Bit Width Field Name Description
[44:29] 16 sw_crdt Software credit

This field is written by the hardware for internal use.
The software must initialize it to 0 and then treat it as
read-only.

[28] 1 pfch Queue is in prefetch
This field is written by the hardware for internal use.
The software must initialize it to 0 and then treat it as
read-only.

[27] 1 pfch_en Enable prefetch

[26] 1 err Error detected on this queue
During the descriptor per-fetch process, if there are
any errors detected it will be logged here. This will be
per queue basis.

[25:8] 18 reserved Reserved

[7:5] 3 port_id Port ID

[4:1] 4 buf_size_idx Buffer size index

[0] 1 bypass C2H is in bypass mode

C2H Stream Modes

The C2H descriptors can be from the descriptor fetch engine or C2H bypass input interfaces.
The descriptors from the descriptor fetch engine are always in cache mode. The prefetch engine
keeps the order of the descriptors to pair with the C2H data packets from the user. The
descriptors from the C2H bypass input interfaces have one interface for both simple mode and
cache mode (note that both simple bypass and cache bypass use the same interface). For simple
mode, the user application keeps the order of the descriptors to pair with the C2H data packets.
For cache mode, the prefetch engine keeps the order of the descriptors to pair with the C2H
data packet from the user.

The prefetch context has a bypass bit. When it is 1'b1, the user application sends the credits for
the descriptors. When it is 1'b0, the prefetch engine handles the credits for the descriptors.

The descriptor context has a bypass bit. When it is 1'b1, the descriptor fetch engine sends out
the descriptors on the C2H bypass output interface. The user application can convert it and later
loop it back to the QDMA on the C2H bypass input interface. When the bypass context bit is
1'b0, the descriptor fetch engine sends the descriptors to the prefetch engine directly.

On a per queue basis, three cases are supported.

Note: If you already have the descriptor cached on the device, there is no need to fetch one from the host
and you should follow the simple bypass mode for the C2H Stream application. In simple bypass mode, do
not provide credits to fetch the descriptor, and instead, you need to send in the descriptor on the
descriptor bypass interface.

Note: AXI-Stream C2H Simple Bypass mode and Cache Bypass mode both use same bypass in ports
(c2h_byp_in_st_csh_* ports).

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=53

Table 11: C2H Stream Modes

c2h_byp_in desc_ctxt.desc_byp pfch_ctxt.bypass
Simple bypass mode simple byp in 1 1

Cache bypass mode cache byp in 1 0

Cache internal mode N/A 0 0

Simple Bypass Mode

For simple bypass mode, the descriptor fetch engine sends the descriptors out on the C2H
bypass out interface. The user application converts the descriptor and loops it back to the
QDMA on the simple mode C2H bypass input interface. The user application sends the credits
for the descriptors, and it also keeps the order of the descriptors.

For simple bypass transfer to work, a prefetch tag is needed and it can be fetched from the
QDMA IP.

The user application must request a prefetch tag before sending any traffic for a simple bypass
queue through the C2H ST engine. Invalid queues or non-bypass queues should not request any
tags using this method, since it may reduce performance by freezing tags that never get used.

The prefetch tag needs to be reserved upfront before any traffic can start. In most applications,
one prefetch tag per host target is required. In Simple Bypass mode, the tag is not tied to any
descriptor ring.

The user application writes to the MDMA_C2H_PFCH_BYP_QID (0x1408) register with the qid
for a simple bypass queue, then reads from MDMA_C2H_PFCH_BYP_TAG (0x140C) register to
retrieve the corresponding prefetch tag. This tag must be driven with all bypass_in descriptors for
as long as the current qid is valid. If a current qid is invalidated, a new prefetch tag must be
requested with a valid qid.

Prefetched tag must be assigned to input port c2h_byp_in_st_csh_pfch_tag[6:0] for all
transfers. The prefetch tag points to the CAM that stores the active queues in the prefetch
engine. Also the qid that was used to prefetch tag needs to be used as the qid for all simple
bypass packets. Assign the qid to s_axis_c2h_ctrl_qid .

The steps to fetch the prefetch tag are as follows:

1. Software instruction:

a. Initialize a queue (qid).

b. Write to MDMA_C2H_PFCH_BYP_QID 0x1408 with valid qid.

c. Read MDMA_C2H_PFCH_BYP_TAG 0x140C to obtain the prefetch tag.

d. The prefetch tag and the qid that was used to fetch the tag should be used for all simple
bypass packets. This information needs to be communicated to the user side.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=54

2. User side:

a. Assign the qid used to fetch the tag to s_axis_c2h_ctrl_qid.

b. Assign the actual qid of the packet transfer to s_axis_c2h_cmpt_ctrl_qid.

c. Assign the prefetch tag value to c2h_byp_in_st_csh_pfch_tag.

d. Assign the actual qid of the packet transfer to c2h_byp_in_st_csh_qid.

Note: The c2h_byp_in_st_csh_pfch_tag[6:0] port can have the same prefetch_tag for as long
as the original qid is valid.

Simple bypass flow shown below does not include fetch of the "prefetch_tag".

Figure 14: C2H Simple Bypass Mode Flow

Pointer updates

TM updates

SW/Driver QDMA User logic

Credit return

DMA Read req

DMA completion
Desc to byp out

Bypass in DMA

Descriptor

DMA Write Payload
Payload and CMPT on

AXI Streaming

DMA Write CMPT

Interrupt

X20604-052620

Note: No sequence is required between payload and completion packets.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=55

If you already have descriptors, there is no need to update the pointers or provide credits.
Instead, send the descriptors in the descriptor bypass interface, and send the data and
Completion (CMPT) packets.

Cache Bypass Mode

For cache bypass mode, the descriptor fetch engine sends the descriptors out on the C2H bypass
output interface. The user application converts the descriptor and loops it back to the QDMA on
the cache mode C2H bypass input interface. The prefetch engine sends the credits for the
descriptors, and it keeps the order of the descriptors.

For cache internal mode, the descriptor fetch engine sends the descriptors to the prefetch
engine. The prefetch engine sends out the credits for the descriptors and keeps the order of the
descriptors. In this case, the descriptors do not go out on the C2H bypass output and do not
come back on the C2H bypass input interfaces.

In cache bypass or internal mode, prefetch mode can be turned on which will prefetch the
descriptor and will reduce transfer latency significantly. When prefetch mode is enabled, the user
application can not send credits as input in QDMA Descriptor Credit input ports. Credits for all
queues will be maintained by prefetch engine.

In cache bypass mode c2h_byp_out_pfch_tag[6:0] signal should be looped back as an
input c2h_byp_in_st_csh_pfch_tag[6:0]. The prefetch tag points to the cam that stores
the active queues in the prefetch engine.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=56

Figure 15: C2H Cache Bypass Mode Flow

Pointer updates

TM updates

SW/Driver QDMA User logic

DMA Desc Read req

DMA completion
Desc to byp out

Bypass in DMA

Descriptor

DMA Write Payload

Payload and CMPT on

AXI Streaming

DMA Write CMPT

Interrupt

X24021-052620

Note: No sequence is required between payload and completion packets.

C2H Stream Packet Type

The following are some of the different C2H stream packets.

Regular Data Packet

The regular C2H data packet can be multiple bits.

• s_axis_c2h_ctrl_qid = qid of the packet

• s_axis_c2h_ctrl_len = length of the packet

• s_axis_c2h_mty = empty byte in the beat

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=57

Immediate Data Packet

The user logic can mark a data packet as 'immediate' to write to just the Completion ring without
having a corresponding data packet transfer to the host. For the immediate data packet, the
QDMA will not send the data payload, but it will write to the CMPT Queue. The immediate
packet does not consume a descriptor.

The following is the setting of the immediate data packet:

• 1 beat of data

• s_axis_c2h_ctrl_imm_data = 1’b1

• s_axis_c2h_ctrl_len = datapath width in bytes (i.e., 64 if datawidth is 512 bits)

• s_axis_c2h_mty = 0

Marker Packet

The C2H Stream Engine of the QDMA provides a way for the user logic to insert a marker into
the QDMA along with a C2H packet. This marker then propagates through the C2H Engine
pipeline and comes out on the C2H Stream Descriptor Bypass Out interface. The marker is
inserted by setting the marker bit in the C2H Stream Control input. The marker response is
indicated by QDMA to the user logic by setting the mrkr_rsp bit on the C2H Stream Descriptor
Bypass Out interface. For a marker, QDMA does not send out a payload packet but still writes to
the Completion Ring. Not all marker responses are generated because of a corresponding marker
request. The QDMA sometimes generates marker responses when it encounters exceptional
events. See the following section for details about when QDMA internally generates marker
responses.

The primary purpose of giving the user logic the ability of sending in a marker into QDMA is to
determine when all the traffic prior to the marker has been flushed. This can be used in the
shutdown sequence in the user logic. Although not a requirement, the marker must be sent by
the user logic with the user_trig bit set when sending in the marker into QDMA. This allows
the QDMA to generate an interrupt and truly ensures that all traffic prior to the marker is flushed
out. The QDMA Completion Engine takes the following actions when it receives a marker from
the user logic:

• Sends the Completion that came along with the marker to the C2H Stream Completion Ring

• Generates Status Descriptor if enabled (if user_trig was set when maker was inserted)

• Generates an Interrupt if enabled and not outstanding

• Sends the marker response. If an Interrupt was not sent due to it being enabled but
outstanding, the ‘retry_mrkr’ bit in the marker response is set to inform the user that an
Interrupt could not be sent for this marker request. See the C2H Stream Descriptor Bypass
Output interface description for details of these fields.

The following is the setting of the marker data packet:

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=58

• 1 beat of data

• s_axis_c2h_ctrl_marker = 1’b1

• s_axis_c2h_ctrl_len = data width (ex. 64 if data width is 512 bits)

• s_axis_c2h_mty = 0

The immediate data packet and the marker packet don't consume the descriptor, but they write
to the C2H Completion Ring. The software needs to size the C2H Completion Ring large enough
to accommodate the outstanding immediate packets and the marker packets.

Zero Length Packet

The length of the data packet can be 0. On the input, the user needs to send 1 beat of data. The
zero length packet consumes the descriptor. The QDMA will send out 1DW payload data.

The following is the setting of the zero length packet:

• 1 beat of data

• s_axis_c2h_ctrl_len = 0

• s_axis_c2h_mty = 0

Disable Completion Packet

The user can disable the completion for a specific packet. The QDMA will DMA the payload, but
it will not write to the C2H Completion Ring.

The following is the setting of the disable completion packet:

• s_axis_c2h_ctrl_disable_cmp = 1

Handling Descriptors With Errors

If an error is encountered while fetching a descriptor (in pre-fetch or regular mode), the QDMA
Descriptor Engine flags the descriptor with error. For a queue in internal mode, the C2H Stream
Engine handles the error descriptor by not performing any PCIe or DMA activity. Instead, it waits
for the error descriptor to pass through the pipeline and forces a writeback after it is done. For a
queue in bypass mode, it is the responsibility of the user logic to not issue a batch of descriptors
with an error descriptor. Instead, it must send just one descriptor with error input asserted on the
C2H Stream bypass-in interface and set the SOP, EOP, no_dma signal, and sdi or mrkr_req
signal to make the C2H Stream Engine send a writeback to Host.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=59

C2H Completion
When the DMA write of the data payload is done, the QDMA writes the CMPT packet into the
CMPT queue. Besides the user defined data, the CMPT packet also includes some other
information, such as error, color, and the length. It also has a desc_used bit to indicate if the
packet consumes a descriptor. A C2H data packet of immediate-data or marker type does not
consume any descriptor.

C2H Completion Context Structure

The completion context is used by the completion engine.

Table 12: C2H Completion Context Structure Defintion

Bit Bit Width Field Name Description
[127:126] 2 rsvd Reserved

[125] 1 full_upd Full Update
If reset, then the Completion-CIDX-update is allowed to
update only the CIDX in this context.
If set, then the Completion CIDX update can update the
following fields in this context:
timer_ix
counter_ix
trig_mode
en_int
en_stat_desc

[124] 1 timer_running If set, it indicates that a timer is running on this queue.
This timer is for the purpose of C2H interrupt
moderation. Ideally, the software must ensure that
there is no running timer on this QID before shutting
the queue down. This is a field used internally by HW.
The SW must initialize it to 0 and then treat it as read-
only.

[123] 1 user_trig_pend If set, it indicates that a user logic initiated interrupt is
pending to be generated. The user logic can request an
interrupt through the s_axis_c2h_ctrl_user_trig signal.
This bit is set when the user logic requests an interrupt
while another one is already pending on this QID.
When the next Completion CIDX update is received by
QDMA, this pending bit may or may not generate an
interrupt depending on whether or not there are
entries in the Completion ring waiting to be read. This
is a field used internally by HW. The SW must initialize it
to 0 and then treat it as read-only.

[122:121] 2 err Indicates that the C2H Completion Context is in error.
This is a field written by HW. The SW must initialize it to
0 and then treat it as read-only. The following errors
are indicated here:
0: No error.
1: A bad CIDX update from software was detected.
2: A descriptor error was detected.
3: A Completion packet was sent by the user logic when
the Completion Ring was already full.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=60

Table 12: C2H Completion Context Structure Defintion (cont'd)

Bit Bit Width Field Name Description
[120] 1 valid Context is valid.

[119:104] 16 cidx Current value of the hardware copy of the Completion
Ring Consumer Index.

[103:88] 16 pidx Completion Ring Producer Index. This is a field written
by HW. The SW must initialize it to 0 and then treat it as
read-only.

[87:86] 2 desc_size Completion Entry Size:
0: 8B
1: 16B
2: 32B
3: Unknown

[85:28] 58 baddr_64 Base address of Completion ring – bit [63:6].

[27:24] 4 qsize_idx Completion ring size index to ring size registers.

[23] 1 color Color bit to be used on Completion.

[22:21] 2 int_st Interrupt State:
0: ISR
1: TRIG
This is a field used internally by HW. The SW must
initialize it to 0 and then treat it as read-only.
Because it is out of reset, the HW initializes into ISR
state, it is not sensitive to trigger events. If SW desires
interrupts or status writes, it must send an initial
Completion CIDX update. This makes the HW move into
TRIG state and as a result it becomes sensitive to any
trigger conditions.

[20:17] 4 timer_idx Index to timer register for TIMER based trigger modes.

[16:13] 4 counter_idx Index to counter register for COUNT based trigger
modes.

[12:5] 8 fnc_id Function ID

[4:2] 3 trig_mode Interrupt and Completion Status Write Trigger Mode:
0x0: Disabled
0x1: Every
0x2: User_Count
0x3: User
0x4: User_Timer
0x5: User_Timer_Count

[1] 1 en_int Enable Completion interrupts.

[0] 1 en_stat_desc Enable Completion Status writes.

C2H Completion Status Structure

The C2H completion status is located at the last location of completion ring, that is, Completion
Ring Base Address + (Size of the completion length (8,16,32) * (Completion Ring Size – 1)).

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=61

When C2H Streaming Completion is enabled, after the packet is transferred, CMPT entry and
CMPT status are written to C2H Completion ring. PIDX in the Completion status can be used to
indicate the currently available completion to be processed.

Table 13: AXI4-Stream C2H Completion Status Structure

Bit Bit Width Field Name Description
[63:35] 29 Reserve Reserved

[34:33] 2 int_state Interrupt State.
0: ISR
1: TRIG

[32] 1 color Color status bit

[31:16] 16 cidx Consumer Index (RO)

[15:0] 16 pidx Producer Index

C2H Completion Entry Structure

The following is the C2H Completion ring entry structure for User format when the data format
bit is set to 1’b1.

Table 14: C2H Completion Entry User Format Structure

Name Size Index
User defined bits for 32 Bytes settings 252 bits [255:4]

User defined bits for 16 Bytes settings 124 bits [127:4]

User defined bits for 8 Bytes settings 60 bits [63:4]

desc_used 1 [3:3]

err 1 [2:2]

color 1 [1:1]

Data format 1 [0:0]

The following is the C2H Completion ring entry structure for Standard format when the data
format bit is set to 1’b0.

Table 15: C2H Completion Entry Standard Format Structure

Name Size Index
User defined bits for 32 Bytes settings 236 bits [255:20]

User defined bits for 16 Bytes settings 108 bits [127:20]

User defined bits for 8 Bytes settings 44 bits [63:20]

Len 16 [19:4]

desc_used 1 [3:3]

err 1 [2:2]

color 1 [1:1]

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=62

Table 15: C2H Completion Entry Standard Format Structure (cont'd)

Name Size Index
Data format 1 [0:0]

C2H Completion Input Packet

The Completion Ring entry structure is shown in C2H Stream Engine.

When the user application sends the C2H data packet, it also sends the CMPT (completion)
packet to the QDMA. The CMPT packet has two formats: Standard Format and User Format.

The following is the CMPT packet from the user application in the standard format, which is
when the data format bit is 1’b0.

Table 16: CMPT Packet in Standard Format

Name Size Index
User defined 44 bits-236 bits [255:20]

rsvd 8 [19:12]

Qid 11 [11:1]

Data format 1 [0:0]

The following is the CMPT packet from the user application in the user format, which is when the
data format bit is 1’b1.

Table 17: CMPT Packet in User Format

Name Size Index
User defined 61 bits-253 bits [255:3]

rsvd 2 [2:1]

Data format 1 [0:0]

The CMPT packet has three types: 8B, 16B, or 32B. When it is 8B or 16B, it only needs one beat
of the data. When it is 32B, it needs two beats of data. Each data beat is 128 bits.

C2H Interrupt/Completion Status Moderation

The QDMA provides a means to moderate the C2H completion interrupts and Completion status
writes on a per queue basis. The software can select one out of five modes for each queue. The
selected mode for a queue is stored in the QDMA in the C2H completion ring context for that
queue. After a mode has been selected for a queue, the driver can always select another mode
when it sends the completion ring CIDX update to QDMA.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=63

The C2H completion interrupt moderation is handled by the completion engine inside the C2H
engine. The completion engine stores the C2H completion ring contexts of all the queues. It is
possible to individually enable or disable the sending of interrupts and C2H completion status
descriptors for every queue and this information is present in the completion ring context. It is
worth mentioning that the modes being described here moderate not only interrupts but also
completion status writes. Also, since interrupts and completion status writes can be individually
enabled/disabled for each queue, these modes will work only if the interrupt/completion status
is enabled in the Completion context for that queue.

The QDMA keeps only one interrupt outstanding per queue. This policy is enforced by QDMA
even if all other conditions to send an interrupt have been met for the mode. The way the
QDMA considers an interrupt serviced is by receiving a CIDX update for that queue from the
driver.

The basic policy followed in all the interrupt moderation modes is that when there is no interrupt
outstanding for a queue, the QDMA keeps monitoring the trigger conditions to be met for that
mode. Once the conditions are met, an interrupt is sent out. While the QDMA subsystem is
waiting for the interrupt to be served, it remains sensitive to interrupt conditions being met and
remembers them. When the CIDX update is received, the QDMA subsystem evaluates whether
the conditions are still being met. If they are still being met, another interrupt is sent out. If they
are not met, no interrupt is sent out and QDMA resumes monitoring for the conditions to be met
again.

Note that the interrupt moderation modes that the QDMA subsystem provides are not
necessarily precise. Thus, if the user application sends two C2H packets with an indication to
send an interrupt, it is not necessary that two interrupts will be generated. The main reason for
this behavior is that when the driver is interrupted to read the completion ring, and it is under no
obligation to read exactly up to the completion for which the interrupt was generated. Thus, the
driver may not read up to the interrupting completion descriptor, or it may even read beyond the
interrupting completion descriptor if there are valid descriptors to be read there. This behavior
requires the QDMA to re-evaluate the trigger conditions every time it receives the CIDX update
from the driver.

The detailed description of each mode is given below:

• TRIGGER_EVERY: This mode is the most aggressive in terms of interruption frequency. The
idea behind this mode is to send an interrupt whenever the completion engine determines
that an unread completion descriptor is present in the completion ring.

• TRIGGER_USER: The QDMA provides a way to send a C2H packet to the subsystem with an
indication to send out an interrupt when the subsystem is done sending the packet to the
host. This allows the user application to perform interrupt moderation when the
TRIGGER_USER mode is set.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=64

• TRIGGER_USER_COUNT: This mode allows the QDMA is sensitive to either of two triggers.
One of these triggers is sent by the user along with the C2H packet. The other trigger is the
presence of more than a programmed threshold of unread Completion entries in the
Completion Ring, as seen by the HW. This threshold is driver programmable on a per-queue
basis. The QDMA evaluates whether or not to send an interrupt when either of these triggers
is detected. As explained in the preceding sections, other conditions must be satisfied in
addition to the triggers for an interrupt to be sent.

• TRIGGER_USER_TIMER: In this mode, the QDMA is sensitive to either of two triggers. One of
these triggers is sent by the user along with the C2H packet. The other trigger is the
expiration of the timer that is associated with the C2H queue. The period of the timer is driver
programmable on a per-queue basis. The QDMA evaluates whether or not to send an
interrupt when either of these triggers is detected. As explained in the preceding sections,
other conditions must be satisfied in addition to the triggers for an interrupt to be sent. For
more information, see C2H Timer.

• TRIGGER_USER_TIMER_COUNT: This mode allows the QDMA is sensitive to any of three
triggers. One of these triggers is sent by the user along with the C2H packet. The second
trigger is the expiration of the timer that is associated with the C2H queue. The period of the
timer is driver programmable on a per-queue basis. The third trigger is the presence of more
than a programmed threshold of unread Completion entries in the Completion Ring, as seen
by the HW. This threshold is driver programmable on a per-queue basis. The QDMA evaluates
whether or not to send an interrupt when any of these triggers is detected. As explained in
the preceding sections, other conditions must be satisfied in addition to the triggers for an
interrupt to be sent.

• TRIGGER_DIS: In this mode, the QDMA does not send C2H completion interrupts in spite of
them being enabled for a given queue. The only way that the driver can read the completion
ring in this case is when it regularly polls the ring. The driver will have to make use of the color
bit feature provided in the completion ring when this mode is set as this mode also disables
the sending of any completion status descriptors to the completion ring.

The following are the flowcharts of different modes. These flowcharts are from the point of view
of the C2H Completion Engine. The Completion packets come in from the user logic and are
written to the Completion Ring. The software (SW) update refers to the Completion Ring CIDX
update sent from software to hardware.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=65

Figure 16: Flowchart for EVERY Mode

Wait for Completion

Completion
received

Send Interrupt

Wait for SW update

SW update
received

Ring
empty

No

Yes

Yes

No No

Yes

X20642-052419

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=66

Figure 17: Flowchart for USER Mode

Wait for Completion

Completion with User
trigger received

Send Interrupt

Wait for SW update
or User trigger

SW update
received

Completion with User
trigger received

Wait for SW update

SW update
received

Ring empty

No

No

Yes

Yes

No

No

No

Yes

Yes

X20641-040518

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=67

Figure 18: Flowchart for USER_COUNT Mode

Wait for Completion

CMP received

Threshold
exceeded or User
trigger received

Send Interrupt

Wait for SW update
or Completion with

User trigger

SW update
received

Completion with User
trigger received

Wait for SW update

SW update
received

Ring empty

Threshold
exceeded

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

No

No

Yes

No

X20639-040518

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=68

Figure 19: Flowchart for USER_TIMER Mode

Wait for Timer
expiation or User

trigger

Timer expiration
received

User trigger
received

Ring emptyWait for Completion

Send Interrupt

Wait for SW update or
User trigger

SW update
received

User trigger
received

Wait for SW update

SW update
received

Ring empty

No

NoYesYes

No

Yes

Yes

No

No

Yes

No

Yes

No

X20637-040518

C2H Timer

The C2H timer is a trigger mode in the Completion context. It supports 2048 queues, and each
queue has its own timer. When the timer expires, a timer expire signal is sent to the Completion
module. If multiple timers expire at the same time, then they are sent out in a round robin
manner.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=69

Reference Timer

The reference timer is based on the timer tick. The register QDMA_C2H_INT (0xB0C) defines
the value for a timer tick. The 16 registers QDMA_C2H_TIMER_CNT (0xA00-0xA3C) has the
timer counts based on the timer tick. The timer_idx in the Completion context is the index to the
16 QDMA_C2H_TIMER_CNT registers. Each queue can choose its own timer_idx.

Handling Exception Events

C2H Completion On Invalid Queue

When QDMA receives a Completion on a queue which has an invalid context as indicated by the
Valid bit in the C2H CMPT Context, the Completion is silently dropped.

C2H Completion On A Full Ring

The maximum number of Completion entries in the Completion Ring is 2 less than the total
number of entries in the Completion Ring. The C2H Completion Context has PIDX and CIDX in it.
This allows the QDMA to calculate the number of Completions in the Completion Ring. When
the QDMA receives a Completion on a queue that is full, QDMA takes the following actions:

• Invalidates the C2H Completion Context for that queue.

• Marks the C2H Completion Context with error.

• Drops the Completion.

• If enabled, sends a Status Descriptor marked with error.

• If enabled and not outstanding, sends an Interrupt.

• Sends a Marker Response with error.

• Logs the error in the C2H Error Status Register.

C2H Completion With Descriptor Error

When the QDMA C2H Engine encounters a Descriptor Error, the following actions are taken in
the context of the C2H Completion Engine:

• Invalidates the C2H Completion Context for that queue.

• Marks the C2H Completion Context with error.

• Sends the Completion out to the Completion Ring. It is marked with an error.

• If enabled, sends a Status Descriptor marked with error.

• If enabled and not outstanding, sends an Interrupt.

• Sends a Marker Response with error.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=70

C2H Completion With Invalid CIDX

The C2H Completion Engine has logic to detect that the CIDX value in the CIDX update points to
an empty location in the Completion Ring. When it detects such error, the C2H Completion
Engine:

• Invalidates the Completion Context.

• Marks the Completion Context with error.

• Logs an error in the C2H error status register.

Bridge
The Bridge core is an interface between the AXI4 and the PCI Express integrated block. It
contains the memory mapped AXI4 to AXI4-Stream Bridge, and the AXI4-Stream Enhanced
Interface Block for PCIe. The memory mapped AXI4 to AXI4-Stream Bridge contains a register
block and two functional half bridges, referred to as the Slave Bridge and Master Bridge.

• The slave bridge connects to the AXI4 Interconnect as a slave device to handle any issued
AXI4 master read or write requests.

• The master bridge connects to the AXI4 Interconnect as a master to process the PCIe
generated read or write TLPs.

• The register block contains registers used in the Bridge core for dynamically mapping the AXI4
memory mapped (MM) address range provided using the AXIBAR parameters to an address
for PCIe® range.

The core uses a set of interrupts to detect and flag error conditions.

Related Information

Bridge Register Space

Interrupts
The QDMA supports up to 2K total MSI-X vectors. A single MSI-X vector can be used to support
multiple queues.

The QDMA supports Interrupt Aggregation. Each vector has an associated Interrupt Aggregation
Ring. The QID and status of queues requiring service are written into the Interrupt Aggregation
Ring. When a PCIe® MSI-X interrupt is received by the Host, the software reads the Interrupt
Aggregation Ring to determine which queue needs service. Mapping of queues to vectors is
programmable vector number provided in the queue context. It supports MSI-X interrupt modes
for SR-IOV and non-SR-IOV.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=71

Asynchronous and Queue Based Interrupts

The QDMA supports both asynchronous interrupts and queue-based interrupts.

The asynchronous interrupts are used for capturing events that are not synchronous to any DMA
operations, namely, errors, status, and debug conditions.

Interrupts are broadcast to all PFs, and maintain status for each PF in a queue based scheme. The
queue based interrupts include the interrupts from the H2C MM, H2C stream, C2H MM, and
C2H stream.

Interrupt Engine

The QDMA Interrupt Engine handles the queue based interrupts and the error interrupt.

This block diagram is of the Interrupt Engine.

Figure 20: Interrupt Engine Block Diagram

MSI-X Table

Interrupt Engine

A
r
bMSI-X

Int
Agg
Ctxt

Arbitration

PBA H2C stream interrupt req

H2C MM interrupt req

C2H stream interrupt req

C2H MM interrupt req

Error interrupt

Indirect interrupt

Direct interrupt

Write to Interrupt Ring

Interrupt
msg

PCIe
Controller

X20891-111020

When the H2C or C2H interrupt occur, it first reads the QID to vector table. The table has 2K
entries to support up to 2K queues. Each entry of the table includes two portions: one for H2C
interrupts, and one for C2H interrupts. The table maps the QID to the vector, and indicates if the
interrupt is direct interrupt mode or indirect interrupt mode. If it is direct interrupt mode, the
vector is used to generate the PCIe MSI-X message. If it is indirect interrupt mode, the vector is
the ring index, which is the index of the Interrupt Context for the Interrupt Aggregation Ring.

The following is the data in the QID to vector table.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=72

Table 18: QID to Vector Table

Signal Bit Owner Description
h2c_en_coal [17:17] Driver 1’b1: indirect interrupt mode.

1’b0: direct interrupt mode for H2C interrupt.

h2c_vector [16:9] Driver For direct interrupt, it is the interrupt vector index
of MSI-X table. For indirect interrupt, it is the ring
index.

c2h_en_coal [8:8] Driver 1’b1: indirect interrupt mode.
1’b0: direct interrupt mode for C2H interrupt.

c2h_vector [7:0] Driver For direct interrupt, it is the interrupt vector index
of MSI-X table. For indirect interrupt, it is the ring
index.

The QID to Vector table is programmed by the context access.

• Context access through QDMA_TRQ_SEL_IND:

○ QDMA_IND_CTXT_CMD.Qid = Qid

○ QDMA_IND_CTXT_CMD.Sel = MDMA_CTXT_SEL_INT_QID2VEC (0xC)

○ QDMA_IND_CTXT_CMD.Op = MDMA_CTXT_CMD_WR or MDMA_CTXT_CMD_RD
(MDMA_CTXT_CMD_CLR and MDMA_CTXT_CMD_INV are not supported for Qid to
Vector table)

Direct Interrupt

For direct interrupt, the QDMA processes the interrupt with the following steps.

• Look up the QID to Vector Table.

• Send out the PCIe MSI-X message.

Interrupt Aggregation Ring

For indirect interrupt, it does interrupt aggregation. The following are some restrictions for the
interrupt aggregation.

• Each Interrupt Aggregation Ring can only be associated with one function. But multiple rings
can be associated with the same function.

• The interrupt engine supports up to three interrupts from same source, until software services
the interrupts.

In the indirect interrupt, the QDMA processes the interrupt with the following steps.

• Look up the QID to Vector Table.

• Look up the Interrupt Context.

• Write to the Interrupt Aggregation Ring.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=73

• Send out the PCIe MSI-X message.

This block diagram is of the indirect interrupt.

Figure 21: Indirect Interrupt

Interrupt Context

Indirect
Interrupt

Baddr, pidx, vec_ix, etc

Baddr, pidx, vec_ix, etc

Baddr, pidx, vec_ix, etc

0

255

H2C
Contexts

C2H
Contexts

CMPT
Contexts

Interrupt
message

Write to
Interrupt

Ring

X21067-100818

The Interrupt Context includes the information of the Interrupt Aggregation Ring. It has 256
entries to support up to 256 Interrupt Aggregation Rings.

The following is the Interrupt Context Structure (0x8).

