
QDMA Subsystem for PCI
Express v3.0

Product Guide
Vivado Design Suite

PG302 (v3.0) November 22, 2019

https://www.xilinx.com


Table of Contents
Chapter 1: Introduction.............................................................................................. 4

Features........................................................................................................................................4
IP Facts..........................................................................................................................................6

Chapter 2: Overview......................................................................................................7
QDMA Architecture..................................................................................................................... 7
Applications................................................................................................................................24
Licensing and Ordering............................................................................................................ 25

Chapter 3: Product Specification......................................................................... 26
Standards................................................................................................................................... 26
Performance and Resource Utilization...................................................................................26
Minimum Device Requirements.............................................................................................. 28
QDMA Operations..................................................................................................................... 29
Port Descriptions.......................................................................................................................87
Register Space......................................................................................................................... 110

Chapter 4: Designing with the Subsystem................................................... 205
General Design Guidelines.....................................................................................................205
Clocking.................................................................................................................................... 206

Chapter 5: Design Flow Steps...............................................................................207
Customizing and Generating the Subsystem...................................................................... 207
Constraining the Subsystem..................................................................................................220
Simulation................................................................................................................................ 222
Synthesis and Implementation............................................................................................. 224

Chapter 6: Example Design................................................................................... 225
AXI Memory Mapped and AXI4-Stream With Completion Default Example Design...... 225
AXI Memory Mapped Example Design................................................................................. 227
AXI Memory Mapped with Completion Example Design................................................... 228
AXI Stream with Completion Example Design.....................................................................229

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=2


AXI Stream Loopback Example Design.................................................................................230
Example Design with Descriptor Bypass In/Out Loopback............................................... 231
Example Design Registers......................................................................................................232

Appendix A: Upgrading........................................................................................... 241
Changes from v2.0 to v3.0......................................................................................................241
Comparing With DMA/Bridge Subsystem for PCI Express ............................................... 241

Appendix B: Debugging...........................................................................................242
Finding Help on Xilinx.com.................................................................................................... 242
Debug Tools............................................................................................................................. 243
Hardware Debug..................................................................................................................... 244

Appendix C: Application Software Development......................................245
Device Drivers..........................................................................................................................245
Linux DMA Software Architecture (PF/VF)........................................................................... 246
Using the Driver...................................................................................................................... 247
Reference Software Driver Flow............................................................................................ 248

Appendix D: Additional Resources and Legal Notices........................... 254
Xilinx Resources.......................................................................................................................254
Documentation Navigator and Design Hubs...................................................................... 254
References................................................................................................................................254
Revision History.......................................................................................................................255
Please Read: Important Legal Notices................................................................................. 256

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=3


Chapter 1

Introduction
The Xilinx® QDMA Subsystem for PCI Express (PCIe®) implements a high performance DMA for
use with the PCI Express® 3.x Integrated Block with the concept of multiple queues that is
different from the DMA/Bridge Subsystem for PCI Express which uses multiple Xilinx Card to
Host (C2H) and Host to Card (H2C) channels.

Features
• The PCIe Integrated Block is supported in UltraScale+™ devices, including Virtex®

UltraScale+™ devices with high bandwidth memory (HBM).

• Supports 64, 128, 256, and 512-bit data path.

• Supports x1, x2, x4, x8, or x16 link widths.

• Supports Gen1, Gen2, and Gen3 link speeds. Gen4 for PCI4C block.

• Support for both the AXI4 Memory Mapped and AXI4-Stream interfaces per queue.

• 2048 queue sets

○ 2048 H2C descriptor rings.

○ 2048 C2H descriptor rings.

○ 2048 C2H Completion (CMPT) rings.

• Supports Polling Mode (Status Descriptor Write Back) and Interrupt Mode.

• Interrupts

○ 2048 MSI-X vectors.

○ Up to 8 MSI-X per function.

Note: It is possible to assign more vectors per function. For more information, see AR 72352.

○ Interrupt aggregation.

• C2H Stream interrupt moderation.

• C2H Stream Completion queue entry coalescence.

Chapter 1: Introduction

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  4Send Feedback

https://www.xilinx.com/support/answers/72352.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=4


• Descriptor and DMA customization through user logic

○ Allows custom descriptor format.

○ Traffic Management.

• Supports SR-IOV with up to 4 Physical Functions (PF) and 252 Virtual Functions (VF)

○ Thin hypervisor model.

○ QID virtualization.

○ Allows only privileged/Physical functions to program contexts and registers.

○ Function level reset (FLR) support.

○ Mailbox.

• Rich programmability on a per queue basis, such as AXI4 Memory Mapped versus AXI4-
Stream interfaces.

Chapter 1: Introduction

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=5


IP Facts
LogiCORE IP Facts Table

Subsystem Specifics

Supported Device Family1 UltraScale+™

Supported User Interfaces AXI4 Memory Map, AXI4-Stream, AXI4-Lite

Resources Resource Use web page.

Subsystem

Design Files Encrypted System Verilog

Example Design Verilog

Test Bench Verilog

Constraints File Xilinx® Constraints File (XDC)

Simulation Model Verilog

Supported S/W Driver Linux, DPDK, and Windows Drivers2

Tested Design Flows3

Design Entry Vivado Design Suite

Simulation For supported simulators, see the Xilinx Design Tools:
Release Notes Guide.

Synthesis Vivado Synthesis

Support

Release Notes and Known Issues Master Answer Record: 70927

All Vivado IP Change Logs Master Vivado IP Change Logs: 72775

Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP catalog.
2. For Linux and DPDK driver details, see Xilinx DMA IP Drivers. For Windows driver details, see the QDMA Windows

Driver Lounge.
3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1: Introduction

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  6Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=qdma.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/70927.htm
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://github.com/Xilinx/dma_ip_drivers
https://www.xilinx.com/member/qdma_windows_driver.html
https://www.xilinx.com/member/qdma_windows_driver.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=6


Chapter 2

Overview
The Queue Direct Memory Access (QDMA) subsystem is a PCI Express® (PCIe®) based DMA
engine that is optimized for both high bandwidth and high packet count data transfers. The
QDMA is composed of the UltraScale+™ Integrated Block for PCI Express IP, and an extensive
DMA and bridge infrastructure that enables the ultimate in performance and flexibility.

The QDMA Subsystem for PCIe offers a wide range of setup and use options, many selectable on
a per-queue basis, such as memory-mapped DMA or stream DMA, interrupt mode and polling.
The subsystem provides many options for customizing the descriptor and DMA through user
logic to provide complex traffic management capabilities.

The primary mechanism to transfer data using the QDMA is for the QDMA engine to operate on
instructions (descriptors) provided by the host operating system. Using the descriptors, the
QDMA can move data in both the Host to Card (H2C) direction, or the Card to Host (C2H)
direction. You can select on a per-queue basis whether DMA traffic goes to an AXI memory map
(MM) interface or to an AXI4-Stream interface. In addition, the QDMA has the option to
implement both an AXI MM Master port and an AXI MM Slave port, allowing PCIe traffic to
bypass the DMA engine completely. A complete list of all available interfaces can be found in 
Port Descriptions.

The main difference between QDMA and other DMA offerings is the concept of queues. The
idea of queues is derived from the “queue set” concepts of Remote Direct Memory Access
(RDMA) from high performance computing (HPC) interconnects. These queues can be
individually configured by interface type, and they function in many different modes. Based on
how the DMA descriptors are loaded for a single queue, each queue provides a very low
overhead option for setup and continuous update functionality. By assigning queues as resources
to multiple PCIe Physical Functions (PFs) and Virtual Functions (VFs), a single QDMA core and
PCI Express interface can be used across a wide variety of multifunction and virtualized
application spaces.

The QDMA Subsystem for PCIe can be used and exercised with a Xilinx® provided QDMA
reference driver, and then built out to meet a variety of application spaces.

QDMA Architecture
The following figure shows the block diagram of the QDMA Subsystem for PCIe.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=7


Figure 1: QDMA Architecture

UltraScale+ PCIe 
Intergrated Block 

(Configured as 
Endpoint)

RQ / RC 
Interface

CQ / CC 
Interface

Descriptor
Engine

H2C MM
Engine

H2C Stream
Engine

C2H MM
Engine

PFCH Engine 
& Cache

C2H Stream  

Target Bridge

Control
Registers

User Logic

IRQ Module

Dsc byp out

Dsc byp in

C2H/H2C 
Bypass Out

H2C AXI-ST M

H2C AXI-MM M

C2H AXI-MM M

C2H AXI-ST S

CMPT AXI-ST S

AXI-MM Slave S

TM DSC STS

DSC CRDT

CFG MGT

CFG EXT

CMPT Engine

AXI-MM Master M

AXI-Lite Master M

AXI-Lite Slave S

X20894-050819

DMA Engines

Descriptor Engine

The Host to Card (H2C) and Card to Host (C2H) descriptors are fetched by the Descriptor Engine
in one of two modes: Internal mode, and Descriptor bypass mode. The descriptor engine
maintains per queue contexts where it tracks software (SW) producer index pointer (PIDX),
consumer index pointer (CIDX), base address of the queue (BADDR), and queue configurations
for each queue. The descriptor engine uses a round robin algorithm for fetching the descriptors.
The descriptor engine has separate buffers for H2C and C2H, and ensures it never fetches more
descriptors than available space. The Descriptor Engine will have only one DMA read
outstanding per queue at a time and can do many descriptors that can fit in MRRS. The Engine is
responsible for reordering the out of order completions and ensures that descriptors for queue
are always in order.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=8


The descriptor bypass can be enabled on a per-queue basis and the fetched descriptors, after
buffering are sent, to the respective bypass output interface instead of directly to the H2C or
C2H engine. In internal mode, based on the context settings the descriptors are sent to per H2C
memory mapped (MM), C2H MM, H2C Stream, or C2H Stream engines.

The descriptor engine is also responsible for generating the status descriptor for the completion
of the DMA operations. With the exception of C2H Stream mode, all modes use this mechanism
to convey completion of each DMA operation so that software can reclaim descriptors and free
up any associated buffers. This is indicated by CIDX field of status descriptor.

RECOMMENDED: If a queue is associated with interrupt aggregation, Xilinx recommends that the status
descriptor be turned off, and instead the DMA status be received from the interrupt aggregation ring. For details
about the interrupt aggregation ring, see Interrupt Aggregation Ring.

To put a limit on the number of fetched descriptors (for example, to limit the amount of buffering
required to store the descriptor), it is possible to turn-on and throttle credit on a per-queue basis.
In this mode, the descriptor engine fetches the descriptors up to available credit, and the total
number of descriptors fetched per queue is limited to the credit provided. The user logic can
return the credit through the dsc_crdt interface. The credit is in the granularity of the size of
the descriptor.

To help the traffic manager prioritize the job, the available descriptor to be fetched (incremental
PIDX value) of the PIDX update is sent to the user logic on the tm_dsc_sts interface. Using this
interface it is possible to implement a design that can prioritize and optimize the descriptor
storage.

H2C MM Engine

The H2C MM Engine moves data from the host memory to card memory through the H2C AXI-
MM interface. The engine generates reads on PCIe, splitting descriptors into multiple read
requests based on the MRRS and the requirement that PCIe reads not to cross 4 KB boundaries.
Once completion data for a read request is received, an AXI write is generated on the H2C AXI-
MM interface. For source and destination addresses that are not aligned, the hardware will shift
the data and split writes on AXI-MM to prevent 4K boundary crossing. Each completed
descriptor is checked to determine whether a writeback and/or interrupt is required.

For Internal mode, the descriptor engine delivers memory mapped descriptors straight to H2C
MM engine. The user logic can also inject the descriptor into the H2C bypass interface to move
data from host to card memory. This gives the ability to do interesting things such as mixing
control and DMA commands in the same queue. Control information can be sent to a control
processor indicating the completion of DMA operation.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=9


C2H MM Engine

The C2H MM Engine moves data from card memory to host memory through the C2H AXI-MM
interface. The engine generates AXI reads on the C2H AXI-MM bus, splitting descriptors into
multiple requests based on 4 KB boundaries. Once completion data for the read request is
received on the AXI4 interface, a PCIe write is generated using the data from the AXI read as the
contents of the write. For source and destination addresses that are not aligned, the hardware
will shift the data and split writes on PCIe to obey Maximum Payload Size (MPS) and prevent 4
KB boundary crossings. Each completed descriptor is checked to determine whether a writeback
and/or interrupt is required.

For Internal mode, the descriptor engine delivers memory mapped descriptors straight to C2H
MM engine. As with H2C MM Engine, the user logic can also inject the descriptor into the C2H
bypass interface to move data from card to host memory.

For multi-function configuration support, the PCIe function number information will be provided
in the aruser bits of the AXI-MM interface bus to help virtualization of card memory by the
user logic. A parity bus, separate from the data and user bus, is also provided for end-to-end
parity support.

H2C Stream Engine

The H2C stream engine moves data from the host to the H2C Stream interface. For internal
mode, descriptors are delivered straight to the H2C stream engine; for a queue in bypass mode,
the descriptors can be reformatted and fed to the bypass input interface. The engine is
responsible for breaking up DMA reads to MRRS size, guaranteeing the space for completions,
and also makes sure completions are reordered to ensure H2C stream data is delivered to user
logic in-order.

The engine has sufficient buffering for up to 256 DMA reads and up to 32 KB of data. DMA
fetches the data and aligns to the first byte to transfer on the AXI4 interface side. This allows
every descriptor to have random offset and random length. The total length of all descriptors put
to gather must be less than 64 KB.

For internal mode queues, each descriptor defines a single AXI4-Stream packet to be transferred
to the H2C AXI-ST interface. A packet with multiple descriptors straddling is not allowed due to
the lack of per queue storage. However, packets with multiple descriptors straddling can be
implemented using the descriptor bypass mode. In this mode, the H2C DMA engine can be
initiated when the user logic has enough descriptors to form a packet. The DMA engine is
initiated by delivering the multiple descriptors straddled packet along with other H2C ST packet
descriptors through bypass interface, making sure they are not interleaved. Also, in bypass
interface, the user logic can control the generation of the status descriptor.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=10


C2H Stream Engine

The C2H streaming engine is responsible for receiving data from the user logic and writing to the
Host memory address provided by the C2H descriptor for a given Queue.

The C2H engine has two major blocks to accomplish C2H streaming DMA, Descriptor Prefetch
Cache (PFCH), and the C2H-ST DMA Write Engine. The PFCH has per queue context to enhance
the performance of its function and the software that is expected to program it.

PFCH cache has three main modes, on a per queue basis, called Simple Bypass Mode, Internal
Cache Mode, and Cached Bypass Mode.

• In Simple Bypass Mode, the engine does not track anything for the queue, and the user logic
can define its own method to receive descriptors. The user logic is then responsible for
delivering the packet and associated descriptor in simple bypass interface. The ordering of the
descriptors fetched by a queue in the bypass interface and the C2H stream interface must be
maintained across all queues in bypass mode.

• In Internal Cache Mode and Cached Bypass Mode, the PFCH module offers storage for up to
512 descriptors and these descriptors can be used by up to 64 different queues. In this mode,
the engine controls the descriptors to be fetched by managing the C2H descriptor queue
credit on demand based on received packets in the pipeline. Pre-fetch mode can be turned on
a per queue basis, and when enabled, causes the descriptors to be opportunistically pre-
fetched so that descriptors are available before the packet data is available. The status can be
found in prefetch context. This significantly reduces the latency by allowing packet data to be
transferred to the PCIe integrated block almost immediately, instead of having to wait for the
relevant descriptor to be fetched. The size of the buffer is fixed for a queue (PFCH context)
and the engine can scatter the packet across as many as seven descriptors. In cached bypass
mode descriptor is bypassed to user logic for further processing, such as address translation,
and sent back on the bypass in interface. This mode does not assume any ordering descriptor
and C2H stream packet interface, and the pre-fetch can match the packet and descriptors.

Completion Engine

The Completion (CMPT) Engine is used to write to the completion queues. Although the
Completion Engine can be used with an AXI-MM interface and Stream DMA engines, the C2H
Stream DMA engine is designed to work closely with the Completion Engine. The Completion
Engine can also be used to pass immediate data to the Completion Ring. The Completion Engine
can be used to write Completions of up to 64B in the Completion ring. When used with a DMA
engine, the completion is used by the driver to determine how many bytes of data were
transferred with every packet. This allows the driver to reclaim the descriptors.

The Completion Engine maintains the Completion Context. This context is programmed by the
Driver and is maintained on a per-queue basis. The Completion Context stores information like
the base address of the Completion Ring, PIDX, CIDX and a number of aspects of the Completion
Engine, which can be controlled by setting the fields of the Completion Context.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=11


The engine also can be configured on a per-queue basis to generate an interrupt or a completion
status update, or both, based on the needs of the software. If the interrupts for multiple queues
are aggregated into the interrupt aggregation ring, the status descriptor information is available
in the interrupt aggregation ring as well.

The CMPT Engine has a cache of up to 64 entries to coalesce the multiple smaller CMPT writes
into 64B writes to improve the PCIe efficiency. At any time, completions can be simultaneously
coalesced for up to 64 queues. Beyond this, any additional queue that needs to write a CMPT
entry will cause the eviction of the least recently used queue from the cache. The depth of the
cache used for this purpose is configurable with possible values of 8, 16, 32, and 64.

Bridge Interfaces

AXI Memory Mapped Bridge Master Interface

The AXI MM Bridge Master interface is used for high bandwidth access to AXI Memory Mapped
space from the host. The interface supports up to 32 outstanding AXI reads and writes. One or
more PCIe BAR of any physical function (PF) or virtual function (VF) can be mapped to the AXI-
MM bridge master interface. This selection must be done at the point of configuring the IP. The
function ID, BAR ID, VF group, and VF group offset will be made available as part of aruser and
awuser of the AXI-MM interface allowing the user logic to identify the source of each memory
access. The m_axib_awuser/m_axib_aruser user bits mapping is as follows:

• m_axib_awuser/m_axib_aruser[29:0] is of 30 bits

• Where,

○ m_axib_awuser/m_axib_aruser[7:0]= Function number

○ m_axib_awuser/m_axib_aruser[15:8]= Reserved

○ m_axib_awuser/m_axib_aruser[18:16]= Bar id

○ m_axib_awuser/m_axib_aruser[26:19]= vfg offset

○ m_axib_awuser/m_axib_aruser[28:27]= vfg id

Virtual function group (VFG) refers to the VF group number. It is equivalent to the PF number
associated with the corresponding VF. VFG_OFFSET refer to the VF number with respect to a
particular PF. Note that this is not the FIRST_VF_OFFSET of each PF.

For example, if both PF0 and PF1 has 8 VFs, and FIRST_VF_OFFSET for PF0 and PF1 is 4 and 11
and below is the mapping for VFG and VFG_OFFSET.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=12


Table 1: AXI-MM Interface Virtual Function Group

Function
Number PF Number VFG VFG_OFFSET

0 0 0 0

1 1 0 0

4 0 0 0 (Because FIRST_VF_OFFSET for PF0 is 4, the first VF of
PF0 starts at FN_NUM=4 and VFG_OSSET=0 indicates
this is the first VF for PF0)

5 0 0 1 (VFG_OSSET=1 indicates this is the second VF for PF0)

... ... ... ...

12 1 1 0 (VFG=1 indicates this VF is associated with PF1)

13 1 1 1

Each host initiated access can be uniquely mapped to the 64 bit AXI address space through the
PCIe to AXI BAR translation.

Since all functions shares the same AXI Master address space, a mechanism is needed to map
request from different functions to a distinct address space on the AXI master side. An example
provided below shows how PCIe to AXI translation vector is used. Note that all VFs belonging to
the same PF shares the same PCIe to AXI translation vector. Therefore, the AXI address space of
each VF is concatenated together. Use VFG_OFFSET to calculate the actual starting address of
AXI for a particular VF.

To summarize, m_axib_awaddr is determined as:

• For PF, m_axib_awaddr = pcie2axi_vec + axib_offset.

• For VF, m_axib_awaddr = pcie2axi_vec + (VFG_OFFSET + 1)*vf_bar_size +
axib_offset.

Where pcie2axi_vec is PCIe to AXI BAR translation (that can be set during IP configuration).

And axib_offset is the address offset in the requested target space.

AXI4-Lite Bridge Master Interface

One or more PCIe BAR of any physical function (PF) or virtual function (VF) can be mapped to
the AXI4-Lite master interface. This selection must be done at the point of configuring the IP.
The function ID, BAR ID (BAR hit), VF group, and VF group offset will be made available as part
of aruser and awuser of the AXI4-Lite interface to help the user logic identify the source of
memory access.

The m_axil_awuser/m_axil_aruser user bits mapping is as follows:

• m_axil_awuser/m_axil_aruser[29:0] is of 30 bits

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=13


• Where,

○ m_axil_awuser/m_axil_aruser[7:0]= Function number

○ m_axil_awuser/m_axil_aruser[15:8]= Reserved

○ m_axil_awuser/m_axil_aruser[18:16]= Bar id

○ m_axil_awuser/m_axil_aruser[26:19]= vfg offset

○ m_axil_awuser/m_axil_aruser[28:27]= vfg id

Virtual function group (VFG) refers to the VF group number. It is equivalent to the PF number
associated with the corresponding VF. VFG_OFFSET refer to the VF number with respect to a
particular PF. Note that this is not the FIRST_VF_OFFSET of each PF.

For example, if both PF0 and PF1 has 8 VFs, and FIRST_VF_OFFSET for PF0 and PF1 is 4 and 11
and below is the mapping for VFG and VFG_OFFSET.

Table 2: AXI4-Lite Interface VFG

Function
Number PF Number VFG VFG_OFFSET

0 0 0 0

1 1 0 0

4 0 0 0 (Because FIRST_VF_OFFSET for PF0 is 4, the first VF of
PF0 starts at FN_NUM=4 and VFG_OSSET=0 indicates
this is the first VF for PF0)

5 0 0 1 (VFG_OSSET=1 indicates this is the second VF for PF0)

... ... ... ...

12 1 1 0 (VFG=1 indicates this VF is associated with PF1)

13 1 1 1

Each host initiated access can be uniquely mapped to the 64 bit AXI address space through the
PCIe to AXI BAR translation.

Because all functions shares the same AXI4 master address space, a mechanism is needed to map
requests from different functions to a distinct address space on the AXI master side. This below
shows how PCIe to AXI translation vector is used. Note that all VFs belonging to the same PF
shares the same PCIe to AXI translation vector. Therefore, the AXI address space of each VF is
concatenated together. Use VFG_OFFSET to calculate the actual starting address of AXI for a
particular VF.

To summarize, m_axil_awaddr is determined as:

• For PF, m_axil_awaddr = pcie2axi_vec + axil_offset.

• For VF, m_axil_awaddr = pcie2axi_vec + (VFG_OFFSET + 1)*vf_bar_size +
axil_offset

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=14


Where pcie2axi_vec is PCIe to AXI BAR translation (that can be set during IP configuration.).

And axib_offset is the address offset in the requested target space.

Each host initiated access can be uniquely mapped to the 64 bit AXI address space. One
outstanding read and one outstanding write are supported on this interface.

Expansion ROM BAR can also be mapped to AXI4-Lite interface at the IP configuration time.

PCIe to AXI BARs

For each physical function, the PCIe configuration space consists of a set of six 32-bit memory
BARs and one 32-bit EXPROM BAR. When SR-IOV is enabled, an additional six 32-bit BARs are
enabled for each Virtual Functions. These BARs provide address translation to the AXI4 memory
mapped spaced capability, interface routing, and AXI4 request attribute configuration. Any pairs
of BARs can be configured as a single 64-bit BAR. A programming example can be found in the
Address Translation section (Example 3) of AXI Bridge for PCI Express Gen3 Subsystem Product
Guide (PG194).

Request Memory Type

The memory type can be set for each PCIe BAR through attributes
attr_dma_pciebar2axibar_*_cache_pf*.

• AxCache[0] is set to 1 for modifiable, and 0 for non-modifiable.

• AxCache[1] is set to 1 for cacheable, and 0 for non-cacheable.

AXI Memory Mapped Bridge Slave Interface

The AXI-MM Bridge Slave interface is used for high bandwidth memory transfers between the
user logic and the Host. AXI to PCIe translation is supported through the AXI to PCIe BARs. The
interface will split requests as necessary to obey PCIe MPS and 4 KB boundary crossing
requirements. Up to 32 outstanding read and write requests are supported.

AXI4-Lite Bridge Slave Interface

The AXI4-Lite slave interface is used to access the AXI Bridge and QDMA internal registers. The
upper four address bits indicate the access is for QDMA registers or Bridge registers.

• When s_axil_awaddr[28] = 1'b1, the write access is for QDMA registers.

• When s_axil_awaddr[28] = 1'b0, the write access is for Bridge registers (When
accessing Bridge Registers, access from address 0x000 to 0xDFF will be redirected to PCIe
core configuration space access and from address 0xE00 will be directed towards Bridge
registers).

• When s_axil_araddr[28] = 1'b1, the read access is for QDMA registers.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  15Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=15


• When s_axil_araddr[28] = 1'b0, the read access is for Bridge registers. When accessing
Bridge Registers, access from address 0x000 to 0xDFF will be redirected to PCIe core
configuration space access and from address 0xE00 will be directed towards Bridge registers.

The QDMA registers are virtualized for VFs and PFs. For example, VFs and PFs can access
different parts of the address space, and each has access to its own queues. To accommodate the
function specific accesses, the user logic can provide function ID on s_axil_awuser[7:0] for
write access and s_axil_aruser[7:0] read access, which gives the QDMA proper internal
register access. One outstanding read request and one outstanding write request are supported
on the AXI4-Lite slave interface.

The AXI4-Lite slave interface is also used to generate Vendor defined messages using the Bridge
registers. For Vendor defined messages, see VDM.

AXI to PCIe BARs

In the Bridge Slave interface, there are six BARs which can be configured as 32 bits or 64 bits.
These BARs provide address translation from AXI address space to PCIe address space. The
address translation is configured for each AXI BAR through the following Vivado IP
customization settings: Aperture Base Address, Aperture High Address, and AXI to PCIe
Translation.

A programming example can be found in the Address Translation section (Example 4) of AXI
Bridge for PCI Express Gen3 Subsystem Product Guide (PG194).

Interrupt Module
The IRQ module aggregates interrupts from various sources into the PCIe® integrated block core
interface. The interrupt sources are queue-based interrupts, user interrupts and error interrupts.

Queue-based interrupts and user interrupts are allowed on PFs and VFs, but error interrupts are
allowed only on PFs. If the SRIOV is not enabled, each PF has the choice of MSI-X, MSI
interrupts, or both. With SRIOV enabled, only MSI-X interrupts are supported across all
functions.

Support for MSI-X or MSI interrupts can be specified by attributes. Host system (Root Complex)
will enable one or all of the interrupt types supported in hardware. If MSI-X is enabled, it takes
precedence over MSI.

The PCIe integrated block core in UltraScale+™ devices offers up to eight interrupts per function.
To allow many queues on a given PCIe function and each to have interrupts, the QDMA
Subsystem for PCIe offers a novel way of aggregating interrupts from multiple queues to single
interrupt vector. In this way, all 2048 queues could in principle be mapped to a single interrupt
vector. QDMA offers 256 interrupt aggregation rings that can be flexibly allocated among the
256 available functions.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=16


PCIe Block Interface

PCIe CQ/CC

The PCIe Completer Request(CQ)/Completer Completion (CC) modules receive and process TLP
requests from the remote PCIe agent. This interface to the UltraScale+ Integrated Block for PCIe
IP operates in address aligned mode. The module uses the BAR information from the Integrated
Block for PCIe IP to determine where the request should be forwarded. The three possible
destinations for these requests are:

• the internal configuration module

• the AXI4 MM Bridge Master interface

• the AXI4-Lite Bridge Master interface

Non-posted requests are expected to receive completions from the destination, which are
forwarded to the remote PCIe agent. For further details, see the UltraScale+ Devices Integrated
Block for PCI Express LogiCORE IP Product Guide (PG213).

PCIe RQ/RC

The role of the PCIe RQ/RC interface is to generate PCIeTLPs on the RQ bus and process PCIe
Completion TLPs from the RC bus. This interfaces to the UltraScale+ Integrated Block for PCIe®

core operates in DWord aligned mode. With a 512-bit interface, straddling must also be enabled.
While straddling is supported, all combinations of RQ straddled transactions may not be
implemented. For further details, see the UltraScale+ Devices Integrated Block for PCI Express
LogiCORE IP Product Guide (PG213).

PCIe Configuration

Several factors can throttle outgoing non-posted transactions. Outgoing non-posted transactions
are throttled based on flow control information from the PCIe® integrated block to prevent head
of line blocking of posted requests. PCIe® Finite Completion Credits can be enabled when
customizing the IP in the Vivado® Integrated Design Environment. This option is not enabled by
default. If not enabled, the DMA will meter non-posted transactions based on the PCIe Receive
FIFO space.

General Design of Queues
The multi-queue DMA engine of the QDMA Subsystem for PCIe uses RDMA model queue pairs
to allow RNIC implementation in the user logic. Each queue set consists of Host to Card (H2C),
Card to Host (C2H), and a C2H Stream Completion (CMPT). The elements of each queue are
descriptors.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  17Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=17


H2C and C2H are always written by the driver/software; hardware always reads from these
queues. H2C carries the descriptors for the DMA read operations from Host. C2H carries the
descriptors for the DMA write operations to the Host.

In internal mode, H2C descriptors carry address and length information and are called gather
descriptors. They support 32 bits of meta data that can be passed from software to hardware
along with every descriptor. The descriptor can be memory mapped (where it carries host
address, card address, and length of DMA transfer) or streaming (only host address, and length of
DMA transfer) based on context settings. Through descriptor bypass, the arbitrary descriptor
format can be defined, where software can pass immediate data and/or additional metadata
along with packet.

C2H queue memory mapped descriptors include the card address, the host address and the
length. In streaming internal cached mode, descriptors carry only the host address. The buffer
size of the descriptor, which is programmed by the driver, is expected to be of fixed size for the
whole queue. Actual data transferred associated with each the descriptor does not need to be
the full length of the buffer size.

The software advertises valid descriptors for H2C and C2H queues by writing its producer index
(PIDX) to the hardware. The status descriptor is the last entry of the descriptor ring, except for a
C2H stream ring. The status descriptor carries the consumer index (CIDX) of the hardware so
that the driver knows when to reclaim the descriptor and deallocate the buffers in the host.

For the C2H stream mode, C2H descriptors will be reclaimed based on the CMPT queue entry.
Typically, this carries one entry per C2H packet, indicating one or more C2H descriptors is
consumed. The CMPT queue entry carries enough information for software to claim all the
descriptors consumed. Through external logic, this can be extended to carry other kinds of
completions or information to host.

CMPT entry written by the hardware to the ring can be detected by the driver using either the
color bit in the descriptor or the status descriptor at the end of the CMPT ring. Each CMPT entry
can carry metadata for C2H stream packet and can also serve as a custom completion or
immediate notification for user application.

The base address of all ring buffers (H2C, C2H, and CMPT) should be aligned to the 4K address.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=18


Figure 2: Queue Ring Architecture

Driver Objects

H2C/
TXQ

C2H/
RXQ

CMPT

Qset0

H2C/
TXQ

C2H/
RXQ

CMPT

Qset2047

X20520-061418

The software can program 16 different ring sizes. The ring size for each queue can be selected
from context programing. The last queue entry is the descriptor status, and allowable entries are
queue size -1.

For example, if queue size is 8, which contains the entry index 0 to 7, the last entry (index 7) is
reserved for status. This index should never be used for PIDX update, and PIDX update should
never be equal to CIDX. For this case, if CIDX is 0, the maximum PIDX update would be 6.

In the example above, if traffic has already started and the CIDX is 4, the maximum PIDX update
is 3.

H2C and C2H Queues

H2C/C2H queues are circular rings, located in host memory. For both type of queues, the
producer is software and consumer is the descriptor engine. The software maintains producer
index (PIDX) and a copy of hardware consumer index (HW CIDX) to avoid overwriting unread
descriptor. The descriptor engine also maintains consumer index (CIDX) and a copy of SW PIDX
to make sure, the engine does not read unwritten descriptor. Last entry in the queue is dedicated
for status descriptor where the engine writes the HW CIDX and other status.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=19


The engine maintains total of 2048 H2C and 2048 C2H contexts in local memory. The context
stores properties of the queue, such as base address (BADDR), SW PIDX, CIDX, and depth of the
queue.

Figure 3: Simple H2C and C2H Queue

PIDX CIDX BASE Size

SW PIDX

Posted write 
SW PIDX

Read request
BADDR + CIDX CTXT

Base

Base + 
Size

Size -1 Cpld
Descriptors

Posted write 
HW CIDX

Status desc

HW CIDX

6

2 3

4

5

DMA Engine OperationDriver Operation

1

X20895-041619

The figure above shows the H2C and C2H fetch operation.

1. For H2C, the Driver writes payload into host buffer, forms the H2C descriptor with the
payload buffer information and puts it into H2C queue at the PIDX location. For C2H, the
driver forms the descriptor with free buffer for hardware to DMA write the packet.

2. The software sends the posted write to PIDX register in the descriptor engine for the
associated Queue ID (QID) with its current PIDX value.

3. Upon reception of the PIDX update, the engine calculates the absolute QID of the pointer
update based on address offset and function ID. Using the QID, the engine will fetch the
context for the absolute QID from the memory associated with the QDMA Subsystem for
PCIe.

4. The engine determines the number of descriptors that are allowed to be fetched based on
the context. The engine calculates the descriptor address using the base address (BADDR),
CIDX, and descriptor size, and the engine issues the DMA read request.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=20


5. After the descriptor engine receives the read completion from the host memory, the
descriptor engine delivers them to the H2C Engine or C2H Engine in internal mode. In case of
bypass, the descriptors are sent out to the associated descriptor bypass output interface.

6. For memory mapped or H2C stream queues programmed as internal mode, after the fetched
descriptor is completely processed, the engine writes the CIDX value to the status descriptor.
For queues programmed as bypass mode, user logic controls the write back through bypass in
interface. The status descriptor could be moderated based on context settings. C2H stream
queues always use the CMPT ring for the completions.

For C2H, the fetch operation is implicit through the CMPT ring.

Note: C2H operates in pull mode of the descriptor, and H2C can operate in either pull or push mode.

Completion Queue

The Completion (CMPT) queue is a circular ring, located in host memory. The consumer is
software, and the producer is the CMPT engine. The software maintains the producer index
(PIDX) and a copy of hardware consumer index (HW CIDX) to avoid reading unwritten
completion. The CMPT engine also maintains PIDX and a copy of software consumer index (SW
CIDX) to make sure that the engine does not overwrite unread completion. The last entry in the
queue is dedicated for the status descriptor which is where the engine writes the hardware
producer index (HW PIDX) and other status.

The engine maintains a total of 2048 CMPT contexts in local memory. The context stores
properties of the queue, such as base address, SW CIDX, PIDX, and depth of the queue.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=21


Figure 4: Simple Completion Queue Flow

PIDX CIDX BASE Size

HW PIDX
DMA Write
BASE + 
PIDX

WRB CTXT

Base

Base + 
Size

Size -1

Posted write
HW PIDX

Interrupt

Status 
descriptor

SW CIDX

1

2

4

3

5

DMA Engine OperationDriver Operation

Posted write
SW CIDX

6
X20893-101518

C2H stream is expected to use the CMPT queue for completions to host, but it can also be used
for other types of completions or for sending the messages to host driver. The message through
the CMPT is guaranteed to not bypass the corresponding C2H stream packet DMA.

The simple flow of DMA CMPT queue operation with respect to the numbering above follows:

1. The CMPT engine receives the completion message through the CMPT interface, but the
QID for the completion message comes from the C2H stream interface. The engine reads the
QID index of CMPT context RAM.

2. The DMA writes the CMPT entry to address BASE+PIDX.

3. If all conditions are met, optionally writes PIDX to the status descriptor of the CMPT queue
with color bit.

4. If interrupt mode is enabled, generates the interrupt event message to interrupt module.

5. The software can be in polling or interrupt mode. Either way, the software identifies the new
CMPT entry either by matching the color bit or by comparing the PIDX value in the status
descriptor against its current software CIDX value.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=22


6. The software updates CIDX for that queue. This allows the hardware to reuse the descriptors
again. After the software finishes processing the CMPT, that is, before it stops polling or
leaving the interrupt handler, the software issues a write to CIDX update register for the
associated queue.

SR-IOV Support
The QDMA Subsystem for PCIe provides an optional feature to support the Single Root I/O
Virtualization (SR-IOV). The PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV)
specification (available from PCI-SIG Specifications(www.pcisig.com/specifications) standardizes
the method for bypassing the VMM involvement in datapath transactions and allows a single
PCI Express® Endpoint to appear as multiple separate PCI Express Endpoints. SR-IOV classifies
the functions as:

• Physical Functions (PF): Full featured PCIe® functions which include SR-IOV capabilities
among others.

• Virtual Functions (VF): PCIe functions featuring configuration space with Base Address
Registers (BARs) but lacking the full configuration resources and controlled by the PF
configuration. The main role of the VF is data transfer.

Apart from PCIe defined configuration space, QDMA Subsystem for PCI Express virtualizes data
path operations, such as pointer updates for queues, and interrupts. The rest of the management
and configuration functionality (or a slow path) is deferred to the physical function driver. The
Drivers that do not have sufficient privilege must communicate with the privileged Driver
through the mailbox interface which is provided in part of the QDMA Subsystem for PCI Express.

The security is an important aspect of virtualization. The QDMA Subsystem for PCI Express
offers the following security functionality:

• QDMA allows only privileged PF to configure the per queue context and registers.

• Drivers are allowed to do pointer updates only for the queue allocated to them.

• The system IOMMU can be turned on to check that the DMAs being requested by PFs and
VFs. The ARID comes from queue context programmed by a privileged function.

Any PF or VF can communicate to a PF (not itself) through mailbox. Each function implements
one 128B inbox and 128B outbox. These mailboxes are visible to the driver in the DMA BAR
(typically BAR0) of its own function. At any given time, any function can have one outgoing
mailbox and one incoming mailbox message outstanding per function.

The diagram below shows how a typical system can use QDMA with different functions and
Operating system. Different Queues can be allocated to different functions and how each
function can transfer DMA packets independent of each other.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  23Send Feedback

http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=23


Figure 5: QDMA in a System

Virtual Machine

APP APP

Guest OS 
Kernel

Q0 Q1

Virtual Machine

APP APP

Guest OS 
Kernel

Q0 Q1

Legacy VM

APP APP

Guest OS 
Kernel

Q0 Q1

Physical Machine

APP APP

Kernel

Q0 Q1

Hypervisor

VF0 VF1 PF0 PF1

QC
QC

QC
QC

QC
QC

QC
QC

MM ARB Stream ARB

QDMA

AXI-MM AXI-ST

X21108-062218

Applications
The QDMA Subsystem for PCIe is used in a broad range of networking, computing, and data
storage applications.

A common usage example for the QDMA Subsystem for PCIe is to implement Data Center and
Telco applications, such as Compute accelerations, Smart NIC, NVMe, RDMA-enabled NIC
(RNIC), server virtualization, and NFV in the user logic. Multiple applications can be implemented
to share the QDMA by assigning different queue sets and PCIe functions to each application.
These Queues can then be scaled in the user logic to implement rate limiting, traffic priority, and
custom work queue entry (WQE).

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=24


Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado®

Design Suite under the terms of the Xilinx End User License.

For more information about this subsystem, visit the QDMA Subsystem for PCIe product page
web page.

Chapter 2: Overview

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=25


Chapter 3

Product Specification

Standards
The QDMA Subsystem for PCI Express adheres to the following standards:

• AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

• PCI Express Base Specification v3.1

• PCI Local Bus Specification

• PCI-SIG® Single Root I/O Virtualization and Sharing (SR-IOV) Specification

For details, see PCI-SIG Specifications (http://www.pcisig.com/specifications).

Performance and Resource Utilization
Performance

QDMA performance and detailed analysis is available in AR 71453.

Below are the QDMA register settings to get those numbers. Performance numbers will vary
based on systems and which OS is being used.

• QDMA_C2H_INT_TIMER_TICK (0xB0C) set to 25. Corresponding to 100 ns (1 tick = 4 ns for
250 MHz user clock)

• C2H trigger mode set to Counter + Timer, with counter set to 64 and timer to 3 μs. Global
register for timer should have a value of 30 for 3 μs.

• QDMA_GLBL_DSC_CFG (0x250), max_desc_fetch = 6, wb_int = 5

• QDMA_H2C_REQ_THROT (0xE24), req_throt_en_data = 1, data_thresh = 0x4000

• QDMA_C2H_PFCH_CFG (0B08)

○ evt_qcnt_th = (QDMA_C2H_PFCH_CACHE_DEPTH/2) - 2

○ pfch_qcnt = QDMA_C2H_PFCH_CACHE_DEPTH/2

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  26Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
https://www.xilinx.com/support/answers/71453.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=26


○ num_pfch = 8

○ pfch_fl_th = 256

• QDMA_C2H_WRB_COAL_CFG (0xB50),

○ max_buf_sz = QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4)

○ tick_val = 25

○ tick_cnt = 5

• TX/RX API burst size = 64, ring depth = 2048

• PCIe MPS = 256 bytes, MRRS = 512 bytes, Extended Tag Enabled, Relaxed Ordering Enabled

• In the driver, completion CIDX are updated in increments of min (CMPT available, 64), before
updating C2H PIDX

• In driver, H2C PIDX updates in increments of 6

• C2H context:

○ bypass = 0 (Internal mode)

○ frcd_en = 1

○ qen = 1

○ wbk_en = 1

○ irq_en = irq_arm = int_aggr = 0

• C2H prefetch context:

○ pfch = 1

○ bypass = 0

○ valid = 1

• C2H CMPT context:

○ en_stat_desc = 1

○ en_int = 0 (Poll_mode)

○ int_aggr = 0 (Poll mode)

○ trig_mode = 5

○ counter_idx = corresponding to 64

○ timer_idx = corresponding to 3 μs

○ valid = 1

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=27


• H2C context:

○ bypass = 0 (Internal mode)

○ frcd_en = 0

○ fetch_max = 0

○ qen = 1

○ wbk_en = 1

○ wbi_chk = 1

○ wbi_intvl_en = 1

○ irq_en = 0 (Poll mode)

○ irq_arm = 0 (Poll mode)

○ int_aggr = 0 (Poll mode)

For optimal QDMA streaming performance, packet buffers of the descriptor ring should be
aligned to at least 256 bytes.

Resources Utilization

For QDMA Resource Utilization, see Resource Use web page.

Minimum Device Requirements
Gen3x16 capability requires a minimum of a -2 speed grade.

Table 3: Minimum Device Requirements

Capability Link Speed Capability Link Width Supported Speed Grades
UltraScale+ ™ Family

Gen1/Gen2 x1, x2, x4, x8, x16 -1, -1L, -1LV, -2, -2L, -2LV, -3

Gen3 x1, x2, x4 -1, -1L, -1LV, -2, -2L, -2LV, -3

x8 -1, -2, -2L, -3

x16 -2, -2L, -3

Virtex® UltraScale+ with HBM

Gen1/Gen2 x1, x2, x4, x8, x16 -1, -2, -2L, -2LV, -3

Gen3 x1, x2, x4 -1, -2, -2L, -2LV, -3

x8 -1, -2, -2L, -3

x16 -2, -2L, -3

Gen4 x1, x2, x4, x8 -2, -2L, -3

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  28Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=qdma.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=28


Note: This IP supports all UltraScale+™ devices with PCIe blocks, except XCZU4EV, XCZU4CG, XCZU4EG,
XAZU4EV, XCZU5CG, XCZU5EG, XAZU5EV, and XQZU5EV devices.

QDMA Operations
Descriptor Engine
The descriptor engine is responsible for managing the consumer side of the Host to Card (H2C)
and Card to Host (C2H) descriptor ring buffers for each queue. The context for each queue
determines how the descriptor engine will process each queue individually. When descriptors are
available and other conditions are met, the descriptor engine will issue read requests to PCIe to
fetch the descriptors. Received descriptors are offloaded to either the descriptor bypass out
interface (bypass mode) or delivered directly to a DMA engine (internal mode). When a H2C
Stream or Memory Mapped DMA engine completes a descriptor, status can be written back to
the status descriptor, an interrupt, and/or a marker response can be generated to inform
software and user logic of the current DMA progress. The descriptor engine also provides a
Traffic Manager Interface which notifies user logic of certain status for each queue. This allows
the user logic to make informed decisions if customization and optimization of DMA behavior is
desired.

Descriptor Context

The Descriptor Engine stores per queue configuration, status and control information in
descriptor context that can be stored in block RAM or UltraRAM, and the context is indexed by
H2C or C2H QID. Prior to enabling the queue, the hardware and credit context must first be
cleared. After this is done, the software context can be programmed and the qen bit can be set
to enable the queue. After the queue is enabled, the software context should only be updated
through the direct mapped address space to update the Producer Index and Interrupt Arm bit,
unless the queue is being disabled. For details, see QDMA_DMAP_SEL_H2C_DSC_PIDX[2048]
(0x18004) and QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x18008). The hardware context
and credit context contain only status. It is only necessary to interact with the hardware and
credit contexts as part of queue initialization in order to clear them to all zeros. Once the queue
is enabled, context is dynamically updated by hardware. Any modification of the context through
the indirect bus when the queue is enabled can result in unexpected behavior. Reading the
context when the queue is enabled is not recommended as it can result in reduced performance.

Software Descriptor Context Structure (0x0 C2H and 0x1 H2C)

The descriptor context is used by the descriptor engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=29


Table 4: Software Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[139] 1 int_aggr If set, interrupts will be aggregated in interrupt ring.

[138:128] [10:0] vec MSI-X vector used for interrupts for direct interrupt or
interrupt aggregation entry for aggregated interrupts.

[127:64] 64 dsc_base Base address of descriptor ring.

[63] 1 is_mm This field determines if the queue is Memory Mapped
or not. If this field is set, the descriptors will be
delivered to associated H2C or C2H MM engine.
1: Memory Mapped
0: Stream

[62] 1 mrkr_dis If set, disables the marker response in internal mode.
Not applicable for C2H ST.

[61] 1 irq_req Interrupt due to error waiting to be sent (waiting for
irq_arm). This bit should be cleared when the queue
context is initialized.
Not applicable for C2H ST.

[60] 1 err_wb_sent A writeback/interrupt was sent for an error. Once this
bit is set no more writebacks or interrupts will be sent
for the queue. This bit should be cleared when the
queue context is initialized.
Not applicable for C2H ST.

[59:58] 2 err Error status.
Bit[1] dma – An error occurred during DMA operation.
Check engine status registers.
Bit[0] dsc – An error occured during descriptor fetch or
update. Check descriptor engine status registers. This
field should be set to 0 when the queue context is
initialized.

[57] 1 irq_no_last No interrupt was sent and the producer index (PIDX) or
consumer index (CIDX) was idle in internal mode. When
the irq_arm bit is set, the interrupt will be sent. This bit
will clear automatically when the interrupt is sent or if
the PIDX of the queue is updated.
This bit should be initialized to 0 when the queue
context is initialized.
Not applicable for C2H ST.

[56:54] 3 port_id Port_id
The port id that will be sent on user interfaces for
events associated with this queue.

[53] 1 irq_en Interrupt enable.
An interrupt to the host will be sent on host status
updates.
Set to 0 for C2H ST.

[52] 1 wbk_en Writeback enable.
A memory write to the status descriptor will be sent on
host status updates.

[51] 1 mm_chn Set to 0.

[50] 1 bypass If set, the queue will operate under Bypass mode,
otherwise it will be in Internal mode.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=30


Table 4: Software Descriptor Context Structure Definition (cont'd)

Bit Bit Width Field Name Description
[49:48] 2 dsc_sz Descriptor fetch size. 0: 8B, 1: 16B; 2: 32B; 3: 64B.

If bypass mode is not enabled, 32B is required for
Memory Mapped DMA, 16B is required for H2C Stream
DMA, and 8B is required for C2H Stream DMA.
If the queue is configured for bypass mode, any
descriptor size can be selected. The descriptors will be
delivered on the bypass output interface. It is up to the
user logic to process the descriptors before they are
fed back into the descriptor bypass input.

[47:44] 4 rng_sz Descriptor ring size index to ring size registers.

[43:40] 4 Reserved

[39:37] 3 fetch_max Maximum number of descriptor fetches oustanding for
this queue. The max outstanding is fetch_max + 1.
Higher value can increase the single queue
performance,

[36] 1 at Address type of base address.
0: untranslated
1: translated
This will be the address type (AT) used on PCIe for
descriptor fetches and status descriptor writebacks.

[35] 1 wbi_intvl_en Write back/Interrupt interval.
Enables periodic status updates based on the number
of descriptors processed.
Applicable to Internal mode.
Not Applicable to C2H ST. The writeback interval is
determined by QDMA_GLBL_DSC_CFG.wb_acc_int.

[34] 1 wbi_chk Writeback/Interrupt after pending check.
Enable status updates when the queue has completed
all available descriptors.
Applicable to Internal mode.

[33] 1 fcrd_en Enable fetch credit.
The number of descriptors fetched will be qualified by
the number of credits given to this queue.
Set to 1 for C2H ST.

[32] 1 qen Indicates that the queue is enabled.

[31:25] 7 Reserved

[24:17] 8 fnc_id Function ID

[16] 1 irq_arm Interrupt arm. When this bit is set, the queue is allowed
to generate an interrupt.

[15:0] 16 pidx Producer index.

Hardware Descriptor Context Structure (0x2 C2H and 0x3 H2C)

Table 5: Hardware Descriptor Structure Definition

Bit Bit Width Field Name Description
[47] 1 Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=31


Table 5: Hardware Descriptor Structure Definition (cont'd)

Bit Bit Width Field Name Description
[46:43] 4 fetch_pnd Descriptor fetch pending

[42] 1 evt_pnd Event pending

[41] 1 idl_stp_b Queue invalid and no descriptors pending.
This bit is set when the queue is enabled. The bit is
cleared when the queue has been disabled (software
context qen bit) and no more descriptor are pending.

[40] 1 dsc_pnd Descriptors pending. Descriptors are defined to be
pending if the last CIDX completed does not match the
current PIDX.

[39:32] 8 Reserved

[31:16] 16 crd_use Credits consumed. Applicable if fetch credits are
enabled in the software context.

[15:0] 16 cidx Consumer index of last fetched descriptor.

Credit Descriptor Context Structure

Table 6: Credit Descriptor Context Structure Definition

Bit Bit Width Field Name Description
[31:16] 16 Reserved

[15:0] 16 credt Fetch credits received.
Applicable if fetch credits are enabled in the software
context.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=32


Descriptor Fetch

Figure 6: Descriptor Fetch Flow

Pointer updates

TM updates

SW/Driver
QDMA 

Descriptor 
Engine

Customer 
logic

Credit return

Descriptor Read req

Read completion

Descriptor Fetch Flow

Descriptor Bypass Out

1

2

3

4

5

6

X21062-052419

1. The descriptor engine is informed of the availability of descriptors through an update to a
queue’s descriptor PIDX context. This portion of the context is direct mapped to the
QDMA_DMAP_SEL_H2C_DSC_PIDX and QDMA_DMAP_SEL_C2H_DSC_PIDX address
space.

2. On a PIDX update, the descriptor engine evaluates the number of descriptors available based
on the last fetched consumer index (CIDX). The availability of new descriptors is
communicated to the user logic through the Traffic Manager Status Interface.

3. If fetch crediting is enabled, the user logic is required to provide a credit for each descriptor
that should be fetched.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=33


4. If descriptors are available and either fetch credits are disabled or are non-zero, the
descriptor engine will generate a descriptor fetch to PCIe. The number of descriptors fetch is
further qualified by the PCIe Max Read Request Size (MRRS) and descriptor fetch credits, if
enabled. A descriptor fetch can also be stalled due to insufficient completion space. In each
direction, C2H and H2C are allocated 256 entries for descriptor fetch completions. Each
entry is the width of the datapath. If sufficient space is available, the fetch is allowed to
proceed. A given queue can only have one descriptor fetch pending on PCIe at any time.

5. The host receives the read request and provides the descriptor read completion to the
descriptor engine.

6. Descriptors are stored in a buffer until they can be offloaded. If the queue is configured in
bypass mode, the descriptors are sent to the Descriptor Bypass Output port. Otherwise they
are delivered directly to a DMA engine. Once delivered, the descriptor fetch completion
buffer space is deallocated.

Note: At any time, the software should not update the PIDX to more than a ring_size of -2. Available
descriptors are always as ring size of -2.

Internal Mode

A queue can be configured to operate in Descriptor bypass mode or Internal mode by setting the
software context bypass field. In internal mode, the queue requires no external user logic to
handle descriptors. Descriptors that are fetched by the descriptor engine are delivered directly to
the appropriate DMA engine and processed. Internal mode allows fetch crediting and status
updates to user logic for run time customization of the descriptor fetch behavior.

Internal Mode Writeback and Interrupts (AXI MM and H2C ST)

Status writebacks and/or interrupts are generated automatically by hardware based on the queue
context. When “wbi_intvl_en” is set, writebacks/interrupts will be sent based on the interval
selected in the register QDMA_GLBL_DSC_CFG.wb_intvl. Due to the slow nature of interrupts,
in interval mode, interrupts may be late or skip intervals. If the wbi_chk context bit is set, a
writeback/interrupt will be sent when the descriptor engine has detected that the last descriptor
at the current PIDX has completed. It is recommended the wbi_chk bit be set for all internal
mode operation, including when interval mode is enabled. An interrupt will not be generated
until the irq_arm bit has been set by software. Once an interrupt has been sent the irq_arm
bit is cleared by hardware. Should an interrupt be needed when the irq_arm bit is not set, the
interrupt will be held in a pending state until the irq_arm bit is set.

Descriptor completion is defined to be when the descriptor data transfer has completed and its
write data has been acknowledged on AXI (H2C bresp for AXI MM, Valid/Ready of ST), or been
accepted by the PCIe Controller’s transaction layer for transmission (C2H MM).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=34


Bypass Mode

Bypass mode also supports crediting and status updates to user logic. In addition, bypass mode
allows user logic to customize processing of descriptors and status updates. Descriptors fetched
by the descriptor engine are delivered to user logic through the descriptor bypass out interface.
This allows user logic to pre-process or store the descriptors, if desired. On the bypass out
interface, the descriptors can be a custom format (adhering to the descriptor size). To perform
DMA operations, the user logic drives descriptors (must be QDMA format) into the descriptor
bypass input interface.