Table 19: Interrupt Context Structure (0x8)

Signal Bit Owner Description
pidx [75:64] DMA Producer Index

page_size [63:61] Driver Interrupt Aggregation Ring size:

0: 4 KB
1: 8 KB
2: 12 KB
3: 16 KB
4: 20 KB
5: 24 KB
6: 28 KB
7: 32 KB

baddr_4k [60:9] Drive Base address of Interrupt Aggregation Ring –
bit[63:12]

color [8] DMA Color bit

int_st [7] DMA Interrupt State:
0: WAIT_TRIGGER
1: ISR_RUNNING

reserved [6] NA Reserved

vec [5:1] Driver Interrupt vector index in MSI-X table

valid [0] Driver Valid

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=74

The software needs to size the Interrupt Aggregation Ring appropriately. Each source can send
up to three messages to the ring. Therefore, the size of the ring needs satisfy the following
formula.

Number of entry >= 3 * (number of queues + error interrupts that are mapped to this ring)

The Interrupt Context is programmed by the context access. The QDMA_IND_CTXT_CMD.Qid
has the ring index, which is from the Qid to Vector Table. The operation of
MDMA_CTXT_CMD_CLR can clear all of the bits in the Interrupt Context. The
MDMA_CTXT_CMD_INV can clear the valid bit.

• Context access through QDMA_TRQ_SEL_IND:

○ QDMA_IND_CTXT_CMD.Qid = Ring index

○ QDMA_IND_CTXT_CMD.Sel = MDMA_CTXT_SEL_INT_COAL (0x8)

○ QDMA_IND_CTXT_CMD.cmd.Op =

MDMA_CTXT_CMD_WR,

MDMA_CTXT_CMD_RD,

MDMA_CTXT_CMD_CLR , or

MDMA_CTXT_CMD_INV.

After it looks up the Interrupt Context, it then writes to the Interrupt Aggregation Ring. It also
updates the Interrupt Context with the new PIDX, color, and the interrupt state.

This is the Interrupt Aggregation Ring entry structure. It has 8B data.

Table 20: Interrupt Aggregation Ring Entry Structure

Signal Bit Owner Description
coal_color [63:63] DMA The color bit of the Interrupt Aggregation Ring.

This bit inverts every time pidx wraps around on
the Interrupt Aggregation Ring.

qid [62:52] DMA This is from Interrupt source. Queue ID.

int_type [51:51] DMA 0: H2C
1: C2H

err_int [50:50] DMA 0: non-error interrupt
1: error interrupt

reserved [49:39] DMA Reserved

stat_desc [38:0] DMA This is the status descriptor of the Interrupt source.

The following is the information in the stat_desc.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=75

Table 21: stat_desc Information

Signal Bit Owner Description
error [38:35] DMA This is from interrupt source: {c2h_err[1:0],

h2c_err[1:0]}

int_st [34:33] DMA This is from Interrupt source. Interrupt state.
0: WRB_INT_ISR
1: WRB_INT_TRIG
2: WRB_INT_ARMED

color [32:32] DMA This is from Interrupt source. This bit inverts every
time pidx wraps around and this field gets copied
to color field of descriptor.

cidx [31:16] DMA This is from Interrupt source. Cumulative
consumed pointer

pidx [15:0] DMA This is from Interrupt source. Cumulative pointer of
total interrupt Aggregation Ring entry written

When the software allocates the memory space for the Interrupt Aggregation Ring, the
coal_color starts with 1’b0. The software needs to initialize the color bit of the Interrupt
Context to be 1’b1. When the hardware writes to the Interrupt Aggregation Ring, it reads color
bit from the Interrupt Context, and writes it to the entry. When the ring (PIDX) wraps around, the
hardware will flip the color bit in the Interrupt Context. In this way, when the software reads
from the Interrupt Aggregation Ring, it will know which entries got written by the hardware by
looking at the color bit.

The software reads the Interrupt Aggregation Ring to get the qid, the int_type (H2C or C2H),
and the err_int. From the qid, the software can identify it the queue is stream or MM.

When the err_int is set, it is an error interrupt. The software can then check the error status
register of the Central Error Aggregator QDMA_GLBL_ERR_STAT (0x248). The register shows
the error source. The software can then read the error status register of the Leaf Error
Aggregator of the corresponding error.

The stat_desc in the Interrupt Aggregation Ring is the status descriptor from the Interrupt
source. When the status descriptor is disabled, the software can get the status descriptor
information from the Interrupt Aggregation Ring.

The two cases are as follows:

• The interrupt source is C2H stream, then it is the status descriptor of the C2H Completion
Ring. The software can read the pidx of the C2H Completion Ring.

• The interrupt source is others (H2C stream, H2C MM, C2H MM), then it is the status
descriptor of that source. The software can read the cidx.

Finally, the QDMA sends out the PCIe MSI-X message using the interrupt vector from the
Interrupt Context.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=76

When the PCIe MSI-X interrupt is received by the Host, the software reads the Interrupt
Aggregation Ring to determine which queue needs service. After the software reads the Interrupt
Aggregation Ring, it will do a dynamic pointer update for the software CIDX to indicate the
cumulative pointer that the software reads to. The software does the dynamic pointer update
using the register QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400). If the software cidx is equal
to the pidx, this will trigger a write to the Interrupt Context on the interrupt state of that queue.
This is to indicate the QDMA that the software already reads all of the entries in the Interrupt
Aggregation Ring. If the software cidx is not equal to the pidx, it will send out another PCIe
MSI-X message. Therefore, the software can read the Interrupt Aggregation Ring again. After
that, the software can perform a pointer update of the interrupt source ring. For example, for a
C2H stream interrupt, the software will update the pointer of the interrupt source ring, which is
the C2H Completion Ring.

These are the steps for the software:

1. After the software gets the PCIe MSI-X message, it reads the Interrupt Aggregation Ring
entries.

2. The software uses the coal_color bit to identify the written entries. Each entry has Qid
and Int_type (H2C or C2H). From the Qid and Int_type, the software can check if it is
stream or MM. This points to a corresponding source ring. For example, if it is C2H stream,
the source ring is the C2H Completion Ring. The software can then read the source ring to
get information, and do a dynamic pointer update of the source ring after that.

3. After the software finishes reading of all written entries, it does one dynamic point update of
the software cidx using the register QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400). The Qid
in the register is the Qid in the last written entry. This tells hardware the pointer of the
Interrupt Aggregation Ring that the software reads to.

If the software cidx is not equal to the PIDX, the hardware will send out another PCIE MSI-X
message, so that the software can read the Interrupt Aggregation Ring again.

When the software performs the dynamic point update for the Interrupt Aggregation Ring using
the register QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400), it needs to use the virtual qid. The
FMAP block in the hardware translates the virtual qid to absolute qid. The interrupt Engine
uses the absolute qid when it looks up the qid to Vector Table.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=77

Figure 22: Interrupt Engine

FMAP QID2VEC

{VQID,
H2C/C2H sel}

{Absolute QID,
H2C/C2H sel}

Intr Aggr
Ring Index

Pointer update

X21068-062318

The following diagram shows the indirect interrupt flow. The Interrupt module gets the interrupt
requests. It first writes to the Interrupt Aggregation Ring. Then it waits for the write completions.
After that, it sends out the PCIe MSI-X message. The interrupt requests can keep on coming, and
the Interrupt module keeps on processing them. In the meantime, the software reads the
Interrupt Aggregation Ring and it does the dynamic pointer update. If the software CIDX is not
equal to the PIDX, it will send out another PCIe MSI-X message.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=78

Figure 23: Interrupt Flow

Host
Interrupt
Module

Write to Interrupt Ring

Write completion

Send int msg

C2H int req/H2C int req/
Error int

Int req

Send int msg

Int req

Write to Interrupt Ring

Write completion

Send int msg

Int point upd

X20890-052418

Error Interrupt

There are Leaf Error Aggregators in different places. They log the errors and propagate the errors
to the Central Error Aggregator. Each Leaf Error Aggregator has an error status register and an
error mask register. The error mask is enable mask. Irrespective of the enable mask value, the
error status register always logs the errors. Only when the error mask is enabled, the Leaf Error
Aggregator will propagate the error to the Central Error Aggregator.

The Central Error Aggregator aggregates all of the errors together. When any error occurs, it can
generate an Error Interrupt if the err_int_arm bit is set in the error interrupt register
QDMA_GLBL_ERR_INT (0B04). The err_int_arm bit is set by the software and cleared by the
hardware when the Error Interrupt is taken by the Interrupt Engine. The Error Interrupt is for all
of the errors including the H2C errors and C2H errors. The Software must set this
err_int_arm bit to generate interrupt again.

The Error Interrupt supports the direct interrupt only. Register QDMA_GLBL_ERR_INT bit[23],
en_coal must always be programmed to 0 (direct interrupt).

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=79

The Error Interrupt gets the vector from the error interrupt register QDMA_GLBL_ERR_INT. For
the direct interrupt, the vector is the interrupt vector index of the MSI-X table.

Here are the processes of the Error Interrupt.

1. Reads the Error Interrupt register QDMA_C2H_GLBL_INT (0B04) to get function and vector
numbers.

2. Sends out the PCIe MSI-X message.

The following figure shows the error interrupt register block diagram.

Figure 24: Error Interrupt Handling

Ar
bi

tr
at

io
n

H2C Interrupt

C2H Interrupt

Error Interrupt

Interrupt
ARMed

ARM bit

Error
Aggregator

Interrupt
Handling

X20602-061018

User Interrupt

Figure 25: Interrupt

Queue Management

Function Map Table

The Function Map Table is used to allocate queues to each function. The index into the RAM is
the function number. Each entry contains the base number of the physical QID and the number
of queues allocated to the function. It provides a function based, queue access protection
mechanism by translating and checking accesses to logical queues (through
QDMA_TRQ_SEL_QUEUE_PF and QDMA_TRQ_SEL_QUEUE_VF address space) to their physical
queues. Direct register accesses to queue space beyond what is allocated to the function in the
table will be canceled and an error will be logged.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=80

The table can be programmed through the QDMA_TRQ_SEL_FMAP address space. Because this
space only exists in the PF address map, only a physical function can modify this table.

Context Programming

• Program all mask registers to 1. They are QDMA_IND_CTXT_MASK_0 (0x824) to
QDMA_IND_CTXT_MASK_7 (0x830).

• Program context values for the following registers: QDMA_IND_CTXT_DATA_0 (0x804), to
QDMA_IND_CTXT_DATA_7 (0x810).

• A Host Profile table context needs to be programmed before any context settings
QDMA_CTXT_SELC_HOST_PROFILE. Select 0xA in QDMA_IND_CTXT_CMD (0x844), and
write all data field to 0s and program context. All other values are reserved.

• Refer to 'Software Descriptor Context Structure', 'C2H Prefetch Context Structure' and 'C2H
Prefetch Context Structure' to program the context data registers.

• Program any context to corresponding Queue in the following context command register:
QDMA_IND_CTXT_CMD (0x844).

Note:

• Qid is given in bits [17:7].

• Opcode bits [6:5] selects what operations must be done.

• The context that is accessed is given in bits [4:1].

• Context programing write/read does not occur when bit [0] is set.

Queue Setup

• Clear Descriptor Software Context.

• Clear Descriptor Hardware Context.

• Clear Descriptor Credit Context.

• Set-up Descriptor Software Context.

• Clear Prefetch Context.

• Clear Completion Context.

• Set-up Completion Context.

○ If interrupts/status writes are desired (enabled in the Completion Context), an initial
Completion CIDX update is required to send the hardware into a state where it is sensitive
to trigger conditions. This initial CIDX update is required, because when out of reset, the
hardware initializes into an unarmed state.

• Set-up Prefetch Context.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=81

Queue Teardown

Queue Tear-down (C2H Stream):

• Send Marker packet to drain the pipeline.

• Wait for Marker completion.

• Invalidate/Clear Descriptor Software Context.

• Invalidate/Clear Prefetch Context.

• Invalidate/Clear Completion Context.

• Invalidate Timer Context (clear cmd is not supported).

Queue Tear-down (H2C Stream & MM):

• Invalidate/Clear Descriptor Software Context.

Virtualization
QDMA implements SR-IOV passthrough virtualization where the adapter exposes a separate
virtual function (VF) for use by a virtual machine (VM). A physical function (PF) can be optionally
made privileged with full access to QDMA registers and resources, but only VFs implement per
queue pointer update registers and interrupts. VF drivers must communicate with the driver
attached to the PF through the mailbox for configuration, resource allocation, and exception
handling. The QDMA implements function level reset (FLR) to enable operating system on VM to
reset the device without interfering with the rest of the platform.

Table 22: Privileged Access

Type Notes
Queue context/other control
registers

Registers for Context access only controlled by PFs (All 4 PFs).

Status and statistics registers Mainly PF only registers. VFs need to coordinate with a PF driver for error handling. VFs
need to communicate through the mailbox with driver attached to PF.

Data path registers Both PFs and VFs must be able to write the registers involved in data path without needing
to go through a hypervisor. Pointer update for H2C/C2H Descriptor Fetch can be done
directly by VF or PF for the queues associated with the function using its own BAR space.
Any pointer updates to queue that do not belong to the function will be dropped with error
logged.

Other protection
recommendations

Turn on IOMMU to protect bad memory accesses from VMs.

PF driver and VF driver
communication

The VF driver needs to communicate with the PF driver to request operations that have
global effect. This communication channel needs this ability to pass messages and
generate interrupts. This communication channel utilizes a set of hardware mailboxes for
each VF.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=82

Mailbox

In a virtualized environment, the driver attached to a PF has enough privilege to program and
access QDMA registers. For all the lesser privileged functions, certain PFs and all VFs must
communicate with privileged drivers using the mailbox mechanism. The communication API must
be defined by the driver. The QDMA IP does not define it.

Each function (both PF and VF) has an inbox and an outbox that can fit a message size of 128B. A
VF accesses its own mailbox, and a PF accesses its own mailbox and all the functions (PF or VF)
associated with that PF.

Note: Enabling mailbox will increase PL utilization.

The QDMA mailbox allows the following access:

• From a VF to the associated PF.

• From a PF to any VF belonging to its own virtual function group (VFG).

• From a PF (typically a driver that does not have access to QDMA registers) to another PF.

Figure 26: Mailbox

VF0

Inbox Outbox

VF1

Inbox Outbox

VFn

Inbox Outbox

PF PF

Inbox Outbox

Privileged PF Non-Privileged PF

X21107-062118

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=83

VF To PF Messaging

A VF is allowed to post one message to a target PF mailbox until the target function (PF) accepts
it. Before posting the message the source function should make sure its o_msg_status is
cleared, then the VF can write the message to its Outgoing Message Registers. After finishing
message writing, the VF driver sends msg_send command through write 0x1 at the control/
status register (CSR) address 0x5004. The mailbox hardware then informs the PF driver by
asserting i_msg_status field.

The function driver should enable the periodic polling of the i_msg_status to check the
availability of incoming messages. At a PF side, i_msg_status = 0x1 indicates one or more
message is pending for the PF driver to pick up. The cur_src_fn in the Mailbox Status Register
gives the function ID of the first pending message. The PF driver should then set the Mailbox
Target Function Register to the source function ID of the first pending message. Then access to a
PF’s Incoming Message Registers is indirectly, which means the mailbox hardware will always
return the corresponding message bytes sent by the Target function. Upon finishing the message
reading, the PF driver should also send msg_rcv command through write 0x2 at the CSR
address. The hardware will deassert the o_msg_status at the source function side. The
following figure illustrates the messaging flow from a VF to a PF at both the source and
destination sides.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=84

Figure 27: VF to PF Messaging Flow

VF driver (n= vf_id) PF driver

VF (#n) to PF Message Flow
Status polling can be changed to interrupt driven

Msg available?

N

Y

O_Msg_status ?

N

Write msg

Y

Send msg_send command

i_queue_status?
N

Set target FN_ID = n

Y

Read incoming msg

Send msg_rcv command

Send msg_pop command

X21105-062118

PF To VF Messaging

The messaging flow from a PF to the VFs that belong to its VFG is slightly different than the VF
to PF flow because:

A PF can send messages to multiple destination functions, therefore, it may receives multiple
acknowledgments at the moment when checking the status. As illustrated in the following figure,
a PF driver must set Mailbox Target Function Register to the destination function ID before doing
any message operation; for example, checking the incoming message status, write message, or
send the command. At the VF side (receiving side), whenever a VF driver get the
i_msg_status = 0x1, the VF driver should read its Incoming Message Registers to pick up
the message. Depending on the application, the VF driver can send the msg_rcv immediately
after reading the message or after the corresponding message being processed.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=85

To avoid one-by-one polling of the status of outgoing messages, the mailbox hardware provides a
set of Acknowledge Status Registers (ASR) for each PF. Upon the mailbox receiving the msg_rcv
command from a VF, it deasserts the o_msg_status field of the source PF and it also sets the
corresponding bit in the Acknowledge Status Registers. For a given VF with function ID <N>,
acknowledge status is at:

• Acknowledge Status Register address: <N> / 32 + <0x22420 Register Address>

• Acknowledge Status bit location: <N> / 32

The mailbox hardware asserts the ack_status filed in the Status Register (0x22400) when
there is any bit was asserted in the Acknowledge Status Register (ASR). The PF driver can poll the
ack_status before actually reading out the Acknowledge status registers. The PF driver may
detect multiple completions through one register access. After being processed, the PF driver
should also write the value back to the same register address to clear the status.

Figure 28: PF to VF Messaging Flow

VF driver (n= vf_id)PF driver (msg send)

i_Msg_status ?

Y

Read incoming msg

N

N
Msg available?

O_Msg_status(n)

Y

Y

Set target FN_ID = n

Write msg

Send msg_send command

PF driver (ACK status)

N
Pending Msg

ack_status

Y

N

Read ASR register (0~7)

Write 1 clear ASR register

Y

Send msg_rcv command

X21106-062118

Mailbox Interrupts

The mailbox module supports interrupt as the alternative event notification mechanism. Each
mailbox has an Interrupt Control Register (at the offset 0x22410 for a PF, or at the offset 0x5010
for a VF). Set 1 to this register to enable the interrupt. Once the interrupt is enabled, the mailbox
will send the interrupt to the QDMA given there is any pending event for the mailbox to process,
namely, any incoming message pending or any acknowledgment for the outgoing messages.
Configure the interrupt vector through the Function Interrupt Vector Register (0x22408 for a FP,
or 0x5008 for a VF) according to the driver configuration.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=86

Enabling the interrupt does not change the event logging mechanism, which means the user must
check the pending events through reading the Function Status Registers. The first step to
respond to an interrupt request is disabling the interrupt. It is possible that the actual number of
the pending events is more than the number of the events at the moment when the mailbox is
sent the interrupt.

RECOMMENDED: Xilinx recommends that the user application interrupt handler process all the pending
events that present in the status register. Upon finishing the interrupt response, the user application re-
enables the interrupt.

The mailbox will check its event status at the time the interrupt control change from disabled to
enabled. If there is any new events that arrived the mailbox between reading the interrupt status
and the re-enabling the interrupt, the mailbox will generate a new interrupt request immediately.

Function Level Reset

The function level reset (FLR) mechanism enables the software to quiesce and reset Endpoint
hardware with function-level granularity. When a VF is reset, only the resources associated with
this VF are reset. When a PF is reset, all resources of the PF, including that of its associated VFs,
are reset. Since FLR is a privileged operation, it must be performed by the PF driver running in
the management system.

Use Mode

• Hypervisor requests for FLR when a function is attached and detached (i.e., power on and off).

• You can request FLR as follows:

echo 1 > /sys/bus/pci/devices/$BDF/reset

where $BDF is the bus device function number of the targeted function.

FLR Process

A complete FLR process involves of three major steps.

1. Pre-FLR: Pre-FLR resets all QDMA context structure, mailbox, and user logic of the target
function.

• Each function has a register called MDMA_PRE_FLR_STATUS, which keeps track of the
pre-FLR status of the function. The offset is calculated as
MDMA_PRE_FLR_STATUS_OFFSET = MB_base + 0x100, which is located at offset 0x100
from the mailbox memory space of the function. Note that PF and VF have different
MB_base. The definition of MDMA_PRE_FLR_STATUS is shown in the table below.

• The software writes 1 to MDMA_PRE_FLR_STATUS[0] (bit 0) of the target function to
initiate pre-FLR. Hardware will clear MDMA_PRE_FLR_STATUS[0] when pre-FLR
completes. The software keeps polling on MDMA_PRE_FLR_STATUS[0], and only
proceeds to the next step when it returns 0.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=87

Table 23: MDMA_PRE_FLR_STATUS Register

Offset Field R/W Type Width Default Description
0x100 pre_flr_st RW 32 0 [31:1] reserved.

[0]: 1 Initiates pre-FLR.
[0]: 0 pre-FLR done.
bit[0] is set by the driver and
cleared by the hardware.

2. Quiesce: The software must ensure all pending transaction is completed. This can be done by
polling the Transaction Pending bit in the Device Status register (in PCIe Configuration
Space), until it is cleared or times out after a certain period of time.

3. PCIe-FLR: PCIe-FLR resets all resources of the target function in the PCIe controller.

Note: Initiate Function Level Reset bit (bit 15 of PCIe Device Control Register) of the target function
should be set to 1 to trigger FLR process in PCIe.

OS Support

If the PF driver is loaded and alive (i.e., use mode 1), all three steps aforementioned are
performed by the driver. However, for Versal, if a user wants to perform FLR before loading the
PF driver (as defined in Use Mode above), an OS kernel patch is provided to allow OS to perform
the correct FLR sequence through functions defined in //…/source/drivers/pci/quick.c.

Port ID
Port ID is the categorization of some queues on the FPGA side. When the DMA is shared by
more than one user application, the port ID provides indirection to QID so that all the interfaces
can be further demuxed with lower cost. However, when used by a single application, the port ID
can be ignored and drive the port id inputs to 0s.

System Management

Resets

The QDMA supports all the PCIe defined resets, such as link down, reset, hot reset, and function
level reset (FLR) (supports only Quiesce mode).

VDM

Vendor Defined Messages (VDMs) are an expansion of the existing messaging capabilities with
PCI Express. PCI Express Specification defines additional requirements for Vendor Defined
Messages, header formats and routing information. For details, see PCI-SIG Specifications (https://
www.pcisig.com/specifications).

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 88Send Feedback

https://www.pcisig.com/specifications
https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=88

QDMA allows the transmission and reception of VDMs. To enable this feature, select Enable
Bridge Slave Mode in the Vivado Customize IP dialog box. This enables the st_rx_msg
interface.

RX Vendor Defined Messages are stored in shallow FIFO before they are transmitted to the
output port. When there are many back-to-back VDM messages, FIFO will overflow and these
message will be dropped. So it is better to repeat VDM messages at regular intervals.

Throughput for VDMs depend on several factors: PCIe speed, data width, message length, and
the internal VDM pipeline.

Internal VDM pipelines must be replaced with the Internal RX VDM FIFO interface for Network-
on-Chip (NoC) access, which has a shallow buffer of 64B.

Note: New VDM messages will be dropped if more than 64B of VDM are received before the FIFO is
serviced through NoC.

Internal RX VDM FIFO interface cannot handle back-to-back messages. Pipeline throughput can
only handle one in every four accesses, which is about 25% efficiency from the host access.

IMPORTANT! Do not use back-to-back VDM access.

RX Vendor Defined Messages:

1. When QDMA receives a VDM, the incoming messages will be received on the st_rx_msg
port.

2. The incoming data stream will be captured on the st_rx_msg_data port (per-DW).

3. The user application needs to drive the st_rx_msg_rdy to signal if it can accept the
incoming VDMs.

4. Once st_rx_msg_rdy is High, the incoming VDM is forwarded to the user application.

5. The user application needs to store this incoming VDMs and track of how many packets were
received.

TX Vendor Defined Messages:

1. To enable transmission of VDM from QDMA, program the TX Message registers in the Bridge
through the AXI4 Slave interface.

2. Bridge has TX Message Control, Header L (bytes 8-11), Header H (bytes 12-15) and TX
Message Data registers as shown in the PCIe TX Message Data FIFO Register
(TX_MSG_DFIFO).

3. Issue a Write to offset 0xE64 through AXI4 Slave interface for the TX Message Header L
register.

4. Program offset 0xE68 for the required VDM TX Header H register.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=89

5. Program up to 16DW of Payload for the VDM message starting from DW0 – DW15 by
sending Writes to offset 0xE6C one by one.

6. Program the msg_routing, msg_code, data length, requester function field and
msg_execute field in the TX_MSG_CTRL register in offset 0xE60 to send the VDM TX
packet.

7. The TX Message Control register also indicates the completion status of the message in bit
23. User needs to read this bit to confirm the successful transmission of the VDM packet.

8. All the fields in the registers are RW except bit 23 (msg_fail) in TX Control register which is
cleared by writing a 1.

9. VDM TX packet will be sent on the AXI-ST RQ transmit interface.

Config Extend

PCIe extended interface can be selected for more configuration space. When the Configuration
Extend Interface is selected, you are responsible for adding logic to extend the interface to make
it work properly.

Expansion ROM

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According to
the PCI Local Bus Specification (PCI-SIG Specifications (https://www.pcisig.com/specifications)),
the maximum size for the Expansion ROM BAR should be no larger than 16 MB. Selecting an
address space larger than 16 MB can result in a non-compliant core.

Errors

Linkdown Errors

If the PCIe link goes down during DMA operations, transactions may be lost and the DMA may
not be able to complete. In such cases, the AXI4 interfaces will continue to operate. Outstanding
read requests on the C2H Bridge AXI4 MM interface receive correct completions or completions
with a slave error response. The DMA will log a link down error in the status register. It is the
responsibility of the driver to have a timeout and handle recovery of a link down situation.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 90Send Feedback

https://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=90

Data Path Errors

Data protection is supported on the primary data paths. CRC error can occur on C2H streaming,
H2C streaming. Parity error can occur on Memory Mapped, Bridge Master and Bridge Slave
interfaces. Error on Write payload can occur on C2H streaming, Memory Mapped and Bridge
Slave. Double bit error on write payload and read completions for Bridge Slave interface causes
parity error. Parity errors on requests to the PCIe are dropped by the core, and a fatal error is
logged by the PCIe. Parity errors are not recoverable and can result in unexpected behavior. Any
DMA during and after the parity error should be considered invalid. If there is a parity error and
transfer hangs or stops, the DMA will log the error. You must investigate and fix the parity issues.
Once the issues are fixed, clear that queue and reopen the queue to start a new transfer.

DMA Errors

All DMA errors are logged in their respective error status register. Each block has error status and
error mask register so error can be passed on to higher level and eventually to
QDMA_GLBL_ERR_STAT register.

Errors can be fatal error based on register settings. If there is an fatal error DMA will stop the
transfer and will send interrupt if enabled. After debug and analysis, you must invalidate and
restart the queue to start the DMA transfer.

Error Aggregator

There are Leaf Error Aggregators in different places. They log the errors and propagate them to
the central place. The Central Error Aggregator aggregates the errors from all of the Leaf Error
Aggregators.

The QDMA_GLBL_ERR_STAT register is the error status register of the Central Error Aggregator.
The bit fields indicate the locations of Leaf Error Aggregators. Then, look for the error status
register of the individual Leaf Error Aggregator to find the exact error.

The register QDMA_GLBL_ERR_MASK is the error mask register of the Central Error Aggregator.
It has the mask bits for the corresponding errors. When the mask bit is set to 1'b1, it will enable
the corresponding error to be propagated to the next level to generate an Interrupt. The detail
information of the error generated interrupt is described in the interrupt section. Error interrupt
is controlled by the register QDMA_GLBL_ERR_INT (0xB04).

Each Leaf Error Aggregator has an error status register and an error mask register. The error
status register logs the error. The hardware sets the bit when the error happens, and the
software can write 1'b1 to clear the bit if needed. The error mask register has the mask bits for
the corresponding errors. When the mask bit is set to 1'b1, it will enable the propagation of the
corresponding error to the Central Error Aggregator. The error mask register does not affect the
error logging to the error status register.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=91

Figure 29: Error Aggregator

Global Error Aggregator

H2C_ST
Leaf Error

Aggregator

Bridge Leaf
Error

Aggregator

H2C Leaf
Error

Aggregator

IND CTXT
CMD Leaf

Error
Aggregator

C2H_ST
Leaf Error

Aggregator

C2H MM
1/0 Leaf

Error
Aggregator

H2C MM
1/0 Leaf

Error
Aggregator

TRQ Leaf
Error

Aggregator

DSC Leaf
Error

Aggregator

DBE Leaf
Error

Aggregator

SBE Leaf
Error

Aggregator

X21109-062118

The error status registers and the error mask registers of the Leaf Error Aggregators are as
follows.

C2H Streaming Error

QDMA_C2H_ERR_STAT (0xAF0): This is the error status register of the C2H streaming errors.
QDMA_C2H_ERR_MASK (0xAF4): This the error mask register. The software can set the bit
to enable the corresponding C2H streaming error to be propagated to the Central Error
Aggregator.
QDMA_C2H_FIRST_ERR_QID (0xB30): This is the Qid of the first C2H streaming error.

C2H MM Error

QDMA_C2H MM Status (0x1040)
C2H MM Error Code Enable Mask (0x1054)
C2H MM Error Code (0x1058)
C2H MM Error Info (0x105C)

QDMA H2C0 MM Error

H2C0 MM Status (0x1240)
H2C MM Error Code Enable Mask (0x1254)
H2C MM Error Code (0x1258)
H2C MM Error Info (0x125C)

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=92

TRQ Error

QDMA_GLBL_TRQ_ERR_STS (0x264): This is the error status register of the Trq errors.
QDMA_GLBL_TRQ_ERR_MSK (0x268): This is the error mask register.
QDMA_GLBL_TRQ_ERR_LOG_A (0x26C): This is the error logging register. It shows the
select, function and the address of the access when the error happens.

Descriptor Error

QDMA_GLBL_DSC_ERR_STS (0x254)
QDMA_GLBL_DSC_ERR_MSK (0x258): This is the error logging register. It has the QID, DMA
direction, and the consumer index of the error.
QDMA_GLBL_DSC_ERR_LOG0 (0x25C)
QDMA_GLBL_TRQ_ERR_STS (0x264): This is the error status register of the TRQ errors.

RAM Double Bit Error

QDMA_RAM_DBE_STS_A (0xFC)
QDMA_RAM_DBE_MSK_A (0xF8)

RAM Single Error

QDMA_RAM_SBE_STS_A (0xF4)
QDMA_RAM_SBE_MSK_A (0xF0)

C2H Streaming Fatal Error Handling

QDMA_C2H_FATAL_ERR_STAT (0xAF8): The error status register of the C2H streaming fatal
errors.
QDMA_C2H_FATAL_ERR_MASK (0xAFC): The error mask register. The SW can set the bit to
enable the corresponding C2H fatal error to be sent to the C2H fatal error handling logic.
QDMA_C2H_FATAL_ERR_ENABLE (0xB00): This register enables two C2H streaming fatal
error handling processes:

1. Stop the data transfer by disabling the WRQ from the C2H DMA Write Engine.

2. Invert the WPL parity on the data transfer.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=93

Port Descriptions
QDMA Global Signals
Table 24: QDMA Global Port Descriptions

Port Name I/O Description
gt_refclk0_p/gt_refclk0_n I GT reference clock

pci_gt_txp/pci_gt_txn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_gt_rxp/pci_gt_rxn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

pcie0_user_lnk_up O Output active-High identifies that the PCI Express core is linked up
with a host device.

pcie0_user_clk O User clock out. PCIe derived clock output for all interface signals
output/input to the QDMA. Use this clock to drive inputs and gate
outputs from QDMA.

dma0_axi_aresetn O User reset out. AXI reset signal synchronous with the clock provided
on the pcie0_user_clk output. This reset should drive all
corresponding AXI Interconnect aresetn signals.

dma0_soft_resetn I Soft reset (active-Low). Use this port to assert reset and reset the
DMA logic. This will reset only the DMA logic. User should assert and
de-assert this port.

All AXI interfaces are clocked out and in by the pcie0_user_clk signal. You are responsible for
using pcie0_user_clk to drive all signals into the CPM.

pcie0_user_clk should be used to interface with the CPM. In the user logic, any available
clocks can be used.

AXI Slave Interface
AXI Bridge Slave ports are connected from the Versal ACAP Network on Chip (NoC) to the CPM
DMA internally. For Slave Bridge AXI-MM details, see the Versal ACAP Programmable Network on
Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

To access QDMA registers, you must follow the protocols outlined in the AXI Slave Bridge
Register Limitations section.

Related Information

Slave Bridge Registers Limitations

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 94Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=94

AXI4 Memory Mapped Interface
AXI4 Memory Mapped (MM) Master ports are connected from the CPM to the Versal ACAP
Network on Chip (NoC) internally. For details, see the Versal ACAP Programmable Network on Chip
and Integrated Memory Controller LogiCORE IP Product Guide (PG313). The AXI4 MM Master
interface can be connected to the DDR memory, or to the PL user logic, depending on the NoC
configuration.

AXI4-Lite Master Interface

AXI4-Lite Master ports are connected from the CPM to the Versal ACAP Network on Chip (NoC)
internally. For details, see the Versal ACAP Programmable Network on Chip and Integrated Memory
Controller LogiCORE IP Product Guide (PG313).

Use the SmartConnect IP to connect the NoC to the AXI4-Lite Master interface. For details, see
the SmartConnect LogiCORE IP Product Guide (PG247).

AXI4-Stream H2C Interface
Table 25: AXI4-Stream H2C Interface Descriptions

Port Name I/O Description
dma0_m_axis_h2c_tdata
[AXI_DATA_WIDTH-1:0]

O Data output for H2C AXI4-Stream.

dma0_m_axis_h2c_dpar
[AXI_DATA_WIDTH/8-1 : 0]

O Odd parity calculated bit-per-byte over m_axis_h2c_tdata.
m_axis_h2c_dpar[0] is parity calculated over m_axis_h2c_tdata[7:0].
m_axis_h2c_dpar[1] is parity calculated over m_axis_h2c_tdata[15:8],
and so on.

dma0_m_axis_h2c_tuser_qid[10:0] O Queue ID

dma0_m_axis_h2c_tuser_port_id[2:0] O Port ID

dma0_m_axis_h2c_tuser_err O If set, indicates the packet has an error. The error could be coming
from the PCIe, or the QDMA might have encountered a double bit
error.

dma0_m_axis_h2c_tuser_mdata[31:0] O Metadata
In internal mode, QDMA passes the lower 32 bits of the H2C AXI4-
Stream descriptor on this field.

dma0_m_axis_h2c_tuser_mty[5:0] O The number of bytes that are invalid on the last beat of the
transaction. This field is 0 for a 64B transfer.

dma0_m_axis_h2c_tuser_zero_byte O When set, it indicates that the current beat is an empty beat (zero
bytes are being transferred).

dma0_m_axis_h2c_tvalid O Valid

dma0_m_axis_h2c_tlast O Indicates that this is the last cycle of the packet transfer.

dma0_m_axis_h2c_tready I Ready

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 95Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=95

AXI4-Stream C2H Interface
Table 26: AXI4-Stream C2H Interface Descriptions

Port Name I/O Description
dma0_s_axis_c2h_tdata
[AXI_DATA_WIDTH-1:0]

I Supports 4 data widths: 64 bits, 128 bits, 256 bits, and 512 bits. Every
C2H data packet has a corresponding C2H completion packet.

dma0_s_axis_c2h_dpar
[AXI_DATA_WIDTH/8-1 : 0]

I Odd parity computed as bit per byte.

dma0_s_axis_c2h_ctrl_len [15:0] I Length of the packet. For 0 (zero) byte write, the length is 0. C2H
stream packet data length is limited to 7 * descriptor size.

dma0_s_axis_c2h_ctrl_qid [10:0] I Queue ID.

dma0_s_axis_c2h_ctrl_imm_data I Immediate data. This allows only the completion and no DMA on
the data payload.

dma0_s_axis_c2h_ctrl_dis_cmp I Disable completion

dma0_s_axis_c2h_ctrl_marker I Marker message used for making sure pipeline is completely
flushed. After that, you can safely perform queue invalidation.

dma0_s_axis_c2h_ctrl_port_id [2:0] I Port ID.

dma0_s_axis_c2h_ctrl_user_trig I User trigger. This can trigger the interrupt and the status descriptor
write if they are enabled.

dma0_s_axis_c2h_mty [5:0] I Empty byte should be set in last beat.

dma0_s_axis_c2h_tvalid I Valid.

dma0_s_axis_c2h_tlast I Indicate last packet.

dma0_s_axis_c2h_tready O Ready.

dma0_s_axis_c2h_cmpt_tdata[127:0] I Completion data from the user application. This contains
information that is written to the completion ring in the host. This
information includes the length of the packet transferred in bytes,
error, color bit, and user data. Based on completion size, this could
be 1 or 2 beats. Every C2H completion packet has a corresponding
C2H data packet.

dma0_s_axis_c2h_cmpt_size[1:0] I 00: 8B completion.
01: 16B completion.
10: 32B completion.
11: unknown.

dma0_s_axis_c2h_dmpt_dpar[3:0] I Odd parity computed as bit per word.
s_axis_c2h_cmpt_dpar[0] is parity over s_axis_c2h_cmpt_tdata[31:0].
s_axis_c2h_cmpt_dpar[1] is parity over s_axis_c2h_cmpt_tdata[63:31],
and so on.

dma0_s_axis_c2h_cmpt_tvalid I Valid

dma0_s_axis_c2h_cmpt_tlast I Indicates the end of the completion data transfer.

dma0_s_axis_c2h_cmpt_tready O Ready

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=96

AXI4-Stream C2H Completion Interface
Table 27: AXI4-Stream C2H Completion Interface Descriptions

Port Name I/O Description
dma0_s_axis_c2h_cmpt_tdata[511:0] I Completion data from the user application. This contains

information that is written to the completion ring in the host.

dma0_s_axis_c2h_cmpt_size [1:0] I 00: 8B completion.
01: 16B completion.
10: 32B completion.
11: 64B completion

dma0_s_axis_c2h_cmpt_dpar [15:0] I Odd parity computed as bit per 32b.
dma0_s_axis_c2h_cmpt_dpar[0] is parity over
dma0_s_axis_c2h_cmpt_tdata[31:0].
dma0_s_axis_c2h_cmpt_dpar[1] is parity over
dma0_s_axis_c2h_cmpt_tdata[63:31], and so on.

dma0_s_axis_c2h_cmpt_ctrl_qid[10:0] I Completion queue ID.

dma0_s_axis_c2h_cmpt_ctrl_marker I Marker message used for making sure pipeline is completely
flushed. After that, you can safely do queue invalidation.

dma0_s_axis_c2h_cmpt_ctrl_user_trig I Triggers the interrupt and the status descriptor write when enabled.

dma0_s_axis_c2h_cmpt_ctrl_cmpt_type[
1:0]

I 2’b00: NO_PLD_NO_WAIT. The Completion (CMPT) packet does not
have a corresponding payload packet, and it does not need to wait.
2’b01: NO_PLD_BUT_WAIT. The CMPT packet does not have a
corresponding payload packet; however, it still needs to wait for the
payload packet to be sent before sending the CMPT packet.
2’b10: RSVD.
2’b11: HAS_PLD. The CMPT packet has a corresponding payload
packet, and it needs to wait for the payload packet to be sent before
sending the CMPT packet.

dma0_s_axis_c2h_cmpt_ctrl_wait_pld_p
kt_id[15:0]

I The data payload packet ID that the CMPT packet needs to wait for
before it can be sent.

dma0_s_axis_c2h_cmpt_ctrl_port_id[2:0
]

I Port ID.

dma0_s_axis_c2h_cmpt_ctrl_col_idx[2:0] I Color index that defines if the user wants to have the color bit in the
CMPT packet and the bit location of the color bit if present.

dma0_s_axis_c2h_cmpt_ctrl_err_idx[2:0] I Error index that defines if the user wants to have the error bit in the
CMPT packet and the bit location of the error bit if present.

dma0_s_axis_c2h_cmpt_tvalid I Valid.

dma0_s_axis_c2h_cmpt_tready O Ready.

AXI4-Stream Status Interface
Table 28: AXI-ST C2H Status Interface Descriptions

Port Name I/O Description
dma0_axis_c2h_status_valid O Valid per descriptor.

dma0_axis_c2h_status_qid[10:0] O QID of the packet.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=97

Table 28: AXI-ST C2H Status Interface Descriptions (cont'd)

Port Name I/O Description
dma0_axis_c2h_status_drop O The QDMA drops the packet if it does not have enough descriptors

to transfer the full packet to the host. This bit indicates if the packet
was dropped or not. A packet that is not dropped is considered as
having been accepted.
0: Packet is not dropped.
1: Packet is dropped.

AXI4-Stream C2H Write Cmp Interface
Table 29: AXI-ST C2H Write Cmp Interface Descriptions

Port Name I/O Description
dma0_axis_c2h_dmawr_cmp O This signal is asserted when the last data payload Wrq of the packet

gets the completion of Wcp. It is one pulse per packet.

VDM Interface
Table 30: VDM Port Descriptions

Port Name I/O Description
dma0_st_rx_msg_valid O Valid

dma0_st_rx_msg_data[31:0] O Beat 1:
{REQ_ID[15:0], VDM_MSG_CODE[7:0], VDM_MSG_ROUTING[2:0],
VDM_DW_LENGTH[4:0]}
Beat 2:
VDM Lower Header [31:0]
or
{(Payload_length=0), VDM Higher Header [31:0]}
Beat 3 to Beat <n>:
VDM Payload

dma0_st_rx_msg_last O Indicates the last beat

dma0_st_rx_msg_rdy I Ready.

Note: When this interface is not used, Ready must be tied-off to 1.

RECOMMENDED: RX Vendor Defined Messages are stored in shallow FIFO before they are transmitted
to output ports. When there are many back-to-back VDM messages, the FIFO overflows and these
messages are dropped. It is best to repeat VDM messages at regular intervals.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=98

FLR Interface
Table 31: FLR Port Descriptions

Port Names I/O Description
dma0_usr_flr_fnc [7:0] O Function

The function number of the FLR status change.

dma0_usr_flr_set O Set
Asserted for 1 cycle indicating that the FLR status of the function
indicated on dma0_usr_flr_fnc[7:0] is active.

dma0_usr_flr_clr O Clear
Asserted for 1 cycle indicating that the FLR status of the function
indicated on dma0_usr_flr_fnc[7:0] is completed.

dma0_usr_flr_done_fnc [7:0] I Done Function
The function for which FLR has been completed.

dma0_usr_flr_done_vld I Done Valid
Assert for one cycle to signal that FLR for the function on
dma0_usr_flr_done_fnc[7:0] has been completed.

QDMA Descriptor Bypass Input Interface
Table 32: QDMA H2C-Streaming Bypass Input Interface Descriptions

Port Name I/O Description
dma0_h2c_byp_in_st_addr[63:0] I 64-bit starting address of the DMA transfer.

dma0_h2c_byp_in_st_len[15:0] I The number of bytes to transfer.

dma0_h2c_byp_in_st_sop I Indicates start of packet. Set for the first descriptor. Reset for the
rest of the descriptors.

dma0_h2c_byp_in_st_eop I Indicates end of packet. Set for the last descriptor. Reset for the rest
of the descriptors

dma0_h2c_byp_in_st_sdi I H2C Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the user application to the
QDMA to send the status descriptor to host, and to generate an
interrupt to host when the QDMA has fetched the last byte of the
data associated with this descriptor. The QDMA honors the request
to generate an interrupt only if interrupts have been enabled in the
H2C SW context for this QID and armed by the driver. This can only
be set for an EOP descriptor.
QDMA will hang if the last descriptor without h2c_byp_in_st_sdi has
an error. This results in a missing writeback, and hw_ctxt.dsc_pend
bit that are asserted indefinitely. The workaround is to send a zero
length descriptor to trigger the Completion (CMPT) Status.

dma0_h2c_byp_in_st_mrkr_req I H2C Bypass In Marker Request
When set, the descriptor passes through the H2C Engine pipeline
and once completed, produces a marker response on the interface.
This can only be set for an EOP descriptor.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=99

Table 32: QDMA H2C-Streaming Bypass Input Interface Descriptions (cont'd)

Port Name I/O Description
dma0_h2c_byp_in_st_no_dma I H2C Bypass In No DMA

When sending a descriptor through the interface with this signal
asserted, it informs the QDMA to not send any PCIe requests for
this descriptor. Because no PCIe request is sent out, no
corresponding DMA data is issued on the H2C Streaming output
interface.
This signal is typically used in conjunction with h2c_byp_in_st_sdi to
cause Status Descriptor/Interrupt when the user logic is out of the
actual descriptors and still wants to drive the h2c_byp_in_st_sdi
signal.
If dma0_h2c_byp_in_st_mrkr_req and h2c_byp_in_st_sdi are reset
when sending in a no-DMA descriptor, the descriptor is treated as a
NOP and is completely consumed inside the QDMA without any
interface activity.
If dma0_h2c_byp_in_st_no_dma is set, both dma0_h2c_byp_in_st_sop
and dma0_h2c_byp_in_st_eop must be set.
If dma0_h2c_byp_in_st_no_dma is set, the QDMA ignores the
address and length fields of this interface.

dma0_h2c_byp_in_st_qid[10:0] I The QID associated with the H2C descriptor ring.

dma0_h2c_byp_in_st_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect an error in
the queue

dma0_h2c_byp_in_st_func[7:0] I PCIe function ID

dma0_h2c_byp_in_st_cidx[15:0] I The CIDX that will be used for the status descriptor update and/or
interrupt (aggregation mode). Generally the CIDX should be left
unchanged from when it was received from the descriptor bypass
output interface.

dma0_h2c_byp_in_st_port_id[2:0] I QDMA port ID

dma0_h2c_byp_in_st_vld I Valid. High indicates descriptor is valid. One pulse for one
descriptor.

dma0_h2c_byp_in_st_rdy O Ready to take in descriptor

Table 33: QDMA H2C-MM Descriptor Bypass Input Port Descriptions

Port Name I/O Description
dma0_h2c_byp_in_mm_radr[63:0] I The read address for the DMA data.

dma0_h2c_byp_in_mm_wadr[63:0] I The write address for the dma data.

dma0_h2c_byp_in_mm_len[27:0] I The DMA data length.
The upper 12 bits must be tied to 0. Thus only the lower 16 bits of
this field can be used for specifying the length.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=100

Table 33: QDMA H2C-MM Descriptor Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
dma0_h2c_byp_in_mm_sdi I H2C-MM Bypass In Status Descriptor/Interrupt

If set, the signal is treated as an indication from the user logic to the
QDMA to send the status descriptor to the host and generate an
interrupt to the host when the QDMA has fetched the last byte of
the data associated with this descriptor. The QDMA will honor the
request to generate an interrupt only if interrupts have been
enabled in the H2C ring context for this QID and armed by the
driver.
QDMA will hang if the last descriptor without
dma0_h2c_byp_in_mm_sdi has an error. This results in a missing
writeback, and the hw_ctxt.dsc_pend bit is asserted indefinitely. The
workaround is to send a zero length descriptor to trigger the
Completion (CMPT) Status.

dma0_h2c_byp_in_mm_mrkr_req I H2C-MM Bypass In Completion Request
Indication from the user logic that the QDMA must send a
completion status to the user logic after the QDMA has completed
the data transfer of this descriptor.

dma0_h2c_byp_in_mm_qid[10:0] I The QID associated with the H2C descriptor ring.

dma0_h2c_byp_in_mm_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

dma0_h2c_byp_in_mm_func[7:0] I PCIe function ID

dma0_h2c_byp_in_mm_cidx[15:0] I The CIDX that will be used for the status descriptor update and/or
interrupt (aggregation mode). Generally the CIDX should be left
unchanged from when it was received from the descriptor bypass
output interface.

dma0_h2c_byp_in_mm_port_id[2:0] I QDMA port ID

dma0_h2c_byp_in_mm_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

dma0_h2c_byp_in_mm_rdy O Ready to take in descriptor

Table 34: QDMA C2H-Streaming Cache Bypass Input Port Descriptions

Port Name I/O Description
dma0_c2h_byp_in_st_csh_addr [63:0] I 64 bit address where DMA writes data.

dma0_c2h_byp_in_st_csh_qid [10:0] I The QID associated with the C2H descriptor ring.

dma0_c2h_byp_in_st_csh_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

dma0_c2h_byp_in_st_csh_func [7:0] I PCIe function ID

dma0_c2h_byp_in_st_csh_port_id[2:0] I QDMA port ID

dma0_c2h_byp_in_st_csh_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

dma0_c2h_byp_in_st_csh_rdy O Ready to take in descriptor.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=101

Table 35: QDMA C2H-Streaming Simple Bypass Input Port Descriptions

Port Name I/O Description
dma0_c2h_byp_in_st_sim_addr [63:0] I 64-bit address where DMA writes data.

dma0_c2h_byp_in_st_sim_qid [10:0] I The QID associated with the C2H descriptor ring.

dma0_c2h_byp_in_st_sim_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect an error in
the queue.

dma0_c2h_byp_in_st_sim_func [7:0] I PCIe function ID

dma0_c2h_byp_in_st_sim_port_id[2:0] I QDMA port ID

dma0_c2h_byp_in_st_sim_vld I Valid. High indicates descriptor is valid. One pulse for one
descriptor.

dma0_c2h_byp_in_st_sim_rdy O Ready to take in descriptor.

Table 36: QDMA C2H-MM Descriptor Bypass Input Port Descriptions

Port Name I/O Description
dma0_c2h_byp_in_mm_raddr [63:0] I The read address for the DMA data.

dma0_c2h_byp_in_mm_wadr[63:0] I The write address for the DMA data.

dma0_c2h_byp_in_mm_len[27:0] I The DMA data length.

dma0_c2h_byp_in_mm_sdi I C2H Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the user logic to the QDMA
to send the status descriptor to host, and generate an interrupt to
host when the QDMA has fetched the last byte of the data
associated with this descriptor. The QDMA will honor the request to
generate an interrupt only if interrupts have been enabled in the
C2H ring context for this QID and armed by the driver.

dma0_c2h_byp_in_mm_mrkr_req I C2H Bypass In Marker Request
Indication from the user logic that the QDMA must send a
completion status to the user logic after the QDMA has completed
the data transfer of this descriptor.

dma0_c2h_byp_in_mm_qid [10:0] I The QID associated with the C2H descriptor ring.

dma0_c2h_byp_in_mm_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

dma0_c2h_byp_in_mm_func [7:0] I PCIe function ID

dma0_c2h_byp_in_mm_cidx [15:0] I The User must echo the CIDX from the descriptor that it received on
the bypass-out interface.

dma0_c2h_byp_in_mm_port_id[2:0] I QDMA port ID

dma0_c2h_byp_in_mm_vld I Valid. High indicates descriptor is valid. One pulse for one
descriptor.

dma0_c2h_byp_in_mm_rdy O Ready to take in descriptor.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=102

QDMA Descriptor Bypass Output Interface
Table 37: QDMA H2C Descriptor Bypass Output Interface Descriptions

Port Name I/O Description
dma0_h2c_byp_out_dsc[255:0] O The H2C descriptor fetched from the host. For Streaming descriptor,

use the lower 64b of this field as the address. The remaining bits
can be ignored.
For H2C AXI-MM, the QDMA uses all 256 bits, and the structure of
the bits are the same as this table.
For H2C AXI-ST, the QDMA uses [127:0] bits, and the structure of the
bits are the same as this table.

dma0_h2c_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-
mapped descriptor.
0: Streaming
1: Memory-mapped

dma0_h2c_byp_out_dsc_sz[1:0] O Descriptor size. This field indicates the amount of valid descriptor
information on dma0_h2c_byp_out_dsc.
0: 8B
1: 16B
2: 32B
3: 64B - 64B descriptors will be transferred with two valid/ready
cycles. The first cycle has the least significant 32 bytes. The second
cycle has the most significant 32 bytes. CIDX and other queue
information is valid only on the second beat of a 64B descriptor .

dma0_h2c_byp_out_qid[10:0] O The QID associated with the H2C descriptor ring.

dma0_h2c_byp_out_error O Indicates that an error was encountered in descriptor fetch or
execution of a previous descriptor.

dma0_h2c_byp_out_func[7:0] O PCIe function ID

dma0_h2c_byp_out_cidx[15:0] O H2C Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface.

dma0_h2c_byp_out_port_id[2:0] O QDMA port ID

dma0_h2c_byp_out_mrkr_rsp O Indicates completion status in response to h2c_byp_in_st_mrkr_req
(Stream) or h2c_byp_in_mm_mrkr_req (MM).

dma0_h2c_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one
descriptor.

dma0_h2c_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

Table 38: QDMA C2H Descriptor Bypass Output Port Descriptions

Port Name I/O Description
dma0_c2h_byp_out_dsc[255:0] O The C2H descriptor fetched from the host.

For C2H AXI-MM, the QDMA uses all 256 bits, and the structure of
the bits is the same as this table.
For C2H AXI-ST, the QDMA uses [63:0] bits, and the structure of the
bits is the same as this table. The remaining bits are ignored.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=103

Table 38: QDMA C2H Descriptor Bypass Output Port Descriptions (cont'd)

Port Name I/O Description
dma0_c2h_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-

mapped descriptor.
0: streaming
1: memory-mapped

dma0_c2h_byp_out_dsc_sz[1:0] O Descriptor size. This field indicates the amount of valid descriptor
information on dma0_h2c_byp_out_dsc.
0: 8B
1: 16B
2: 32B
3: 64B to 64B descriptors will be transferred with two valid/ready
cycles. The first cycle has the least significant 32 bytes. The second
cycle has the most significant 32 bytes. CIDX and other queue
information is valid only on the second beat of a 64B descriptor.

dma0_c2h_byp_out_qid[10:0] O The QID associated with the H2C descriptor ring.

dma0_c2h_byp_out_error O Indicates that an error was encountered in descriptor fetch or
execution of a previous descriptor.

dma0_c2h_byp_out_func[7:0] O PCIe function ID.

dma0_c2h_byp_out_cidx[15:0] O C2H Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface.

dma0_c2h_byp_out_port_id[2:0] O QDMA port ID

dma0_c2h_byp_out_mrkr_rsp O Indicates completion status in response to s_axis_c2h_ctrl_marker
(Stream) or c2h_byp_in_mm_mrkr_req (MM). For the completions
status for dma0_s_axis_c2h_ctrl_marker (Stream), the details
are given in the table below.

dma0_c2h_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one
descriptor.

dma0_c2h_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

Table 39: QDMA C2H Descriptor Bypass out Marker Response Description

Field Name location Description
err[1:0] [1:0] Error code reported by the C2H Engine.

0: No error
1: SW gave bad Completion CIDX update
2: Descriptor error received while processing the C2H packet
3: Completion dropped by the C2H Engine because Completion Ring
was full

retry_marker_req [2] The marker request could not be completed because an Interrupt
could not be generated in spite of being enabled. This happens
when an Interrupt is already outstanding on the queue when the
marker request was received. The user logic must wait and retry the
marker request again.

rsv [255:3] Reserved

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=104

It is common for dma0_h2c_byp_out_vld or dma0_c2h_byp_out_vld to be asserted with
the CIDX value. This occurs when the descriptor bypass mode option is not set in the context
programming selection. You must set the descriptor bypass mode during QDMA IP core
customization in the Vivado® IDE to see descriptor bypass output ports. When the descriptor
bypass option is selected in the Vivado IDE but the descriptor bypass bit is not set in context
programming, you will see valid signals getting asserted with CIDX updates.

QDMA Descriptor Credit Input Interface
Table 40: QDMA Descriptor Credit Input Port Descriptions

Port Name I/O Description
dma0_dsc_crdt_in_vld I Valid. When asserted the user must be presenting valid data on the

bus and maintain the bus values until both valid and ready are
asserted on the same cycle.

dma0_dsc_crdt_in_rdy O Ready. Assertion of this signal indicates the DMA is ready to accept
data from this bus.

dma0_dsc_crdt_in_dir I Indicates whether credits are for H2C or C2H descriptor ring.
0: H2C
1: C2H

dma0_dsc_crdt_in_qid [10:0] I The QID associated with the descriptor ring for the credits are being
added.

dma0_dsc_crdt_in_crdt [15:0] I The number of descriptor credits that the user application is giving
to the QDMA to fetch descriptors from the host.

QDMA Traffic Manager Credit Output Interface
Table 41: QDMA TM Credit Output Port Descriptions

Port Name I/O Description
dma0_tm_dsc_sts_vld O Valid. Indicates valid data on the output bus. Valid data on the bus is

held until dma0_tm_dsc_sts_rdy is asserted by the user.

dma0_tm_dsc_sts_rdy I Ready. Assertion indicates that the user logic is ready to accept the
data on this bus. When this interface is not used, Ready must be
tied-off to 1.

Note: When this interface is not used, Ready must be tied-off to 1.

dma0_tm_dsc_sts_byp O Shows the bypass bit in the SW descriptor context.

dma0_tm_dsc_sts_dir O Indicates whether the status update is for a H2C or C2H descriptor
ring.
0: H2C
1: C2H

dma0_tm_dsc_sts_mm O Indicates whether the status update is for a streaming or memory-
mapped queue.
0: Streaming
1: Memory-mapped

dma0_tm_dsc_sts_qid [10:0] O The QID of the ring

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=105

Table 41: QDMA TM Credit Output Port Descriptions (cont'd)

Port Name I/O Description
dma0_tm_dsc_sts_avl [15:0] O If dma0_tm_dsc_sts_qinv is set, this is the number of credits

available in the descriptor engine. If dma0_tm_dsc_sts_qinv is not
set this is the number of new descriptors that have been posted to
the ring since the last time this update was sent.

dma0_tm_dsc_sts_qinv O If set, it indicates that the queue has been invalidated. This is used
by the user application to reconcile the credit accounting between
the user application and QDMA.

dma0_tm_dsc_sts_qen O The current queue enable status.

dma0_tm_dsc_sts_irq_arm O If set, it indicates that the driver is ready to accept interrupts.

dma0_tm_dsc_sts_error O Set to 1 if the PIDX update is rolled over the current CIDX of
associated. queue.

dma0_tm_dsc_sts_port_id [2:0] O The port id associated with the queue from the queue context.

User Interrupts
Table 42: User Interrupts Port Descriptions

Port Name I/O Description
dma0_usr_irq_vld I Valid

An assertion indicates that an interrupt associated with the vector,
function, and pending fields on the bus should be generated to
PCIe. Once asserted, dma0_usr_irq_in_vld must remain high until
dma0_usr_irq_ack is asserted by the DMA.

dma0_usr_irq_vec [4:0] I Vector
The MSI-X vector to be sent.

dma0_usr_irq_fnc [7:0] I Function
The function of the vector to be sent.

dma0_usr_irq_ack O Interrupt Acknowledge
An assertion of the acknowledge bit indicates that the interrupt was
transmitted on the link the user logic must wait for this pulse before
signaling another interrupt condition.

dma0_usr_irq_fail O Interrupt Fail
An assertion of fail indicates that the interrupt request was aborted
before transmission on the link.

Eight vectors is the maximum number allowed per function.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=106

Register Space
QDMA PF Address Register Space
All the physical function (PF) registers are found in cpm-qdma-v2-1-registers.csv
available in the register map files.

To locate the register space information:

1. Download the register map files from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Refer to cpm-qdma-v2-1-registers.csv.

Table 43: QDMA PF Address Register Space

Register Name Base (Hex) Byte Size (Dec) Register List and Details
QDMA_CSR 0x0000 9216 QDMA Configuration Space Register

(CSR) found in cpm-qdma-v2-1-
registers.csv.

QDMA_TRQ_MSIX 0x2000 512 Also found in QDMA_TRQ_MSIX
(0x2000).
Maximum of 32 vectors per function.

QDMA_PF_MAILBOX 0x2400 16384 Also found in QDMA_PF_MAILBOX
(0x2400).

QDMA_TRQ_SEL_QUEUE_PF 0x6400 32768 Also found in
QDMA_TRQ_SEL_QUEUE_PF (0x6400).

QDMA_CSR (0x0000)

QDMA Configuration Space Register (CSR) descriptions are found in cpm-qdma-v2-1-
registers.csv. See above for details.

QDMA_TRQ_MSIX (0x2000)

Table 44: QDMA_TRQ_MSIX (0x2000)

Byte
Offset Bit Default Access

Type Field Description

0x2000 [31:0] 0 NA addr MSIX_Vector0_Address[63:32]
MSI-X vector0 message lower address.

0x2004 [31:0] 0 RO addr MSIX_Vector0_Address[63:32]
MSI-X vector0 message upper address.

0x2008 [31:0] 0 RO data MSIX_Vector0_Data[31:0]
MSI-X vector0 message data.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 107Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=107

Table 44: QDMA_TRQ_MSIX (0x2000) (cont'd)

Byte
Offset Bit Default Access

Type Field Description

0x200C [31:0] 0 RO control MSIX_Vector0_Control[31:0]
MSI-X vector0 control.
Bit Position:
31:1: Reserved.
0: Mask. When set to 1, this MSI-X vector is not
used to generate a message. When reset to 0,
this MSI-X vector is used to generate a
message.

The MSI-X table PBA offset is at 0x1400.

Note: The table above represents one MSI-X table entry 0. Each function can only support up to 32
vectors.

QDMA_PF_MAILBOX (0x2400)

Table 45: QDMA_PF_MAILBOX (0x2400) Register Space

Register Address Description
Function Status Register (0x2400) 0x2400 Status bits

Function Command Register (0x2404) 0x2404 Command register bits

Function Interrupt Vector Register (0x2408) 0x2408 Interrupt vector register

Target Function Register (0x240C) 0x240C Target Function register

Function Interrupt Vector Register (0x2410) 0x2410 Interrupt Control Register

RTL Version Register (0x2414) 0x2414 RTLVersion Register

PF Acknowledgment Registers (0x2420-0x243C) 0x2420-0x243C PF acknowledge

FLR Control/Status Register (0x2500) 0x2500 FLR control and status

Incoming Message Memory (0x2C00-0x2C7C) 0x2C00-0x2C7C Incoming message (128 bytes)

Outgoing Message Memory (0x3000-0x307C) 0x3000-0x307C Outgoing message (128 bytes)

Mailbox Addressing

• PF addressing: Addr = PF_Bar_offset + CSR_addr

• VF addressing: Addr = VF_Bar_offset + VF_Start_offset + VF_offset +
CSR_addr

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=108

Function Status Register (0x2400)

Table 46: Function Status Register (02400)

Bit Default Access
Type Field Description

[31:12] 0 NA Reserved Reserved

[11:4] 0 RO cur_src_fn This field is for PF use only.
The source function number of the message on the
top of the incoming request queue.

[2] 0 RO ack_status This field is for PF use only.
The status bit will be set when any bit in the
acknowledgment status register is asserted.

[1] 0 RO o_msg_status For VF: The status bit will be set when VF driver write
msg_send to its command register. When The
associated PF driver send acknowledgment to this VF,
the hardware clear this field. The VF driver is not
allow to update any content in its outgoing mailbox
memory (OMM) while o_msg_status is asserted. Any
illegal write to the OMM will be discarded (optionally,
this can cause an error in the AXI4-Lite response
channel).
For PF: The field indicated the message status of the
target FN which is specified in the Target FN Register.
The status bit will be set when PF driver sends
msg_send command. When the corresponding
function driver send acknowledgment by sending
msg_rcv, the hardware clear this field. The PF driver
is not allow to update any content in its outgoing
mailbox memory (OMM) while
o_msg_status(target_fn_id) is asserted. Any illegal
write to the OMM will be discarded (optionally, this
can cause an error in the AXI4-Lite response
channel).