If the user logic already has descriptors, which must be in QDMA format, it can be provided
directly to the DMA through the descriptor bypass ports. The user logic does not need to fetch
descriptors from the host if the descriptors are already in the user logic.

Bypass Mode Writeback/Interrupts

In bypass mode, the user logic has explicit control over status updates to the host, and marker
responses back to user logic. Along with each descriptor submitted to the Descriptor Bypass
Input Port for a Memory Mapped Engine or H2C Stream DMA engine, there is a CIDX, and wbi
field. The CIDX is used to identify which descriptor has complete in any status update (host
writeback, marker response, or coalesced interrupt) generated at the completion of the
descriptor. If the wbi field of the descriptor was input, then a writeback to the host will be
generated if the context wbk_en bit is set. An interrupt can also be sent if the wbi bit is set if the
context irq_en and irq_arm bits are set.

If interrupts are enabled, the user logic must monitor the traffic manager output for the
irq_arm. After the irq_arm bit has been observed for the queue, a descriptor with the wbi bit
will be sent to the DMA. Once a descriptor with the wbi bit has been sent, another irq_arm
assertion must be observed before another descriptor with the wbi bit can be sent. If the user
sets the wbi bit when the arm bit has not be properly observed, an interrupt may or may not be
sent, and software waiting indefinitely for an interrupt. When interrupts are not enabled, setting
the wbi bit has no restriction. However excessive writebacks events can severly reduce the
descriptor engine performance and consume write bandwidth to the host.

Descriptor completion is defined to be when the descriptor data transfer has completed and its
write data has been acknowledged on AXI4 (H2C bresp for AXI MM, Valid/Ready of ST), or
been accepted by the PCIe Controller’s transaction layer for transmission (C2H MM).

Bypass Mode Marker Response

Marker responses can be generated for any descriptor by setting the mrkr_req bit. Marker
responses are generated after the descriptor is completed. Similar to host writebacks, excessive
marker response requests can reduce descriptor engine performance. Marker responses to the
user logic can also be sent with the wbi bit if configured in the context. The marker response
sent can be identified by the CIDX associated with the descriptor, as well as the queue id, and
direction of the DMA.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=35


Descriptor completion is defined to be when the descriptor data transfer has completed and its
write data has been acknowledged on AXI (H2C bresp for AXI MM, Valid/Ready of ST), or been
accepted by the PCIe Controller’s transaction layer for transmission (C2H MM).

Traffic Manager Output Interface

The traffic manager interface provides details of a queue’s status to user logic, allowing user logic
to manage descriptor fetching and execution. In normal operation, for an enabled queue, each
time the irq_arm bit is asserted or PIDX of a queue is updated, the descriptor engine asserts
tm_dsc_sts_valid. The tm_dsc_sts_avl signal indicates the number of new descriptors
available since the last update. Through this mechanism, user logic can track the amount of work
available for each queue. This can be used for prioritizing fetches through the descriptor engine’s
fetch crediting mechanism or other user optimizations. On the valid cycle, the
tm_dsc_sts_irq_arm indicates that the irq_arm bit was zero and was set. In bypass mode,
this is essentially a credit for an interrupt for this queue. See Bypass Mode Interrupts above.
When a queue is invalidated by software or due to error, the tm_dsc_sts_qinv bit will be set.
If this bit is observed, the descriptor engine will have halted new descriptor fetches for that
queue. In this case, the contents on tm_dsc_sts_avl indicate the number of available fetch
credits held by the descriptor engine. This information can be used to help user logic reconcile
the number of credits given to the descriptor engine, and the number of descriptors it should
expect to receive. Even after tm_dsc_sts_qin is asserted, valid descriptors already in the fetch
pipeline will continue to be delivered to the DMA engine (internal mode) or delivered to the
descriptor bypass output port (bypass mode).

Other fields of the tm_dsc_sts interface identify the queue id, DMA direction (H2C or C2H),
internal or bypass mode, stream or memory mapped mode, queue enable status, queue error
status, and port ID.

While the tm_dsc_sts interface is a valid/ready interface, it should not be back-pressured for
optimal performance. Since multiple events trigger a tm_dsc_sts cycle, if internal buffering is
filled, descriptor fetching will be halted to prevent generation of new events.

For detailed port information, see the QDMA Traffic Manager Credit Output Ports.

Descriptor Credit Input Interface

The credit interface is relevant when a queue’s fcrd_en context bit is set. It allows the user
logic to prioritize and meter descriptors fetched for each queue. You can specify the DMA
direction, qid, and credit value. For a typical use case, the use case descriptor engine uses credit
inputs to fetch descriptors. Internally, credits received and consumed are tracked for each queue.
If credits are added when the queue is not enabled, the credits will be returned through the
Traffic Manager Output Interface with tm_dsc_sts_qinv asserted, and the credits in
tm_dsc_sts_avl is not valid.

For more detailed port information, see QDMA Descriptor Credit Input Ports.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=36


Errors

Errors can potentially occur during both descriptor fetch and descriptor execution. In both cases,
once an error is detected for a queue it will invalidate the queue, log an error bit in the context,
stop fetching new descriptors for the queue which encountered the error, and can also log errors
in status registers. If enabled for writeback, interrupts, or marker response, the DMA will
generate a status update to these interfaces. Once this is done, no additional writeback,
interrupts, or marker responses (internal mode) will be sent for the queue until the queue context
is cleared. As a result of the queue invalidation due to an error, a Traffic Manager Output cycle
will also be generated to indicate the error and queue invalidation.

Although additional descriptor fetches will be halted, fetches already in the pipeline will continue
to be processed and descriptors will be delivered to a DMA engine or Descriptor Bypass Out
interface as usual. If the descriptor fetch itself encounters an error, the descriptor will be marked
with an error bit. If the error bit is set, the contents of the descriptor should be considered
invalid. It is possible that subsequent descriptor fetches for the same queue do not encounter an
error and will not have the error bit set.

Memory Mapped DMA
In memory mapped DMA operations, both the source and destination of the DMA are memory
mapped space. In an H2C transfer, the source address belongs to PCIe address space while the
destination address belongs to AXI MM address space. In a C2H transfer, the source address
belongs to AXI MM address space while the destination address belongs to PCIe address space.
PCIe-to-PCIe, and AXI MM-to-AXI MM DMAs are not supported. Aside from the direction of the
DMA, transfer H2C and C2H DMA behave similarly and share the same descriptor format.

Operation

The memory mapped DMA engines (H2C and C2H) are enabled by setting the run bit in the
Memory Mapped Engine Control Register. When the run bit is deasserted, descriptors can be
dropped. Any descriptors that have already started the source buffer fetch will continue to be
processed. Reassertion of the run bit will result in resetting internal engine state and should only
be done when the engine is quiesced. Descriptors are received from either the descriptor engine
directly or the Descriptor Bypass Input interface. Any queue that is in internal mode should not
be given descriptors through the Descriptor Bypass Input interface. Any descriptor sent to an
MM engine that is not running will be dropped. For configurations where a mix of Internal Mode
queues and Bypass Mode queues are enabled, round robin arbitration is performed to establish
order.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=37


The DMA Memory Mapped engine first generates the read request to the source interface,
splitting the descriptor at alignment boundaries specific to the interface. Both PCIe and AXI read
interfaces can be configured to split at different alignments. Completion space for read data is
preallocated when the read is issued. Likewise for the write requests, the DMA engine will split
at appropriate alignments. On the AXI interface each engine will use a single AXI ID. The DMA
engine will reorder the read completion/write data to the order in which the reads were issued.
Once sufficient read completion data is received the write request will be issued to the
destination interface in the same order that the read data was requested. Before the request is
retired, the destination interfaces must accept all the write data and provide a completion
response. For PCIe the write completion is issued when the write request has been accepted by
the transaction layer and will be sent on the link next. For the AXI Memory Mapped interface,
the bresponse is the completion criteria. Once the completion criteria has been met, the host
writeback, interrupt and/or marker response is generated for the descriptor as appropriate. See
Descriptor Engine Internal Mode Writeback and Interrupts, and Bypass Mode Writeback and
Interrupts.

The DMA Memory Mapped engines also support the no_dma field of the Descriptor Bypass
Input, and zero-length DMA. Both cases are treated identically in the engine. The descriptors
propagate through the DMA engine as all other descriptors, so descriptor ordering within a
queue is still observed. However no DMA read or write requests are generated. The status
update (writeback, interrupt, and/or marker response) for zero-length/no_dma descriptors is
processed when all previous descriptors have completed their status update checks.

Errors

There are two primary error categories for the DMA Memory Mapped Engine. The first is an
error bit that is set with an incoming descriptor. In this case, the DMA operation of the descriptor
is not processed but the descriptor will proceed through the engine to status update phase with
an error indication. This should result in a writeback, interrupt, and/or marker response
depending on context and configuration. It will also result in the queue being invalidated. The
second category of errors for the DMA Memory Mapped Engine are errors encountered during
the execution of the DMA itself. This can include PCIe read completions errors, and AXI
Bresponse errors (H2C), or AXI Rresponse errors and PCIe write errors due to bus master enable
or function level reset (FLR), as well as RAM ECC errors. The first enabled error is logged in the
DMA engine. Please refer to the Memory Mapped Engine error logs. If an error occurs on the
read, the DMA write will be aborted if possible. If the error was detected when pulling write data
from RAM, it is not possible to abort the request. Instead invalid data parity will be generated to
ensure the destination is aware of the problem. After the descriptor which encountered the error
has gone through the DMA engine, it will proceed to generate status updates with an error
indication. As with descriptor errors, it will result in the queue being invalidated. See Descriptor
Engine Errors.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=38


AXI Memory Mapped Descriptor for H2C and C2H
(32B)
Table 7: AXI Memory Mapped Descriptor Structure for H2C and C2H

Bit Bit Width Field Name Description
[255:192] 64 Reserved

[191:128] 64 dst_addr Destination Address

[127:92] 36 Reserved

[91:64] 28 lengthInByte Read length in byte

[63:0] 64 src_addr Source Address

Internal mode memory mapped DMA must configure the descriptor queue to be 32B and follow
the above descritor format. In bypass mode, the descriptor format is defined by the user logic,
which must drive the H2C or C2H MM bypass input port.

AXI Memory Mapped Writeback Status Structure for H2C and C2H

The MM writeback status register is located after the last entry of the (H2C or C2H) descriptor.

Table 8: AXI Memory Mapped Writeback Status Structure for H2C and C2H

Bit Bit Width Field Name Description
[63:48] 16 Reserved

[47:32] 16 pidx Producer Index at time of writeback

[31:16] 16 cidx Consumer Index

[15:2] 14 Reserved

[1:0] 2 err Error
bit 1: Descriptor fetch error
bit 0: DMA error

Stream Mode DMA

H2C Stream Engine

The H2C Stream Engine is responsible for transferring streaming data from the host and
delivering it to the user logic. The H2C Stream Engine operates on H2C stream descriptors. Each
descriptor specifies the start address and the length of the data to be transferred to the user
logic. The H2C Stream Engine parses the descriptor and issues read requests to the host over
PCIe, splitting the read requests at the MRRS boundary. There can be up to 256 requests
outstanding in the H2C Stream Engine to hide the host read latency. The H2C Stream Engine
implements a re-ordering buffer of 32 KB to re-order the TLPs as they come back. Data is issued
to the user logic in order of the requests sent to PCIe.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=39


If the status descriptor is enabled in the associated H2C context, the engine could additionally
send a status write back to host once it is done issuing data to the user logic.

Internal and Bypass Modes

Each queue in QDMA Subsystem for PCIe can be programmed in either of the two H2C Stream
modes: internal and bypass. This is done by specifying the mode in the queue context. The H2C
Stream Engine knows whether the descriptor being processed is for a queue in internal or bypass
mode.

The following figures show the internal mode and bypass mode flows.

Figure 7: H2C Internal Mode Flow

SW QDMA

descriptor fetch

pointer updates

descriptor completion

DMA read

DMA completion

User

payload on AXI-STWrite status descriptor

X20643-062118

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=40


Figure 8: H2C Bypass Mode Flow

SW QDMA

Credit return

Pointer updates

User

Traffic Manager pointer updates

Descriptor fetch

Descriptor completion
Descriptor to bypass out

Send descriptor to

bypass in

DMA read

DMA completion
Payload on AXI-ST

Write status descriptor

X20644-062118

For a queue in internal mode, after the descriptor is fetched from the host, it is fed straight to the
H2C Stream Engine for processing. In this case, a packet of data cannot span over multiple
descriptors. Thus for a queue in internal mode, each descriptor generates exactly one AXI4-
Stream packet on the QDMA H2C AXI Stream output. If the packet is present in host memory in
non-contiguous space, then it has to be defined by more than one descriptor and this requires
that the queue be programmed in bypass mode.

In the bypass mode, after the descriptors are fetched from the host, they are sent straight to the
user logic via the QDMA bypass output port. The QDMA does not parse these descriptors at all.
The user logic can store these descriptors and then send the required information from these
descriptors back to QDMA using the QDMA H2C Stream descriptor bypass-in interface. Using
this information, the QDMA constructs descriptors which are then fed to the H2C Stream Engine
for processing. The following are the advantages of using the bypass mode:

• The user logic can have a custom descriptor format. This is possible because QDMA
Subsystem for PCIe does not parse descriptors for queues in bypass mode. The user logic
parses these descriptors and provides the information required by the QDMA on the H2C
Stream bypass-in interface.

• Immediate data can be passed from the software to the user logic without DMA operation.

• The user logic can do traffic management by sending the descriptors to the QDMA when it is
ready to sink all the data. Descriptors can be cached in local RAM.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=41


• Perform address translation.

There are some requirements imposed on the user logic when using the bypass mode. Because
the bypass mode allows a packet to span multiple descriptors, the user logic needs to indicate to
QDMA which descriptor marks at the Start-Of-Packet (SOP) and which marks the End-Of-Packet
(EOP). At the QDMA H2C Stream bypass-in interface, among other pieces of information, the
user logic needs to provide: Address, Length, SOP, and EOP. It is required that once the user logic
feeds an SOP descriptor information into QDMA, it must eventually feed an EOP descriptor
information also. Descriptors for these multi-descriptor packets must be fed in sequentially.
Other descriptors not belonging to the packet must not be interleaved within the multi-
descriptor packet. The user logic must accumulate the descriptors up to the EOP descriptor,
before feeding them back to QDMA. Not doing so can result in a hang. The QDMA will generate
a TLAST at the QDMA H2C AXI Stream data output once it issues the the last beat for the EOP
descriptor. This is guaranteed because the user is required to submit the descriptors for a given
packet sequentially.

The H2C stream interface is shared by all the queues, it has the potential for head of the line
blocking issue if the user logic does not reserve the space to sink the packet. Quality of service
can be severely affected if the packet sizes are large. The Stream engine is designed to saturate
PCIe for packet sizes as low as 128B, so Xilinx recommends that you restrict the packet size to be
host page size or maximum transfer unit as required by the user application.

A performance control provided in the H2C Stream Engine is the ability to stall requests from
being issued to the PCIe RQ/RC if a certain amount of data is outstanding on the PCIe side as
seen by the H2C Stream Engine. To use this feature, the SW must program a threshold value in
the H2C_REQ_THROT (0xE24) register. After the H2C Stream Engine has more data outstanding
to be delivered to the user logic than this threshold, it stops sending further read requests to the
PCIe RQ/RC. This feature is disabled by default and can be enabled with the H2C_REQ_THROT
(0xE24) register. This feature helps improve the C2H Stream performance, because the H2C
Stream Engine can make requests at a much faster rate than the C2H Stream Engine. This can
potentially use up the PCIe side resources for H2C traffic which results in C2H traffic suffering.
The H2C_REQ_THROT (0xE24) register also allows the SW to separately enable and program the
threshold of the maximum number of read requests that can be outstanding in the H2C Stream
engine. Thus, this register can be used to individually enable and program the thresholds for the
outstanding requests and data in the H2C Stream engine.

H2C Stream Descriptor (16B)

Table 9: H2C Descriptor Structure

Bit Bit Width Field Name Description
[127:96] 32 addr_h Address High. Higher 32 bits of the source address in

Host

[95:64] 32 addr_l Address Low. Lower 32 bits of the source address in
Host

[63:48] 16 Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=42


Table 9: H2C Descriptor Structure (cont'd)

Bit Bit Width Field Name Description
[47:32] 16 len Packet Length. Length of the data to be fetched for this

descriptor.
This is also the packet length since in internal mode, a
packet cannot span multiple descriptors.
The maximum length of the packet can be 64K-1 bytes.

[31:0] 32 metadata Metadata. QDMA passes this field on the H2C-ST TUSER
along with the data on every beat. For a queue in
internal mode, it can be used to pass messages from
SW to user logic along with the data.

This H2C descriptor format is only applicable for internal mode. For bypass mode, the user logic
can define its own format as needed by the user application.

Descriptor Metadata

Similar to bypass mode, the internal mode also provides a mechanism to pass information directly
from the software to the user logic. In addition to address and length, the H2C Stream descriptor
also has a 32b metadata field. This field is not used by the QDMA Subsystem for PCIe for the
DMA operation. Instead, it is passed on to the user logic on the H2C AXI4-Stream tuser on
every beat of the packet. Passing metadata on the tuser is not supported for a queue in bypass
mode and consequently there is no input to provide the metadata on the QDMA H2C Stream
bypass-in interface.

Zero Length Descriptor

The length field in a descriptor can be zero. In this case, the H2C Stream Engine will issue a zero
byte read request on PCIe. After the QDMA receives the completion for the request, the H2C
Stream Engine will send out one beat of data with tlast on the QDMA H2C AXI4-Stream
interface. The zero byte packet will be indicated on the interface by setting the zero_b_dma bit
in the tuser. The user logic must set both the SOP and EOP for a zero byte descriptor. If not
done, an error will be flagged by the H2C Stream Engine.

H2C Stream Status Descriptor Writeback

When feeding the descriptor information on the bypass input interface, the user logic can
request the QDMA Subsystem for PCIe to send a status write back to the host when it is done
fetching the data from the host. The user logic can also request that a status be issued to it when
the DMA is done. These behaviors can be controlled using the sdi and mrkr_req inputs in the
bypass input interface. See QDMA Descriptor Bypass Input Ports for details.

The H2C writeback status register is located after the last entry of the H2C descriptor list.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=43


Table 10: AXI4-Stream H2C Writeback Status Descriptor Structure

Bit Bit Width Field Name Description
[63:32] 32 Reserved

[31:16] 16 cidx Consumer Index

[15:0] 16 Reserved (Producer Index)

H2C Stream Data Aligner

The H2C engine has a data aligner that aligns the data to zero Bytes (0B) boundary before issuing
it to the user logic. This allows the start address of a descriptor to be arbitrarily aligned and still
receive the data on the H2C AXI4-Stream data bus without any holes at the beginning of the
data. The user logic can send a batch of descriptors from SOP to EOP with arbitrary address and
length alignments for each descriptor. The aligner will align and pack the data from the different
descriptors and will issue a continuous stream of data on the H2C AXI4-Stream data bus. The
tlast on that interface will be asserted when the last beat for the EOP descriptor is being
issued.

Handling Descriptors With Errors

If an error is encountered while fetching a descriptor, the QDMA Descriptor Engine flags the
descriptor with error. For a queue in internal mode, the H2C Stream Engine handles the error
descriptor by not performing any PCIe or DMA activity. Instead, it waits for the error descriptor
to pass through the pipeline and forces a writeback after it is done. For a queue in bypass mode,
it is the responsibility of the user logic to not issue a batch of descriptors with an error descriptor.
Instead, it must send just one descriptor with error input asserted on the H2C Stream bypass-in
interface and set the SOP, EOP, no_dma signal, and sdi or mrkr-req signal to make the H2C
Stream Engine send a writeback to Host.

Handling Errors in Data From PCIe

If the H2C Stream Engine encounters an error coming from PCIe on the data, it keeps the error
sticky across the full packet. The error is indicated to the user on the err bit on the H2C Stream
Data Output. Once the H2C Stream sends out the last beat of a packet that saw a PCIe data
error, it also sends a Writeback to the Software to inform it about the error.

C2H Stream Engine

The C2H Stream Engine DMA writes the stream packets to the host memory into the descriptor
provided by the host driver through the C2H descriptor queue.

The Prefetch Engine is responsible for calculating the number of descriptors needed for the DMA
that is writing the packet. The buffer size is fixed per queue basis. For internal and cached bypass
mode, the prefetch module can fetch up to 512 descriptors for a maximum of 64 different
queues at any given time.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=44


The Prefetch Engine also offers low latency feature pfch_en = 1, where the engine can
prefetch up to qdma_c2h_pfch_cfg.num_pfch descriptors upon receiving the packet, so that
subsequent packets can avoid the PCIe latency.

The QDMA requires software to post full ring size so the C2H stream engine can fetch the
needed number of descriptors for each received packets. If there are not enough descriptors in
the descriptor ring, the QDMA will stall the packet transfer. For performance reasons, the
software is required to post the PIDX as soon as possible to ensure there are always enough
descriptors in the ring.

C2H stream packet data length is limited to 31 * descriptor size. In older versions (such as
2018.3), C2H stream packet data length was limited to 7 * descriptor size.

C2H Stream Descriptor (8B)

Table 11: AXI4-Stream C2H Descriptor Structure

Bit Bit Width Field Name Description
[63:0] 64 addr Destination Address

C2H Prefetch Engine

The prefetch engine interacts between the descriptor fetch engine and C2H DMA write engine
to pair up the descriptor and its payload.

Table 12: C2H Prefetch Context Structure

Bit Bit Width Field Name Description
[45] 1 valid Context is valid

[44:29] 16 sw_crdt Software credit
This field is written by the hardware for internal use.
The software must initialize it to 0 and then treat it as
read-only.

[28] 1 pfch Queue is in prefetch
This field is written by the hardware for internal use.
The software must initialize it to 0 and then treat it as
read-only.

[27] 1 pfch_en Enable prefetch

[26] 1 err Error detected on this queue

[25:8] 18 Reserved

[7:5] 3 port_id Port ID

[4:1] 4 buf_size_idx Buffer size index

[0] 1 bypass C2H is in bypass mode

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=45


C2H Stream Modes

The C2H descriptors can be from the descriptor fetch engine or C2H bypass input interfaces.
The descriptors from the descriptor fetch engine are always in cache mode. The prefetch engine
keeps the order of the descriptors to pair with the C2H data packets from the user. The
descriptors from the C2H bypass input interfaces have one interface for the simple mode, and
another interface for the cache mode. For simple mode, the user application keeps the order of
the descriptors to pair with the C2H data packets. For cache mode, the prefetch engine keeps
the order of the descriptors to pair with the C2H data packet from the user.

The prefetch context has a bypass bit. When it is 1'b1, the user application sends the credits for
the descriptors. When it is 1'b0, the prefetch engine handles the credits for the descriptors.

The descriptor context has a bypass bit. When it is 1'b1, the descriptor fetch engine sends out
the descriptors on the C2H bypass output interface. The user application can convert it and later
loop it back to the QDMA Subsystem for PCIe on the C2H bypass input interface. When the
bypass context bit is 1'b0, the descriptor fetch engine sends the descriptors to the prefetch
engine directly.

On a per queue basis, three cases are supported.

Table 13: C2H Stream Modes

c2h_byp_in desc_ctxt.desc_byp pfch_ctxt.bypass
Simple bypass mode simple byp in 1 1

Cache bypass mode cache byp in 1 0

Cache internal mode N/A 0 0

For simple bypass mode, the descriptor fetch engine sends the descriptors out on the C2H
bypass out interface. The user application converts the descriptor and loops it back to the
QDMA on the simple mode C2H bypass input interface. The user application sends the credits
for the descriptors, and it also keeps the order of the descriptors.

For cache bypass mode, the descriptor fetch engine sends the descriptors out on the C2H bypass
output interface. The user application converts the descriptor and loops it back to the QDMA on
the cache mode C2H bypass input interface. The prefetch engine sends the credits for the
descriptors, and it keeps the order of the descriptors.

For cache internal mode, the descriptor fetch engine sends the descriptors to the prefetch
engine. The prefetch engine sends out the credits for the descriptors and keeps the order of the
descriptors. In this case, the descriptors do not go out on the C2H bypass output and do not
come back on the C2H bypass input interfaces.

The C2H descriptor bypass flow is as shown below.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=46


Figure 9: C2H Descriptor Bypass Flow

Pointer updates

TM updates

SW/Driver QDMA User logic

Credit return

DMA Read req

DMA completion
Desc to byp out

Bypass in DMA 

Descriptor

DMA Write Payload

C2H Flow

Payload on AXI 

Streaming

DMA Write CMPT

Interrupt

X20604-120718

For port descriptions, see QDMA Descriptor Bypass Input Ports and QDMA Descriptor Bypass
Output Ports.

C2H Stream Packet Type

The following are some of the different C2H stream packets.

Regular Packet

The regular C2H packet has both the data packet and Completion (CMPT) packet. They are a
one-to-one match.

The regular C2H data packet can be multiple beats.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=47


• s_axis_c2h_ctrl_qid = C2H descriptor queue ID.

• s_axis_c2h_ctrl_len = length of the packet.

• s_axis_c2h_mty = empty byte in the beat.

• s_axis_c2h_ctrl_has_cmpt = 1'b1. This data packet has a corresponding CMPT packet.

The regular C2H CMPT packet is one beat.

• s_axis_c2h_cmpt_ctrl_qid = Completion queue ID of the packet. This can be different
from the C2H descriptor QID.

• s_axis_c2h_cmpt_ctrl_cmpt_type = HAS_PLD. This completion packet has a
corresponding data packet.

• s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id = This completion packet has to wait for
the data packet with this ID to be sent before the CMPT packet can be sent.

When the user application sends the data packet, it must count the packet ID for each packet.
The first data packet has a packet ID of 1, and it increments for each data packets.

For the regular C2H packet, the data packet and the completion packet is a one-to-one match.
Therefore, the number of data packets with s_axis_c2h_ctrl_has_cmpt as 1'b1 should be
equal to the number of CMPT packet with s_axis_c2h_cmpt_ctrl_cmpt_type as
HAS_PLD.

The QDMA Subsystem for PCIe has a shallow completion input FIFO of depth 2. For better
performance, add FIFO for completion input as shown in the diagram below. Depth and width of
the FIFO depends on the use case. Width is dependent on the largest CMPT size for the
application, and depth is dependent on performance needs. For best performance for 64 Byte
CMPT, a depth of 512 is recommended.

When the user application sends the data payload, it counts every packet. The first packet starts
with a pkt_pld_id of 1. The second packet has a pkt_pld_id of 2, and so on. It is a 16-bits
counter once the count reaches 16'hffff it wraps around to 0 and count forward.

The user application defines the CMPT type.

• If the s_axis_c2h_cmpt_ctrl_cmpt_type is HAS_PLD, the CMPT has a corresponding
data payload. The user application must place pkt_pld_id of that packet in the
s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id field. The DMA will only send out this
CMPT after it sends out the corresponding data payload packet.

• If the s_axis_c2h_cmpt_ctrl_cmpt_type is NO_PLD_NO_WAIT, the CMPT does not
have any data payload, and it does not need to wait for payload. Then the DMA will send out
this CMPT.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=48


• If the s_axis_c2h_cmpt_ctrl_cmpt_type is NO_PLD_BUT_WAIT, the CMPT does not
have a corresponding data payload packet. The CMPT must wait for a particular data payload
packet before the CMPT is sent out. Therefore, the user application must place the
pld_pkt_id of that particular data payload into the
s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id field. The DMA will not send out the CMPT
until the data payload with that pld_pkt_id is sent out.

Figure 10: CMPT input FIFO

QDMA

Counter

Data 
Payload

FIFO CMPT

pkt_pld_id[15:0]

X22048-120718

Immediate Data Packet

The user application can have a packet that only writes to the Completion Ring without having a
corresponding data packet transfer to the host. This type of packet is called immediate data
packet. For the immediate data packet, the QDMA will not send the data payload, but it will write
to the CMPT Queue. The immediate packet does not consume a descriptor.

For the immediate data packet, the user application only sends the CMPT packet to the DMA,
and it does not send the data packet.

The following is the setting of the immediate completion packet. There is no corresponding data
packet.

In some applications, the immediate completion packet does not need to wait for any data
packet. But in some applications, it might still need to wait for the data payload packet. When
the completion type is NO_PLD_NO_WAIT, the completion packet can be sent out without
waiting for any data packet. When the completion type is NO_PLD_BUT_WAIT, the completion
packet must specify the data packet ID that it needs to wait for.

• s_axis_c2h_cmpt_user_cmpt_type = NO_PLD_NO_WAIT or NO_PLD_BUT_WAIT.

• s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id = Do not increment packet count.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=49


Marker Packet

The C2H Stream Engine of the QDMA provides a way for the user application to insert a marker
into the QDMA along with a C2H packet. This marker then propagates through the C2H Engine
pipeline and comes out on the C2H Stream Descriptor Bypass Out interface. The marker is
inserted by setting the marker bit in the C2H Stream packet. The marker response is indicated by
the QDMA to the user application by setting the mrkr_rsp bit on the C2H Stream Descriptor
Bypass Out interface. For a maker packet, QDMA does not send out a payload packet but still
writes to the Completion Ring. Not all marker responses are generated because of a
corresponding marker request. The QDMA some times generates marker responses when it
encounters exceptional events. See the following section for details about when QDMA
internally generates marker responses.

The primary purpose of giving the user application the ability of sending in a marker into QDMA
is to determine when all the traffic prior to the marker has been flushed. This can be used in the
shut down sequence in the user application. Although not a requirement, the marker can be sent
by the user application with the user_trig bit set when sending in the marker into QDMA.
This allows the QDMA to generate an interrupt and truly ensures that all traffic prior to the
marker is flushed out. The QDMA Completion Engine takes the following actions when it
receives a marker from the user application:

• Sends the Completion that came along with the marker to the C2H Stream Completion Ring.

• Sends lower 24bits of completion data to C2H descriptor bypass out port
c2h_byp_out_dsc [26:3] (see QDMA C2H Descriptor Bypass Output Marker Response
Descriptions table).

• Generates Status Descriptor if enabled (if user_trig was set when maker was inserted).

• Generates an Interrupt if enabled and not outstanding.

• Sends the marker response. If an Interrupt was not sent due to it being enabled but
outstanding, the retry_mrkr bit in the marker response is set to inform the user that an
Interrupt could not be sent for this marker request. See the C2H Stream Descriptor Bypass
Output interface description for details of these fields.

The marker packet has both the data packet and CMPT packet. They are one-to-one match.

The following is the setting of the data packet with marker:

• 1 beat of data

• s_axis_c2h_ctrl_marker = 1'b1

• s_axis_c2h_ctrl_len = data width (for example, 64 if data width is 512 bits)

• s_axis_c2h_mty = 0

• s_axis_c2h_ctrl_has_cmpt = 1'b1

The following is the setting of the CMPT packet with marker:

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=50


• 1 beat of CMPT packet

• s_axis_c2h_cmpt_ctrl_marker = 1'b1

• s_axis_c2h_cmpt_ctrl_cmpt_type = HAS_PLD

• s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id = This completion packet has to wait for
the data payload packet with this ID to be sent before we send the CMPT packet.

The immediate data packet and the marker packet do not consume the descriptor; instead, they
write to the C2H Completion Ring. The software needs to size the C2H Completion Ring large
enough to accommodate the outstanding immediate packets and the marker packets.

Zero Length Packet

The length of the data packet can be zero. On the input, the user needs to send one beat of data.
The zero length packet consumes the descriptor. The QDMA will send out 1DW payload data.

The following is the setting of the zero length packet:

• 1 beat of data

• s_axis_c2h_ctrl_len = 0

• s_axis_c2h_mty = 0

Disable completion packet

The user application can disable the completion for a specific packet. The QDMA provides direct
memory access (DMA) to the payload, but does not write to the C2H Completion Ring. The user
application only sends the data packet to the DMA, and does not send the CMPT packet.

The following is the setting of the disable completion packet:

• s_axis_c2h_ctrl_has_cmpt = 1'b0

Completion Engine
The Completion Engine writes the C2H AXI4-Stream Completion (CMPT) in the CMPT queue.
The user application sends a CMPT packet and other information, such as, but not limited to,
CMPT QID, and CMPT_TYPE to the QDMA Subsystem for PCIe. The QDMA uses this
information to process the CMPT packet. The QDMA can be instructed to write the CMPT
packet unchanged in the CMPT queue. Alternatively, the user application can instruct the QDMA
to insert certain fields, like error and color, in the CMPT packet before writing it into the CMPT
queue. Additionally, using the CMPT interface signals, the user application instructs the QDMA
to order the writing of the CMPT packet in a specific way, relative to traffic on the C2H data

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=51


input. Although not a requirement, a CMPT is typically used with a C2H queue. In such a case,
the CMPT is used to inform the SW that a certain number of C2H descriptors have been used up
by the DMA of C2H data. This allows the SW to reclaim the C2H descriptors. A CMPT can also
be used without a corresponding C2H DMA operation, in which case, it is known as Immediate
Data.

The user-defined portion of the CMPT packet typically needs to specify the length of the data
packet transferred and whether or not descriptors were consumed as a result of the data packet
transfer. Immediate and marker type packets do not consume any descriptors. The exact
contents of the user-defined data are up to the user to determine.

Completion Context Structure

The completion context is used by the Completion Engine.

Table 14: Completion Context Structure Definition

Bit Bit Width Field Name Description
[159:143] 17 Reserved. Initialize to 0.

[143] 1 int_aggr Interrupt Aggregration
Set to configure the QID in interrupt aggregation mode

[142:132] 11 vec Interrupt Vector

131 1 at Address Translation
This bit is used to determine whether the queue
addresses are translated or untranslated. This
information is sent to the PCIe on CMPT and Status
writes.
0: Address is untranslated
1: Address is translated

130 1 ovf_chk_dis Completion Ring Overflow Check Disable
If set, then the CMPT Engine does not check whether
writing a completion entry in the Completion Ring will
overflow the Ring or not. The result is that QDMA
invariably sends out Completions without first checking
if it is going to overflow the Completion Ring and not
take any actions that it normally takes when it
encounters a Completion Ring overflow scenario. It is
up to the software and user logic to negotiate and
ensure that they do not cause a Completion Ring
overflow

[129] 1 full_upd Full Update
If reset, then the all fields other than the CIDX of a
Completion-CIDX-update are ignored. Only the CIDX
field will be copied from the update to the context.
If set, then the Completion CIDX update can update the
following fields in this context:
timer_ix
counter_ix
trig_mode
en_int
en_stat_desc

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=52


Table 14: Completion Context Structure Definition (cont'd)

Bit Bit Width Field Name Description
[128] 1 timer_running If set, it indicates that a timer is running on this queue.

This timer is for the purpose of CMPT interrupt
moderation. Ideally, the software must ensure that
there is no running timer on this QID before shutting
the queue down. This is a field used internally by the
hardware. The software must initialize it to 0 and then
treat it as read-only.

[127] 1 user_trig_pend If set, it indicates that a user logic initiated interrupt is
pending to be generated. The user logic can request an
interrupt through the s_axis_c2h_cmpt_ctrl_user_trig
signal. This bit is set when the user logic requests an
interrupt while another one is already pending on this
QID. When the next Completion CIDX update is
received by QDMA, this pending bit may or may not
generate an interrupt depending on whether or not
there are entries in the Completion ring waiting to be
read. This is a field used internally by the hardware.
The software must initialize it to 0 and then treat it as
read-only.

[126:125] 2 err Indicates that the Completion Context is in error. This is
a field written by the hardware. The software must
initialize it to 0 and then treat it as read-only. The
following errors are indicated here:
0: No error.
1: A bad CIDX update from software was detected.
2: A descriptor error was detected.
3: A Completion packet was sent by the user logic when
the Completion Ring was already full.

[124] 1 valid Context is valid.

[123:108] 16 cidx Current value of the hardware copy of the Completion
Ring Consumer Index.

[107:92] 16 pidx Completion Ring Producer Index. This is a field written
by the hardware. The software must initialize it to 0 and
then treat it as read-only.

[91:90] 2 desc_size Completion Entry Size:
0: 8B
1: 16B
2: 32B
3: 64B

[89:38] 52 baddr 4K aligned base address of Completion ring – bit
[63:12].

[37:32] 6 Reserved. Initialize to 0.

[31:28] 4 qsize_idx Completion ring size index to ring size registers.

[27] 1 color Color bit to be used on Completion.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=53


Table 14: Completion Context Structure Definition (cont'd)

Bit Bit Width Field Name Description
[26:25] 2 int_st Interrupt State:

0: ISR
1: TRIG
This is a field used internally by the hardware. The
software must initialize it to 0 and then treat it as read-
only.
When out of reset, the hardware initializes into ISR
state, and is not sensitive to trigger events. If the
software needs interrupts or status writes, it must send
an initial Completion CIDX update. This makes the
hardware move into TRIG state and as a result it
becomes sensitive to any trigger conditions.

[24:21] 4 timer_idx Index to timer register for TIMER based trigger modes.

[20:17] 4 counter_idx Index to counter register for COUNT based trigger
modes.

[16:13] 4 Reserved. Initialize to 0

[12:5] 8 fnc_id Function ID

[4:2] 3 trig_mode Interrupt and Completion Status Write Trigger Mode:
0x0: Disabled
0x1: Every
0x2: User_Count
0x3: User
0x4: User_Timer
0x5: User_Timer_Count

[1] 1 en_int Enable Completion interrupts.

[0] 1 en_stat_desc Enable Completion Status writes.

Completion Status Structure

The Completion Status is located at the last location of Completion ring, that is, Completion Ring
Base Address + (Size of the completion length (8,16,32) * (Completion Ring Size – 1)).

In order to make the QDMA Subsystem for PCIe write Completion Status to the Completion ring,
Completion Status must be enabled in the Completion context. In addition to affecting
Interrupts, the trigger mode defined in the Completion context also moderates the writing of
Completion Statuses. Subject to Interrupt/Status moderation, a Completion Status can be written
when either of the following happens:

1. A CMPT packet is written to the Completion ring.

2. A CMPT-CIDX update from the SW is received, and indicates that more Completion entries
are waiting to be read.

3. The timer associated with the respective CMPT QID expires and is programmed in a timer-
based trigger mode.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=54


Table 15: AXI4-Stream Completion Status Structure

Bit Bit Width Field Name Description
[63:35] 29 Reserved

[34:33] 2 int_state Interrupt State.
0: ISR
1: TRIG

[32] 1 color Color status bit

[31:16] 16 cidx Consumer Index (RO)

[15:0] 16 pidx Producer Index

Completion Entry Structure

The size of a Completion (CMPT) Ring entry is 512 bits. This includes user defined data, an
optional error bit, and an optional color bit. The user defined data has four size options: 8B, 16B,
32B and 64B. The bit locations of the optional error and color bits in the CMPT entry are
configurable individually. This is done by specifying the locations of these fields using the
Vivado® IDE IP customization options while compiling the QDMA Subsystem for PCIe. There are
seven color bit location options and eight error bit location options. The location is specified as
an offset from the LSB bit of the Completion entry.

When the user application drives a Completion packet into the QDMA Subsystem for PCIe, it
provides a s_axis_cmpt_ctrl_col_idx[2:0] value and a
s_axis_cmpt_ctrl_err_idx[2:0] value at the interface. These indices are used by the
QDMA Subsystem for PCIe to use the correct locations of the color and error bits. For example,
if s_axis_cmpt_ctrl_col_idx[2:0] = 0 and s_axis_cmpt_ctrl_err_idx[2:0] =
1, then the QDMA Subsystem for PCIe uses the C2H Stream Completion Color bits position
option 0 for color location, and C2H Stream Completion Error bits position option 1 for error
location. An index of seven for color or error signals implies that the DMA will not update the
corresponding color or error bits when Completion entry is updated (those fields are ignored).
For more information about the C2H Stream Completions bits options in the Vivado® IDE, see 
PCIe DMA Tab.

The error and color bit location values that are used at compile time are available for the
software to read from the MMIO registers. There are seven registers for this purpose, 
QDMA_C2H_CMPT_FORMAT_0 (0xBC4) to QDMA_GLBL_ERR_MASK (0X24C). Each of these
registers holds one color and one error bit location.

• C2H Stream Completions bits option 0 for color bit location and option 0 for error bit location
are available through the QDMA_C2H_CMPT_FORMAT_0 register.

• C2H Stream Completions bits" option 1 for color bit location and option 1 for error bit
location are available through the QDMA_C2H_CMPT_FORMAT_1 register.

• And so on.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=55


Table 16: Completion Entry Structure

Name Size (Bits) Index
User-defined bits for 64 Bytes settings 510-512 Depending on whether there are color and

error bits present.

User-defined bits for 32 Bytes settings 254-256 Depending on whether there are color and
error bits present.

User-defined bits for 16 Bytes settings 126-128 Depending on whether there are color and
error bits present.

User-defined bits for 8 Bytes settings 62-64 Depending on whether there are color and
error bits present.

Err The Error bit location is defined by registers 
QDMA_C2H_CMPT_FORMAT_0 (0xBC4)- 
QDMA_C2H_CMPT_FORMAT_6 (0xBDC). These
register show color bit position that is user
defined during IP generation. User can index
into this register based on input CMPT ports
s_axis_c2h_cmpt_ctrl_err_idx[2:0].You
can choose not to include err bit (index value
7). In such a case, user-defined data takes up
that space

Color The Color bit location is defined by registers 
QDMA_C2H_CMPT_FORMAT_0 (0xBC4)-
QDMA_C2H_CMPT_FORMAT_6 (0xBDC).These
register show color bit position that is user
defined during IP generation. User can index
into this register based on input CMPT ports
s_axis_c2h_cmpt_ctrl_col_idx[2:0]. If
you do not include a color bit (index value 7),
the user-defined data takes up that space.

Completion Input Packet

The user application sends the CMPT packet to the QDMA.

The CMPT packet and data packet do not require a one-to-one match. For example, the
immediate data packet only has the CMPT packet, and does not have the data packet. The
disable completion packet only has the data packet and does not have the CMPT packet.

Each CMPT packet has a CMPT ID. It is the ID for the associated CMPT queue. Each CMPT
queue has a CMPT Context. The driver sets up the mapping of the C2H descriptor queue to the
CMPT queue. There also can be a CMPT queue that is not associated to a C2H queue.

The following is the CMPT packet from the user application.

Table 17: CMPT Input Packet

Name Size Index
Data 512 bits [511:0]

The CMPT packet has four types: 8B, 16B, 32B, or 64B. It has just one pump of data with 512
bits.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=56


Completion Status/Interrupt Moderation

The QDMA Subsystem for PCIe provides a means to moderate the Completion interrupts and
Completion Status writes on a per queue basis. The software can select one out of five modes for
each queue. The selected mode for a queue is stored in the QDMA Subsystem for PCIe in the
Completion ring context for that queue. After a mode has been selected for a queue, the driver
can always select another mode when it sends the completion ring CIDX update to the QDMA.

The Completion interrupt moderation is handled by the Completion engine. The Completion
engine stores the Completion ring contexts of all the queues. It is possible to individually enable
or disable the sending of interrupts and Completion Statuses for every queue and this
information is present in the Completion ring context. It is worth mentioning that the modes
being described here moderate not only interrupts but also Completion Status writes. Also, since
interrupts and Completion Status writes can be individually enabled/disabled for each queue,
these modes will work only if the interrupt/Completion Status is enabled in the Completion
context for that queue.

The QDMA Subsystem for PCIe keeps only one interrupt outstanding per queue. This policy is
enforced by QDMA even if all other conditions to send an interrupt have been met for the mode.
The way the QDMA Subsystem for PCIe considers an interrupt serviced is by receiving a CIDX
update for that queue from the driver.

The basic policy followed in all the interrupt moderation modes is that when there is no interrupt
outstanding for a queue, the QDMA Subsystem for PCIe keeps monitoring the trigger conditions
to be met for that mode. Once the conditions are met, an interrupt is sent out. While the QDMA
subsystem is waiting for the interrupt to be served, it remains sensitive to interrupt conditions
being met and remembers them. When the CIDX update is received, the QDMA subsystem
evaluates whether the conditions are still being met. If they are still being met, another interrupt
is sent out. If they are not met, no interrupt is sent out and the QDMA resumes monitoring for
the conditions to be met again.

Note that the interrupt moderation modes that the QDMA subsystem provides are not
necessarily precise. Thus, if the user application sends two CMPT packets with an indication to
send an interrupt, it is not necessary that two interrupts will be generated. The main reason for
this behavior is that when the driver is interrupted to read the Completion ring, and it is under no
obligation to read exactly up to the Completion for which the interrupt was generated. Thus, the
driver may not read up to the interrupting Completion, or it may even read beyond the
interrupting Completion descriptor if there are valid descriptors to be read there. This behavior
requires the QDMA Subsystem for PCIe to re-evaluate the trigger conditions every time it
receives the CIDX update from the driver.

The detailed description of each mode is given below:

• TRIGGER_EVERY: This mode is the most aggressive in terms of interruption frequency. The
idea behind this mode is to send an interrupt whenever the completion engine determines
that an unread completion descriptor is present in the Completion ring.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=57


• TRIGGER_USER: The QDMA Subsystem for PCIe provides a way to send a CMPT packet to
the subsystem with an indication to send out an interrupt when the subsystem is done
sending the packet to the host. This allows the user application to perform interrupt
moderation when the TRIGGER_USER mode is set.

• TRIGGER_USER_COUNT: This mode allows the QDMA Subsystem for PCIe is sensitive to
either of two triggers. One of these triggers is sent by the user along with the CMPT packet.
The other trigger is the presence of more than a programmed threshold of unread Completion
entries in the Completion Ring, as seen by the hardware. This threshold is driver
programmable on a per-queue basis. The QDMA evaluates whether or not to send an
interrupt when either of these triggers is detected. As explained in the preceding sections,
other conditions must be satisfied in addition to the triggers for an interrupt to be sent.

• TRIGGER_USER_TIMER: In this mode, the QDMA Subsystem for PCIe is sensitive to either of
two triggers. One of these triggers is sent by the user along with the CMPT packet. The other
trigger is the expiration of the timer that is associated with the CMPT queue. The period of
the timer is driver programmable on a per-queue basis. The QDMA evaluates whether or not
to send an interrupt when either of these triggers is detected. As explained in the preceding
sections, other conditions must be satisfied in addition to the triggers for an interrupt to be
sent. For more information, see Completion Timer.

• TRIGGER_USER_TIMER_COUNT: This mode allows the QDMA Subsystem for PCIe is
sensitive to any of three triggers. The first trigger is sent by the user along with the CMPT
packet. The second trigger is the expiration of the timer that is associated with the CMPT
queue. The period of the timer is driver programmable on a per-queue basis. The third trigger
is the presence of more than a programmed threshold of unread Completion entries in the
Completion Ring, as seen by the hardware. This threshold is driver programmable on a per-
queue basis. The QDMA evaluates whether or not to send an interrupt when any of these
triggers is detected. As explained in the preceding sections, other conditions must be satisfied
in addition to the triggers for an interrupt to be sent.

• TRIGGER_DIS: In this mode, the QDMA Subsystem for PCIe does not send Completion
interrupts in spite of them being enabled for a given queue. The only way that the driver can
read the Completion ring in this case is when it regularly polls the ring. The driver will have to
make use of the color bit feature provided in the Completion ring when this mode is set as this
mode also disables the sending of any Completion Status descriptors to the Completion ring.

When a queue is programmed in TRIGGER_USER_TIMER_COUNT mode, the software can
choose to not read all the Completion entries available in the Completion ring as indicated by an
interrupt (or a Completion Status write). In such a case, the software can give a Completion CIDX
update for the partial read. This works because the QDMA will restart the timer upon reception
of the CIDX update and once the timer expires, another interrupt will be generated. This process
will repeat until all the Completion entries have been read.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=58


However, in the TRIGGER_EVERY, TRIGGER_USER and TRIGGER_USER_COUNT modes, an
interrupt is sent, if at all, as a result of a Completion packet being received by the QDMA from
the user logic. For every request by the user logic to send an interrupt, the QDMA sends one and
only one interrupt. Thus in this case, if the software does not read all the Completion entries
available to be read and the user logic does not send any more Completions requesting
interrupts, the QDMA does not generate any more interrupts. This results in the residual
Completions sitting in the Completion ring indefinitely. To avoid this from happening, when in
TRIGGER_EVERY, TRIGGER_USER and TRIGGER_USER_COUNT mode, the software must read
all the Completion entries in the Completion ring as indicated by an interrupt (or a Completion
Status write).

The following are the flowcharts of different modes. These flowcharts are from the point of view
of the Completion Engine. The Completion packets come in from the user logic and are written
to the Completion Ring. The software (SW) update refers to the Completion Ring CIDX update
sent from software to hardware.

Figure 11: Flowchart for EVERY Mode

Wait for Completion

Completion
received

Send Interrupt

Wait for SW update

SW update
received

Ring
empty

No

Yes

Yes

No No

Yes

X20642-052419

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=59


Figure 12: Flowchart for USER Mode

Wait for Completion

Completion with User 
trigger received

Send Interrupt

Wait for SW update 
or User trigger

SW update
received

Completion with User 
trigger received

Wait for SW update

SW update 
received

Ring empty

No

No

Yes

Yes

No

No

No

Yes

Yes

X20641-040518

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=60


Figure 13: Flowchart for USER_COUNT Mode

Wait for Completion

CMP received

Threshold 
exceeded or User 
trigger received

Send Interrupt

Wait for SW update 
or Completion with 

User trigger

SW update 
received

Completion with User 
trigger received

Wait for SW update

SW update 
received

Ring empty

Threshold 
exceeded

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

No

No

Yes

No

X20639-040518

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=61


Figure 14: Flowchart for USER_TIMER Mode

Wait for Timer 
expiation or User 

trigger

Timer expiration
received

User trigger 
received

Ring emptyWait for Completion

Send Interrupt

Wait for SW update or 
User trigger

SW update 
received

User trigger
received

Wait for SW update

SW update 
received

Ring empty

No

NoYesYes

No

Yes

Yes

No

No

Yes

No

Yes

No

X20637-040518

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=62


Figure 15: Flowchart for USER_TIMER_COUNT Mode

Wait for:
1. CMPT,
2. UsrTrig, or
3. TmrExp

Start

TmrExp
received

UsrTrig
received

CMPT
received

Wait for 
CMPT

CMPT
received

Send 
INT

SW update
received

UsrTrig
received

Wait for 
SW 

update

SW update
received

Threshold
exceeded

Threshold
exceeded

Wait for:
1. SW update 
or
2. UsrTrig

No

No

No

No Yes

Yes

No

Yes

Yes

No

Yes

No

Yes

Yes

No

CMPT:  Completion (without a user trigger)
UsrTrig:  User Trigger (comes in a Completion)
TmrExp: Timer expiry
INT:  Interrupt

X21845-111418

Completion Timer

The Completion Timer engine supports the timer trigger mode in the Completion context. It
supports 2048 queues, and each queue has its own timer. When the timer expires, a timer expire
signal is sent to the Completion module. If multiple timers expire at the same time, they are sent
out in a round robin manner.

Reference Timer

The reference timer is based on the timer tick. The register QDMA_C2H_INT (0xB0C) defines
the value of a timer tick. The 16 registers QDMA_C2H_TIMER_CNT (0xA00-0xA3c) has the
timer counts based on the timer tick. The timer_idx in the Completion context is the index to
the 16 QDMA_C2H_TIMER_CNT registers. Each queue can choose its own timer_idx.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=63


Handling Exception Events

C2H Completion On Invalid Queue

When QDMA receives a Completion on a queue which has an invalid context as indicated by the
Valid bit in the C2H CMPT Context, the Completion is silently dropped.

C2H Completion On A Full Ring

The maximum number of Completion entries in the Completion Ring is 2 less than the total
number of entries in the Completion Ring. The C2H Completion Context has PIDX and CIDX in it.
This allows the QDMA to calculate the number of Completions in the Completion Ring. When
the QDMA receives a Completion on a queue that is full, QDMA takes the following actions:

• Invalidates the C2H Completion Context for that queue.

• Marks the C2H Completion Context with error.

• Drops the Completion.

• If enabled, sends a Status Descriptor marked with error.

• If enabled and not outstanding, sends an Interrupt.

• Sends a Marker Response with error.

• Logs the error in the C2H Error Status Register.

C2H Completion With Descriptor Error

When the QDMA C2H Engine encounters a Descriptor Error, the following actions are taken in
the context of the C2H Completion Engine:

• Invalidates the C2H Completion Context for that queue.

• Marks the C2H Completion Context with error.

• Sends the Completion out to the Completion Ring. It is marked with an error.

• If enabled, sends a Status Descriptor marked with error.

• If enabled and not outstanding, sends an Interrupt.

• Sends a Marker Response with error.

C2H Completion With Invalid CIDX

The C2H Completion Engine has logic to detect that the CIDX value in the CIDX update points to
an empty location in the Completion Ring. When it detects such error, the C2H Completion
Engine:

• Invalidates the Completion Context.

• Marks the Completion Context with error.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=64


• Logs an error in the C2H error status register.

Bridge
The Bridge core is an interface between the AXI4 and the PCI Express integrated block. It
contains the memory mapped AXI4 to AXI4-Stream Bridge, and the AXI4-Stream Enhanced
Interface Block for PCIe. The memory mapped AXI4 to AXI4-Stream Bridge contains a register
block and two functional half bridges, referred to as the Slave Bridge and Master Bridge.

• The slave bridge connects to the AXI4 Interconnect as a slave device to handle any issued
AXI4 master read or write requests.

• The master bridge connects to the AXI4 Interconnect as a master to process the PCIe
generated read or write TLPs.

• The register block contains registers used in the Bridge core for dynamically mapping the AXI4
memory mapped (MM) address range provided using the AXIBAR parameters to an address
for PCIe® range.

The core uses a set of interrupts to detect and flag error conditions.

The slave bridge provides termination of memory-mapped AXI4 transactions from an AXI4
master device (such as a processor). The slave bridge provides a way to translate addresses that
are mapped within the AXI4 memory mapped address domain to the domain addresses for PCIe.
Write transactions to the Slave Bridge are converted into one or more MemWr TLPs, depending
on the configured Max Payload Size setting, which are passed to the integrated block for PCI
Express. When a remote AXI master initiates a read transaction to the slave bridge, the read
address and qualifiers are captured and a MemRd request TLP is passed to the core and a
completion timeout timer is started. Completions received through the core are correlated with
pending read requests and read data is returned to the AXI4 master. The Slave Bridge can
support up to 32 AXI4 write requests, and 32 AXI4 read requests.