[0] 0 RO i_msg_status For VF: When asserted, a message in the VF’s
incoming Mailbox memory is pending for process.
The field will be cleared once the VF driver write
msg_rcv to its command register.
For PF: When asserted, the messages in the incoming
Mailbox memory are pending for process. The field
will be cleared only when the event queue is empty.

Function Command Register (0x2404)

Table 47: Function Command Register (0x2404)

Bit Default Access
Type Field Description

[31:3] 0 NA Reserved Reserved

[2] 0 RO Reserved Reserved

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=109

Table 47: Function Command Register (0x2404) (cont'd)

Bit Default Access
Type Field Description

[1] 0 RW msg_rcv For VF: VF marks the message in its Incoming
Mailbox Memory as received. Hardware asserts the
acknowledgement bit of the associated PF.
For PF: PF marks the message send by target_fn as
received. The hardware will refresh the i_msg_status
of the PF, and clear the o_msg_status of the
target_fn.

[0] 0 RW msg_send For VF: VF marks the current message in its own
Outgoing Mailbox as valid.
For PF:

• Current target_fn_id belongs to a VF: PF finished
writing a message into the Incoming Mailbox
memory of the VF with target_fn_id. The
hardware sets the i_msg_status field of the target
FN’s status register.

• Current target_fn_id belongs to a PF: PF finished
writing a message into its own outgoing Mailbox
memory. Hardware will push the message to the
event queue of the PF with target_fn_id.

Function Interrupt Vector Register (0x2408)

Table 48: Function Interrupt Vector Register (0x2408)

Bit Default Access
Type Field Description

[31:5] 0 NA Reserved Reserved

[4:0] 0 RW int_vect 5-bit interrupt vector assigned by the driver.

Target Function Register (0x240C)

Table 49: Target Function Register (0x240C)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved Reserved

[7:0] 0 RW target_fn_id This field is for PF use only.
The FN number which the current operation is
targeting.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=110

Function Interrupt Vector Register (0x2410)

Table 50: Function Interrupt Vector Register (0x2410)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved Reserved

[0] 0 RW int_en Interrupt enable.

RTL Version Register (0x2414)

Table 51: RTL Version Register (0x2414)

Bit Default Access
Type Field Description

[31:16] 0x1fd3 RO QDMA ID

[15:0] 0 RO Vivado versions
0x1000: CPM QDMA Vivado version 2020.1.

PF Acknowledgment Registers (0x2420-0x243C)

Table 52: PF Acknowledgment Registers (0x2420-0x243C)

Register Addr Default Access
Type Field Width Description

Ack0 0x22420 0 RW 32 Acknowledgment from FN
31~0

Ack1 0x22424 0 RW 32 Acknowledgment from FN
63~32

Ack2 0x22428 0 RW 32 Acknowledgment from FN
95~64

Ack3 0x2242C 0 RW 32 Acknowledgment from FN
127~96

Ack4 0x22430 0 RW 32 Acknowledgment from FN
159~128

Ack5 0x22434 0 RW 32 Acknowledgment from FN
191~160

Ack6 0x22438 0 RW 32 Acknowledgment from FN
223~192

Ack7 0x2243C 0 RW 32 Acknowledgment from FN
255~224

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=111

FLR Control/Status Register (0x2500)

Table 53: FLR Control/Status Register (0x2500)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved Reserved

[0] 0 RW Flr_status Software write 1 to initiate the Function Level Reset
(FLR) for the associated function. The field is kept
asserted during the FLR process. After the FLR is
done, the hardware de-asserts this field.

Incoming Message Memory (0x2C00-0x2C7C)

Table 54: Incoming Message Memory (0x2C00-0x2C7C)

Register Addr Default Access
Type Field Width Description

i_msg_i 0x22C00 + i*4 0 RW 32 The ith word of the incoming
message (0 ≤ I < 128).

Outgoing Message Memory (0x3000-0x307C)

Table 55: Outgoing Message Memory (0x3000-0307C)

Register Addr Default Access
Type Field Width Description

o_msg_i 0x3000 + i *4 0 RW 32 The ith word of the outgoing
message (0 ≤ I < 128).

QDMA_TRQ_SEL_QUEUE_PF (0x6400)

Table 56: QDMA_TRQ_SEL_QUEUE_PF (0x6400) Register Space

Register Address Description
QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400) 0x6400-0xB3F0 Interrupt Ring Consumer Index (CIDX)

QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404) 0x6404-0xB3F4 H2C Descriptor Producer index (PIDX)

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408) 0x6408-0xB3F8 C2H Descriptor Producer Index (PIDX)

QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x640C) 0x640C-0xB3FC C2H Completion Consumer Index (CIDX)

There are 2048 Queues, each Queue will have more than four registers. All these registers can be
dynamically updated at any time. This set of registers can be accessed based on the Queue
number.

Queue number is absolute Qnumber [0 to 2047].
Interrupt CIDX address = 0x6400 + Qnumber*16
H2C PIDX address = 0x6404 + Qnumber*16

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=112

C2H PIDX address = 0x6408 + Qnumber*16
Write Back CIDX address = 0x640C + Qnumber*16

For Queue 0:

0x6400 correspond to QDMA_DMAP_SEL_INT_CIDX
0x6404 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6408 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x640C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 1:

0x6410 correspond to QDMA_DMAP_SEL_INT_CIDX
0x6414 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6418 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x641C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 2:

0x6420 correspond to QDMA_DMAP_SEL_INT_CIDX
0x6424 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x6428 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x642C correspond to QDMA_DMAP_SEL_WRB_CIDX

QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)

Table 57: QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)

Bit Default Access
Type Field Description

[31:24] 0 NA Reserved Reserved

[23:16] 0 RW ring_idx Ring index of the Interrupt Aggregation Ring

[15:0] 0 RW sw_cdix Software Consumer index (CIDX)

QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)

Table 58: QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved Reserved

[16] 0 RW irq_arm Interrupt arm. Set this bit to 1 for next interrupt
generation.

[15:0] 0 RW h2c_pidx H2C Producer Index

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=113

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)

Table 59: QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved Reserved

[16] 0 RW irq_arm Interrupt arm. Set this bit to 1 for next interrupt
generation.

[15:0] 0 RW c2h_pidx C2H Producer Index

QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x640C)

Table 60: QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x640C)

Bit Default Access
Type Field Description

[31:29] 0 NA Reserved Reserved

[28] 0 RW irq_en_wrb Interrupt arm. Set this bit to 1 for next interrupt
generation.

[27] 0 RW en_sts_desc_wrb Enable Status Descriptor for CMPT

[26:24] 0 RW trigger_mode Interrupt and Status Descriptor Trigger Mode:
0x0: Disabled
0x1: Every
0x2: User_Count
0x3: User
0x4: User_Timer
0x5: User_Timer_Count

[23:20] 0 RW c2h_timer_cnt_index Index to QDMA_C2H_TIMER_CNT

[19:16] 0 RW c2h_count_threshhold Index to QDMA_C2H_CNT_TH

[15:0] 0 RW wrb_cidx CMPT Consumer Index (CIDX)

QDMA VF Address Register Space
Table 61: QDMA VF Address Register Space

Target Name Base (Hex) Byte Size (Dec) Notes
QDMA_TRQ_SEL_QUEUE_VF (0x3000) 00003000 32768 VF Direct QCSR (16B per Queue, up to

max of 2048 Queue per function)

QDMA_TRQ_MSIX_VF (0x400) 00004000 4096 Space for 32 MSI-X vectors and PBA

QDMA_VF_MAILBOX (0x1000) 00001000 8192 Mailbox address space

QDMA_TRQ_SEL_QUEUE_VF (0x3000)

VF functions can access direct update registers per queue with offset (0x3000). The description
for this register space is the same as QDMA_TRQ_SEL_QUEUE_PF (0x6400).

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=114

This set of registers can be accessed based on Queue number. Queue number is absolute
Qnumber, [0 to 2047].

Interrupt CIDX address = 0x3000 + Qnumber*16
H2C PIDX address = 0x3004 + Qnumber*16
C2H PIDX address = 0x3008 + Qnumber*16
Completion CIDX address = 0x300C + Qnumber*16

For Queue 0:

0x3000 correspond to QDMA_DMAP_SEL_INT_CIDX
0x3004 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3008 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x300C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 1:

0x3010 correspond to QDMA_DMAP_SEL_INT_CIDX
0x3014 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3018 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x301C correspond to QDMA_DMAP_SEL_WRB_CIDX

QDMA_TRQ_MSIX_VF (0x400)

VF functions can access the MSI-X table with offset (0x0000) from that function. The description
for this register space is the same as QDMA_TRQ_MSIX (0x2000).

QDMA_VF_MAILBOX (0x1000)

Table 62: QDMA_VF_MAILBOX (0x0100) Register Space

Registers (Address) Address Description
Function Status Register (0x1000) 0x1000 Status register bits

Function Command Register (0x1004) 0x1004 Command register bits

Function Interrupt Vector Register
(0x1008)

0x1008 Interrupt vector register

Target Function Register (0x100C) 0x100C Target Function register

Function Interrupt Control Register
(0x1010)

0x1010 Interrupt Control Register

RTL Version Register (0x1014) 0x1014 RTL Version Register

Incoming Message Memory
(0x1800-0x187C)

0x1800-0x187C Incoming message (128 bytes)

Outgoing Message Memory
(0x1C00-0x1C7C)

0x1C00-0x1C7C Outgoing message (128 bytes)

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=115

Function Status Register (0x1000)

Table 63: Function Status Register (0x1000)

Bit Index Default Access
Type Field Description

[31:12] 0 NA Reserved Reserved

[11:4] 0 RO cur_src_fn This field is for PF use only.
The source function number of the message on the
top of the incoming request queue.

[2] 0 RO ack_status This field is for PF use only.
The status bit will be set when any bit in the
acknowledgement status register is asserted.

[1] 0 RO o_msg_status For VF: The status bit will be set when VF driver write
msg_send to its command register. When the
associated PF driver sends acknowledgement to this
VF, the hardware clears this field. The VF driver is not
allow to update any content in its outgoing mailbox
memory (OMM) while o_msg_status is asserted. Any
illegal writes to the OMM are discarded (optionally,
this can cause an error in the AXI4-Lite response
channel).
For PF: The field indicated the message status of the
target FN which is specified in the Target FN Register.
The status bit is set when PF driver sends the
msg_send command. When the corresponding
function driver sends acknowledgement through
msg_rcv, the hardware clears this field. The PF driver
is not allow to update any content in its outgoing
mailbox memory (OMM) while
o_msg_status(target_fn_id) is asserted. Any illegal
writes to the OMM are discarded (optionally, this can
cause an error in the AXI4-Lite response channel).

[0] 0 RO i_msg_status For VF: When asserted, a message in the VF's
incoming Mailbox memory is pending for process.
The field is cleared after the VF driver writes msg_rcv
to its command register.
For PF: When asserted, the messages in the incoming
Mailbox memory are pending for process. The field is
cleared only when the event queue is empty.

Function Command Register (0x1004)

Table 64: Function Command Register (0x1004)

Bit Index Default Access
Type Field Description

[31:3] 0 NA Reserved Reserved

[2] 0 RO Reserved Reserved

[1] 0 RW msg_rcv For VF: VF marks the message in its Incoming
Mailbox Memory as received. The hardware asserts
the acknowledgement bit of the associated PF.
For PF: PF marks the message send by target_fn as
received. The hardware refreshes the i_msg_status of
the PF, and clears the o_msg_status of the target_fn.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=116

Table 64: Function Command Register (0x1004) (cont'd)

Bit Index Default Access
Type Field Description

[0] 0 RW msg_send For VF: VF marks the current message in its own
Outgoing Mailbox as valid.
For PF:
Current target_fn_id belongs to a VF: PF finished
writing a message into the Incoming Mailbox
memory of the VF with target_fn_id. The hardware
sets the i_msg_status field of the target FN's status
register.
Current target_fn_id belongs to a PF: PF finished
writing a message into its own outgoing Mailbox
memory. The hardware pushes the message to the
event queue of the PF with target_fn_id.

Function Interrupt Vector Register (0x1008)

Table 65: Function Interrupt Vector Register (0x1008)

Bit Index Default Access
Type Field Description

[31:5] 0 NA Reserved Reserved

[4:0] 0 RW int_vect 5-bit interrupt vector assigned by the driver software.

Target Function Register (0x100C)

Table 66: Target Function Register (0x100C)

Bit Index Default Access
Type Field Description

[31:8] 0 NA Reserved Reserved

[7:0] 0 RW target_fn_id This field is for PF use only.
The FN number that the current operation is
targeting.

Function Interrupt Control Register (0x1010)

Table 67: Function Interrupt Control Register (0x1010)

Bit Index Default Access
Type Field Description

[31:1] 0 NA res Reserved

[0] 0 RW int_en Interrupt enable.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=117

RTL Version Register (0x1014)

Table 68: RTL Version Register (0x1014)

Bit Default Access
Type Field Description

[31:16] 0x1fd3 RO QDMA ID

[15:0] 0 RO Vivado versions
0x1000: CPM QDMA Vivado version 2020.1.

Incoming Message Memory (0x1800-0x187C)

Table 69: Incoming Message Memory (0x1800-0x187C)

Register Addr Default Access
Type Field Width Description

i_msg_i 0x1800 + i*4 0 RW 32 The ith word of the incoming
message (i < 128).

Outgoing Message Memory (0x1C00-0x1C7C)

Table 70: Outgoing Message Memory (0x1C00-0x1C7C)

Register Addr Default Access
Type Field Width Description

o_msg_i 0x1C00 + i *4 0 RW 32 The ith word of the outgoing
message (i < 128).

AXI Slave Register Space
DMA register space can be accessed using AXI Slave interface. When AXI Slave Bridge mode is
enabled (based on GUI settings) user can also access Bridge registers and can also access Host
memory space.

Table 71: AXI4 Slave Register Space

Register Space AXI Slave Interface Address
range Details

Bridge registers 0x6_0000_0000 Described in Bridge register space CSV
file. See Bridge Register Space for
details.

DMA registers 0x6_1000_0000 Described in QDMA PF Address
Register Space and QDMA VF Address
Register Space.

Slave Bridge access to Host memory
space

0xE001_0000 - 0xEFFF_FFFF
0x6_1100_0000 - 0x7_FFFF_FFFF
0x80_0000_0000 - 0xBF_FFFF_FFFF

Address range for Slave bridge access
is set during IP customization in the
Address Editor tab of the Vivado IDE.

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=118

Bridge Register Space

Bridge register addresses start at 0xE00. Addresses from 0x00 to 0xE00 are directed to the PCIe
configuration register space.

All the bridge registers are listed in the cpm-bridge-v2-1-registers.csv available in the
register map files.

To locate the register space information:

1. Download the register map files from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Refer to cpm-bridge-v2-1-registers.csv.

DMA Register Space

The DMA register space is described in the following sections:

• QDMA PF Address Register Space

• QDMA VF Address Register Space

Section II: QDMA Subsystem
Chapter 3: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=119

Chapter 4

Design Flow Steps
This section describes customizing and generating the functional mode, constraining the
functional mode, and the simulation, synthesis, and implementation steps that are specific to this
IP functional mode. More detailed information about the standard Vivado® design flows and the
IP integrator can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

QDMA AXI MM Interface to NoC and DDR Lab
This lab describes the process of generating a Versal™ ACAP QDMA design with AXI4 Memory
Mapped interface connected to network on chip (NoC) IP and DDR memory. This design has the
following configurations:

• AXI4 memory mapped (AXI MM) connected to DDR through the NoC IP

• Gen3 x 16

• 4 physical functions (PFs) and 252 virtual functions (VFs)

• MSI-X interrupts

This lab provides step by step instructions to configure a Control, Interfaces and Processing
System (CIPS) QDMA design and network on chip (NoC) IP. The following figure shows the AXI4
Memory Mapped (AXI-MM) interface to DDR using the NoC IP. At the end of this lab, you can
synthesize and implement the design, and generate a Programmable Device Image (PDI) file. The
PDI file is used to program the Versal ACAP and run data traffic on a system. For the AXI-MM
interface host to chip (H2C) transfers, data is read from Host and sent to DDR memory. For chip
to host (C2H) transfers, data is read from DDR memory and written to host.

This lab targets a xcvc1902-vsvd1760-1LP-e-S-es1 part on a VCK5000 board. This lab connects
to DDR memory found outside the ACAP. A constraints file is provided and added to the design
during the lab. The constraints file lists all DDR pins and their placement. You can modify the
constraint file based on your requirements and DDR part selection.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 120Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=120

Figure 30: AXI4 Memory Mapped to DDR Design

PCIE QDMA

CQ

CC

RQ

RC

CPM

Host
AXI-MM

DDRNOC

X22764-111220

Tutorial Design File
Before running the lab, download the top_impl.xdc constraints file available in the reference
design file. To do so:

1. Download the reference design file from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Locate the top_impl.xdc constraints file.

The provided top_impl.xdc constraints file contains the needed DDR pins and their
placement for this tutorial lab. The constraints file can be modified as needed for later use.

Start the Vivado Design Suite

1. Open the Vivado® Design Suite.

2. Click Create Project from the Quick Start Menu.

3. Step through the popup menus to access the Default Part page.

4. In the Default Part page, search for and select: xcvc1902-vsvd1760-1LP-e-S-es1.

5. Continue to the Finish stage to create the new project and open Vivado.

6. In the Vivado Flow Navigator, click IP Integrator → Create Block Design. A popup dialog
displays to create the block design.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 121Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=121

7. Click OK. An empty block design diagram canvas opens.

Instantiate the CIPS IP
1. Right-click on the block design canvas, and from the context menu select Add IP.

2. The IP catalog pops up. In the Search field type CIPS to filter to the list of IP.

3. From the filtered list, double-click the Control, Interface, and Processing System IP core to
instantiate the IP on the block design canvas.

4. This adds the Versal CIPS IP to the canvas. Double-check Versal CIPS IP.

5. The configuration dialog box for the Control, Interfaces and Processing System IP core
displays. In the Configuration Options pane, expand CPM, and click CPM Configuration.

6. Set the PCIe0 Modes to DMA, and set the lane width to X16.

Available lane widths are X4, X8 and X16. X1 and X2 are not supported.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=122

7. In the Configuration Options pane, expand PS-PMC, and click IO Configuration.

8. The IO Configuration page displays with a list of options to configure the CPM-PCIe
functional mode. In the Peripheral column, select the PCIe Reset checkbox.

Notice that only A0 End Point is selectable in the I/O column.

Notice also that the multi-use I/O (MIO) pin selected in PCIe reset is automatically connected
to the PCIe Reset I/O, in this case MIO 38.

9. Next to A0 End Point, select PS MIO 38, which is the MIO pin that matches the MIO pin is
connected in your board.

Available MIO pin selections are PS MIO 18, PMC MIO 24, and PMC MIO 38.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=123

CPM Configuration
1. In the Configuration Options pane, expand CPM, and click PCIE0 Configuration to customize

the PCIe Port 0.

2. In the Basic tab, set the following options:

• CPM Modes: Advanced.

• PCIE0 Functional Mode: QDMA.

• Maximum Link Speed: 8.0 GT/s (Gen3).

• DMA Interface option: AXI Memory Mapped.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=124

3. In the Capabilities tab, set the following option:

• Total Physical Functions: 4

• MSI-X Options: MSI-X Internal

This option enables the CPM QDMA in MSI-X internal mode.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=125

4. In the PF ID tab, there are 4 PFs listed with device ID. Based on your need, you can modify
the device ID. For this lab we will keep the default device ID.

5. In the PCIe: BAR tab, set the following options:

First row (for BAR0):

• Select the Bar checkbox.

• Set type to DMA.

• Select the 64 bit checkbox.

• Select the Prefetchable checkbox.

• Set size to 128 Kilobytes.

Second row (for BAR2):

• Select the Bar checkbox.

• Set type to AXI Bridge Master.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=126

• Select the 64 bit checkbox.

• Select the Prefetchable checkbox.

• Set size to 4 Kilobytes.

The same Bar options can be copied for all 4 PFs. Depending on your needs, you can modify
the BAR selection for all PFs. For this lab, we will copy PF10 selection to all 3 PFs. To do so,
click Copy PF0.

6. In the PCIe: DMA tab keep all default selections.

7. Click OK to generate the CIPS QDMA IP.

NoC Configuration
Next you will add and configure a Network on Chip (NoC) IP core for the DDR connection.

1. Right-click on the block design canvas and from the context menu select Add IP.

2. The IP catalog pops up. In the Search field type AXI NoC to filter a list of IP.

3. From the filtered list, double-click the AXI NoC IP core to instantiate the IP on the block
design canvas.

Customize the IP as follows:

4. In the General tab, set the following options:

• Number of AXI Slave Interfaces: 2.

• Number of AXI Master Interfaces: 0.

• Number of AXI Clocks: 2.

The number of AXI clocks is set to two because there are two clocks needed for the AXI
Slave input, and none needed for AXI Master output.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=127

• Memory Controller: Single Memory Controller.

• Number of Memory Controller Port: 4.

• All others options use the default settings.

5. In the Inputs tab, set the following options.

First row (for S00_AXI):

• Connected To: PS PCIe.

• Clock: aclk0 (input clock).

• All other options use default settings.

Second row (for S01_AXI):

• Connected To: PS PCIe.

• Clock: aclk1 (input clock).

• All other options use default settings.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=128

6. In the Connectivity tab, set the NoC connectivity as follows:

• For S00_AXI, select the MC Port 0 checkbox.

• For S01_AXI, select the MC Port 0 checkbox.

• All others options use the default settings.

7. In the DDR Basic tab, set the following options:

• Input System clock period (ps): 5000 (200.000 MHz).

• Select the Enable Internal Responder checkbox.

• All others options use the default settings.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=129

Note: This is a sample configuration. Your DDR configuration and frequencies should be based on your
design requirements.

8. In the DDR Memory tab, set the following options:

• Memory Device Type: Components.

• Memory Speed Grade: DDR4-3200AA(22-22-22).

• Base Component Width: x16.

• All others options use the default settings.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=130

9. Click OK to generate a NoC IP with DDR.

Generate the Clock for the NoC IP
Next, generate a clock source for the NoC module. To do this, you will configure and generate
the Simulation Clock and Reset Generator IP core.

1. Click Add IP, and search for Simulation Clock and Reset Generator.

2. From the filtered list, double-click the Simulation Clock and Reset Generator IP core to
instantiate the IP on the block design canvas.

Configure the core as follows:

3. For Number of SYS clocks, select 1.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=131

4. For Sys Clock 0 Frequency (MHz), enter 200.

5. For Number of AXI Clocks, select 0.

6. For Number of Resets Ports, select 0.

7. Click OK to generate IP.

IP Configuration
1. Make the connections between the IP cores as shown in following figure.

2. Set GT_REFCLK_D, GT_PCIEA0_RX, GT_PCIEA0_TX,SYS_CLK0_IN, and CH0_DDR4_0 as
primary ports. To do so:

a. Select pins gt_refclk0, and PCIE0_GT of versal_cips_0, SYS_CLK0_IN of
clk_gen_sim_0, and CH0_DDR4_0 of axi_noc_0 by pressing Ctrl+click.

b. Click the Make External (Ctrl + T) icon in the toolbar at the top of the canvas.

3. Add a Constant IP, and configure the IP to generate a constant value of logic 1.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=132

Address Settings
Next, set the necessary address settings for the NoC IP.

1. Open the Address Editor tab as shown in the following figure. Expand the tree by clicking the
down-arrow on versal_cips_0. Expand DATA_PCIE0, and expand DATA_PCIE1.

2. For S00_AXI, right-click in the Master Base Address cell, and select Assign from the context
menu.

3. And similarly for S01_AXI, right-click in the Master Base Address cell, and select Assign from
the context menu.

Note that the address 0x00000 is assigned to the DDR.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=133

Validate the Block Design
1. To validate the design, open the Diagram tab, and click the Validate Design icon , or right-

click anywhere in the canvas and, from the context menu, select Validate Design.

After validation, confirmation of the successful validation displays in a pop up window.

Create a Design Wrapper
After validation, create a design wrapper. A design wrapper file enables you to add any needed
logic. For this lab, additional logic is not needed.

1. In the Vivado IDE Sources window, right-click on design_1 (design_1.bd).

2. From the context menu, select Create HDL Wrapper to generate a wrapper file.

A design_1_wrapper file is added to the Sources window as shown in the following figure.

Synthesize and Implement the Design
After the wrapper file is created, you will add the constraints file top_impl.xdc, which is
provided with this guide, to your design in Vivado. The constraints file constrains DDR pin
placement. Then, you can run synthesis and implementation, which generates a PDI
(Programmable Device Image) file.

Note: To locate the top_impl.xdc constraints file, first download the reference design file file and extract
its contents. For details, see Tutorial Design File.

1. In the Flow Navigator window, click Add Sources, click Add or create Constraints, and add
the top_impl.xdc file.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 134Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=134

2. In the Flow Navigator, click Synthesis and Implementation to implement the project design
and generate a PDI file.

Note: The Tandem critical warning HD.TANDEM can be ignored in this release.

Section II: QDMA Subsystem
Chapter 4: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=135

Chapter 5

Application Software Development

Device Drivers
Figure 31: Device Drivers

X.86 Linux Host

User Space
Kernel Space

DPDKTest App

X.86 Linux Host

User Space
Test App

Kernel Space
DMA Driver

X.86 Windows Host

User Space
Test App

Kernel Space
DMA Driver

DMA PMD

UIO VFIO

Xilinx Device
(DMA Example Design)

PCIe

Xilinx Device
(DMA Example Design)

PCIe

Xilinx Device
(DMA Example Design)

PCIe

Linux Kernel Driver
 Usage model

· DPDK (Data Plan Dev Kit) PMD
(Poll Mode Driver) usage model

· DPDK provides ability to create
user space applications without
data copy associated with system
calls

Windows Kernel Driver
 Usage model

X20600-111220

The above figure shows the usage model of Linux and Windows QDMA software drivers. The
QDMA example design is implemented on a Xilinx® ACAP, which is connected to an X86 host
through PCI Express.

• In the first use mode, the QDMA driver in kernel space runs on Linux, whereas the test
application runs in user space.

• In the second use mode, the Data Plane Dev Kit (DPDK) is used to develop a QDMA Poll
Mode Driver (PMD) running entirely in the user space, and use the UIO and VFIO kernel
framework to communicate with the ACAP.

• In the third usage mode, the QDMA driver runs in kernel space on Windows, whereas the test
application runs in the user space.

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=136

Linux DMA Software Architecture (PF/VF)
Figure 32: Linux DMA Software Architecture

dma-ctl Standard Linux testing tools: dd, flo, ...

Xilinx-dma-common

Netlink socket Character device

Device management

Qdma-core

Q. Management Q. Descriptor Ring Management

PF/VF mailbox

Device management

DMA Q/Engine management

DMA operations

Xilinx s/w components

netlink

NETLINK_GENERIC

character device

VFS ops.

Exported

Kernel Apls

MQ-cmd + Descriptors

H2C Queue C2H QueueXilinx ACAP H2C Queue C2H Queue H2C Queue C2H Queue

X22887-022421

The QDMA driver consists of the following three major components:

• Device control tool: Creates a netlink socket for PCIe device query, queue management,
reading the context of a queue, etc.

• DMA tool: Is the user space application to initiate a DMA transaction. You can use standard
Linux utility dd or fio, or use the example application in the driver package.

• Kernel space driver: Creates the descriptors and translates the user space function into low-
level command to interact with the ACAP.

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=137

Using the Drivers
Linux, DPDK and Windows drivers and the corresponding documentation are available at Xilinx
DMA IP Drivers.

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 138Send Feedback

https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/dma_ip_drivers
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=138

Reference Software Driver Flow
AXI4 Memory Map Flow Chart

Figure 33: AXI4 Memory Map Flow Chart

Start the H2C engine by writing 0x1204 value 0x001.

Set up a ring buffer for the H2C descriptor, following the AXI-MM descriptor format.
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H descriptor, following the AXI-MM descriptor format.
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Load the driver for the AXI-MM
transfer (setup).

Write the global ring size to register 0x204: value 8 (ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring size.

Set up the Mask for indirect write to queue context.
Write to address 0x824, 0x828, 0x82C, 0x830 with value of 32'hffff_ffff.

This enables all bits to be written.

Write the Global Function Map register 0x400.
This indicates how many Queues are available for a given function.

Clear the Hardware Context for H2C and C2H Queues.
Program Host Profile Context table. Write to Address 0x844 with 0xA.

Write to address 0x844 value 0x06 for H2C, Queue 0.
Wire to address 0x844 value 0x04 for C2H, Queue 0.

Write the indirect context values at register 0x804, 0x808,
0x80C and 0x810 for the H2C transfer. Then, update the
context value to the proper Queues by writing to 0x844.

Write the indirect context values at register 0x804, 0x808,
0x80c and 0x810 for the C2H transfer. Then, update the
context value to the proper Queues by writing to 0x844.

Start the C2H engine by writing 0x1004 value 0x001.

H2C C2H

X20550-060820

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=139

AXI4 Memory Mapped C2H Flow
Figure 34: AXI4 Memory Mapped Card to Host (C2H) Flow Diagram

The DMA initiates the descriptor fetch request for one or more
descriptors depending on the PIDX credit update.

The DMA receives one or more descriptors.

Is this the last
descriptor The DMA reads data from (Card) source address for

a given descriptor.

Stop fetching descriptor from
the host.

Stop fetching data from the
card.

Transmit data to the PCIe to (Host) destination address.

Is there more data
to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Yes

No

Exit application
program.

The application program reads the transfer data
from the assigned buffer and writes to a file.

The Driver updates the C2H Descriptor ring buffer based on the length and data
address. This can take one or more descriptor entry based on transfer size (credits).

The Driver starts the C2H transfer by writing the number of PIDX credits to the AXI-
MM C2H PIDX direct address 0x18008 (for Queue 0).

The DMA writes the Write Back Status (CIDX) to the C2H descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and
compares with the PIDX and completes the transfer.

Are there any more
descriptors left

X20525-052419

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=140

AXI4 Memory Mapped H2C Flow
Figure 35: AXI4 Memory Mapped Host to Card (H2C) Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX credits to the AXI-MM H2C
PIDX direct address 0x18004 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or
more descriptors depending on PIDX updates.

The DMA receives one or more descriptors depending on
the adjacent descriptor count.

Is this the last
descriptor

The DMA sends read request to the (Host) source
address based on the first available descriptor.

Stop fetching the descriptor from
host.

The DMA receives the data from the Host for that
descriptor.

Stop fetching data from Host.

Transmit data on the (Card) AXI-MM Master interface.

Is there more data
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the H2C Descriptor ring buffer based on the length and data address.
This can take one or more descriptor entries based on transfer size.

The DMA writes the Write Back Status (CIDX) to H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by DMA, and compares
with PIDX and completes the transfer.

Exit application
program.

Are there any more
descriptors left

X20526-052419

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=141

AXI4-Stream Flow Chart
Figure 36: AXI4-Stream Flow Chart

Set up a ring buffer for the H2C descriptor, following the AXI-ST H2C descriptor
format. Also, set up one entry for the write back status.

Follow the same for all desired Queues.

Set up a ring buffer for C2H descriptor, Follow AXI-ST C2H descriptor format. Also
setup one more entree for write back status

Follow the same sets for all desired Queues

Load the driver for AXI-ST
transfer (setup).

Write the global ring size to register 0x204: value 8 (ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring sizes.

Set up the Mask for indirect write to queue context.
Write to address 0x824, 0x828, 0x82C, 0x830 with value of 32'hffff_ffff.