The master bridge processes both PCIe MemWr and MemRd request TLPs received from the
integrated block for PCI Express and provides a means to translate addresses that are mapped
within the address for PCIe domain to the memory mapped AXI4 address domain. Each PCIe
MemWr request TLP header is used to create an address and qualifiers for the memory mapped
AXI4 bus and the associated write data is passed to the addressed memory mapped AXI4 Bridge
Slave. The Master Bridge can support up to 32 active PCIe MemWr request TLPs. PCIe MemWr
request TLPs support is as follows:

• 4 for 64-bit AXI4 data width

• 8 for 128-bit AXI4 data width

• 16 for 256-bit AXI4 data width

• 32 for 512-bit AXI4 data width

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=65


Each PCIe MemRd request TLP header is used to create an address and qualifiers for the memory
mapped AXI4 bus. Read data is collected from the addressed memory mapped AXI4 bridge slave
and used to generate completion TLPs which are then passed to the integrated block for PCI
Express. The Master Bridge in AXI Bridge mode can support up to 32 active PCIe MemRd request
TLPs with pending completions for improved AXI4 pipelining performance.

Interrupts
The QDMA Subsystem for PCIe supports up to 2K total MSI-X vectors. A single MSI-X vector
can be used to support multiple queues.

The QDMA supports Interrupt Aggregation. Each vector has an associated Interrupt Aggregation
Ring. The QID and status of queues requiring service are written into the Interrupt Aggregation
Ring. When a PCIe® MSI-X interrupt is received by the Host, the software reads the Interrupt
Aggregation Ring to determine which queue needs service. Mapping of queues to vectors is
programmable. It has independent table programming per physical function (PF). It supports MSI/
MSI-X interrupt modes for non-SRIOV and MSI-X for SRIOV.

Asynchronous and Queue Based Interrupts

The QDMA supports both asynchronous interrupts and queue-based interrupts.

The asynchronous interrupts are used for capturing events that are not synchronous to any DMA
operations, namely, errors, status, and debug conditions. There is one asynchronous interrupt per
PF. Every asynchronous interrupt is configurable to any one of the PF.

Interrupts are broadcast to all PFs, and maintain status for each PF in a queue based scheme. The
queue based interrupts include the interrupts from the H2C MM, H2C stream, C2H MM, and
C2H stream.

Interrupt Engine

The Interrupt Engine handles the queue based interrupts and the error interrupt.

The following figure shows the Interrupt Engine block diagram.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=66


Figure 16: Interrupt Engine Block Diagram

MSIX Table

Interrupt Engine

A
r
bMSIX

Int
Agg
Ctxt

Arbitration

PBA H2C stream interrupt req

H2C MM interrupt req

C2H stream interrupt req

C2H MM interrupt req

Error interrupt

Indirect interrupt

Direct interrupt

Write to Interrupt Ring

Interrupt 
msg

PCIe 
Controller

X20891-051619

The Interrupt Engine gets the interrupts from H2C MM, H2C stream, C2H MM, C2H stream, or
error interrupt.

It handles the interrupts in two ways: direct interrupt or indirect interrupt. The interrupt sources
has the information that shows if it is direct interrupt or indirect interrupt. It also has the
information of the vector. If it is direct interrupt, the vector is the interrupt vector that is used to
generate the PCIe MSI-X message (the interrupt vector indix of the MSIX table). If it is indirect
interrupt, the vector is the ring index of the Interrupt Aggregation Ring. The interrupt source gets
the information of interrupt type and vector from the Descriptor Software Context, the
Completion Context, or the error interrupt register.

Direct Interrupt

For direct interrupt, the Interrupt Engine gets the interrupt vector from the source, and it then
sends out the PCIe MSI-X message directly.

Interrupt Aggregation Ring

For the indirect interrupt, it does interrupt aggregation. The following are some restrictions for
the interrupt aggregation.

• Each Interrupt Aggregation Ring can only be associated with one function. But multiple rings
can be associated with the same function.

• It supports up to three messages in the entry per interrupt source.

The Interrupt Engine processes the indirect interrupt with the following steps.

• Get the aggregation ring index from the interrupt source.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=67


• Look up the Interrupt Context.

• Write to the Interrupt Aggregation Ring.

• Send out the PCIe MSI-X message.

This following figure show the indirect interrupt block diagram.

Figure 17: Indirect Interrupt

Interrupt Context

Indirect 
Interrupt

Baddr, pidx, vec_ix, etc

Baddr, pidx, vec_ix, etc

Baddr, pidx, vec_ix, etc

0

255

H2C 
Contexts

C2H 
Contexts

CMPT 
Contexts

Interrupt
message

Write to 
Interrupt 

Ring

X21067-100818

The Interrupt Context includes the information of the Interrupt Aggregation Ring. It has 256
entries to support up to 256 Interrupt Aggregation Rings.

The following is the Interrupt Context Structure (0x8).

Table 18: Interrupt Context Structure (0x8)

Signal Bit Owner Description
at [82] Driver 1'b0: un-translated address

1'b1: translated address

pidx [81:70] DMA Producer Index

page_size [69:67] Driver Interrupt Aggregation Ring size:
0: 4 KB
1: 8 KB
2: 12 KB
3: 16 KB
4: 20 KB
5: 24 KB
6: 28 KB
7: 32 KB

baddr_4k [66:15] Drive Base address of Interrupt Aggregation Ring – bit
[63:12]

color [14] DMA Color bit

int_st [13] DMA Interrupt State:
0: WAIT_TRIGGER
1: ISR_RUNNING

Rsvd [12] NA Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=68


Table 18: Interrupt Context Structure (0x8) (cont'd)

Signal Bit Owner Description
vec [11:1] Driver Interrupt vector index in msix table

valid [0] Driver Valid

The software needs to size the Interrupt Aggregation Ring appropriately. Each source can send
up to three messages to the ring. Therefore, the size of the ring needs satisfy the following
formula.

Number of entry ≥ 3 x number of queues

The Interrupt Context is programmed by the context access. The QDMA_IND_CTXT_CMD.Qid
has the ring index, which is from the interrupt source. The operation of MDMA_CTXT_CMD_CLR
can clear all of the bits in the Interrupt Context. The MDMA_CTXT_CMD_INV can clear the valid
bit.

• Context access through QDMA_TRQ_SEL_IND:

○ QDMA_IND_CTXT_CMD.Qid = Ring index

○ QDMA_IND_CTXT_CMD.Sel = MDMA_CTXT_SEL_INT_COAL (0x8)

○ QDMA_IND_CTXT_CMD.cmd.Op =

MDMA_CTXT_CMD_WR

MDMA_CTXT_CMD_RD

MDMA_CTXT_CMD_CLR

MDMA_CTXT_CMD_INV

After it looks up the Interrupt Context, it then writes to the Interrupt Aggregation Ring. It also
updates the Interrupt Context with the new PIDX, color, and the interrupt state.

This is the Interrupt Aggregation Ring entry structure. It has 8B data.

Table 19: Interrupt Aggregation Ring Entry Structure

Signal Bit Owner Description
Coal_color [63:63] DMA The color bit of the Interrupt Aggregation Ring.

This bit inverts every time pidx wraps around on
the Interrupt Aggregation Ring.

Qid [62:39] DMA This is from Interrupt source. Queue ID.

Int_type [38:38] DMA 0: H2C
1: C2H

Rsvd [37:37] DMA Reserved

Stat_desc [36:0] DMA This is the status descriptor of the Interrupt source.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=69


The following is the information in the stat_desc.

Table 20: stat_desc Information

Signal Bit Owner Description
Error [36:35] DMA This is from interrupt source: c2h_err[1:0], or

h2c_err[1:0].

Int_st [34:33] DMA This is from Interrupt source. Interrupt state.
0: WRB_INT_ISR
1: WRB_INT_TRIG
2: WRB_INT_ARMED

Color [32:32] DMA This is from Interrupt source. This bit inverts every
time pidx wraps around and this field gets copied
to color field of descriptor.

Cidx [31:16] DMA This is from Interrupt source. Cumulative
consumed pointer.

Pidx [15:0] DMA This is from Interrupt source. Cumulative pointer of
total interrupt Aggregation Ring entry written.

When the software allocates the memory space for the Interrupt Aggregation Ring, the
coal_color starts with 1'b0. The software needs to initialize the color bit of the Interrupt
Context to be 1'b1. When the hardware writes to the Interrupt Aggregation Ring, it reads color
bit from the Interrupt Context, and writes it to the entry. When the ring wraps around, the
hardware will flip the color bit in the Interrupt Context. In this way, when the software reads
from the Interrupt Aggregation Ring, it will know which entries got written by the hardware by
looking at the color bit.

The software reads the Interrupt Aggregation Ring to get the Qid, and the int_type (H2C or
C2H). From the Qid, the software can identify whether the queue is stream or MM.

The stat_desc in the Interrupt Aggregation Ring is the status descriptor from the Interrupt
source. When the status descriptor is disabled, the software can get the status descriptor
information from the Interrupt Aggregation Ring.

There can be two cases:

• The interrupt source is C2H stream. Then it is the status descriptor of the C2H Completion
Ring. The software can read the pidx of the C2H Completion Ring.

• The interrupt source is others (H2C stream, H2C MM, C2H MM). Then it is the status
descriptor of that source. The software can read the cidx.

Finally, the Interrupt Engine sends out the PCIe MSI-X message using the interrupt vector from
the Interrupt Context.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=70


When the PCIe MSI-X interrupt is received by the Host, the software reads the Interrupt
Aggregation Ring to determine which queue needs service. After the software reads the ring, it
will do a dynamic pointer update for the software CIDX to indicate the cumulative pointer that
the software reads to. The software does the dynamic pointer update using the register
QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000). If the software CIDX is equal to the PIDX, this
will trigger a write to the Interrupt Context on the interrupt state of that queue. This is to
indicate the QDMA that the software already reads all of the entries in the Interrupt Aggregation
Ring. If the software CIDX is not equal to the PIDX, it will send out another PCIe MSI-X message.
Therefore, the software can read the Interrupt Aggregation Ring again. After that, the software
can do a pointer update of the interrupt source ring. For example, if it is C2H stream interrupt,
the software will update pointer of the interrupt source ring, which is the C2H Completion Ring.

These are the steps for the software:

1. After the software gets the PCIe MSI-X message, it reads the Interrupt Aggregation Ring
entries.

2. The software uses the coal_color bit to identify the written entries. Each entry has Qid
and Int_type (H2C or C2H). From the Qid and Int_type, the software can check if it is
stream or MM. This points to a corresponding source ring. For example, if it is C2H stream,
the source ring is the C2H Completion Ring. The software can then read the source ring to
get information, and do a dynamic pointer update of the source ring after that.

3. After the software finishes reading of all written entries in the Interrupt Aggregation Ring, it
does one dynamic pointer update of the software cidx using the register
QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000). The Qid in the register is the Qid in the
last written entry. This communicates to the hardware of the Interrupt Aggregation Ring
pointer used by the software.

If the software cidx is not equal to the pidx, the hardware will send out another PCIe MSI-
X message, so that the software can read the Interrupt Aggregation Ring again.

When the software does the dynamic pointer update for the Interrupt Aggregation Ring using
the register QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000), it sends the ring index of the
Interrupt Aggregation Ring.

The following diagram shows the indirect interrupt flow. The Interrupt module gets the interrupt
requests. It first writes to the Interrupt Aggregation Ring. Then it waits for the write completions.
After that, it sends out the PCIe MSI-X message. The interrupt requests can keep on coming, and
the Interrupt module keeps on processing them. In the meantime, the software reads the
Interrupt Aggregation Ring, and it does the dynamic pointer update. If the software CIDX is not
equal to the PIDX, it will send out another PCIe MSI-X message.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=71


Figure 18: Interrupt Flow

Host
Interrupt 
Module

Write to Interrupt Ring

Write completion

Send int msg

C2H int req/H2C int req/
Error int

Int req

Send int msg

Int req

Write to Interrupt Ring

Write completion

Send int msg

Int point upd

X20890-052418

Error Interrupt

There are Leaf Error Aggregators in different places. They log the errors and propagate the errors
to the Central Error Aggregator. Each Leaf Error Aggregator has an error status register and an
error mask register. The error mask is enable mask. Only when the error mask is enabled, the Leaf
Error Aggregator will propagate the error to the Central Error Aggregator.

The Central Error Aggregator aggregates all of the errors together. When any error occurs, it can
generate an Error Interrupt if the err_int_arm bit is set in the error interrupt register
QDMA_GLBL_ERR_INT (0B04). The err_int_arm bit is set by the software and cleared by the
hardware when the Error Interrupt is taken by the Interrupt Engine. The Error Interrupt is for all
of the errors including the H2C errors and C2H errors. The Software must set this
err_int_arm bit to generate interrupt again.

The Error Interrupt supports the direct interrupt only. Keep the en_coal bit unset in the error
interrupt register QDMA_GLBL_ERR_INT. The interrupt aggregation entry write will be blocked
in the case of fatal error such as parity and double bit ECC error causing the QDMA to hang
without the software noticing it.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=72


The Error Interrupt gets the vector from the error interrupt register QDMA_GLBL_ERR_INT. For
the direct interrupt, the vector is the interrupt vector index of the msix table.

Here are the processes of the Error Interrupt.

1. Reads the Error Interrupt register QDMA_C2H_GLBL_INT (0B04).

2. Sends out the PCIe MSI-X message.

The following figure shows the error interrupt register block diagram.

Figure 19: Error Interrupt Handling

Ar
bi

tr
at

io
n

H2C Interrupt

C2H Interrupt

Error Interrupt

Interrupt
ARMed  

ARM bit

Error 
Aggregator

Interrupt 
Handling

X20602-061018

Legacy Interrupt

The QDMA Subsystem for PCIe supports the legacy interrupt for physical function, and it is
expected that the single queue will be associated with interrupt.

To enable the legacy interrupt, the software needs to set the en_lgcy_intr bit in the register
QDMA_GLBL_INTERRUPT_CFG (0x288). When en_lgcy_intr is set, the QDMA will not send
out the MSI or MSI-X interrupt.

When the legacy interrupt wire INTA, INTB, INTC, or INTD is asserted, the QDMA hardware sets
the lgcy_intr_pending bit in the QDMA_GLBL_INTERRUPT_CFG (0x288) register. When
the software receives the legacy interrupt, it needs to clear the lgcy_intr_pending bit. The
hardware will keep the legacy interrupt wire asserted until the software clears the
lgcy_intr_pending bit.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=73


Queue Management

Function Map Table

The Function Map Table is used to allocate queues to each function. The index into the RAM is
the function number. Each entry contains the base number of the physical QID and the number
of queues allocated to the function. It provides a function based, queue access protection
mechanism by translating and checking accesses to logical queues (through
QDMA_TRQ_SEL_QUEUE_PF and QDMA_TRQ_SEL_QUEUE_VF address space) to their physical
queues. Direct register accesses to queue space beyond what is allocated to the function in the
table will be canceled and an error will be logged.

The table can be programmed through the QDMA_TRQ_SEL_FMAP address space for functions
0-255, and qids less than 2048. All functions can be accessed through the indirect context
register space (QMD_IND_CTXT* registers, QDMA_IND_CTXT_CMD.sel = 0xC). When accessed
through indirect context register space, the context structure is defined by the Function Map
Context Structure table. Because these spaces only exists in the PF address map, only a physical
function can modify this table.

Table 21: Function Map Context Structure (0xC)

Bits Bit Width Field Name Description
[255:44] Reserved

[43:32] 12 Qid_max The maximum number of queues this function will have.

[31:11] Reserved

[10:0] 11 Qid_base The base queue ID for the function.

Context Programming

• Program all eight mask registers to 1. They are:

○ QDMA_IND_CTXT_MASK_0 (0x824) to

○ QDMA_IND_CTXT_MASK_7 (0x840)

• Program context values to the following registers:

○ QDMA_IND_CTXT_DATA_0 (0x804) to

○ QDMA_IND_CTXT_DATA_7 (0x820)

○ Refer to 'Software Descriptor Context Structure', 'C2H Prefetch Context Structure' and
'C2H Prefetch Context Structure' to program the context data registers.

• Program the context command register QDMA_IND_CTXT_CMD (0x844) to program any
context to corresponding Queue.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=74


Note:

• Qid is given in bits [17:7].

• Opcode bits [6:5] selects what operations must be done.

• The context that is accessed is given in bits [4:1].

• Context programing write/read does not occur when bit [0] is set.

Queue Setup

• Clear Descriptor Software Context.

• Clear Descriptor Hardware Context.

• Clear Descriptor Credit Context.

• Set-up Descriptor Software Context.

• Set-up PasID Context (need to use the same ID between H2C/C2H Queues).

• Clear Prefetch Context.

• Clear Completion Context.

• Set-up Completion Context.

○ If interrupts/status writes are desired (enabled in the Completion Context), an initial
Completion CIDX update is required to send the hardware into a state where it is sensitive
to trigger conditions. This initial CIDX update is required, because when out of reset, the
hardware initializes into an unarmed state.

• Set-up Prefetch Context.

Queue Teardown

Queue Tear-down (C2H Stream):

• Invalidate/Clear Descriptor Software Context.

• Send Marker packet to drain the pipeline.

• Wait for Marker completion.

• Invalidate/Clear Prefetch Context.

• Invalidate/Clear Completion Context.

• Invalidate Timer Context (clear cmd is not supported).

Queue Tear-down (H2C Stream & MM):

• Invalidate/Clear Descriptor Software Context.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=75


Virtualization
QDMA implements SR-IOV passthrough virtualization where the adapter exposes a separate
virtual function (VF) for use by a virtual machine (VM). A physical function (PF) can be optionally
made privileged with full access to QDMA registers and resources, but only VFs implement per
queue pointer update registers and interrupts. VF drivers must communicate with the driver
attached to the PF through the mailbox for configuration, resource allocation, and exception
handling. The QDMA implements function level reset (FLR) to enable operating system on VM to
reset the device without interfering with the rest of the platform.

Table 22: Privileged Access

Type Notes
Queue context/other control
registers

Registers for Context access only controlled by PFs (All 4 PFs).

Status and statistics registers Mainly PF only registers. VFs need to coordinate with a PF driver for error handling. VFs
need to communicate through the mailbox with driver attached to PF.

Data path registers Both PFs and VFs must be able to write the registers involved in data path without needing
to go through a hypervisor. Pointer update for H2C/C2H Descriptor Fetch can be done
directly by VF or PF for the queues associated with the function using its own BAR space.
Any pointer updates to queue that do not belong to the function will be dropped with error
logged.

Other protection
recommendations

Turn on IOMMU to protect bad memory accesses from VMs.

PF driver and VF driver
communication

The VF driver needs to communicate with the PF driver to request operations that have
global effect. This communication channel needs this ability to pass messages and
generate interrupts. This communication channel utilizes a set of hardware mailboxes for
each VF.

Mailbox

In a virtualized environment, the driver attached to PF has enough privilege to program and
access QDMA registers. For all the lesser privileged functions, certain PFs and all VFs must
communicate with privileged drivers using the mailbox mechanism. The communication API must
defined by the driver. The QDMA IP does not define it.

Each function (both PF and VF) has an inbox and an outbox that can fit the message size of
128B. VF accesses its own mailbox, and PF accesses its own mailbox and all the functions (PF or
VF) associated with that PF. The QDMA mailbox allows the following access:

• From a VF to the associated PF.

• From a PF to any VF belonging to its own virtual function group (VFG).

• From a PF (typically a driver that does not have access to QDMA registers) to another PF.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=76


Figure 20: Mailbox

VF0

Inbox Outbox

VF1

Inbox Outbox

VFn

Inbox Outbox

PF PF

Inbox Outbox

Privileged PF Non-Privileged PF

X21107-062118

VF To PF Messaging

VF is allowed to post one message to target PF mailbox until the target function (PF) accepts it.
Before posting the message the source function should make sure its o_msg_status is cleared,
then the VF can write the message to its Outgoing Message Registers. After finishing message
writing, the VF driver sends msg_send command through write 0x1 at the control/status
register (CSR) address 0x1004. The mailbox hardware then informs the PF driver by asserting
i_msg_status field.

The function driver should enable the periodic polling of the i_msg_status to check the
availability of incoming messages. At a PF side, i_msg_status = 0x1 indicates one or more
message is pending for the PF driver to pick up. The cur_src_fn in the Mailbox Status Register
gives the function ID of the first pending message. The PF driver should then set Mailbox Target
Function Register to the source function ID of the first pending message. Then access to a PF’s
Incoming Message Registers is indirectly, which means the mailbox hardware will always return
the corresponding message bytes sent by the Target function. Upon finishing the message
reading, the PF driver should also send msg_rcv command through write 0x2 at the CSR
address 0x1004. The hardware will deassert the o_msg_status at the source function side.
The following figure illustrates the messaging flow from a VF to PF at both the source and
destination sides.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=77


Figure 21: VF to PF Messaging Flow

VF driver (n= vf_id) PF driver

VF  (#n) to PF Message Flow
Status polling can be changed to interrupt driven

Msg available?

N

Y

O_Msg_status ?

N

Write msg

Y

Send msg_send command

i_queue_status?
N

Set target FN_ID = n

Y

Read incoming msg

Send msg_rcv command

Send msg_pop command

X21105-062118

PF To VF Messaging

The messaging flow from a PF to the VFs that belong to its VFG is slightly different than the VF
to PF flow because:

A PF can send messages to multiple destination functions, therefore, it may receives multiple
acknowledgments at the moment when checking the status. As illustrated in the following figure,
a PF driver must set Mailbox Target Function Register to the destination function ID before doing
any message operation; for example, checking the incoming message status, write message, or
send the command. At the VF side (receiving side), whenever a VF driver get the
i_msg_status = 0x1, the VF driver should read its Incoming Message Registers to pick up
the message. Depends on the application, the VF driver can send the msg_rcv immediately after
reading the message or after the corresponding message being processed.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=78


To avoid one-by-one polling of the status of outgoing messages, the mailbox hardware provides a
set of Acknowledge Status Registers (ASR) for each PF. Upon the mailbox receiving the msg_rcv
command from a VF, it deasserts the o_msg_status field of the source PF and it also sets the
corresponding bit in the Acknowledge Status Registers. For a given VF with function ID <N>,
acknowledge status is at:

• Acknowledge Status Register address: <N> / 32 + <0x2420 Register Address>

• Acknowledge Status bit location: <N> % 32

Note: For more information about the 0x2420 Register Address, see PF Acknowledgment Registers
(0x2420-0x243C).

The mailbox hardware asserts the ack_status filed in the Status Register (0x2400) when there
is any bit was asserted in the Acknowledge Status Register (ASR). The PF driver can poll the
ack_status before actually read out the Acknowledge status registers. The PF driver may
detect multiple completions through one register access. After being processed, the PF driver
should also write the value back to the same register address to clear the status.

Figure 22: PF to VF Messaging Flow

VF driver (n= vf_id)PF driver (msg send)

i_Msg_status ?

Y

Read incoming msg

N

N
Msg available?

O_Msg_status(n)

Y

Y

Set target FN_ID = n

Write msg

Send msg_send command

PF driver (ACK status)

N
Pending Msg

ack_status

Y

N

Read ASR register (0~7)

Write 1 clear ASR register

Y

Send msg_rcv command

X21106-062118

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=79


Mailbox Interrupts

The mailbox module supports interrupt as the alternative event notification mechanism. Each
mailbox has an Interrupt Control Register (at the offset 0x2410 for a PF, or at the offset 0x1010
for a VF). Set 1 to this register to enable the interrupt. Once the interrupt is enabled, the mailbox
will send the interrupt to the QDMA given there is any pending event for the mailbox to process,
namely, any incoming message pending or any acknowledgment for the outgoing messages.
Configure the interrupt vector through the Function Interrupt Vector Register (0x2408 for a FP,
or 0x1008 for a VF) according to the driver configuration.

Enabling the interrupt does not change the event logging mechanism, which means the user must
check the pending events through reading the Function Status Registers. The first step to
respond to an interrupt request is disabling the interrupt. It is possible that the actual number of
the pending events is more than the number of the events at the moment when the mailbox send
the interrupt.

RECOMMENDED: Xilinx recommends that the user application interrupt handler process all the pending
events that present in the status register. Upon finishing the interrupt response, the user application re-enables
the interrupt.

The mailbox will check its event status at the time the interrupt control change from disabled to
enabled. If there is any new events that arrived the mailbox between reading the interrupt status
and the re-enabling the interrupt, the mailbox will generate a new interrupt request immediately.

Function Level Reset

The function level reset (FLR) mechanism enables software to quiesce and reset Endpoint
hardware with function-level granularity. When a VF is reset, only the resources associated with
this VF is reseted. When a PF is reset, all resources of the PF, including that of its associated VFs,
will be reseted. Since FLR is a previledged operation, it must be performed by the PF driver
running in the management system.

Use Mode

• Hypervisor requests for FLR when a function is attached and detached (i.e., power on and off).

• You can request FLR as follows:

echo 1 > /sys/bus/pci/devices/$BDF/reset

where $BDF is the bus device function number of the targeted function.

FLR Process

A complete FLR process involves of three major steps.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=80


1. Pre-FLR: Pre-FLR resets all QDMA context structure, mailbox, and user logic of the target
function.

• Each function has a register called MDMA_PRE_FLR_STATUS, which keeps track of the
pre-FLR status of the function. The offset is calculated as
MDMA_PRE_FLR_STATUS_OFFSET = MB_base + 0x100, which is located at offset 0x100
from the mailbox memory space of the function. Note that PF and VF have different
MB_base. The definition of MDMA_PRE_FLR_STATUS is shown in the table below.

• The software writes 1 to MDMA_PRE_FLR_STATUS[0] (bit 0) of the target function to
initiate pre-FLR. Hardware will clear MDMA_PRE_FLR_STATUS[0] when pre-FLR
completes. Software keeps polling on MDMA_PRE_FLR_STATUS[0], and only proceeds to
the next step when the it returns 0.

Table 23: MDMA_PRE_FLR_STATUS Register

Offset Field R/W Type Width Default Description
0x100 RW 32 0

RW 32:1 0

pre_flr_st RW 0 0 1: Initiates pre-FLR
0: Pre-FLR done
It is set by the driver and
cleared by the hardware.

2. Quiesce: The software must ensure all pending transaction is completed. This can be done by
polling the Transaction Pending bit in the Device Status register (in PCIe Config Space) until it
is clear or time out after certain period of time.

3. PCIe-FLR: PCIe-FLR resets all resources of the target function in PCIe controller.

• Initiate Function Level Reset bit (bit 15 of PCIe Device Control Register) of the target
function should be set to 1 to trigger FLR process in PCIe.

OS Support

If the PF driver is loaded and alive (i.e., use mode 1), all three steps aforementioned are
performed by the driver. However, for UltraScale+, if an user wants to perform FLR before
loading the PF driver (i.e., use mode 2), an OS kernel patch is provided to allow OS to perform
the correct FLR sequence through functions defined in //…/source/drivers/pci/quick.c.

System Management

Resets

The QDMA Subsystem for PCIe supports all the PCIe defined resets, such as link down, reset, hot
reset, and function level reset (FLR) (supports only Quiesce mode).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=81


Soft Reset

Reset the QDMA logic through the soft_reset_n port. This port needs to be held in reset for
a minimum of 100 clock cycles (axi_aclk cycles).

This does not reset PCIe hard block. It resets only the DMA portion of logic.

VDM

Vendor Defined Messages (VDMs) are an expansion of the existing messaging capabilities with
PCI Express. PCI Express Specification defines additional requirements for Vendor Defined
Messages, header formats and routing information. For details, see PCI-SIG Specifications (http://
www.pcisig.com/specifications).

QDMA allows the transmission and reception of VDMs. To enable this feature, select Enable
Bridge Slave Mode in the Vivado Customize IP dialog box.

RX Vendor Defined Messages are stored in shallow FIFO before they are transmitted to the
output port. When there are many back-to-back VDM messages, FIFO will overflow and these
message will be dropped. So it is better to repeat VDM messages at regular intervals.

Throughput for VDMs depend on several factors: PCIe speed, data width, message length, and
the internal VDM pipeline.

Internal VDM pipelines cannot handle back-to-back messages. Pipeline throughput can only
handle one in every four accesses, which is about 25% efficiency from the host access.

IMPORTANT! Do not use back-to-back VDM access.

RX Vendor Defined Messages:

1. When QDMA receives a VDM, the incoming messages will be received on the st_rx_msg
port.

2. The incoming data stream will be captured on the st_rx_msg_data port (per-DW).

3. The user application needs to drive the st_rx_msg_rdy to signal if it can accept the
incoming VDMs.

4. Once st_rx_msg_rdy is High, the incoming VDM is forwarded to the user application.

5. The user application needs to store this incoming VDMs and track of how many packets were
received.

For port details, see VDM Ports.

TX Vendor Defined Messages:

1. To enable transmission of VDM from QDMA, program the TX Message registers in the Bridge
through the Slave interface.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  82Send Feedback

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=82


2. Bridge has TX Message Control, Header L (bytes 8-11), Header H (bytes 12-15) and TX
Message Data registers as shown in the PCIe TX Message Data FIFO Register
(TX_MSG_DFIFO) table below.

3. Issue a Write to offset 0xE64 through Slave interface for the TX Message Header L register.

4. Program offset 0xE68 for the required VDM TX Header H register.

5. Program up to 16DW of Payload for the VDM message starting from DW0 – DW15 by
sending Writes to offset 0xE6C one by one.

6. Program the msg_routing, msg_code, data length, requester function field and
msg_execute field in the TX_MSG_CTRL register in offset 0xE60 to send the VDM TX
packet.

7. The TX Message Control register also indicates the completion status of the message in bit
23. User needs to read this bit to confirm the successful transmission of the VDM packet.

8. All the fields in the registers are RW except bit 23 (msg_fail) in TX Control register which is
cleared by writing a 1.

9. VDM TX packet will be sent on the AXI-ST RQ transmit interface.

For details about the registers, see:

• PCIe TX Message Control Register (0xE60) (TX_MSG_CTRL)

• PCIe TX Message Header L Register (0xE64) (TX_MSG_HDR_L)

• PCIe TX Message Header H Register (0xE68) (TX_MSG_HDR_H)

• PCIe TX Message Data FIFO Register (0xE6C) (TX_MSG_DFIFO)

Config Extend

PCIe extended interface can be selected for more configuration space. When the Configuration
Extend Interface is selected, you are responsible for adding logic to extend the interface to make
it work properly.

Expansion ROM

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB. According to
the PCI 3.0 Local Bus Specification (PCI-SIG Specifications (http://www.pcisig.com/specifications)),
the maximum size for the Expansion ROM BAR should be no larger than 16 MB. Selecting an
address space larger than 16 MB can result in a non-compliant core.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  83Send Feedback

http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=83


Errors

Linkdown Errors

If the PCIe link goes down during DMA operations, transactions may be lost and the DMA may
not be able to complete. In such cases, the AXI4 interfaces will continue to operate. Outstanding
read requests on the C2H Bridge AXI4 MM interface receive correct completions or completions
with a slave error response. The DMA will log a link down error in the status register. It is the
responsibility of the driver to have a timeout and handle recovery of a link down situation.

Parity Errors

Pass through parity is supported on the primary data paths. Parity error can occur on C2H
streaming, H2C streaming, Memory Mapped, Bridge Master and Bridge Slave interfaces. Parity
error on Write payload can occur on C2H streaming, Memory Mapped and Bridge Slave. Double
bit error on write payload and read completions for Bridge Slave interface causes parity error.
Parity errors on requests to the PCIe are dropped by the core, and a fatal error is logged by the
PCIe. Parity errors are not recoverable and can result in unexpected behavior. Any DMA during
and after the parity error should be considered invalid.

DMA Errors

Error Aggregator

There are Leaf Error Aggregators in different places. They log the errors and propagate them to
the central place. The Central Error Aggregator aggregates the errors from all of the Leaf Error
Aggregators.

The QDMA_GLBL_ERR_STAT register is the error status register of the Central Error Aggregator.
The bit fields indicate the locations of Leaf Error Aggregators. Then, look for the error status
register of the individual Leaf Error Aggregator to find the exact error. For details, see 
QDMA_GLBL_ERR_STAT (0X248).

The register QDMA_GLBL_ERR_MASK is the error mask register of the Central Error Aggregator.
It has the mask bits for the corresponding errors. When the mask bit is set, it will enable the
corresponding error to be propagated to the next level to generate an Interrupt. The detail
information of the error generated interrupt is described in the interrupt section. For details, see 
QDMA_GLBL_ERR_MASK (0X24C). Error interrupt is controlled by QDMA_GLBL_ERR_INT
(0xB04).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=84


Each Leaf Error Aggregator has an error status register and an error mask register. The error
status register logs the error. The hardware sets the bit when the error happens, and the
software can write 1'b1 to clear the bit if needed. The error mask register has the mask bits for
the corresponding errors. When the mask bit is set, it will enable the propagation of the
corresponding error to the Central Error Aggregator. The error mask register does not affect the
error logging to the error status register.

Figure 23: Error Aggregator

Global Error Aggregator

H2C_ST
Leaf Error 

Aggregator

Bridge Leaf 
Error 

Aggregator

H2C Leaf 
Error 

Aggregator

IND CTXT 
CMD Leaf 

Error 
Aggregator

C2H_ST 
Leaf Error 

Aggregator

C2H MM 
1/0 Leaf 

Error 
Aggregator

H2C MM 
1/0 Leaf 

Error 
Aggregator

TRQ Leaf 
Error 

Aggregator

DSC Leaf 
Error 

Aggregator

DBE Leaf 
Error 

Aggregator

SBE Leaf 
Error 

Aggregator

X21109-062118

Links to the error status registers and the error mask registers of the Leaf Error Aggregators are
as follows.

C2H Streaming Error

QDMA_C2H_ERR_STAT (0xAF0): This is the error status register of the C2H streaming errors.

QDMA_C2H_ERR_MASK (0xAF4): This the error mask register. The software can set the bit to
enable the corresponding C2H streaming error to be propagated to the Central Error Aggregator.

QDMA_C2H_FIRST_ERR_QID (0xB30): This is the Qid of the first C2H streaming error.

C2H MM Error

QDMA_C2H MM Status (0x1040)

C2H MM Error Code Enable Mask (0x1054)

C2H MM Error Code (0x1058)

C2H MM Error Info (0x105C)

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=85


QDMA H2C0 MM Error

H2C0 MM Status (0x1240)

H2C MM Error Code Enable Mask (0x1254)

H2C MM Error Code (0x1258)

H2C MM Error Info (0x125C)

TRQ Error

QDMA_GLBL_TRQ_ERR_STS (0x260): This is the error status register of the Trq errors.

QDMA_GLBL_TRQ_ERR_MSK (0x264): This is the error mask register.

QDMA_GLBL_TRQ_ERR_LOG_A (0x268): This is the error logging register. It shows the select,
function and the address of the access when the error happens.

Descriptor Error

QDMA_GLBL_DSC_ERR_STS (0x254)

QDMA_GLBL_DSC_ERR_MSK (0x258)

This is the error logging register. It has the QID, DMA direction, and the consumer index of the
error.

QDMA_GLBL_DSC_ERR_LOG0 (0x25C)

QDMA_GLBL_TRQ_ERR_STS (0x260): This is the error status register of the Trq errors.

RAM Double Bit Error

QDMA_RAM_DBE_STS_A (0xFC)

QDMA_RAM_DBE_MSK_A (0xF8)

RAM Single Error

QDMA_RAM_SBE_STS_A (0xF4)

QDMA_RAM_SBE_MSK_A (0xF0)

C2H Streaming Fatal Error Handling

QDMA_C2H_FATAL_ERR_STAT (0xAF8): The error status register of the C2H streaming fatal
errors.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=86


QDMA_C2H_FATAL_ERR_MASK (0xAFC): The error mask register. The SW can set the bit to
enable the corresponding C2H fatal error to be sent to the C2H fatal error handling logic.

QDMA_C2H_FATAL_ERR_ENABLE (0xB00): This register enables two C2H streaming fata error
handling processes:

• Stop the data transfer by disabling the WRQ from the C2H DMA Write Engine.

• Invert the WPL parity on the data transfer.

Port Descriptions
The QDMA Subsystem for PCIe connects directly to the PCIe Integrated Block. The data path
interfaces to the PCIe Integrated Block IP are 64, 128, 256 or 512-bits wide, and runs at up to
250 MHz depending on the configuration of the IP. The data path width applies to all data
interfaces. Ports associated with this core are described below.

The subsystem interfaces are shown in QDMA Architecture.

Table 24: Parameters

Parameter Name Description
PL_LINK_CAP_MAX_LINK_WIDTH Phy lane width

C_M_AXI_ADDR_WIDTH AXI4 Master interface Address width

C_M_AXI_ID_WIDTH AXI4 Master interface id width

C_M_AXI_DATA_WIDTH AXI4 Master interface data width
64 or 128 or 256 or 512 bits

C_S_AXI_ID_WIDTH AXI4 Bridge Slave interface id width

C_S_AXI_ADDR_WIDTH AXI4 Bridge Slave interface Address width

C_S_AXI_DATA_WIDTH AXI4 Bridge Slave interface data width
64 or 128 or 256 or 512 bits

C_S_AXI_ID_WIDTH AXI4 Bridge Slave interface id width

AXI_DATA_WIDTH AXI4 DMA transfer data width.
Example 64 or 128 or 256 or 512 bits

QDMA Global Ports
Table 25: QDMA Global Port Descriptions

Port Name I/O Description
sys_clk I Should be driven by the ODIV2 port of reference clock

IBUFDS_GTE4. See the UltraScale+ Devices Integrated Block for PCI
Express LogiCORE IP Product Guide (PG213).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  87Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=87


Table 25: QDMA Global Port Descriptions (cont'd)

Port Name I/O Description
sys_clk_gt I PCIe reference clock. Should be driven from the port of reference

clock IBUFDS_GTE4. See the UltraScale+ Devices Integrated Block for
PCI Express LogiCORE IP Product Guide (PG213).

sys_rst_n I Reset from the PCIe edge connector reset signal.

pci_exp_txp
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_exp_txn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

O PCIe TX serial interface.

pci_exp_rxp
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

pci_exp_rxn
[PL_LINK_CAP_MAX_LINK_WIDTH-1:0]

I PCIe RX serial interface.

user_lnk_up O Output active-High identifies that the PCI Express core is linked up
with a host device.

axi_aclk O User clock out. PCIe derived clock output for for all interface signals
output from and input to QDMA. Use this clock to drive inputs and
gate outputs from QDMA.

axi_aresetn O User reset out. AXI reset signal synchronous with the clock provided
on the axi_aclk output. This reset should drive all corresponding AXI
Interconnect aresetn signals.

soft_reset_n I Soft reset (active-Low). Use this port to assert reset and reset the
DMA logic. This will reset only the DMA logic. User should assert and
de-assert this port.

phy_ready O Phy ready out status.

All AXI interfaces are clocked out and in by the axi_aclk signal. You are responsible for using
axi_aclk to driver all signals into the DMA.

AXI Bridge Master Ports
Table 26: AXI4 Memory Mapped Master Bridge Read Address Interface Port
Descriptions

Signal Name I/O Description
m_axib_araddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped read to the user
logic from the host.

m_axib_arid
[C_M_AXI_ID_WIDTH-1:0]

O Master read address ID.

m_axib_arlen[7:0] O Master read address length.

m_axib_arsize[2:0] O Master read address size.

m_axib_arprot[2:0] O Master read protection type.

m_axib_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axib_araddr.

m_axib_arready I Master read address ready.

m_axib_arlock O Master read lock type.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  88Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=88


Table 26: AXI4 Memory Mapped Master Bridge Read Address Interface Port
Descriptions (cont'd)

Signal Name I/O Description
m_axib_arcache[3:0] O Master read memory type.

m_axib_arburst[1:0] O Master read address burst type.

m_axib_aruser[28:0] O Master read user bits.
m_axib_aruser[7:0] = function number
m_axib_aruser[15:8] = reserved
m_axib_aruser[18:16] = bar id
m_axib_aruser[26:19] = vf offset
m_axib_aruser[28:27] = vf id

Table 27: AXI4 Memory Mapped Master Bridge Read Interface Port Descriptions 

Signal Name I/O Description
m_axib_rdata
[C_M_AXI_DATA_WIDTH-1:0]

I Master read data.

m_axib_ruser
[C_M_AXI_DATA_WIDTH/8-1:0]

I m_axib_ruser[C_M_DATA_WIDTH/8-1:0] = read data odd parity, per
byte.

m_axib_rid
[C_M_AXI_ID_WIDTH-1:0]

I Master read ID.

m_axib_rresp[1:0] I Master read response.

m_axib_rlast I Master read last.

m_axib_rvalid I Master read valid.

m_axib_rready O Master read ready.

Table 28: AXI4 Memory Mapped Master Bridge Write Address Interface Port
Descriptions 

Signal Name I/O Description
m_axib_awaddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped write to the user
logic from the host.

m_axib_awid
[C_M_AXI_ID_WIDTH-1:0]

O Master write address ID.

m_axib_awlen[7:0] O Master write address length.

m_axib_awsize[2:0] O Master write address size.

m_axib_awburst[1:0] O Master write address burst type.

m_axib_awprot[2:0] O Master write protection type.

m_axib_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axib_araddr.

m_axib_awready I Master write address ready.

m_axib_awlock O Master write lock type.

m_axib_awcache[3:0] O Master write memory type.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=89


Table 28: AXI4 Memory Mapped Master Bridge Write Address Interface Port
Descriptions (cont'd)

Signal Name I/O Description
m_axib_awuser[28:0] O Master write user bits.

m_axib_awuser[7:0] = function number
m_axib_awuser[15:8] = reserved
m_axib_awuser[18:16] = bar id
m_axib_awuser[26:19] = vf offset
m_axib_awuser[28:27] = vf id

Table 29: AXI4 Memory Mapped Master Bridge Write Interface Port Descriptions 

Signal Name I/O Description
m_axib_wdata
[C_M_AXI_DATA_WIDTH-1:0]

O Master write data.

m_axib_wuser
[C_M_AXI_DATA_WIDTH/8-1:0]

O m_axib_wuser
[C_M_AXI_DATA_WIDTH/8-1:0] = write data odd parity, per byte.

m_axib_wlast O Master write last.

m_axib_wstrb
[C_M_AXI_DATA_WIDTH/8-1:0]

O Master write strobe.

m_axib_wvalid O Master write valid.

m_axib_wready I Master write ready.

Table 30: AXI4 Memory Mapped Master Bridge Write Response Interface Port
Descriptions 

Signal Name I/O Description
m_axib_bvalid I Master write response valid.

m_axib_bresp[1:0] I Master write response.

m_axib_bid
[C_M_AXI_ID_WIDTH-1:0]

I Master write response ID.

m_axib_bready O Master response ready.

AXI Bridge Slave Ports
Table 31: AXI4 Bridge Slave Write Address Interface Port Descriptions

Port Name I/O Description
s_axib_awid
[C_S_AXI_ID_WIDTH-1:0]

I Slave write address ID.

s_axib_awaddr
[C_S_AXI_ADDR_WIDTH-1:0]

I Slave write address.

s_axib_awuser[7:0] I s_axib_awuser[7:0] indicates function_number.

s_axib_awregion[3:0] I Slave write region decode.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=90


Table 31: AXI4 Bridge Slave Write Address Interface Port Descriptions (cont'd)

Port Name I/O Description
s_axib_awlen[7:0] I Slave write burst length.

s_axib_awsize[2:0] I Slave write burst size.

s_axib_awburst[1:0] I Slave write burst type.

s_axib_awvalid I Slave address write valid.

s_axib_awready O Slave address write ready.

Table 32: AXI4 Bridge Slave Write Interface Port Descriptions

Port Name I/O Description
s_axib_wdata
[C_S_AXI_DATA_WIDTH-1:0]

I Slave write data.

s_axib_wstrb
[C_S_AXI_DATA_WIDTH/8-1:0]

I Slave write strobe.

s_axib_wlast I Slave write last.

s_axib_wvalid I Slave write valid.

s_axib_wready O Slave write ready.

s_axib_wuser
[C_S_AXI_DATA_WIDTH/8-1:0]

I s_axib_wuser [C_S_AXI_DATA_WIDTH/8-1:0] = write data odd parity,
per byte.

Table 33: AXI4 Bridge Slave Write Response Interface Port Descriptions

Port Name I/O Description
s_axib_bid
[C_S_AXI_ID_WIDTH-1:0]

O Slave response ID.

s_axib_bresp[1:0] O Slave write response.

s_axib_bvalid O Slave write response valid.

s_axib_bready I Slave response ready.

Table 34: AXI4 Bridge Slave Read Address Interface Port Descriptions

Port Name I/O Description
s_axib_arid
[C_S_AXI_ID_WIDTH-1:0]

I Slave read address ID.

s_axib_araddr
[C_S_AXI_ADDR_WIDTH-1:0]

I Slave read address.

s_axib_arregion[3:0] I Slave read region decode.

s_axib_arlen[7:0] I Slave read burst length.

s_axib_arsize[2:0] I Slave read burst size.

s_axib_arburst[1:0] I Slave read burst type.

s_axib_arvalid I Slave read address valid.

s_axib_arready O Slave read address ready.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=91


Table 35: AXI4 Bridge Slave Read Interface Port Descriptions

Port Name I/O Description
s_axib_rid
[C_S_AXI_ID_WIDTH-1:0]

O Slave read ID tag.

s_axib_rdata
[C_S_AXI_ID_WIDTH-1:0]

O Slave read data.

s_axib_ruser
[C_S_AXI_DATA_WIDTH/8-1:0]

O s_axib_aruser[C_S_AXI_ID_WIDTH/8-1:0] = read data odd parity, per
byte.

s_axib_rresp[1:0] O Slave read response.

s_axib_rlast O Slave read last.

s_axib_rvalid O Slave read valid.

s_axib_rready I Slave read ready.

AXI4-Lite Master Ports
Table 36: Config AXI4-Lite Memory Mapped Write Master Interface Port Descriptions 

Signal Name I/O Description
m_axil_awaddr[31:0] O This signal is the address for a memory mapped write to the user

logic from the host.

m_axil_awprot[2:0] O Protection type.

m_axil_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axil_awaddr.

m_axil_awready I Master write address ready.

m_axil_awuser [29:0] m_axil_awuser[7:0] = function number
m_axil_awuser[15:8]= Reserved
m_axil_awuser[18:16] = bar id
m_axil_awuser[26:19] = vfg offset
m_axil_awuser[28:27]= vfg id

m_axil_wdata[31:0] O Master write data.

m_axil_wstrb[3:0] O Master write strobe.

m_axil_wvalid O Master write valid.

m_axil_wready I Master write ready.

m_axil_bvalid I Master response valid.

m_axil_bresp[1:0] I

m_axil_bready O Master response valid.

Table 37: Config AXI4-Lite Memory Mapped Read Master Interface Port Descriptions 

Signal Name I/O Description
m_axil_araddr[31:0] O This signal is the address for a memory mapped read to the user

logic from the host.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=92


Table 37: Config AXI4-Lite Memory Mapped Read Master Interface Port Descriptions
(cont'd)

Signal Name I/O Description
m_axil_aruser[28:0] m_axil_aruser[7:0] = function number

m_axil_aruser[15:8] = reserved
m_axil_aruser[18:16] = bar id
m_axil_aruser[26:19] = vfg offset
m_axil_aruser[28:27] = vfg id

m_axil_arprot[2:0] O Protection type.

m_axil_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axil_araddr.

m_axil_arready I Master read address ready.

m_axil_rdata[31:0] I Master read data.

m_axil_rresp[1:0] I Master read response.

m_axil_rvalid I Master read valid.

m_axil_rready O Master read ready.

AXI4-Lite Slave Ports
Table 38: Config AXI4-Lite Memory Mapped Write Slave Interface Signals 

Signal Name I/O Description
s_axil_awaddr[31:0] I This signal is the address for a memory mapped write to the DMA

from the user logic.
s_axil_awaddr[31:28]:
4’b0011 – QDMA register
4’b0000 – Bridge register

s_axil_awvalid I The assertion of this signal means there is a valid write request to
the address on s_axil_awaddr.

s_axil_awuser I [7:0]: Function number

s_axil_awprot[2:0] I Protection type.(unused)

s_axil_awready O Slave write address ready.

s_axil_wdata[31:0] I Slave write data.

s_axil_wstrb[3:0] I Slave write strobe.

s_axil_wvalid I Slave write valid.

s_axil_wready O Slave write ready.

s_axil_bvalid O Slave write response valid.

s_axil_bresp[1:0] O Slave write response.

s_axil_bready I Save response ready.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=93


Table 39: Config AXI4-Lite Memory Mapped Read Slave Interface Signals 

Signal Name I/O Description
s_axil_araddr[31:0] I This signal is the address for a memory mapped read to the DMA

from the user logic.
s_axil_awaddr[31:28]:
4’b0011 – QDMA register
4’b0000 – Bridge register

s_axil_arprot[2:0] I Protection type.(unused)

s_axil_arvalid I The assertion of this signal means there is a valid read request to
the address on s_axil_araddr.

s_axil_aruser I [7:0]: Function number

s_axil_arready O Slave read address ready.

s_axil_rdata[31:0] O Slave read data.

s_axil_rresp[1:0] O Slave read response.

s_axil_rvalid O Slave read valid.

s_axil_rready I Slave read ready.

AXI4 Memory Mapped DMA Ports
Table 40: AXI4 Memory Mapped DMA Read Address Interface Signals 

Signal Name Direction Description
m_axi_araddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped read to the user
logic from the DMA.

m_axi_arid [3:0] O Standard AXI4 description, which is found in the AXI4 Protocol
Specification AMBA AXI4-Stream Protocol Specification (ARM IHI
0051A).

m_axi_aruser[7:0] O [7:0]: function number

m_axi_arlen[7:0] O Master read burst length.

m_axi_arsize[2:0] O Master read burst size.

m_axi_arprot[2:0] O Protection type.

m_axi_arvalid O The assertion of this signal means there is a valid read request to
the address on m_axi_araddr.

m_axi_arready I Master read address ready.

m_axi_arlock O Lock type.

m_axi_arcache[3:0] O Memory type.

m_axi_arburst[1:0] O Master read burst type.

Table 41: AXI4 Memory Mapped DMA Read Interface Signals 

Signal Name Direction Description
m_axi_rdata
[C_M_AXI_DATA_WIDTH-1:0]

I Master read data.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  94Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=94


Table 41: AXI4 Memory Mapped DMA Read Interface Signals (cont'd)

Signal Name Direction Description
m_axi_rid [3:0] I Master read ID.

m_axi_rresp[1:0] I Master read response.

m_axi_rlast I Master read last.

m_axi_rvalid I Master read valid.

m_axi_rready O Master read ready.

m_axi_ruser
[C_M_AXI_DATA_WIDTH/8-1:0]

I Master read odd data parity, per byte. This port is enabled only in
Propagate Parity mode.

Table 42: AXI4 Memory Mapped DMA Write Address Interface Signals 

Signal Name Direction Description
m_axi_awaddr
[C_M_AXI_ADDR_WIDTH-1:0]

O This signal is the address for a memory mapped write to the user
logic from the DMA.

m_axi_awid[3:0] O Master write address ID.

m_axi_aruser[7:0] O [7:0]: function number

m_axi_awlen[7:0] O Master write address length.

m_axi_awsize[2:0] O Master write address size.

m_axi_awburst[1:0] O Master write address burst type.

m_axi_awprot[2:0] O Protection type.

m_axi_awvalid O The assertion of this signal means there is a valid write request to
the address on m_axi_araddr.

m_axi_awready I Master write address ready.

m_axi_awlock O Lock type.

m_axi_awcache[3:0] O Memory type.

Table 43: AXI4 Memory Mapped DMA Write Interface Signals 

Signal Name Direction Description
m_axi_wdata
[C_M_AXI_DATA_WIDTH-1:0]

O Master write data.

m_axi_wlast O Master write last.

m_axi_wstrb[31:0] O Master write strobe.

m_axi_wvalid O Master write valid.

m_axi_wready I Master write ready.

m_axi_wuser
[C_M_AXI_DATA_WIDTH/8-1:0]

O Master write user.
m_axi_wuser[C_M_AXI_DATA_WIDTH/8-1:0] = write data odd parity,
per byte. This port is enabled only in Propagate Parity mode.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=95


Table 44: AXI4 Memory Mapped DMA Write Response Interface Signals 

Signal Name Direction Description
m_axi_bvalid I Master write response valid.

m_axi_bresp[1:0] I Master write response.

m_axi_bid[3:0] I Master response ID.

m_axi_bready O Master response ready.

AXI4-Stream H2C Ports
Table 45: AXI4-Stream H2C Port Descriptions

Port Name I/O Description
m_axis_h2c_tdata
[AXI_DATA_WIDTH-1:0]

O Data output for H2C AXI4-Stream.

m_axis_h2c_dpar
[AXI_DATA_WIDTH/8-1:0]

O Odd parity calculated bit-per-byte over m_axis_h2c_tdata.
m_axis_h2c_dpar[0] is parity calculated over m_axis_h2c_tdata[7:0].
m_axis_h2c_dpar[1] is parity calculated over m_axis_h2c_tdata[15:8]
and so on.

m_axis_h2c_tuser_qid[10:0] O Queue ID

m_axis_h2c_tuser_port_id[2:0] O Port ID

m_axis_h2c_tuser_err O If set, indicates the packet has an error. The error could be coming
from PCIe, or QDMA might have encountered a double bit error.

m_axis_h2c_tuser_mdata[31:0] O Metadata
In internal mode, QDMA passes the lower 32 bits of the H2C AXI4-
Stream descriptor on this field.

m_axis_h2c_tuser_mty[5:0] O The number of bytes that are invalid on the last beat of the
transaction. This field is 0 for a 64B transfer.

m_axis_h2c_tuser_zero_byte O When set, it indicates that the current beat is an empty beat (zero
bytes are being transferred).

m_axis_h2c_tvalid O Valid

m_axis_h2c_tlast O Indicates that this is the last cycle of the packet transfer

m_axis_h2c_tready I Ready

AXI4-Stream C2H Ports
Table 46: AXI4-Stream C2H Port Descriptions

Port Name I/O Description
s_axis_c2h_tdata
[AXI_DATA_WIDTH-1:0]

I It supports 4 data widths: 64 bits, 128 bits, 256 bits, and 512 bits.
Every C2H data packet has a corresponding C2H completion packet.

s_axis_c2h_dpar
[AXI_DATA_WIDTH/8-1:0]

I Odd parity computed as bit per byte.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=96


Table 46: AXI4-Stream C2H Port Descriptions (cont'd)

Port Name I/O Description
s_axis_c2h_ctrl_len [15:0] I Length of the packet. For ZERO byte write, the length is 0.

C2H stream packet data length is limited to 31 * descriptor size. In
older versions (such as 2018.3), C2H stream packet data length was
limited to 7 * descriptor size.

s_axis_c2h_ctrl_qid [10:0] I Queue ID.

s_axis_c2h_ctrl_has_cmpt I 1'b1: The data packet has a completion;
1'b0: The data packet doesn't have a completion.

s_axis_c2h_ctrl_marker I Marker message used for making sure pipeline is completely
flushed. After that, you can safely do queue invalidation. When this
bit is set, the imm_data bit has to be set also.

s_axis_c2h_ctrl_port_id [2:0] I Port ID.

s_axis_c2h_mty [5:0] I Empty byte in the last data packet.

s_axis_c2h_tvalid I Valid.

s_axis_c2h_tlast I Indicate last packet.

s_axis_c2h_tready O Ready.

AXI4-Stream C2H Completion Ports
Table 47: AXI4-Stream C2H Completion Port Descriptions

Port Name I/O Description
s_axis_c2h_cmpt_tdata[511:0] I Completion data from the user application. This contains

information that is written to the completion ring in the host.

s_axis_c2h_cmpt_size [1:0] I 00: 8B completion.
01: 16B completion.
10: 32B completion.
11: 64B completion

s_axis_c2h_cmpt_dpar [15:0] I Odd parity computed as bit per 32b.
s_axis_c2h_cmpt_dpar[0] is parity over s_axis_c2h_cmpt_tdata[31:0].
s_axis_c2h_cmpt_dpar[1] is parity over s_axis_c2h_cmpt_tdata[63:31]
and so on.

s_axis_c2h_cmpt_ctrl_qid[10:0] I Completion queue ID.

s_axis_c2h_cmpt_ctrl_marker I Marker message used for making sure pipeline is completely
flushed. After that, you can safely do queue invalidation.

s_axis_c2h_cmpt_ctrl_user_trig I User can trigger the interrupt and the status descriptor write if they
are enabled.

s_axis_c2h_cmpt_ctrl_cmpt_type[1:0] I 2’b00: NO_PLD_NO_WAIT. The CMPT packet does not have a
corresponding payload packet, and it does not need to wait.
2’b01: NO_PLD_BUT_WAIT. The CMPT packet does not have a
corresponding payload packet; however, it still needs to wait for the
payload packet to be sent before sending the CMPT packet.
2’b10: RSVD.
2’b11: HAS_PLD. The CMPT packet has a corresponding payload
packe, and it needs to wait for the payload packet to be sent before
sending the CMPT packet.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=97


Table 47: AXI4-Stream C2H Completion Port Descriptions (cont'd)

Port Name I/O Description
s_axis_c2h_cmpt_ctrl_wait_pld_pkt_id[1
5:0]

I The data payload packet ID that the CMPT packet needs to wait for
before it can be sent.

s_axis_c2h_cmpt_ctrl_port_id[2:0] I Port ID.

s_axis_c2h_cmpt_ctrl_col_idx[2:0] I Color index that defines if the user wants to have the color bit in the
CMPT packet and the bit location of the color bit if present.

s_axis_c2h_cmpt_ctrl_err_idx[2:0] I Error index that defines if the user wants to have the error bit in the
CMPT packet and the bit location of the error bit if present.

s_axis_c2h_cmpt_tvalid I Valid.

s_axis_c2h_cmpt_tready O Ready.

AXI4-Stream Status Ports
Table 48: AXI-ST C2H Status Port Descriptions

Port Name I/O Description
axis_c2h_status_valid O Valid per descriptor.

axis_c2h_status_qid [10:0] O QID of the packet.

axis_c2h_status_drop O The QDMA Subsystem for PCIe drops the packet if it does not have
either sufficient data buffer to store a C2H packet or does not have
enough descriptors to transfer the full packet to the host. This bit
indicates if the packet was dropped or not. A packet that is not
dropped is considered as having been accepted.
0: Packet is not dropped.
1: Packet is dropped.

axis_c2h_status_last O Last descriptor.

axis_c2h_status_cmp O 0: Dropped packet or C2H packet with has_cmpt of 1'b0.
1: C2H packet that has completions.

axis_c2h_status_error O When axis_c2h_status_error is set to 1, the descriptor fetched has an
error. When set to 0, there is no error.

Note: This port will be available starting in a 2019.2 patch release.

AXI4-Stream C2H Write Cmp Ports
Table 49: AXI-ST C2H Write Cmp Port Descriptions

Port Name I/O Description
axis_c2h_dmawr_cmp O This signal is asserted when the last data payload Wrq of the packet

gets the completion of Wcp. It is one pulse per packet.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=98


VDM Ports
Table 50: VDM Port Descriptions

Port Name I/O Description
st_rx_msg_valid O Valid

st_rx_msg_data[31:0] O Beat 1:
{REQ_ID[15:0], VDM_MSG_CODE[7:0], VDM_MSG_ROUTING[2:0],
VDM_DW_LENGTH[4:0]}
Beat 2:
VDM Lower Header [31:0]
or
{(Payload_length=0), VDM Higher Header [31:0]}
Beat 3 to Beat <n>:
VDM Payload

st_rx_msg_last O Indicate the last beat

st_rx_msg_rdy I Ready.

Note: When this interface is not used, Ready must be tied-off to 1.

RX Vendor Defined Messages are stored in shallow FIFO before they are transmitted to output
ports. When there are many back to back VDM messages, FIFO overflows and these messages
are dropped. It is best to repeat VDM messages at regular intervals.

Configuration Extend Interface Ports
The Configuration Extend interface allows the core to transfer configuration information with the
user application when externally implemented configuration registers are implemented.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=99


Table 51: Configuration Extend Interface Port Descriptions

Port Name I/O Width Description
cfg_ext_read_received O 1 Configuration Extend Read Received

The core asserts this output when it has received a
configuration read request from the link. Set when PCI Express
Extended Configuration Space Enable is selected in the user
defined configuration Capabilities tab in in the Vivado® IDE.

• All received configuration reads with
cfg_ext_register_number in the range of 0xb0-0xbf is
considered to be PCIe Legacy Extended Configuration
Space.

• All received configuration reads with
cfg_ext_register_number in the range of 0x120-13F is
considered to be PCIe Extended Configuration Space.

• All received configuration reads regardless of their address
will be indicated by 1 cycle assertion of
cfg_ext_read_received. Valid data is driven on
cfg_ext_register_number and cfg_ext_function_number.

• Only received configuration reads within the two
aforementioned ranges need to be responded by the user
application outside of the IP.

cfg_ext_write_received O 1 Configuration Extend Write Received
The core asserts this output when it has received a
configuration write request from the link. Set when PCI
Express Extended Configuration Space Enable is selected in
Capabilities tab in the Vivado IDE.

• Data corresponding to all received configuration writes
with cfg_ext_register_number in the range 0xb0-0xbf is
presented on cfg_ext_register_number,
cfg_ext_function_number, cfg_ext_write_data and
cfg_ext_write_byte_enable.

• All received configuration writes with
cfg_ext_register_number in the range 0x120-13F is
presented on cfg_ext_register_number,
cfg_ext_function_number, cfg_ext_write_data and
cfg_ext_write_byte_enable.

cfg_ext_register_number O 10 Configuration Extend Register Number
The 10-bit address of the configuration register being read or
written. The data is valid when cfg_ext_read_received or
cfg_ext_write_received is High.

cfg_ext_function_number O 8 Configuration Extend Function Number.
The 8-bit function number corresponding to the configuration
read or write request. The data is valid when
cfg_ext_read_received or cfg_ext_write_received is High.

cfg_ext_write_data O 32 Configuration Extend Write Data
Data being written into a configuration register. This output is
valid when cfg_ext_write_received is High.

cfg_ext_write_byte_enable O 4 Configuration Extend Write Byte Enable
Byte enables for a configuration write transaction.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=100


Table 51: Configuration Extend Interface Port Descriptions (cont'd)

Port Name I/O Width Description
cfg_ext_read_data I 32 Configuration Extend Read Data

You can provide data from an externally implemented
configuration register to the core through this bus. The core
samples this data on the next positive edge of the clock after it
sets cfg_ext_read_received High, if you have set
cfg_ext_read_data_valid.

cfg_ext_read_data_valid I 1 Configuration Extend Read Data Valid
The user application asserts this input to the core to supply
data from an externally implemented configuration register.
The core samples this input data on the next positive edge of
the clock after it sets cfg_ext_read_received High. The core
expects the assertions of this signal within 262144 ('h4_0000)
clock cycles of user clock after receiving the read request on
cfg_ext_read_received signal. If no response is received by this
time, the core will send auto-response with 'h0 payload, and
the user application must discard the response and terminate
that particular request immediately

FLR Ports
Table 52: FLR Port Descriptions

Port Names I/O Description
usr_flr_fnc [7:0] O Function

The function number of the FLR status change.

usr_flr_set O Set
Asserted for 1 cycle indicating that the FLR status of the function
indicated on usr_flr_fnc[7:0] is active.

usr_flr_clr O Clear
Asserted for 1 cycle indicating that the FLR status of the function
indicated on usr_flr_fnc[7:0] is completed.

usr_flr_done_fnc [7:0] I Done Function
The function for which FLR has been completed by user logic.

usr_flr_done_vld I Done Valid
Assert for one cycle to signal that FLR for the function on
usr_flr_done_fnc[7:0] has been completed.

QDMA Descriptor Bypass Input Ports
Table 53: QDMA H2C-Streaming Bypass Input Port Descriptions

Port Name I/O Description
h2c_byp_in_st_addr [63:0] I 64-bit starting address of the DMA transfer.

h2c_byp_in_st_len [15:0] I The number of bytes to transfer.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=101


Table 53: QDMA H2C-Streaming Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
h2c_byp_in_st_at [1:0] Address Type.

2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

h2c_byp_in_st_sop I Indicates start of packet. Set for the first descriptor. Reset for the
rest of the descriptors.

h2c_byp_in_st_eop I Indicates end of packet. Set for the last descriptor. Reset for the rest
of the descriptors

h2c_byp_in_st_sdi I H2C Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the user application to the
QDMA to send the status descriptor to host, and to generate an
interrupt to host when the QDMA has fetched the last byte of the
data associated with this descriptor. The QDMA honors the request
to generate an interrupt only if interrupts have been enabled in the
H2C SW context for this QID and armed by the driver. This can only
be set for an EOP descriptor.
QDMA will hang if the last descriptor without h2c_byp_in_st_sdi has
an error. This results in a missing writeback and hw_ctxt.dsc_pend
bit that are asserted indefinitely. The workaround is to send a zero
length descriptor to trigger the Completion (CMPT) Status.

h2c_byp_in_st_mrkr_req I H2C Bypass In Marker Request
When set, the descriptor passes through the H2C Engine pipeline
and once completed, produces a marker response on the H2C
Streaming Bypass-Out interface. This can only be set for an EOP
descriptor.

h2c_byp_in_st_no_dma I H2C Bypass In No DMA
When sending in a descriptor through this interface with this signal
asserted, it informs the QDMA to not send any PCIe requests for
this descriptor. Because no PCIe request is sent out, no
corresponding DMA data is issued on the H2C Streaming output
interface.
This is typically used in conjunction with h2c_byp_in_st_sdi to cause
Status Descriptor/Interrupt when the user logic is out of the actual
descriptors and still wants to drive the h2c_byp_in_st_sdi signal.
If h2c_byp_in_st_mrkr_req and h2c_byp_in_st_sdi are reset when
sending in a no-DMA descriptor, the descriptor is treated as a NOP
and is completely consumed inside the QDMA without any interface
activity.
If h2c_byp_in_st_no_dma is set, then both h2c_byp_in_st_sop and
h2c_byp_in_st_eop must be set.
If h2c_byp_in_st_no_dma is set, the QDMA ignores the address and
length fields of this interface.

h2c_byp_in_st_qid [10:0] I The QID associated with the H2C descriptor ring.

h2c_byp_in_st_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue

h2c_byp_in_st_func [7:0] I PCIe function ID

h2c_byp_in_st_cidx [15:0] I The CIDX that will be used for the status descriptor update and/or
interrupt (aggregation mode). Generally the CIDX should be left
unchanged from when it was received from the descriptor bypass
output interface.

h2c_byp_in_st_port_id [2:0] I QDMA port ID

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=102


Table 53: QDMA H2C-Streaming Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
h2c_byp_in_st_vld I Valid. High indicates descriptor is valid, one pulse for one

descriptor.

h2c_byp_in_st_rdy O Ready to take in descriptor

Table 54: QDMA H2C-MM Descriptor Bypass Input Port Descriptions

Port Name I/O Description
h2c_byp_in_mm_radr[63:0] I The read address for the DMA data.

h2c_byp_in_mm_wadr[63:0] I The write address for the dma data.

h2c_byp_in_mm_at[1:0] I Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

h2c_byp_in_mm_no_dma I H2C Bypass In No DMA
When sending in a descriptor through this interface with this signal
asserted, this signal informs the QDMA to not send any PCIe
requests for this descriptor. Because no PCIe request is sent out, no
corresponding DMA data is issued on the H2C MM output interface.
This is typically used in conjunction with h2c_byp_in_mm_sdi to
cause Status Descriptor/Interrupt when the user logic is out of the
actual descriptors and still wants to drive the h2c_byp_in_mm_sdi
signal.
If h2c_byp_in_mm_mrkr_req and h2c_byp_in_mm_sdi are reset when
sending in a no-DMA descriptor, the descriptor is treated as a No
Operation (NOP) and is completely consumed inside the QDMA
without any interface activity.
If h2c_byp_in_mm_no_dma is set, the QDMA ignores the address.
The length field should be set to 0.

h2c_byp_in_mm_len[27:0] I The dma data length.
The upper 12 bits must be tied to 0. Thus only the lower 16 bits of
this field can be used for specifying the length.

h2c_byp_in_mm_sdi I H2C-MM Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the User to QDMA to send
the status descriptor to host and generate an interrupt to host
when the QDMA has fetched the last byte of the data associated
with this descriptor. The QDMA will honor the request to generate
an interrupt only if interrupts have been enabled in the H2C ring
context for this QID and armed
QDMA will hang if the last descriptor without h2c_byp_in_mm_sdi
has an error. This results in a missing writeback and
hw_ctxt.dsc_pend bit that are asserted indefinitely. The workaround
is to send a zero length descriptor to trigger the Completion (CMPT)
Status.
by the driver

h2c_byp_in_mm_mrkr_req I H2C-MM Bypass In Completion Request
Indication from the User that the QDMA must send a completion
status to the User once the QDMA has completed the data transfer
of this descriptor

h2c_byp_in_mm_qid [10:0] I The QID associated with the H2C descriptor ring

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=103


Table 54: QDMA H2C-MM Descriptor Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
h2c_byp_in_mm_error I This bit can be set to indicate an error for the queue. The descriptor

will not be processed. Context will be updated to reflect and error in
the queue.

h2c_byp_in_mm_func [7:0] I PCIe function ID

h2c_byp_in_mm_cidx [15:0] I The CIDX that will be used for the status descriptor update and/or
interrupt (aggregation mode). Generally the CIDX should be left
unchanged from when it was received from the descriptor bypass
output interface.

h2c_byp_in_mm_port_id [2:0] I QDMA port ID

h2c_byp_in_mm_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

h2c_byp_in_mm_rdy O Ready to take in descriptor

Table 55: QDMA C2H-Streaming Simple Bypass Input Port Descriptions

Port Name I/O Description
c2h_byp_in_st_sim_addr [63:0] I 64bit address where QDMA will DMA the data to

c2h_byp_in_st_sim_qid [10:0] I The QID associated with the C2H descriptor ring

c2h_byp_in_st_sim_at [1:0] Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

c2h_byp_in_st_sim_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

c2h_byp_in_st_sim_func [7:0] I PCIe function ID

c2h_byp_in_st_sim_port_id[2:0] I QDMA port ID

c2h_byp_in_st_sim_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_in_st_sim_rdy O Ready to take in descriptor

Table 56: QDMA C2H-Streaming Cache Bypass Input Port Descriptions

Port Name I/O Description
c2h_byp_in_st_csh_addr [63:0] I 64bit address where QDMA will DMA the data to

c2h_byp_in_st_csh_qid [10:0] I The QID associated with the C2H descriptor ring

c2h_byp_in_st_csh_at [1:0] Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

c2h_byp_in_st_csh_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=104


Table 56: QDMA C2H-Streaming Cache Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
c2h_byp_in_st_csh_func [7:0] I PCIe function ID

c2h_byp_in_st_csh_port_id[2:0] I QDMA port ID

c2h_byp_in_st_csh_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_in_st_csh_rdy O Ready to take in descriptor

Table 57: QDMA C2H-MM Descriptor Bypass Input Port Descriptions

Port Name I/O Description
c2h_byp_in_mm_raddr [63:0] I The read address for the DMA data.

c2h_byp_in_mm_wadr[63:0] I The write address for the DMA data.

c2h_byp_in_mm_at [1:0] I Address Type
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

c2h_byp_in_mm_no_dma I C2H Bypass In No DMA
When sending in a descriptor through this interface with this signal
asserted, this signal informs the QDMA to not send any PCIe
requests for this descriptor. Because no PCIe request is sent out, no
corresponding DMA data is read from C2H MM interface.
This is typically used in conjunction with c2h_byp_in_mm_sdi to
cause Status Descriptor/Interrupt when the user logic is out of the
actual descriptors and still wants to drive the c2h_byp_in_mm_sdi
signal.
If c2h_byp_in_mm_mrkr_req and c2h_byp_in_mm_sdi are reset when
sending in a no-DMA descriptor, the descriptor is treated as a NOP
and is completely consumed inside the QDMA without any interface
activity.
If c2h_byp_in_mm_no_dma is set, the QDMA ignores the address.
The length field should be set to 0.

c2h_byp_in_mm_len[27:0] I The DMA data length

c2h_byp_in_mm_sdi I C2H Bypass In Status Descriptor/Interrupt
If set, it is treated as an indication from the User to QDMA to send
the status descriptor to host, and generate an interrupt to host
when the QDMA has fetched the last byte of the data associated
with this descriptor. The QDMA will honor the request to generate
an interrupt only if interrupts have been enabled in the C2H ring
context for this QID and armed by the driver

c2h_byp_in_mm_mrkr_req I C2H Bypass In Marker Request
Indication from the User that the QDMA must send a completion
status to the User once the QDMA has completed the data transfer
of this descriptor

c2h_byp_in_mm_qid [10:0] I The QID associated with the C2H descriptor ring

c2h_byp_in_mm_error I This bit can be set to indicate an error for the queue. The descriptor
will not be processed. Context will be updated to reflect and error in
the queue.

c2h_byp_in_mm_func [7:0] I PCIe function ID

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=105


Table 57: QDMA C2H-MM Descriptor Bypass Input Port Descriptions (cont'd)

Port Name I/O Description
c2h_byp_in_mm_cidx [15:0] I The User must echo the CIDX from the descriptor that it received on

the bypass-out interface

c2h_byp_in_mm_port_id[2:0] I QDMA port ID

c2h_byp_in_mm_vld I Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_in_mm_rdy O Ready to take in descriptor

QDMA Descriptor Bypass Output Ports
Table 58: QDMA H2C Descriptor Bypass Output Port Descriptions

Port Name I/O Description
h2c_byp_out_dsc [255:0] O The H2C descriptor fetched from the host. For Streaming descriptor,

use the lower 64b of this field as the address. The remaining bits
can be ignored.

h2c_byp_out_mrkr_rsp O Indicates completion status in response to h2c_byp_in_st_mrkr_req
(Stream) or h2c_byp_in_mm_mrkr_req (MM).

h2c_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-
mapped descriptor.
0: streaming
1: memory-mapped

h2c_byp_out_dsc_sz [1:0] O Descriptor size. This field indicates the amount of valid descriptor
information on h2c_byp_out_dsc.
0: 8B
1: 16B
2: 32B
3: 64B - 64B descriptors will be transferred with two valid/ready
cycles. The first cycle has the least significant 32 bytes. The second
cycle has the most significant 32 bytes. CIDX and other queue
information is valid only on the second beat of a 64B descriptor .

h2c_byp_out_qid [10:0] O The QID associated with the H2C descriptor ring.

h2c_byp_out_error O Indicates that an error was encountered in descriptor fetch or
execution of a previous descriptor.

h2c_byp_out_func [7:0] O PCIe function ID

h2c_byp_out_cidx [15:0] O H2C Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface.

h2c_byp_out_port_id [2:0] O QDMA port ID

h2c_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one
descriptor.

h2c_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=106


Table 59: QDMA C2H Descriptor Bypass Output Port Descriptions

Port Name I/O Description
c2h_byp_out_dsc [255:0] O The C2H descriptor fetched from the host. For Streaming descriptor,

use the lower 64b of this field as the address. The remaining bits
can be ignored.
For requests to a C2H stream marker packet, c2h_byp_out_dsc[26:0]
has valid data as part of marker response (see Table 60: QDMA C2H
Descriptor Bypass Output Marker Response Descriptions for
details). Marker response is valid when c2h_byp_out_mrkr_rsp is set
to 1.

c2h_byp_out_mrkr_rsp O Indicates completion status in response to s_axis_c2h_ctrl_marker
(Stream) or c2h_byp_in_mm_mrkr_req (MM). For the completions
status for s_axis_c2h_ctrl_marker (Stream), the details are given in 
Table 60: QDMA C2H Descriptor Bypass Output Marker Response
Descriptions.

c2h_byp_out_st_mm O Indicates whether this is a streaming data descriptor or memory-
mapped descriptor.
0: streaming
1: memory-mapped

c2h_byp_out_dsc_sz [1:0] O Descriptor size. This field indicates the amount of valid descriptor
information on h2c_byp_out_dsc.
0: 8B
1: 16B
2: 32B
3:64B - 64B descriptors will be transferred with two valid/ready
cycles. The first cycle has the least significant 32 bytes. The second
cycle has the most significant 32 bytes. CIDX and other queue
information is valid only on the second beat of a 64B descriptor..

c2h_byp_out_qid [10:0] O The QID associated with the H2C descriptor ring.

c2h_byp_out_error O Indicates that an error was encountered in descriptor fetch or
execution of a previous descriptor.

c2h_byp_out_func [7:0] O PCIe function ID.

c2h_byp_out_cidx [15:0] O C2H Bypass Out Consumer Index
The ring index of the descriptor fetched. The User must echo this
field back to QDMA when submitting the descriptor on the bypass-
in interface.

c2h_byp_out_port_id [2:0] O QDMA port ID

c2h_byp_out_vld O Valid. High indicates descriptor is valid, one pulse for one
descriptor.

c2h_byp_out_rdy I Ready. When this interface is not used, Ready must be tied-off to 1.

Table 60: QDMA C2H Descriptor Bypass Output Marker Response Descriptions

Field Name Location Description
err[1:0] [1:0] Error code reported by the C2H Engine.

0: No error
1: SW gave bad Completion CIDX update
2: Descriptor error received while processing the C2H packet
3: Completion dropped by the C2H Engine because Completion Ring
was full

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=107


Table 60: QDMA C2H Descriptor Bypass Output Marker Response Descriptions (cont'd)

Field Name Location Description
retry_marker_req [2] The marker request could not be completed because an Interrupt

could not be generated in spite of being enabled. This happens
when an Interrupt is already outstanding on the queue when the
marker request was received. The User logic must wait and retry the
marker request again.

marker_cookie [26:3] The lower 24b of the CMPT input into QDMA that made the marker
request.

Note: This port will be available starting in a 2019.2 patch release.

[255:27] Reserved

It is common for h2c_byp_out_vld or c2h_byp_out_vld to be asserted with the CIDX
value; this occurs when the Descriptor bypass mode option is not set in the context
programming selection. You must set the Descriptor bypass mode during QDMA IP core
customization in the Vivado® IDE to see descriptor bypass output ports. When Descriptor
bypass option is selected in the Vivado® IDE but the descriptor bypass bit is not set in context
programming, you will see valid signals getting asserted with CIDX updates.

QDMA Descriptor Credit Input Ports
Table 61: QDMA Descriptor Credit Input Port Descriptions

Port Name I/O Description
dsc_crdt_in_vld I Valid. When asserted the user must be presenting valid data on the

bus and maintain the bus values until both valid and ready are
asserted on the same cycle.

dsc_crdt_in_rdy O Ready. Assertion of this signal indicates the DMA is ready to accept
data from this bus.

dsc_crdt_in_dir I Indicates whether credits are for H2C or C2H descriptor ring.
0: H2C
1: C2H

dsc_crdt_in_fence I If the fence bit is set, the credits are not coalesced, and the queue is
guaranteed to generate a descriptor fetch before subsequent credit
updates are processed. The fence bit should only be set for a queue
that is enabled, and has both descriptors and credits available,
otherwise a hang condition might occur.

Note: This feature is not supported in 2019.1, and the port must be
set to 0 all the time. This feature will be supported in a future
release.

dsc_crdt_in_qid [10:0] I The QID associated with the descriptor ring for the credits are being
added.

dsc_crdt_in_crdt [15:0] I The number of descriptor credits that the user application is giving
to QDMA Subsystem for PCIe to fetch descriptors from the host.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=108


QDMA Traffic Manager Credit Output Ports
Table 62: QDMA TM Credit Output Port Descriptions

Port Name I/O Description
tm_dsc_sts_vld O Valid. Indicates valid data on the output bus. Valid data on the bus is

held until tm_dsc_sts_rdy is asserted by the user.

tm_dsc_sts_rdy I Ready. Assertion indicates that the user logic is ready to accept the
data on this bus. When this interface is not used, Ready must be
tied-off to 1.

Note: When this interface is not used, Ready must be tied-off to 1.

tm_dsc_sts_byp O Shows the bypass bit in the SW descriptor context

tm_dsc_sts_dir O Indicates whether the status update is for a H2C or C2H descriptor
ring.
0: H2C
1: C2H

tm_dsc_sts_mm O Indicates whether the status update is for a streaming or memory-
mapped queue.
0: streaming
1: memory-mapped

tm_dsc_sts_qid [10:0] O The QID of the ring

tm_dsc_sts_avl [15:0] O If tm_dsc_sts_qinv is set, this is the number of credits available in the
descriptor engine. If tm_dsc_sts_qinv is not set this is the number of
new descriptors that have been posted to the ring since the last
time this update was sent.

tm_dsc_sts_qinv O If set, it indicates that the queue has been invalidated. This is used
by the user application to reconcile the credit accounting between
the user application and QDMA.

tm_dsc_sts_qen O The current queue enable status.

tm_dsc_sts_irq_arm O If set, it indicates to the User that the driver is ready to accept
interrupts

tm_dsc_sts_error O Set to 1 if the PIDX update is beyond the current CIDX of associated
queue.

tm_dsc_sts_port_id [2:0] O The port id associated with the queue from the queue context.

User Interrupts
Table 63: User Interrupts Port Descriptions

Port Name I/O Description
usr_irq_in_vld I Valid

An assertion indicates that an interrupt associated with the vector,
function, and pending fields on the bus should be generated to
PCIe. Once asserted, Usr_irq_in_vld must remain high until
usr_irq_out_ack is asserted by the DMA.

usr_irq_in_vec [4:0] I Vector
The MSIX vector to be sent.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=109


Table 63: User Interrupts Port Descriptions (cont'd)

Port Name I/O Description
usr_irq_in_fnc [7:0] I Function

The function of the vector to be sent.

usr_irq_out_ack O Interrupt Acknowledge
An assertion of the acknowledge bit indicates that the interrupt was
transmitted on the link the user logic must wait for this pulse before
signaling another interrupt condition.

usr_irq_out_fail O Interrupt Fail
An assertion of fail indicates that the interrupt request was aborted
before transmission on the link.

Eight vectors is the maximum allowed per function.

Register Space
Table 64: Configuration Register Attribute Definitions

Register Attribute Description
NA Reserved

RO Read-Only - Register bits are read-only and cannot be altered by the software.

RW Read-Write - Register bits are read-write and are permitted to be either Set or
Cleared by the software to the desired state.

RW1C Write-1-to-clear-status - Register bits indicate status when read. A Set bit indicates a
status event which is Cleared by writing a 1b. Writing a 0b to RW1C bits has no effect.

W1C Non-readable-write-1-to-clear-status - Register will return 0 when read. Writing 1b
Clears the status for that bit index. Writing a 0b to W1C bits has no effect.

W1S Non-readable-write-1-to-set - Register will return 0 when read. Writing 1b Sets the
control set for that bit index. Writing a 0b to W1S bits has no effect.

QDMA PF Address Register Space
Table 65: QDMA PF Address Register Space

Target Name Base (Hex) Byte size (dec) Notes
QDMA_TRQ_SEL_GLBL1 (0x00000) 00000000 256 QDMA Configuration CSR space

QDMA_TRQ_SEL_GLBL2 (0x00100) 00000100 256 Driver visible attribute space

QDMA_TRQ_SEL_GLBL (0x00200) 00000200 512 QDMA CSR space

QDMA_TRQ_SEL_FMAP (0x00400) 00000400 1024 Function to Queue mapping register
space

QDMA_TRQ_SEL_IND (0x00800) 00000800 512 Indirect context register space

QDMA_TRQ_SEL_C2H (0x00A00) 00000A00 512 Card to Host Streaming register space

QDMA_TRQ_SEL_H2C (0x00E00) 00000E00 512 Host to Card Streaming register space

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=110


Table 65: QDMA PF Address Register Space (cont'd)

Target Name Base (Hex) Byte size (dec) Notes
QDMA_TRQ_SEL_C2H_MM (0x1000) 00001000 256 Card to Host AXI-MM register space

QDMA_TRQ_SEL_H2C_MM (0x1200) 00001200 256 Host to Card AXI-MM register space

QDMA_TRQ_EXT_0 (0x1400) 00001400 4096 Reserved

QDMA_PF_MAILBOX (0x2400) 00002400 16384 Mailbox/FLR register space

QDMA_TRQ_EXT_1 (0x6400) 00006400 39936 Reserved

QDMA_TRQ_MSIX (0x10000) 00010000 32768 Space for 32 MSIX vectors and PBA

QDMA_TRQ_SEL_QUEUE_PF (0x18000) 00018000 32768 PF Direct QCSR (16B per Q, up to max
of 2048 Qs per function)

QDMA_TRQ_SEL_GLBL1 (0x00000)

Table 66: QDMA_TRQ_SEL_GLBL1 (0x00000) Register Space 

Register Name Address (hex) Description
Config Block Identifier (0x00) 0x00 Configuration block Identifier register

Config Block BusDev (0x04) 0x04 Bus device function register

Config Block PCIE Max Payload Size (0x08) 0x08 Max Payload size

Config Block PCIE Max Read Request Size
(0x0C)

0x0C Max read request size

Config Block System ID (0x10) 0x10 System ID register

Config Block MSI Enable (0x14) 0x14 Interrupt config register

Config Block PCIE Data Width (0x18) 0x18 PCIe data width register

Config PCIE Control (0x1C) 0x1C PCIe control register

Config AXI User Max Payload Size (0x40) 0x40 AXI Max Payload size register

Config AXI User Max Read Request Size (0x44) 0x44 AXI Max Read Request register

Config Block Misc Control (0x4C) 0x4C Miscellaneous controls

Config Block Scratch7-0 (0x80-0x9C) 0x80-0x9C General purpose scratch registers

QDMA_RAM_SBE_MSK_A (0xF0) 0xF0 ECC Mask register for Single bit error

QDMA_RAM_SBE_STS_A (0xF4) 0xF4 ECC Single bit error status

QDMA_RAM_DBE_MSK_A (0xF8) 0xF8 ECC Mask register for double bit error

QDMA_RAM_DBE_STS_A (0xFC) 0xFC ECC double bit error status

Config Block Identifier (0x00)

Table 67: Config Block Identifier (0x00)

Bit Default
Access
Type Field Description

31:20 12'h1fd RO Identifier DMA Subsystem for PCIe identifier

19:16 4'h3 RO Config_block_identifier Config Identifier

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=111


Table 67: Config Block Identifier (0x00) (cont'd)

Bit Default
Access
Type Field Description

15:8 8'h0 RO Reserved

7:0 8'h00 RO Version Version

Config Block BusDev (0x04)

Table 68: Config Block BusDev (0x04)

Bit Default
Access
Type Field Description

[15:0] PCIe IP RO BDF bus_dev
Bus, device, and function

Config Block PCIE Max Payload Size (0x08)

Table 69: Config Block PCIE Max Payload Size (0x08) 

Bit Default
Access
Type Field Description

[2:0] PCIe IP RO pcie_max_payload Maximum write payload size. This is the lesser of the
PCIe IP MPS and DMA Subsystem for PCIe
parameters.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Notes:

1. UltraScale+™ devices support only 2 bits [1:0], and possible options for pcie_max_payload are 128, 256, 512 and 1024
bytes. 2048 and 4096 bytes are not supported currently.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=112


Config Block PCIE Max Read Request Size (0x0C)

Table 70: Config Block PCIE Max Read Request Size (0x0C)

Bit Default Access
Type Field Description

[2:0] PCIe IP RO pcie_max_read pcie_max_read
Maximum read request size. This is the lesser of the
PCIe IP MRRS and DMA Subsystem for PCIe
parameters.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Config Block System ID (0x10)

Table 71: Config Block System ID (0x10)

Bit Default Access
Type Field Description

[15:0] 16'hff01 RO system_id system_id
DMA Subsystem for PCIe system ID

Config Block MSI Enable (0x14)

Table 72: Config Block MSI Enable (0x14) 

Bit Default Access
Type Field Description

[17] PCIe IP RO MSI_enable3 MSI Enable status for PF3

[16] PCIe IP RO MSIX_enable3 MSIX Enable status for PF3

[13] PCIe IP RO MSI_enable2 MSI Enable status for PF2

[12] PCIe IP RO MSIX_enable2 MSIX Enable status for PF2

[9] PCIe IP RO MSI_enable1 MSI Enable status for PF1

[8] PCIe IP RO MSIX_enable1 MSIX Enable status for PF1

[1] PCIe IP RO MSI_enable0 MSI Enable status for PF0

[0] PCIe IP RO MSIX_enable0 MSIX Enable status for PF0

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=113


Config Block PCIE Data Width (0x18)

Table 73: Config Block PCIE Data Width (0x18) 

Bit Default Access
Type Field Description

[2:0] C_DAT_WIDTH RO Datapath Width Datapath Width
0: 64 bits
1: 128 bits
2: 256 bits
3: 512 bits

Config PCIE Control (0x1C)

Table 74: Config PCIE Control (0x1C)

Bit Default Access
Type Field Description

[1] 1'b0 RW rrq_disable Disable read requests to PCIe.
AXI Bridge slave, and DMA reads toward PCIe will be
cancelled and return a completion error.

[0] 1'b1 RW Relaxed_ordering Relaxed Ordering.
PCIe read request TLPs are generated with the
relaxed ordering bit set.

Config AXI User Max Payload Size (0x40)

Table 75: Config AXI User Max Payload Size (0x40)

Bit Default Access
Type Field Description

6:4 3'h5 RO user_max_payload_issued user_eff_payload
The actual maximum payload size issued to the user
application. This value might be lower than
user_prg_payload due to IP configuration or
datapath width.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=114


Table 75: Config AXI User Max Payload Size (0x40) (cont'd)

Bit Default Access
Type Field Description

2:0 3'h5 RW user_max_payload_prog user_prg_payload
The programmed maximum payload size issued to
the user application application for DMA. This
register should only be changed when the DMA is
idle.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Config AXI User Max Read Request Size (0x44)

Table 76: Config AXI User Max Read Request Size (0x44)

Bit Default Access
Type Field Description

6:4 3'h5 RO usr_max_read_request_is
sued

user_eff_read
Maximum read request size issued to the user
application. This value may be lower than
user_max_read due to PCIe configuration or
datapath width.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

2:0 3'h5 RW usr_max_read_request_pr
og

user_prg_read
Maximum read request size issued to the user
application for DMA. This register should only be
changed when the DMA is idle.
3'b000: 128 bytes
3'b001: 256 bytes
3'b010: 512 bytes
3'b011: 1024 bytes
3'b100: 2048 bytes
3'b101: 4096 bytes

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=115


Config Block Misc Control (0x4C)

Table 77: Config Block Misc Control (0x4C)

Bit Default Access
Type Field Description

[19:8] NUM_TAGS RW num_tag Limits the number of tags used. Hardware enforces
that the programmed value is less than or equal to
the number of tags configured in the IP. This register
should only be updated when the AXI4 Bridge Slave
and DMA are idle.

[4:0] based on
datapath

width:
64: 5’h2

128: 5’h3
256: 5’h6
512: 6’h9

RW rq_metering_multiplier Limits the max outstanding read data to prevent
overflow of the PCIe controller completion buffer.
This must be programmed appropriately for the
configured PCIe controller completion buffer sizing.
This register should only be updated when the
Bridge Slave and DMA are idle.
Metering limit = (value +1) * 32 *64 Bytes

Config Block Scratch7-0 (0x80-0x9C)

Table 78: Config Block Scratch (0x80-0x9C)

Bit Default Access
Type Field Description

[31:0] 0 RW scratch General purpose scratch registers. These fields do
not affect any QDMA hardware functions.

QDMA_RAM_SBE_MSK_A (0xF0)

Table 79: QDMA_RAM_SBE_MSK_A (0xF0)

Bit Default Access
Type Field Description

[31:0] mask Error logging enable masks. See QMD_RAM_SBE_STS
for definitions

QDMA_RAM_SBE_STS_A (0xF4)

Table 80: QDMA_RAM_SBE_STS_A (0xF4)

Bit Default Access
Type Field Description

[31] h2c_pend_fifo H2C ST pending fifo RAM single bit ECC error.

[30] pfch_ll_ram C2H ST prefetch list RAM single bit ECC error.

[29] wrb_ctxt_ram C2H ST completion context RAM single bit ECC error.

[28] pfch_ctxt_ram C2H ST prefetch RAM single bit ECC error.

[27] desc_req_fifo_ram C2H ST descriptor request RAM single bit ECC error.

[26] int_ctxt_ram Interrupt context RAM single bit ECC error.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=116


Table 80: QDMA_RAM_SBE_STS_A (0xF4) (cont'd)

Bit Default Access
Type Field Description

[25] int_qid2vec_ram Interrupt QID2VEC RAM single bit ECC error.

[24] wrb_coal_data_ram Completion Coalescing RAM single bit ECC error.

[23] tuser_fifo_ram C2H ST TUSER RAM single bit ECC error.

[22] qid_fifo_ram C2H ST QID FIFO RAM single bit ECC error.

[21] payload_fifo_ram C2H ST payload RAM single bit ECC error.

[20] timer_fifo_ram Timer fifo RAM single bit ECC error.

[19] pasid_ctxt_ram PASID configuration RAM single bit ECC error.

[18] dsc_cpld Descriptor engine fetch completion data RAM single
bit ECC error.

[17] dsc_cpli Descriptor engine fetch completion information RAM
single bit ECC error.

[16] dsc_sw_ctxt Descriptor engine software context RAM single bit
ECC error.

[15] dsc_crd_rcv Descriptor engine receive credit context RAM single
bit ECC error.

[14] dsc_hw_ctxt Descriptor engine hardware context RAM single bit
ECC error.

[13] func_map Function map RAM single bit ECC error.

[12] c2h_wr_brg_dat AXI Bridge slave write data buffer single bit ECC
error.

[11] c2h_rd_brg_dat AXI Bridge slave read data buffer single bit ECC error.

[10] h2c_wr_brg_dat Bridge master write single bit ECC error.

[9] h2c_rd_brg_dat Bridge master read single bit ECC error.

[8:5] Reserved

[4] mi_c2h0_dat C2H MM data buffer single bit ECC error.

[3:1] Reserved

[0] mi_h2c0_dat H2C MM data buffer single bit ECC error.

QDMA_RAM_DBE_MSK_A (0xF8)

Table 81: QDMA_RAM_DBE_MSK_A (0xF8)

Bit Default Access
Type Field Description

[31:0] mask Error logging enable masks. See QMD_RAM_DBE_STS
for definitions

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=117


QDMA_RAM_DBE_STS_A (0xFC)

Table 82: QDMA_RAM_DBE_STS_A (0xFC)

Bit Default Access
Type Field Description

[31] h2c_pend_fifo H2C pending fifo RAM double bit ECC error

[30] pfch_ll_ram C2H ST prefetch list RAM double bit ECC error.

[29] wrb_ctxt_ram C2H ST completion context RAM double bit ECC error.

[28] pfch_ctxt_ram C2H ST prefetch RAM double bit ECC error.

[27] desc_req_fifo_ram C2H ST descriptor request RAM double bit ECC error.

[26] int_ctxt_ram Interrupt context RAM double bit ECC error.

[25] int_qid2vec_ram Interrupt QID2VEC RAM double bit ECC error.

[24] wrb_coal_data_ram Completion Coalescing RAM double bit ECC error.

[23] tuser_fifo_ram C2H ST TUSER RAM double bit ECC error.

[22] qid_fifo_ram C2H ST QID FIFO RAM double bit ECC error.

[21] payload_fifo_ram C2H ST payload RAM double bit ECC error.

[20] timer_fifo_ram Timer fifo RAM double bit ECC error.

[19] pasid_ctxt_ram PASID configuration RAM double bit ECC error.

[18] dsc_cpld Descriptor engine fetch completion data RAM double
bit ECC error.

[17] dsc_cpli Descriptor engine fetch completion information RAM
double bit ECC error.

[16] dsc_sw_ctxt Descriptor engine software context RAM double bit
ECC error.

[15] dsc_crd_rcv Descriptor engine receive credit context RAM double
bit ECC error.

[14] dsc_hw_ctxt Descriptor engine hardware context RAM double bit
ECC error.

[13] func_map Function map RAM double bit ECC error.

[12] c2h_wr_brg_dat AXI Bridge slave write data buffer double bit ECC
error.

[11] c2h_rd_brg_dat AXI Bridge slave read data buffer double bit ECC
error.

[10] h2c_wr_brg_dat Bridge master write double bit ECC error.

[9] h2c_rd_brg_dat Bridge master read double bit ECC error.

[8:5] reserved

[4] mi_c2h0_dat C2H MM data buffer double bit ECC error.

[3:1] reserved

[0] mi_h2c0_dat H2C MM data buffer double bit ECC error.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=118


QDMA_TRQ_SEL_GLBL2 (0x00100)

Table 83: QDMA_TRQ_SEL_GLBL2 (0x00100) Register Space

Register Address Description
QDMA_GLBL2_IDENTIFER (0x100) 0x100 Identifier 0x1FD3xxxx.

QDMA_GLBL2_PF_BARLITE_INT (0x104) 0x104 PF BAR information for internal DMA registers.

QDMA_GLBL2_PF_VF_BARLITE_INT (0x108) 0x108 VF BAR information for internal DMA registers.

QDMA_GLBL2_PF_BARLITE_EXT (0x10C) 0x10C PF BAR information for External AXI-Lite
Master.

QDMA_GLBL2_PF_VF_BARLITE_EXT (0x110) 0x110 VF BAR information for External AXI-Lite
Master.

QDMA_GLBL2_CHANNEL_INST (0x114) 0x114 DMA channel instantiations.

QDMA_GLBL2_CHANNEL_MDMA (0x118) 0x118 DMA channel QDMA mode.

QDMA_GLBL2_CHANNEL_STRM (0x11C) 0x11C DMA channel stream mode.

QDMA_GLBL2_CHANNEL_QDMA_CAP (0x120) 0x120 QDMA config settings.

QDMA_GLBL2_CHANNEL_PASID_CAP (0x128) 0x128 Pasid Capability.

QDMA_GLBL2_CHANNEL_FUNC_RET (0x12C) 0x12C Function Return.

QDMA_GLBL2_SYSTEM_ID (0x130) 0x130 System ID.

QDMA_GLBL2_MISC_CAP (0x134) 0x134 Misc Capabilities.

QDMA_GLBL2_DBG_PCIE_RQ0 (0x1B8) 0x1B8 RQ interface debug information.

QDMA_GLBL2_DBG_PCIE_RQ1 (0x1BC) 0x1BC RQ interface debug information.

QDMA_GLBL2_DBG_AXIMM_WR0 (0x1C0) 0x1C0 DMA AXIMM interface debug information.

QDMA_GLBL2_DBG_AXIMM_WR1 (0x1C4) 0x1C4 DMA AXIMM interface debug information.

QDMA_GLBL2_DBG_AXIMM_RD0 (0x1C8) 0x1C8 DMA AXIMM interface debug information.

QDMA_GLBL2_DBG_AXIMM_RD1 (0x1CC) 0x1CC DMA AXIMM interface debug information.

QDMA_GLBL2_IDENTIFER (0x100)

Table 84: QDMA_GLBL2_IDENTIFIER (0x100)

Bit Default Access
Type Field Description

[31:8] 24’h1fd700 RO identifier Identifier

[7:0] 8’h0 RO version Version

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=119


QDMA_GLBL2_PF_BARLITE_INT (0x104)

Table 85: QDMA_GLBL2_PF_BARLITE_INT (0x104)

Bit Default Access
Type Field Description

[23:18] RO pf3_bar_map[5:0] Pf3_bar_map consists of 6 bits – one bit for each bar.
A one in the bar’s bit position indicates that requests
which hit this bar will be routed to dma registers.
The corresponding bit should not be set in both this
register and QDMA_GLBL2_PF_BARLITE_EXT register.
If neither register redirects the request, the request
is sent to the Bridge AXI-MM Master interface

[17:12] RO pf2_bar_map[5:0] See description for pf3_bar_map.

[11:6] RO pf1_bar_map[5:0] See description for pf3_bar_map.

[5:0] RO pf0_bar_map[5:0] See description for pf3_bar_map.

QDMA_GLBL2_PF_VF_BARLITE_INT (0x108)

Table 86: QDMA_GLBL2_PF_VF_BARLITE_INT (0x108)

Bit Default Access
Type Field Description

[23:18] RO pf3_vf_bar_map[5:0] Pf3_vf_bar_map consists of 6 bits – one bit for each VF
bar of PF3. A one in the BARs bit position indicates
that requests which hit this bar will be routed to the
DMA registers.
The corresponding bit should not be set in both this
register and QDMA_GLBL2_PF_BARLITE_EXT register.
If neither register redirects the request, the request
is sent to the Bridge AXI-MM Master interface.

[17:12] RO pf2_vf_bar_map[5:0] See description for pf3_bar_map.

[11:6] RO pf1_vf_bar_map[5:0] See description for pf3_bar_map.

[5:0] RO pf0_vf_bar_map[5:0] See description for pf3_bar_map.

QDMA_GLBL2_PF_BARLITE_EXT (0x10C)

Table 87: QDMA_GLBL2_PF_BARLITE_EXT (0x10C)

Bit Default Access
Type Field Description

[23:18] RO pf3_bar_map[5:0] Pf3_bar_map consists of 6 bits – one bit for each BAR.
A one in the BARs bit position indicates that requests
that hit this BAR will be routed to the Bridge AXI-Lite
Master interface.
The corresponding bit should not be set in both this
register and QDMA_GLBL2_PF_BARLITE_INT register.
If neither register redirects the request, the request
is sent to the Bridge AXI-MM Master interface

[17:12] RO pf2_bar_map[5:0] See description for pf3_bar_map.

[11:6] RO pf1_bar_map[5:0] See description for pf3_bar_map.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=120


Table 87: QDMA_GLBL2_PF_BARLITE_EXT (0x10C) (cont'd)

Bit Default Access
Type Field Description

[5:0] RO pf0_bar_map[5:0] See description for pf3_bar_map.

QDMA_GLBL2_PF_VF_BARLITE_EXT (0x110)

Table 88: QDMA_GLBL2_PF_VF_BARLITE_EXT (0x110)

Bit Default Access
Type Field Description

[23:18] RO pf3_vf_bar_map[5:0] Pf3_vf_bar_map consists of 6 bits – one bit for each VF
bar of PF3. A one in the BARs bit position indicates
that requests that hit this BAR will be routed to the
Bridge AXI-Lite Master interface.
The corresponding bit should not be set in both this
register and QDMA_GLBL2_PF_BARLITE_INT register.
If neither register redirects the request, the request
is sent to the Bridge AXI-MM Master interface.

[17:12] RO pf2_vf_bar_map[5:0] See description for pf3_vf_bar_map.

[11:6] RO pf1_vf_bar_map[5:0] See description for pf3_vf_bar_map.

[5:0] RO pf0_vf_bar_map[5:0] See description for pf3_vf_bar_map.

QDMA_GLBL2_CHANNEL_INST (0x114)

Table 89: QDMA_GLBL2_CHANNEL_INST (0x114)

Bit Default Access
Type Field Description

[31:18] Reserved

[17] RO c2h_st A one indicates the C2H ST engine is instantiated

[16] RO h2c_st A one indicates the H2C ST engine is instantiated

[15:9] Reserved

[8] RO c2h_eng[0] A one indicates the C2H MM engine is instantiated

[7:1] Reserved

[0] RO h2c_eng[0] A one indicates the H2C MM engine is instantiated

QDMA_GLBL2_CHANNEL_MDMA (0x118)

Table 90: QDMA_GLBL2_CHANNEL_MDMA (0x118)

Bit Default Access
Type Field Description

[31:18] Reserved

[17] RO c2h_st A one indicates the C2H ST engine is QDMA

[16] RO h2c_st A one indicates the H2C ST engine is QDMA

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=121


Table 90: QDMA_GLBL2_CHANNEL_MDMA (0x118) (cont'd)

Bit Default Access
Type Field Description

[15:9] Reserved

[8] RO c2h_eng[0] A one indicates the C2H ST engine is QDMA

[7:1] Reserved

[0] RO h2c_eng[0] A one indicates the H2C ST engine is QDMA

QDMA_GLBL2_CHANNEL_STRM (0x11C)

Table 91: QDMA_GLBL2_CHANNEL_STRM (0x11C)

Bit Default Access
Type Field Description

[31:18] Reserved

[17] RO c2h_st A one indicates it is a Stream mode dma engine.

[16] RO h2c_st A one indicates it is a Stream mode dma engine.

[15:9] Reserved

[8] RO c2h_eng[0] A one indicates it is a Memory-Mapped mode dma
engine.

[7:1] Reserved

[0] RO h2c_eng[0] A one indicates it is a Memory-Mapped mode DMA
engine.

QDMA_GLBL2_CHANNEL_QDMA_CAP (0x120)

Table 92: QDMA_GLBL2_CHANNEL_QDMA_CAP (0x120)

Bit Default Access
Type Field Description

[31:12] Reserved

[11:0] RO multq_max The number of queues supported – 1.

QDMA_GLBL2_CHANNEL_PASID_CAP (0x128)

Table 93: QDMA_GLBL2_CHANNEL_PASID_CAP (0x128)

Bit Default Access
Type Field Description

[31:16] Reserved

[15:4] RO bridge_pasid_offset[11:0] Pasid table offset for bridge slave requests. The
PASID table entry used is determined by adding the
function number of the requests to the PASID table
offset.

[3:2] Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=122


Table 93: QDMA_GLBL2_CHANNEL_PASID_CAP (0x128) (cont'd)

Bit Default Access
Type Field Description

[1] RO bridge_pasid_en A one indicates that the AXI Bridge slave requests are
PASID capable.

[0] RO dma_pasid_en A one indicates that the DMA requests are PASID
capable.

QDMA_GLBL2_CHANNEL_FUNC_RET (0x12C)

Table 94: QDMA_GLBL2_CHANNEL_FUNC_RET (0x12C)

Bit Default Access
Type Field Description

[31:8] Reserved

[7:0] RO function[7:0] Returns the completer function number of the
register read.

QDMA_GLBL2_SYSTEM_ID (0x130)

Table 95: QDMA_GLBL2_SYSTEM_ID (0x130)

Bit Default Access
Type Field Description

[31:16] Reserved

[15:0] RO system_id[15:0] Returns the system_id attribute/parameter

QDMA_GLBL2_MISC_CAP (0x134)

Table 96: QDMA_GLBL2_MISC_CAP (0x134)

Bit Default Access Type Field Description
[31:16] RO Vivado versions

0x0100: Vivado version 2019.1
0x0201: Vivado version 2019.2 patch

[15:2] RO Reserved

[1] RO 1: FLR enabled
0: FLR not enabled

[0] RO 1: Mailbox enabled
0: Mailbox not enabled

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=123


QDMA_GLBL2_DBG_PCIE_RQ0 (0x1B8)

Table 97: QDMA_GLBL2_DBG_PCIE_RQ0 (0x1B8)

Bit Default Access
Type Field Description

[31:20] RO nph_avl[11:0] NPH credits available

[19:10] RO rcb_avl[9:0] RCB credits available (32B granularity).