This enables all bits to be written.

Write the Global Function Map register 0x400.
This identifies how many Queues there are for a given function.

Clear the Hardware Context for H2C and C2H for all desired Queues.
Program Host Profile Context table. Write to Address 0x844 with 0xA

Write to address 0x844 value 0x06 for H2C, (for Queue 0).
Wire to address 0x844 value 0x04 for C2H, (for Queue 0).

Write the indirect context values at register 0x804, 0x808,0x80C and 0x810 for H2C
transfer, and then update the context value to proper Queues by writing to 0x844.

Write the indirect context values at register 0x804, 0x808, 0x80C and 0x810 for C2H
transfer, and then update the context value to proper Queues by writing to 0x844.

Program the C2H buffer size 0x1000 (4 KB) to address 0xAB0.

Set up a ring buffer for the C2H descriptor, following the AXI-ST C2H descriptor
format. Also, set up one entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H Write Back descriptor, following the AXI-ST WRB
descriptor format. Also, set up one entry for write back status.

Follow the same for all desired Queues

C2H

Write Back Context programming.
Program the indirect context values at register 0x804, 0x808, 0x80C and 0x810 for

Write Back context, and then update the context value to proper Queues by writing to
0x844.

Program the Write Back Context update to enable the Write back status. Write
32'h09000000 to 0x1800C (for Queue 0).

Prefetch Context programming.
Program the indirect context values at register 0x804, 0x808,0x80C and 0x810 for

Prefetch context, and then update the context value to proper Queues by writing to
0x844.

H2C

X20551-041521

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=142

AXI4-Stream C2H Flow
Figure 37: AXI4-Stream C2H Flow Diagram

The DMA writes the Completion Status (PIDX) to
the Completion descriptor ring.

Based on the descriptor credits, the user application sends
C2H data.

The DMA reads data from Card.

Did DMA receive
tlast

Stop reading data from Card.
The DMA transmits one C2H buffer size worth

of data to the Host destination address.

Is there more
data to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Exit the application
program.

Application program reads transfer data from
assigned buffer and writes to a file

The DMA writes the Completion data (length of
transfer, color bit, etc.) to the Completion descriptor.

The Driver reads the Completion Status (PIDX), which signals transfer
completed. The Driver also looks at the Completion entry to check for transfer

length. The color bit is used to ensure the Driver does not overflow the
Completion ring.

The Driver starts the C2H transfer by writing the number of PIDX
credits to AXI-ST C2H PIDX direct address 0x18008 (for Queue 0). The
number of PIDX credits can be larger than that of the actual tranfers.

The Driver updates the Completion CIDX to
match the DMA’s Completion PIDX. For the

DMA this signifies that the driver has
processed the C2H data.

The DMA sends descriptor credits to the user application
through the tm_dsc_sts interface.

The DMA initiates the descriptor fetch request for one or
more descriptors depending on the C2H data received.

The DMA receives one
or more descriptors.

Is there more
data

Stop fetching descriptor

No

Yes

X20527-041619

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=143

AXI4-Stream H2C Flow
Figure 38: AXI4-Stream H2C Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX
credits to AXI-ST H2C PIDX direct address 0x18004 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or
more descriptors depending on the PIDX credit update.

The DMA receives one or more descriptors.

Is this the last
descriptor

The DMA sends the read request to the (Host) source
address based on the first available descriptor.

Stop fetching the descriptor
from host The DMA receives data from the Host for that descriptor.

Are there any more
descriptors left

Stop fetching data from the
Host.

Transmit the data on the (Card) AXI-ST Master interface.

Is there more data
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the Descriptor ring buffer based on the length and data address.
This can take one or more descriptor entries based on transfer size (credits).

The DMA writes the Write Back Status (CIDX) to the
H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and
compares it with the PIDX and completes the transfer.

Exit the application
program.

X20528-041619

Section II: QDMA Subsystem
Chapter 5: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=144

Chapter 6

Debugging
This appendix includes details about resources available on the Xilinx® Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the functional mode, the Xilinx Support web
page contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the functional mode. This guide, along
with documentation related to all products that aid in the design process, can be found on the
Xilinx Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the QDMA is the Xilinx Solution Center for PCI Express.

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Section II: QDMA Subsystem
Chapter 6: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 145Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=145

Answer Records for this functional mode can be located by using the Search Support box on the
main Xilinx support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 75396.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the example
design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

Section II: QDMA Subsystem
Chapter 6: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 146Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support/answers/75396.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=146

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

• If your outputs go to 0, check your licensing.

Soft Reset
Reset the QDMA logic through the dma0_soft_reset_n port. This port needs to be held in
reset for a minimum of 100 clock cycles (pcie0_user_clk cycles).

This signal resets only the DMA portion of logic. It does not reset the PCIe hard block.

Soft Reset Use Cases

The uses cases that prompt the use of dma0_soft_reset include:

• DMA does not respond, and the user application is not getting proper values.

• DMA transfer has errors, but the PCIe links are good.

• DMA records some asynchronous errors.

After dma0_soft_reset, you must reinitialize the queues and program all queue context.

Registers
A complete list of registers and attributes for the QDMA Subsystem is available in the Versal
ACAP Register Reference (AM012). Reviewing the registers and attributes might be helpful for
advanced debugging.

Note: The attributes are set during IP customization in the Vivado IP catalog. After core customization,
attributes are read-only.

Section II: QDMA Subsystem
Chapter 6: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 147Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=147

Chapter 7

Upgrading
This appendix is not applicable for the first release of the functional mode.

Section II: QDMA Subsystem
Chapter 7: Upgrading

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=148

Section III

AXI Bridge Subsystem

Overview
The AXI Bridge Subsystem is designed for the Vivado® IP integrator in the Vivado® Design Suite.
The AXI Bridge functional mode provides an interface between an AXI4 customer user interface
and PCI Express® using the Versal™ Integrated Block for PCI Express. The AXI Bridge functional
mode provides the translation level between the AXI4 embedded system to the PCI Express
system. The AXI Bridge functional mode translates the AXI4 memory read or writes to PCI™
Transaction Layer Packets (TLP) packets and translates PCIe memory read and write request TLP
packets to AXI4 interface commands.

The architecture of the Bridge is shown in the following figure.

Section III: AXI Bridge Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=149

Figure 39: High-Level AXI Bridge Architecture

AXI Bridge

Master Bridge

Slave Bridge
PCIe

AXI-MM
Master

AXI-MM
Slave

PCIe RX

PCIe TX

AXI-MM
Slave

AXI-MM
Master

Register BlockAXI4-Lite
Slave

NOC

CPM

AXI Slave
intercon-

nect

X22646-111220

Limitations
For this functional mode, the bridge master and bridge slave cannot achieve more than 128 Gb/s.

Section III: AXI Bridge Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=150

Chapter 8

Product Specification
The Register block contains registers used in the AXI Bridge functional mode for dynamically
mapping the AXI4 memory mapped (MM) address range provided using the AXIBAR parameters
to an address for PCIe® range.

The slave bridge provides termination of memory-mapped AXI4 transactions from an AXI master
device (such as a processor). The slave bridge provides a way to translate addresses that are
mapped within the AXI4 memory mapped address domain to the domain addresses for PCIe.
Write transactions to the Slave Bridge are converted into one or more MemWr TLPs, depending
on the configured Max Payload Size setting, which are passed to the integrated block for PCI
Express. The slave bridge can support up to 32 active AXI4 Write requests. When a remote AXI
master initiates a read transaction to the slave bridge, the read address and qualifiers are
captured and a MemRd request TLP is passed to the core and a completion timeout timer is
started. Completions received through the core are correlated with pending read requests and
read data is returned to the AXI master. The slave bridge can support up to 32 active AXI4 Read
requests with pending completions.

The master bridge processes both PCIe MemWr and MemRd request TLPs received from the
Integrated Block for PCI Express and provides a means to translate addresses that are mapped
within the address for PCIe domain to the memory mapped AXI4 address domain. Each PCIe
MemWr request TLP header is used to create an address and qualifiers for the memory mapped
AXI4 bus and the associated write data is passed to the addressed memory mapped AXI4 Slave.
The Master Bridge can support up to 32 active PCIe MemWr request TLPs. PCIe MemWr request
TLPs support is as follows:

• 4 for 64-bit AXI data width

• 8 for 128-bit AXI data width

• 16 for 256-bit AXI data width

• 32 for 512-bit AXI data width

Each PCIe MemRd request TLP header is used to create an address and qualifiers for the memory-
mapped AXI4 bus. Read data is collected from the addressed memory mapped AXI4 slave and
used to generate completion TLPs which are then passed to the integrated block for PCI Express.
The Master Bridge in can support up to 32 active PCIe MemRd request TLPs with pending
completions for improved AXI4 pipelining performance.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=151

The instantiated AXI4-Stream Enhanced PCIe block contains submodules including the
Requester/Completer interfaces to the AXI bridge and the Register block. The Register block
contains the status, control, and interrupt registers.

AXI Bridge Operations
AXI Transactions for PCIe
The following tables are the translation tables for AXI4-Stream and memory-mapped
transactions.

Table 72: AXI4 Memory-Mapped Transactions to AXI4-Stream PCIe TLPs

AXI4 Memory-Mapped Transaction AXI4-Stream PCIe TLPs
INCR Burst Read of AXIBAR MemRd 32 (3DW)

INCR Burst Write to AXIBAR MemWr 32 (3DW)

INCR Burst Read of AXIBAR MemRd 64 (4DW)

INCR Burst Write to AXIBAR MemWr 64 (4DW)

Table 73: AXI4-Stream PCIe TLPs to AXI4 Memory Mapped Transactions

AXI4-Stream PCIe TLPs AXI4 Memory-Mapped Transaction
MemRd 32 (3DW) of PCIEBAR INCR Burst Read

MemWr 32 (3DW) to PCIEBAR INCR Burst Write

MemRd 64 (4DW) of PCIEBAR INCR Burst Read

MemWr 64 (4DW) to PCIEBAR INCR Burst Write

For PCIe® requests with lengths greater than 1 Dword, the size of the data burst on the Master
AXI interface will always equal the width of the AXI data bus even when the request received
from the PCIe link is shorter than the AXI bus width.

s_axi_wstrb can be used to facilitate data alignment to an address boundary. s_axi_wstrb
may equal 0 in the beginning of a valid data cycle and will appropriately calculate an offset to the
given address. However, the valid data identified by s_axi_wstrb must be continuous from the
first byte enable to the last byte enable.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=152

Transaction Ordering for PCIe
The AXI Bridge functional mode conforms to PCIe® transaction ordering rules. See the PCI-SIG
Specifications for the complete rule set. The following behaviors are implemented in the AXI
Bridge functional mode to enforce the PCIe transaction ordering rules on the highly-parallel AXI
bus of the bridge.

• The bresp to the remote (requesting) AXI4 master device for a write to a remote PCIe device
is not issued until the MemWr TLP transmission is guaranteed to be sent on the PCIe link
before any subsequent TX-transfers.

• If Relaxed Ordering bit is not set within the TLP header, then a remote PCIe device read to a
remote AXI slave is not permitted to pass any previous remote PCIe device writes to a remote
AXI slave received by the AXI Bridge functional mode. The AXI read address phase is held
until the previous AXI write transactions have completed and bresp has been received for
the AXI write transactions. If the Relaxed Ordering attribute bit is set within the TLP header,
then the remote PCIe device read is permitted to pass.

• Read completion data received from a remote PCIe device are not permitted to pass any
remote PCIe device writes to a remote AXI slave received by the AXI Bridge functional mode
prior to the read completion data. The bresp for the AXI write(s) must be received before the
completion data is presented on the AXI read data channel.

Note: The transaction ordering rules for PCIe might have an impact on data throughput in heavy
bidirectional traffic.

BAR and Address Translation

BAR Addressing

C_AXIBAR_n and C_AXIBAR_HIGHADDR_n are used to calculate the size of the AXI BAR n and
during address translation to PCIe address.

• C_AXIBAR_n provides the low address where AXI BAR n starts and will be regarded as
address offset 0x0 when the address is translated.

• C_AXIBAR_HIGHADDR_n is the high address of the last valid byte address of AXI BAR n. (For
more details on how the address gets translated, see Address Translation.)

The difference between the two parameters is your AXI BAR n size. These parameters must be
set accordingly such that the AXI BAR n size is a power of two and must have at least 4K.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 153Send Feedback

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=153

When a packet is sent to the core (outgoing PCIe packets), the packet must have an address that
is in the range of C_AXIBAR_n and C_AXIBAR_HIGHADDR_n. Any packet that is received by
the core that has an address outside of this range will be responded to with a SLVERR. When the
IP integrator is used, these parameters are derived from the Address Editor tab within the IP
integrator. The Address Editor sets the AXI Interconnect as well as the core so the address range
matches, and the packet is routed to the core only when the packet has an address within the
valid range.

Address Translation

The address space for PCIe® is different than the AXI address space. To access one address space
from another address space requires an address translation process. On the AXI side, the bridge
supports mapping to PCIe on up to six 32-bit or 64-bit AXI base address registers (BARs). The
generics used to configure the BARs follow.

C_AXIBAR_NUM, C_AXIBAR_n, C_AXIBAR_HIGHADDR_n, and C_AXIBAR2PCIEBAR_n

where n represents an AXIBAR number from 0 to 5. The bridge for supports mapping on up to six
32-bit BARs or three 64-bit BARs for PCIe. The generics used to configure the BARs are:

PCIEBAR_NUM, C_PCIEBAR2AXIBAR_n and PF0_BARn_APERTURE_SIZE

where n represents a particular BAR number for PCIe from 0 to 5.

AXIBAR2PCIEBAR_n translation vectors can be changed by using software by writing to AXI
Base Address Translation Configuration Registers.

Four examples follow:

• Example 1 (32-bit PCIe Address Mapping) demonstrates how to set up three AXI BARs and
translate the AXI address to a 32-bit address for PCIe.

• Example 2 (64-bit PCIe Address Mapping) demonstrates how to set up three AXI BARs and
translate the AXI address to a 64-bit address for PCIe.

• Example 3 demonstrates how to set up two 64-bit PCIe BARs and translate the address for
PCIe to an AXI address.

• Example 4 demonstrates how to set up a combination of two 32-bit AXI BARs and two 64 bit
AXI BARs, and translate the AXI address to an address for PCIe.

Example 1 (32-bit PCIe Address Mapping)

This example shows the generic settings to set up three independent AXI BARs and address
translation of AXI addresses to a remote 32-bit address space for PCIe. This setting of AXI BARs
does not depend on the BARs for PCIe in the AXI Bridge functional mode.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=154

In this example, where C_AXIBAR_NUM=3, the following assignments for each range are made:

AXI_ADDR_WIDTH=48

C_AXIBAR_0=0x00000000_12340000
C_AXI_HIGHADDR_0=0x00000000_1234FFFF (64 Kbytes)
C_AXIBAR2PCIEBAR_0=0x00000000_56710000 (Bits 63-32 are zero in order to
produce a
32-bit PCIe TLP. Bits 15-0 must be zero based on the AXI BAR aperture size.
Non-zero
values in the lower 16 bits are invalid translation values.)

C_AXIBAR_1=0x00000000_ABCDE000
C_AXI_HIGHADDR_1=0x00000000_ABCDFFFF (8 Kbytes)
C_AXIBAR2PCIEBAR_1=0x00000000_FEDC0000 (Bits 63-32 are zero in order to
produce a
32-bit PCIe TLP. Bits 12-0 must be zero based on the AXI BAR aperture size.
Non-zero
values in the lower 13 bits are invalid translation values.)

C_AXIBAR_2=0x00000000_FE000000
C_AXI_HIGHADDR_2=0x00000000_FFFFFFFF (32 Mbytes)
C_AXIBAR2PCIEBAR_2=0x00000000_40000000 (Bits 63-32 are zero in order to
produce a
32-bit PCIe TLP. Bits 24-0 must be zero based on the AXI BAR aperture size.
Non-zero
values in the lower 25 bits are invalid translation values.)

Figure 40: Example 1 Settings

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=155

• Accessing the Bridge AXIBAR_0 with address 0x0000_12340ABC on the AXI bus yields
0x56710ABC on the bus for PCIe.

Figure 41: AXI to PCIe Address Translation

C_AXIBAR_0 =
0x00000000_12340000

C_AXI_HIGHADDR_0 =
0x00000000_0x1234FFFF

C_AXIBAR2PCIEBAR_0 =
0x00000000_56710000

0ABC Final PCIe Address =
0x56710ABC

+

AXI AWADDR =
0x00000000_12340ABC

AXI to PCIe Address Translation

Intermediate Address = 0x0ABC

X20046-032119

• Accessing the Bridge AXIBAR_1 with address 0x0000_ABCDF123 on the AXI bus yields
0xFEDC1123 on the bus for PCIe.

• Accessing the Bridge AXIBAR_2 with address 0x0000_FFEDCBA on the AXI bus yields
0x41FEDCBA on the bus for PCIe.

Example 2 (64-bit PCIe Address Mapping)

This example shows the generic settings to set up to three independent AXI BARs and address
translation of AXI addresses to a remote 64-bit address space for PCIe. This setting of AXI BARs
does not depend on the BARs for PCIe within the Bridge.

In this example, where C_AXIBAR_NUM=3, the following assignments for each range are made:

AXI_ADDR_WIDTH=48

C_AXIBAR_0=0x00000000_12340000
C_AXI_HIGHADDR_0=0x00000000_1234FFFF (64 Kbytes)
C_AXIBAR2PCIEBAR_0=0x5000000056710000 (Bits 63-32 are non-zero in order to
produce a
64-bit PCIe TLP. Bits 15-0 must be zero based on the AXI BAR aperture size.
Non-zero
values in the lower 16 bits are invalid translation values.)

C_AXIBAR_1=0x00000000_ABCDE000
C_AXI_HIGHADDR_1=0x00000000_ABCDFFFF (8 Kbytes)
C_AXIBAR2PCIEBAR_1=0x60000000_FEDC0000 (Bits 63-32 are non-zero in order to
produce

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=156

a 64-bit PCIe TLP. Bits 12-0 must be zero based on the AXI BAR aperture
size. Non-zero
values in the lower 13 bits are invalid translation values.)

C_AXIBAR_2=0x00000000_FE000000
C_AXI_HIGHADDR_2=0x00000000_FFFFFFFF (32 Mbytes)
C_AXIBAR2PCIEBAR_2=0x7000000040000 (Bits 63-32 are non-zero in order to
produce a
64-bit PCIe TLP. Bits 24-0 must be zero based on the AXI BAR aperture size.
Non-zero
values in the lower 25 bits are invalid translation values.)

Figure 42: Example 2 Settings

• Accessing the Bridge AXIBAR_0 with address 0x0000_12340ABC0x5000000056710ABC
on the bus for PCIe.

• Accessing the Bridge AXIBAR_1 with address 0x0000_ABCDF123 on the AXI bus yields on
the AXI bus yields 0x60000000FEDC1123 on the bus for PCIe.

• Accessing the Bridge AXIBAR_2 with address 0x0000_FFFEDCBA on the AXI bus yields
0x7000000041FEDCBA on the bus for PCIe.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=157

Example 3

This example shows the generic settings to set up two independent BARs for PCIe® and address
translation of addresses for PCIe to a remote AXI address space. This setting of BARs for PCIe
does not depend on the AXI BARs within the bridge.

In this example, where C_PCIEBAR_NUM=2, the following range assignments are made:

AXI_ADDR_WIDTH=48

BAR 0 is set to 0x20000000_ABCD8000 by the Root Port. (Since this is a 64-
bit BAR
PCIe, BAR1 is disabled.)
PF0_BAR0_APERTURE_SIZE=0x08 (32 Kbytes)
C_PCIEBAR2AXIBAR_0=0x00000000_12340000 (Because the AXI address is 48-bits
wide,
bits 63-48 should be zero. Base on the PCIe Bar Size bits 14-0 should be
zero.
Non-zero values in these ranges are invalid.)

BAR 2 is set to 0xA000000012000000 by Root Port. (Since this is a 64-bit
BAR PCIe BAR3
is disabled.)
PF0_BAR0_APERTURE_SIZE=0x12 (32 Mbytes)
C_PCIEBAR2AXIBAR_2=0x00000000_FE000000 (Because the AXI address is 48-bits
wide,
bits 63-48 should be zero. Base on the PCIe Bar Size bits 24-0 should be
zero.
Non-zero values in these ranges are invalid.)

Figure 43: Example 3 Settings

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=158

• Accessing the Bridge PCIEBAR_0 with address 0x20000000_ABCDFFF4 on the bus for PCIe
yields 0x0000_12347FF4 on the AXI bus.

Figure 44: PCIe to AXI Translation

PCIe BAR 0
(set by Root Complex) =
0x20000000_ABCD8000

C_PCIEBAR2AXIBAR_0 = 0x00000000_12340000
 PF0_BAR0_APERTURE_SIZE = 0x12
 (least significant 15 bits (14:0) provide window)

Final translated AXI Address =
0x0000_12347FF4

PCI Wr Addr =
0x20000000_ABCDFFF4

PCIe to AXI Address Translation

Intermediate Address = 0x7FF4

X20047-032119

• Accessing Bridge PCIEBAR_2 with address 0xA00000001235FEDC on the bus for PCIe yields
0x0000_FE35FEDC on the AXI bus.

Example 4

This example shows the generic settings of four AXI BARs and address translation of AXI
addresses to a remote 32-bit and 64-bit addresses for PCIe®. This setting of AXI BARs do not
depend on the BARs for PCIe within the Bridge.

In this example, where C_AXIBAR_NUM=4, the following assignments for each range are made:

AXI_ADDR_WIDTH=48

C_AXIBAR_0=0x00000000_12340000
C_AXI_HIGHADDR_0=0x00000000_1234FFFF (64 KB)
C_AXIBAR2PCIEBAR_0=0x00000000_56710000 (Bits 63-32 are zero to produce a 32-
bit PCIe
TLP. Bits 15-0 must be zero based on the AXI BAR aperture size. Non-zero
values in
the lower 16 bits are invalid translation values.)

C_AXIBAR_1=0x00000000_ABCDE000
C_AXI_HIGHADDR_1=0x00000000_ABCDFFFF (8 KB)
C_AXIBAR2PCIEBAR_1=0x50000000_FEDC0000 (Bits 63-32 are non-zero to produce
a 64-bit
PCIe TLP. Bits 12-0 must be zero based on the AXI BAR aperture size. Non-
zero values
in the lower 13 bits are invalid translation values.)

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=159

C_AXIBAR_2=0x00000000_FE000000
C_AXI_HIGHADDR_2=0x00000000_FFFFFFFF (32 MB)
C_AXIBAR2PCIEBAR_2=0x00000000_40000000 (Bits 63-32 are zero to produce a 32-
bit PCIe
TLP. Bits 24-0 must be zero based on the AXI BAR aperture size. Non-zero
values in
the lower 25 bits are invalid translation values.)

C_AXIBAR_3=0x00000000_00000000
C_AXI_HIGHADDR_3=0x00000000_00000FFF (4 KB)
C_AXIBAR2PCIEBAR_3=0x60000000_87654000 (Bits 63-32 are non-zero to produce
a 64-bit
PCIe TLP. Bits 11-0 must be zero based on the AXI BAR aperture size. Non-
zero values
in the lower 12 bits are invalid translation values.)

Figure 45: Example 4 Settings

• Accessing the Bridge AXIBAR_0 with address 0x0000_12340ABC on the AXI bus yields
0x56710ABC on the bus for PCIe.

• Accessing the Bridge AXIBAR_1 with address 0x0000_ABCDF123 on the AXI bus yields
0x50000000FEDC1123 on the bus for PCIe.

• Accessing the Bridge AXIBAR_2 with address 0x0000_FFFEDCBA on the AXI bus yields
0x41FEDCBA on the bus for PCIe.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=160

• Accessing the Bridge AXIBAR_3 with address 0x0000_00000071 on the AXI bus yields
0x6000000087654071 on the bus for PCIe.

Addressing Checks

When setting the following parameters for PCIe® address mapping, C_PCIEBAR2AXIBAR_n and
PF0_BARn_APERTURE_SIZE, be sure these are set to allow for the addressing space on the AXI
system. For example, the following setting is illegal and results in an invalid AXI address.

C_PCIEBAR2AXIBAR_n=0x00000000_FFFFF000
PF0_BARn_APERTURE_SIZE=0x06 (8 KB)

For an 8 Kilobyte BAR, the lower 13 bits must be zero. As a result, the C_PCIEBAR2AXIBAR_n
value should be modified to be 0x00000000_FFFFE0000. Also, check for a larger value on
PF0_BARn_APERTURE_SIZE compared to the value assigned to the C_PCIEBAR2AXIBAR_n
parameter. And example parameter setting follows.

C_PCIEBAR2AXIBAR_n=0xFFFF_E000
PF0_BARn_APERTURE_SIZE=0x0D (1 MB)

To keep the AXIBAR upper address bits as 0xFFFF_E000 (to reference bits [31:13]), the
PF0_BARn_APERTURE_SIZE parameter must be set to 0x06 (8 KB).

Malformed TLP
The integrated block for PCI Express® detects a malformed TLP. For the IP configured as an
Endpoint core, a malformed TLP results in a fatal error message being sent upstream if error
reporting is enabled in the Device Control register.

Abnormal Conditions
This section describes how the Slave side and Master side (see the following tables) of the AXI
Bridge functional mode handle abnormal conditions.

Slave Bridge Abnormal Conditions

Slave bridge abnormal conditions are classified as: Illegal Burst Type and Completion TLP Errors.
The following sections describe the manner in which the Bridge handles these errors.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=161

Illegal Burst Type

The slave bridge monitors AXI read and write burst type inputs to ensure that only the INCR
(incrementing burst) type is requested. Any other value on these inputs is treated as an error
condition and the Slave Illegal Burst (SIB) interrupt is asserted. In the case of a read request, the
Bridge asserts SLVERR for all data beats and arbitrary data is placed on the s_axi_rdata bus.
In the case of a write request, the Bridge asserts SLVERR for the write response and all write data
is discarded.

Completion TLP Errors

Any request to the bus for PCIe (except for a posted Memory write) requires a completion TLP to
complete the associated AXI request. The Slave side of the Bridge checks the received
completion TLPs for errors and checks for completion TLPs that are never returned (Completion
Timeout). Each of the completion TLP error types are discussed in the subsequent sections.

Unexpected Completion

When the slave bridge receives a completion TLP, it matches the header RequesterID and Tag to
the outstanding RequesterID and Tag. A match failure indicates the TLP is an Unexpected
Completion which results in the completion TLP being discarded and a Slave Unexpected
Completion (SUC) interrupt strobe being asserted. Normal operation then continues.

Unsupported Request

A device for PCIe might not be capable of satisfying a specific read request. For example, if the
read request targets an unsupported address for PCIe, the completer returns a completion TLP
with a completion status of 0b001 - Unsupported Request. The completer that returns a
completion TLP with a completion status of Reserved must be treated as an unsupported
request status, according to the PCI Express Base Specification v3.0. When the slave bridge
receives an unsupported request response, the Slave Unsupported Request (SUR) interrupt is
asserted and the DECERR response is asserted with arbitrary data on the AXI4 memory mapped
bus.

Completion Timeout

A Completion Timeout occurs when a completion (Cpl) or completion with data (CplD) TLP is not
returned after an AXI to PCIe memory read request, or after a PCIe Configuration Read/Write
request. For PCIe Configuration Read/Write request, completions must complete within the
C_COMP_TIMEOUT parameter selected value from the time the request is issued. For PCIe
Memory Read request, completions must complete within the value set in the Device Control 2
register in the PCIe Configuration Space register. When a completion timeout occurs, an OKAY
response is asserted with all 1s data on the memory mapped AXI4 bus.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=162

Poison Bit Received on Completion Packet

An Error Poison occurs when the completion TLP EP bit is set, indicating that there is poisoned
data in the payload. When the slave bridge detects the poisoned packet, the Slave Error Poison
(SEP) interrupt is asserted and the SLVERR response is asserted with arbitrary data on the
memory mapped AXI4 bus.

Completer Abort

A Completer Abort occurs when the completion TLP completion status is 0b100 - Completer
Abort. This indicates that the completer has encountered a state in which it was unable to
complete the transaction. When the slave bridge receives a completer abort response, the Slave
Completer Abort (SCA) interrupt is asserted and the SLVERR response is asserted with arbitrary
data on the memory mapped AXI4 bus.

Table 74: Slave Bridge Response to Abnormal Conditions

Transfer Type Abnormal Condition Bridge Response

Read Illegal burst type
SIB interrupt is asserted.
SLVERR response given with arbitrary read
data.

Write Illegal burst type
SIB interrupt is asserted.
Write data is discarded.
SLVERR response given.

Read Unexpected completion
SUC interrupt is asserted.
Completion is discarded.

Read Unsupported Request status returned
SUR interrupt is asserted.
DECERR response given with arbitrary read
data.

Read Completion timeout
SCT interrupt is asserted.
SLVERR response given with arbitrary read
data.

Read Poison bit in completion

Completion data is discarded.
SEP interrupt is asserted.
SLVERR response given with arbitrary read
data.

Read Completer Abort (CA) status returned
SCA interrupt is asserted.
SLVERR response given with arbitrary read
data.

Master Bridge Abnormal Conditions

The following sections describe the manner in which the master bridge handles abnormal
conditions.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=163

AXI DECERR Response

When the master bridge receives a DECERR response from the AXI bus, the request is discarded
and the Master DECERR (MDE) interrupt is asserted. If the request was non-posted, a
completion packet with the Completion Status = Unsupported Request (UR) is returned on the
bus for PCIe.

AXI SLVERR Response

When the master bridge receives a SLVERR response from the addressed AXI slave, the request
is discarded and the Master SLVERR (MSE) interrupt is asserted. If the request was non-posted, a
completion packet with the Completion Status = Completer Abort (CA) is returned on the bus for
PCIe.

Max Payload Size for PCIe, Max Read Request Size or 4K Page Violated

It is the responsibility of the requester to ensure that the outbound request adheres to the Max
Payload Size, Max Read Request Size, and 4 Kb Page Violation rules. If the master bridge receives
a request that violates one of these rules, the bridge processes the invalid request as a valid
request, which can return a completion that violates one of these conditions or can result in the
loss of data. The master bridge does not return a malformed TLP completion to signal this
violation.

Completion Packets

When the MAX_READ_REQUEST_SIZE is greater than the MAX_PAYLOAD_SIZE, a read request
for PCIe can ask for more data than the master bridge can insert into a single completion packet.
When this situation occurs, multiple completion packets are generated up to
MAX_PAYLOAD_SIZE, with the Read Completion Boundary (RCB) observed.

Poison Bit

When the poison bit is set in a transaction layer packet (TLP) header, the payload following the
header is corrupted. When the master bridge receives a memory request TLP with the poison bit
set, it discards the TLP and asserts the Master Error Poison (MEP) interrupt strobe.

Zero Length Requests

When the master bridge receives a read request with the Length = 0x1, FirstBE = 0x00, and
LastBE = 0x00, it responds by sending a completion with Status = Successful
Completion.

When the master bridge receives a write request with the Length = 0x1, FirstBE = 0x00, and
LastBE = 0x00 there is no effect.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=164

Table 75: Master Bridge Response to Abnormal Conditions

Transfer Type Abnormal Condition Bridge Response

Read DECERR response
MDE interrupt strobe asserted.
Completion returned with Unsupported
Request status.

Write DECERR response MDE interrupt strobe asserted.

Read SLVERR response
MSE interrupt strobe asserted.
Completion returned with Completer Abort
status.

Write SLVERR response MSE interrupt strobe asserted.

Write Poison bit set in request
MEP interrupt strobe asserted.
Data is discarded.

Read DECERR response
MDE interrupt strobe asserted.
Completion returned with Unsupported
Request status.

Write DECERR response MDE interrupt strobe asserted.

Link Down Behavior

The normal operation of the AXI Bridge functional mode is dependent on the integrated block
for PCIe establishing and maintaining the point-to-point link with an external device for PCIe. If
the link has been lost, it must be re-established to return to normal operation.

When a Hot Reset is received by the AXI Bridge functional mode, the link goes down and the PCI
Configuration Space must be reconfigured.

Initiated AXI4 write transactions that have not yet completed on the AXI4 bus when the link
goes down have a SLVERR response given and the write data is discarded. Initiated AXI4 read
transactions that have not yet completed on the AXI4 bus when the link goes down have a
SLVERR response given, with arbitrary read data returned.

Any MemWr TLPs for PCIe that have been received, but the associated AXI4 write transaction has
not started when the link goes down, are discarded.

Endpoint
When configured to support Endpoint functionality, the AXI Bridge functional mode fully
supports Endpoint operation as supported by the underlying block. There are a few details that
need special consideration. The following subsections contain information and design
considerations about Endpoint support.

Interrupts

The Interrupt modes in the following section applies to AXI Bridge mode only.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=165

Multiple interrupt modes can be configured during IP configuration, however only one interrupt
mode is used at runtime. If multiple interrupt modes are enabled by the host after PCI bus
enumeration at runtime, MSI-X interrupt takes precedence over MSI interrupt, and MSI interrupt
takes precedence over Legacy interrupt. All of these interrupt modes are sent using the same
xdma0_usr_irq_* interface and the core automatically picks the best available interrupt mode
at runtime.

Legacy Interrupts

Asserting one or more bits of xdma0_usr_irq_req when legacy interrupts are enabled causes
the IP to issue a legacy interrupt over PCIe. Multiple bits may be asserted simultaneously but
each bit must remain asserted until the corresponding xdma0_usr_irq_ack bit has been
asserted. After a xdma0_usr_irq_req bit is asserted, it must remain asserted until the
corresponding xdma0_usr_irq_ack bit is asserted and the interrupt has been serviced and
cleared by the Host. The xdma0_usr_irq_ack assertion indicates the requested interrupt has
been sent on the PCIe block. This will ensure interrupt pending register within the IP remains
asserted when queried by the Host's Interrupt Service Routine (ISR) to determine the source of
interrupts. You must implement a mechanism in the user application to know when the interrupt
routine has been serviced. This detection can be done in many different ways depending on your
application and your use of this interrupt pin. This typically involves a register (or array of
registers) implemented in the user application that is cleared, read, or modified by the Host
software when an interrupt is serviced.

After the xdma0_usr_irq_req bit is deasserted, it cannot be reasserted until the
corresponding xdma0_usr_irq_ack bit has been asserted for a second time. This indicates the
deassertion message for the legacy interrupt has been sent over PCIe. After a second
xdma0_usr_irq_ack occurred, the xdma0_usr_irq_req wire can be reasserted to generate
another legacy interrupt.

The xdma0_usr_irq_req bit can be mapped to legacy interrupt INTA, INTB, INTC, INTD
through the configuration registers. The following figure shows the legacy interrupts.

This figure shows only the handshake between xdma0_usr_irq_req and
xdma0_usr_irq_ack. The user application might not clear or service the interrupt
immediately, in which case, you must keep xdma0_usr_irq_req asserted past
xdma0_usr_irq_ack.

Figure 46: Legacy Interrupts

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=166

MSI and Internal MSI-X Interrupts

Asserting one or more bits of xdma0_usr_irq_req causes the generation of an MSI or MSI-X
interrupt if MSI or MSI-X is enabled. If both MSI and MSI-X capabilities are enabled, an MSI-X
interrupt is generated. The Internal MSI-X interrupts mode is enabled when you set the MSI-X
Implementation Location option to Internal in the PCIe Misc Tab.

After a xdma0_usr_irq_req bit is asserted, it must remain asserted until the corresponding
xdma0_usr_irq_ack bit is asserted and the interrupt has been serviced and cleared by the
Host. The xdma0_usr_irq_ack assertion indicates the requested interrupt has been sent on
the PCIe block. This will ensure the interrupt pending register within the IP remains asserted
when queried by the Host's Interrupt Service Routine (ISR) to determine the source of interrupts.
You must implement a mechanism in the user application to know when the interrupt routine has
been serviced. This detection can be done in many different ways depending on your application
and your use of this interrupt pin. This typically involves a register (or array of registers)
implemented in the user application that is cleared, read, or modified by the Host software when
an Interrupt is serviced.

Configuration registers are available to map xdma0_usr_irq_req and DMA interrupts to MSI
or MSI-X vectors. For MSI-X support, there is also a vector table and PBA table. The following
figure shows the MSI interrupt.

This figure shows only the handshake between xdma0_usr_irq_req and
xdma0_usr_irq_ack. Your application might not clear or service the interrupt immediately, in
which case, you must keep xdma0_usr_irq_req asserted past xdma0_usr_irq_ack.

Figure 47: MSI Interrupts

The following figure shows the MSI-X interrupt.

This figure shows only the handshake between xdma0_usr_irq_req and
xdma0_usr_irq_ack. Your application might not clear or service the interrupt immediately, in
which case, you must keep xdma0_usr_irq_req asserted past xdma0_usr_irq_ack.

Figure 48: MSI-X Interrupts

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=167

Root Port
When configured to support Root Port functionality, the AXI Bridge functional mode fully
supports Root Port operation as supported by the underlying block. There are a few details that
need special consideration. The following subsections contain information and design
considerations about Root Port support.

Power Limit Message TLP

The AXI Bridge functional mode automatically sends a Power Limit Message TLP when the
Master Enable bit of the Command Register is set. The software must set the Requester ID
register before setting the Master Enable bit to ensure that the desired Requester ID is used in
the Message TLP.

Root Port Configuration Read

When an ECAM access is performed to the primary bus number, self-configuration of the
integrated block for PCIe is performed. A PCIe configuration transaction is not performed and is
not presented on the link. When an ECAM access is performed to the bus number that is equal
to the secondary bus value in the Enhanced PCIe Type 1 configuration header, then Type 0
configuration transactions are generated.

When an ECAM access is attempted to a bus number that is in the range defined by the
secondary bus number and subordinate bus number range (not including secondary bus number),
then Type 1 configuration transactions are generated. The primary, secondary and subordinate
bus numbers are written and updated by Root Port software to the Type 1 PCI Configuration
Header of the AXI Bridge functional mode in the enumeration procedure.

When an ECAM access is attempted to a bus number that is out of the range defined by the
secondary bus_number and subordinate bus number, the bridge does not generate a
configuration request and signal a SLVERR response on the AXI4-Lite bus.

When a Unsupported Request (UR) response is received for a configuration read request, all ones
are returned on the AXI4-Lite bus to signify that a device does not exist at the requested device
address. It is the responsibility of the software to ensure configuration write requests are not
performed to device addresses that do not exist. However, the AXI Bridge functional mode
asserts SLVERR response on the AXI4-Lite bus when a configuration write request is performed
on device addresses that do not exist or a UR response is received.

Root Port BAR

Root Port BAR does not support packet filtering (all TLPs received from PCIe link are forwarded
to the user logic), however Address Translation can be configured to enable or disable, depending
on the IP configuration.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=168

During core customization in the Vivado® Design Suite, when there is no BAR enabled, RP
passes all received packets to the user application without address translation or address
filtering.

When BAR is enabled, by default the BAR address starts at 0x0000_0000 unless programmed
separately. Any packet received from the PCIe® link that hits a BAR is translated according to the
PCIE-to-AXI Address Translation rules.

Note: The IP must not receive any TLPs outside of the PCIe BAR range from the PCIe link when RP BAR is
enabled. If this rule cannot be enforced, it's recommended that the PCIe BAR is disabled and do address
filtering and/or translation outside of the IP.

The Root Port BAR customization options in the Vivado Design Suite are found in the PCIe BARs
Tab.

Configuration Transaction Timeout

Configuration transactions are non-posted transactions. The AXI Bridge functional mode has a
timer for timeout termination of configuration transactions that have not completed on the PCIe
link. SLVERR is returned when a configuration timeout occurs. Timeouts of configuration
transactions are flagged by an interrupt as well.

Abnormal Configuration Transaction Termination Responses

Responses on AXI4-Lite to abnormal terminations to configuration transactions are shown in the
following table.

Table 76: Responses of Bridge to Abnormal Configuration Terminations

Transfer Type Abnormal Condition Bridge Response

Config Read or Write
Bus number not in the range of
primary bus number through
subordinate bus number.

SLVERR response is asserted.

Config Read or Write Valid bus number and completion
timeout occurs. SLVERR response is asserted.

Config Read or Write Completion timeout. SLVERR response is asserted.

Config Write
Bus number in the range of secondary
bus number through subordinate bus
number and UR is returned.

SLVERR response is asserted.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=169

MSI Interrupt

The IP will decode the MSI interrupt based on the value programmed in Root Port MSI Base
Register 1 and Root Port MSI Base Register 2. Any Memory Write TLP received from the link
with an address that falls within a 4 Kb window from the base address programmed in those
registers will be treated as an MSI interrupt, and will not be forwarded to the M_AXI(B) interface.
When an MSI interrupt is received, the Interrupt Decode register bit[17] will be set. If the
Interrupt Mask register bit[17] is also set, the interrupt_out pin is asserted. After receiving
this interrupt, the user application must follow the following procedure to service the interrupt:

1. Optional: Write 0 to the Interrupt Mask register bit [17] to deassert the interrupt_out pin
while the interrupt is being serviced.

2. Read the Root Port Status/Control Register bit [18] to check if it is not empty.

3. Read the Root Port Status/Control Register bit [19] to check if it has overflowed.

4. If the interrupt FIFO is not empty, read the Root Port Interrupt FIFO Read Register 2 to check
MSI Message Data from the received MSI interrupt. This is used by the user application to
determine the interrupt vector number and can also be used to determine the source of the
interrupt.

5. Write 1 to the Root Port Interrupt FIFO Read Register 1 bit [31] to remove the interrupt user
has just read from the FIFO.

6. Repeat from step 2 until the FIFO is indicated as empty.

7. If at any time during this process, the FIFO was indicated as overflowed (status from step 2),
the user application must check any unserviced interrupt vectors to check for any pending
interrupts on that line. Failure to do this before continuing can leave some interrupt vector
unserviced.

8. Write 1 to the Interrupt Decode Register bit [17] to clear the MSI interrupt bit.

9. If step 1 was executed, write 1 to the Interrupt Mask Register bit [17] to re-enable the
interrupt_out pin for future MSI interrupts.

MSI-X Interrupt

All MSI-X interrupts must be decoded by the user application externally to the IP. To do this, set
all of their Endpoints to use an MSI-X address that falls outside of the range of the 4Kb window
from the base address programmed in the Root Port MSI Base Register 1 and Root Port MSI Base
Register 2. All MSI-X interrupts will be forwarded to the M_AXI(B) interface.

All TLPs forwarded to M_AXI(B) interface are subject to the PCIe-to-AXI Address translation.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=170

Interrupt Decode Mode

Legacy INTx Interrupt

When the IP has received an INTx interrupt, the Root Port Interrupt Decode 2 register is set. If
the Root Port Interrupt Decode 2 Mask register is also set, the interrupt_out pin is asserted.
After receiving this interrupt, the user application must follow this procedure to service the
interrupt:

1. Optional: Write 0 to the Interrupt Decode 2 Mask register to deassert an interrupt line while
the interrupt is being serviced.

2. Read the Root Port Interrupt Decode 2 register to check which interrupt line is currently
asserted.

3. Repeat step 2 until all interrupt lines are deasserted. The interrupt line is automatically
cleared when the IP receives the INTx Deassert Message corresponding to that interrupt line.

4. If step 1 was executed, write 1 to the Interrupt Decode 2 Mask register to re-enable an
interrupt line for future INTx interrupt.

MSI Interrupt

The IP decodes the MSI interrupt based on the value programmed in Root Port MSI Base
Register 1 and Root Port MSI Base Register 2. Any Memory Write TLPs received from the link
with an address that falls within the 4 Kb window from the base address programmed in those
registers will be treated as MSI interrupt, and will not be forwarded to the M_AXI(B) interface.

Note: MSI Message Data [5:0] will always be decoded as MSI Message vector regardless of how many
vectors are enabled at your Endpoint.

When an MSI interrupt is received, the Root Port MSI Interrupt Decode 1 or Root Port MSI
Interrupt Decode 2 register is set. If the Root Port MSI Interrupt Decode 1 or Root Port MSI
Interrupt Decode 2 register is also set, the interrupt_out_msi_vec* pins are asserted.
interrupt_out_msi_vec0to31 corresponds to MSI vector 0 - 31, and
interrupt_out_msi_vec32to63 corresponds to MSI vector 32 - 63. After receiving this
interrupt, the user application must follow this procedure to service the interrupt:

1. Optional: Write 0 to the Root Port MSI Interrupt Decode 1 or 2 Mask register to deassert the
interrupt_out_msi_vec* pins while the interrupt is being serviced.

2. Read the Root Port MSI Interrupt Decode 1 or 2 register to check which interrupt vector is
asserted.

3. Write 1 to the Root Port MSI Interrupt Decode 1 or 2 register to clear the MSI interrupt bit.

4. If step 1 was executed, write 1 to the Root Port MSI Interrupt Decode 1 or 2 Mask register
bit to re-enable the interrupt_out_msi_vec* pins for future MSI interrupts.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=171

MSI-X Interrupt

All MSI-X interrupts must be decoded by the user application externally to the IP. To do this, the
user application must set all Endpoints to use an MSI-X address that falls outside of the range of
the 4Kb window from the base address programmed in the Root Port MSI Base Register 1 and
the Root Port MSI Base Register 2. All MSI-X interrupts are forwarded to the M_AXI(B) interface.

All TLPs forwarded to M_AXI(B) interface are subject to PCIe-to-AXI Address translation.

Port Description

Global Signals
The interface signals for the Bridge are described in the following table.

Table 77: Global Signals

Signal Name I/O Description
gt_refclk0_p/gt_refclk0_n I GT reference clock.

pci_gt_txp/pci_gt_txn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_gt_rxp/pci_gt_rxn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

pcie0_user_lnk_up O Output active-High identifies that the PCI Express
core is linked up with a host device.

pcie0_user_clk O User clock out. PCIe derived clock output for all
interface signals output/input to AXI Bridge. Use
this clock to drive inputs and gate outputs from AXI
Bridge.

dma0_user_reset O User reset out. AXI reset signal synchronous with
the clock provided on the pcie0_user_clk output.
This reset should drive all corresponding AXI
Interconnect signals.

cpm_cor_irq O Reserved

cpm_misc_irq O Reserved

cpm_uncor_irq O Reserved

cpm_irq0 I Reserved

cpm_irq1 I Reserved

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=172

AXI Slave Interface
AXI Bridge Slave ports are connected from the Versal™ ACAP programmable Network on Chip
(NoC) to the CPM DMA internally. For slave bridge AXI-MM details and configuration, see Versal
ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP Product Guide
(PG313).

AXI Master Interface
AXI4 Memory Mapped (MM) Master ports are connected from the Versal ACAP Network on
Chip (NoC) to the CPM DMA internally. For details, see Versal ACAP Programmable Network on
Chip and Integrated Memory Controller LogiCORE IP Product Guide (PG313). The AXI4 MM Master
interface can be connected to the DDR or the PL, depending on the NoC configuration.

AXI4-Lite Master Interface

AXI4-Lite Master ports are connected from the CPM to the Versal ACAP Network on Chip (NoC)
internally. For details, see Versal ACAP Programmable Network on Chip and Integrated Memory
Controller LogiCORE IP Product Guide (PG313).

Use the SmartConnect IP to connect the NoC to the AXI4-Lite Master interface. For details, see
SmartConnect LogiCORE IP Product Guide (PG247).

AXI Bridge for PCIe Interrupts
Table 78: AXI Bridge for PCIe Interrupts

Signal Name I/O Description

xdma0_usr_irq_req[NUM_USR_IRQ-1:0] I
User interrupt request. Asset to generate an
interrupt and maintain assertion until interrupt is
serviced.

xdma0_usr_irq_ack[NUM_USR_IRQ-1:0] O
User interrupt acknowledge. Indicates that the
interrupt has been set on PCIe. Two acks are
generated for legacy interrupt. One ack is
generated for MSI/MSI-X interrupts.

xdma0_usr_irq_fnc[7:0] I Function
The function of the vector to be sent.

Note: The xdma0_ prefix in the above signal names will be changed to dma0_* in a future release.

NUM_USR_IRQ is selectable and it ranges from 0 to 15. Each bits in xdma0_usr_irq_req bus
corresponds to the same bits in xdma0_usr_irq_ack. For example,
xdma0_usr_irq_ack[0] represents an ack for xdma0_usr_irq_req[0].

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 173Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=173

Register Space
Bridge register space can be accessed using AXI Slave interface and user can also access Host
memory space.

Table 79: AXI Slave Bridge Register Space

Register Space AXI Slave Interface Address
Range Details

Bridge registers 0x6_0000_0000 Described in Bridge register space CSV
file. See Bridge Register Space for
details.

Slave Bridge access to Host memory
space

0xE001_0000 - 0x EFFF_FFFF
0x6_1100_0000 - 0x7_FFFF_FFFF
0x80_0000_0000 - 0xBF_FFFF_FFFF

Address range for Slave bridge access
is set during IP customization in the
Address Editor tab of the Vivado IDE.

Bridge register descriptions are found in cpm-bridge-v2-1-registers.csv available in the
register map files.

To locate the register space information:

1. Download the register map files from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Refer to the cpm-bridge-v2-1-registers.csv file.

Slave Bridge Registers Limitations
The Register Space mentioned in this document can also be accessible through the AXI4 Memory
Mapped Slave interface. All accesses to these registers will be based on the following AXI Base
Addresses:

• For QDMA registers: Base Address = 0x6_1000_0000

• For XDMA registers: Base Address = 0x6_1002_0000

• For Bridge registers: Base Address = 0x6_0000_0000

The offsets within each register space are the same as listed for the PCIe BAR accesses.

Please make sure that all transactions targeting these register spaces have AWCACHE[1] and
ARCACHE[1] set to 1’b0 (Non-Modifiable) and only access it in 4 Bytes transactions.

• All transactions originating from Programmable Logic (PL) region, must have an AXI Master
that sets AxCACHE[1] = 1’b0 before it enters the AXI NOC.

• All transactions originating from the APU or RPU must be defined by a Memory Attribute
nGnRnE or nGnRE to ensure AxCACHE[1] = 1’b0.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 174Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=174

• All transactions originating from PPU has no additional requirement necessary.

Section III: AXI Bridge Subsystem
Chapter 8: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=175

Chapter 9

Design Flow Steps
This section describes customizing and generating the functional mode, constraining the
functional mode, and the simulation, synthesis, and implementation steps that are specific to this
IP functional mode. More detailed information about the standard Vivado® design flows and the
IP integrator can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

AXI Bridge Lab
An AXI Bridge tutorial lab will be added in a future release.

Section III: AXI Bridge Subsystem
Chapter 9: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 176Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=176

Chapter 10

Debugging
This appendix includes details about resources available on the Xilinx® Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the functional mode, the Xilinx Support web
page contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the functional mode. This guide, along
with documentation related to all products that aid in the design process, can be found on the
Xilinx Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the AXI Bridge is the Xilinx Solution Center for PCI Express.

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Section III: AXI Bridge Subsystem
Chapter 10: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 177Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=177

Answer Records for this functional mode can be located by using the Search Support box on the
main Xilinx support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 75396.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the example
design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

Section III: AXI Bridge Subsystem
Chapter 10: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 178Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support/answers/75396.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=178

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

• If your outputs go to 0, check your licensing.

Registers
A complete list of registers and attributes for the AXI Bridge Subsystem is available in the Versal
ACAP Register Reference (AM012). Reviewing the registers and attributes might be helpful for
advanced debugging.

Note: The attributes are set during IP customization in the Vivado IP catalog. After core customization,
attributes are read-only.

Section III: AXI Bridge Subsystem
Chapter 10: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 179Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=179

Chapter 11

Upgrading
This appendix is not applicable for the first release of the functional mode.

Section III: AXI Bridge Subsystem
Chapter 11: Upgrading

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=180

Section IV

XDMA Subsystem

Overview
The XDMA Subsystem can be configured as a high performance direct memory access (DMA)
data mover between the PCI Express® and AXI memory spaces. As a DMA, the functional mode
can be configured with either an AXI (memory mapped) interface or with an AXI streaming
interface to allow for direct connection to RTL logic. Either interface can be used for high
performance block data movement between the PCIe® address space and the AXI address space
using the provided character driver. In addition to the basic DMA functionality, the DMA
supports up to four upstream and downstream channels, the ability for PCIe traffic to bypass the
DMA engine (Host DMA Bypass), and an optional descriptor bypass to manage descriptors from
the Versal™ ACAP for applications that demand the highest performance and lowest latency.

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=181

Figure 49: XDMA Subsystem

AXI Write
Interface

(MM or ST)

AXI Read
Interface

(MM or ST)

C2H
Channels

RQ/RC
Interface

IRQ Module

Target

Bridge

AXI
Slave

Intercon-
nect

AXI
Master
Bypass

CQ/CC
Interface

PCIe
(Configured as

Endpoint)NOC

XDMA Subsystem for PCIe

H2C
Channels

PCIe RX

PCIe TX

User
Logic
(PL)

CPM

AXI-MM

AXI-ST

AXI-MM

AXI-ST

AXI-Lite

AXI-MM

X22644-101920

This diagram refers to the Requester Request (RQ)/Requester Completion (RC) interfaces, and
the Completer Request (CQ)/Completer Completion (CC) interfaces.

Limitations
The limitations of the XDMA are as follows:

• SR-IOV

• Example design not supported for all configurations

• Narrow burst (not supported on the master interface)

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=182

Architecture
Internally, the subsystem can be configured to implement up to eight independent physical DMA
engines (up to four H2C and four C2H). These DMA engines can be mapped to individual AXI4-
Stream interfaces or a shared AXI4 memory mapped (MM) interface to the user application. On
the AXI4 MM interface, the XDMA Subsystem generates requests and expected completions.
The AXI4-Stream interface is data-only.

The type of channel configured determines the transactions on which bus.

• A Host-to-Card (H2C) channel generates read requests to PCIe and provides the data or
generates a write request to the user application.

• Similarly, a Card-to-Host (C2H) channel either waits for data on the user side or generates a
read request on the user side and then generates a write request containing the data received
to PCIe.

The XDMA also enables the host to access the user logic. Write requests that reach ‘PCIe to
DMA bypass Base Address Register (BAR)’ are processed by the DMA. The data from the write
request is forwarded to the user application through the M_AXI_BYPASS interface.

The host access to the configuration and status registers in the user logic is provided through an
AXI4-Lite master port. These requests are 32-bit reads or writes. The user application also has
access to internal DMA configuration and status registers through an AXI4-Lite slave port.

When multiple channels for H2C and C2H are enabled, transactions on the AXI4 Master
interface are interleaved between all selected channels. Simple round robin protocol is used to
service all channels. Transactions granularity depends on host Max Payload Size (MPS), page size,
and other host settings.

Target Bridge
The target bridge receives requests from the host. Based on BARs, the requests are directed to
the internal registers, or the CQ bypass port. After the downstream user logic has returned data
for a non-posted request, the target bridge generates a read completion TLP and sends it to the
PCIe IP over the CC bus.

In the following tables, the PCIe BARs selection corresponds to the options set in the PCIe BARs
Tab in the Vivado® Integrated Design Environment (IDE).

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=183

H2C Channel
The number of H2C channels is configured in the Vivado® Integrated Design Environment (IDE).
The H2C channel handles DMA transfers from the host to the card. It is responsible for splitting
read requests based on maximum read request size, and available internal resources. The DMA
channel maintains a maximum number of outstanding requests based on the RNUM_RIDS, which
is the number of outstanding H2C channel request ID parameter. Each split, if any, of a read
request consumes an additional read request entry. A request is outstanding after the DMA
channel has issued the read to the PCIe RQ block to when it receives confirmation that the write
has completed on the user interface in-order. After a transfer is complete, the DMA channel
issues a writeback or interrupt to inform the host.

The H2C channel also splits transaction on both its read and write interfaces. On the read
interface to the host, transactions are split to meet the maximum read request size configured,
and based on available Data FIFO space. Data FIFO space is allocated at the time of the read
request to ensure space for the read completion. The PCIe RC block returns completion data to
the allocated Data Buffer locations. To minimize latency, upon receipt of any completion data, the
H2C channel begins issuing write requests to the user interface. It also breaks the write requests
into maximum payload size. On an AXI4-Stream user interface, this splitting is transparent.

When multiple channels are enabled, transactions on the AXI4 Master interface are interleaved
between all selected channels. Simple round robin protocol is used to service all channels.
Transactions granularity depends on host Max Payload Size (MPS), page size, and other host
settings.

C2H Channel
The C2H channel handles DMA transfers from the card to the host. The instantiated number of
C2H channels is controlled in the Vivado® IDE. Similarly the number of outstanding transfers is
configured through the WNUM_RIDS, which is the number of C2H channel request IDs. In an
AXI4-Stream configuration, the details of the DMA transfer are set up in advance of receiving
data on the AXI4-Stream interface. This is normally accomplished through receiving a DMA
descriptor. After the request ID has been prepared and the channel is enabled, the AXI4-Stream
interface of the channel can receive data and perform the DMA to the host. In an AXI4 MM
interface configuration, the request IDs are allocated as the read requests to the AXI4 MM
interface are issued. Similar to the H2C channel, a given request ID is outstanding until the write
request has been completed. In the case of the C2H channel, write request completion is when
the write request has been issued as indicated by the PCIe IP.

When multiple channels are enabled, transactions on the AXI4 Master interface are interleaved
between all selected channels. Simple round robin protocol is used to service all channels.
Transactions granularity depends on host MaxPayload Size (MPS), page size, and other host
settings.

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=184

Host-to-Card Bypass Master
Host requests that reach the PCIe to DMA bypass BAR are sent to this module. The bypass
master port is an AXI4 MM interface and supports read and write accesses.

IRQ Module
The IRQ module receives a configurable number of interrupt wires from the user logic and one
interrupt wire from each DMA channel. This module is responsible for generating an interrupt
over PCIe. Support for MSI-X, MSI, and legacy interrupts can be specified during IP configuration.

Note: The Host can enable one or more interrupt types from the specified list of supported interrupts
during IP configuration. The IP only generates one interrupt type at a given time even when there are more
than one enabled. MSI-X interrupt takes precedence over MSI interrupt, and MSI interrupt take
precedence over Legacy interrupt. The Host software must not switch (either enable or disable) an
interrupt type while there is an interrupt asserted or pending.

Legacy Interrupts

Asserting one or more bits of xdma0_usr_irq_req when legacy interrupts are enabled causes
the DMA to issue a legacy interrupt over PCIe. Multiple bits may be asserted simultaneously but
each bit must remain asserted until the corresponding xdma0_usr_irq_ack bit has been
asserted. After a xdma0_usr_irq_req bit is asserted, it must remain asserted until the
corresponding xdma0_usr_irq_ack bit is asserted and the interrupt has been serviced and
cleared by the Host. The xdma0_usr_irq_ack assertion indicates the requested interrupt has
been sent to the PCIe block. This will ensure interrupt pending register within the IP remains
asserted when queried by the Host's Interrupt Service Routine (ISR) to determine the source of
interrupts. You must implement a mechanism in the user application to know when the interrupt
routine has been serviced. This detection can be done in many different ways depending on your
application and your use of this interrupt pin. This typically involves a register (or array of
registers) implemented in the user application that is cleared, read, or modified by the Host
software when an interrupt is serviced.

After the xdma0_usr_irq_req bit is deasserted, it cannot be reasserted until the
corresponding xdma0_usr_irq_ack bit has been asserted for a second time. This indicates the
deassertion message for the legacy interrupt has been sent over PCIe. After a second
xdma0_usr_irq_ack has occurred, the xdma0_usr_irq_req wire can be reasserted to
generate another legacy interrupt.

The xdma0_usr_irq_req bit and DMA interrupts can be mapped to legacy interrupt INTA,
INTB, INTC, and INTD through the configuration registers. The following figure shows the
legacy interrupts.

Note: This figure shows only the handshake between xdma0_usr_irq_req and xdma0_usr_irq_ack.
Your application might not clear or service the interrupt immediately, in which case, you must keep
xdma0_usr_irq_req asserted past xdma0_usr_irq_ack.

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=185

Figure 50: Legacy Interrupts

MSI and MSI-X Interrupts

Asserting one or more bits of xdma0_usr_irq_req causes the generation of an MSI or MSI-X
interrupt if MSI or MSI-X is enabled. If both MSI and MSI-X capabilities are enabled, an MSI-X
interrupt is generated.

After a xdma0_usr_irq_req bit is asserted, it must remain asserted until the corresponding
xdma0_usr_irq_ack bit is asserted and the interrupt has been serviced and cleared by the
Host. The xdma0_usr_irq_ack assertion indicates the requested interrupt has been sent to
the PCIe block. This will ensure the interrupt pending register within the IP remains asserted
when queried by the Host's Interrupt Service Routine (ISR) to determine the source of interrupts.
You must implement a mechanism in the user application to know when the interrupt routine has
been serviced. This detection can be done in many different ways depending on your application
and your use of this interrupt pin. This typically involves a register (or array of registers)
implemented in the user application that is cleared, read, or modified by the Host software when
an Interrupt is serviced.

Configuration registers are available to map xdma0_usr_irq_req and DMA interrupts to MSI
or MSI-X vectors. For MSI-X support, there is also a vector table and PBA table. The following
figure shows the MSI interrupt.

Note: This figure shows only the handshake between xdma0_usr_irq_req and xdma0_usr_irq_ack.
Your application might not clear or service the interrupt immediately, in which case, you must keep
xdma0_usr_irq_req asserted past xdma0_usr_irq_ack.

Figure 51: MSI Interrupts

The following figure shows the MSI-X interrupt.

Note: This figure shows only the handshake between xdma0_usr_irq_req and xdma0_usr_irq_ack.
Your application might not clear or service the interrupt immediately, in which case, you must keep
xdma0_usr_irq_req asserted past xdma0_usr_irq_ack.

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=186

Figure 52: MSI-X Interrupts

Config Block
The config module, the DMA register space which contains PCIe® solution IP configuration
information and DMA control registers, stores PCIe IP configuration information that is relevant
to the XDMA. This configuration information can be read through register reads to the
appropriate register offset within the config module.

Section IV: XDMA Subsystem

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=187

Chapter 12

Product Specification

DMA Operations
Descriptors
The XDMA Subsystem uses a linked list of descriptors that specify the source, destination, and
length of the DMA transfers. Descriptor lists are created by the driver and stored in host
memory. The DMA channel is initialized by the driver with a few control registers to begin
fetching the descriptor lists and executing the DMA operations.

Descriptors describe the memory transfers that the XDMA should perform. Each channel has its
own descriptor list. The start address of each channel's descriptor list is initialized in hardware
registers by the driver. After the channel is enabled, the descriptor channel begins to fetch
descriptors from the initial address. Thereafter, it fetches from the Nxt_adr[63:0] field of the
last descriptor that was fetched. Descriptors must be aligned to a 32 byte boundary.

The size of the initial block of adjacent descriptors are specified with the Dsc_Adj register. After
the initial fetch, the descriptor channel uses the Nxt_adj field of the last fetched descriptor to
determine the number of descriptors at the next descriptor address. A block of adjacent
descriptors must not cross a 4K address boundary. The descriptor channel fetches as many
descriptors in a single request as it can, limited by MRRS, the number the adjacent descriptors,
and the available space in the channel's descriptor buffer.