[9:4] RO slv_rd_credits[5:0] AXI Bridge slave read ordering credits

[3:2] RO tag_ep[1:0] Tag pool empty status

[1:0] RO tag_fl[1:0] Tag pool full status

QDMA_GLBL2_DBG_PCIE_RQ1 (0x1BC)

Table 98: QDMA_GLBL2_DBG_PCIE_RQ1 (0x1BC)

Bit Default Access
Type Field Description

[31:17] Reserved

[16] RO wtlp_req Wtlp req

[15]] RO wtlp_header_fifo_fl Wtlp header fifo_fl

[14] RO wtlp_header_fifo_ep Wtlp header fifo ep

[13] RO rq_fifo_ep rq fifo empty

[12] RO rq_fifo_fl rq fifo full

[11:9] RO tlpsm[2:0] tlp state

[8:6] RO tlpsm512[2:0] tlp512 state

[5] RO rreq0_rcb_ok Read request slot0 has sufficient RCB

[4] RO rreq0_slv Read request slot0 is slave request

[3] RO rreq0_vld Read request slot0 pending

[2] RO rreq1_rcb_ok Read request slot1 has sufficient RCB

[1] RO rreq1_slv Read request slot1 is slave request

[0] RO rreq1_vld Read request slot1 pending

QDMA_GLBL2_DBG_AXIMM_WR0 (0x1C0)

Table 99: QDMA_GLBL2_DBG_AXIMM_WR0 (0x1C0)

Bit Default Access
Type Field Description

[31:27] Reserved

[26] RO wr_req wr_req

[25:23] RO wr_chn[2:0] wr_chn

[22] RO wtlp_dat_fifo_ep wtlp_dat_fifo_ep

[21] RO wpl_fifo_ep wpl_fifo_ep

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=124


Table 99: QDMA_GLBL2_DBG_AXIMM_WR0 (0x1C0) (cont'd)

Bit Default Access
Type Field Description

[20:18] RO brsp_claim_chnl[2:0] brsp_claim_chnl

[17:12] RO wrreq_cnt[5:0] wrreq_cnt

[11:9] RO bid[2:0] bid

[8] RO bvalid bvalid

[7] RO bready bready

[6] RO wvalid wvalid

[5] RO wready wready

[4:2] RO awid[2:0] awid

[1] RO awvalid awvalid

[0] RO awready awready

QDMA_GLBL2_DBG_AXIMM_WR1 (0x1C4)

Table 100: QDMA_GLBL2_DBG_AXIMM_WR1 (0x1C4)

Bit Default Access
Type Field Description

[31:30] Reserved

[29:24] RO brsp_cnt4[5:0] brspcnt4

[23:18] RO brsp_cnt3[5:0] brspcnt3

[17:12] RO brsp_cnt2[5:0] brspcnt2

[11:6] RO brsp_cnt1[5:0] brspcnt1

[5:0] RO brsp_cnt0[5:0] brspcnt0

QDMA_GLBL2_DBG_AXIMM_RD0 (0x1C8)

Table 101: QDMA_GLBL2_DBG_AXIMM_RD0 (0x1C8)

Bit Default Access
Type Field Description

[31:23] Reserved

[22:17] RO pnd_cnt[5:0] pnd_cnt

[16:14] RO rd_chnl[2:0] rd_chnl

[13] RO rd_req rd_req

[12:10] RO rrsp_claim_chnl[2:0] rrsp_claim_chnl

[9:7] RO rid[2:0] rid

[6] RO rvalid rvalid

[5] RO rready rready

[4:2] RO arid[2:0] arid

[1] RO arvalid arvalid

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=125


Table 101: QDMA_GLBL2_DBG_AXIMM_RD0 (0x1C8) (cont'd)

Bit Default Access
Type Field Description

[0] RO arready arready

QDMA_GLBL2_DBG_AXIMM_RD1 (0x1CC)

Table 102: QDMA_GLBL2_DBG_AXIMM_RD1 (0x1CC)

Bit Default Access
Type Field Description

[31:30] Reserved

[29:24] RO rrsp_cnt4[5:0] rrspcnt4

[23:18] RO rrsp_cnt3[5:0] rrspcnt3

[17:12] RO rrsp_cnt2[5:0] rrspcnt2

[11:6] RO rrsp_cnt1[5:0] rrspcnt1

[5:0] RO rrsp_cnt0[5:0] rrspcnt0

QDMA_TRQ_SEL_GLBL (0x00200)

Table 103: QDMA_TRQ_SEL_GLBL (0x00200) Register Space

Registers (Address) Address Description
QDMA_GLBL_RNG_SZ (0x204-0x240) 0x204-0x240 Global ring size registers.

16 different ring size can be set.

QDMA_GLBL_ERR_STAT (0X248) 0x248 Global Error status

QDMA_GLBL_ERR_MASK (0X24C) 0x24C Global Error mask enable

QDMA_GLBL_DSC_CFG (0x250) 0x250 Descriptor configuration and C2H completion
accumulation

QDMA_GLBL_DSC_ERR_STS (0x254) 0x254 Descriptor Error status bits

QDMA_GLBL_DSC_ERR_MSK (0x258) 0x258 Descriptor Error mask enable

QDMA_GLBL_DSC_ERR_LOG0 (0x25C) 0x25C Descriptor Error information

QDMA_GLBL_DSC_ERR_LOG1 (0x260) 0x260 Descriptor Type of error

QDMA_GLBL_TRQ_ERR_STS (0x264) 0x264 Address Target Error status

QDMA_GLBL_TRQ_ERR_MSK (0x268) 0x268 Address Target Error mask enable

QDMA_GLBL_TRQ_ERR_LOG (0x26C) 0x26C Address Target Error information

QDMA_GLBL_DSC_DBG_DAT0 (0x270) 0x270 Descriptor engine debug info

QDMA_GLBL_DSC_DBG_DAT1 (0x274) 0x274 Descriptor engine debug info

QDMA_GLBL_DSC_ERR_LOG2 (0x27C) 0x27C Descriptor error info

QDMA_GLBL_INTERRUPT_CFG (0x2C4) 0x2C4 Interrupt configuration

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=126


QDMA_GLBL_RNG_SZ (0x204-0x240)

Table 104: QDMA_GLBL_RNG_SZ (0x204-0x240)

Bit Default Access
Type Field Description

31:16 16’h0 NA Reserved

15:0 NA RW Ring_size Ring Size (including Write back status location)

Global ring size is a group of 16 registers that is used by the descriptor and completion context to
select its ring size via the ring size index field.

Address = 0x200 + ((index + 1) *4)
For index=0, Ring Size Register 0 is located at address 0x204
For index=1, Ring Size Register 1 is located at address 0x208

All 16 ring size registers must be explicitly updated with a write before they can be used by any
queue. There are no reset values for these registers.

QDMA_GLBL_SCRATCH (0x244)

Table 105: QDMA_GLBL_SCRATCH (0x244)

Bit Default Access
Type Field Description

[31:0] 0 RW scratch[31:0] Scratch space for a given function. Each function (PF)
has its own scratch space.

QDMA_GLBL_ERR_STAT (0X248)

Table 106: QDMA_GLBL_ERR_STAT (0X248)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved

16 0 RW1C err_h2c_st Indicates an error was encountered by H2C-ST.

15 0 RW1C err_bdg Indicates an error was encountered by the Bridge.

[14:9] 0 RW1C ind_ctxt_cmd_err Error code for indirect context command.

8 0 RW1C err_c2h_st Indicates an error was encountered by C2H-ST.

7 0 RW1C err_c2h_mm_1 Indicates an error was encountered by C2H-MM
Channel1.

6 0 RW1C err_c2h_mm_0 Indicates an error was encountered by C2H-MM
Channel0.

5 0 RW1C err_h2c_mm_1 Indicates an error was encountered by H2C-MM
Channel1.

4 0 RW1C err_h2c_mm_0 Indicates an error was encountered by H2C-MM
Channel0.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=127


Table 106: QDMA_GLBL_ERR_STAT (0X248) (cont'd)

Bit Default Access
Type Field Description

3 0 RW1C err_trq

2 0 RW1C err_dsc

1 0 RW1C err_ram_dbe

0 0 RW1C err_ram_sbe

QDMA_GLBL_ERR_MASK (0X24C)

Table 107: QDMA_GLBL_ERR_MASK (0X24C)

Bit Default Access
Type Field Description

[31:17] 0 Reserved

[16:0] 0 RW mask Output error enable mask. See 
QDMA_GLBL_ERR_STAT (0X248) for more information.

QDMA_GLBL_DSC_CFG (0x250)

Table 108: QDMA_GLBL_DSC_CFG (0x250)

Bit Default Access
Type Field Description

[31:10] 0 NA Reserved

[9] 0 RW unc_ovr_cor Uncorrectable log overwrite correctable

[8] 0 RW ctxt_fer_dis Log both dsc and dma error bit in context, not just
first

[7:6] 0 NA Reserved

[5:3] 6 RW max_dsc_fetch Max number of descriptors (2max_dsc_fetch) to fetch in
one request. Max value is 6. Effective fetch read
request size in bytes is minimum of (MRRS,
descr_size*2max_dsc_fetch)

[2:0] 0 RW wb_int The interval at which completions are generated for
an MM or H2C Stream queue running in non-bypass
mode.
3'h0: 4
3'h1: 8
3'h2: 16
3'h3: 32
3'h4: 64
3'h5: 128
3'h6: 256
3'h7: 512

Completion intervals can be disabled using queue context settings. If disabled, completions will
be generated when the descriptor with the most recent PIDX has been completed.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=128


QDMA_GLBL_DSC_ERR_STS (0x254)

Table 109: QDMA_GLBL_DSC_ERR_STS (0x254)

Bit Default Access
Type Field Description

[31:25] 0 Reserved

[24] 0 RW1C sbe COR_ERR_ RAM_SBE

[23] 0 RW1C dbe UNC_ERR_RAM_DBE

[22] 0 RW1C rq_cancel Descriptor fetch was cancelled in DMA due to disable
register status.

[21] 0 RW1C dsc Invalid PIDX update.

[20] 0 RW2C dma UNC_ERR_DMA. DMA engine has reported an error.

[19] 0 RW1C flr_cancel Descriptor fetch was canceled in the DMA due to FLR.

[18:17] 0 Reserved

[16] 0 RW1C dat_poison Descriptor fetch completion contained poison data

[9] 0 RW1C timeout Descriptor fetch completion timed out

[5] 0 RW1C flr Descriptor fetch completion had flr error.

[4] 0 RW1C tag Descriptor fetch completion had unexpected tag.

[3] 0 RW1C addr Descriptor fetch completion had address mismatch

[2] 0 RW1C param Descriptor fetch completion had parameter
mismatch.

[1] 0 RW1C ur_ca Descriptor fetch completion had unsupported
request or completer abort status.

[0] 0 RW1C poison Descriptor fetch completion had header poison
status.

QDMA_GLBL_DSC_ERR_MSK (0x258)

Table 110: QDMA_GLBL_DSC_ERR_MSK (0x258)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Error logging enable masks. See
QDMA_GLBL_DSC_ERR_STS_A .

QDMA_GLBL_DSC_ERR_LOG0 (0x25C)

Table 111: QDMA_GLBL_DSC_ERR_LOG0 (0x25C)

Bit Default Access
Type Field Description

[31] 0 RW valid Error logs are valid

[30] 0 sel DMA direction of error
0: H2C
1: C2H

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=129


Table 111: QDMA_GLBL_DSC_ERR_LOG0 (0x25C) (cont'd)

Bit Default Access
Type Field Description

[29:11] 0 NA Reserved

[10:0] 0 RW qid Queue ID of error

QDMA_GLBL_DSC_ERR_LOG1 (0x260)

Table 112: QDMA_GLBL_DSC_ERR_LOG1 (0x260)

Bit Default Access
Type Field Description

[31:28] 0 RW Reserved

[27:12] 0 RW cidx Consumer index of error

[11:9] 0 NA Reserved

[8:5] 0 RW sub_type Error sub-type. For update_err only.
0: non update_err
2: PIDX update overflow. Too many descriptors
posted compared to ring size.

[4:0] 0 RW err_type Error type. If QMDA_GLBL_DSC_ERR_LOG0 valid is set,
this indicates which unmasked error happened first
and the error type in the status register that is
recorded in the logs.

QDMA_GLBL_TRQ_ERR_STS (0x264)

Table 113: QDMA_GLBL_TRQ_ERR_STS (0x264)

Bit Default Access
Type Field Description

[31:4] 0 NA Reserved

[3] 0 RW1C tcp_timeout Timeout on request to dma internal register.

[2] 0 RW1C vf_access_err A VF attempted to access Global register space or
Function map.

[1] 0 RW1C qid_range A function attempted to access a qid beyond the
queues allocated to it in the function map RAM.

[0] 0 RW1C unmapped Access targeted unmapped register space.

QDMA_GLBL_TRQ_ERR_MSK (0x268)

Table 114: QDMA_GLBL_TRQ_ERR_MSK (0x268)

Bit Default Access
Type Field Description

[31:0] 0 NA mask Enable logging mask. See QDMA_GLBL_TRQ_ERR_STS
definition.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=130


QDMA_GLBL_TRQ_ERR_LOG (0x26C)

Table 115: QDMA_GLBL_TRQ_ERR_LOG (0x26C)

Bit Default Access
Type Field Description

[31:28] 0 RW target The target of the register access.
0 : Reserved
1 : QDMA_TRQ_SEL_GLBL1
2: QDMA_TRQ_SEL_GLBL2
3: QDMA_TRQ_SEL_GLBL
4: QDMA_TRQ_SEL_FMAP
5. QDMA_TRQ_SEL_IRQ
6: QDMA_TRQ_SEL_IND
7: QDMA_TRQ_SEL_C2H
8: QDMA_TRQ_SEL_H2C
9: QDMA_TRQ_SEL_C2H_MM0
10: Reserved
11: QDMA_TRQ_SEL_H2C_MM0
12: Reserved
13: QDMA_TRQ_SEL_QUEUE_PF

[27:24] NA Reserved

[23:16] 0 RW function Register access space function

[15:0] 0 RW address Register access space address

QDMA_GLBL_DSC_DBG_DAT0 (0x270)

Table 116: QDMA_GLBL_DSC_DBG_DAT0 (0x270)

Bit Default Access
Type Field Description

[31:30] 0 NA Reserved

[29] 0 RO ctxt_arb_dir DMA direction of arbitration request for descriptor
queue context. Use QDMA_DSC_DBG_CTL to select
which arbiter source is read.

[28:17] 0 RO ctxt_arb_qid[11:0] Qid of arbitration request for descriptor queue
context.
Use QDMA_DSC_DBG_CTL to select which arbiter
source is read.

[16:12] 0 RO ctxt_arb_req[4:0] Vector of ctxt arbitration requesters. Bit position
map: EVT_SRC =0, TRQ_SRC =1, WBC_SRC=2,
CRD_SRC=3, IND_SRC=4

[11] 0 RO irq_fifo_fl Immediate Irq fifo is full

[10] 0 RO tm_dsc_stall Tm_dsc_sts output is backpressured.

[9:8] 0 RO rrq_stall[1:0] Bit1: C2H read request stall
Bit0: H2C read request stall

[7:6] 0 RO rcp_fifo_spc_stall[1:0] Bit1: C2H read completion space stall
Bit0: H2C read completion space stall

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=131


Table 116: QDMA_GLBL_DSC_DBG_DAT0 (0x270) (cont'd)

Bit Default Access
Type Field Description

[5:4] 0 RO rrq_fifo_spc_stall[1:0] Bit1: C2H read request fifo space stall
Bit0: H2C read request fifo space stall

[3:2] 0 RO fab_mrkr_rsp_stall[1:0] Bit1: C2H mrkr_rsp stall
Bit0: H2C mrkr_rsp_stall

[1:0] 0 RO dsc_out_stall[1:0] Bit 1: C2H descriptor bypass out stall (vld && ~rdy)
Bit 0: H2C descriptor bypass out stall (vld && ~rdy)

QDMA_GLBL_DSC_DBG_DAT1 (0x274)

Table 117: QDMA_GLBL_DSC_DBG_DAT1 (0x274)

Bit Default Access
Type Field Description

[31:28] 0 NA Reserved

[27:22] 0 RO evt_spc_c2h[5:0] Event space for C2H.

[21:16] 0 RO evt_spc_h2c[5:0] Event space for H2C.

[15:8] 0x80 RO dsc_spc_c2h[7:0] Descriptor fetch completion RAM space for C2H.

[7:0] x80 RO dsc_spc_h2c[7:0] Descriptor fetch completion RAM space for H2C.

QDMA_GLBL_DSC_ERR_LOG2 (0x27C)

Table 118: QDMA_GLBL_DSC_ERR_LOG2 (0x27C)

Bit Default Access
Type Field Description

[31:16] 0 RO pidx_old[1:0] Old PIDX that is stored before any error condition.

[15:0] 0 RO pidx_new[15:0] New updated PIDX.

QDMA_GLBL_INTERRUPT_CFG (0x2C4)

Table 119: QDMA_GLBL_INTERRUPT_CFG (0x2C4)

Bit Default Access
Type Field Description

[31:2] 0 RW Reserved

[1:1] 0 RW1C lgcy_intr_pending Legacy interrupt pending. This bit is set by the
hardware where is a pending legacy interrupt output,
and it is clear by the softwar after the software
receives the interrupt. The software can clear by
writing 1 to this bit.

[0:0] 0 RW en_lgcy_intr Enable the legacy interrupt

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=132


QDMA_TRQ_SEL_FMAP (0x00400)

Table 120: QDMA_TRQ_SEL_FMAP (0x00400) Register Space

Registers (Address) Address description
QDMA_TRQ_SEL_FMAP (0x400-0x7FC) 0x400 -0x7FC Function map

QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

Function map is used to map a consecutive block of queue(s) to a function. This can be done
from any physical function (PF).

Table 121: QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

Bit Default Access
Type Field Description

[31:23] 0 NA Reserved

[22:11] 0 RW qid_max The maximum number of queues this function will
have.

[10:0] 0 RW qid_base The base physical queue ID for the function.

Register address for each function is calculated as 0x400 + (Function number * 4), where:

• function number 0 is written to address 0x400

• function number 1 is written to address 0x404

• the last function number is written to address 0x7FC

For VF function programming, the VF function cannot access this register directly. Only PFs can
access this register through Mailbox communication. A VF informs its PF with the number of Qs
and other information. Through Mailbox communication, the PF determines what function
number it should program in the above register. For more information, see QDMA_PF_MAILBOX
(0x2400).

QDMA_TRQ_SEL_IND (0x00800)

Table 122: QDMA_TRQ_SEL_IND (0x00800) Register Space

Registers (Address) Address Description
QDMA_IND_CTXT_DATA_0 (0x804) 0x804 Context data (refer to individual

context structure)

QDMA_IND_CTXT_DATA_1 (0x808) 0x808 Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_2 (0x80C) 0x80C Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_3 (0x810) 0x810 Context data (refer to individual
context structure)

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=133


Table 122: QDMA_TRQ_SEL_IND (0x00800) Register Space (cont'd)

Registers (Address) Address Description
QDMA_IND_CTXT_DATA_4 (0x814) 0x814 Context data (refer to individual

context structure)

QDMA_IND_CTXT_DATA_5 (0x818) 0x818 Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_6 (0x81C) 0x81C Context data (refer to individual
context structure)

QDMA_IND_CTXT_DATA_7 (0x820) 0x820 Context data (refer to individual
context structure)

QDMA_IND_CTXT_MASK_0 (0x824) 0x824 Write enable mask

QDMA_IND_CTXT_MASK_1 (0x828) 0x828 Write enable mask

QDMA_IND_CTXT_MASK_2 (0x82C) 0x82C Write enable mask

QDMA_IND_CTXT_MASK_3 (0x830) 0x830 Write enable mask

QDMA_IND_CTXT_MASK_4 (0x834) 0x834 Write enable mask

QDMA_IND_CTXT_MASK_5 (0x838) 0x838 Write enable mask

QDMA_IND_CTXT_MASK_6 (0x83C) 0x83C Write enable mask

QDMA_IND_CTXT_MASK_7 (0x840) 0x840 Write enable mask

QDMA_IND_CTXT_CMD (0x844) 0x844 Context Command

QDMA_IND_CTXT_DATA_0 (0x804)

Table 123: QDMA_IND_CTXT_DATA_0 (0x804)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [31:0]

All eight registers (0x804, 0x808, 0x80C, 0x810, 0x814, 0x818, 0x81C, and 0x820) constitute
context data for a given queue.

QDMA_IND_CTXT_DATA_1 (0x808)

Table 124: QDMA_IND_CTXT_DATA_1 (0x808)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [63:32]

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=134


QDMA_IND_CTXT_DATA_2 (0x80C)

Table 125: QDMA_IND_CTXT_DATA_2 (0x80C)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [95:64]

QDMA_IND_CTXT_DATA_3 (0x810)

Table 126: QDMA_IND_CTXT_DATA_3 (0x810)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [127:96]

QDMA_IND_CTXT_DATA_4 (0x814)

Table 127: QDMA_IND_CTXT_DATA_4 (0x814)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data[159:128]

QDMA_IND_CTXT_DATA_5 (0x818)

Table 128: QDMA_IND_CTXT_DATA_5 (0x818)

Bit Default Access
type Field Description

[31:0] 0 RW data Context data[191:160]

QDMA_IND_CTXT_DATA_6 (0x81C)

Table 129: QDMA_IND_CTXT_DATA_6 (0x81C)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [223:192]

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=135


QDMA_IND_CTXT_DATA_7 (0x820)

Table 130: QDMA_IND_CTXT_DATA_7 (0x820)

Bit Default Access
Type Field Description

[31:0] 0 RW data Context data [255:224]

QDMA_IND_CTXT_MASK_0 (0x824)

Set the mask to write corresponding data bits. Data masking is only supported on the software
descriptor context.

Table 131: QDMA_IND_CTXT_MASK_0 (0x824)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [31:0]

All eight registers (0x824, 0x828, 0x82C, 0x830, 0x834, 0x838, 0x83C, 0x840) constitute
context mask for a given queue.

QDMA_IND_CTXT_MASK_1 (0x828)

Set the mask to write corresponding data bits. Data masking is only supported on the software
descriptor context.

Table 132: QDMA_IND_CTXT_MASK_1 (0x828)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [63:32]

QDMA_IND_CTXT_MASK_2 (0x82C)

Set the mask to write corresponding data bits. Data masking is only supported on the software
descriptor context.

Table 133: QDMA_IND_CTXT_MASK_2 (0x82C)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [95:64]

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=136


QDMA_IND_CTXT_MASK_3 (0x830)

Set the mask to write corresponding data bits. Data masking is only supported on the software
descriptor context.

Table 134: QDMA_IND_CTXT_MASK_3 (0x830)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [127:96]

QDMA_IND_CTXT_MASK_4 (0x834)

Table 135: QDMA_IND_CTXT_MASK_4 (0x834)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [159:128]

QDMA_IND_CTXT_MASK_5 (0x838)

Table 136: QDMA_IND_CTXT_MASK_5 (0x838)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [191:160]

QDMA_IND_CTXT_MASK_6 (0x83C)

Table 137: QDMA_IND_CTXT_MASK_6 (0x83C)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [223:192]

QDMA_IND_CTXT_MASK_7 (0x840)

Table 138: QDMA_IND_CTXT_MASK_7 (0x840)

Bit Default Access
Type Field Description

[31:0] 0 RW mask Context Mask [255:224]

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=137


QDMA_IND_CTXT_CMD (0x844)

Table 139: QDMA_IND_CTXT_CMD (0x844)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:7] 0 RW qid Queue ID for context
For QDMA_CTXT_SELC_FMAP, this field indicates the
function to access.

[6:5] 0 RW op Opcode
2'h0 = QDMA_CTXT_CMD_CLR
2'h1 = QDMA_CTXT_CMD_WR
2'h2 = QDMA_CTXT_CMD_RD
2'h3 = QDMA_CTXT_CMD_INV

[4:1] 0 RW sel 4'h0 = QDMA_CTXT_SELC_DEC_SW_C2H
4'h1 = QDMA_CTXT_SELC_DEC_SW_H2C
4'h2 = QDMA_CTXT_SELC_DEC_HW_C2H
4'h3 = QDMA_CTXT_SELC_DEC_HW_H2C
4'h4 = QDMA_CTXT_SELC_DEC_CR_C2H
4'h5 = QDMA_CTXT_SELC_DEC_CR_H2C
4'h6 = QDMA_CTXT_SELC_CMPT
4'h7 = QDMA_CTXT_SELC_PFTCH
4'h8 = QDMA_CTXT_SELC_INT_COAL
4'h9 = Reserved
4'hA = Reserved
4'hB = QDMA_CTXT_SELC_TIMER
4'hC = QDMA_CTXT_SELC_FMAP

[0] 0 RO busy Write will be dropped when busy = 1
Read data is invalid when busy = 1

QDMA_TRQ_SEL_C2H (0x00A00)

Table 140: QDMA_TRQ_SEL_C2H (0x00A00) Register Space

Registers (Address) Address Description
QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C) 0xA00-0xA3C CMPT timer threshold indirection table.

QDMA_C2H_CNT_TH[16] (0xA40-0xA7C) 0xA40-0xA7C CMPT counter threshold indirection table.

QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED
(0XA88)

0xA88 Debug status register. Number of C2H packet
accepted.

QDMA_C2H_STAT_S_AXIS_CMPT_ACCEPTED
(0xA8C)

0xA8C Debug status register. Number of C2H CMPT
packet accepted.

QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED
(0xA90)

0xA90 Debug status register. Number of desc_rsp
packet accepted from the Prefetch.

QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94) 0xA94 Debug status register. Number of axis packet
completed from the C2H DMA Write Engine.

QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98) 0xA98 Debug status register. Number of desc_rsp
accepted including drop and error from the
Prefetch.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=138


Table 140: QDMA_TRQ_SEL_C2H (0x00A00) Register Space (cont'd)

Registers (Address) Address Description
QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C) 0xA9C Debug status register. Number of desc_rsp

completed including drop and error in the C2H
DMA Write Engine.

QDMA_C2H_STAT_WRQ_OUT (0xAA0) 0xAA0 Debug status register. Number of WRQ driven
from the C2H DMA Write Engine.

QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4) 0xAA4 Debug status register. Number of WPL REN
accepted in the C2H DMA Write Engine.

QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8) 0xAA8 Debug status register. Number of total WRQ
length (including the empty packets) from the
C2H DMA Write Engine.

QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC) 0xAAC Debug status register. Number of total WPL
length (including the empty packets) from the
C2H DMA Write Engine.

QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC) 0xAB0-0xAEC Buffer size choices.

QDMA_C2H_ERR_STAT (0xAF0) 0xAF0 C2H error status.

QDMA_C2H_ERR_MASK (0xAF4) 0xAF4 C2H error enable mask.

QDMA_C2H_FATAL_ERR_STAT (0xAF8) 0xAF8 C2H fatal error status.

QDMA_C2H_FATAL_ERR_MASK (0xAFC) 0xAFC C2H fatal error enable mask.

QDMA_C2H_FATAL_ERR_ENABLE (0xB00) 0xB00 Enable the C2H fatal error action process.

QDMA_GLBL_ERR_INT (0xB04) 0xB04 C2H error generated interrupt.

QDMA_C2H_PFCH_CFG (0xB08) 0xB08 Prefetch configuration.

QDMA_C2H_INT_TIMER_TICK (0xB0C) 0xB0C C2H interrupt timer tick.

QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED
(0xB10)

0xB10 Debug status register. Number of dsc rsp with
drop accepted.

QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED
(0xB14)

0xB14 Debug status register. Number of dsc rsp with
error accepted.

QDMA_C2H_STAT_DESC_REQ (0xB18) 0xB18 Debug status register. Number of dsc request
sent out from the C2H DMA Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C) 0xB1C Debug registers 0.

QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20) 0xB20 Debug registers 1.

QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24) 0xB24 Debug registers 2.

QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28) 0xB28 Debug registers 3.

QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C) 0xB2C Debug status register.

QDMA_C2H_FIRST_ERR_QID (0xB30) 0xB30 The Qid of the first C2H error.

QDMA_STAT_NUM_WRB_IN (0xB34) 0xB34 Debug status register. Number of WRB passed
from DmaWrEnginre to Wrb block.

QDMA_STAT_NUM_WRB_OUT (0xB38) 0xB38 Debug status register. Number of
WRB(excluding STAT_DESC) passed from Wrb to
WrbCoal block.

QDMA_STAT_NUM_WRB_DRP (0xB3C) 0xB3C Debug status register. Number of WRB
dropped inside Wrb block.

QDMA_STAT_NUM_STAT_DESC_OUT (0xB40) 0xB40 Debug status register. Number of STAT_DESC
issued from Wrb to WrbCoal block.

QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44) 0xB44 Debug status register. An accounting of the
number of descriptor credits sent out v/s
received (as a result of q invalidations).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=139


Table 140: QDMA_TRQ_SEL_C2H (0x00A00) Register Space (cont'd)

Registers (Address) Address Description
QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48) 0xB48 Debug status register. Number of descriptors

received from the fetch engine.

QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C) 0xB4C Debug status register. Number of descriptors
received from the bypass path.

QDMA_C2H_WRB_COAL_CFG (0xB50) 0xB50 C2H completion coalesce configuration.

QDMA_C2H_INTR_H2C_REQ (0xB54) 0xB54 Debug status register. Number of H2C interrupt
requests.

QDMA_C2H_INTR_C2H_MM_REQ (0xB58) 0xB58 Debug status register. Number of C2H MM
interrupt requests.

QDMA_C2H_INTR_ERR_INT_REQ (0xB5C) 0xB5C Debug status register. Number of error
generated interrupt requests.

QDMA_C2H_INTR_C2H_ST_REQ (0xB60) 0xB60 Debug status register. Number of C2H stream
interrupt requests.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_ACK
(0xB64)

0xB64 Debug status register. Number of msix Ack for
the H2C, C2H MM, and error generated
interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_FAIL
(0xB68)

0xB68 Debug status register. Number of msix Fail for
the H2C, C2H MM, and error generated
interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_NO_
MSIX (0xB6C)

0xB6C Debug status register. Number of no msix for
the H2C, C2H MM, and error generated
interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_CTXT_INV
AL (0xB70)

0xB70 Debug status registers. Number of invalid
Interrupt Ring cases for the H2C, C2H MM, and
error generated interrupts.

QDMA_C2H_INTR_C2H_ST_MSIX_ACK (0xB74) 0xB74 Debug status register. Number of msix Ack for
the C2H stream interrupt.

QDMA_C2H_INTR_C2H_ST_MSIX_FAIL (0xB78) 0xB78 Debug status register. Number of msix Fail for
the C2H stream interrupt.

QDMA_C2H_INTR_C2H_ST_NO_MSIX (0xB7C) 0xB7C Debug status register. Number of no msix for
the C2H stream interrupt.

QDMA_C2H_INTR_C2H_ST_CTXT_INVAL (0xB80) 0xB80 Debug status register. Number of invalid
Interrupt Ring cases for the C2H stream
interrupt.

QDMA_C2H_STAT_WR_CMP (0xB84) 0xB84 Debug status register. Number of payload write
completion from the DMA Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_4 (0xB88) 0xB88 Debug register in DMA Write Engine.

QDMA_C2H_DBG_PFCH_QID (0xB90) 0xB90 Debug register in Prefetch module.

QDMA_C2H_DBG_PFCH (0xB94) 0xB94 Debug register in Prefetch module.

QDMA_C2H_INT_DEBUG (0xB98) 0xB98 Debug register in Interrupt module.

QDMA_C2H_STAT_IMM_ACCEPTED (0xB9C) 0xB9C Debug status register. Number of immediate
data packets accepted.

QDMA_C2H_STAT_MARKER_ACCEPTED (0xBA0) 0xBA0 Debug status register. Number of marker
packets accepted.

QDMA_C2H_STAT_DISABLE_CMP_ACCEPTED
(0xBA4)

0xBA4 Debug status register. Number of disable
completion packets accepted.

QDMA_C2H_PAYLOAD_FIFO_CRDT_CNT (0xBA8) 0xBA8 Debug status register. Number of payload FIFO
credit count in the DMA Write Engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=140


Table 140: QDMA_TRQ_SEL_C2H (0x00A00) Register Space (cont'd)

Registers (Address) Address Description
QDMA_C2H_INTR_DYN_REQ (0xBAC) 0xBAC Debug status register. Number of interrupt

aggregation ring dynamic pointer updates
coming into the Interrupt Engine.

QDMA_C2H_INTR_DYN_MSIX (0xBB0) 0xBB0 Debug status register. Number of interrupt
aggregation ring dynamic pointer updates that
cause the PCIe-MSIX message.

QDMA_C2H_DROP_LEN_MISMATCH (0xBB4) 0xBB4 Debug status registers. Number of cases where
desc_rsp_eng.len is not equal to
qid_fifo_out_data.len when the drop happens.

QDMA_C2H_DROP_DESC_RSP_LEN (0xBB8) 0xBB8 Debug status registers. The desc_rsp_eng.len
when the drop happens.

QDMA_C2H_DROP_QID_FIFO_LEN (0xBBC) 0xBBC Debug status registers. The
qid_fifo_out_data.len when the drop happens.

QDMA_C2H_DROP_PAYLOAD_CNT (0xBC0) 0xBC0 Debug status registers. The number of payload
fifo credit when the drop happens.

QDMA_C2H_CMPT_FORMAT_0 (0xBC4) 0xBC4 Completion entry format.

QDMA_C2H_CMPT_FORMAT_1 (0xBC8) 0xBC8 Completion entry format.

QDMA_C2H_CMPT_FORMAT_2 (0xBCC) 0xBCC Completion entry format.

QDMA_C2H_CMPT_FORMAT_3 (0xBD0) 0xBD0 Completion entry format.

QDMA_C2H_CMPT_FORMAT_4 (0xBD4) 0xBD4 Completion entry format.

QDMA_C2H_CMPT_FORMAT_5 (0xBD8) 0xBD8 Completion entry format.

QDMA_C2H_CMPT_FORMAT_6 (0xBDC) 0xBDC Completion entry format.

QDMA_C2H_PFCH_CACHE_DEPTH (0xBE0) 0xBE0 The Prefetch cache size.

QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4) 0xBE4 CMPT coalescing buffer depth.

QDMA_C2H_PFCH_CRDT (0xBE8) 0xBE8 Debug register. Credit from Prefetch module.

QDMA_C2H_STAT_HAS_CMPT_ACCEPTED
(0xBEC)

0xBEC Debug register. Number of data packets that
have completion.

QDMA_C2H_STAT_HAS_PLD_ACCEPTED (0xBF0) 0xBF0 Debug register. Number of completion packets
that have data payload.

MDMA_C2H_PLD_PKT_ID (0xBF4) 0xBF4 Debug registers. The data payload packet ID.

QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)

Table 141: QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RW timer_count Timer threshold

Timer Threshold is a group of 16 registers that is used by the C2H completion context to select
its timer value using the timer count index field.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=141


QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)

Table 142: QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RW threshold_count Count threshold. The count value is 2 more than
intended.

Count Threshold is a group of 16 registers that is used by the C2H completion context to select
its count threshold using the count threshold index field.

QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)

Table 143: QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)

Bit Default Access
Type Field Description

[31:0] 0 RO c2h_accepted Number of C2H packet accepted from the user
application.

QDMA_C2H_STAT_S_AXIS_CMPT_ACCEPTED (0xA8C)

Table 144: QDMA_C2H_STAT_S_AXIS_CMPT_ACCEPTED (0xA8C)

Bit Default Access
Type Field Description

[31:0] 0 RO cmpt_accepted Number of C2H completion packet accepted from the
user application.

QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)

Table 145: QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_pkt_accepted Number of descriptor response packets accepted

QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)

Table 146: QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)

Bit Default Access
Type Field Description

[31:0] 0 RO pkg_cmp The number of C2H packets completed from the C2H
DMA write engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=142


QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)

Table 147: QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_accepted The number of desc_rsp accepted including drop and
error.

QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)

Table 148: QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_cmp The number of desc_rsp completed, including drop
and error in the C2H DMA write engine.

QDMA_C2H_STAT_WRQ_OUT (0xAA0)

Table 149: QDMA_C2H_STAT_WRQ_OUT (0xAA0)

Bit Default Access
Type Field Description

[31:0] 0 RO wrq_out The number of WRQ (write request) driven from the
C2H DMA write engine.

QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)

Table 150: QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)

Bit Default Access
Type Field Description

[31:0] 0 RO wpl_ren_accepted The number of REN (read enable) accepted for write
request in the C2H DMA write engine.

QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)

Table 151: QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)

Bit Default Access
Type Field Description

[31:0] 0 RO total_wrq_len The number of total WRQ (write request) length
(including the empty packets) from the C2H DMA
write engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=143


QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)

Table 152: QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)

Bit Default Access
Type Field Description

[31:0] 0 RO total_wpl_len The number of total WPL (write completion) length
(including the empty packets) from the C2H DMA
write engine.

QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)

Table 153: QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)

Bit Default Access
Type Field Description

[31:16 0 NA Reserved

[15:0] 0 RW size C2H Buffer size for each descriptor in a given queue
(maximum of 64K-1).

There are 16 registers which can have different C2H buffer sizes. Buffer selection can be done in
context programming.

QDMA_C2H_ERR_STAT (0xAF0)

Table 154: QDMA_C2H_ERR_STAT (0xAF0)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15] 0 RW wrb_prty_err Parity error detected on the C2H Completion.

[14] 0 RW wrb_cidx_err A bad CIDX update was sent by the SW to the C2H-ST
Completion engine.

[13] 0 RW wrb_qfull_err The completion queue gets full.

[12] 0 RW wrb_inv_q_err This error is flagged when the SW sends a CMPT CIDX
update to an invalid queue.

[11] 0 RW port_id_byp_in_mismatch Port_id from the C2H packet and the Port_id from the
bypass_in do not match.

[10] 0 RW port_id_ctxt_mismatch Port_id from the C2H packet and the Port_id in the
Prefetch context do not match.

[9] 0 RW err_desc_cnt Flag the error if the number of the descriptors in a
packet is larger than 7.

[8] 0 RW Reserved

[7] 0 RW msi_int_fail The msix interrupt message got a FAIL response.

[6] 0 RW eng_wpl_data_par_err Data parity error

[5] 0 RW Reserved

[4] 0 RW desc_rsp_err C2H Descriptor fetch error. If this error is set, C2H
packet will be dropped.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=144


Table 154: QDMA_C2H_ERR_STAT (0xAF0) (cont'd)

Bit Default Access
Type Field Description

[3] 0 RW qid_mismatch Flag the error if the Qid from the s_axis_c2h_ctrl.qid
do not match the Qid on the s_axis_wrb_data.

[2] 0 RW Rsvd3 Reserved

[1] 0 RW len_mismatch Flag the error if the total packet length do not match
the signal from the s_axis_c2h_ctrl.len

[0] 0 RW mty_mismatch The Mty should be 0 if it is not the last packet. Flag
the error if it is not the case.

This is the error logging register for the C2H errors. The hardware writes to the register when the
error happens. The SW can write 1’b1 to clear the error if it wants to. The
QDMA_C2H_ERR_MASK register doesn’t affect the error logging.

QDMA_C2H_ERR_MASK (0xAF4)

Table 155: QDMA_C2H_ERR_MASK (0xAF4)

Bit Default Access
Type Field Description

[31:0] 0 RW c2h_err_en_mask C2H error enable mask

The software can set the bit to enable the corresponding C2H error to be propagated to the
error aggregator.

QDMA_C2H_FATAL_ERR_STAT (0xAF8)

Table 156: QDMA_C2H_FATAL_ERR_STAT (0xAF8)

Bit Default Access
Type Field Description

[31:19] 0 RO Reserved

[18] 0 RO wpl_data_par_err Ram double bit error

[17] 0 RO payload_fifo_ram_rdbe Ram double bit error

[16] 0 RO qid_fifo_ram_rdbe Ram double bit error

[15] 0 RO tuser_fifo_ram_rdbe Ram double bit error

[14] 0 RO wrb_coal_data_ram_rdbe Ram double bit error

[13] 0 RO Reserved

[12] 0 RO int_ctxt_ram_rdbe Ram double bit error

[11] 0 RO desc_req_fifo_ram_rdbe Ram double bit error

[10] 0 RO pfch_ctxt_ram_rdbe Ram double bit error

[9] 0 RO wrb_ctxt_ram_rdbe Ram double bit error

[8] 0 RO pfch_ll_ram_rdbe Ram double bit error

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=145


Table 156: QDMA_C2H_FATAL_ERR_STAT (0xAF8) (cont'd)

Bit Default Access
Type Field Description

[7:4] 0 RO timer_fifo_ram_rdbe Ram double bit error

[3] 0 RO qid_mismatch Flag the error if the Qid from the s_axis_c2h_ctrl.qid
doesn’t match the Qid on the s_axis_wrb_data

[2] 0 RO Reserved

[1] 0 RO len_mismatch Flag the error if the total packet length doesn’t
match the signal from the s_axis_c2h_ctrl.len

[0] 0 RO mty_mismatch The Mty should be 0 if it is not the last packet. Flag
the error if it is not the case

This is the error logging register for the C2H fatal errors. The hardware writes to the register
when the error happens. The software can write 1’b1 to clear the error if it wants to. The
QDMA_C2H_FATAL_ERR_MASK register does not affect the error logging.

QDMA_C2H_FATAL_ERR_MASK (0xAFC)

Table 157: QDMA_C2H_FATAL_ERR_MASK (0xAFC)

Bit Default Access
Type Field Description

[31:0] 0 RW c2h_fatal_err_en_mask C2H fatal error enable mask

The software can set the bit to enable the corresponding C2H fatal error to be sent to the C2H
fatal error handling logic.

QDMA_C2H_FATAL_ERR_ENABLE (0xB00)

Table 158: QDMA_C2H_FATAL_ERR_ENABLE (0xB00)

Bit Default Access
Type Field Description

[31:2] 0 RW Reserved

[1] 0 RW enable_wpl_par_inv Enable the C2H Wpl parity inversion when a fatal
error happens.

[0] 0 RW enable_wrq_dis Enable the C2H Wrq disable when a fatal error
happens.

This register can enable the C2H fatal error handling process.

• Stop the data transfer by disabling the Wrq

• Invert the WPL parity on the data transfer

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=146


QDMA_GLBL_ERR_INT (0xB04)

This register is for the error generated interrupt.

Table 159: QDMA_GLBL_ERR_INT (0xB04)

Bit Default Access
Type Field Description

[31:25] 0 NA Reserved

[24] 0 RW err_int_arm The software sets the bit to arm the error interrupt.
The hardware clears the bit when the interrupt is
taken by the interrupt module. The software need to
re-arm this bit to generate the next error interrupt.

[23] 0 RW Reserved

[22:12] 0 RW vec For the direct error interrupt, this is the interrupt
vector. For the indirect error interrupt, this is the
interrupt aggregation context RAM index.

[11:8] 0 NA Reserved

[7:0] 0 RW func Function

QDMA_C2H_PFCH_CFG (0xB08)

Table 160: QDMA_C2H_PFCH_CFG (0B08)

Bit Default Access
Type Field Description

[31:25] 56 RW evt_qcnt_th Hardware starts eviction when number of prefetch
queue count >= evt_qcnt_th; The evc_qcnt_th should
be less than pfch_qcnt.

[24:18] 60 RW pfch_qcnt Max number of prefetch queue count allowed.
Maximum value is (PFCH_CACHE_DEPTH-4).

[17:9] 16 RW num_pfch Controls number of entries prefetched in cache per
queue. The recommended value is 8.

[8:0] 16 RW pfch_fl_th There is total 512 entries in the C2H for storing the
descriptor. It is common for both prefetch or fetch
on demand. Stop prefetch when available free
descriptor space <=pfch_fl_th, where the minimum
value is 16. The recommended value is 256 or higher.
Allowing too many descriptors for prefetch can
negatively affect the performance by causing too
many evictions.

QDMA_C2H_INT_TIMER_TICK (0xB0C)

Table 161: QDMA_C2H_INT_TIMER_TICK (0xB0C)

Bit Default Access
Type Field Description

[31:0] 0 RW timer_tick Value of a C2H timer tick in terms of user clock.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=147


QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)

Table 162: QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_drop_accepted Number of descriptor responses with drop accepted

QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)

Table 163: QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)

Bit Default Access
Type Field Description

[31:0] 0 RO dsc_rsp_err_accepted Number of descriptor responses with error accepted

QDMA_C2H_STAT_DESC_REQ (0xB18)

Table 164: QDMA_C2H_STAT_DESC_REQ (0xB18)

Bit Default Access
Type Field Description

[31:0] 0 RO desc_req Number of desc requests sent out from the C2H DMA
Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)

Table 165: QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)

Bit Default Access
Type Field Description

[31] 0 RO s_axis_c2h_tready s_axis_c2h_tready

[30:28] 0 RO wrb_fifo_out_cnt The count of wrb fifo.

[27:18] 0 RO qid_fifo_out_cnt The count of qid fifo.

[17:8] 0 RO payload_fifo_out_cnt The count of payload fifo.

[7:5] 0 RO wrq_fifo_out_cnt The count of wrq fifo.

[4] 0 RO wrb_sm_cs The CMPT state machine.

[3:0] 0 RO main_sm_cs The main state machine.

This is the debug register for the C2H DMA Write Engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=148


QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)

Table 166: QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)

Bit Default Access
Type Field Description

[31] 1 NA tuser_comb_in_rdy tuser_comb_in_rdy signal

[30] 0 RO desc_rsp_last desc_rsp_last signal

[29:20] 0 RO payload_fifo_in_cnt number of incoming entries to payload fifo

[19:10] 0 RO payload_fifo_output_cnt number of popup entries from payload fifo

[9:0] 0 RO qid_fifo_in_cnt number of incoming entries to qid fifo

This is the debug register for the C2H DMA Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)

Table 167: QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)

Bit Default Access
Type Field Description

[31] 0 RO s_axis_wrb_tready s_axis_wrb_tready

[30] 0 RO wrb_fifo_in_rdy wrb fifo in rdy

[29:20] 0 RO wrb_fifo_in_cnt The number of incoming entries to wrb fifo.

[19:10] 0 RO wrb_fifo_output_cnt The number of popup entries from wrb fifo.

[9:0] 0 RO qid_fifo_output_cnt The number of popup entries from qid fifo.

This is the debug register for the C2H DMA Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)

Table 168: QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)

Bit Default Access
Type Field Description

[31:25] 0 NA Reserved

[24:21] 0 RO pld_st_fifo_out_cnt The number of entries in the pld_st fifo.

[20:20] 0 RO pld_pkt_id_larger Payload packet ID is larger than what the CMPT
packet is waiting for.

[19:10] 0 RO wrq_fifo_in_cnt The number of incoming entries to wrq fifo.

[9:0] 0 RO wrq_fifo_output_cnt The number of popup entries from wrq fifo.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=149


QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)

Table 169: QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)

Bit Default Access
Type Field Description

[31:14] 0 RW Reserved

[13] 0 RW err_stat Error status
For read command
if Queue is valid, err_stat = 0
If Queue is invalid err_stat = 1

[12] 0 RW cmd_wr Command to write or read.
1: write
0: read

[11:1] 0 RW qid Queue ID.

[0] 0 RW done Done. Operation finished

QDMA_C2H_FIRST_ERR_QID (0xB30)

Table 170: QDMA_C2H_FIRST_ERR_QID (0xB30)

Bit Default Access
Type Field Description

[31:20] NA Reserved

[19:16] 0 RO err_type 4’b1111: NA
4'b1110: wrb_cidx_err
4’b1101: wrb_qfull_err
4’b1100: wrb_inv_q_err
4’b1011: port_id_ctxt_mismatch
4’b1010: port_id_byp_in_mismatch
4’b1001: err_desc_cnt
4’b0111: msi_int_fail
4’b0110: eng_wpl_data_par_err
4’b0100: desc_rsp_error
4’b0011: qid_mismatch
4’b0001: len_mismatch
4’b0000: mty_mismatch

[15:11] 0 NA Reserved

[10:0] 0 RO qid The Qid of the first C2H error

This register records the first C2H error type and Qid. The software can write to this register to
clear the err_type to be 4’b1111.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=150


QDMA_STAT_NUM_WRB_IN (0xB34)

Table 171: QDMA_STAT_NUM_WRB_IN (0xB34)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RO wrb_cnt The number of WRB passed from DmaWrEnginre to
Wrb block.

QDMA_STAT_NUM_WRB_OUT (0xB38)

Table 172: QDMA_STAT_NUM_WRB_OUT (0xB38)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RO wrb_cnt Number of WRB(excluding STAT_DESC) passed from
Wrb to WrbCoal block

QDMA_STAT_NUM_WRB_DRP (0xB3C)

Table 173: QDMA_STAT_NUM_WRB_DRP (0xB3C)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RO wrb_cnt Number of WRB dropped inside Wrb block

QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)

Table 174: QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RO stat_desc_cnt Number of STAT_DESC issued from Wrb to WrbCoal
block

QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)

Table 175: QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=151


Table 175: QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44) (cont'd)

Bit Default Access
Type Field Description

[15:0] 0 RO crdt_cnt An accounting of the number of descriptor credits
sent out versus received (as a result of queue
invalidations).

QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)

Table 176: QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

[15:0] 0 RO dsc_cnt Number of descriptors received from the fetch
engine.

QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)

Table 177: QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)

Bit Default Access
Type Field Description

[31:11] 0 NA Reserved

[10:0] 0 RO dsc_cnt Number of descriptors received from the bypass
path.

QDMA_C2H_WRB_COAL_CFG (0xB50)

Table 178: QDMA_C2H_WRB_COAL_CFG (0xB50)

Bit Default Access
Type Field Description

[31:26] 32 RW max_buf_sz Program this field to be
(QDMA_C2H_CMPT_COAL_BUF_DEPTH.buffer_depth -
2). See QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4).

[25:14] 20 RW tick_val Coalesce buffer timer tick value

[13:2] 4 RW tick_cnt Coalesce buffer timer count value

[1] 0 RW set_glb_flush Makes coalesce buffer flush an entry as soon as it as
a Completion in it

[0] 0 RO done_glb_flush Coalesce buffer sets this bit when it flushes an entry.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=152


QDMA_C2H_INTR_H2C_REQ (0xB54)

Table 179: QDMA_C2H_INTR_H2C_REQ (0xB54)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of H2C interrupt
requests.

QDMA_C2H_INTR_C2H_MM_REQ (0xB58)

Table 180: QDMA_C2H_INTR_C2H_MM_REQ (0xB58)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of C2H MM interrupt
requests.

QDMA_C2H_INTR_ERR_INT_REQ (0xB5C)

Table 181: QDMA_C2H_INTR_ERR_INT_REQ (0xB5C)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of error generated
interrupt requests.

QDMA_C2H_INTR_C2H_ST_REQ (0xB60)

Table 182: QDMA_C2H_INTR_C2H_ST_REQ (0xB60)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of C2H stream
interrupt requests.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_ACK (0xB64)

Table 183: QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_ACK (0xB64)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=153


Table 183: QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_ACK (0xB64) (cont'd)

Bit Default Access
Type Field Description

[17:0] 0 RO cnt Debug status register. Number of msix Ack for the
H2C, C2H MM, and error generated interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_FAIL (0xB68)

Table 184: QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_FAIL (0xB68)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of msix Fail for the
H2C, C2H MM, and error generated interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_NO_MSIX (0xB6C)

Table 185: QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_NO_MSIX (0xB6C)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of no msix for the
H2C, C2H MM, and error generated interrupts.

QDMA_C2H_INTR_H2C_ERR_C2H_MM_CTXT_INVAL (0xB70)

Table 186: QDMA_C2H_INTR_H2C_ERR_C2H_MM_CTXT_INVAL (0xB70)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of Interrupt Context
invalid cases for the H2C, C2H MM, and error
generated interrupts.

QDMA_C2H_INTR_C2H_ST_MSIX_ACK (0xB74)

Table 187: QDMA_C2H_INTR_C2H_ST_MSIX_ACK (0xB74)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of MSIX Ack for the
C2H stream interrupts.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=154


QDMA_C2H_INTR_C2H_ST_MSIX_FAIL (0xB78)

Table 188: QDMA_C2H_INTR_C2H_ST_MSIX_FAIL (0xB78)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of msix Fail for the
C2H stream interrupts.

QDMA_C2H_INTR_C2H_ST_NO_MSIX (0xB7C)

Table 189: QDMA_C2H_INTR_C2H_ST_NO_MSIX (0xB7C)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of no msix for the
C2H stream interrupts.

QDMA_C2H_INTR_C2H_ST_CTXT_INVAL (0xB80)

Table 190: QDMA_C2H_INTR_C2H_ST_CTXT_INVAL (0xB80)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of Interrupt Context
invalid cases for the C2H interrupts.

QDMA_C2H_STAT_WR_CMP (0xB84)

Table 191: QDMA_C2H_STAT_WR_CMP (0xB84)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Debug status register. Number of payload write
completion from the DMA Write Engine.

QDMA_C2H_STAT_DEBUG_DMA_ENG_4 (0xB88)

Table 192: QDMA_C2H_STAT_DEBUG_DMA_ENG_4 (0xB88)

Bit Default Access
Type Field Description

[31] 0 RO tuser_fifo_out_vld tuser fifo out valid.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=155


Table 192: QDMA_C2H_STAT_DEBUG_DMA_ENG_4 (0xB88) (cont'd)

Bit Default Access
Type Field Description

[30] 1 RO tuser_fifo_in_rdy tuser fifo in rdy signal.

[29:20] 0 RO tuser_fifo_in_cnt Number of incoming entries to tuser fifo.

[19:10] 0 RO tuser_fifo_output_cnt Number of popup entries from tuser fifo.

[9:0] 0 RO tuser_fifo_out_cnt Number of entries in tuser fifo.

QDMA_C2H_DBG_PFCH_QID (0xB90)

Table 193: QDMA_C2H_DBG_PFCH_QID (0xB90)

Bit Default Access
Type Field Description

[31:15] 0 RW Reserved

[14] 0 RW err_ctxt Data written to the Error Context RAM

[13:11] 0 RW target 3'h0: Key_cam,
3'h1: Tag_st
3'h2: Tag_used_cnt
3'h3: Tag_desc_cnt
3'h4: Error Context RAM

[10:0] 0 RW qid_or_tag Qid or Tag

QDMA_C2H_DBG_PFCH (0xB94)

Table 194: QDMA_C2H_DBG_PFCH (0xB94)

Bit Default Access
Type Field Description

[31:0] 0 RW data Data

The above are two debug registers for the Prefetch module. First, write to the
QDMA_C2H_DBG_PFCH_QID register to set up the target and qid (or tag). Then, read or write
to the QDMA_C2H_DBG_PFCH register to do the following:

• Read Key cam of each tag

• Read tag_st of each tag

• Read tag_used_cnt of each tag

• Read tag_desc_cnt of each tag

• Read or write Error Context RAM of each queue

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=156


QDMA_C2H_INT_DEBUG (0xB98)

Table 195: QDMA_C2H_INT_DEBUG (0xB98)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved

[7:4] 0 RO int_coal_sm State machine in the Interrupt Aggregation module.

[3:0] 0 RO int_sm State machine in the Interrupt module.

QDMA_C2H_STAT_IMM_ACCEPTED (0xB9C)

Table 196: QDMA_C2H_STAT_IMM_ACCEPTED (0xB9C)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Number of immediate data packets accepted.

QDMA_C2H_STAT_MARKER_ACCEPTED (0xBA0)

Table 197: QDMA_C2H_STAT_MARKER_ACCEPTED (0xBA0)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Number of marker packets accepted.

QDMA_C2H_STAT_DISABLE_CMP_ACCEPTED (0xBA4)

Table 198: QDMA_C2H_STAT_DISABLE_CMP_ACCEPTED (0xBA4)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO cnt Number of disable completion packets accepted.