Note: Because MRRS in most host systems is 512 bytes or 1024 bytes, having more than 32 adjacent
descriptors is not allowed on a single request. However, the design will allow a maximum 64 descriptors in
a single block of adjacent descriptors if needed.

Every descriptor in the descriptor list must accurately describe the descriptor or block of
descriptors that follows. In a block of adjacent descriptors, the Nxt_adj value decrements from
the first descriptor to the second to last descriptor which has a value of zero. Likewise, each
descriptor in the block points to the next descriptor in the block, except for the last descriptor
which might point to a new block or might terminate the list.

Termination of the descriptor list is indicated by the Stop control bit. After a descriptor with the
Stop control bit is observed, no further descriptor fetches are issued for that list. The Stop
control bit can only be set on the last descriptor of a block.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=188

When using an AXI4 memory mapped interface, DMA addresses to the card are not translated. If
the Host does not know the card address map, the descriptor must be assembled in the user
logic and submitted to the DMA using the descriptor bypass interface.

Table 80: Descriptor Format

Offset Fields
0x0 Magic[15:0] Rsv[1:0] Nxt_adj[5:0] Control[7:0]

0x04 4’h0, Len[27:0]

0x08 Src_adr[31:0]

0x0C Src_adr[63:32]

0x10 Dst_adr[31:0]

0x14 Dst_adr[63:32]

0x18 Nxt_adr[31:0]

0x1C Nxt_adr[63:32]

Table 81: Descriptor Fields

Offset Field Bit Index Sub Field Description
0x0 Magic 15:0 16'had4b. Code to

verify that the driver
generated descriptor
is valid.

0x0 1:0 Reserved set to 0's

0x0 Nxt_adj 5:0 The number of
additional adjacent
descriptors after the
descriptor located at
the next descriptor
address field.
A block of adjacent
descriptors cannot
cross a 4k boundary.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=189

Table 81: Descriptor Fields (cont'd)

Offset Field Bit Index Sub Field Description
0x0

Control

5, 6, 7 Reserved

0x0 4 EOP End of packet for
stream interface.

0x0 2, 3 Reserved

0x0

1 Completed

Set to 1 to interrupt
after the engine has
completed this
descriptor. This
requires global
IE_DESCRIPTOR_COMP
LETED control flag set
in the H2C/C2H
Channel control
register.

0x0

0 Stop

Set to 1 to stop
fetching descriptors
for this descriptor list.
The stop bit can only
be set on the last
descriptor of an
adjacent block of
descriptors.

0x04 Length 31:28 Reserved set to 0's

0x04 27:0 Length of the data in
bytes.

0x0C-0x8 Src_adr 63:0 Source address for
H2C and memory
mapped transfers.
Metadata writeback
address for C2H
transfers.

0x14-0x10 Dst_adr 63:0 Destination address
for C2H and memory
mapped transfers. Not
used for H2C stream.

0x1C-0x18 Nxt_adr 63:0 Address of the next
descriptor in the list.

The DMA has (512 * 512) 32 KB deep FIFO to hold all descriptors in the descriptor engine. This
descriptor FIFO is shared with all selected channels.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=190

Descriptor Bypass

The descriptor fetch engine can be bypassed on a per channel basis through Vivado® IDE
parameters. A channel with descriptor bypass enabled accepts descriptor from its respective
c2h_dsc_byp or h2c_dsc_byp bus. Before the channel accepts descriptors, the Control
register Run bit must be set. The NextDescriptorAddress and NextAdjacentCount, and Magic
descriptor fields are not used when descriptors are bypassed. The ie_descriptor_stopped
bit in Control register bit does not prevent the user logic from writing additional descriptors. All
descriptors written to the channel are processed, barring writing of new descriptors when the
channel buffer is full.

Poll Mode

Each engine is capable of writing back completed descriptor counts to host memory. This allows
the driver to poll host memory to determine when the DMA is complete instead of waiting for an
interrupt.

For a given DMA engine, the completed descriptor count writeback occurs when the DMA
completes a transfer for a descriptor, and ie_descriptor_completed and
Pollmode_wb_enable are set. The completed descriptor count reported is the total number of
completed descriptors since the DMA was initiated (not just those descriptors with the
Completed flag set). The writeback address is defined by the Pollmode_hi_wb_addr and
Pollmode_lo_wb_addr registers.

Table 82: Completed Descriptor Count Writeback Format

Offset Fields
0x0 Sts_err 7’h0 Compl_descriptor_count[23:0]

Table 83: Completed Descriptor Count Writeback Fields

Field Description
Sts_err The bitwise OR of any error status bits in the channel Status register.

Compl_descriptor_count[23:0] The lower 24 bits of the Complete Descriptor Count register.

DMA H2C Stream
For host-to-card transfers, data is read from the host at the source address, but the destination
address in the descriptor is unused. Packets can span multiple descriptors. The termination of a
packet is indicated by the EOP control bit. A descriptor with an EOP bit asserts tlast on the
AXI4-Stream user interface on the last beat of data.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=191

Data delivered to the AXI4-Stream interface will be packed for each descriptor. tkeep is all 1s
except for the last cycle of a data transfer of the descriptor if it is not a multiple of the datapath
width. The DMA does not pack data across multiple descriptors.

DMA C2H Stream
For card-to-host transfers, the data is received from the AXI4-Stream interface and written to the
destination address. Packets can span multiple descriptors. The C2H channel accepts data when
it is enabled, and has valid descriptors. As data is received, it fills descriptors in order. When a
descriptor is filled completely or closed due to an end of packet on the interface, the C2H
channel writes back information to the writeback address on the host with pre-defined WB
Magic value 16'h52b4 (Table 85: C2H Stream Writeback Fields), and updated EOP and Length
as appropriate. For valid data cycles on the C2H AXI4-Stream interface, all data associated with a
given packet must be contiguous.

Note: C2H Channel Writeback information is different then Poll mode updates. C2H Channel Writeback
information provides the driver current length status of a particular descriptor. This is different from
Pollmode_*, as is described in Poll Mode.

The tkeep bits for transfers for all except the last data transfer of a packet must be all 1s. On
the last transfer of a packet, when tlast is asserted, you can specify a tkeep that is not all 1s
to specify a data cycle that is not the full datapath width. The asserted tkeep bits need to be
packed to the lsb, indicating contiguous data.

The length of a C2H Stream descriptor (the size of the destination buffer) must always be a
multiple of 64 bytes.

Table 84: C2H Stream Writeback Format

Offset Fields
0x0 WB Magic[15:0] Reserved [14:0] Status[0]

0x04 Length[31:0]

Table 85: C2H Stream Writeback Fields

Field Bit Index Sub Field Description
Status 0 EOP End of packet

Reserved 14:0 Reserved

WB Magic 15:0 16’h52b4. Code to verify the C2H
writeback is valid.

Length 31:0 Length of the data in bytes.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=192

Address Alignment
Table 86: Address Alignment

Interface Type Datapath
Width Address Restriction

AXI4 MM 64, 128, 256,
512

None

AXI4-Stream 64, 128, 256,
512

None

AXI4 MM fixed address 64 Source_addr[2:0] == Destination_addr[2:0] == 3’h0

AXI4 MM fixed address 128 Source_addr[3:0] == Destination_addr[3:0] == 4’h0

AXI4 MM fixed address 256 Source_addr[4:0] == Destination_addr[4:0] == 5’h0

AXI4 MM fixed address 512 Source_addr[5:0] == Destination_addr[5:0]==6'h0

Length Granularity

Table 87: Length Granularity

Interface Type Datapath
Width Length Granularity Restriction

AXI4 MM 64, 128, 256,
512

None

AXI4-Stream 64, 128, 256,
512

None1

AXI4 MM fixed address 64 Length[2:0] == 3’h0

AXI4 MM fixed address 128 Length[3:0] == 4’h0

AXI4 MM fixed address 256 Length[4:0] == 5’h0

AXI4 MM fixed address 512 Length[5:0] == 6'h0

Notes:
1. Each C2H descriptor must be sized as a multiple of 64 Bytes. However, there are no restrictions to the total number of

Bytes in the actual C2H transfer.

Parity

Set the Propagate Parity option in the PCIe DMA Tab in the Vivado® IDE to check for parity.
Otherwise, no parity checking occurs.

When Propagate Parity is enabled, the XDMA propagates parity to the user AXI interface. You
are responsible for checking and generating parity in the AXI Interface. Parity is valid every clock
cycle when a data valid signal is asserted, and parity bits are valid only for valid data bytes. Parity
is calculated for every byte; total parity bits are DATA_WIDTH/8.

• Parity information is sent and received on *_tuser ports in AXI4-Stream (AXI_ST) mode.

• Parity information is sent and received on *_ruser and *_wuser ports in AXI4 Memory
Mapped (AXI-MM) mode.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=193

Odd parity is used for parity checking. By default, parity checking is not enabled.

Port Description

Global Signals
Table 88: Global Signals

Signal Name Direction Description
gt_refclk0_p/gt_refclk0_n I GT reference clock

pci_gt_txp/pci_gt_txn
[PL_LINK_CAP_MAX_LINK_WIDTH-
1:0]

O PCIe TX serial interface.

pci_gt_rxp/pci_gt_rxn
[PL_LINK_CAP_MAX_LINK_WIDTH-
1:0]

I PCIe RX serial interface.

pcie0_user_lnk_up O Output active-High identifies that the PCI Express core is linked up
with a host device.

pcie0_user_clk O User clock out. PCIe derived clock output for all interface signals
output/input to QDMA. Use this clock to drive inputs and gate
outputs from QDMA.

dma0_axi_aresetn O User reset out. AXI reset signal synchronous with the clock provided
on the pcie0_user_clk output. This reset should drive all
corresponding AXI Interconnect aresetn signals.

dma0_soft_resetn I Soft reset (active-Low). Use this port to assert reset and reset the
DMA logic. This will reset only the DMA logic. User should assert and
deassert this port.

AXI Slave Interface
AXI Bridge Slave ports are connected from the Versal ACAP Network on Chip (NoC) to the CPM
DMA internally. For Slave Bridge AXI-MM details, see Versal ACAP Programmable Network on Chip
and Integrated Memory Controller LogiCORE IP Product Guide (PG313).

To access XDMA registers, you must follow the protocols outlined in the AXI Slave Bridge
Register Limitations section.

Related Information

Slave Bridge Registers Limitations

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 194Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=194

AXI4 Memory Mapped Interface
AXI4 Memory Mapped (MM) Master ports are connected from the CPM to the Versal ACAP
Network on Chip (NoC) internally. For details, see Versal ACAP Programmable Network on Chip and
Integrated Memory Controller LogiCORE IP Product Guide (PG313). The AXI4 MM Master interface
can be connected to DDR or to the PL user logic, depending on the NoC configuration.

AXI4-Lite Master Interface

AXI4-Lite Master ports are connected from the CPM to the Versal ACAP Network on Chip (NoC)
internally. For details, see Versal ACAP Programmable Network on Chip and Integrated Memory
Controller LogiCORE IP Product Guide (PG313).

Use the SmartConnect IP to connect the NoC to the AXI4-Lite Master interface. For details, see
SmartConnect LogiCORE IP Product Guide (PG247).

H2C Channel 0-3 AXI4-Stream Interface Signals
Table 89: H2C Channel 0-3 AXI4-Stream Interface Signals

Signal Name1 Direction Description

dma0_m_axis_h2c_x_tready I

Assertion of this signal by the user logic indicates that it is
ready to accept data. Data is transferred across the interface
when dma0_m_axis_h2c_tready and dma0_m_axis_h2c_tvalid
are asserted in the same cycle. If the user logic deasserts
the signal when the valid signal is High, the DMA keeps the
valid signal asserted until the ready signal is asserted.

dma0_m_axis_h2c_x_tlast O The DMA asserts this signal in the last beat of the DMA
packet to indicate the end of the packet.

dma0_m_axis_h2c_x_tdata
[DATA_WIDTH-1:0]

O Transmit data from the DMA to the user logic.

dma0_m_axis_h2c_x_tkeep
[DATA_WIDTH/8-1:0]

O tkeep will be all 1s except when
dma0_m_axis_h2c_x_tlast is asserted.

dma0_m_axis_h2c_x_tvalid O The DMA asserts this whenever it is driving valid data on
dma0_m_axis_h2c_tdata.

dma0_m_axis_h2c_tuser
[DATA_WIDTH/8-1:0] O Parity bits. This port is enabled only in Propagate Parity

mode.

Notes:
1. _x in the signal name changes based on the channel number 0, 1, 2, and 3. For example, for channel 0 use the dma0_

m_axis_h2c_tready_0 port, and for channel 1 use the dma0_m_axis_h2c_tready_1 port.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 195Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=195

C2H Channel 0-3 AXI4-Stream Interface Signals
Table 90: C2H Channel 0-3 AXI4-Stream Interface Signals

Signal Name1 Direction Description

dma0_s_axis_c2h_x_tready O

Assertion of this signal indicates that the DMA is ready to
accept data. Data is transferred across the interface when
s_axis_c2h_tready and s_axis_c2h_tvalid are asserted in the
same cycle. If the DMA deasserts the signal when the valid
signal is High, the user logic must keep the valid signal
asserted until the ready signal is asserted.

dma0_s_axis_c2h_x_tlast I The user logic asserts this signal to indicate the end of the
DMA packet.

dma0_s_axis_c2h_x_tdata
[DATA_WIDTH-1:0] I Transmits data from the user logic to the DMA.

dma0_s_axis_x_tkeep
[DATA_WIDTH/8-1:0]

I tkeep must all be 1s for all cycles except when
dma0_s_axis_c2h_x_tlastis asserted. The asserted tkeep bits
need to be packed to the lsb, indicating contiguous data.

dma0_s_axis_c2h_x_tvalid I The user logic asserts this whenever it is driving valid data
on s_axis_c2h_tdata.

dma0_s_axis_c2h_x_tuser
[DATA_WIDTH/8-1:0] I Parity bits. This port is enabled only in Propagate Parity

mode.

Notes:
1. _x in the signal name changes based on the channel number 0, 1, 2, and 3. For example, for channel 0 use the

m_axis_c2h_tready_0 port, and for channel 1 use the m_axis_c2h_tready_1 port.

Interrupt Interface
Table 91: Interrupt Interface

Signal Name Direction Description
dma0_usr_irq_req[NUM_USR_IRQ-1:0] I Assert to generate an interrupt. Maintain assertion

until interrupt is serviced.

dma0_usr_irq_ack[NUM_USR_IRQ-1:0] O Indicates that the interrupt has been sent on PCIe.
Two acks are generated for legacy interrupts. One
ack is generated for MSI interrupts.

dma0_usr_irq_func[7:0] I In most cases these signals are tied to 0s for
function 0.

NUM_USR_IRQ is selectable and it ranges from 0 to 15. Each bits in dma0_usr_irq_reqbus
corresponds to the same bits in dma0_usr_irq_ack. For example, dma0_usr_irq_ack[0]
represents an ack for dma0_usr_irq_req[0].

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=196

Channel 0-3 DMA Status Interface
Table 92: Channel 0-3 DMA Status Interface

Signal Name Direction Description
dma0_h2c_sts_x [7:0] O Status bits for each channel. Bit:

6: Control register 'Run' bit
5: IRQ event pending
4: Packet Done event (AXI4-Stream)
3: Descriptor Done event. Pulses for one cycle for
each descriptor that is completed, regardless of the
Descriptor.Completed field
2: Status register Descriptor_stop bit
1: Status register Descriptor_completed bit
0: Status register busy bit

dma0_c2h_sts_x [7:0] O Status bits for each channel. Bit:
6: Control register 'Run' bit
5: IRQ event pending
4: Packet Done event (AXI4-Stream)
3: Descriptor Done event. Pulses for one cycle for
each descriptor that is completed, regardless of the
Descriptor.Completed field
2: Status register Descriptor_stop bit
1: Status register Descriptor_completed bit
0: Status register busy bit

Notes:
1. _x in the signal name changes based on the channel number 0, 1, 2, and 3. For example, for channel 0 use the

dma0_c2h_sts_0 port, and for channel 1 use the dma0_c2h_sts_1 port.

Descriptor Bypass Interface
These ports are present if either Descriptor Bypass for Read (H2C) or Descriptor Bypass for
Write (C2H) are selected in the PCIe DMA Tab in the Vivado IDE. Each binary bit corresponds to
a channel, and LSB corresponds to Channel 0. Value 1 in bit positions means the corresponding
channel descriptor bypass is enabled.

Table 93: H2C 0-3 Descriptor Bypass Interface description

Port Direction Description
dma0_h2c_dsc_byp_x_ready O Channel is ready to accept new descriptors. After

dma0_h2c_dsc_byp_ready is deasserted, one additional
descriptor can be written. The Control register 'Run' bit
must be asserted before the channel accepts descriptors.

dma0_h2c_dsc_byp_x_load I Write the descriptor presented at dma0_h2c_dsc_byp_data
into the channel’s descriptor buffer.

dma0_h2c_dsc_byp_src_x_addr[63:0] I Descriptor source address to be loaded.

dma0_h2c_dsc_byp_dst_x_addr[63:0] I Descriptor destination address to be loaded.

dma0_h2c_dsc_byp_x_len[27:0] I Descriptor length to be loaded.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=197

Table 93: H2C 0-3 Descriptor Bypass Interface description (cont'd)

Port Direction Description
dma0_h2c_dsc_byp_x_ctl[15:0] I Descriptor control to be loaded.

[0]: Stop. Set to 1 to stop fetching next descriptor.
[1]: Completed. Set to 1 to interrupt after the engine has
completed this descriptor.
[3:2]: Reserved.
[4]: EOP. End of Packet for AXI-Stream interface.
[15:5]: Reserved.
All reserved bits can be forced to 0s.

Notes:
1. _x in the signal name changes based on the channel number 0, 1, 2, and 3. For example, for channel 0 use the

dma0_h2c_dsc_byp_0_ctl[15:0] port, and for channel 1 use the dma0_h2c_dsc_byp_1_ctl[15:0] port.

Table 94: C2H 0-3 Descriptor Bypass Ports

Port Direction Description
dma0_c2h_dsc_byp_x_ready O Channel is ready to accept new descriptors. After

dma0_c2h_dsc_byp_ready is deasserted, one additional
descriptor can be written. The Control register 'Run' bit
must be asserted before the channel accepts descriptors.

dma0_c2h_dsc_byp_x_load I Descriptor presented at dma0_c2h_dsc_byp_* is valid.

dma0_c2h_dsc_byp_src_x_addr[63:0] I Descriptor source address to be loaded.

dma0_c2h_dsc_byp_dst_x_addr[63:0] I Descriptor destination address to be loaded.

dma0_c2h_dsc_byp_x_len[27:0] I Descriptor length to be loaded.

dma0_c2h_dsc_byp_x_ctl[15:0] I Descriptor control to be loaded.
[0]: Stop. Set to 1 to stop fetching next descriptor.
[1]: Completed. Set to 1 to interrupt after the engine has
completed this descriptor.
[3:2]: Reserved.
[4]: EOP. End of Packet for AXI-Stream interface.
[15:5]: Reserved.
All reserved bits can be forced to 0s.

Notes:
1. _x in the signal name changes based on the channel number 0, 1, 2, and 3. For example, for channel 0 use the

dma0_c2h_dsc_byp_0_ctl[15:0] port, and for channel 1 use the dma0_c2h_dsc_byp_1_ctl[15:0] port.

The following timing diagram shows how to input the descriptor in descriptor bypass mode.
When dma0_<h2c|c2h>_dsc_byp_ready is asserted, a new descriptor can be pushed in with
the dma0_<h2c|c2h>_dsc_byp_load signal.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=198

Figure 53: Timing Diagram for Descriptor Bypass Mode

IMPORTANT! Immediately after dma0_<h2c|c2h>_dsc_byp_ready is deasserted, one more
descriptor can be pushed in. In the above timing diagram, a descriptor is pushed in when dma0_<h2c|
c2h>_dsc_byp_ready is deasserted.

Register Space
Configuration and status registers internal to the XDMA Subsystem and those in the user logic
can be accessed from the host through mapping the read or write request to a Base Address
Register (BAR). Based on the BAR hit, the request is routed to the appropriate location. For PCIe
BAR assignments, see Target Bridge.

XDMA Address Register Space
All the registers are found in cpm-xdma-v2-1-registers.csv available in the register map
files.

To locate the register space information:

1. Download the register map files from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Refer to the cpm-xdma-v2-1-registers.csv file.

PCIe to AXI Bridge Master Address Map

Transactions that hit the PCIe to AXI Bridge Master are routed to the AXI4 Memory Mapped user
interface.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 199Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=199

PCIe to DMA Address Map

Transactions that hit the PCIe to DMA space are routed to the DMA Subsystem for the
PCIeXDMA Subsystem internal configuration register bus. This bus supports 32 bits of address
space and 32-bit read and write requests.

XDMA registers can be accessed from the host or from the AXI Slave interface. These registers
should be used for programming the DMA and checking status.

PCIe to DMA Address Format

Table 95: PCIe to DMA Address Format

31:16 15:12 11:8 7:0
Reserved Target Channel Byte Offset

Table 96: PCIe to DMA Address Field Descriptions

Bit Index Field Description

15:12 Target

The destination submodule within the DMA
4’h0: H2C Channels
4’h1: C2H Channels
4’h2: IRQ Block
4’h3: Config
4’h4: H2C SGDMA
4’h5: C2H SGDMA
4’h6: SGDMA Common
4'h8: MSI-X

11:8 Channel ID[3:0]
This field is only applicable for H2C Channel, C2H Channel, H2C SGDMA,
and C2H SGDMA Targets. This field indicates which engine is being
addressed for these Targets. For all other Targets this field must be 0.

7:0 Byte Offset The byte address of the register to be accessed within the target.
Bits[1:0] must be 0.

AXI Slave Register Space
DMA register space can be accessed using AXI Slave interface. When AXI Slave Bridge mode is
enabled (based on GUI settings) user can also access Bridge registers and can also access Host
memory space.

Table 97: AXI4 Slave Register Space

Register Space AXI Slave Interface Address
Range Details

Bridge registers 0x6_0000_0000 Described in Bridge register space CSV
file. See Bridge Register Space for
details.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=200

Table 97: AXI4 Slave Register Space (cont'd)

Register Space AXI Slave Interface Address
Range Details

DMA registers 0x6_1002_0000 Described in XDMA Address Register
Space.

Slave Bridge access to Host memory
space

0xE001_0000 - 0xEFFF_FFFF
0x6_1100_0000 - 0x7_FFFF_FFFF
0x80_0000_0000 - 0xBF_FFFF_FFFF

Address range for Slave bridge access
is set during IP customization in the
Address Editor tab of the Vivado IDE.

Bridge Register Space

Bridge register addresses start at 0xE00. Addresses from 0x00 to 0xE00 are directed to the PCIe
configuration register space.

All the bridge registers are listed in the cpm-bridge-v2-1-registers.csv available in the
register map files.

To locate the register space information:

1. Download the register map files from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Refer to the cpm-bridge-v2-1-registers.csv file.

DMA Register Space

The DMA register space is described in XDMA Address Register Space.

Section IV: XDMA Subsystem
Chapter 12: Product Specification

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 201Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=0dd5fbfe-0732-45b9-ac88-fbce332984b0;d=pg347-versal-cpm-dma-v2-1-register-map.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=201

Chapter 13

Design Flow Steps
This section describes customizing and generating the functional mode, constraining the
functional mode, and the simulation, synthesis, and implementation steps that are specific to this
IP functional mode. More detailed information about the standard Vivado® design flows and the
IP integrator can be found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

XDMA AXI MM Interface to NoC and DDR Lab
This lab describes the process of generating a Versal™ ACAP XDMA design with AXI4 Memory
Mapped interface connecting to DDR memory. This lab explains a step by step procedure to
configure a Control, Interfaces and Processing System (CIPS) XDMA design and network on chip
(NoC) IP. The following figure shows the AXI4 Memory Mapped (AXI-MM) interface to DDR
using the NoC IP. At the end of this lab, you can synthesize and implement the design, and
generate a Programmable Device Image (PDI) file. The PDI file is used to program the Versal
ACAP and run data traffic on a system. For host to chip (H2C) transfers, data is read from Host,
and sent to DDR memory. For chip to host (C2H) transfers, data is read from DDR memory and
written to Host. Transfer can be initiated on all 4 channels.

This lab targets a xcvc1902-vsvd1760-1LP-e-S-es1 part on a VCK5000 board. This lab connects
to DDR found outside the ACAP. A constraint file is provided for use with this lab. The
constraints file lists all DDR pins and their placement. You can modify the constraint file based on
your requirement and DDR part selection.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 202Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=202

Figure 54: AXI-MM Default Example Design

Host

CPM

PCIe XDMA

CQ

CC

RQ

RC

NOC DDR
AXI-MM

X22760-111320

Tutorial Design File
Before running the lab, download the top_impl.xdc constraints file available in the reference
design file. To do so:

1. Download the reference design file from the Xilinx website.

2. Extract the ZIP file contents into any write-accessible location.

3. Locate the top_impl.xdc constraints file.

The provided top_impl.xdc constraints file contains the needed DDR pins and their
placement for this tutorial lab. The constraints file can be modified as needed for later use.

Start the Vivado Design Suite

1. Open the Vivado® Design Suite.

2. Click Create Project from the Quick Start Menu.

3. Step through the popup menus to access the Default Part page.

4. In the Default Part page, search for and select: xcvc1902-vsvd1760-1LP-e-S-es1.

5. Continue to the Finish stage to create the new project and open Vivado

6. In the Vivado Flow Navigator, click IP Integrator → Create Block Design. A popup dialog
displays to create the block design.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 203Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=7239a24c-3293-4f6e-811e-d27f1d767985;d=pg347-versal-cpm-dma-v2-1-labs.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=203

7. Click OK. An empty block design diagram canvas opens.

Instantiate the CIPS IP

1. Right-click on the block design canvas, and from the context menu select Add IP.

2. The IP catalog pops up. In the Search field type CIPS to filter to the list of IP.

3. From the filtered list, double-click the Control, Interface, and Processing System IP core to
instantiate the IP on the block design canvas.

4. This adds the Versal CIPS IP to the canvas. Double-click the Versal CIPS IP.

5. The configuration dialog box for the Control, Interfaces and Processing System IP core
displays. In the Configuration Options pane, expand CPM, and click CPM Configuration.

6. Set the PCIe0 Modes to DMA, and set the lane width to X16.

Available lane widths are X4, X8 and X16. X1 and X2 are not supported.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=204

7. In the Configuration Options pane, expand PS-PMC, and click IO Configuration.

8. The IO Configuration page displays with a list of options to configure the CPM-PCIe
functional mode. In the Peripheral column, select the PCIe Reset checkbox.

Notice that only A0 End Point is selectable in the I/O column.

Notice also that the multi-use I/O (MIO) pin selected in PCIe reset is automatically connected
to the PCIe Reset I/O, in this case MIO 38.

9. Next to A0 End Point, select PS MIO 38, which is the MIO pin that matches the MIO pin is
connected in your board.

Available MIO pin selections are PS MIO 18, PMC MIO 24, and PMC MIO 38.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=205

CPM Configuration

1. In the Configuration Options pane, expand CPM, and click PCIE0 Configuration to customize
the PCIe Port 0.

2. In the Basic tab, set the following options:

• CPM Modes: Advanced

• PCIE0 Functional Mode: XDMA

• Maximum Link Speed: 8.0 GT/s (Gen3)

• DMA Interface option: AXI Memory Mapped

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=206

3. In the Capabilities tab, set the following option:

• MSI-X- Options: MSI-X Internal

This option enables the CPM XDMA in MSI-X internal mode.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=207

4. In the PCIe: BARs tab, set the following options:

First row (for BAR0):

• Select the Bar checkbox.

• Set type to DMA.

• Set size to 128 Kilobytes.

Second row (for BAR1):

• Select the Bar checkbox.

• Set type to AXI Bridge Master.

• Set size to 4 Kilobytes.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=208

5. In the PCIe: DMA tab, set the following options:

• Number of DMA Read Channel (H2C): 4 (for 4 channels).

• Number of DMA Write Channel (C2H): 4 (for 4 channels).

6. In all other tabs, keep the default settings.

7. Click OK to generate the CIPS XDMA IP.

The generated IP core displays in the Diagram tab.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=209

NoC Configuration
Next you will add and configure a Network on Chip (NoC) IP core for the DDR connection.

1. Right-click on the block design canvas and from the context menu select Add IP.

2. The IP catalog pops up. In the Search field type AXI NoC to filter a list of IP.

3. From the filtered list, double-click the AXI NoC IP core to instantiate the IP on the block
design canvas.

Customize the IP as follows:

4. In the General tab, set the following options:

• Number of AXI Slave Interfaces: 2.

• Number of AXI Master Interfaces: 0.

• Number of AXI Clocks: 2.

The number of AXI clocks is set to two because there are two clocks needed for the AXI
Slave input, and none needed for AXI Master output.

• Memory Controller: Single Memory Controller.

• Number of Memory Controller Port: 4.

• All others options use the default settings.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=210

5. In the Inputs tab, set the following options.

First row (for S00_AXI):

• Connected To: PS PCIe.

• Clock: aclk0 (input clock).

• All other options use default settings.

Second row (for S01_AXI):

• Connected To: PS PCIe.

• Clock: aclk1 (input clock).

• All other options use default settings.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=211

6. In the Connectivity tab, set the NoC connectivity as follows:

• For S00_AXI, select the MC Port 0 checkbox.

• For S01_AXI, select the MC Port 0 checkbox.

• All others options use the default settings.

7. In the DDR Basic tab, set the following options:

• Input System clock period (ps): 5000 (200.000 MHz).

• Select the Enable Internal Responder checkbox.

• All others options use the default settings.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=212

Note: This is a sample configuration. Your DDR configuration and frequencies should be based on your
design requirements.

8. In the DDR Memory tab, set the following options:

• Memory Device Type: Components.

• Memory Speed Grade: DDR4-3200AA(22-22-22).

• Base Component Width: x16.

• All others options use the default settings.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=213

9. Click OK to generate a NoC IP with DDR.

Generate the Clock For the NoC IP
Next, generate a clock source for the NoC module. To do this, you will configure and generate
the Simulation Clock and Reset Generator IP core.

1. Click Add IP, and search for Simulation Clock and Reset Generator.

2. From the filtered list, double-click the Simulation Clock and Reset Generator IP core to
instantiate the IP on the block design canvas.

Configure the core as follows:

3. For Number of SYS clocks, select 1.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=214

4. For Sys Clock 0 Frequency (MHz), enter 200.

5. For Number of AXI Clocks, select 0.

6. For Number of Resets Ports, select 0.

7. Click OK to generate IP.

IP Connections
Next, add signal connections between the IP in the Vivado IP integrator.

1. Make the connections between the IP cores as shown in following figure.

2. Set GT_REFCLK_D, GT_PCIEA0_RX, GT_PCIEA0_TX, SYS_CLK0_IN and CH0_DDR4_0 as
primary ports. To do so:

a. Select pins GT_REFCLK_D, GT_PCIEA0_RXand GT_PCIEA0_TX of versal_cips_0,
SYS_CLK0_IN of clk_gen_sim_0, and CH0_DDR4_0 of axi_noc_0 by pressing Ctrl+click.

b. Click the Make External (Ctrl + T) icon in the toolbar at the top of the canvas.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=215

Address Settings
Next, set the necessary address settings for the NoC IP.

1. Open the Address Editor tab as shown in the following figure. Expand the tree by clicking the
down-arrow on versal_cips_0. Expand DATA_PCIE0, and expand DATA_PCIE1.