QDMA_C2H_PAYLOAD_FIFO_CRDT_CNT (0xBA8)

Table 199: QDMA_C2H_PAYLOAD_FIFO_CRDT_CNT (0xBA8)

Bit Default Access
Type Field Description

[31:18] 0 NA Reserved

[18:0] 0 RO cnt Payload FIFO credit count in the DMA Write Engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=157


QDMA_C2H_INTR_DYN_REQ (0xBAC)

Table 200: QDMA_C2H_INTR_DYN_REQ (0xBAC)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. Number of Interrupt
aggregation ring pointer updates.

QDMA_C2H_INTR_DYN_MSIX (0xBB0)

Table 201: QDMA_C2H_INTR_DYN_MSIX (0xBB0)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. The number of Interrupt
Aggregation Ring pointer updates that cause the
PCIe MSI-X message.

QDMA_C2H_DROP_LEN_MISMATCH (0xBB4)

Table 202: QDMA_C2H_DROP_LEN_MISMATCH (0xBB4)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. The number of cases where
desc_rsp_eng.len is not equal to qid_fifo_out_data.len
when the drop happens.

QDMA_C2H_DROP_DESC_RSP_LEN (0xBB8)

Table 203: QDMA_C2H_DROP_DESC_RSP_LEN (0xBB8)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. The desc_rsp_eng.len when
the drop happens.

QDMA_C2H_DROP_QID_FIFO_LEN (0xBBC)

Table 204: QDMA_C2H_DROP_QID_FIFO_LEN (0xBBC)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. The qid_fifo_out_data.len
when the drop happens.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=158


QDMA_C2H_DROP_PAYLOAD_CNT (0xBC0)

Table 205: QDMA_C2H_DROP_PAYLOAD_CNT (0xBC0)

Bits Default Access
Type Field Description

[31:0] 0 RO num Debug status registers. The number of payload fifo
credits when a drop happens.

QDMA_C2H_CMPT_FORMAT_0 (0xBC4)

Table 206: QDMA_C2H_CMPT_FORMAT_0 (0xBC4)

Bits Default Access
Type Field Description

[31:16] - RO desc_err_loc The Vivado IDE option 0 of the 9-bit offset of desc_err
bit in the CMPT entry measured from LSB.

[15:0] - RO color_loc The Vivado IDE option 0 of the 9-bit offset of color bit
in the CMPT entry measured from LSB.

The default values of the fields of this register are determined at IP generation.

QDMA_C2H_CMPT_FORMAT_1 (0xBC8)

Table 207: QDMA_C2H_CMPT_FORMAT_1 (0xBC8)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc The Vivado IDE option 1 of the 9-bit offset of desc_err
bit in the CMPT entry measured from LSB.

[15:0] 0 RO color_loc The Vivado IDE option 1 of the 9-bit offset of color bit
in the CMPT entry measured from LSB.

The default values of the fields of this register are determined at IP generation.

QDMA_C2H_CMPT_FORMAT_2 (0xBCC)

Table 208: QDMA_C2H_CMPT_FORMAT_2 (0xBCC)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc The Vivado IDE option 2 of the 9-bit offset of desc_err
bit in the CMPT entry measured from LSB.

[15:0] 0 RO color_loc The Vivado IDE option 2 of the 9-bit offset of color bit
in the CMPT entry measured from LSB.

The default values of the fields of this register are determined at IP generation

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=159


QDMA_C2H_CMPT_FORMAT_3 (0xBD0)

Table 209: QDMA_C2H_CMPT_FORMAT_3 (0xBD0)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc The Vivado IDE option 3 of the 9-bit offset of desc_err
bit in the CMPT entry measured from LSB

[15:0] 0 RO color_loc The Vivado IDE option 3 of the 9-bit offset of color bit
in the CMPT entry measured from LSB

The default values of the fields of this register are determined at IP generation

QDMA_C2H_CMPT_FORMAT_4 (0xBD4)

Table 210: QDMA_C2H_CMPT_FORMAT_4 (0xBD4)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc The Vivado IDE option 4 of the 9-bit offset of desc_err
bit in the CMPT entry measured from LSB.

[15:0] 0 RO color_loc The Vivado IDE option 4 of the 9-bit offset of color bit
in the CMPT entry measured from LSB.

The default values of the fields of this register are determined at IP generation

QDMA_C2H_CMPT_FORMAT_5 (0xBD8)

Table 211: QDMA_C2H_CMPT_FORMAT_5 (0xBD8)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc GUI option 5 of the 9-bit offset of desc_err bit in the
CMPT entry measured from LSB

[15:0] 0 RO color_loc GUI option 5 of the 9-bit offset of color bit in the
CMPT entry measured from LSB

The default values of the fields of this register are determined at IP generation

QDMA_C2H_CMPT_FORMAT_6 (0xBDC)

Table 212: QDMA_C2H_CMPT_FORMAT_6 (0xBDC)

Bits Default Access
Type Field Description

[31:16] 0 RO desc_err_loc GUI option 6 of the 9-bit offset of desc_err bit in the
CMPT entry measured from LSB

[15:0] 0 RO color_loc GUI option 6 of the 9-bit offset of color bit in the
CMPT entry measured from LSB

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=160


The default values of the fields of this register are determined at IP generation

QDMA_C2H_PFCH_CACHE_DEPTH (0xBE0)

Table 213: QDMA_C2H_PFCH_CACHE_DEPTH (0xBE0)

Bits Default Access
Type Field Description

[31:7] 0 NA Reserved

[6:0] 0 RO size Prefetch cache size: 8, 16, 32, or 64.

The prefetch cache supports up to 64 Queues. Select either 8, 16, 32, or 64. The Prefetch cache
can support that many active queues at any given time. When one of the active queues finishes
fetch and delivers all the descriptors for the packets of that queue, it will release cache entry for
other active queues. A larger cache size supports more active queues, but the area will also
increase.

QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4)

Table 214: QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4)

Bits Default Access
Type Field Description

[31:7] 0 RO Reserved

[6:0] - RO buffer_depth The SW can use this register to determine the depth
of the Completion Coalesce Buffer as programmed
when building the IP. Possible values are 8, 16, and
32.

Coalescing the CMPTs before issuing PCIe write requests reduces the impact of CMPT writes on
PCIe write bandwidth. CMPTs from a single queue are coalesced up to 64B before being written
to the CMPT ring (CMPT sizes are 8,16,32,or 64 Bytes). Each entry of the CMPT Coalesce buffer
coalesces CMPTs from a single queue. This register (0xBE4) indicates how many Queues can be
coalesced. The same CMPT Coalesce buffer entry can serve another queue after evicting its
contents of the current queue. Thus a deeper CMPT Coalesce buffer allows more queues to be
served by the CMPT Coalesce buffer without frequent evictions. However, with a deeper CMPT
Coalesce buffer area increases, as a downside.

QDMA_C2H_PFCH_CRDT (0xBE8)

Table 215: QDMA_C2H_PFCH_CRDT (0xBE8)

Bits Default Access
Type Field Description

[31:1] 0 RO Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=161


Table 215: QDMA_C2H_PFCH_CRDT (0xBE8) (cont'd)

Bits Default Access
Type Field Description

[0:0] 0 RO fence Credit from the Prefetch module. The fence bit block
further credits updates until fetch is completed for
this update.

QDMA_C2H_STAT_HAS_CMPT_ACCEPTED (0xBEC)

Table 216: QDMA_C2H_STAT_HAS_CMPT_ACCEPTED (0xBEC)

Bits Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO data Number of C2H data packets that have completion.

QDMA_C2H_STAT_HAS_PLD_ACCEPTED (0xBF0)

Table 217: QDMA_C2H_STAT_HAS_PLD_ACCEPTED (0xBF0)

Bits Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO data Number of C2H completion packets that have data
payload.

MDMA_C2H_PLD_PKT_ID (0xBF4)

Table 218: QDMA_C2H_PLD_PKT_ID (0xBF4)

Bits Default Access
Type Field Description

[31:18] 0 NA Reserved

[17:0] 0 RO data Data payload packet ID that the C2H DMA Write
Engine has processed

QDMA_TRQ_SEL_H2C (0x00E00)

Table 219: QDMA_TRQ_SEL_H2C (0x00E00) Register Space 

Register Name Address (hex) Description
QDMA_H2C_ERR_STAT (0xE00) 0xE00 H2C error status

QDMA_H2C_ERR_MASK (0xE04) 0xE04 H2C error mask

QDMA_H2C_FIRST_ERR_QID (0xE08) 0xE08 The QID and type of the first error encountered
on H2C-ST

QDMA_H2C_DBG_REG0 (0xE0C) 0xE0C H2C-ST debug register 0

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=162


Table 219: QDMA_TRQ_SEL_H2C (0x00E00) Register Space (cont'd)

Register Name Address (hex) Description
QDMA_H2C_DBG_REG1 (0xE10) 0xE10 H2C-ST debug register 1

QDMA_H2C_DBG_REG2 (0xE14) 0xE14 H2C-ST debug register 2

QDMA_H2C_DBG_REG3 (0xE18) 0xE18 H2C-ST debug register 3

QDMA_H2C_DBG_REG4 (0xE1C) 0xE1C H2C-ST debug register 4

QDMA_H2C_FATAL_ERR_EN (0xE20) 0xE20 H2C-ST fatal error enable

QDMA_H2C_REQ_THROT (0xE24) 0xE24

QDMA_H2C_ALN_DBG_REG0 (0xE28) 0xE28

QDMA_H2C_ERR_STAT (0xE00)

Table 220: QDMA_H2C_ERR_STAT (0xE00)

Bit Default Access
Type Field Description

[31:5] 0 NA Reserved

[4] 0 RW dbe Double bit error corrected on H2C-ST data.

[3] 0 RW sbe Single bit error detected on H2C-ST data.

[2] 0 RW no_dma_dsc_err A no_dma descriptor was received when either SOP
or EOP was reset.

[1] 0 RW sdi_mrkr_req_mop_err A non-EOP descriptor was received when either sdi
or mrkr_req was set.

[0] 0 RW zero_len_dsc_err A zero length descriptor was received when either
SOP or EOP was reset.

This is the error logging register for the H2C errors. The hardware writes to the register when the
error happens. The SW can write 1'b1 to clear the error if desired. The
QDMA_H2C_ERR_MASK register does not affect error logging.

QDMA_H2C_ERR_MASK (0xE04)

Table 221: QDMA_H2C_ERR_MASK (0xE04)

Bit Default Access
Type Field Description

[31:0] 0 RW h2c_err_en_mask H2C error enable mask

The software can set a bit to enable the corresponding H2C error to be propagated to the error
aggregator.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=163


QDMA_H2C_FIRST_ERR_QID (0xE08)

Table 222: QDMA_H2C_FIRST_ERR_QID (0xE08)

Bit Default Access
Type Field Description

[31:20] NA Reserved

[19:16] 0 RO err_type 4'b1111: NA
4'b0000: zero_len_dsc_err
4'b0001: wbi_mop_err
4'b0010: no_dma_dsc_err
4'b0011: sbe
4'b0100: dbe

[15:11] 0 NA Reserved

[10:0] 0 RO qid The Qid of the first H2C error

QDMA_H2C_DBG_REG0 (0xE0C)

Table 223: QDMA_H2C_DBG_REG0 (0xE0C)

Bit Default Access
Type Field Description

[31:16] 0 RO num_dsc_rcvd Number of descriptors received by the H2C-ST
engine.

[15:0] 0 RO num_wrb_sent Number of status write packets sent from the H2C-ST
engine to the H2C status-write engine to request the
descriptor engine to send the status write out to
Host.

QDMA_H2C_DBG_REG1 (0xE10)

Table 224: QDMA_H2C_DBG_REG1 (0xE10)

Bit Default Access
Type Field Description

[31:16] 0 RO num_req_sent Number of PCIe requests sent by the H2C-ST engine.

[15:0] 0 RO num_cmp_rcvd Number of PCIe responses received by the H2C-ST
engine.

QDMA_H2C_DBG_REG2 (0xE14)

Table 225: QDMA_H2C_DBG_REG2 (0xE14)

Bit Default Access
Type Field Description

[31:16] 0 RO Reserved

[15:0] 0 RO num_err_dsc_rcvd Number of descriptors received with error by the
H2C-ST engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=164


QDMA_H2C_DBG_REG3 (0xE18)

Table 226: QDMA_H2C_DBG_REG3 (0xE18)

Bit Default Access
Type Field Description

[31] 0 RO debug Reserved

[30] 1 RO dsco_fifo_empty H2C-ST status write fifo empty.

[29] 0 RO dsco_fifo_full H2C-ST status write fifo full.

[28:26] 1 RO cur_rc_state H2C-ST data FSM state.

[25:16] 0 RO rdreq_lines The number of lines the descriptor being processed
in the request FSM of the H2C-ST will fetch.

[15:6] 512 RO rdata_lines_avail The number of lines available in the H2C-ST data
buffer.

[5] 1 RO pend_fifo_empty H2C-ST pending request fifo empty.

[4] 0 RO pend_fifo_full H2C-ST pending request fifo full.

[3:2] 01 RO cur_rq_state H2C-ST request FSM state.

[1] 0 RO dsci_fifo_full H2C-ST descriptor in put fifo full.

[0] 1 RO dsci_fifo_empty H2C-ST descriptor in put fifo empty.

QDMA_H2C_DBG_REG4 (0xE1C)

Table 227: QDMA_H2C_DBG_REG4 (0xE1C)

Bit Default Access
Type Field Description

[31:0] 0 RO rdreq_addr The address of the descriptor being processed in the
request FSM of the H2C-ST.

QDMA_H2C_FATAL_ERR_EN (0xE20)

Table 228: QDMA_H2C_FATAL_ERR_EN (0xE20)

Bit Default Access
Type Field Description

[31:1] 0 RO Reserved

[0] 0 RW h2c_fatal_err_en If set, the H2C-ST data double bit errors are passed
to the user. If reset, they are ignored.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=165


QDMA_H2C_REQ_THROT (0xE24)

Table 229: QDMA_H2C_REQ_THROT (0xE24)

Bit Default
Value

Access
Type Field Description

[31] 0 RW req_throt_en_req Request Based Request Throttle Enable
Enable outstanding request based throttling of read
requests from H2C Stream engine.

[30:26] 0 RO Reserved

[25:17] 0x100 RW req_thresh Request Threshold
The number of read requests that need to be
outstanding in the H2C Stream engine to start read
request throttling.

[16] 0 RW req_throt_en_data Data Based Request Throttle Enable
Enable outstanding data based throttling of read
requests from H2C Stream engine.

[15:0] 0x800 RW data_thresh Data Threshold
The amount of data that needs to be outstanding in
the H2C Stream engine to start read request
throttling.

QDMA_H2C_ALN_DBG_REG0 (0xE28)

Table 230: QDMA_H2C_ALN_DBG_REG0 (0xE28)

Bits Default Access
Type Field Description

[31:16] 0 - Reserved

[15:0] 0 RO num_pkt_sent The number of packets sent out by the H2C-ST data
aligner.

QDMA_TRQ_SEL_C2H_MM (0x1000)

Table 231: QDMA_TRQ_SEL_C2H_MM (0x1000) Register Space

Registers Address Description
C2H MM Control 0x1004 Channel control bits.

0x1008 Channel control bits W1S.

0x100C Channel control bits W1C.

C2H MM Status 0x1040 Status bits.

0x1044 Status clear.

C2H Completed Descriptor Count 0x1048 Completed Descriptor. count

C2H MM Error Code Enable Mask (0x1054) 0x1054 Error masking.

C2H MM Error Code (0x1058) 0x1058 Error code.

C2H MM Error Info (0x105C) 0x105C Error information.

C2H MM Performance Monitor Control (0x10C0) 0x10C0 Performance monitor control.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=166


Table 231: QDMA_TRQ_SEL_C2H_MM (0x1000) Register Space (cont'd)

Registers Address Description
C2H MM Performance Monitor Cycle Count0
(0x10C4)

0x10C4 Performance monitor cycle count[31:0].

C2H MM Performance Monitor Cycle Count1
(0x10C8)

0x10C8 Performance monitor cycle count [41:32].

C2H MM Performance Monitor Data Count0
(0x10CC)

0x10CC Performance monitor data count [31:0].

C2H MM Performance Monitor Data Count1
(0x10D0)

0x10D0 Performance monitor data count [41:32].

C2H MM Debug (0x10E8) 0x10E8 Debug info.

C2H MM Control

Table 232: C2H Channel Control (0x1004) 

Bit Default Access
Type Field Description

31:1 Reserved

0 1’b0 RW run run
Set to 1 to start the SGDMA engine. Reset to 0 to stop
the transfer, if the engine is busy it completes the
current descriptor.

Table 233: C2H Channel Control (0x1008) 

Bit Default Access
Type Field Description

W1S Control
Bit descriptions are the same as in C2H Channel
Control (0x04).

Table 234: C2H Channel Control (0x100C) 

Bit Default Access
Type Field Description

W1C Control
Bit descriptions are the same as in C2H Channel
Control (0x04).

C2H MM Status

Table 235: QDMA_C2H MM Status (0x1040)

Bit Default Access
Type Field Description

[31:1] Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=167


Table 235: QDMA_C2H MM Status (0x1040) (cont'd)

Bit Default Access
Type Field Description

[0] sts_bsy Busy
If set, the engine is running.

C2H Completed Descriptor Count

Table 236: C2H Channel Completed Descriptor Count (0x1048) 

Bit Default Access
Type Field Description

31:0 32’h0 RO c2h_compl_desc_count c2h_compl_desc_count
The number of completed descriptors update by the
engine after completing each descriptor in the list.
Reset to 0 on rising edge of Control register, run bit
(See C2H Channel Control (0x1004)).

C2H MM Error Code Enable Mask (0x1054)

Table 237: C2H MM Error Code Enable Mask (0x1054)

Bit Default Access
Type Field Description

[31] 0 RW Reserved

[30] 0 RW wr_uc_ram If set, enables Write error, RAM uncorrectable, and
error code logging.

[29] 0 RW wr_ur If set, enables Write error, unsupported request
error, and code logging.

[28] 0 RW wr_flr If set, enables Write error, FLR reset, and error code
logging.

[27:2] 0 RW Reserved

[1] 0 RW rd_slv_err If set, enables Read slave error code logging.

[0] 0 RW wr_slv_err If set, enables Read decode error logging.

C2H MM Error Code (0x1058)

Table 238: C2H MM Error Code (0x1058)

Bit Default Access
Type Field Description

[31:28] 0 RW Reserved

[27:12] 0 RW cidx Consumer index of the descriptor.

[11:6] 0 NA Reserved Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=168


Table 238: C2H MM Error Code (0x1058) (cont'd)

Bit Default Access
Type Field Description

[5] 0 RW rdwr Read or Write Error
0: Read error
1: Write error

[4:0] 0 RW error_code If Write Error:
2: RAM uncorrectable error
1: Unsupported request 0: Function level reset
Other bits reserved
If Read Error:
1: Slave error
0: Decode error

C2H MM Error Info (0x105C)

Table 239: C2H MM Error Info (0x105C)

Bit Default Access
Type Field Description

[31] 0 RW valid Error info and Error code are valid.

[30:11] 0 NA Reserved

[10:0] 0 RW qid Queue ID of the descriptor.

C2H MM Performance Monitor Control (0x10C0)

Table 240: C2H MM Performance Monitor Control (0x10C0)

Bit Default Access
Type Field Description

[31:4] Reserved

[3] 0 RW imm_start Start counters immediately.

[2] 0 RW run_start Set to 1 to arm counters. Counters will start when the
run bit is asserted.

[1] 0 WO imm_clear Clear counter immediately.

[0] 0 RW run_clear Clear counters on run bit assertion.

C2H MM Performance Monitor Cycle Count0 (0x10C4)

Table 241: C2H MM Performance Monitor Cycle Count0 (0x10C4)

Bit Default Access
Type Field Description

[31:0] 0 RO cyc_cnt[31:0] Cycle count.
Increments by one for each clock while running.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=169


C2H MM Performance Monitor Cycle Count1 (0x10C8)

Table 242: C2H MM Performance Monitor Cycle Count1 (0x10C8)

Bit Default Access
Type Field Description

[31:10] Reserved.

[9:0] 0 RO cyc_cnt[41:32] Cycle count.

C2H MM Performance Monitor Data Count0 (0x10CC)

Table 243: C2H MM Performance Monitor Data Count0 (0x10CC)

Bit Default Access
Type Field Description

[31:0] 0 RO dcnt[31:0] Data count.
Increments by one for each data beat received.

C2H MM Performance Monitor Data Count1 (0x10D0)

Table 244: C2H MM Performance Monitor Data Count 1(0x10D0)

Bit Default Access
Type Field Description

[31:10] Reserved.

[9:0] 0 RO dcnt[41:32] Data count.

C2H MM Debug (0x10E8)

Table 245: C2H MM Debug (0x10E8)

Bit Default Access
Type Field Description

[31:24] Reserved.

[23:17] 0 RO rrq_entries[6:0] Outstanding requests.

[16:7] 512 RO dat_fifo_spc[9:0] Data fifo space.

[6] 0 RO rd_stall Read stall.

[5] 0 RO rrq_fifo_fl Read fifo full.

[4] 0 RO wr_stall Write stall.

[3] 0 RO wrq_fifo_fl Write fifo full.

[2] 0 RO wbk_stall Writeback stall.

[1] 1 RO dsc_fifo_ep Descriptor fifo empty.

[0] 0 RO dsc_fifo_fl Descriptor fifo full.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=170


QDMA_TRQ_SEL_H2C_MM (0x1200)

Table 246: QDMA_TRQ_SEL_H2C_MM (0x1200) Register Space

Register Address Description
H2C MM Control 0x1204 Channel control bits.

0x1208 Channel control bits W1S.

0x120C Channel control bits W1C.

H2C MM Status 0x1240 Status bits.

H2C Completed Descriptor Count 0x1248 Completed descriptor count.

H2C MM Error Code Enable Mask (0x1254) 0x1254 Error masking.

H2C MM Error Code (0x1258) 0x1258 Error code.

H2C MM Error Info (0x125C) 0x125C Error information.

H2C MM Performance Monitor Control (0x12C0) 0x12C0 Performance monitor control.

H2C MM Performance Monitor Cycle Count0
(0x12C4)

0x12C4 Performance monitor cycle count[31:0].

H2C MM Performance Monitor Cycle Count1
(0x12C8)

0x12C8 Performance monitor cycle count [41:32].

H2C MM Performance Monitor Data Count0
(0x12CC)

0x12C8 Performance monitor data count[31:0].

H2C MM Performance Monitor Data Count
1(0x12D0)

0x12D0 Performance monitor data count [41:32].

H2C MM Debug (0x12E8) 0x12E8 Debug info.

QDMA_H2C_MM_REQ_THROT (0x12EC) 0x12EC

H2C MM Control

Table 247: H2C Channel Control (0x1204) 

Bit Default Access
Type Field Description

31:1 Reserved

0 1’b0 RW run run
Set to 1 to start the SGDMA engine. Reset to 0 to stop
transfer; if the engine is busy it completes the
current descriptor.

ie_* register bits are interrupt enabled. When this condition is met and proper interrupt masks
are set interrupt will be generated.

Table 248: H2C Channel Control (0x1208) 

Bit Default Access
Type Field Description

0 W1S Control
Bit descriptions are the same as in H2C Channel
Control (0x04).

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=171


Table 249: H2C Channel Control (0x120C) 

Bit Default Access
Type Field Description

0 W1C Control
Bit descriptions are the same as in H2C Channel
Control (0x04).

H2C MM Status

Table 250: H2C Channel Status (0x1240) 

Bit Default Access
Type Field Description

31:1 Reserved

0 1’b0 RO busy busy
Set if the SGDMA engine is busy. Zero when it is idle.

H2C Completed Descriptor Count

Table 251: H2C Channel Completed Descriptor Count (0x1248) 

Bit Default Access
Type Field Description

31:0 32’h0 RO h2c_compl_desc_count The number of competed descriptors update by the
engine after completing each descriptor in the list.
Reset to 0 on rising edge of Control register Run bit.
See H2C Channel Control (0x1204).

H2C MM Error Code Enable Mask (0x1254)

Table 252: H2C MM Error Code Enable Mask (0x1254)

Bit Default Access
Type Field Description

[31:30] RW Reserved

[29] 0 RW wr_slv_error If set, enables write slave error code logging.

[28] 0 RW wr_dec_err If set, enables write decode error code logging.

[27:23] 0 RW Reserved

[22] 0 RW rd_rq_dis_err If set, enables read rq disable error code logging.

[21:17] 0 RW Reserved

[16] 0 RW rd_dat_poison_err If set, enables read data poison error code logging.

[15:9] 0 RW Reserved

[8] 0 RW rd_flr_err If set, enables read flr error code logging.

[7:6] 0 RW Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=172


Table 252: H2C MM Error Code Enable Mask (0x1254) (cont'd)

Bit Default Access
Type Field Description

[5] 0 RW rd_hdr_adr_err If set, enables read completion header address
mismatch error code logging.

[4] 0 RW rd_hdr_param_err If set, enables read completion header param
mismatch error code logging.

[3] 0 RW rd_hdr_byte _err If set, enables read completion header byte count
mismatch error code logging.

[2] 0 RW rd_ur_ca If set, enables read completion unsupported request
or completer abort error code logging.

[1] 0 RW rd_hrd_poison_err If set, enables read completion header poison error
code logging.

[0] 0 RW Reserved

H2C MM Error Code (0x1258)

Table 253: H2C MM Error Code (0x1258)

Bit Default Access
Type Field Description

[31:28] 0 RW Reserved

[27:12] 0 RW cidx Consumer index of the descriptor.

[11:6] 0 NA Reserved

[5] 0 RW rdwr Read or Write Error.
0: Read error
1: Write error

[4:0] 0 RW error_code If Read Error:
1: Header poisoned
2: Unsupported request or Completer Abort
3: Header byte count mismatch
4: Header param mismatch
5: Header address mismatch
8: Function level reset
16 : Data poisoned
22: PCIe reads disabled
Other bits reserved
If Write Error:
1: Slave error
0: Decode error

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=173


H2C MM Error Info (0x125C)

Table 254: H2C MM Error Info (0x125C)

Bit Default Access
Type Field Description

[31] 0 RW valid Error info and Error code logs are valid.

[30:11] 0 NA Reserved

[10:0] 0 RW qid Queue ID of the descriptor.

H2C MM Performance Monitor Control (0x12C0)

Table 255: H2C MM Performance Monitor Control (0x12C0)

Bit Default Access
Type Field Description

[31:4] Reserved.

[3] 0 RW imm_start Start counters immediately.

[2] 0 RW run_start Set to 1 to arm counters. Counters start when the run
bit is asserted.

[1] 0 WO imm_clear Clear counter immediately.

[0] 0 RW run_clear Clear counters on run bit assertion.

H2C MM Performance Monitor Cycle Count0 (0x12C4)

Table 256: H2C MM Performance Monitor Cycle Count0 (0x12C4)

Bit Default Access
Type Field Description

[31:0] 0 RO cyc_cnt[31:0] Cycle count.
Increments by one for each clock while running.

H2C MM Performance Monitor Cycle Count1 (0x12C8)

Table 257: H2C MM Performance Monitor Cycle Count1 (0x12C8)

Bit Default Access
Type Field Description

[31:10] Reserved.

[9:0] 0 RO cyc_cnt[41:32] Cycle count.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=174


H2C MM Performance Monitor Data Count0 (0x12CC)

Table 258: H2C MM Performance Monitor Data Count0 (0x12CC)

Bit Default Access
Type Fields Description

[31:0] 0 RO dcnt[31:0] Data count.
Increments by one for each data beat received.

H2C MM Performance Monitor Data Count 1(0x12D0)

Table 259: H2C MM Performance Monitor Data Count 1(0x12D0)

Bit Default Access
Type Field Description

[31:10] Reserved.

[9:0] 0 RO dcnt[41:32] Data count.

H2C MM Debug (0x12E8)

Table 260: H2C MM Debug (0x12E8)

Bit Default Access
Type Field Description

[31:24] Reserved.

[23:17] 0 RO rrq_entries[6:0] Outstanding requests.

[16:7] 512 RO dat_fifo_spc[9:0] Data fifo space.

[6] 0 RO rd_stall Read stall.

[5] 0 RO rrq_fifo_fl Read fifo full.

[4] 0 RO wr_stall Write stall.

[3] 0 RO wrq_fifo_fl Write fifo full.

[2] 0 RO wbk_stall Writeback stall.

[1] 1 RO dsc_fifo_ep Descriptor fifo empty.

[0] 0 RO dsc_fifo_fl Descriptor fifo full.

QDMA_H2C_MM_REQ_THROT (0x12EC)

Table 261: QDMA_H2C_MM_REQ_THROT (0x12EC)

Bits Default Access
Type Field Description

[31:17] 0 RO Reserved

[16] 0 RW req_throt_en Data Based Request Throttle Enable
Enable outstanding data based throttling of read
requests from H2C MM engine.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=175


Table 261: QDMA_H2C_MM_REQ_THROT (0x12EC) (cont'd)

Bits Default Access
Type Field Description

[15:0] 0x8000 RW data_thresh Data Threshold
The amount of data that needs to be outstanding in
the H2C MM engine to start read request throttling.

QDMA_PF_MAILBOX (0x2400)

Table 262: QDMA_PF_MAILBOX (0x2400) Register Space

Register Address Description
Function Status Register (0x2400) 0x2400 Status bits

Function Command Register (0x2404) 0x2404 Command register bits

Function Interrupt Vector Register (0x2408) 0x2408 Interrupt vector register

Target Function Register (0x240C) 0x240C Target Function register

Function Interrupt Vector Register (0x2410) 0x2410 Interrupt Control Register

RTL Version Register (0x2414) 0x2414 RTLVersion Register

PF Acknowledgment Registers (0x2420-0x243C) 0x2420-0x243C PF acknowledge

FLR Control/Status Register (0x2500) 0x2500 FLR control and status

Incoming Message Memory (0x2C00-0x2C7C) 0x2C00-0x2C7C Incoming message (128 bytes)

Outgoing Message Memory (0x3000-0x307C) 0x3000-0x307C Outgoing message (128 bytes)

Mailbox Addressing

PF addressing:

Addr = PF_Bar_offset + CSR_addr

VF addressing:

Addr = VF_Bar_offset + VF_Start_offset + VF_offset + CSR_addr

Function Status Register (0x2400)

Table 263: Function Status Register (0x2400)

Bit Default Access
Type Field Description

[31:12] 0 NA Reserved

11-4 0 RO cur_src_fn This field is for PF use only.
The source function number of the message on the
top of the incoming request queue.

2 0 RO ack_status This field is for PF use only.
The status bit will be set when any bit in the
acknowledgement status register is asserted.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=176


Table 263: Function Status Register (0x2400) (cont'd)

Bit Default Access
Type Field Description

1 0 RO o_msg_status For VF: The status bit will be set when VF driver write
msg_send to its command register. When The
associated PF driver send acknowledgement to this
VF, the hardware clear this field. The VF driver is not
allow to update any content in its outgoing mailbox
memory (OMM) while o_msg_status is asserted. Any
illegal write to the OMM will be discarded (optionally,
this can cause an error in the AXI Lite response
channel).
For PF: The field indicated the message status of the
target FN which is specified in the Target FN Register.
The status bit will be set when PF driver sends
msg_send command. When the corresponding
function driver send acknowledgement by sending
msg_rcv, the hardware clear this field. The PF driver
is not allow to update any content in its outgoing
mailbox memory (OMM) while
o_msg_status(target_fn_id) is asserted. Any illegal
write to the OMM will be discarded (optionally, case
an error in the AXI4L response channel).

0 0 RO i_msg_status For VF: When asserted, a message in the VF’s
incoming Mailbox memory is pending for process.
The field will be cleared once the VF driver write
msg_rcv to its command register.
For PF: When asserted, the messages in the incoming
Mailbox memory are pending for process. The field
will be cleared only when the event queue is empty.

Function Command Register (0x2404)

Table 264: Function Command Register (0x2404)

Bit Default Access
Type Field Description

[31:3] 0 NA Reserved

2 0 RO Reserved

1 0 RW msg_rcv For VF: VF marks the message in its Incoming
Mailbox Memory as received. Hardware asserts the
acknowledgement bit of the associated PF.
For PF: PF marks the message send by target_fn as
received. The hardware will refresh the i_msg_status
of the PF, and clear the o_msg_status of the
target_fn.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=177


Table 264: Function Command Register (0x2404) (cont'd)

Bit Default Access
Type Field Description

0 0 RW msg_send For VF: VF marks the current message in its own
Outgoing Mailbox as valid.
For PF:

• Current target_fn_id belongs to a VF: PF finished
writing a message into the Incoming Mailbox
memory of the VF with target_fn_id. The
hardware sets the i_msg_status field of the target
FN’s status register.

• Current target_fn_id belongs to a PF: PF finished
writing a message into its own outgoing Mailbox
memory. Hardware will push the message to the
event queue of the PF with target_fn_id.

Function Interrupt Vector Register (0x2408)

Table 265: Function Interrupt Vector Register (0x2408)

Bit Default Access
Type Field Description

[31:5] 0 NA Reserved

[4:0] 0 RW int_vect 5-bit interrupt vector assigned by the driver.

Target Function Register (0x240C)

Table 266: Target Function Register (0x0C)

Bit Default Access
Type Field Description

[31:8] 0 NA Reserved

[7:0] 0 RW target_fn_id This field is for PF use only.
The FN number which the current operation is
targeting at.

Function Interrupt Vector Register (0x2410)

Table 267: Function Interrupt Vector Register (0x2410)

Bit Default Access
Type Field Description

31:1 0 NA Reserved

0 0 RW int_en Interrupt enable.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=178


RTL Version Register (0x2414)

Table 268: RTL Version Register (0x2414)

Bit Default Access
Type Field Description

31:16 0x1fd3 RO QDMA ID

15:0 0 RO Vivado versions
0x0100 : Vivado version 2019.1
0x0201 : Vivado version 2019.2 Patch

PF Acknowledgment Registers (0x2420-0x243C)

Table 269: PF Acknowledgment Registers (0x2420-0x243C)

Register Addr Default Access
Type Field Width Description

Ack0 0x2420 0 RW 32 Acknowledgment from FN
31~0

Ack1 0x2424 0 RW 32 Acknowledgment from FN
63~32

Ack2 0x2428 0 RW 32 Acknowledgment from FN
95~64

Ack3 0x242C 0 RW 32 Acknowledgment from FN
127~96

Ack4 0x2430 0 RW 32 Acknowledgment from FN
159~128

Ack5 0x2434 0 RW 32 Acknowledgment from FN
191~160

Ack6 0x2438 0 RW 32 Acknowledgment from FN
223~192

Ack7 0x243C 0 RW 32 Acknowledgment from FN
255~224

FLR Control/Status Register (0x2500)

Table 270: FLR Control/Status Register (0x2500)

Bit Default Access
Type Field Description

[31:1] 0 NA Reserved

0 0 RW Flr_status Software write 1 to initiate the Function Level Reset
(FLR) for the associated function. The field is kept
asserted during the FLR process. After the FLR is
done, the hardware de-asserts this field.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=179


Incoming Message Memory (0x2C00-0x2C7C)

Table 271: Incoming Message Memory (0x2C00-0x2C7C)

Register Addr Default Access
Type Field Width Description

i_msg_i 0x2C00 + i*4 0 RW 32 The ith word of the incoming
message ( 0 ≤ I < 128).

Outgoing Message Memory (0x3000-0x307C)

Table 272: Outgoing Message Memory (0x3000-0x307C)

Register Addr Default Access
Type Field Width Description

o_msg_i 0x3000 + i *4 0 RW 32 The ith word of the outgoing
message ( 0 ≤ I < 128).

QDMA_TRQ_MSIX (0x10000)

Table 273: QDMA_TRQ_MSIX (0x10000)

Byte
Offset Bit Default Access

Type Field Description

0x10000 [31:12] 0 NA MSIX_Vector0_Address[31:0]MSIX_Vector0_Add
ress[63:32]
MSI-X vector0 message lower address.

0x10004 11-4 0 RO MSI-X vector0 message upper address

0x10008 2 0 RO ack_status MSIX_Vector0_Address[63:32MSIX_Vector0_Dat
a[31:0]
MSI-X vector0 message data.

0x1000C 1 0 RO o_msg_status MSIX_Vector0_Control[31:0]
MSI-X vector0 control.
Bit Position:
31:1: Reserved.
0: Mask. When set to 1, this MSI-X vector is not
used to generate a message. When reset to 0,
this MSI-X vector is used to generate a
message.

Note: The table above represents one MSI-X table entry. There are 2K MSI-X table entries for the QDMA.

QDMA_TRQ_SEL_QUEUE_PF (0x18000)

Table 274: QDMA_TRQ_SEL_QUEUE_PF (0x18000) Register Space

Register Address Description
QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000) 0x18000-0x1CFF0 Interrupt Ring Consumer Index (CIDX)

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=180


Table 274: QDMA_TRQ_SEL_QUEUE_PF (0x18000) Register Space (cont'd)

Register Address Description
QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x18004) 0x18004-0x1CFF4 H2C Descriptor Producer index (PIDX)

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x18008) 0x18008-0x1CFF8 C2H Descriptor Producer Index (PIDX)

QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x1800C) 0x1800C-0x1CFFC C2H Completion Consumer Index (CIDX)

There are 2048 Queues, each Queue will have more than four registers. All these registers can be
dynamically updated at any time. This set of registers can be accessed based on the Queue
number.

Queue number is absolute Qnumber [0 to 2047].
Interrupt CIDX address = 0x18000 + Qnumber*16
H2C PIDX address = 0x18004 + Qnumber*16
C2H PIDX address = 0x18008 + Qnumber*16
Write Back CIDX address = 0x1800C + Qnumber*16

For Queue 0:

0x18000 correspond to QDMA_DMAP_SEL_INT_CIDX
0c18004 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x18008 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x1800C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 1:

0x18010 correspond to QDMA_DMAP_SEL_INT_CIDX
0c18014 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x18018 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x1801C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 2:

0x18020 correspond to QDMA_DMAP_SEL_INT_CIDX
0c18024 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x18028 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x1802C correspond to QDMA_DMAP_SEL_WRB_CIDX

QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000)

Table 275: QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000)

Bit Default Access
Type Field Description

[31:24] 0 NA Reserved

[23:16] 0 RW ring_idx Ring index of the Interrupt Aggregation Ring

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=181


Table 275: QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000) (cont'd)

Bit Default Access
Type Field Description

[15:0] 0 RW sw_cdix Software Consumer index (CIDX)

QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x18004)

Table 276: QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x18004)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved

[16] 0 RW irq_arm Interrupt arm. Set this bit to 1 for next interrupt
generation.

[15:0] 0 RW h2c_pidx H2C Producer Index

QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x18008)

Table 277: QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x18008)

Bit Default Access
Type Field Description

[31:17] 0 NA Reserved

[16] 0 RW irq_arm Interrupt arm. Set this bit to 1 for next interrupt
generation.

[15:0] 0 RW c2h_pidx C2H Producer Index

QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x1800C)

Table 278: QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x1800C)

Bit Default Access
Type Field Description

[31:29] 0 NA Reserved

[28] 0 RW irq_en_wrb Interrupt arm. Set this bit to 1 for next interrupt
generation.

[27] 0 RW en_sts_desc_wrb Enable Status Descriptor for CMPT

[26:24] 0 RW trigger_mode Interrupt and Status Descriptor Trigger Mode:
0x0: Disabled
0x1: Every
0x2: User_Count
0x3: User
0x4: User_Timer
0x5: User_Timer_Count

[23:20] 0 RW c2h_timer_cnt_index Index to QDMA_C2H_TIMER_CNT

[19:16] 0 RW c2h_count_threshhold Index to QDMA_C2H_CNT_TH

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=182


Table 278: QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x1800C) (cont'd)

Bit Default Access
Type Field Description

[15:0] 0 RW wrb_cidx CMPT Consumer Index (CIDX)

QDMA VF Address Register Space
Table 279: QDMA VF Address Register Space

Target Name Base (Hex) Byte size (dec) Notes
QDMA_TRQ_MSIX_VF (0x0000) 00000000 4096 Space for 32 MSIX vectors and PBA

QDMA_VF_MAILBOX (0x1000) 00001000 8192 Mailbox address space

QDMA_TRQ_SEL_QUEUE_VF (0x3000) 00003000 32768 VF Direct QCSR (16B per Q, up to max
of 2048 Qs per function)

QDMA_TRQ_MSIX_VF (0x0000)

VF functions can access the MSIX table with offset (0x0000) from that function. The description
for this register space is the same as QDMA_TRQ_MSIX (0x10000).

QDMA_VF_MAILBOX (0x1000)

Table 280: QDMA_TRQ_SEL_IND (0x00800) Register Space

Registers (Address) Address Description
Function Status Register (0x1000) 0x1000 Status register bits

Function Command Register (0x1004) 0x1004 Command register bits

Function Interrupt Vector Register
(0x1008)

0x1008 Interrupt vector register

Target Function Register (0x100C) 0x100C Target Function register

Function Interrupt Control Register
(0x1010)

0x1010 Interrupt Control Register

RTL Version Register (0x1014) 0x1014 RTL Version Register

Incoming Message Memory
(0x1800-0x187C)

0x1800-0x187C Incoming message (128 bytes)

Outgoing Message Memory
(0x1C00-0x1C7C)

0x1C00-0x1C7C Outgoing message (128 bytes)

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=183


Function Status Register (0x1000)

Table 281: Function Status Register (0x1000)

Bit Index Default Access
Type Field Description

[31:12] 0 NA Reserved

11-4 0 RO cur_src_fn This field is for PF use only.
The source function number of the message on the
top of the incoming request queue.

2 0 RO ack_status This field is for PF use only.
The status bit will be set when any bit in the
acknowledgement status register is asserted.

1 0 RO o_msg_status For VF: The status bit will be set when VF driver write
msg_send to its command register. When the
associated PF driver sends acknowledgement to this
VF, the hardware clears this field. The VF driver is not
allow to update any content in its outgoing mailbox
memory (OMM) while o_msg_status is asserted. Any
illegal writes to the OMM are discarded (optionally,
case an error in the AXI4-Lite response channel).
For PF: The field indicated the message status of the
target FN which is specified in the Target FN Register.
The status bit is set when PF driver sends the
msg_send command. When the corresponding
function driver sends acknowledgement through
msg_rcv, the hardware clears this field. The PF driver
is not allow to update any content in its outgoing
mailbox memory (OMM) while
o_msg_status(target_fn_id) is asserted. Any illegal
writes to the OMM are discarded (optionally, case an
error in the AXI4L response channel).

0 0 RO i_msg_status For VF: When asserted, a message in the VF's
incoming Mailbox memory is pending for process.
The field is cleared after the VF driver writes msg_rcv
to its command register.
For PF: When asserted, the messages in the incoming
Mailbox memory are pending for process. The field is
cleared only when the event queue is empty.

Function Command Register (0x1004)

Table 282: Function Command Register (0x1004)

Bit Index Default Access
Type Field Description

[31:3] 0 NA Reserverd

2 0 RO Reserved

1 0 RW msg_rcv For VF: VF marks the message in its Incoming
Mailbox Memory as received. The hardware asserts
the acknowledgement bit of the associated PF.
For PF: PF marks the message send by target_fn as
received. The hardware refreshes the i_msg_status of
the PF, and clears the o_msg_status of the target_fn.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=184


Table 282: Function Command Register (0x1004) (cont'd)

Bit Index Default Access
Type Field Description

0 0 RW msg_send For VF: VF marks the current message in its own
Outgoing Mailbox as valid.
For PF:
Current target_fn_id belongs to a VF: PF finished
writing a message into the Incoming Mailbox
memory of the VF with target_fn_id. The hardware
sets the i_msg_status field of the target FN's status
register.
Current target_fn_id belongs to a PF: PF finished
writing a message into its own outgoing Mailbox
memory. The hardware pushes the message to the
event queue of the PF with target_fn_id.

Function Interrupt Vector Register (0x1008)

Table 283: Function Interrupt Vector Register (0x1008)

Bit Index Default Access
Type Field Description

[31:5] 0 NA Reserved

[4:0] 0 RW int_vect 5-bit interrupt vector assigned by the driver software.

Target Function Register (0x100C)

Table 284: Target Function Register (0x100C)

Bit Index Default Access
Type Field Description

[31:8] 0 NA Reserved

[7:0] 0 RW target_fn_id This field is for PF use only.
The FN number that the current operation is
targeting.

Function Interrupt Control Register (0x1010)

Table 285: Function Interrupt Control Register (0x1010)

Bit Index Default Access
Type Field Description

[31:1] 0 NA Reserved

0 0 RW int_en Interrupt enable.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=185


RTL Version Register (0x1014)

Table 286: RTL Version Register (0x1014)

Bit Default Access
Type Field Description

31:16 0x1fd3 RO QDMA ID

15:0 0 RO Vivado versions
0x0100: Vivado version 2019.1
0x0201: Vivado version 2019.2 patch

Incoming Message Memory (0x1800-0x187C)

Table 287: Incoming Message Memory (0x1800-0x187C)

Register Addr Default Access
Type Field Width Description

i_msg_i 0x1800 + i*4 0 RW 32 The ith word of the incoming
message ( i < 128).

Outgoing Message Memory (0x1C00-0x1C7C)

Table 288: Outgoing Message Memory (0x1C00-0x1C7C)

Register Addr Default Access
Type Field Width Description

o_msg_i 0x1C00 + i *4 0 RW 32 The ith word of the outgoing
message (i < 128).

QDMA_TRQ_SEL_QUEUE_VF (0x3000)

VF functions can access direct update registers per queue with offset (0x3000). The description
for this register space is the same as QDMA_TRQ_SEL_QUEUE_PF (0x18000).

This set of registers can be accessed based on Queue number. Queue number is absolute
Qnumber, [0 to 2047].

Interrupt CIDX address = 0x3000 + Qnumber*16
H2C PIDX address = 0x3004 + Qnumber*16
C2H PIDX address = 0x3008 + Qnumber*16
Completion CIDX address = 0x300C + Qnumber*16

For Queue 0:

0x3000 correspond to QDMA_DMAP_SEL_INT_CIDX
0x3004 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3008 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=186


0x300C correspond to QDMA_DMAP_SEL_WRB_CIDX

For Queue 1:

0x3010 correspond to QDMA_DMAP_SEL_INT_CIDX
0x3014 correspond to QDMA_DMAP_SEL_H2C_DSC_PIDX
0x3018 correspond to QDMA_DMAP_SEL_C2H_DSC_PIDX
0x301C correspond to QDMA_DMAP_SEL_WRB_CIDX

AXI4-Lite Slave Register Space
The Bridge register space and DMA register space are accessible through the AXI4-Lite Slave
interface.

• Bridge registers: When the AXI4-Lite Slave Address bit [28] is set to 0, access to the Bridge
and PCIe configuration registers is available. The access to Bridge and PCIe configurations
registers are available only when the AXI4-Lite Slave interface is enabled.

• DMA registers: When AXI4-Lite Slave Address bit [28] is set to 1, access to the DMA registers
is available. For more information about the DMA register, see:

○ QDMA PF Address Register Space

○ QDMA VF Address Register Space

Bridge Register Space

Bridge register addresses start at 0xE00. Addresses from 0x00 to 0xE00 are directed to the PCIe
Core configuration register space.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=187


Bridge Register Memory Map

Table 289: Bridge Register Memory Map

Accessibility Offset Contents Location
RO 0xE00 VSEC Capability

AXI Bridge Defined Memory
Mapped register-space

RO 0xE04 VSEC Header

RO 0xE08 Bridge Info

R/W 0xE0C Bridge Status and Control

R/W 0xE10 Interrupt Decode

R/W 0xE14 Interrupt Mask

RO 0xE18 Bus Location

RO 0xE1C Physical-Side Interface (PHY) Status/Control

RO 0xE20 - 0xE34 Reserved Space

R/W 0xE38 Interrupt Decode 2

R/W 0xE3C Interrupt Mask 2

RO 0xE40 Configuration Control

RO 0xE44 Slave Error AID

RO 0xE48 - 0xE54 Reserved Space

R/W 0xE58 User IRQ Request

R/W 0xE5C User IRQ Acknowledge

R/W 0xE60 PCIe TX Message Control

R/W 0xE64 PCIe TX Message Header Lower Bit

R/W 0xE68 PCIe TX Message Header Higher Bit

R/W 0xE6C PCIe TX Message Data FIFO

R/W 0xE70 PCIe RX Message Control and Status

R/W 0xE74 PCIe RX Message FIFO

RO 0xE78 Master Pending Counter

R/W 0xE7C PCIe TX MSI / MSI-X Control and Status

RO 0xE80 - 0xED0 Reserved Space

RO 0xED8 VSEC Capability 2

RO 0xEDC VSEC Header 2

R/W 0xEE0-0xF0C AXI Base Address Translation Configuration Registers

VSEC Capability Register (0xE00)

Register to allow the memory space for the core to appear as though it is a part of the underlying
integrated block PCIe configuration space. The VSEC is inserted immediately following the last
enhanced capability structure.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=188


Table 290: VSEC Capability Register (0xE00)

Bit Default Access
Type Field Description

[15:0] 0xB RO cap_id Indicates the PCIe defined ID identifying this
Enhanced Capability as a Vendor-Specific capability.

[19:16] 0x1 RO cap_ver Indicates the version of this capability structure.

[31:20] 0xED8 RO nxt_cap_offset Indicates the offset of the next capability.

VSEC Header Register (0xE04)

Register to provide a unique (within a given vendor) identifier for the layout and contents of the
VSEC structure, as well as its revision and length. VSEC Header Register is part of the AXI Bridge
that contains main Bridge Registers which start immediately after VSEC Header Register (Offset
0xE08).

Table 291: VSEC Header Register (0xE04)

Bit Default Access
Type Field Description

[15:0] 0x0 RO vsec_id Indicates the ID value uniquely identifying the nature
and format of this VSEC structure.

[19:16] 0x3 RO vsec_rev Indicates the version of this capability structure.

[31:20] 0x80 RO vsec_length Indicates the length of the entire VSEC Capability
structure, in bytes, including the VSEC Capability
register.

Bridge Info Register (0xE08)

Register to provide general configuration information about the PCIe AXI Bridge. Information in
this register is static and does not change during operation.

Table 292: Bridge Info Register 0xE08)

Bit Default Access
Type Field Description

[0] 0 RO gen2_cap If set, underlying integrated block supports PCIe
Gen2 speed.

[1] 0 RO rootport_present Indicates the underlying integrated block is a Root
Port when this bit is set. If set, Root Port registers are
present in this interface.

[2] 0 RO upconfig_cap Indicates the underlying integrated block is upconfig
capable when this bit is set.

[3] 0 RO gen3_cap If set, underlying integrated block supports PCIe
Gen3 speed.

[4] 0 RO gen4_cap If set, underlying integrated block supports PCIe
Gen4 speed.

[31:5] 0 RO reserved reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=189


Bridge Control and Status Register (0xE0C)

Register to provide information about the current state of the PCIe AXI Bridge.

Table 293: Bridge Control and Status Register (0xE0C)

Bit Default Access
Type Field Description

[7:0] 0 RO Reserved

[8] 0 RW glb_int_dis When set, disables interrupt line from being
asserted. Does not prevent Bit in Interrupt Decode
register from being set.

[9] 0 RW cfg_space_en When set, enables PCIe to generate regular
completions (non-CRS) in response to Configuration
requests. Otherwise, PCIe returns CRS. This control
bit is only valid when the attribute
"cfg_space_delay_en" is set to 1.
(Only applicable to End Point)

[31:10] 0 RO Reserved

Interrupt Decode Register (0xE10)

Register to determine what is causing the interrupt line[0] to be asserted and how to clear the
interrupt. Write 1'b1 to any bit to clear it, except for the Correctable, Non-Fatal, and Fatal bits
which require Error FIFO being empty first.

Table 294: Interrupt Decode Register (0xE10)

Bit Default Access
Type Field Description

[0] 0 RW1C link_down Indicates that Link-Up on the PCI Express link was
lost. Not asserted unless link-up had previously been
seen.

[1] 0 RW1C sw_ctrl_int Indicates a Software Interrupt (from Host and etc.)
was set in the DMA registers

[2] 0 RW1C flr_is_hit Indicates a Slave Transaction hitting FLR

[3] 0 RW1C hot_reset Indicates a Hot Reset was detected.

[17:4] 0 RO Reserved

[18] 0 RW1C vdm_rcvd Indicates a VDM message was received. The message
should be read from the RX_MFIFO_READ register.

[19] 0 RW1C pme_turn_off_rcvd Indicates a pme_turn_off message was received.
(Only applicable to End Point.)

[20] 0 RW1C slv_ur Indicates that a completion TLP was received with a
status of 3'b001 - Unsupported Request.

[21] 0 RW1C slv_tz_violation Indicates a TrustZone violation was detected on the
Bridge Slave port. Violated AXI Request ID is logged
in the Slave Error AID register.

[22] 0 RW1C slv_cpl_timeout Indicates that the expected completion TLP(s) for a
read request for PCIe was not returned within the
time period selected by the C_COMP_TIMEOUT
parameter.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=190


Table 294: Interrupt Decode Register (0xE10) (cont'd)

Bit Default Access
Type Field Description

[23] 0 RW1C slv_err_poison Indicates the error poison (EP) bit was set in a
completion TLP.

[24] 0 RW1C slv_ca Indicates that a completion TLP was received with a
status of 3'b100 - Completer Abort.

[25] 0 RW1C slv_illegal_burst Indicates that a burst type other than INCR was
requested by the AXI master.

[26] 0 RW1C mst_decerr Indicates a Decoder Error (DECERR) response was
received.

[27] 0 RW1C mst_slverr Indicates a Slave Error (SLVERR) response was
received.

[28] 0 RW1C slv_pcie_timeout Indicates that a pcie timeout completion was
received.

[29] 0 RW1C ecc_parity_err_rcvd Indicates that a RAM ECC Error or Parity Error was
received. The source of error should be read from
bit[9:0] of the Interrupt Decode 2 register.

[30] 0 RW1C pcie_local_err_rcvd Indicates that a PCIe Local Error was received. The
error code should be read from bit [24:20] of the
Interrupt Decode 2 register.

[31] 0 RW1C dma_int_rcvd Indicates that a DMA interrupt was received. The
user application should check for the 2nd level DMA
registers.
(Only applicable when DMA is enabled.)
For XDMA:
IRQ Block User Interrupt Request Register (0x2040).
IRQ Block Engine Interrupt Request Register
(0x2044).

Interrupt Mask Register (0xE14)

Register to control whether each individual interrupt source can cause the interrupt line[0] to be
asserted. A one in any location allows the interrupt source to assert the interrupt line. This
register initializes to all zeros. Therefore, by default no interrupt is generated for any event.