2. For S00_AXI, right-click in the Master Base Address cell, and select Assign from the context
menu.

3. And similarly for S01_AXI, right-click in the Master Base Address cell, and select Assign from
the context menu.

Note that the address 0x00000 is assigned to the DDR.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=216

Validate the Block Design
1. To validate the design, open the Diagram tab, and click the Validate Design icon , or right-

click anywhere in the canvas and, from the context menu, select Validate Design.

After validation, confirmation of the successful validation displays in a pop up window.

Create a Design Wrapper
After validation, create a design wrapper. A design wrapper file enables you to add any needed
logic. For this lab, additional logic is not needed.

1. In the Vivado IDE Sources window, right-click on design_1 (design_1.bd).

2. From the context menu, select Create HDL Wrapper to generate a wrapper file.

A design_1_wrapper file is added to the Sources window as shown in the following figure.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=217

Synthesize and Implement the Design
After the wrapper file is created, you will add the top_impl.xdc constraints file, which is
provided with this guide, to your design in Vivado. The constraints file constrains DDR pin
placement. Then, you can run synthesis and implementation, which generates a PDI
(Programmable Device Image) file.

Note: To locate the top_impl.xdc constraints file, you need to download the pg347-ea2-labs.zip
file and extract its contents. For details, see Tutorial Design File.

1. In the Flow Navigator window, click Add Sources, click Add or create Constraints, and add
the top_impl.xdc file.

2. In the Flow Navigator, click Synthesis and Implementation to implement the project design,
and generate a PDI file.

Note: The Tandem critical warning HD.TANDEM can be ignored this release.

Section IV: XDMA Subsystem
Chapter 13: Design Flow Steps

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=218

Chapter 14

Application Software Development
This section provides details about the Linux device driver and the Windows driver lounge that is
provided with the core.

Device Drivers
Figure 55: Device Drivers

X.86 Linux Host

User Space
Test App

Kernel Space
DMA Driver

X.86 Windows Host

User Space
Test App

Kernel Space
DMA Driver

Xilinx Device
(DMA Example Design)

PCIe

Xilinx Device
(DMA Example Design)

PCIe

Linux Kernel Driver
 Usage model

Windows Kernel Driver
 Usage model

X24822-111220

The above figure shows the usage model of Linux and Windows XDMA software drivers. The
XDMA example design is implemented on a Xilinx® ACAP, which is connected to an X86 host
through PCI Express.

• In the first use mode, the XDMA driver in kernel space runs on Linux, whereas the test
application runs in user space.

• In the second use mode, the XDMA driver runs in kernel space on Windows, whereas the test
application runs in the user space.

Section IV: XDMA Subsystem
Chapter 14: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=219

Linux Device Driver
The Linux device driver has the following character device interfaces:

• User character device for access to user components.

• Control character device for controlling XDMA Subsystem components.

• Events character device for waiting for interrupt events.

• SGDMA character devices for high performance transfers.

The user accessible devices are as follows:

• XDMA0_control: Used to access XDMA Subsystem registers.

• XDMA0_user: Used to access AXI-Lite master interface.

• XDMA0_bypass: Used to access DMA Bypass interface.

• XDMA0_events_*: Used to recognize user interrupts.

Using the Driver
The XDMA drivers can be downloaded from the Xilinx DMA IP Drivers page.

Interrupt Processing
Legacy Interrupts
There are four types of legacy interrupts: A, B, C and D. You can select any interrupts in the PCIe
Misc tab under Legacy Interrupt Settings. You must program the corresponding values for both
the IRQ Block Channel Vector and the IRQ Block User Vector. Values for each legacy interrupts
are A = 0, B = 1, C = 2 and D = 3. The host recognizes interrupts only based on these values.

Section IV: XDMA Subsystem
Chapter 14: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 220Send Feedback

https://github.com/Xilinx/dma_ip_drivers
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=220

MSI Interrupts
For MSI interrupts, you can select from 1 to 32 vectors in the PCIe Misc tab under MSI
Capabilities, which consists of a maximum of 16 usable DMA interrupt vectors and a maximum of
16 usable user interrupt vectors. The Linux operating system (OS) supports only 1 vector. Other
operating systems might support more vectors and you can program different vectors values in
the IRQ Block Channel Vector and in the IRQ Block User Vector to represent different interrupt
sources. The Xilinx® Linux driver supports only 1 MSI vector.

MSI-X Interrupts
The DMA supports up to 32 different interrupt source for MSI-X, which consists of a maximum
of 16 usable DMA interrupt vectors and a maximum of 16 usable user interrupt vectors. The
DMA has 32 MSI-X tables, one for each source. For MSI-X channel interrupt processing the
driver should use the Engine’s Interrupt Enable Mask for H2C and C2H to disable and enable
interrupts.

User Interrupts
The user logic must hold usr_irq_req active-High even after receiving usr_irq_ack (acks)
to keep the interrupt pending register asserted. This enables the Interrupt Service Routine (ISR)
within the driver to determine the source of the interrupt. Once the driver receives user
interrupts, the driver or software can reset the user interrupts source to which hardware should
respond by deasserting usr_irq_req.

Example H2C Flow
In the example H2C flow, loaddriver.sh loads devices for all available channels. The
dma_to_device user program transfers data from host to Card.

The example H2C flow sequence is as follows:

1. Open the H2C device and initialize the DMA.

2. The user program reads the data file, allocates a buffer pointer, and passes the pointer to
write function with the specific device (H2C) and data size.

3. The driver creates a descriptor based on input data/size and initializes the DMA with
descriptor start address, and if there are any adjacent descriptor.

4. The driver writes a control register to start the DMA transfer.

5. The DMA reads descriptor from the host and starts processing each descriptor.

Section IV: XDMA Subsystem
Chapter 14: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=221

6. The DMA fetches data from the host and sends the data to the user side. After all data is
transferred based on the settings, the DMA generates an interrupt to the host.

7. The ISR driver processes the interrupt to find out which engine is sending the interrupt and
checks the status to see if there are any errors. It also checks how many descriptors are
processed.

8. After the status is good, the drive returns transfer byte length to user side so it can check for
the same.

Example C2H Flow
In the example C2H flow, loaddriver.sh loads the devices for all available channels. The
dma_from_device user program transfers data from Card to host.

The example C2H flow sequence is as follow:

1. Open device C2H and initialize the DMA.

2. The user program allocates buffer pointer (based on size), passes pointer to read function
with specific device (C2H) and data size.

3. The driver creates descriptor based on size and initializes the DMA with descriptor start
address. Also if there are any adjacent descriptor.

4. The driver writes control register to start the DMA transfer.

5. The DMA reads descriptor from host and starts processing each descriptor.

6. The DMA fetches data from Card and sends data to host. After all data is transferred based
on the settings, the DMA generates an interrupt to host.

7. The ISR driver processes the interrupt to find out which engine is sending the interrupt and
checks the status to see if there are any errors and also checks how many descriptors are
processed.

8. After the status is good, the drive returns transfer byte length to user side so it can check for
the same.

Section IV: XDMA Subsystem
Chapter 14: Application Software Development

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=222

Chapter 15

Debugging
This appendix includes details about resources available on the Xilinx® Support website and
debugging tools.

Documentation
This product guide is the main document associated with the functional mode. This guide, along
with documentation related to all products that aid in the design process, can be found on the
Xilinx Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the functional mode is listed below.

Xilinx Solution Center for PCI Express

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this functional mode can be located by using the Search Support box on the
main Xilinx support web page. To maximize your search results, use keywords such as:

Section IV: XDMA Subsystem
Chapter 15: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 223Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com/support.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=223

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core/Subsystem
AR 75396.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the example
design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

Section IV: XDMA Subsystem
Chapter 15: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 224Send Feedback

https://www.xilinx.com/support/answers/75396.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=224

• If your outputs go to 0, check your licensing.

Registers
A complete list of registers and attributes for the XDMA Subsystem is available in the Versal
ACAP Register Reference (AM012). Reviewing the registers and attributes might be helpful for
advanced debugging.

Note: The attributes are set during IP customization in the Vivado IP catalog. After core customization,
attributes are read-only.

Section IV: XDMA Subsystem
Chapter 15: Debugging

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 225Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=225

Chapter 16

Upgrading
This appendix is not applicable for the first release of the functional mode.

Section IV: XDMA Subsystem
Chapter 16: Upgrading

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=226

Appendix A

GT Selection and Pin Planning
This appendix provides guidance on gigabit transceiver (GT) selection for Versal™ devices and
some key recommendations that should be considered when selecting the GT locations. The GT
locations for Versal devices can be customized through the IP customization wizard. This
appendix provides guidance for CPM, PL PCIe and PHY IP based solutions. In this guide, the
CPM PL PCIe related guidance is of primary importance, while the other related guidance might
be relevant and is provided for informational purposes.

A GT Quad is comprised of four GT lanes. When selecting GT Quads for the PL PCIe-based
solution CPM PCIE controller solution, Xilinx® recommends that you use the GT Quad most
adjacent to the integrated block. While this is not required, it will improve place, route, and
timing for the design.

• Link widths of x1, x2, and x4 require one bonded GT Quad and should not split lanes between
two GT Quads.

• A link width of x8 requires two adjacent GT Quads that are bonded and are in the same SLR.

• A link width of x16 requires four adjacent GT Quads that are bonded and are in the same SLR.

• PL PCIe blocks should use GTs adjacent to the PCIe block where possible.

• CPM has a fixed connectivity to GTs based on the CPM configuration.

For GTs on the left side of the device, PCIe lane 0 is placed in the bottom-most GT of the
bottom-most GT Quad. Subsequent lanes use the next available GTs moving vertically up the
device as the lane number increments. This means that the highest PCIe lane number uses the
top-most GT in the top-most GT Quad that is used for PCIe.

For GTs on the right side of the device, PCIe lane 0 is placed in the top-most GT of the top-most
GT Quad. Subsequent lanes use the next available GTs moving vertically down the device as the
lane number increments. This means that the highest PCIe lane number uses the bottom-most
GT in the bottom-most GT Quad that is used for PCIe.

The PCIe reference clock uses GTREFCLK0 in the PCIe lane 0 GT Quad for x1, x2, x4, and x8
configurations. For x16 configurations the PCIe reference clock should use GTREFCLK0 on a GT
Quad associated with lanes 8-11. This allows the clock to be forwarded to all 16 PCIe lanes.

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=227

The PCIe reset pins for CPM designs must connect to one of specified pins for each of the two
PCIe controllers. The PCIe reset pin for PL PCIe and PHY IP designs can be connected to any
compatible PL pin location, or the CPM PCIe reset pins when the corresponding CPM PCIe
controller is not in use. This is summarized in the table below.

Table 98: PCIe Controller Reset Pin Locations

Versal PCIe Controller Versal Reset Pin Location
CPM PCIe Controller 0 PS MIO 18

PMC MIO 24

PMC MIO 38

CPM PCIe Controller 1 PS MIO 19

PMC MIO 25

PMC MIO 39

PL PCIe Controllers Any compatible single-ended PL I/O pin.

Versal ACAP PHY IP Any compatible single-ended PL I/O pin.

CPM4 GT Selection
The CPM block within Versal devices has a fixed set of GTs that can be used for each of the two
PCIe controllers. These GTs are shared between the two PCIe controllers and High Speed Debug
Port (HSDP) as such x16 link widths are only supported when a single PCIe controller is in use
and HSDP is disabled. When two CPM PCIe controllers or one PCIe controller and HSDP are
enabled each link will be limited to a x8 link width. GT Quad allocation for CPM happens at GT
Quad granularity and must include all GT Quads from the most adjacent to the CPM to the top-
most GT Quad that is in use by the CPM. GT Quads that are used or between GT Quads that are
used by the CPM (for either PCIe or HSDP) cannot be shared with PL resources even if GTs
within the quad are not in use.

CPM in Single Controller Mode

When a single PCIe controller in the CPM is being used and HSDP is disabled, PCIe x1, x2, x4, x8,
and x16 link widths are supported. PCIe lane0 is places at the bottom-most GT of the bottom-
most GT Quad that is directly above the CPM. Subsequent lanes use the next available GTs
moving vertically up the device as the lane number increments. This means the highest PCIe lane
number uses the top-most GT in the top-most GT Quad that is used for PCIe. Because the GT
locations and lane ordering for CPM is fixed it cannot be modified through IP customization.

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=228

As stated previously GT Quad allocation happens at GT Quad granularity and cannot share
unused GT Quad resources with the PL. This means that CPM PCIe controller 0 configurations
that use x1 or x2 link widths will not use all the GTs within the Quad and that these GTs cannot
be used in the PL for additional GT connectivity. Unused GT Quads in this configuration can be
used by the PL to implement PL GT based solutions.

When CPM PCIe controller 0 and High Speed Debug Port (HSDP) is enabled, a PCIe link width of
x16 cannot be used and the CPM will use all three GT Quads that are directly above the CPM
regardless of PCIe link width. In this configuration, these GT Quads are allocated to CPM and
cannot be shared with PL resources. CPM PCIe lanes 0-7 will be unchanged in their GT selection
and lane ordering. HSDP will use the bottom-most GT that is the third GT Quad away from CPM.
This corresponds to the same location as PCIe lane 8 for a x16 link configuration. The fourth GT
Quad in this configuration is not use by CPM and can be used to implement PL GT based
solutions.

CPM in Dual Controller Mode

When the CPM is configured to use two PCIe controllers, High Speed Debug Port (HSDP) cannot
be used because it shares GTs with the two PCIe controllers. Each PCIe controller can support x1,
x2, x4 and x8 link widths in this configuration. This configuration will use at least the bottom
three GT Quads closest to the CPM. These GT Quads cannot be used by PL resources. If CPM
PCIe controller 1 is using a link width of x1, x2, or x4; then CPM uses three GT Quads. In this
case the fourth GT Quad can be used by PL resources to implement GT based solutions. If CPM
PCIe controller 1 is using a x8 link width, all four GT Quads will be used by the CPM and cannot
be used by PL resources.

CPM PCIe controller 0 lane0 is placed at the bottom-most GT of the bottom-most GT Quad that
is directly above the CPM. Subsequent lanes use the next available GTs moving vertically up the
device as the lane number increments. CPM PCIe controller 0 lane7 connects to the top-most GT
in the second GT Quad away from the CPM.

CPM PCIe controller 1 lane0 is places at the bottom-most GT of third GT Quad above the CPM.
Subsequent lanes use the next available GTs moving vertically up the device as the lane number
increments. CPM PCIe controller 1 lane7 connects to the top-most GT in the fourth GT Quad
away from the CPM.

High Speed Debug Port (HSDP) Only Modes

When the CPM is configured to use the High Speed Debug Port (HSDP) without enabling either
PCIe controller, the bottom-most GT in the bottom-most GT Quad closest to CPM should be
used. This will allow the CPM to use only one GT Quad and allow the next three GT Quads to be
used by PL resources.

HSDP can also be enabled for the bottom-most GT in the third GT Quad up from CPM. In this
scenario CPM will use three GT Quads and only use one GT. The remaining unused GTs cannot
be used or shared by PL resources. As result typically HSDP will not be used in this configuration.

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=229

CPM4 Additional Considerations
To facilitate migration from UltraScale™ or UltraScale+™ designs, boards may be designed to use
either CPM4 or PL PCIe integrated blocks to implement PCIe solutions. When designing a board
to use either CPM4 or the PL PCIe hardblock, the CPM4 pin selection and planning guidelines
should be followed because they are more restrictive. By doing this a board can be designed that
will work for either a CPM4 or PL PCIe implementation. To route the PCIe reset from the CPM4
to the PL for use with a PL PCIe implementation the following parameter must be set in Vivado
prior to customizing the CIPS IP.

set_param pcw.enplpciereset 1

When this parameter is enabled the PCIe reset for each disabled CPM4 PCIe controller will be
routed to the PL. The same CPM4 pin selection limitations will apply and the additional PCIe
reset output pins will be exposed at the boundary of the CIPS IP. If the CPM4 PCIe controller is
enabled, the PCIe reset will be used internal to the CPM4 and will not be routed to the PL for
connectivity to PL PCIe controllers.

GT Locations
Assigning GT Locations
Unlike in UltraScale+ and previous devices where direct assignment of GTs are not possible in the
user constraints, in Versal the GT locations assignment can be done in the user constraints, while
changing GT locations in GT customization IP is not available. Below is an example of assigning
GT locations in a user constraint file.

Note: The gt_quad instances should be assigned contiguously.

set_property LOC GTY_QUAD_X0Y6 [get_cells $gt_quads -filter NAME=~*/
gt_quad_3/*]
set_property LOC GTY_QUAD_X0Y5 [get_cells $gt_quads -filter NAME=~*/
gt_quad_2/*]
set_property LOC GTY_QUAD_X0Y4 [get_cells $gt_quads -filter NAME=~*/
gt_quad_1/*]
set_property LOC GTY_QUAD_X0Y3 [get_cells $gt_quads -filter NAME=~*/
gt_quad_0/*]

GT Quad Locations
The following table identifies the PCIe lane0 GT Quad(s) that can be used for each PCIe
controller location. The Quad shown in bold is the most adjacent or suggested GT Quad for each
PCIe lane0 location.

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=230

Table 99: GT Locations

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVC1902 VIVA1596

CPM
Controller 0

GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y5
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2

X1Y0 GTY_QUAD_X1Y5
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2

XCVC1902 VSVA2197

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=231

Table 99: GT Locations (cont'd)

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVC1902 VSVD1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

XCVM1802 VFVC1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=232

Table 99: GT Locations (cont'd)

Device Package PCIe
Blocks GT QUAD (X16) GT QUAD (X8) GT QUAD (X4

and Below)

XCVM1802 VSVA2197

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 GTY_QUAD_X1Y6
GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4

GTY_QUAD_X1Y6
GTY_QUAD_X1Y5
GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 GTY_QUAD_X1Y3
GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1

GTY_QUAD_X1Y3
GTY_QUAD_X1Y2
GTY_QUAD_X1Y1
GTY_QUAD_X1Y0

XCVM1802 VSVD1760

CPM
Controller 0 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3 GTY_QUAD_X0Y3

CPM
Controller 1

N/A GTY_QUAD_X0Y5 GTY_QUAD_X0Y5

X0Y2 GTY_QUAD_X0Y3 GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X0Y1 GTY_QUAD_X0Y3
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

GTY_QUAD_X0Y6
GTY_QUAD_X0Y5
GTY_QUAD_X0Y4
GTY_QUAD_X0Y3

X1Y2 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

X1Y0 N/A GTY_QUAD_X1Y4 GTY_QUAD_X1Y4
GTY_QUAD_X1Y3

Appendix A: GT Selection and Pin Planning

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=233

Appendix B

Migrating
For information about migrating UltraScale+ device QDMA, AXI Bridge, and XDMA IP designs to
the Versal ACAP CPM DMA and Bridge Mode for PCI Express, see AR 75396.

Appendix B: Migrating

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 234Send Feedback

https://www.xilinx.com/support/answers/75396.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=234

Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix C: Additional Resources and Legal Notices

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 235Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=235

References
These documents provide supplemental material useful with this guide:

1. Control, Interface and Processing System LogiCORE IP Product Guide (PG352)

2. Versal ACAP DMA and Bridge Subsystem for PCI Express Product Guide (PG344)

3. Versal ACAP CPM Mode for PCI Express Product Guide (PG346)

4. Versal ACAP Integrated Block for PCI Express LogiCORE IP Product Guide (PG343)

5. Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

6. SmartConnect LogiCORE IP Product Guide (PG247)

7. QDMA Subsystem for PCI Express Product Guide (PG302)

8. DMA/Bridge Subsystem for PCI Express Product Guide (PG195)

9. AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)

10. Versal ACAP Register Reference (AM012)

11. PCI-SIG Specifications (https://www.pcisig.com/specifications)

12. AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

13. Vivado Design Suite User Guide: Designing with IP (UG896)

14. Vivado Design Suite User Guide: Logic Simulation (UG900)

15. Vivado Design Suite User Guide: Programming and Debugging (UG908)

16. Vivado Design Suite User Guide: Getting Started (UG910)

17. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
05/04/2021 Version 2.1

Limitations Added known issues for the release.

QDMA Functional Mode and XDMA Functional Mode Added clarifying details regarding AXI4-Stream interface
data rate support.

Appendix C: Additional Resources and Legal Notices

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 236Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg352-cips.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_dma_versal;v=latest;d=pg344-pcie-dma-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=versal_cips;v=latest;d=pg346-cpm-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_versal;v=latest;d=pg343-pcie-versal.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=smartconnect;v=latest;d=pg247-smartconnect.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=qdma;v=latest;d=pg302-qdma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.pcisig.com/specifications
https://developer.arm.com/documentation/ihi0051/a/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=236

Section Revision Summary
12/04/2020 Version 2.1

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix C: Additional Resources and Legal Notices

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 237Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=237

Copyright

© Copyright 2020-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell,
Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other
trademarks are the property of their respective owners.

Appendix C: Additional Resources and Legal Notices

PG347 (v2.1) May 4, 2021 www.xilinx.com
CPM DMA and Bridge Mode for PCIe 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG347&Title=Versal%20ACAP%20CPM%20DMA%20and%20Bridge%20Mode%20for%20PCI%20Express%20v2.1&releaseVersion=2.1&docPage=238

	Versal ACAP CPM DMA and Bridge Mode for PCI Express v2.1
	Table of Contents
	Sec. I: Overview
	Navigating Content by Design Process
	Ch. 1: Introduction
	Introduction to the CPM4
	Use Modes
	QDMA Functional Mode
	AXI Bridge Functional Mode
	XDMA Functional Mode

	CPM4 Common Features
	QDMA Functional Mode
	AXI Bridge Functional Mode
	XDMA Functional Mode

	Standards

	Limitations
	Licensing and Ordering

	Ch. 2: Designing with the Core
	Clocking
	Resets

	Sec. II: QDMA Subsystem
	Overview
	QDMA Architecture
	DMA Engines
	Descriptor Engine
	H2C MM Engine
	C2H MM Engine
	H2C Stream Engine
	C2H Stream Engine
	Completion Engine

	Bridge Interfaces
	AXI Memory Mapped Bridge Master Interface
	PCIe to AXI BARs
	AXI Memory Mapped Bridge Slave Interface
	AXI to PCIe BARs

	Interrupt Module
	PCIe Block Interface
	PCIe CQ/CC
	PCIe RQ/RC
	PCIe Configuration

	General Design of Queues
	H2C and C2H Queues
	Completion Queue

	SR-IOV Support

	Limitations
	Applications

	Ch. 3: Product Specification
	QDMA Operations
	Descriptor Engine
	Descriptor Context
	Software Descriptor Context Structure (0x0 C2H and 0x1 H2C)
	Hardware Descriptor Context Structure (0x2 C2H and 0x3 H2C)

	Credit Descriptor Context Structure
	Descriptor Fetch
	Internal Mode
	Internal Mode Writeback and Interrupts (AXI MM and H2C ST)

	Descriptor Bypass Mode
	Descriptor Bypass Mode Writeback/Interrupts
	Marker Response

	Traffic Manager Output Interface
	Descriptor Credit Input Interface
	Errors

	Memory Mapped DMA
	Operation
	Errors

	AXI Memory Mapped Descriptor for H2C and C2H (32B)
	AXI Memory Mapped Writeback Status Structure for H2C and C2H

	Stream Mode DMA
	H2C Stream Engine
	Internal and Bypass Modes
	H2C Stream Descriptor (16B)
	Descriptor Metadata
	Zero Length Descriptor
	H2C Stream Status Descriptor Writeback
	H2C Stream Data Aligner
	Handling Descriptors With Errors
	Handling Errors in Data From PCIe

	C2H Stream Engine
	C2H Stream Descriptor (8B)
	C2H Prefetch Engine
	C2H Stream Modes
	C2H Stream Packet Type
	Handling Descriptors With Errors

	C2H Completion
	C2H Completion Context Structure
	C2H Completion Status Structure
	C2H Completion Entry Structure
	C2H Completion Input Packet
	C2H Interrupt/Completion Status Moderation
	C2H Timer
	Handling Exception Events

	Bridge
	Interrupts
	Asynchronous and Queue Based Interrupts
	Interrupt Engine
	Direct Interrupt
	Interrupt Aggregation Ring

	Error Interrupt
	User Interrupt

	Queue Management
	Function Map Table
	Context Programming
	Queue Setup
	Queue Teardown

	Virtualization
	Mailbox
	Function Level Reset

	Port ID
	System Management
	Resets
	VDM
	Config Extend
	Expansion ROM

	Errors
	Linkdown Errors
	Data Path Errors
	DMA Errors
	Error Aggregator
	C2H Streaming Fatal Error Handling

	Port Descriptions
	QDMA Global Signals
	AXI Slave Interface
	AXI4 Memory Mapped Interface
	AXI4-Lite Master Interface

	AXI4-Stream H2C Interface
	AXI4-Stream C2H Interface
	AXI4-Stream C2H Completion Interface
	AXI4-Stream Status Interface
	AXI4-Stream C2H Write Cmp Interface
	VDM Interface
	FLR Interface
	QDMA Descriptor Bypass Input Interface
	QDMA Descriptor Bypass Output Interface
	QDMA Descriptor Credit Input Interface
	QDMA Traffic Manager Credit Output Interface
	User Interrupts

	Register Space
	QDMA PF Address Register Space
	QDMA_CSR (0x0000)
	QDMA_TRQ_MSIX (0x2000)
	QDMA_PF_MAILBOX (0x2400)
	Function Status Register (0x2400)
	Function Command Register (0x2404)
	Function Interrupt Vector Register (0x2408)
	Target Function Register (0x240C)
	Function Interrupt Vector Register (0x2410)
	RTL Version Register (0x2414)
	PF Acknowledgment Registers (0x2420-0x243C)
	FLR Control/Status Register (0x2500)
	Incoming Message Memory (0x2C00-0x2C7C)
	Outgoing Message Memory (0x3000-0x307C)

	QDMA_TRQ_SEL_QUEUE_PF (0x6400)
	QDMA_DMAP_SEL_INT_CIDX[2048] (0x6400)
	QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x6404)
	QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x6408)
	QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x640C)

	QDMA VF Address Register Space
	QDMA_TRQ_SEL_QUEUE_VF (0x3000)
	QDMA_TRQ_MSIX_VF (0x400)
	QDMA_VF_MAILBOX (0x1000)
	Function Status Register (0x1000)
	Function Command Register (0x1004)
	Function Interrupt Vector Register (0x1008)
	Target Function Register (0x100C)
	Function Interrupt Control Register (0x1010)
	RTL Version Register (0x1014)
	Incoming Message Memory (0x1800-0x187C)
	Outgoing Message Memory (0x1C00-0x1C7C)

	AXI Slave Register Space
	Bridge Register Space
	DMA Register Space

	Ch. 4: Design Flow Steps
	QDMA AXI MM Interface to NoC and DDR Lab
	Tutorial Design File
	Start the Vivado Design Suite
	Instantiate the CIPS IP
	CPM Configuration
	NoC Configuration
	Generate the Clock for the NoC IP
	IP Configuration
	Address Settings
	Validate the Block Design
	Create a Design Wrapper
	Synthesize and Implement the Design

	Ch. 5: Application Software Development
	Device Drivers
	Linux DMA Software Architecture (PF/VF)
	Using the Drivers
	Reference Software Driver Flow
	AXI4 Memory Map Flow Chart
	AXI4 Memory Mapped C2H Flow
	AXI4 Memory Mapped H2C Flow
	AXI4-Stream Flow Chart
	AXI4-Stream C2H Flow
	AXI4-Stream H2C Flow

	Ch. 6: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Core

	Technical Support

	Hardware Debug
	General Checks
	Soft Reset
	Registers

	Ch. 7: Upgrading

	Sec. III: AXI Bridge Subsystem
	Overview
	Limitations

	Ch. 8: Product Specification
	AXI Bridge Operations
	AXI Transactions for PCIe
	Transaction Ordering for PCIe
	BAR and Address Translation
	BAR Addressing
	Address Translation
	Example 1 (32-bit PCIe Address Mapping)
	Example 2 (64-bit PCIe Address Mapping)
	Example 3
	Example 4
	Addressing Checks

	Malformed TLP
	Abnormal Conditions
	Slave Bridge Abnormal Conditions
	Illegal Burst Type
	Completion TLP Errors
	Unexpected Completion
	Unsupported Request
	Completion Timeout
	Poison Bit Received on Completion Packet
	Completer Abort

	Master Bridge Abnormal Conditions
	AXI DECERR Response
	AXI SLVERR Response
	Max Payload Size for PCIe, Max Read Request Size or 4K Page Violated
	Completion Packets
	Poison Bit
	Zero Length Requests

	Link Down Behavior

	Endpoint
	Interrupts
	Legacy Interrupts
	MSI and Internal MSI-X Interrupts

	Root Port
	Power Limit Message TLP
	Root Port Configuration Read
	Root Port BAR
	Configuration Transaction Timeout
	Abnormal Configuration Transaction Termination Responses
	MSI Interrupt
	MSI-X Interrupt

	Interrupt Decode Mode
	Legacy INTx Interrupt
	MSI Interrupt
	MSI-X Interrupt

	Port Description
	Global Signals
	AXI Slave Interface
	AXI Master Interface
	AXI4-Lite Master Interface

	AXI Bridge for PCIe Interrupts

	Register Space
	Slave Bridge Registers Limitations

	Ch. 9: Design Flow Steps
	AXI Bridge Lab

	Ch. 10: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Core

	Technical Support

	Hardware Debug
	General Checks
	Registers

	Ch. 11: Upgrading

	Sec. IV: XDMA Subsystem
	Overview
	Limitations
	Architecture
	Target Bridge
	H2C Channel
	C2H Channel
	Host-to-Card Bypass Master
	IRQ Module
	Legacy Interrupts
	MSI and MSI-X Interrupts

	Config Block

	Ch. 12: Product Specification
	DMA Operations
	Descriptors
	Descriptor Bypass
	Poll Mode

	DMA H2C Stream
	DMA C2H Stream
	Address Alignment
	Length Granularity
	Parity

	Port Description
	Global Signals
	AXI Slave Interface
	AXI4 Memory Mapped Interface
	AXI4-Lite Master Interface

	H2C Channel 0-3 AXI4-Stream Interface Signals
	C2H Channel 0-3 AXI4-Stream Interface Signals
	Interrupt Interface
	Channel 0-3 DMA Status Interface
	Descriptor Bypass Interface

	Register Space
	XDMA Address Register Space
	PCIe to AXI Bridge Master Address Map
	PCIe to DMA Address Map
	PCIe to DMA Address Format

	AXI Slave Register Space
	Bridge Register Space
	DMA Register Space

	Ch. 13: Design Flow Steps
	XDMA AXI MM Interface to NoC and DDR Lab
	Tutorial Design File
	Start the Vivado Design Suite
	Instantiate the CIPS IP
	CPM Configuration
	NoC Configuration
	Generate the Clock For the NoC IP
	IP Connections
	Address Settings
	Validate the Block Design
	Create a Design Wrapper
	Synthesize and Implement the Design

	Ch. 14: Application Software Development
	Device Drivers
	Linux Device Driver
	Using the Driver
	Interrupt Processing
	Legacy Interrupts
	MSI Interrupts
	MSI-X Interrupts
	User Interrupts

	Example H2C Flow
	Example C2H Flow

	Ch. 15: Debugging
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Core/Subsystem

	Technical Support
	Hardware Debug
	General Checks
	Registers

	Ch. 16: Upgrading

	Appx. A: GT Selection and Pin Planning
	CPM4 GT Selection
	CPM4 Additional Considerations
	GT Locations
	Assigning GT Locations
	GT Quad Locations

	Appx. B: Migrating
	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