Table 295: Interrupt Mask Register (0xE14)

Bit Default Access
Type Field Description

[0] 0 RW link_down Enables interrupts for Link Down events when bit is
set.

[1] 0 RW sw_ctrl_int Enable interrupts for Software Interrupts (from Host
and etc.) when bit is set.

[2] 0 RW flr_is_hit Enables interrupts for Slave Transactions hitting FLR
events when bit is set.

[3] 0 RW hot_reset Enables interrupts for Hot Reset events when bit is
set.
(Only writable for EP configurations, otherwise = 0)

[17:4] 0 RO Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=191


Table 295: Interrupt Mask Register (0xE14) (cont'd)

Bit Default Access
Type Field Description

[18] 0 RW vdm_rcvd Enables interrupts for VDM events when bit is set.

[19] 0 RW pme_turn_off_rcvd Enables interrupts for PME_Turn_Off events when bit
is set.
(Only writable for EP configurations, otherwise = 0)

[20] 0 RW slv_ur Enables the Slave Unsupported Request interrupt
when bit is set.

[21] 0 RW slv_tz_violation Enables the Slave TrustZone Violation interrupt when
bit is set.

[22] 0 RW slv_cpl_timeout Enables the Slave Completion Timeout interrupt
when bit is set.

[23] 0 RW slv_err_poison Enables the Slave Error Poison interrupt when bit is
set.

[24] 0 RW slv_ca Enables the Slave Completer Abort interrupt when bit
is set.

[25] 0 RW slv_illegal_burst Enables the Slave Illegal Burst interrupt when bit is
set.

[26] 0 RW mst_decerr Enables the Master DECERR interrupt when bit is set.

[27] 0 RW mst_slverr Enables the Master SLVERR interrupt when bit is set.

[28] 0 RW slv_pcie_timeout Enables the Slave PCIe Timeout interrupt when bit is
set.

[29] 0 RW ecc_parity_err Enables the RAM ECC/Parity Error interrupt when bit
is set.

[30] 0 RW pcie_local_err Enables the PCIe Local Error interrupt when bit is set.

[31] 0 RW dma_int Enables the DMA interrupt when bit is set.

Bus Location Register (0xE18)

Register to report the Bus, Device, and Function number, and the Port number for the PCIe port.

Table 296: Bus Location Register (0xE18)

Bit Default Access
Type Field Description

[2:0] 0 RO func_num Function number of the port for PCIe. Hard-wired to
0.

[7:3] 0 RO dev_num Device number of port for PCIe. For Endpoint, this
register is RO and is set by the Root Port.

[15:8] 0 RO bus_num Bus number of port for PCIe. For Endpoint, this
register is RO and is set by the external Root Port.

[23:16] 0 RW port_num Sets the Port number field of the Link Capabilities
register.
EP: Always Read 0 and is not writeable.
RP: Is writeable.

[31:24] 0 RO Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=192


PHY Control and Status Register (0xE1C)

Register to provide the status of the current PHY state, as well as control of speed and rate
switching for PCIe core.

Table 297: PHY Control and Status Register (0xE1C)

Bit Default Access
Type Field Description

[0] 0 RO link_is_gen2 Reports whether the current link rate is 5.0 GT/s.

[2:1] 0 RO link_width Reports the current link width. 00b = x1, 01b = x2, 10b
= x4, 11b= x8.

[8:3] 0 RO ltssm_state Reports the current Link Training and Status State
Machine (LTSSM) state. Encoding is specific to the
underlying integrated block.

[10:9] 0 RO Reserved

[11] 0 RO link_up Reports the current PHY Link-up state.
1b: Link up
0b: Link down
Link up indicates the core has achieved link up status,
meaning the LTSSM is in the L0 state and the core
can send/receive data packets.

[12] 0 RO link_is_gen3 Reports whether the current link rate is 8.0 GT/s.

[13] 0 RO link_width_is_x16 Reports the current link width. 0b = See bit[2:1]. 1b =
x16

[14] 0 RO link_is_gen4 Reports whether the current link rate is 16.0 GT/s.

[31:15] 0 RO Reserved

Interrupt Decode 2 Register (0xE38)

Register to determine what is causing the interrupt line[0] to be asserted and how to clear the
interrupt. Write 1'b1 to any bit to clear it.

Table 298: Interrupt Decode 2 Register (0xE38)

Bit Default Access
Type Field Description

[0] 0 RW1C slv_axis_par_err Indicates a parity error was detected on the AXI-ST
Requester Completion (RC) interface

[1] 0 RW1C slv_r_ecc_err Indicates an ECC uncorrectable error was detected by
the Slave Read RAM

[2] 0 RW1C slv_w_ecc_err Indicates an ECC uncorrectable error was detected by
the Slave Write RAM

[3] 0 RW1C mst_axis_par_err Indicates a parity error was detected on the AXI-ST
Completer Request (CQ) interface

[4] 0 RW1C mst_r_ecc_err Indicates an ECC uncorrectable error was detected by
the Master Read RAM

[5] 0 RW1C mst_w_ecc_err Indicates an ECC uncorrectable error was detected by
the Master Write RAM

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=193


Table 298: Interrupt Decode 2 Register (0xE38) (cont'd)

Bit Default Access
Type Field Description

[6] 0 RW1C slv_r_ecc_cerr Indicates an ECC correctable error was detected by
the Slave Read RAM

[7] 0 RW1C slv_w_ecc_cerr Indicates an ECC correctable error was detected by
the Slave Write RAM

[8] 0 RW1C mst_r_ecc_cerr Indicates an ECC correctable error was detected by
the Master Read RAM

[9] 0 RW1C mst_w_ecc_cerr Indicates an ECC correctable error was detected by
the Master Write RAM

[10] 0 RW1C slv_lite_par_err Indicates a parity error was detected on the Slave
LITE Write interface

[19:11] 0 RO Reserved

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=194


Table 298: Interrupt Decode 2 Register (0xE38) (cont'd)

Bit Default Access
Type Field Description

[24:20] 0 RW1C pcie_local_err_code Indicates PCIe Local Error was received. The first
error code is held till clear.
00000b - Reserved
00001b - Physical Layer Error Detected
00010b - Link Replay Timeout
00011b - Link Replay Rollover
00100b - Link Bad TLP Received
00101b - Link Bad DLLP Received
00110b - Link Protocol Error
00111b - Replay Buffer RAM Correctable ECC Error
01000b - Replay Buffer RAM Uncorrectable ECC Error
01001b - Receive Posted Request RAM Correctable
ECC Error
01010b - Receive Posted Request RAM Uncorrectable
ECC Error
01011b - Receive Completion RAM Correctable ECC
Error
01100b - Receive Completion RAM Uncorrectable ECC
Error
01101b - Receive Posted Buffer Overflow Error
01110b - Receive Non Posted Buffer Overflow Error
01111b - Receive Completion Buffer Overflow Error
10000b - Flow Control Protocol Error
10001b - Transmit Parity Error Detected
10010b - Unexpected Completion Received
10011b - Completion Timeout Detected
10100b - AXI-ST RQ Interface Packet Drop
10101b - AXI-ST CC Interface Packet Drop
10110b - AXI-ST CQ Poisoned Drop
10111b - User Signaled Internal Correctable Error
11000b - User Signaled Internal Uncorrectable Error
11001b - TPH RAM Internal Correctable Error
11010b - TPH RAM Internal Uncorrectable Error
11011b - MSIX RAM Internal Correctable Error
11100b - MSIX RAM Internal Uncorrectable Error
11101b - DVSEC RAM Internal Correctable Error
11110b - DVSEC RAM Internal Uncorrectable Error
11111b - Reserved

[31:25] 0 RO Reserved

Interrupt Mask 2 Register (0xE3C)

Register to control whether each individual interrupt source can cause the interrupt line [0] to be
asserted. A one in any location allows the interrupt source to assert the interrupt line. This
register initializes to all zeros. Therefore, by default no interrupt is generated for any event.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=195


Table 299: Interrupt Mask 2 Register (0xE3C)

Bit Default Access
Type Field Description

[0] 0 RW slv_axis_par_err Enables interrupts for AXIST RC parity error events
when bit is set.

[1] 0 RW slv_r_ecc_err Enables interrupts for Slave Read RAM ECC
uncorrectable error events when bit is set.

[2] 0 RW slv_w_ecc_err Enables interrupts for Slave Write RAM ECC
uncorrectable error events when bit is set.

[3] 0 RW mst_axis_par_err Enables interrupts for AXIST CQ parity error events
when bit is set.

[4] 0 RW mst_r_ecc_err Enables interrupts for Master Read RAM ECC
uncorrectable error events when bit is set.

[5] 0 RW mst_w_ecc_err Enables interrupts for Master Write RAM ECC
uncorrectable error events when bit is set.

[6] 0 RW slv_r_ecc_cerr Enables interrupts for Slave Read RAM ECC
correctable error events when bit is set.

[7] 0 RW slv_w_ecc_cerr Enables interrupts for Slave Write RAM ECC
correctable error events when bit is set.

[8] 0 RW mst_r_ecc_cerr Enables interrupts for Master Read RAM ECC
uncorrectable error events when bit is set.

[9] 0 RW mst_w_ecc_cerr Enables interrupts for Master Write RAM ECC
uncorrectable error events when bit is set.

[10] 0 RW slv_lite_par_err Enables interrupts for Slave LITE Write parity error
events when bit is set.

[19:11] 0 RO Reserved

[31:20] 0 RO Reserved

Configuration Control Register (0xE40)

Register to allow the user application to indicate if a correctable or uncorrectable error has
occurred and report it in the respective AER Error Status Register.

Table 300: Configuration Control Register (0xE40)

Bit Default Access
Type Field Description

[0] 0 RW uc_err Uncorrectable Error Detected. The user application
writes a 1 to this bit to indicate an Uncorrectable
error was detected within the user logic that needs
to be reported as an internal error through the PCI
Express Advanced Error Reporting mechanism. In
response, the core sets the Uncorrected Internal
Error Status bit in the AER Uncorrectable Error Status
Register of all enabled functions, and also sends an
error message if enabled to do so. This error is not
considered function-specific.
This bit only asserts for 1 clock cycle and
automatically resets to 0 in the next clock cycle.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=196


Table 300: Configuration Control Register (0xE40) (cont'd)

Bit Default Access
Type Field Description

[1] 0 RW c_err Correctable Error Detected. The user application
writes a 1 to this bit to indicate a Correctable error
was detected within the user logic that needs to be
reported as an internal error through the PCI Express
Advanced Error Reporting mechanism. In response,
the core sets the Corrected Internal Error Status bit
in the AER Correctable Error Status Register of all
enabled functions, and also sends an error message
if enabled to do so. This error is not considered
function-specific.
This bit only asserts for 1 clock cycle and
automatically resets to 0 in the next clock cycle.

[31:2] 0 RO Reserved

Slave Error AID Register (0xE44)

Register to determine which ID was violated the Slave checkers. Only the first violated ID was
logged after clearing the corresponding interrupt bit in the Interrupt Decode register.

Table 301: Slave Error AID Register (0xE44)

Bit Default Access
Type Field Description

[7:0] 0 RO tz_violation_aid Reports the first ID of Slave TrustZone Violoation
after clearing the interrupt bit of TrustZone Violation.

[15:8] 0 RO tz_violation_func Reports the first Function Number (SMID) of Slave
TrustZone Violoation after clearing the interrupt bit
of TrustZone Violation.

[23:16] 0 RO cpl_err_aid Reports the first ID of Slave Completion error after
clearing any interrupt bit of Slave UR, Slave CA, or
Slave Error Poison.

[31:24] 0 RO cpl_err_func Reports the first Function Number (SMID) of Slave
Completion error after clearing any interrupt bit of
Slave UR, Slave CA, or Slave Error Poison.

User IRQ Request Register (0xE58)

Register to allow the user application to access usr_irq_req interface.

Table 302: User IRQ Request Register (0xE58)

Bit Default Access
Type Field Description

[15:0] 0 RW usr_irq_req_set Sets usr_irq_req[n] by writing 1 to bit[n]. Read
returns the current value of usr_irq_req. See DMA
IRQ Block for the definition of usr_irq_req.
Bit[n] is automatically cleared when usr_irq_ack[n] is
received for MSI or MSI-X.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=197


Table 302: User IRQ Request Register (0xE58) (cont'd)

Bit Default Access
Type Field Description

[19:16] 0 wo usr_irq_req_clr Clears usr_irq_req[n] by writing 1 to bit[n] for INTx.
See DMA IRQ Block for the definition of usr_irq_req.

[31:20] 0 RO Reserved

User IRQ Acknowledge Register (0xE5C)

Register to allow the user application to access usr_irq_ack interface.

Table 303: User IRQ Acknowledge Register (0xE5C)

Bit Default Access
Type Field Description

[15:0] 0 RO usr_irq_ack Indicates the value of usr_irq_ack. See DMA IRQ Block
for the definition of usr_irq_ack.
Bit[n] is automatically cleared when usr_irq_req[i] is
set for INTx/MSI/MSI-X or clear when usr_irq_req[i] is
cleared for INTx.

[31:16] 0 RO usr_irq_fail Indicates the value of usr_irq_fail. See DMA IRQ Block
for the definition of usr_irq_fail. Bit[n] is only valid
when usr_irq_ack[n] is set.

PCIe TX Message Control Register (0xE60)

Register to generate PCIe TX messages and send to the remote component. Use this register
with TX_MSG_HDR_L, TX_MSG_HDR_H, and TX_MSG_DFIFO to synthesize the message.

Table 304: PCIe TX Message Control Register (0xE60)

Bit Default Access
Type Field Description

[0] 0 RW msg_execute Writes 1 to send the PCIe TX message defined by
TX_MSG_CSR, TX_MSG_HDR_L, TX_MSG_HDR_H, and
TX_MSG_DFIFO which should be programmed ahead.
Read returns the sending status of the message:
0b: Delivered to PCIe. Checks msg_fail for the
completion status.
1b: In progress

[3:1] 0 RW msg_routing Programs Message Rounting field of the PCIe TX
message.
000b: Routed to Root Complex
010b: Routed by ID
011b: Broadcast from Root Complex
100b: Local - Terminate at Receiver
101b: Gathered and routed to Root Complex
Others: Reserved
See PCIe spec for valid settings for each message.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=198


Table 304: PCIe TX Message Control Register (0xE60) (cont'd)

Bit Default Access
Type Field Description

[7:4] 0 RW msg_data_ptr_sel Overwrites TX_MSG_DFIFO pointers. This is for debug
purposes and should be set to 0 under normal
conditions.

[15:8] 0 RW msg_code Programs Message Code field of the PCIe TX
message.
0001_0100b: PM_Active_State_Nak
0001_1000b: PM_PME
0001_1001b: PME_Turn_Off
0001_1011b: PME_TO_Ack
0111_1110b: Vendor_Defined Typo0
0111_1111b: Vendor_Defined Typo1
Others: Reserved

[20:16] 0 RW msg_data_length Programs Dword Length of the PCIe TX message.
0: No payload (Msg)
1: 1 Dword (MsgD)
16: 16 Dwords (MsgD)
Others: Reserved
See the PCI-SIG Specifications (http://www.pcisig.com/
specifications) for valid settings for each message.
Vendor_Defined messages can support up to 16
Dwords (64 Bytes).

[22:21] 0 RO Reserved

[23] 0 RW1C msg_fail Indicates the completion status of the message. Valid
when the message is delivered. Writing a 1 clears this
bit. Writing a 1 to msg_execute also clears this bit.
0b: Completed
1b: Failed

[31:24] 0 RW msg_function Programs Requester Function Number field of the
PCIe TX message.

PCIe TX Message Header L Register (0xE64)

Register to program header byte 8-11 of PCIe TX messages.

Table 305: PCIe TX Message Header L Register (0xE64)

Bit Default Access
Type Field Description

[7:0] 0 RW msg_tlp_hdr8 Programs Message Header Byte 8 field of the PCIe TX
message.
See PCIe spec for valid settings for each message.

[15:8] 0 RW msg_tlp_hdr9 Programs Message Header Byte 9 field of the PCIe TX
message.
See PCIe spec for valid settings for each message.

[23:16] 0 RW msg_tlp_hdr10 Programs Message Header Byte 10 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  199Send Feedback

http://www.pcisig.com/specifications
http://www.pcisig.com/specifications
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=199


Table 305: PCIe TX Message Header L Register (0xE64) (cont'd)

Bit Default Access
Type Field Description

[31:24] 0 RW msg_tlp_hdr11 Programs Message Header Byte 11 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

PCIe TX Message Header H Register (0xE68)

Register to program header byte 12-15 of PCIe TX messages.

Table 306: PCIe TX Message Header H Register (0xE68)

Bit Default Access
Type Field Description

[7:0] 0 RW msg_tlp_hdr12 Programs Message Header Byte 12 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

[15:8] 0 RW msg_tlp_hdr13 Programs Message Header Byte 13 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

[23:16] 0 RW msg_tlp_hdr14 Programs Message Header Byte 14 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

[31:24] 0 RW msg_tlp_hdr15 Programs Message Header Byte 15 field of the PCIe
TX message.
See PCIe spec for valid settings for each message.

PCIe TX Message Data FIFO Register (0xE6C)

Register to program payload to be sent with the PCIe TX Message (MsgD).

Table 307: PCIe TX Message Data FIFO Register (0xE6C)

Bit Default Access
Type Field Description

[31:0] 0 RW msg_tlp_data Writes PCIe TX message payload one by one from the
1st Dword to the message length. Each write
increases the write pointer by 1 upto 15. The write
pointer returns to 0 upon reset or commitment of
the previous TX message,
For debug purpose, the write pointer and the read
pointer can be overwritten by programming
msg_data_ptr_sel, Write programs the value of the
selected Dword (0-15). Read returns the value from
the selected Dword (0-15).

PCIe RX Message Control and Status Register (0xE70)

Register to provide access to the PCIe RX Message specific status and control.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=200


Table 308: PCIe RX Message Control and Status Register (0xE70)

Bit Default Access
Type Field Description

[0] 0 RO mfifo_not_empty Indicates that the Message FIFO has VDM messages
to read.

[1] 0 RW1C mfifo_overflow Indicates that the Message FIFO overflowed and a
VDM message was dropped. Writing a 1 clears the
overflow status.

[3:2] 0 RO Reserved

[7:4] 0 RO msg_count Indicates the count of VDM messages stored in the
Message FIFO. The user application can know how
many message to read.

[12:8] 0 RO mfifo_read_ptr Indicates the current read pointer of RX_MFIFO READ.
This is for debug purposes.

[15:13] 0 RO Reserved

[31:16] 0 RO overflow_rid Indicates the Requester ID of the 1st dropped VDM
message after reset or clearing of mfifo_overflow.

PCIe RX Message FIFO Register (0xE74)

Reads from this location return a VDM message. Reads are non-destructive. Removing the
message from the FIFO requires a write. The write value is ignored.

Table 309: PCIe RX Message FIFO Register (0xE74)

Bit Default Access
Type Field Description

[31:0] 0 RW1C msg_tlp_dw Indicates a Dword from VDM messages sequentially
from Header Dwords to Payload Dwords. After each
read, the user application should write to this
register to remove a Dword.
The fields for 1st Header Dword:
[31:16] Requester ID
[15:8] Message Code
[7:5] Message Routing
[4:0] Payload DW Length. 0 means no payload and
the user application has to read two more Dwords to
get the remaining Header.
The fields for 2nd Header Dword:
[31:0] Header Byte 11 - 8
The fields for 3rd Header Dword:
[31:0] Header Byte 15 - 12
The fields for Payload Dword:
[31:0] Payload Byte (N+3) - N

Master Pending Counter Register (0xE78)

Register to provide the counts of pending requests on the Bridge Master port for debug and
performance monitor.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=201


Table 310: Master Pending Counter Register (0xE78)

Bit Default Access
Type Field Description

[7:0] 0 RO wr_pend_cnt Pending Write Count on the Bridge Master port.

[15:8] 0 RO rd_pend_cnt Pending Read Count on the Bridge Master port.

[31:16] 0 RO Reserved

PCIe TX MSI / MSI-X Control and Status Register (0xE7C)

Register to generate PCIe TX MSI (not valid for SR-IOV) or MSI-X interrupts.

Table 311: PCIe TX MSI / MSI-X Control and Status Register (0xE7C)

Bit Default Access
Type Field Description

[4:0] 0 RW int_vector Vector Number of MSI or MSI-X. This field should be
programmed along with setting int_set.

[7:5] 0 RO Reserved

[15:8] 0 RW int_function Function Number of MSI or MSI-X. This field should
be programmed along with setting int_set. For MSI,
only Physical Functions are valid.

[16] 0 RW int_set Writes 1 to send the PCIe TX MSI / MSI-X interrupts.
Read returns the sending status of the interrupt:
0b: Delivered to PCIe. Checks int_fail for the
completion status.
1b: In progress

[17] 0 RW int_is_msix MSI-X or MSI. This field should be programmed along
with setting int_set.
0b: MSI
1b: MSI-X

[19:18] 0 RO Reserved

[20] 0 RW1C int_fail Indicates the completion status of the interrupt. Valid
when the interrupt is delivered. Writing a 1 clears this
bit. Writing a 1 to int_set also clears this bit.
0b: Completed
1b: Failed

[31:21] 0 RO Reserved

VSEC Capability 2 Register (0xED8)

Register to allow the memory space for the core to appear as though it is a part of the underlying
integrated block PCIe configuration space. The VSEC is inserted immediately following the last
enhanced capability structure.

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=202


Table 312: VSEC Capability 2 Register (0xED8) 

Bit Default Access
Type Field Description

[15:0] 0xB RO cap_id Indicates the PCIe defined ID identifying this
Enhanced Capability as a Vendor-Specific capability.

[19:16] 0x1 RO cap_ver Indicates the version of this capability structure.

[31:20] 0 RO nxt_cap_offset Indicates the offset of the next capability.

VSEC Header 2 Register (0xEDC)

Register to provide a unique (within a given vendor) identifier for the layout and contents of the
VSEC structure, as well as its revision and length. VSEC Header 2 Register is part of the AXI
Bridge that contains AXI Base Address Translation Configuration Registers which start
immediately after VSEC Header 2 Register (Offset 0xEE0).

Table 313: VSEC Header 2 Register (0xEDC)

Bit Default Access
Type Field Description

[15:0] 0x2 RO vsec_id Indicates the ID value uniquely identifying the nature
and format of this VSEC structure.

[19:16] 0 RO vsec_rev Indicates the version of this capability structure.

[31:20] 0x38 RO vsec_length Indicates the length of the entire VSEC Capability
structure, in bytes, including the VSEC Capability
register.

AXI Base Address Translation Configuration Registers (Offset - 0xEE0 - 0xF0C)

The AXI Base address translation configuration registers and their offsets a basedre shown in the
first table below and the register bit are described below. This set of registers can be used in two
configurations based on the address width of PCIe BARs. When the PCIe BAR is set to 32-bit
address space, then the translation vector should be placed into the AXIBAR2PCIEBAR_nL
register where n is the PCIe BAR number. When the BAR is set to a 64-bit address space, then
the most significant 32 bits are written into the AXIBAR2PCIEBAR_nU and the least significant
32 bits are written into AXIBAR2PCIEBAR_nL. Care should be taken so that invalid values are not
written to the address translation registers.

Table 314: AXI Basr Address Translation Configuration Registers (Offset 0xEE0 - 0xF0C)

Offset Bits Register Mnemonic
0xEE0 [31:0] AXIBAR2PCIEBAR_0U

0xEE4 [31:0] AXIBAR2PCIEBAR_0L

0xEE8 [31:0] AXIBAR2PCIEBAR_1U

0xEEC [31:0] AXIBAR2PCIEBAR_1L

0xEF0 [31:0] AXIBAR2PCIEBAR_2U

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=203


Table 314: AXI Basr Address Translation Configuration Registers (Offset 0xEE0 - 0xF0C)
(cont'd)

Offset Bits Register Mnemonic
0xEF4 [31:0] AXIBAR2PCIEBAR_2L

0xEF8 [31:0] AXIBAR2PCIEBAR_3U

0xEFC [31:0] AXIBAR2PCIEBAR_3L

0xF00 [31:0] AXIBAR2PCIEBAR_4U

0xF04 [31:0] AXIBAR2PCIEBAR_4L

0xF08 [31:0] AXIBAR2PCIEBAR_5U

0xF0C [31:0] AXIBAR2PCIEBAR_5L

Chapter 3: Product Specification

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=204


Chapter 4

Designing with the Subsystem

General Design Guidelines

Use the Example Design
Each instance of the QDMA Subsystem for PCIe created by the Vivado® design tool is delivered
with an example design that can be implemented in a device and then simulated. This design can
be used as a starting point for your own design or can be used to sanity-check your application in
the event of difficulty. See the Example Design content for information about using and
customizing the example designs for the subsystem.

Registering Signals
To simplify timing and increase system performance in a programmable device design, keep all
inputs and outputs registered between the user application and the subsystem. This means that
all inputs and outputs from the user application should come from, or connect to, a flip-flop.
While registering signals might not be possible for all paths, it simplifies timing analysis and
makes it easier for the Xilinx® tools to place and route the design.

Recognize Timing Critical Signals
The constraints provided with the example design identify the critical signals and timing
constraints that should be applied.

Make Only Allowed Modifications
You should not modify the subsystem. Any modifications can have adverse effects on system
timing and protocol compliance. Supported user configurations of the subsystem can only be
made by selecting the options in the customization IP dialog box when the subsystem is
generated.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=205


Clocking
Figure 24: Clocking

GTY/GTH

IBUFDS_
GTE4

CLKP

CLKN

REF_CLK TXOUTCLK

BUFG_GT

BUFG_GT

BUFG_GT

BUFG_GT

PIPE_CLK

CORE_CLK

CORE_CLK_MI*

MCAP_CLK

EN Gen 
Soft 

Logic
USER_CLK_EN

To User Logic
To Block RAMS
To AXI4ST I/F Bridge (Gen3x16)

USER_CLK

USER_CLK2 (core_clk) To AXI4ST I/F Bridge (Gen3x16)

To Block RAMS
CORE_CLK

PIPE_CLK

To GTH/GTY
To PIPE I/F Soft Logic

Dynamic Speed 
Switch

(Gen2 & Gen 3)

PCIE40E4

X20597-052419

PCIe clocks (pipe_clk, core_clk, user_clk, and mcap_clk) are all driven by bufg_gt
sourced from txoutclk pin. These clocks are derived clock from gtrefclk0 through a CPLL.
In an application where QPLL is used, QPLL is only provided to the GT PCS/ PMA block while
txoutclk continues to be derived from a CPLL. All user interface signals of the IP are timed
with respect to the same clock (user_clk) which can have a frequency of 62.5, 125, or 250
MHz depending on the link speed and width configured. The QDMA Subsystem for PCIe and the
user logic primarily work on user_clk.

Chapter 4: Designing with the Subsystem

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=206


Chapter 5

Design Flow Steps
This section describes customizing and generating the subsystem, constraining the subsystem,
and the simulation, synthesis, and implementation steps that are specific to this IP subsystem.
More detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the Subsystem
This section includes information about using Xilinx® tools to customize and generate the
subsystem in the Vivado® Design Suite.

If you are customizing and generating the subsystem in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed
information. IP integrator might auto-compute certain configuration values when validating or
generating the design. To check whether the values do change, see the description of the
parameter in this chapter. To view the parameter value, run the validate_bd_design
command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters
associated with the IP subsystem using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or right-
click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado
Design Suite User Guide: Getting Started (UG910).

Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary
from the current version.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  207Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=207


Basic Tab
The Basic tab is shown in the following figure.

Figure 25: Basic Tab

• Mode: Allows you to select the Basic or Advanced mode of the configuration of core.

• Device /Port Type: Only PCI Express® Endpoint device mode is supported.

• GT Selection/Enable GT Quad Selection: Select the Quad in which lane 0 is located.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=208


• PCIe Block Location: Selects from the available integrated blocks to enable generation of
location-specific constraint files and pinouts. This selection is used in the default example
design scripts. This option is not available if a Xilinx Development Board is selected.

• Lane Width: The core requires the selection of the initial lane width. The defines the available
widths and associated generated core. Wider lane width cores can train down to smaller lane
widths if attached to a smaller lane-width device. Options are 4, 8, or 16 lanes.

• Maximum Link Speed: The core allows you to select the Maximum Link Speed supported by
the device. The defines the lane widths and link speeds supported by the device. Higher link
speed cores are capable of training to a lower link speed if connected to a lower link speed
capable device. The default option is Gen3.

• Reference Clock Frequency: The default is 100 MHz.

• Reset Source: You can choose one of:

• PCIe User Reset: The user reset comes from PCIe core after the link is established. When
the PCIe link goes down, the user reset is asserted and the core goes to reset mode. And
when the link comes back up, the user reset is deasserted.

• Phy Ready: When selected, the core is not affected by PCIe link status.

• AXI Data Width: Select 128, 256 bit, or 512 bit (only for UltraScale+). The core allows you to
select the Interface Width, as defined in the . The default interface width set in the Customize
IP dialog box is the lowest possible interface width.

• AXI Clock Frequency: 250 MHz depending on the lane width/speed.

• DMA Interface Option: You can select one of these options:

• AXI Memory Mapped and AXI Stream with Completion

• AXI Memory Mapped only

• AXI Stream with Completion

• AXI Memory Mapped with Completion

• AXI Lite Slave Interface: Select to enable the AXI4-Lite slave interface.

• Enable Bridge Slave Mode: Select to enable the AXI-MM Slave interface.

• Enable PIPE Simulation: Enable pipe simulation for faster simulation. This is used only for
simulation.

• Enable GT DRP Ports: Enable GT-specific DRP ports.

• Enable PCIe DRP Ports: Enable PCIe-specific DRP ports.

• Additional Transceiver Control and Status Ports: Select to enable any additional ports.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=209


• Tandem Configuration or Partial Reconfiguration: Select the Tandem Configuration or Partial
Reconfiguration feature, if applicable to your design.

Capabilities Tab
The Capabilities Tab is shown in the following figure.

Figure 26: Capabilities Tab

• SRIOV Capability: Enables Single Root Port I/O Virtualization (SR-IOV) capabilities. The
integrated block implements extended SR-IOV PCIe. When this is enabled, SR-IOV is
implemented on all selected physical functions. When SR-IOV capabilities are enabled only
MSI-X interrupt is supported.

• Enable Mailbox among functions: This is a Mailbox system to communicate between different
functions. When SR-IOV Capability (above) is enabled, this option is enabled by default.
Mailbox can be selected independently of the SR-IOV Capability selection.

• Enable FLR: Enables the functionl level reset port. When SR-IOV capability (above) is enabled,
this option is enabled by default.

• Total Physical Functions: A maximum of four Physical Functions can be enabled.

• PF - ID Initial Values: 

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=210


• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers are
assigned by the PCI Special Interest Group to guarantee that each identifier is unique. The
default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor identification number here.
FFFFh is reserved.

• Device ID: A unique identifier for the application; the default value, which depends on the
configuration selected, is 70h. This field can be any value; change this value for the
application.

The Device ID parameter is evaluated based on:

• The device family: 9 for UltraScale+™, 8 for UltraScale™, and 7 for 7 series devices.

• EP or RP mode

• Link width

• Link speed

If any of the above values are changed, the Device ID value will be re-evaluated, replacing the
previous set value.

RECOMMENDED: It is always recommended that the link width, speed and Device Port type be changed
first and then the Device ID value. Make sure the Device ID value is set correctly before generating the IP.

• Revision ID: Indicates the revision of the device or application; an extension of the Device ID.
The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or application. Enter a
Subsystem Vendor ID here; the default value is 10EEh. Typically, this value is the same as
Vendor ID. Setting the value to 0000h can cause compliance testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This value is
typically the same as the Device ID; the default value depends on the lane width and link
speed selected. Setting the value to 0000h can cause compliance testing issues.

• Class Code: The Class Code identifies the general function of a device.

• Use Classcode Lookup Assistant: If selected, the Class Code Look-up Assistant provides the
Base Class, Sub-Class and Interface values for a selected general function of a device. This
Look-up Assistant tool only displays the three values for a selected function. You must enter
the values in Class Code for these values to be translated into device settings.

• Base Class: Broadly identifies the type of function performed by the device.

• Subclass: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing device-
independent software to interface with the device.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=211


PCIe BARs Tab
The PCIe BARs tab is shown in the following figure.

Figure 27: PCIe BARs Tab

• Base Address Register Overview: In Endpoint configuration, the core supports up to six 32-bit
BARs or three 64-bit BARs, and the Expansion read-only memory (ROM) BAR. BARs can be
one of two sizes:

• 32-bit BARs: The address space can be as small as 128 bytes or as large as 2 gigabytes.
Used for DMA, AXI Lite Master or AXI Bridge Master.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 Exabytes.
Used for DMA, AXI Lite Master or AXI Bridge Master.

All BAR register share these options.

IMPORTANT! The DMA requires a large amount of space to support functions and queues. By default, 64-bit
BAR space is selected for the DMA BAR. This applies for PF and VF bars. You must calculate your design needs
first before selecting between 64-bit and 32-bit BAR space.

BAR selections are configurable. By default DMA is at BAR 0 (64 bit), AXI-Lite Master is at BAR 2
(64 bit). These selections can be changed according to user needs.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=212


• BAR: Click the checkbox to enable the BAR. Deselect the checkbox to disable the BAR.

• Type: Select from DMA (by default in BAR0), AXI Lite Master (by default in BAR1, if enabled),
or AXI Bridge Master (by default in BAR2, if enabled). All other BARs, you can select between
AXI List Master and AXI Bridge Master. Expansion ROM can be enabled by selecting BAR6

For 64-bit BAR (default selection), DMA (by default in BAR0), AXI Lite Master (by default in
BAR2, if enabled), and AXI Bridge Master (by default in BAR4, if enabled). Expansion ROM
can be enabled by selection BAR6.

• DMA: DMA by default is assigned to BAR0 space and for all PFs. DMA option can be selected
in any available BAR (only one BAR can have DMA option). If you select DMA Mailbox
Management rather than DMA; however, DMA Mailbox Management will not allow you to
perform any DMA operations. After selecting the DMA Mailbox Management option, the host
has access to the extended Mailbox space. For details about this space, see the 
QDMA_PF_MAILBOX (0x2400) register space.

• AXI Lite Master: Select the AXI Lite Master interface option for any BAR space. The Size,
scale and address translation are configurable.

• AXI Bridge Master: Select the AXI Bridge Master interface option for any BAR space. The
Size, scale and address translation are configurable.

• Size: The available Size range depends on the 32-bit or 64-bit bar selected.The DMA
requires 128 Kbytes of space, which is the fixed default selection. You can allocate 128K
space if BAR assignments are moved. Other BAR size selections are available, but must be
specified.

• Value: The value assigned to the BAR based on the current selections.

• Expansion ROM: When enabled, this space is accessible on the AXI4-Lite Master. This is a
read-only space. The size, scale, and address translation are configurable.

• Disabling Unused Resources: For best results, disable unused base address registers to
conserve system resources. A base address register is disabled by deselecting unused BARs in
the Customize IP dialog box.

SRIOV Config Tab
The SRIOV Config tab allows you to specify the SR-IOV capability for a physical function (PF).
The information is used to construct the SR-IOV capability structure. Virtual functions do not
exist on power-on. It is the function of the system software to discover and enable VFs based on
system capability. The VF support is discovered by scanning the SR-IOV capability structure for
each PF.

Note: When SRIOV Capability is selected in Capabilities Tab, the SRIOV Config tab appears.

The SRIOV Config Tab is shown in the following figure.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=213


Figure 28: SRIOV Config Tab

• General SRIOV Config: This value specifies the offset of the first PF with at least one enabled
VF. When ARI is enabled, allowed value is 'd4 or 'd64, and the total number of VF in all PFs
plus this field must not be greater than 256. When ARI is disabled, this field will be set to 1 to
support 1PFplus 7VF non-ARI SRIOV configurations only.

• Cap Version: Indicates the 4-bit SR-IOV Capability version for the physical function.

• Number of PFx VFs: Indicates the number of virtual functions associated to the physical
function. A total of 252 virtual functions are available that can be flexibly used across the four
physical functions.

• PFx Dependency Link: Indicates the SR-IOV Functional Dependency Link for the physical
function. The programming model for a device can have vendor-specific dependencies
between sets of functions. The Function Dependency Link field is used to describe these
dependencies.

• First VF Offset: Indicates the offset of the first virtual function (VF) for the physical function
(PF). PF0 always resides at Offset 0, and PF1 always resides at Offset 1. Six virtual functions
are available in the Gen3 Integrated Block for PCIe core and reside at the function number
range 64–69. Virtual functions are mapped sequentially with VFs for PF0 taking precedence.
For example, if PF0 has two virtual functions and PF1 has three, the following mapping
occurs:

The PFx_FIRST_VF_OFFSET is calculated by taking the first offset of the virtual function and
subtracting that from the offset of the physical function.

PFx_FIRST_VF_OFFSET = (PFx first VF offset - PFx offset)

In the example above, the following offsets are used:

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=214


PF0_FIRST_VF_OFFSET = (64 - 0) = 64

PF1_FIRST_VF_OFFSET = (66 - 1) = 65

PF0 is always 64 assuming that PF0 has one or more virtual functions. The initial offset for
PF1 is a function of how many VFs are attached to PF0 and is defined in the following pseudo
code:

PF1_FIRST_VF_OFFSET = 63 + NUM_PF0_VFS

• VF Device ID: Indicates the 16-bit Device ID for all virtual functions associated with the
physical function.

• SRIOV Supported Page Size: Indicates the page size supported by the physical function. This
physical function supports a page size of 2n+12, if bit n of the 32-bit register is set.

SRIOV VF BARs Tab
The SRIOV VF BARs tab is shown in the following figure.

Figure 29: SRIOV VF BARs Tab

The SRIOV VF BARs tab enables you to configure the base address registers (BARs) for all virtual
function (VFs) within a virtual function group (VFG). All the VFs within the same VFG share the
same BASE ADDRESS Registers (BARS) configurations. Each Virtual Function supports up to six
32-bit BARs or three 64-bit BARs. Virtual Function BARs can be configured without any
dependency on the settings of the associated Physical Functions BARs.

IMPORTANT! The DMA requires a large amount of space to support functions and queues. By default, 64-bit
BAR space is selected for the DMA BAR. This applies for PF and VF bars. You must calculate your design needs
first before selecting between 64-bit and 32-bit BAR space.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=215


BAR selections are configurable. By default DMA is at BAR 0 (64 bit), AXI-Lite Master is at BAR 2
(64 bit). These selections can be changed according to user needs.

• BAR: Select applicable BARs using the checkboxes.

• Type: Select the relevant option:

• DMA: Is fixed to BAR0 space.

• AXI Lite Master: Is fixed to BAR1 space.

• AXI Bridge Master: Is fixed to BAR2 space.For all other bars, select either AXI Lite Master
or AXI Bridge Master.

Note: The current IP supports a maximum of one DMA BAR (or a management BAR given only
mailbox is required) for one VF. The other BARs can be configured as AXI Lite Master to access the
assigned memory space through the AXI4-Lite bus. Virtual Function BARs do not support I/O space
and must be configured to map to the appropriate memory space.

• 64-bit: 

VF BARs can be either 64-bit or 32-bit. The default is 64-bit BAR.

• 64-bit addressing is supported for the DMA BAR.

• When a BAR is set as 64 bits, it uses the next BAR for the extended address space and
makes the next BAR inaccessible.

• No VF bar can be configured as Prefetchable.

• Size: The available Size range depends on the 32-bit or 64-bit BAR selected. The Supported
Page Sizes field indicates all the page sizes supported by the PF and, as required by the SR-
IOV specification. Based on the Supported Page Size field, the system software sets the
System Page Size field which is used to map the VF BAR memory addresses. Each VF BAR
address is aligned to the system page boundary.By default, DMA space is 16 Kbytes. You can
add more space based on queues allocation on VFs.

• Value: The value assigned to the BAR based on the current selections.

PCIe MISC Tab
The PCIe Miscellaneous Tab is shown in the following figure.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=216


Figure 30: PCIe MISC Tab

• MSI-X Capabilities: MSI-X is enabled by default.The MSI-X settings for different physical
functions can be set as required.

• MSI-X Table Settings: Defines the MSI-X Table Structure.

• Table Size: Specifies the MSI-X Table size. The default is 8 (8 interrupt vectors per
function). Adding more vectors to a function is possible; contact Xilinx for support.

• Table Offset: Specifies the offset from the Base address Register (BAR) in DMA
configuration space used to map function in MSI-X Table onto memory space. Table space
is fixed at offset 0x10000.

• BAR Indicator: Is fixed to DMA configuration BAR.

• MSI-X Pending Bit Array Settings: 

• PBA Offset: Specifies the offset from the DMA BAR register that point so the base of MSI-
X PDB. Table space is fixed at offset 0x14000.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=217


• PBA BAR Indicator: Is fixed to DMA configuration BAR.

• Extended Tag Field: By default for UltraScale+™ devices the Extended Tab option gives 256
tags. If Extended Tag option is not selected, the DMA uses 32 tags.

• Configuration Extended Interface: The PCIe extended interface can be selected for more
configuration space. When Configuration Extended Interface is selected user is responsible
for adding logic to extend the interface to make it work properly.

• Access Control Server (ACS) Enable: ACS is selected by default.

PCIe DMA Tab
The PCIe DMA Tab is shown in the following figure.

Figure 31: PCIe DMA Tab

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=218


• Descriptor Bypass for Read (H2C): This option enables the descriptor bypass output and input
ports for Host to Card (H2C) transfer. Note that only context settings determine if the
descriptor is sent out.

• Descriptor Bypass for Write (C2H): This option enables the descriptor bypass output and
input ports for Card to Host (C2H) transfer. Note that only context settings determine if the
descriptor is sent out.

• C2H Stream Completion: 

• C2H Stream Completion Color bits: Completion Color bit position in completion entry.
There are seven registers available to program, from bit 0 to 511 (for 64 bytes completion).
You can program the bits, and generate a BIT file. During the DMA transfer, the input pins
s_axis_c2h_cmpt_ctrl_color_idx[2:0] determine which Color bit position to
use. Default bit position 1 is selected in register 0.

• C2H Stream Completion Error bits: Completion Error bit position in completion entry.
There are seven registers available to program, from bit 0 to 511 (for 64 bytes completion).
You can program the bits, and generate a BIT file. During a DMA transfer, the input pins
s_axis_c2h_cmpt_ctrl_err_idx[2:0] determine which Error bit position to use.
Default bit position 2 is selected in register 0.

• Performance mode options: 

• Pre-fetch cache depth: The Prefetch cache supports up to 64 Queues. Select one of 8,16,
3,2 and 64 (default 16). The Prefetch cache can support that many active queues at any
given time. When one active queue finishes fetch and delivers all the descriptors for the
packets of that queue, it then releases cache entry for other active queues. A larger cache
size supports more active queues, but the area will also increase.

• CMPT Coalesce Max buffer: Completion (CMPT) Coalesce Max buffer supports up to 64
buffers. Select one of 8, 16, 32, and 64 (default 16). Each entry of the CMPT Coalesce
Buffer coalesces multiple Completions (up to 64B) to form a single queue before writing to
the host to improve bandwidth utilization. A deeper CMPT Coalesce Buffer allows
coalescing within more queues, but will increase the area as a downside.

• Data Protection: Parity Checking: The default is no parity checking.When Check Parity is
enabled, the QDMA Subsystem for PCIe checks for parity on read data from the PCIe and
generates parity for write data to the PCIe.

User Parameters
Additional core customizing options are available. For details, see AR 72352.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896).

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  219Send Feedback

https://www.xilinx.com/support/answers/72352.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=219


Constraining the Subsystem
Required Constraints

The QDMA Subsystem for PCIe requires the specification of timing and other physical
implementation constraints to meet specified performance requirements for PCI Express®. These
constraints are provided in a Xilinx Design Constraints (XDC) file. Pinouts and hierarchy names in
the generated XDC correspond to the provided example design.

IMPORTANT! If the example design top file is not used, copy the IBUFDS_GTE4 instance for the reference
clock, IBUF Instance for sys_rst and also the location and timing constraints associated with them into your
local design top.

To achieve consistent implementation results, an XDC containing these original, unmodified
constraints must be used when a design is run through the Xilinx® tools. For additional details on
the definition and use of an XDC or specific constraints, see Vivado Design Suite User Guide: Using
Constraints (UG903).

Constraints provided with the Integrated Block for PCIe solution have been tested in hardware
and provide consistent results. Constraints can be modified, but modifications should only be
made with a thorough understanding of the effect of each constraint. Additionally, support is not
provided for designs that deviate from the provided constraints.

Device, Package, and Speed Grade Selections

The device selection portion of the XDC informs the implementation tools which part, package,
and speed grade to target for the design.

The device selection section always contains a part selection line, but can also contain part or
package-specific options. An example part selection line follows:

CONFIG PART = xcvu9p-flgb2104-2-i

Clock Frequencies

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Clock Management

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  220Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=220


Clock Placement

For detailed information about clock requirements, see the UltraScale+ Devices Integrated Block
for PCI Express LogiCORE IP Product Guide (PG213).

Banking

This section is not applicable for this IP subsystem.

Transceiver Placement

This section is not applicable for this IP subsystem.

I/O Standard and Placement

This section is not applicable for this IP subsystem.

Relocating the Integrated Block Core

By default, the IP core-level constraints lock block RAMs, transceivers, and the PCIe block to the
recommended location. To relocate these blocks, you must override the constraints for these
blocks in the XDC constraint file. To do so:

1. Copy the constraints for the block that needs to be overwritten from the core-level XDC
constraint file.

2. Place the constraints in the user XDC constraint file.

3. Update the constraints with the new location.

The user XDC constraints are usually scoped to the top-level of the design; therefore, ensure that
the cells referred by the constraints are still valid after copying and pasting them. Typically, you
need to update the module path with the full hierarchy name.

Note: If there are locations that need to be swapped (that is, the new location is currently being occupied
by another module), there are two ways to do this:

• If there is a temporary location available, move the first module out of the way to a new
temporary location first. Then, move the second module to the location that was occupied by
the first module. Next, move the first module to the location of the second module. These
steps can be done in XDC constraint file.

• If there is no other location available to be used as a temporary location, use the
reset_property command from Tcl command window on the first module before
relocating the second module to this location. The reset_property command cannot be
done in the XDC constraint file and must be called from the Tcl command file or typed directly
into the Tcl Console.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  221Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=221


Simulation
For comprehensive information about Vivado® simulation components, as well as information
about using supported third-party tools, see the Vivado Design Suite User Guide: Logic Simulation
(UG900).

Basic Simulation
Simulation models for the AXI-MM and AXI-ST options can be generated and simulated. The
simple simulation model options enable you to develop complex designs.

AXI-MM Mode

The example design for the AXI4 Memory Mapped (AXI-MM) mode has 512 KB block RAM on
the user side, where data can be written to the block RAM, and read from block RAM to the
Host.

After the Host to Card (H2C) transfer is started, the DMA reads data from the Host memory, and
writes to the block RAM. After the transfer is completed, the DMA updates the write back status
and generates an interrupt (if enabled). Then, the Card to Host (C2H) transfer is started, and the
DMA reads data from the block RAM and writes to the Host memory. The original data is
compared with the C2H write data. H2C and C2H are set up with one descriptor each, and the
total transfer size is 128 bytes.

More detailed steps are described in Reference Software Driver Flow.

AXI-ST Mode

The example design for the AXI4-Stream (AXI-ST) mode has a data check that checks the data
from the H2C transfer, and has a data generator that generates the data for C2H transfer.

After the H2C transfer is started, the DMA engine reads data from the Host memory, and writes
to the user side. After the transfer is completed, the DMA updates write back status and
generates an interrupt (if enabled). The data checker on the user side checks for a predefined
data to be present, and the result is posted in a predefined address for the user application to
read.

After the C2H transfer is started, the data generator generates predefined data and associated
control signals, and sends them to the DMA. The DMA transfers data to the Host, updates the
completion (CMPT) ring entry/status, and generates an interrupt (if enabled).

H2C and C2H are set up with one descriptor each, and the total transfer size is 128 bytes.

More detailed steps are described in Reference Software Driver Flow.

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  222Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=222


PIPE Mode Simulation
The QDMA Subsystem for PCIe supports the PIPE mode simulation where the PIPE interface of
the core is connected to the PIPE interface of the link partner. This mode increases the
simulation speed.

Use the Enable PIPE Simulation option on the Basic tab of the Customize IP dialog box to enable
PIPE mode simulation in the current Vivado® Design Suite solution example design, in either
Endpoint mode or Root Port mode. The External PIPE Interface signals are generated at the core
boundary for access to the external device. Enabling this feature also provides the necessary
hooks to use third-party PCI Express® VIPs/BFMs instead of the Root Port model provided with
the example design.

The tables below describe the PIPE bus signals available at the top level of the core and their
corresponding mapping inside the EP core (pcie_top) PIPE signals.

Table 316: In Commands and Endpoint PIPE Signal Mappings

In Commands Endpoint PIPE Signals Mapping
common_commands_in[25:0] not used

Table 317: Out Commands and Endpoint PIPE Signal Mappings

Out Commands Endpoint PIPE Signals Mapping
common_commands_out[0] pipe_clk1

common_commands_out[2:1] pipe_tx_rate_gt2

common_commands_out[3] pipe_tx_rcvr_det_gt

common_commands_out[6:4] pipe_tx_margin_gt

common_commands_out[7] pipe_tx_swing_gt

common_commands_out[8] pipe_tx_reset_gt

common_commands_out[9] pipe_tx_deemph_gt

common_commands_out[16:10] not used3

Notes:

1. pipe_clk is an output clock based on the core configuration. For Gen1 rate, pipe_clk is 125 MHz. For Gen2 and Gen3,
pipe_clk is 250 MHz

2. pipe_tx_rate_gt indicates the pipe rate (2’b00-Gen1, 2’b01-Gen2, and 2’b10-Gen3)

3. The functionality of this port has been deprecated and it can be left unconnected.

Table 318: Input Bus With Endpoint PIPE Signal Mapping

Input Bus Endpoint PIPE Signal Mapping
pipe_rx_0_sigs[31:0] pipe_rx0_data_gt

pipe_rx_0_sigs[33:32] pipe_rx0_char_is_k_gt

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=223


Table 318: Input Bus With Endpoint PIPE Signal Mapping (cont'd)

Input Bus Endpoint PIPE Signal Mapping
pipe_rx_0_sigs[34] pipe_rx0_elec_idle_gt

pipe_rx_0_sigs[35] pipe_rx0_data_valid_gt

pipe_rx_0_sigs[36] pipe_rx0_start_block_gt

pipe_rx_0_sigs[38:37] pipe_rx0_syncheader_gt

pipe_rx_0_sigs[83:39] not used

Table 319: Output Bus with Endpoint PIPE Signal Mapping 

Output Bus
Endpoint PIPE

Signals Mapping

pipe_tx_0_sigs[31: 0] pipe_tx0_data_gt

pipe_tx_0_sigs[33:32] pipe_tx0_char_is_k_gt

pipe_tx_0_sigs[34] pipe_tx0_elec_idle_gt

pipe_tx_0_sigs[35] pipe_tx0_data_valid_gt

pipe_tx_0_sigs[36] pipe_tx0_start_block_gt

pipe_tx_0_sigs[38:37] pipe_tx0_syncheader_gt

pipe_tx_0_sigs[39] pipe_tx0_polarity_gt

pipe_tx_0_sigs[41:40] pipe_tx0_powerdown_gt

pipe_tx_0_sigs[69:42] not used1

Notes:

1. The functionality of this port has been deprecated and it can be left unconnected.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: Designing
with IP (UG896).

Chapter 5: Design Flow Steps

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  224Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=224


Chapter 6

Example Design
This chapter contains information about the example designs provided in the Vivado® Design
Suite. The example designs are as follows:

• AXI Memory Mapped and AXI4-Stream With Completion Default Example Design

• AXI Memory Mapped Example Design

• AXI Memory Mapped with Completion Example Design

• AXI Stream with Completion Example Design

• AXI Stream Loopback Example Design

• Example Design with Descriptor Bypass In/Out Loopback

AXI Memory Mapped and AXI4-Stream With
Completion Default Example Design

The following is an example design generated when the DMA Interface Selection option is set to
AXI Memory Mapped and AXI4-Stream with Completion option in the Basic tab.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=225


Figure 32: Default Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host
Data 

Checker

AXI-MM

Data 
Generator

AXI-St H2C

AXI-St 
C2H

BRAM
AXI-Lite 
Master

User 
control

Completion

AXI-St 
C2H

CMPT

X20886-112018

The generated example design provides blocks to interface with the AXI Memory Mapped and
AXI4-Stream interfaces.

• The AXI MM interface is connected to 512 KBytes of block RAM.

• The AXI4-Stream interface is connected to custom data generator and data checker module.

• The CMPT interface is connected to the Completion block generator.

• The data generator and checker works only with predefined pattern, which is a 16-bit
incremental pattern starting with 0. This data file is included in driver package.

The pattern generator and checker can be controlled using the registers found in the Example
Design Registers. These registers can only be controlled through the AXI4-Lite Master interface.
To test the QDMA Subsystem for PCIe's AXI4-Stream interface, ensure that the AXI4-Lite Master
interface is present.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=226


AXI Memory Mapped Example Design
Figure 33: AXI Memory Map Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host

AXI-MM

BRAM
AXI-Lite 
Master

X22071-052419

The example design above is generated when the DMA Interface Selection option is set to AXI-
MM only in the Basic tab. In this mode, the AXI MM interface is connected to a 512 KBytes
block RAM. The diagram above shows that AXI4-Lite Master is connected to a 4 KBytes block
RAM. For Host to Card (H2C) transfers, the DMA reads data from the Host and writes to the
block RAM. For Card to Host (C2H) transfers, the DMA reads data from the block RAM and
writes to the Host memory.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=227


AXI Memory Mapped with Completion
Example Design

Figure 34: AXI Memory Mapped with Completion Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host

AXI-MM

BRAM
AXI-Lite 
Master

User 
control

CMPT

Completion

X20887-112018

The example design above is generated when the DMA Interface Selection option is set to AXI-
MM with Completion in the Basic tab. In this mode, the AXI MM interface is connected to a 512
KBytes block RAM and the CMPT interface is connected to the Completion generator block. The
diagram shows that the AXI-Lite Master is connected to a 4 KBytes block RAM and the User
Control logic. For H2C transfers, the DMA reads data from the Host and writes to the block
RAM. For C2H transfers, the DMA reads data from the block RAM and writes to the Host
memory.

Completion block can be controlled using the registers found in the Example Design Registers.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=228


AXI Stream with Completion Example Design
Figure 35: AXI4-Stream Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host
Data 

Checker

Data 
Generator

AXI-ST H2C

AXI-ST C2H

AXI-Lite 
Master

User 
control

Completion
CMPT

X20888-120718

The example design above is generated when the DMA Interface Selection option is set to AXI
Stream with Completion in the Basic tab. In this mode, the AXI-ST H2C interface is connected to
a data checker, and the AXI-ST C2H interface is connected to data generator and CMPT
interface is connected to Completion generator module. The diagram shows AXI-Lite Master is
connected to the 4 KBytes block RAM and the User Control logic. The software can control data
checker and data generator though the AXI4-Lite Master interface. The data generator and
checker work only with a predefined pattern, which is a 16-bit incremental pattern starting with
0. This data file is included in the driver package.

The pattern generator and checker can be controlled using the registers found in the Example
Design Registers

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=229


AXI Stream Loopback Example Design
Figure 36: AXI4-Stream Loopback Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host

AXI-MM

ST 
loopback

AXI-St H2C

AXI-St 
C2H

BRAM
AXI-Lite 
Master

User 
control

AXI-St 
C2H

CMPT

X22904-052419X22904-052419

The example design above is generated when the DMA Interface Selection option is set to AXI
Stream with Completion in the Basic tab. In this mode, the AXI-ST H2C interface is connected to
a data checker, and the AXI-ST C2H interface is connected to data generator and CMPT
interface is connected to Completion generator module. But this example design can also be
used as a streaming loopback design.

Set the Example design register C2H_CONTROL_REG (0x008) bit[0] to 1 to turn this example
design into a streaming loopback design. The example design then takes H2C streaming packets
and loops them back to the C2H Streaming interface. Completion packets are generated from the
loopback design.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=230


Example Design with Descriptor Bypass
In/Out Loopback

Figure 37: AXI Memory Map and Descriptor Bypass Example Design

PCIE
Gen3 core DMA

CQ

CC

RQ

RC

Queue DMA Subsystem for PCIe

BRAM

Host

Desc h2c 
Byp

AXI-MM

Desc c2h 
Byp

BRAM
AXI-Lite 
Master

h2c_byp_out

h2c_byp_in_st

h2c_byp_in_mm

c2h_byp_out
c2h_byp_in_st

c2h_byp_in_mm

X20889-061518

User control

The example design above is generated when Descriptor Bypass for Read (H2C) and Descriptor
Bypass for Write (C2H) options are selected in the PCIe DMA tab. These options can be selected
with any of the DMA Interface Options in the Basic tab:

• AXI Memory Mapped and AXI Stream with Completion

• AXI Memory Mapped only

• AXI Stream with Completion

• AXI Memory Mapped with Completion

The Descriptor Bypass in/out loopback is controlled by the AXI4-Lite Master by writing to the
Example Design Register DESCRIPTOR_BYPASS (0x090) bit[0] and bit[1].

To enable Descriptor bypass out, proper context programming needs to be done. For details, see 
Context Programming.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=231


Example Design Registers
Table 320: Example Design Registers

Registers Address Description
C2H_ST_QID (0x000) 0x000 AXI-ST C2H Queue id

C2H_ST_LEN (0x004) 0x004 AXI-ST C2H transfer length

C2H_CONTROL_REG (0x008) 0x008 AXI-ST C2H pattern generator control

H2C_CONTROL_REG (0x00C) 0x00C AXI-ST H2C Control

H2C_STATUS (0x010) 0x010 AXI-ST H2C Status

C2H_PACKET_COUNT (0x020) 0x020 AXI-ST C2H number of packets to transfer

C2H_COMPLETION_DATA_0 (0x030) to 
C2H_COMPLETION_DATA_7 (0x04C)

0x4C-0x030 AXI-ST C2H completion data

C2H_COMPLETION_SIZE (0x050) 0x050 AXI-ST completion data type

SCRATCH_REG0 (0x060) 0x060 Scratch register 0

SCRATCH_REG1 (0x064) 0x064 Scratch register 1

C2H_PACKETS_DROP (0x088) 0x088 AXI-ST C2H Packets drop count

C2H_PACKETS_ACCEPTED (0x08C) 0x08C AXI-ST C2H Packets accepted count

DESCRIPTOR_BYPASS (0x090) 0x090 C2H and H2C descriptor bypass loopback

USER_INTERRUPT (0x094) 0x094 User interrupt, vector number, function
number

USER_INTERRUPT_MASK (0x098) 0x098 User interrupt mask

USER_INTERRUPT_VECTOR (0x09C) 0x09C User interrupt vector

DMA_CONTROL (0x0A0) 0x0A0 DMA control

VDM_MESSAGE_READ (0x0A4) 0x0A4 VDM message read

C2H_ST_QID (0x000)
Table 321: C2H_ST_QID (0x000)

Bit Default Access
Type Field Description

[31:11] 0 NA Reserved

[10:0] 0 RW c2h_st_qid AXI4-Stream C2H Queue ID

C2H_ST_LEN (0x004)
Table 322: C2H_ST_LEN (0x004)

Bit Default Access
Type Field Description

[31:16] 0 NA Reserved

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=232


Table 322: C2H_ST_LEN (0x004) (cont'd)

Bit Default Access
Type Field Description

[15:0] 0 RW c2h_st_len AXI4-Stream packet length

C2H_CONTROL_REG (0x008)
Table 323: C2H_CONTROL_REG (0x008)

Bit Default Access
Type Field Description

[31:3] 0 NA Reserved

[2] 0 RW Immediate data.
When set, the data generator sends immediate data.
This is a self-clearing bit. Write 1 to initiate transfer.

[1] 0 RW Starts AXI-ST C2H transfer. This is a self-clearing bit.
Write 1 to initiate transfer.

[0] 0 RW Streaming loop back. When set, the data packet from
H2C streaming port in the Card side is looped back to
the C2H streaming ports.

For Normal C2H stream packet transfer, set address offset 0x08 to 0x2.

For C2H immediate data transfer, set address offset 0x8 to 0x4.

For C2H/H2C stream loopback, set address offset 0x8 to 0x1.

H2C_CONTROL_REG (0x00C)
Table 324: H2C_CONTROL_REG (0x00C)

Bit Default Access
Type Field Description

[31:12] 0 NA Reserved

[11:10] 0 RW c2h_st_at c2h_byp_in_st_sim_at[1:0] and c2h_byp_in_csh_at[1:0]
Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

[9:8] 0 RW c2h_mm_at c2h_byp_in_mm_at[1:0] Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=233


Table 324: H2C_CONTROL_REG (0x00C) (cont'd)

Bit Default Access
Type Field Description

[7:6] 0 RW h2c_st_at c2h_byp_in_st_at[1:0] Address Type
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

[5:4] 0 RW h2c_mm_at h2c_byp_in_mm_at[1:0] Address Type.
2’b00: The address in the request is untranslated.
2’b01: Reserved.
2’b10: The address in the request is translated.
2’b11: Reserved.

[0] 0 RW Clear match bit for H2C transfer.

H2C_STATUS (0x010)
Table 325: H2C_STATUS (0x010)

Bit Default Access
Type Field Description

[31:15] 0 NA Reserved

[14:4] 0 R H2C transfer Queue ID

[3:1] 0 NA Reserved

[0] 0 R H2C transfer match

C2H_PACKET_COUNT (0x020)
Table 326: C2H_PACKET_COUNT (0x020)

Bit Default Access
Type Field Description

[31:10] 0 NA Reserved

[9:0] 0 RW AXI-ST C2H number of packet to transfer

C2H_COMPLETION_DATA_0 (0x030)
Table 327: C2H_COMPLETION_DATA_0 (0x030)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [31:0]

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=234


C2H_COMPLETION_DATA_1 (0x034)
Table 328: C2H_COMPLETION_DATA_1 (0x034)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [63:32]

C2H_COMPLETION_DATA_2 (0x038)
Table 329: C2H_COMPLETION_DATA_2 (0x038)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [95:64]

C2H_COMPLETION_DATA_3 (0x03C)
Table 330: C2H_COMPLETION_DATA_3 (0x03C)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [127:96]

C2H_COMPLETION_DATA_4 (0x040)
Table 331: C2H_COMPLETION_DATA_4 (0x040)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [159:128]

C2H_COMPLETION_DATA_5 (0x044)
Table 332: C2H_COMPLETION_DATA_5 (0x044)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [191:160]

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=235


C2H_COMPLETION_DATA_6 (0x048)
Table 333: C2H_COMPLETION_DATA_6 (0x048)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [223:192]

C2H_COMPLETION_DATA_7 (0x04C)
Table 334: C2H_COMPLETION_DATA_7 (0x04C)

Bit Default Access
Type Field Description

[31:0] 0 NA AXI-ST C2H Completion Data [255:224]

C2H_COMPLETION_SIZE (0x050)
Table 335: C2H_COMPLETION_SIZE (0x050)

Bit Default Access
Type Field Description

[31:13] 0 NA Reserved

-12] 0 RW Completion Type.
1'b1: NO_PLD_BUT_WAIT
1'b0: HAS PLD
See AXI4-Stream C2H Completion Ports for details.

[10:8] 0 RW s_axis_c2h_cmpt_ctrl_err_idx[2:0] Completion Error Bit
Index.
3'b000: Selects 0th register.
3'b111: No error bit is reported.

[6:4] 0 RW s_axis_c2h_cmpt_ctrl_col_idx[2:0] Completion Color
Bit Index.
3'b000: Selects 0th register.
3'b111: No color bit is reported.

[3] 0 RW s_axis_c2h_cmpt_ctrl_user_trig Completion user
trigger

[1:0] 0 RW AXI4-Stream C2H completion data size.
00: 8 Bytes
01: 16 Bytes
10: 32 Bytes
11: 64 Bytes

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=236


SCRATCH_REG0 (0x060)
Table 336: SCRATCH_REG0 (0x060)

Bit Default Access
Type Field Description

[31:0] 0 RW Scratch register

SCRATCH_REG1 (0x064)
Table 337: SCRATCH_REG1 (0x064)

Bit Default Access
Type Field Description

[31:0] 0 RW Scratch register

C2H_PACKETS_DROP (0x088)
Table 338: C2H_PACKETS_DROP (0x088)

Bit Default Access
Type Field Description

[31:0] 0 R The number of AXI-ST C2H packets (descriptors)
dropped per transfer

Each AXI-ST C2H transfer can contain one or more descriptors depending on transfer size and
C2H buffer size. This register represents how many of the descriptors were dropped in the
current transfer. This register will reset to 0 in the beginning of each transfer.

C2H_PACKETS_ACCEPTED (0x08C)
Table 339: C2H_PACKETS_ACCEPTED (0x08C)

Bit Default Access
Type Field Description

[31:0] 0 R The number of AXI-ST C2H packets (descriptors)
accepted per transfer

Each AXI-ST C2H transfer can contain one or more descriptors depending on the transfer size
and C2H buffer size. This register represents how many of the descriptors were accepted in the
current transfer. This register will reset to 0 at the beginning of each transfer.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=237


DESCRIPTOR_BYPASS (0x090)
Table 340: Descriptor bypass (0x090)

Bit Default Access
Type Field Description

[31:3] 0 NA Reserved

[2:1] 0 RW c2h_dsc_bypass C2H descriptor bypass loopback. When set, the C2H
descriptor bypass-out port is looped back to the C2H
descriptor bypass-in port.
2'b00: No bypass loopback.
2'b01: C2H MM desc bypass loopback and C2H
Stream cache bypass loopback.
2'b10: C2H Stream Simple descriptor bypass
loopback.
2'b11: H2C stream 64 byte descriptors are looped
back to Completion interface.

[0] 0 RW h2c_dsc_bypass H2C descriptor bypass loopback. When set, the H2C
descriptor bypass-out port is looped back to the H2C
descriptor bypass-in port.
1'b1: H2C MM and H2C Stream descriptor bypass
loopback
1'b0: No descriptor loopback

USER_INTERRUPT (0x094)
Table 341: User interrupt (0x094)

Bit Default Access
Type Field Description

[31:20] 0 NA Reserved

[19:12] 0 RW usr_irq_in_fun User interrupt function number

[11:9] 0 NA Reserved

[8:4] 0 RW usr_irq_in_vec User interrupt vector number

[3:1] 0 NA Reserved

[0] 0 RW usr_irq User interrupt. When set, the example design
generates a user interrupt.

To generate a user interrupt:

1. Write the function number at bits [19:12]. This corresponds to the function that generates
the usr_irq_in_fnc user interrupt.

2. Write MSI-X Vector number at bits [8:4]. This corresponds to the entry in the MSI-X table
that is set up for usr_irq_in_vec user interrupt.

3. Write 1 to bit [0] to generate user interrupt. This bit clears itself after usr_irq_out_ack
from the DMA is generated.

All three above steps can be done at the same time, with a single write.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=238


USER_INTERRUPT_MASK (0x098)
Table 342: User Interrupt Mask (0x098)

Bit Default Access
Type Field Description

[31:0] 0 RW User Interrupt Mask

USER_INTERRUPT_VECTOR (0x09C)
Table 343: User Interrupt Vector (0x09C)

Bit Default Access
Type Field Description

[31:0] 0 RW User Interrupt Vector

The user_interrupt_mask[31:0] and user_interrupt_vector[31:0] registers are
provided as an example design for user interrupt aggregation that can generate a user interrupt
for a function. The user_interrupt_mask[31:0] is anded (bitwire and) with
user_interrupt_vector[31:0] and a user interrupt is generated. The
user_interrupt_vector[31:0] is clear on read register.

To generate a user interrupt:

1. Write the function number at user_interrupt[19:12]. This corresponds to which
function generates the usr_irq_in_fnc user interrupt.

2. Write the MSI-X Vector number at user_interrupt[8:4]. This corresponds to which
entry in MSI-X table is set up for the usr_irq_in_vec user interrupt.

3. Write mask value in the user_interrupt_mask[31:0] register.

4. Write the interrupt vector value in the user_interrupt_vector[31:0] register.

This generates a user interrupt to the DMA block.

There are two way to generate user interrupt:

• Write to user_interrupt[0], or

• Write to the user_interrupt_vector[31:0] register with mask set.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=239


DMA_CONTROL (0x0A0)
Table 344: DMA Control (0x0A0)

Bit Default Access
Type Field Description

[31:1] NA Reserved

[0] 0 RW gen_qdma_reset When soft_reset is set, generates a soft reset to the
DMA block. This bit is cleared after 100 cycles.

Writing a 1 to DMA_control[0] generates a soft reset on soft_reset_n (active-Low). A
reset is asserted for 100 cycles, and following which of the signals will be deasserted.

VDM_MESSAGE_READ (0x0A4)
Table 345: VDM Message Read (0x0A4)

Bit Default Access
Type Field Description

[31:0] RO VDM message read

Vendor Defined Message (VDM) messages, st_rx_msg_data, are stored in fifo in the example
design. A read to this register (0x0A4) will pop out one 32-bit message at a time.

Chapter 6: Example Design

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=240


Appendix A

Upgrading

Changes from v2.0 to v3.0
For a list of changes in the QDMA Subsystem for PCIe from v2.0 to v3.0, see AR 71737.

Comparing With DMA/Bridge Subsystem for
PCI Express

The table below describes the differences between the DMA/Bridge Subsystem for PCI Express®

and QDMA Subsystem for PCI Express.

Table 346: Comparing Subsystems

DMA/Bridge Subsystem QDMA Subsystem
Configuration Up to Gen3x16. Up to Gen3x16.

Channels/Queues Four Host to Card (H2C) channels, and four
Card to Host (C2H) channels with one PF.

Up to 2K queues (All can be assigned to one PF
or distributed amongst all four).

SR-IOV Not Supported. Supported (four PFs, and 252 VFs).

User Interface Configured for AXI4 Memory Mapped or
AXI4-Stream, but not both.

Each queue will have a context which will
determine whether it goes to a AXI4 Memory
Mapped or AXI4-Stream.

User Interrupts Up to 16 user interrupts. Interrupt aggregation per function.

Device Support Supported for 7 Series Gen2 to
UltraScale+™ devices.

Only supported for UltraScale+ devices.

Interrupts Legacy, MSI, MSI-X supported. MSI-X Supported for PFs.
Only MSI-X Supported for VFs.

Driver Support Linux, Windows Example Drivers. Linux, DPDK, Windows.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  241Send Feedback

https://www.xilinx.com/support/answers/71737.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=241


Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the subsystem, the Xilinx Support web page
contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the subsystem. This guide, along with
documentation related to all products that aid in the design process, can be found on the Xilinx
Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

The Solution Center specific to the QDMA Subsystem for PCIe is the Xilinx Solution Center for
PCI Express.

Appendix B: Debugging

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  242Send Feedback

https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com/support/answers/34536.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=242


Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this subsystem can be located by using the Search Support box on the main 
Xilinx support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Subsystem

AR 70927.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Debug Tools
There are many tools available to address QDMA Subsystem for PCIe design issues. It is
important to know which tools are useful for debugging various situations.

Appendix B: Debugging

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  243Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support/answers/70927.htm
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=243


Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into
your design. The debug feature also allows you to set trigger conditions to capture application
and integrated block port signals in hardware. Captured signals can then be analyzed. This
feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx®

devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908).

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the example
design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

• If your outputs go to 0, check your licensing.

Appendix B: Debugging

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  244Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=244


Appendix C

Application Software Development

Device Drivers
Figure 38: Device Drivers

X.86 Linux Host

User Space
Kernel Space

DPDKTest App

X.86 Linux Host

User Space
Test App

Kernel Space
XDMA Driver

X.86 Windows Host

User Space
Test App

Kernel Space
XDMA Driver

XDMA PMD

UIO VFIO

Xilinx Device 
(XDMA Example Design)

PCIe

Xilinx Device 
(XDMA Example Design)

PCIe

Xilinx Device 
(XDMA Example Design)

PCIe

Linux Kernel Driver
Usage model

· DPDK (Data Plan Dev Kit) PMD
(Poll Mode Driver) usage model

· DPDK provides ability to create
user space applications without
data copy associated with system
calls

Windows Kernel Driver
Usage model

X20600-110419

The above figure shows the usage model of Linux and Windows QDMA software drivers. The
QDMA Subsystem for PCIe example design is implemented on a Xilinx® FPGA, which is
connected to an X86 host through PCI Express.

• In the first use mode, the QDMA driver in kernel space runs on Linux, whereas the test
application runs in user space.

• In the second use mode, the Data Plan Dev Kit (DPDK) is used to develop a QDMA Poll Mode
Driver (PMD) running entirely in the user space, and use the UIO and VFIO kernel framework
to communicate with the FPGA.

• In the third usage mode, the QDMA driver runs in kernel space on Windows, whereas the test
application runs in the user space.

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=245


Linux DMA Software Architecture (PF/VF)
Figure 39: Linux DMA Software Architecture

dmacti Standard Linux testing tools: dd, flo, ...

Xilinx-dma-common

Netlink socket Character device

Device management

Qdma-core

Q. Management Q. Descriptor Ring Management

PF/VF mailbox

Device management

DMA Q/Engine management

DMA operations

Xilinx s/w components

netlink

NETLINK_GENERIC

character device

VFS ops.

Exported

Kernel Apls

MQ-cmd + Descriptors

H2C Queue C2H QueueXilinx FPGA H2C Queue C2H Queue H2C Queue C2H Queue

X20598-052419

The QDMA driver consists of the following three major components:

• Device control tool: Creates a netlink socket for PCIe device query, queue management,
reading the context of a queue, etc.

• DMA tool: Is the user space application to initiate a DMA transaction. You can use standard
Linux utility dd or fio, or use the example application in the driver package.

• Kernel space driver: Creates the descriptors and translates the user space function into low-
level command to interact with the FPGA device.

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=246


Using the Driver
The QDMA driver and driver documentation can be downloaded from the following locations:

• For Linux and DPDK driver details, see Xilinx DMA IP Drivers.

• For Windows driver details, see the QDMA Windows Driver Lounge.

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  247Send Feedback

https://github.com/Xilinx/dma_ip_drivers
https://www.xilinx.com/member/qdma_windows_driver.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=247


Reference Software Driver Flow
AXI4-Memory Map Flow Chart

Figure 40: AXI4-Memory Map Flow Chart

Start the H2C engine by writing 0x1204 value 0x001.

Set up a ring buffer for the H2C descriptor, following the AXI-MM descriptor format. 
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H descriptor, following the AXI-MM descriptor format. 
Also, set up one more entry for write back status.

Follow the same for all desired Queues.

Load the driver for the AXI-MM 
transfer (setup).

Write the global ring size to register 0x204: value 8 ( ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring size.

Set up the Mask for indirect write to queue context.
Write to address 0x824, 0x828, 0x82C, 0x830 with value of 32'hffff_ffff. 

This enables all bits to be written.

Write the Global Function Map register 0x400.
This indicates how many Queues are available for a given function.

Clear the Hardware Context for H2C and C2H Queues. 
Write to address 0x844 value 0x06 for H2C, Queue 0.
Wire to address 0x844 value 0x04 for C2H, Queue 0.  

Write the indirect context values at register 0x804, 0x808, 
0x80C and 0x810 for the H2C transfer. Then, update the 
context value to the proper Queues by writing to 0x844.  

Write the indirect context values at register 0x804, 0x808, 
0x80c and 0x810 for the C2H transfer. Then, update the 
context value to the proper Queues by writing to 0x844.  

Start the C2H engine by writing 0x1004 value 0x001.

H2C C2H

X20550-041619

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=248


AXI4 Memory Mapped C2H Flow
Figure 41: AXI4 Memory Mapped Card to Host (C2H) Flow Diagram

The DMA initiates the descriptor fetch request for one or more 
descriptors depending on the PIDX credit update.  

The DMA receives one or more descriptors.

Is this the last 
descriptor The DMA reads data from (Card) source address for 

a given descriptor.

Stop fetching descriptor from 
the host.

Stop fetching data from the 
card.

Transmit data to the PCIe to (Host) destination address.

Is there more data 
to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Yes

No

Exit application 
program.

The application program reads the transfer data 
from the assigned buffer and writes to a file.

The Driver updates the C2H Descriptor ring buffer based on the length and data 
address. This can take one or more descriptor entry based on transfer size (credits).  

The Driver starts the C2H transfer by writing the number of PIDX credits to the AXI-
MM C2H PIDX direct address 0x18008 (for Queue 0).

The DMA writes the Write Back Status (CIDX) to the C2H descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and 
compares with the PIDX and completes the transfer.

Are there any more 
descriptors left

X20525-052419

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=249


AXI4 Memory Mapped H2C Flow
Figure 42: AXI4 Memory Mapped Host to Card (H2C) Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX credits to the AXI-MM H2C 
PIDX direct address 0x18004 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or 
more descriptors depending on PIDX updates.  

The DMA receives one or more descriptors depending on 
the adjacent descriptor count.

Is this the last 
descriptor

The DMA sends read request to the (Host) source 
address based on the first available descriptor.

Stop fetching the descriptor from 
host.

The DMA receives the data from the Host for that 
descriptor.  

Stop fetching data from Host.

Transmit data on the (Card) AXI-MM Master interface.

Is there more data 
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location 
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the H2C Descriptor ring buffer based on the length and data address. 
This can take one or more descriptor entries based on transfer size.  

The DMA writes the Write Back Status (CIDX) to H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by DMA, and compares 
with PIDX and completes the transfer.

Exit application 
program.

Are there any more 
descriptors left

X20526-052419

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=250


AXI4-Stream Flow Chart
Figure 43: AXI4-Stream Flow Chart

Set up a ring buffer for the H2C descriptor, following the AXI-ST H2C descriptor 
format. Also, set up one entry for the write back status.

Follow the same for all desired Queues.

Set up a ring buffer for C2H descriptor, Follow AXI-ST C2H descriptor format. Also 
setup one more entree for write back status

Follow the same sets for all desired Queues

Load the driver for AXI-ST 
transfer (setup).

Write the global ring size to register 0x204: value 8 ( ring size of 8).
16 different ring sizes can be set up; each Queue can use any ring sizes.

Set up the Mask for indirect write to queue context.
Write to address 0x824, 0x828, 0x82C, 0x830 with value of 32'hffff_ffff. 

This enables all bits to be written.

Write the Global Function Map register 0x400.
This identifies how many Queues there are for a given function.

Clear the Hardware Context for H2C and C2H for all desired Queues. 
Write to address 0x844 value 0x06 for H2C, (for Queue 0).
Wire to address 0x844 value 0x04 for C2H, (for Queue 0).

Write the indirect context values at register 0x804, 0x808,0x80C and 0x810 for H2C 
transfer, and then update the context value to proper Queues by writing to 0x844.  

Write the indirect context values at register 0x804, 0x808, 0x80C and 0x810 for C2H 
transfer, and then update the context value to proper Queues by writing to 0x844.  

Program the C2H buffer size 0x1000 (4KBytes) to address 0xAB0.

Set up a ring buffer for the C2H descriptor, following the AXI-ST C2H descriptor 
format. Also, set up one entry for write back status.

Follow the same for all desired Queues.

Set up a ring buffer for the C2H Write Back descriptor, following the AXI-ST WRB 
descriptor format. Also, set up one entry for write back status.

Follow the same for all desired Queues

C2H

Write Back Context programming.
Program the indirect context values at register 0x804, 0x808, 0x80C and 0x810 for 

Write Back context, and then update the context value to proper Queues by writing to 
0x844.

Program the Write Back Context update to enable the Write back status. Write 
32'h09000000 to 0x1800C (for Queue 0).

Prefetch Context programming.
Program the indirect context values at register 0x804, 0x808,0x80C and 0x810 for 

Prefetch context, and  then update the context value to proper Queues by writing to 
0x844.

H2C

X20551-041619

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=251


AXI4-Stream C2H Flow
Figure 44: AXI4-Stream C2H Flow Diagram

The DMA writes the Completion Status (PIDX) to 
the Completion descriptor ring.

Based on the descriptor credits, the user application sends 
C2H data.

The DMA reads data from Card.  

Did DMA receive 
tlast

Stop reading data from Card.
The DMA transmits one C2H buffer size worth 

of data to the Host destination address.

Is there more 
data to transfer

The application program initiates the C2H transfer, with transfer length and receive buffer location.

Yes

No

Yes

No

Exit the application 
program.

Application program reads transfer data from 
assigned buffer and writes to a file

The DMA writes the Completion data (length of 
transfer, color bit, etc.) to the Completion descriptor.

The Driver reads the Completion Status (PIDX), which signals transfer 
completed.  The Driver also looks at the Completion entry to check for transfer 

length. The color bit is used to ensure the Driver does not overflow the 
Completion ring.

The Driver starts the C2H transfer by writing the number of PIDX 
credits to AXI-ST C2H PIDX direct address 0x18008 (for Queue 0). The 
number of PIDX credits can be larger than that of the actual tranfers.

The Driver updates the Completion CIDX to 
match the DMA’s Completion PIDX. For the 

DMA this signifies that the driver has 
processed the C2H data.

The DMA sends descriptor credits to the user application 
through the tm_dsc_sts interface.

The DMA initiates the descriptor fetch request for one or 
more descriptors depending on the C2H data received.

The DMA receives one 
or more descriptors.

Is there more 
data

Stop fetching descriptor

No

Yes

X20527-041619

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=252


AXI4-Stream H2C Flow
Figure 45: AXI4-Stream H2C Flow Diagram

The Driver starts the H2C transfer by writing the number of PIDX 
credits to AXI-ST H2C PIDX direct address 0x18004 (for Queue 0).

The DMA initiates the Descriptor fetch request for one or 
more descriptors depending on the PIDX credit update.

The DMA receives one or more descriptors.

Is this the last 
descriptor

The DMA sends the read request to the (Host) source 
address based on the first available descriptor.

Stop fetching the descriptor 
from host The DMA receives data from the Host for that descriptor.  

Are there any more 
descriptors left

Stop fetching data from the 
Host.

Transmit the data on the (Card) AXI-ST Master interface.

Is there more data 
to transfer

The application program initiates the H2C transfer, with transfer length and buffer location 
where data is stored.

Yes

No

Yes

No

Yes

No

The Driver updates the Descriptor ring buffer based on the length and data address. 
This can take one or more descriptor entries based on transfer size (credits).

The DMA writes the Write Back Status (CIDX) to the 
H2C descriptor ring.

The Driver reads the Write Back Status (CIDX) posted by the DMA, and 
compares it with the PIDX and completes the transfer.

Exit the application 
program.  

X20528-041619

Appendix C: Application Software Development

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=253


Appendix D

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this product guide:

Appendix D: Additional Resources and Legal Notices

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  254Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=254


1. AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

2. PCI-SIG Specifications (www.pcisig.com/specifications)

3. Virtex-7 FPGA Integrated Block for PCI Express LogiCORE IP Product Guide (PG023)

4. 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)

5. UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)

6. AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)

7. DMA/Bridge Subsystem for PCI Express Product Guide (PG195)

8. UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

9. Vivado Design Suite: AXI Reference Guide (UG1037)

10. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

11. Vivado Design Suite User Guide: Designing with IP (UG896)

12. Vivado Design Suite User Guide: Getting Started (UG910)

13. Vivado Design Suite User Guide: Logic Simulation (UG900)

14. Vivado Design Suite User Guide: Using Constraints (UG903)

15. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
11/22/2019 v3.0

RTL Version Register (0x2414) Added PF RTL version register in the doc

RTL Version Register (0x1014) Added VF RTL version register in the doc

AXI4-Stream Status Ports Added the axis_c2h_status_error port. This port will be
available starting in a 2019.2 patch release.

QDMA C2H Descriptor Bypass Output Marker Response
Descriptions table

Added C2H Stream marker_cookie field for marker
response. This feature will be available starting in a 2019.2
patch release.

QDMA_GLBL2_MISC_CAP (0x134) Updated available bits and descriptions.

VDM Added information regarding back-to-back VDM access not
being supported.

05/22/2019 v3.0

Performance and Resource Utilization Added performance details, and Performance Report
answer record.

Minimum Device Requirements Enabled Gen4 devices for QDMA.

User Parameters Added link to AR for additional core customization options.

Appendix D: Additional Resources and Legal Notices

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  255Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.pcisig.com/specifications
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=255


Section Revision Summary
Capabilities Tab Mailbox can be selected independently of SR-IOV selection.

AXI Stream Loopback Example Design New example design added.

12/05/2018 v3.0

IP Facts and Using the Driver Added Windows driver support.

Register Space Added registers, and updated registers.

PCIe MISC Tab and PCIe DMA Tab Updated for the 2018.3 release.

Chapter 6: Example Design Added two example designs, and updated registers.

Appendix A: Upgrading Added reference to AR for changes between core versions.

09/04/2018 v2.0

Port Descriptions
For tm_dsc_sts_rdy (VDM Ports) and st_rx_msg_rdy (QDMA
Traffic Manager Credit Output Ports), emphasized that
when this interface is not used, Ready must be tied-off to 1.

Register Space

Added a register to stall read requests from H2C Stream
Engine if the amount of outstanding data exceeds a
programmed threshold.

Added a new C2H Completion interrupt trigger mode that
includes user trigger, timer expiration, or count exceeding
the threshold

06/22/2018 v2.0

Overview chapter Updated content throughout.

Port Descriptions section Changed some table content, and some reorganization of
the content.

Register Space section Added Memory Map Register Space and AXI4-Lite Slave
Register Space section.

Context Structure Definition section, and Queue Entry
Structure section

Removed these sections, and moved content into the QDMA
Operations section in the Overview chapter.

Design Flow Steps chapter Updated descriptions for Basic Tab, Capabilities Tab, PCIe
BARs Tab, PCIe Misc Tab, and PCIe DMA Tab.

Example Design chapter Added two new example designs, and added example
design registers.

04/17/2018 v1.0

Initial Xilinx release.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the

Appendix D: Additional Resources and Legal Notices

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=256


Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell,
Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other
trademarks are the property of their respective owners.

Appendix D: Additional Resources and Legal Notices

PG302 (v3.0) November 22, 2019  www.xilinx.com
QDMA Subsystem for PCIe  257Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG302&Title=QDMA%20Subsystem%20for%20PCI%20Express%20v3.0&releaseVersion=3.0&docPage=257

	QDMA Subsystem for PCI Express v3.0
	Table of Contents
	Ch. 1: Introduction
	Features
	IP Facts

	Ch. 2: Overview
	QDMA Architecture
	DMA Engines
	Descriptor Engine
	H2C MM Engine
	C2H MM Engine
	H2C Stream Engine
	C2H Stream Engine
	Completion Engine

	Bridge Interfaces
	AXI Memory Mapped Bridge Master Interface
	AXI4-Lite Bridge Master Interface
	PCIe to AXI BARs
	AXI Memory Mapped Bridge Slave Interface
	AXI4-Lite Bridge Slave Interface
	AXI to PCIe BARs

	Interrupt Module
	PCIe Block Interface
	PCIe CQ/CC
	PCIe RQ/RC
	PCIe Configuration

	General Design of Queues
	H2C and C2H Queues
	Completion Queue

	SR-IOV Support

	Applications
	Licensing and Ordering

	Ch. 3: Product Specification
	Standards
	Performance and Resource Utilization
	Minimum Device Requirements
	QDMA Operations
	Descriptor Engine
	Descriptor Context
	Software Descriptor Context Structure (0x0 C2H and 0x1 H2C)
	Hardware Descriptor Context Structure (0x2 C2H and 0x3 H2C)

	Credit Descriptor Context Structure
	Descriptor Fetch
	Internal Mode
	Internal Mode Writeback and Interrupts (AXI MM and H2C ST)

	Bypass Mode
	Bypass Mode Writeback/Interrupts
	Bypass Mode Marker Response

	Traffic Manager Output Interface
	Descriptor Credit Input Interface
	Errors

	Memory Mapped DMA
	Operation
	Errors

	AXI Memory Mapped Descriptor for H2C and C2H (32B)
	AXI Memory Mapped Writeback Status Structure for H2C and C2H

	Stream Mode DMA
	H2C Stream Engine
	Internal and Bypass Modes
	H2C Stream Descriptor (16B)
	Descriptor Metadata
	Zero Length Descriptor
	H2C Stream Status Descriptor Writeback
	H2C Stream Data Aligner
	Handling Descriptors With Errors
	Handling Errors in Data From PCIe

	C2H Stream Engine
	C2H Stream Descriptor (8B)
	C2H Prefetch Engine
	C2H Stream Modes
	C2H Stream Packet Type


	Completion Engine
	Completion Context Structure
	Completion Status Structure
	Completion Entry Structure
	Completion Input Packet
	Completion Status/Interrupt Moderation
	Completion Timer
	Handling Exception Events

	Bridge
	Interrupts
	Asynchronous and Queue Based Interrupts
	Interrupt Engine
	Direct Interrupt
	Interrupt Aggregation Ring

	Error Interrupt
	Legacy Interrupt

	Queue Management
	Function Map Table
	Context Programming
	Queue Setup
	Queue Teardown

	Virtualization
	Mailbox
	Function Level Reset

	System Management
	Resets
	VDM
	Config Extend
	Expansion ROM

	Errors
	Linkdown Errors
	Parity Errors
	DMA Errors
	Error Aggregator
	C2H Streaming Fatal Error Handling



	Port Descriptions
	QDMA Global Ports
	AXI Bridge Master Ports
	AXI Bridge Slave Ports
	AXI4-Lite Master Ports
	AXI4-Lite Slave Ports
	AXI4 Memory Mapped DMA Ports
	AXI4-Stream H2C Ports
	AXI4-Stream C2H Ports
	AXI4-Stream C2H Completion Ports
	AXI4-Stream Status Ports
	AXI4-Stream C2H Write Cmp Ports
	VDM Ports
	Configuration Extend Interface Ports
	FLR Ports
	QDMA Descriptor Bypass Input Ports
	QDMA Descriptor Bypass Output Ports
	QDMA Descriptor Credit Input Ports
	QDMA Traffic Manager Credit Output Ports
	User Interrupts

	Register Space
	QDMA PF Address Register Space
	QDMA_TRQ_SEL_GLBL1 (0x00000)
	Config Block Identifier (0x00)
	Config Block BusDev (0x04)
	Config Block PCIE Max Payload Size (0x08)
	Config Block PCIE Max Read Request Size (0x0C)
	Config Block System ID (0x10)
	Config Block MSI Enable (0x14)
	Config Block PCIE Data Width (0x18)
	Config PCIE Control (0x1C)
	Config AXI User Max Payload Size (0x40)
	Config AXI User Max Read Request Size (0x44)
	Config Block Misc Control (0x4C)
	Config Block Scratch7-0 (0x80-0x9C)
	QDMA_RAM_SBE_MSK_A (0xF0)
	QDMA_RAM_SBE_STS_A (0xF4)
	QDMA_RAM_DBE_MSK_A (0xF8)
	QDMA_RAM_DBE_STS_A (0xFC)

	QDMA_TRQ_SEL_GLBL2 (0x00100)
	QDMA_GLBL2_IDENTIFER (0x100)
	QDMA_GLBL2_PF_BARLITE_INT (0x104)
	QDMA_GLBL2_PF_VF_BARLITE_INT (0x108)
	QDMA_GLBL2_PF_BARLITE_EXT (0x10C)
	QDMA_GLBL2_PF_VF_BARLITE_EXT (0x110)
	QDMA_GLBL2_CHANNEL_INST (0x114)
	QDMA_GLBL2_CHANNEL_MDMA (0x118)
	QDMA_GLBL2_CHANNEL_STRM (0x11C)
	QDMA_GLBL2_CHANNEL_QDMA_CAP (0x120)
	QDMA_GLBL2_CHANNEL_PASID_CAP (0x128)
	QDMA_GLBL2_CHANNEL_FUNC_RET (0x12C)
	QDMA_GLBL2_SYSTEM_ID (0x130)
	QDMA_GLBL2_MISC_CAP (0x134)
	QDMA_GLBL2_DBG_PCIE_RQ0 (0x1B8)
	QDMA_GLBL2_DBG_PCIE_RQ1 (0x1BC)
	QDMA_GLBL2_DBG_AXIMM_WR0 (0x1C0)
	QDMA_GLBL2_DBG_AXIMM_WR1 (0x1C4)
	QDMA_GLBL2_DBG_AXIMM_RD0 (0x1C8)
	QDMA_GLBL2_DBG_AXIMM_RD1 (0x1CC)

	QDMA_TRQ_SEL_GLBL (0x00200)
	QDMA_GLBL_RNG_SZ (0x204-0x240)
	QDMA_GLBL_SCRATCH (0x244)
	QDMA_GLBL_ERR_STAT (0X248)
	QDMA_GLBL_ERR_MASK (0X24C)
	QDMA_GLBL_DSC_CFG (0x250)
	QDMA_GLBL_DSC_ERR_STS (0x254)
	QDMA_GLBL_DSC_ERR_MSK (0x258)
	QDMA_GLBL_DSC_ERR_LOG0 (0x25C)
	QDMA_GLBL_DSC_ERR_LOG1 (0x260)
	QDMA_GLBL_TRQ_ERR_STS (0x264)
	QDMA_GLBL_TRQ_ERR_MSK (0x268)
	QDMA_GLBL_TRQ_ERR_LOG (0x26C)
	QDMA_GLBL_DSC_DBG_DAT0 (0x270)
	QDMA_GLBL_DSC_DBG_DAT1 (0x274)
	QDMA_GLBL_DSC_ERR_LOG2 (0x27C)
	QDMA_GLBL_INTERRUPT_CFG (0x2C4)

	QDMA_TRQ_SEL_FMAP (0x00400)
	QDMA_TRQ_SEL_FMAP (0x400-0x7FC)

	QDMA_TRQ_SEL_IND (0x00800)
	QDMA_IND_CTXT_DATA_0 (0x804)
	QDMA_IND_CTXT_DATA_1 (0x808)
	QDMA_IND_CTXT_DATA_2 (0x80C)
	QDMA_IND_CTXT_DATA_3 (0x810)
	QDMA_IND_CTXT_DATA_4 (0x814)
	QDMA_IND_CTXT_DATA_5 (0x818)
	QDMA_IND_CTXT_DATA_6 (0x81C)
	QDMA_IND_CTXT_DATA_7 (0x820)
	QDMA_IND_CTXT_MASK_0 (0x824)
	QDMA_IND_CTXT_MASK_1 (0x828)
	QDMA_IND_CTXT_MASK_2 (0x82C)
	QDMA_IND_CTXT_MASK_3 (0x830)
	QDMA_IND_CTXT_MASK_4 (0x834)
	QDMA_IND_CTXT_MASK_5 (0x838)
	QDMA_IND_CTXT_MASK_6 (0x83C)
	QDMA_IND_CTXT_MASK_7 (0x840)
	QDMA_IND_CTXT_CMD (0x844)

	QDMA_TRQ_SEL_C2H (0x00A00)
	QDMA_C2H_TIMER_CNT[16] (0xA00-0xA3C)
	QDMA_C2H_CNT_TH[16] (0xA40-0xA7C)
	QDMA_C2H_STAT_S_AXIS_C2H_ACCEPTED (0XA88)
	QDMA_C2H_STAT_S_AXIS_CMPT_ACCEPTED (0xA8C)
	QDMA_C2H_STAT_DESC_RSP_PKT_ACCEPTED (0xA90)
	QDMA_C2H_STAT_AXIS_PKG_CMP (0xA94)
	QDMA_C2H_STAT_DESC_RSP_ACCEPTED (0xA98)
	QDMA_C2H_STAT_DESC_RSP_CMP (0xA9C)
	QDMA_C2H_STAT_WRQ_OUT (0xAA0)
	QDMA_C2H_STAT_WPL_REN_ACCEPTED (0xAA4)
	QDMA_C2H_STAT_TOTAL_WRQ_LEN (0xAA8)
	QDMA_C2H_STAT_TOTAL_WPL_LEN (0xAAC)
	QDMA_C2H_BUF_SZ[16] (0xAB0-0xAEC)
	QDMA_C2H_ERR_STAT (0xAF0)
	QDMA_C2H_ERR_MASK (0xAF4)
	QDMA_C2H_FATAL_ERR_STAT (0xAF8)
	QDMA_C2H_FATAL_ERR_MASK (0xAFC)
	QDMA_C2H_FATAL_ERR_ENABLE (0xB00)
	QDMA_GLBL_ERR_INT (0xB04)
	QDMA_C2H_PFCH_CFG (0xB08)
	QDMA_C2H_INT_TIMER_TICK (0xB0C)
	QDMA_C2H_STAT_DESC_RSP_DROP_ACCEPTED (0xB10)
	QDMA_C2H_STAT_DESC_RSP_ERR_ACCEPTED (0xB14)
	QDMA_C2H_STAT_DESC_REQ (0xB18)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_0 (0xB1C)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_1 (0xB20)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_2 (0xB24)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_3 (0xB28)
	QDMA_C2H_DBG_PFCH_ERR_CTXT (0xB2C)
	QDMA_C2H_FIRST_ERR_QID (0xB30)
	QDMA_STAT_NUM_WRB_IN (0xB34)
	QDMA_STAT_NUM_WRB_OUT (0xB38)
	QDMA_STAT_NUM_WRB_DRP (0xB3C)
	QDMA_STAT_NUM_STAT_DESC_OUT (0xB40)
	QDMA_STAT_NUM_DSC_CRDT_SENT (0xB44)
	QDMA_STAT_NUM_FCH_DSC_RCVD (0xB48)
	QDMA_STAT_NUM_BYP_DSC_RCVD (0XB4C)
	QDMA_C2H_WRB_COAL_CFG (0xB50)
	QDMA_C2H_INTR_H2C_REQ (0xB54)
	QDMA_C2H_INTR_C2H_MM_REQ (0xB58)
	QDMA_C2H_INTR_ERR_INT_REQ (0xB5C)
	QDMA_C2H_INTR_C2H_ST_REQ (0xB60)
	QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_ACK (0xB64)
	QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_FAIL (0xB68)
	QDMA_C2H_INTR_H2C_ERR_C2H_MM_MSIX_NO_MSIX (0xB6C)
	QDMA_C2H_INTR_H2C_ERR_C2H_MM_CTXT_INVAL (0xB70)
	QDMA_C2H_INTR_C2H_ST_MSIX_ACK (0xB74)
	QDMA_C2H_INTR_C2H_ST_MSIX_FAIL (0xB78)
	QDMA_C2H_INTR_C2H_ST_NO_MSIX (0xB7C)
	QDMA_C2H_INTR_C2H_ST_CTXT_INVAL (0xB80)
	QDMA_C2H_STAT_WR_CMP (0xB84)
	QDMA_C2H_STAT_DEBUG_DMA_ENG_4 (0xB88)
	QDMA_C2H_DBG_PFCH_QID (0xB90)
	QDMA_C2H_DBG_PFCH (0xB94)
	QDMA_C2H_INT_DEBUG (0xB98)
	QDMA_C2H_STAT_IMM_ACCEPTED (0xB9C)
	QDMA_C2H_STAT_MARKER_ACCEPTED (0xBA0)
	QDMA_C2H_STAT_DISABLE_CMP_ACCEPTED (0xBA4)
	QDMA_C2H_PAYLOAD_FIFO_CRDT_CNT (0xBA8)
	QDMA_C2H_INTR_DYN_REQ (0xBAC)
	QDMA_C2H_INTR_DYN_MSIX (0xBB0)
	QDMA_C2H_DROP_LEN_MISMATCH (0xBB4)
	QDMA_C2H_DROP_DESC_RSP_LEN (0xBB8)
	QDMA_C2H_DROP_QID_FIFO_LEN (0xBBC)
	QDMA_C2H_DROP_PAYLOAD_CNT (0xBC0)
	QDMA_C2H_CMPT_FORMAT_0 (0xBC4)
	QDMA_C2H_CMPT_FORMAT_1 (0xBC8)
	QDMA_C2H_CMPT_FORMAT_2 (0xBCC)
	QDMA_C2H_CMPT_FORMAT_3 (0xBD0)
	QDMA_C2H_CMPT_FORMAT_4 (0xBD4)
	QDMA_C2H_CMPT_FORMAT_5 (0xBD8)
	QDMA_C2H_CMPT_FORMAT_6 (0xBDC)
	QDMA_C2H_PFCH_CACHE_DEPTH (0xBE0)
	QDMA_C2H_CMPT_COAL_BUF_DEPTH (0xBE4)
	QDMA_C2H_PFCH_CRDT (0xBE8)
	QDMA_C2H_STAT_HAS_CMPT_ACCEPTED (0xBEC)
	QDMA_C2H_STAT_HAS_PLD_ACCEPTED (0xBF0)
	MDMA_C2H_PLD_PKT_ID (0xBF4)

	QDMA_TRQ_SEL_H2C (0x00E00)
	QDMA_H2C_ERR_STAT (0xE00)
	QDMA_H2C_ERR_MASK (0xE04)
	QDMA_H2C_FIRST_ERR_QID (0xE08)
	QDMA_H2C_DBG_REG0 (0xE0C)
	QDMA_H2C_DBG_REG1 (0xE10)
	QDMA_H2C_DBG_REG2 (0xE14)
	QDMA_H2C_DBG_REG3 (0xE18)
	QDMA_H2C_DBG_REG4 (0xE1C)
	QDMA_H2C_FATAL_ERR_EN (0xE20)
	QDMA_H2C_REQ_THROT (0xE24)
	QDMA_H2C_ALN_DBG_REG0 (0xE28)

	QDMA_TRQ_SEL_C2H_MM (0x1000)
	C2H MM Control
	C2H MM Status
	C2H Completed Descriptor Count
	C2H MM Error Code Enable Mask (0x1054)
	C2H MM Error Code (0x1058)
	C2H MM Error Info (0x105C)
	C2H MM Performance Monitor Control (0x10C0)
	C2H MM Performance Monitor Cycle Count0 (0x10C4)
	C2H MM Performance Monitor Cycle Count1 (0x10C8)
	C2H MM Performance Monitor Data Count0 (0x10CC)
	C2H MM Performance Monitor Data Count1 (0x10D0)
	C2H MM Debug (0x10E8)

	QDMA_TRQ_SEL_H2C_MM (0x1200)
	H2C MM Control
	H2C MM Status
	H2C Completed Descriptor Count
	H2C MM Error Code Enable Mask (0x1254)
	H2C MM Error Code (0x1258)
	H2C MM Error Info (0x125C)
	H2C MM Performance Monitor Control (0x12C0)
	H2C MM Performance Monitor Cycle Count0 (0x12C4)
	H2C MM Performance Monitor Cycle Count1 (0x12C8)
	H2C MM Performance Monitor Data Count0 (0x12CC)
	H2C MM Performance Monitor Data Count 1(0x12D0)
	H2C MM Debug (0x12E8)
	QDMA_H2C_MM_REQ_THROT (0x12EC)

	QDMA_PF_MAILBOX (0x2400)
	Function Status Register (0x2400)
	Function Command Register (0x2404)
	Function Interrupt Vector Register (0x2408)
	Target Function Register (0x240C)
	Function Interrupt Vector Register (0x2410)
	RTL Version Register (0x2414)
	PF Acknowledgment Registers (0x2420-0x243C)
	FLR Control/Status Register (0x2500)
	Incoming Message Memory (0x2C00-0x2C7C)
	Outgoing Message Memory (0x3000-0x307C)

	QDMA_TRQ_MSIX (0x10000)
	QDMA_TRQ_SEL_QUEUE_PF (0x18000)
	QDMA_DMAP_SEL_INT_CIDX[2048] (0x18000)
	QDMA_DMAP_SEL_H2C_DSC_PIDX[2048] (0x18004)
	QDMA_DMAP_SEL_C2H_DSC_PIDX[2048] (0x18008)
	QDMA_DMAP_SEL_CMPT_CIDX[2048] (0x1800C)


	QDMA VF Address Register Space
	QDMA_TRQ_MSIX_VF (0x0000)
	QDMA_VF_MAILBOX (0x1000)
	Function Status Register (0x1000)
	Function Command Register (0x1004)
	Function Interrupt Vector Register (0x1008)
	Target Function Register (0x100C)
	Function Interrupt Control Register (0x1010)
	RTL Version Register (0x1014)
	Incoming Message Memory (0x1800-0x187C)
	Outgoing Message Memory (0x1C00-0x1C7C)

	QDMA_TRQ_SEL_QUEUE_VF (0x3000)

	AXI4-Lite Slave Register Space
	Bridge Register Space
	Bridge Register Memory Map
	VSEC Capability Register (0xE00)
	VSEC Header Register (0xE04)
	Bridge Info Register (0xE08)
	Bridge Control and Status Register (0xE0C)
	Interrupt Decode Register (0xE10)
	Interrupt Mask Register (0xE14)
	Bus Location Register (0xE18)
	PHY Control and Status Register (0xE1C)
	Interrupt Decode 2 Register (0xE38)
	Interrupt Mask 2 Register (0xE3C)
	Configuration Control Register (0xE40)
	Slave Error AID Register (0xE44)
	User IRQ Request Register (0xE58)
	User IRQ Acknowledge Register (0xE5C)
	PCIe TX Message Control Register (0xE60)
	PCIe TX Message Header L Register (0xE64)
	PCIe TX Message Header H Register (0xE68)
	PCIe TX Message Data FIFO Register (0xE6C)
	PCIe RX Message Control and Status Register (0xE70)
	PCIe RX Message FIFO Register (0xE74)
	Master Pending Counter Register (0xE78)
	PCIe TX MSI / MSI-X Control and Status Register (0xE7C)
	VSEC Capability 2 Register (0xED8)
	VSEC Header 2 Register (0xEDC)
	AXI Base Address Translation Configuration Registers (Offset - 0xEE0 - 0xF0C)




	Ch. 4: Designing with the Subsystem
	General Design Guidelines
	Use the Example Design
	Registering Signals
	Recognize Timing Critical Signals
	Make Only Allowed Modifications

	Clocking

	Ch. 5: Design Flow Steps
	Customizing and Generating the Subsystem
	Basic Tab
	Capabilities Tab
	PCIe BARs Tab
	SRIOV Config Tab
	SRIOV VF BARs Tab
	PCIe MISC Tab
	PCIe DMA Tab
	User Parameters
	Output Generation

	Constraining the Subsystem
	Simulation
	Basic Simulation
	PIPE Mode Simulation

	Synthesis and Implementation

	Ch. 6: Example Design
	AXI Memory Mapped and AXI4-Stream With Completion Default Example Design
	AXI Memory Mapped Example Design
	AXI Memory Mapped with Completion Example Design
	AXI Stream with Completion Example Design
	AXI Stream Loopback Example Design
	Example Design with Descriptor Bypass In/Out Loopback
	Example Design Registers
	C2H_ST_QID (0x000)
	C2H_ST_LEN (0x004)
	C2H_CONTROL_REG (0x008)
	H2C_CONTROL_REG (0x00C)
	H2C_STATUS (0x010)
	C2H_PACKET_COUNT (0x020)
	C2H_COMPLETION_DATA_0 (0x030)
	C2H_COMPLETION_DATA_1 (0x034)
	C2H_COMPLETION_DATA_2 (0x038)
	C2H_COMPLETION_DATA_3 (0x03C)
	C2H_COMPLETION_DATA_4 (0x040)
	C2H_COMPLETION_DATA_5 (0x044)
	C2H_COMPLETION_DATA_6 (0x048)
	C2H_COMPLETION_DATA_7 (0x04C)
	C2H_COMPLETION_SIZE (0x050)
	SCRATCH_REG0 (0x060)
	SCRATCH_REG1 (0x064)
	C2H_PACKETS_DROP (0x088)
	C2H_PACKETS_ACCEPTED (0x08C)
	DESCRIPTOR_BYPASS (0x090)
	USER_INTERRUPT (0x094)
	USER_INTERRUPT_MASK (0x098)
	USER_INTERRUPT_VECTOR (0x09C)
	DMA_CONTROL (0x0A0)
	VDM_MESSAGE_READ (0x0A4)


	Appx. A: Upgrading
	Changes from v2.0 to v3.0
	Comparing With DMA/Bridge Subsystem for PCI Express

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Master Answer Record for the Subsystem

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature

	Hardware Debug
	General Checks


	Appx. C: Application Software Development
	Device Drivers
	Linux DMA Software Architecture (PF/VF)
	Using the Driver
	Reference Software Driver Flow
	AXI4-Memory Map Flow Chart
	AXI4 Memory Mapped C2H Flow
	AXI4 Memory Mapped H2C Flow
	AXI4-Stream Flow Chart
	AXI4-Stream C2H Flow
	AXI4-Stream H2C Flow


	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices



