Zynq-7000 AP SoC and 7 Series Devices Memory Interface Solutions v4.1

User Guide

UG586 April 4, 2018

Date	Version	Revision
04/04/2018	4.1	Vivado Design Suite release for MIS v4.1.
02/02/2019	4.1	• Reverted doc version to v4.1 to match Vivado Design Suite release for MIS core v4.1.
03/02/2010		Added routing constraints note in General Memory Routing Guidelines appendix.
10/04/2017	12	DDR3 and DDR2
10/04/2017	4.2	 Updated CLOCK_DEDICATED_ROUTE description in Reference Clock section.
06/07/2017	4.2	Vivado Design Suite release for MIS v4.2.
04/05/2017	4.2	DDR3 and DDR2
04/03/2017	4.2	 Updated Fig. 1-93 and Fig. 1-94 captions.
		Renamed QuestaSim to Questa Advanced Simulator.
		QDR II+
		 Updated qdr_k_n/p directions in Physical Interface Signals table.
11/30/2016	4.1	 Updated in qdr_k_n/p directions I/O Standards table.
,,		RLDRAM II/RLDRAM 3
		 Updated rld_dk_p/n directions in Physical Interface Signals table.
		 Updated rld_dk_p/n directions in RLDRAM II I/O Standards and RLDRAM 3 Standards tables.
	4.1	Updated to core version 4.1.
		 Updated file name path to _ex/imports in all sections.
10/05/2016		DDR3 and DDR2
		Updated Controller Options Page figure.
		Added Number of Bank Machines bullet in the Controller Options section.
		DDR3 and DDR2
		 Updated Memory Part description in Controller Option section.
0.5 (0.0 (0.01.5	4.0	 Added app_ecc_single_err[7:0] in Table 1-17: User Interface table.
06/08/2016		 Added app_ecc_single_err[7:0] and note in Table 1-56: User Interface for ECC Operation.
		 Updated description in dbg_pi_phase_locked_phy4lanes and dbg_pi_dqs_found_lanes_phy4lanes in Table 1-74: DDR2/DDR3 Debug Signals.
		Updated to core version 3.0.
		Updated Termination for all sections.
04/06/2016	3.0	• Updated 1.0 µF capacitor in General Memory Routing Guideline chapter.
		DDR3 and DDR2
		 Added note in FPGA Options section.
		 Added note in Interfacing to the Core section.
		 Updated sys_rst descriptions in DDR3 and DD2 Configuration sections.
		Added note in Debug Signals section.
		 Updated reset description in General Checks section.

Date	Version	Revision
		Added asynchronous to sys_rst in all sections.
		 Added note to RELAXED mode in DDR3/DDR2 and LDDR2 sections.
		Updated code in all Configuration sections
		Added Important jitter note in Pinout Requirements in all sections.
		DDR3 and DDR2
		Added Synplify Pro Black Box Testing section.
11/18/2015	24	QDR II+
11/10/2015	2.7	 Updated DEBUG_PORT Signal Descriptions, Write Init Debug Signal Map, and Read Stage 1 Debug Signal Map tables.
		 Updated Calibration of Read Clock and Data description.
		Updated Write Calibration description.
		RLDRAM II/ RLDRAM 3
		Updated Read Stage 1 Debug Signal Map table.
		 Updated Calibration of Read Clock and Data description.
		Added CLOCK_DEDICATED_ROUTE Constraints in all sections.
		DDR3 and DDR2
		Updated Trace Lengths section.
		QDR II+
		Added Termination section.
		RLDRAM II/ RLDRAM 3
00/20/2015	2.4	Added Termination section.
09/30/2013	2.4	Updated Margin Check section.
		Updated Automatic Margin Check section.
		Updated Table 3-33: Debug Port Signals.
		LPDDR2
		Updated Trace Lengths section.
		Appendix
		 Added General Memory Routing Guidelines.
	2.3	Added Simulation Flow Using VCS and IES to all sections.
		• Added Clocking sections to QDR II+, RLDRAM II/RLDRAM 3, and LPDDR2 chapters.
06/24/2015		RLDRAM II/ RLDRAM 3
		• Added address/control signal and SSI descriptions in Pinout Requirements section.
		Updated Input Clock Guidelines section.

Date	Version	Revision
		Updated description in all Configuration sections.
		Updated SIM_BYPASS_INIT_CAL.
		Chapter 1
		 Added description in Setting DDR3 Memory Parameter Option section.
		 Added Note to Answer Record: 54025 in Controller Options section.
		 Added description to app_rd_data_end in Table 1-17: User Interface.
		 Updated Table 1-19: AXI4 Slave Interface Parameters.
		 Updated description in AXI4 Slave Interface Signals section.
		 Updated Time Division Multiplexing (TDM), Round-Robin, and Read Priority (RD_PRI_REG) sections.
		 Updated GES description in Calibration Times section.
		Updated Fig. 1-50: Clocking Architecture.
		• Updated Table 1-87: Memory Controller to Calibration Logic Interface Signals.
		Updated AXI Addressing section.
		Updated Write Path section.
		 Updated Fig. 1-84: Command Processing.
04/01/2015	2.3	• Updated Physical Layer Interface (Non-Memory Controller Design) section.
• ., • _, _ • _ •	2.0	 Updated CK signal description in Trace Length section.
		 Updated Fig. 1-93: Calibration Stages.
		 Updated description in Determine the Failing Calibration Stage section.
		 Updated Table 1-100: DDR2/DDR3 Debug Signals.
		• Updated Table 1-102: Debug Signals of Interest for Write Leveling Calibration.
		• Updated Table 1-103: Debug Signals of Interest for MPR Read Leveling Calibration.
		 Updated calibration overview in Debugging OCLKDELAYED Calibration Failures section.
		• Updated Debug bullets in Debugging OCLKDELAYED Calibration Failures section.
		 Updated Table 1-104: Debug Signals of Interest for OCLKDELAYED Calibration to Table 1-106: Debug Signals of Interest for Read Leveling Stage 1 Calibration.
		 Updated Table 1-108: Calibration Time in Hardware.
		• Updated Checking and Varying Read Timing to Manual Window Check sections.
		 Updated Calibration Times section.
		Chapter 2
		• Updated Fig. 2-43: High-Level PHY Block Diagram for a 36-Bit QDR II+ Interface.
		 Updated Margin Check and Automated Margin Check sections.
		Chapter 3
		• Updated description in Interfacing with the Core through the Client Interface section.
		Chapter 4
Continued		 Corrected app_wdf_data[APP_DATA_WIDTH – 1:0] and app_wdf_mask[APP_MASK_WIDTH – 1:0] sections.
		Updated Fig. 4-43: Clocking Architecture.
		Updated Read Path section.

Date	Version	Revision
		Chapter 1
		Updated description in Round-Robin section.
		 Updated RTT_WR in Table 1-92: 7 Series FPGA Memory Solution Configuration Parameters.
11/19/2014	2.3	• Updated description in Debugging OCLKDELAYED Calibration Failures section.
		• Updated Table 1-106: Debug Signals of Interest for OCLKDELAYED Calibration.
		Updated GES time in Calibration Times section.
		 Updated bits in left_loss_pb and right_gain_pb in Table 1-109: Debug Signals of Interest for PRBS Read Leveling Calibration.
		 Global update to example design link in Files in example_design/sim Directory tables, updated links in Simulation Flow Using IES and VCS Script Files section, updated Simulation Flow Using Vivado Simulator section, and updated Simulation Flow Using QuestaSim section.
		Chapter 1
		Updated Reference Clock description in FPGA Option section.
		 Updated C_S_AXI_DATA_WIDTH description in Table 1-19: AXI4 Slave Interface Parameters.
		Updated Fig. 1-50: Clocking Architecture.
		Updated OCLKDELAYED Calibration section.
10/01/2014	2.2	Updated Write Path section.
		 Added REF_CLK_MMCM_IODELAY_CTRL in Table 1-92: 7 Series FPGA Memory Solution Configuration Parameters.
		 Added note for nBANK_MACHS in Table 1-93: Embedded 7 Series FPGAs Memory Solution Configuration Parameters.
		 Added row and updated Table 1-94: DDR2/DDR3 SDRAM Memory Interface Solution Pinout Parameters
		 Updated CK/CK# bullet in Trace Length section.
		 Updated Table 1-102: DDR2/DDR3 Debug Signals.
		 Updated debug signals in Table 1-112: Debug Signals Used for Checking and Varying Read/Write Timing.
		Chapter 2
Continued		Added Bank Sharing Among Controllers section in Design Guideline section.
		Chapter 3
		Added Bank Sharing Among Controllers section in Design Guideline section.
		Chapter 4
		• Updated Figs. 4-57 to 4-59 and Figs. 4-62 to 4-63.
		Updated 2:1 description in Write Path section.
		 Updated rules in Termination section.

Date	Version	Revision
		Chapter 1
		Added reference to data sheet in Features section.
		Added Important note about Data Mask in Controller Options section.
		Added note in Precharge Policy section.
		 Added PRBS_SADDR_ MASK)POS to Table 1-11: Traffic Generator Parameters Set in the example_top Module.
		Updated IDELAYCTRL frequency in IDELAYCTRL section.
		Updated IDELAY Reference Clock section.
		Updated PRBS Read Leveling section.
		 Updated CL description for DDR3 in Table 1-93: Embedded 7 Series FPGAs Memory Solution Configuration Parameters.
		 Updated package length descriptions in Trace Length section.
		 Added simulation description in Note in Debugging DDR3/DDR2 Designs.
		Updated description in Debugging PRBS Read Leveling Failures section.
06/04/2014	2.1	• Updated Table 109: Debug Signals of Interest for PRBS Read Leveling Calibration.
		Chapter 2
		 Added reference to data sheet in Introduction section.
		• Updated package length descriptions in Trace Length Requirements section.
		 Added CPT_CLK_SEL_* row in Table 2-11: QDR II+ SRAM Memory Interface Solution Pinout Parameters.
		 Added simulation description in Note in Debugging QDR II+ Designs.
		Chapter 3
		 Added reference to data sheet in Features section.
		Added note in Memory Controller section.
		 Added PRBS_SADDR_ MASK)POS to Table 3-8: Traffic Generator Parameters Set in the example_top Module.
		 Updated rules and package length descriptions in Trace Length Requirements section.
		• Added simulation description in Note in Debugging RLDRAM II and 3 Designs.
		Chapter 4
		Added note in Precharge Policy section.
Continued		 Added PRBS_SADDR_ MASK)POS to Table 4-11: Traffic Generator Parameters Set in the example_top Module.
		• Updated package length descriptions in Trace Length Requirements section.
		Added simulation description in Note in Read Path section.

Date	Version	Revision
		Chapter 1
		Updated book to DQS.
		 Updated Table 1-4: Files in example_design/sim Directory.
		• Updated file description in Simulation Flow Using IES and VCS Script Files section.
		• Added No Buffer description in the System Clock bullet in FPGA Options section.
		 Updated mc_data_offset description in Memory Controller to Calibration Logic Interface Signals table.
		• Added MPR read leveling process in Multi-Purpose Register Read Leveling section.
		Updated Temperature Monitor section.
		 Added tempmon information in Physical Layer Interface (Non-Memory Controller Design) section.
		• Added description in address and control signals in Termination section for DDR3.
		 Added description in address and control signals and updated CKE signal bullet in Termination section for DDR2.
		Added CK description in Trace Lengths section.
		Added new code constraints for DDR3/DDR2 Configuration sections.
04/02/2014	2.0	Added Clocking section.
04/02/2014	2.0	 Updated ocal signals in Table 1-102: DDR2/DDR3 Debug Signals.
		Chapter 2
		 Added new code constraints in Configuration section.
		 Updated Table 2-3: Files in example_design/sim Directory.
		• Updated file description in Simulation Flow Using IES and VCS Script Files section.
		Chapter 3
		Added new code constraints in Configuration section.
		Updated Table 3-3: Files in example_design/sim Directory.
		 Added important note on write and read commands in Interfacing with the Core through the Client Interface section.
		 Updated option for MRS_RD_LATENCY in RLDRAM II Memory Interface Solution Configurable Parameters table.
		• Updated file description in Simulation Flow Using IES and VCS Script Files section.
		Chapter 4
		Added new code constraints in Configuration section.
		 Updated Table 4-4: Files in example_design/sim Directory.
		• Updated file description in Simulation Flow Using IES and VCS Script Files section.

Date	Version	Revision
		Vivado Design Suite release only for MIS v2.0.
		Chapter 1
		Added Out of Context content.
		 Updated Table 1-4: Modules in example_design/sim Directory.
		 Updated <component name="">/user_design section.</component>
		Updated Fig. 1-39: Synthesizable Example Design Block Diagram.
		Added simulator flows.
		Added Bits[39:32] to Table 1-15: Debug Status for the Write Transaction.
		Added Bits[39:32] to Table 1-16: Debug Status for the Read Transaction.
		Added OOC description in Customizing the Core section.
		 Added ILA trigger settings in Vivado Lab Tools section.
		Added note on read latency in Debug section.
		Updated Chipscope triggers to R in Debug section.
		Chapter 2
		Added Out of Context content.
		 Updated Table 2-3: Modules in example_design/sim Directory.
		 Updated <component name="">/user_design section.</component>
		Added OOC description in Customizing the Core section.
		Added simulator flows.
12/18/2013	2.0	 Added ILA trigger settings in Vivado Lab Tools section.
12/10/2015	2.0	Chapter 3
		Added Out of Context content.
		 Updated Table 3-3: Modules in example_design/sim Directory.
		 Updated <component name="">/user_design section.</component>
		• Updated Fig. 3-35: Synthesizable Example Design Block Diagram.
		 Added OOC description in Customizing the Core section.
		Added simulator flows.
		 Added ILA trigger settings in Vivado Lab Tools section.
		• Updated Fig. 3-48 Write Path Block Diagram of the RLDRAM II Interface Solution.
		Added note on read latency in Debug section.
		Chapter 4
		Added Out of Context content.
		Updated Table 4-4: Modules in example_design/sim Directory.
		 Updated <component name="">/user_design section.</component>
		Updated Fig. 4-37: Synthesizable Example Design Block Diagram.
		Added OOC description in Customizing the Core section.
		Added simulator flows.
		Added note on read latency in Debug section.
		Chapter 5
		Added Out of Context content.

Date	Version	Revision
		Vivado Design Suite release only for MIS v2.0.
		• Removed ISE content throughout book and updated screenshots to v2.0.
		Chapter 1
		Updated Memory Part bullet description.
		 Updated Table 1-4 sim.do description and simulation directory.
		Updated Fig. 1-44 7 Series FPGAs MIS.
		Added aresetn in Table 1-20 AXI4 Slave Interface Signals.
		Added Caution note in Single Error and Double Error Reporting section.
		Updated Table 1-77 Memory Interface Commands.
		 Updated and added stage 3 tap in OCLKDELAYED Calibration section.
		 Added #4 table note to Table 1-91 7 Series FPGA Memory Solution Configuration Parameters.
		 Updated description in app_wdf_mask[APP_MASK_WIDTH - 1:0] section.
		Added Memory Address Mapping description in User Interface section.
	2.0	Updated Table 1-106 Debug Signals of Interest for OCLKDELAYED Calibration
		Chapter 2
10/02/2013		 Updated Table 2-3 sim.do description and simulation directory.
		 Updated DIFF_HSTL_I in I/O Standards table.
		Updated reference clock descriptions in Clocking Architecture section.
		 Added #1 table note to Table 2-11 7 Series FPGAs QDR II+ SRAM Memory Interface Solution Configurable Parameters. And updated SIM_BYPASS_INIT_CAL.
		Chapter 3
		• Updated Table 3-3 sim.do description and simulation directory.
		Updated reference clock descriptions in Clocking Architecture section.
		 Added #1 table note to Table 3-13 RLDRAM II Memory Interface Solution Configurable Parameters. And updated SIM_BYPASS_INIT_CAL.
		Chapter 4
		 Updated Table 4-4 sim.do description and simulation directory.
		Updated Fig. 4-37 7 Series FPGAs MIS.
		Updated Table 4-14 User Interface.
		 Added #4 note to Table 4-25 7 Series FPGA Memory Solution Configuration Parameters.
		• Updated description in app_wdf_mask[APP_MASK_WIDTH - 1:0] section.
		Added Memory Address Mapping description in User Interface section.

Date	Version	Revision
		 Vivado Design Suite release only for MIS v2.0. Revision number advanced to 2.0 to align with core version number.
		Chapter 1
		 Updated ChipScope to Vivado logic analyzer, VIO, and ILA.
		• Updated ui_clk and ui_clk_sync_rst descriptions in Table 1-17 User Interface.
		 Updated ui_clk and ui_clk_sync_rst descriptions.
		• Added Ordering Modes in Reordering section and added modes in Table 1-91.
		Updated ECC enable in AXI4 Slave Interface Block section.
		Updated Read Priority (RD_PRI) section.
		 Updated Table 1-19 AXI4 Slave Interface Parameters, C_S_AXI_ADDR_WIDTH value and descriptions.
		Added Write Priority description.
		Updated PHASER_IN DQSFOUND Calibration section.
		Removed Downsizing Option.
		Added DM in DQ descriptions.
		Added Dynamic Calibration and Periodic Read Behavior section.
		Added Vivado Lab Tools section.
		Added AR 54025 for Vivado.
	2.0	 Updated Debugging PHASER_IN DQSFOUND Calibration Failures (dbg_pi_dqsfound_err = 1) section.
06/19/2013		Chapter 2
		Updated ChipScope to Vivado logic analyzer, VIO, and ILA.
		Added Fixed Latency Mode description in Controller Options section.
		Removed qdr_qvld in Table 2-12 Physical Interface Signals.
		• Updated Figure 2-26 Four-Word Burst Length Memory Device Protocol.
		Updated Output Architecture section in Write Path.
		Added Write Calibration section.
		Removed QVLD.
		Updated Table 2-20 Write Init Debug Signal Map.
		• Updated Tables 2-21 and 2-22 Read Stage 1 and Stage 2 Debug Signal Map tables.
		Chapter 3
		Updated ChipScope to Vivado logic analyzer, VIO, and ILA.
		 Removed rld_qvld in Table 3-13 Physical Interface Signals.
		 Removed QVLD and QVLD_MAP in Table 3-16 RLDRAM II Memory Interface Solution Pinout Parameters.
		Removed QVLD.
		Updated descriptions in Manual Pinout Changes section.
		Added new calibration description in Calibration section.
		 Updated Table 3-26 Physical Layer Simple Status Bus Description Defined in the rld_phy_top Module.

Date	Version	Revision
		 Updated Table 3-27 DEBUG_PORT Signal with dbg_rd_stage1_rtr_error[N_DATA_LANES - 1:0] and dbg_rd_stage1_error[N_DATA_LANES - 1:0].
		• Updated Tables 3-31 and 3-32 Read Stage 1 and Stage 2 Debug Signal Map tables.
		• Added Fig. 3-36 Calibration Flow Diagram and Fig. 3-37 Read Level Stage 1.
		 Added description to Data Alignment and Valid Generation section.
		• Updated description and added Figs. 3-38 to 3-43 in Write Calibration section.
		Added Write Calibration Debug Map section.
Continued		Chapter 4
		 Updated ChipScope to Vivado logic analyzer, VIO, and ILA.
		 Updated ui_clk and ui_clk_sync_rst descriptions in Table 4-14 User Interface.
		 Updated ui_clk and ui_clk_sync_rst descriptions.
		• Added Ordering Modes in Reordering section and added modes in Table 4-25.
		Added DM in DQ descriptions.
		 Added Termination description in LPDDR2 Pinout Examples section.
		Chapter 6
		 Added Upgrading the ISE/CORE Generator MIS Core in Vivado section.
		• ISE 14.5 and Vivado Design Suite 2013.1 releases for MIS v1.9 and v1.9a.
		Chapter 1
	1.9	 Added Memory Part frequency in Controller Options section.
		 Added No Buffer option description in FPGA Options section.
		 Added pinout description in Verify Pin Changes and Update Design section.
		 Updated Fig. 1-15 Setting Memory Mode Options.
		Updated Fig. 1-16 FPGA Options.
02/20/2012		• Updated Fig. 1-30 7 Series FPGAs Memory Interface Solution to User's FPGA Logic
03/20/2013		 Added ECC description in AXI4 Slave Interface Block section.
		• Updated Table 1-91 7 Series FPGA Memory Solution Configuration Parameters.
		 Updated Table 1-92 Embedded 7 Series FPGAs Memory Solution Configuration Parameters.
		 Updated Table 1-93 DDR2/DDR3 SDRAM Memory Interface Solution Pinout Parameters.
		• Added description in Verifying the Simulation Using the Example Design section.
		Reworked Design Guidelines DDR3 SDRAM section.
		Added new debug section.

11

Date	Version	Revision
		Chapter 2
		 Added No Buffer option description in FPGA Options section.
		Added pinout description in Verify Pin Changes and Update Design section.
		Updated Fig. 2-15 FPGA Options.
		 Updated REFCLK_FREQ and RST_ACT_LOW in Table 2-13 7 Series FPGAs QDR II+ SRAM Memory Interface Solution Configurable Parameters
		• Updated Table 2-14 QDR II+ SRAM Memory Interface Solution Pinout Parameters.
		• Added description in Verifying the Simulation Using the Example Design section.
		Chapter 3
		 Added No Buffer option description in FPGA Options section.
Continued		Updated Fig. 3-14 FPGA Options.
		 Added Verify Pin Changes and Update Design section.
		 Updated nCK_PER_CLK in Table 3-10 Traffic Generator Parameters Set in the example_top Module
		• Updated Table 3-15 RLDRAM II Memory Interface Solution Configurable Parameters.
		• Updated Table 3-16 RLDRAM II Memory Interface Solution Pinout Parameters.
		• Added description in Verifying the Simulation Using the Example Design section.
		Chapter 4
		Added new LPDDR2 SDRAM section.
		Chapter 6
		Updated to new GUIs.

Date	Version	Revision
		ISE 14.4 and Vivado 2012.4 Design Suite releases for MIS v1.8.
		Chapter 1
		 Updated Table 1-2 to 1-9 with new table note and v name.
		Updated Fig. 1-16 FPGA Options GUI.
		Added XADC Instantiation bullet.
		 Added description to sim.do in Table 1-4.
		 Updated Table 1-11 DATA_PATTERN to 0xA.
		 Updated Table 1-13 vio_data_mode_value[3:0] to 0xA.
		 Updated description in Setting Up for Simulation.
		Added description to EDK Clocking.
		 Updated ui_clk and ui_clk_sync_rst in Table 1-17.
		Added description in Internal (FPGA) Logic Clock.
		 Added TEMP_MON_CONTROL to Table 1-91.
		 Added DATA_IO_IDLE_PWRDWN and CA_MIRROR to Table 1-92.
		• Added HP bank description in Bank and Pin Selection Guides for DDR3 Designs.
		 Added DDR3 SDRAM interface description to Configuration.
		• Added HP bank description in Bank and Pin Selection Guides for DDR2 Designs.
		 Added DDR2 SDRAM interface description to Configuration.
12/18/2012	1.8	Chapter 2
		• Updated Table 2-2 and 2-7 to 2-8 with new table note and.v name.
		 Added description to sim.do in Table 2-3.
		 Updated descriptions and added Fig 2-26 to Clocking Architecture.
		 Updated description in Write Path Output Architecture.
		 Updated descriptions in Trace Length Requirements.
		Added QDRII description in Configuration.
		 Added description to Verifying the Simulation Using the Example Design.
		 Added Margin Check and Automated Margin Check sections.
		Chapter 3
		 Updated Table 3-2 and 3-6 to 3-8 with new table note and v name.
		Added description to sim.do in Table 3-3.
		 Updated Table 3-10 DATA_PATTERN to 0xA.
		 Updated descriptions and added Fig 3-30 to Clocking Architecture.
		 Updated descriptions in Trace Length Requirements.
		Added descriptions in RLDRAM II.
		Added RLDRAM II description in Configuration.
		 Added description to Verifying the Simulation Using the Example Design.
		Added Debug section.

Date	Version	Revision
		• MIS 1.7 release. Updated ISE Design Suite version to 14.3.
10/16/2012		 Chapter 1: Added AXI4-Lite Slave Control/Status Register Interface Block section. Updated figures (1-32 and 1-37) and added PRBS and Temperature Monitor sections. Added CLKIN_PERIOD to USE_DM_PORT parameters in Table 1-37. Updated Table 1-38 PHY0_BITLANES description.
		Chapter 2: Added CLKIN_PERIOD to DIVCLK_DIVIDE parameters in Table 2-13.
	1.7	 Chapter 3: Added RLDRAM 3 content throughout. Updated/added figures (3-10, 3-13, 3-23 to 3-32, 3-36 to 3-37, 3-40 to 3-41, 3-45 to 3-47, and 3-50). Added mem_ck_lock_complete parameter in Table 3-11. Added CLKOUT0_PHASE parameter in Table 3-15. Updated descriptions in Table 3-16 and added Table 3-28. Updated Table 3-29 user_cmd signal. Updated Table 3-31 and 3-34 descriptions. Added Debugging Write Calibration section.
		Chapter 4: Added System Clock Sharing section
		 Chapter 5: Updated figures (5-15, 5-17 to 5-20), updated steps in Getting Started with Vivado – MIS IP Generation
07/25/2012	1.6	 MIS 1.6 release. Updated ISE Design Suite version to 14.2. Updated GUI screen captures throughout document.
		 Chapter 1: Added No Buffer, Use System Clock, and Sample Data Depth in FPGA Options, page 36. Changed the parameters nCK_PER_CLK, tZQI, SYSCLK_TYPE, REFCLK_TYPE, and APP_DATA_WIDTH. Added bulleted item about multiple CK outputs to Bank and Pin Selection Guides for DDR3 Designs, page 186. Updated Trace Lengths, page 191 and Termination, page 200.
		 Chapter 2: Added No Buffer, Use System Clock, and Sample Data Depth in FPGA Options, page 282. Changed the parameters SYSCLK_TYPE and REFCLK_TYPE.
		 Chapter 3: Added No Buffer, Use System Clock, and Sample Data Depth in FPGA Options, page 282. Changed the parameters SYSCLK_TYPE and REFCLK_TYPE.
		Chapter 6: Added new chapter on migrating to Vivado Design Suite.
06/13/2012	1.5	Revised the recommended total electrical delay on CK/CK# relative to DQS/DQS# on page 191.

Date	Version	Revision
04/24/2012	1.4	 MIS 1.5 release. Updated ISE Design Suite version to 14.1. Updated GUI screen captures throughout document. Replaced IODELAYCTRL with IDELAYCTRL throughout.
		 Chapter 1: Added I/O Power Reduction option to FPGA Options. Revised I/O standards for sys_rst option in Bank Selection. Added Creating ISE Project Navigator Flow for MIS Example Design, Power-Saving Features, Multi-Purpose Register Read Leveling, OCLKDELAYED Calibration, Upsizing, and External Vref sections. Changed bits [16:15] to from Rank Count to Reserved in the PHY Control word. Revised maximum setting of NUM_DQ_PINS in Table 1-11. Revised Figure 1-55 flowchart. Removed RankSel[1:0] from Figure 1-56 and Figure 1-58. Added mc_odt and mc_cke to Table 1-87. Replaced AXI Addressing. Updated REFCLK_FREQ, RANK_WIDTH, and WRLVL in Table 1-92. Added DATA_IO_PRIM_TYPE to Table 1-93. Added bullet about DQS pins to Bank and Pin Selection Guides for DDR3 Designs. Changed DIFF_SSTL_15 to DIFF_SSTL18_II and SSTL15 to SSTL18_II.
		 Chapter 2: Changed DIFF_SSTL_15 to DIFF_HSTL_I and SSTL15 to HSTL_I. Revised I/O standards for sys_rst option in System Pins Selection. Revised the PHY_BITLANE parameters in Table 2-11. Added System Clock, PLL Location, and Constraints and Configuration sections.
		 Chapter 3: Changed DIFF_SSTL_15 to DIFF_HSTL_I and SSTL15 to HSTL_I. to Revised I/O standards for sys_rst option in System Pins Selection. Added the Write Calibration, System Clock, PLL Location, and Constraints, and Configuration sections. Revised the PHY_BITLANE parameters in Table 3-15. In Table 3-28, added dbg_wrcal_sel_stg[1:0], dbg_wrcal[63:0], dbg_wrcal_done[2:0], dbg_wrcal_po_first_edge[5:0], dbg_wrcal_po_second_edge[5:0], and dbg_wrcal_po_final[5:0].
01/18/2012	1.3	• MIS 1.4 release. Updated ISE Design Suite version to 13.4. Updated GUI screen captures throughout document.
		 Chapter 1: Added support for DDR2 SDRAM. Added option 3 to MIS Output Options. Added EDK Clocking. Added Replaced Figure 1-41 and Figure 1-69.
		 Chapter 2: Removed Input Clock Period option from Controller Options. Added Memory Options. Added Reference Clock option to FPGA Options. Updated Debug Signals.
		 Chapter 3: Removed Input Clock Period option from Controller Options. Added Input Clock Period option to Memory Options. Added Reference Clock option to FPGA Options. Added Debugging RLDRAM II and RLDRAM 3 Designs.

Date	Version	Revision
		• MIS 1.3 release. Updated ISE Design Suite version to 13.3.
10/19/2011	1.2	 Chapter 1: Added step 2 to MIS Output Options, page 26. Added note about optional use of the memory controller to Controller Options, page 30. Added arbitration scheme to AXI Parameter Options, page 33. Added description of DCI Cascade under Figure 1-23. Updated text about devices with SSI technology and SLRs on page 41 and page 187. Changed error to tg_compare_error on page 42. Replaced Table 1-8. Added qdr_wr_cmd_o, vio_fixed_instr_value, vio_fixed_bl_value, vio_pause_traffic, and vio_data_mask_gen signals to Table 1-13. Added signals to the User Interface in Figure 1-49 and Figure 1-51. Added app_sr_req, app_sr_active, app_ref_req, app_ref_ack, app_zq_req, apg_zq_ack signals to Table 1-17. Added app_wdf_rdy, app_ref_req, app_ref_ack, app_zq_req, app_zq_ack. Read Priority with Starve Limit (RD_PRI_REG_STARVE_LIMIT), Native Interface Maintenance Command Signals, User Refresh, and User ZQ sections. Added C_RD_WR_ARB_ALGORITHM to Table 1-19. Updated fields in Table 1-84. changed Hindex (Rank) to Rank Count, and added CAS slot field. Updated AXI Addressing and Physical Layer Interface (Non-Memory Controller Design). Added Figure 1-75 through Figure 1-77 in Write Path. In Table 1-92, removed DISABLED option from RTT_NOM for DDR3_SDRAM, changed RTT_NOM to RTT_WR in RTT_WR, updated SIM_BYPASS_INIT_CAL, and updated table note 2. In Table 1-93, updated tZQI and added USER_REFRESH. Added Irolate 1-94. In Configuration, updated constraints example and removed paragraph about SCL and SDA. Chapter 2: Added step 2 to MIS Output Options, page 282. Added I/O Planning Options, page 285. In System Pins Selection, page 282. Added I/O Planning Options, page 285. In System Pins Selection, page 282. Added I/O Planning Options, page 285. In System Pins Selection, page 282. Added I/O Planning Options, page 285. IN System Pins Selection, page 282. Changed cal_done signal to init_callb_complete and error signal to tg_compare_error. Replaced Table 2-2. Changed file names in Table 2-5. Updated signal names in F

Date	Version	Revision
Date 06/22/2011	Version 1.1	 Revision MIS 1.2 release. Updated ISE Design Suite version to 13.2. Updated GUI screen captures throughout document. Chapter 1: Added Verify Pin Changes and Update Design, Simulating the Example Design (for Designs with the AXI4 Interface), Error Correcting Code, and DDR3 Pinout Examples sections. Added paragraph about SLRs to Pin Compatible FPGAs, page 27. Added Input Clock Period and PHY to Controller bullets in Controller Options, page 30. To Setting DDR3 Memory Parameter Option, page 35, indicated that DDR3 SDRAM supports burst lengths of 8. Added Internal Termination for High Range Banks option under Figure 1-23. Added bulleted item about Pin/Bank selection mode on page 39. Added notes about chip select and data mask options on page 74. Added app_correct_en_i to Table 1-17. Added three command types to Command Path, page 134. Added phy_mc_ctl_full, phy_mc_cmd_full, and phy_mc_data_full signals to Table 1-87. Added paragraph about ElEOs at the ond of Physical Layor Interface
		Table 1-87. Added paragraph about FIFOs at the end of Physical Layer Interface (Non-Memory Controller Design), page 168. Updated the description and options for DATA_BUF_ADDR_WIDTH in Table 1-93. Added bullet about SLRs to Bank and Pin Selection Guides for DDR3 Designs, page 186. Added LVCMOS15 and DIFF_SSTL15 I/O standards to Configuration, page 194. Changed resistor values in Figure 1-88, Figure 1-89, and Figure 1-90. Changed resistor values in FPGA DCI or IN_TERM column in Table 1-95.
		• Chapter 2: Added the Verify Pin Changes and Update Design and Output Path sections. Revised latency mode description on page 280. Added bulleted item about Pin/Bank selection mode on page 285. Added Internal Termination for High Range Banks option under Figure 2-22. Updated Implementation Details, page 324.
		Chapter 3: Added new chapter on RLDRAM II.
03/01/2011	1.0	Initial Xilinx release.

Table of Contents

Chapter 1: DDR3 and DDR2 SDRAM Memory Interface Solution

Introduction	20
Features	20
Using MIG in the Vivado Design Suite	21
Synplify Pro Black Box Testing	89
Core Architecture	90
Designing with the Core	62
Interfacing to the Core	63
Customizing the Core	80
Design Guidelines	92
Debugging DDR3/DDR2 Designs 22	28

Chapter 2: QDR II+ Memory Interface Solution

Introduction	274
Using MIG in the Vivado Design Suite	275
Core Architecture	317
Customizing the Core	337
Design Guidelines	342
Debugging QDR II+ SRAM Designs	351

Chapter 3: RLDRAM II and RLDRAM 3 Memory Interface Solutions

Introduction	379
Using MIG in the Vivado Design Suite	380
Core Architecture	424
Customizing the Core	458
Design Guidelines	466
Debugging RLDRAM II and RLDRAM 3 Designs	481

Chapter 4: LPDDR2 SDRAM Memory Interface Solution

Introduction	516
Features	516
Using MIG in the Vivado Design Suite	517
Core Architecture	575

18

Designing with the Core	611
Interfacing to the Core	611
Customizing the Core	621
Design Guidelines	631

Chapter 5: Multicontroller Design

Introduction	644
Using MIG in the Vivado Design Suite	645

Chapter 6: Upgrading the ISE/CORE Generator MIG Core in Vivado

Appendix A: General Memory Routing Guidelines

Appendix B: Additional Resources and Legal Notices

Xilinx Resources	677
Documentation Navigator and Design Hubs	677
References	678
Please Read: Important Legal Notices	679

Chapter 1

DDR3 and DDR2 SDRAM Memory Interface Solution

Introduction

The Xilinx[®] 7 series FPGAs Memory Interface Solutions (MIS) core is a combined pre-engineered controller and physical layer (PHY) for interfacing 7 series FPGA user designs and AMBA[®] Advanced eXtensible Interface (AXI4) slave interfaces to DDR3 and DDR2 SDRAM devices. This user guide provides information about using, customizing, and simulating a LogiCORE[™] IP DDR3 or DDR2 SDRAM interface core for 7 series FPGAs. The user guide describes the core architecture and provides details on customizing and interfacing to the core.

IMPORTANT: Memory Interface Solutions v4.1 only supports the Vivado[®] Design Suite. The ISE[®] Design Suite is not supported in this version.

Features

Enhancements to the Xilinx 7 series FPGA memory interface solutions from earlier memory interface solution device families include:

- Higher performance.
- New hardware blocks used in the physical layer: PHASER_IN and PHASER_OUT, PHY control block, and I/O FIFOs (see Core Architecture, page 90).
- Pinout rules changed due to the hardware blocks (see Design Guidelines, page 192).
- Controller and user interface operate at 1/4 the memory clock frequency.

For a full list of supported features, see the *Zynq-7000 AP SoC and 7 Series FPGAs Memory Interface Solutions Data Sheet* (DS176) [Ref 1].

Using MIG in the Vivado Design Suite

This section provides the steps to generate the Memory Interface Generator (MIG) IP core using the Vivado Design Suite and run implementation.

1. Start the Vivado Design Suite (see Figure 1-1).

Figure 1-1: Vivado Design Suite

2. To create a new project, click the **Create New Project** option shown in Figure 1-1 to open the page as shown in Figure 1-2.

🝌 New Project	
	Create a New Vivado Project This wizard will guide you through the creation of a new project To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
VIVADO.	To continue, click Next.
	< Back Next > Einish Cancel

Figure 1-2: Create a New Vivado Tool Project

3. Click **Next** to proceed to the **Project Name** page (Figure 1-3). Enter the **Project Name** and **Project Location**. Based on the details provided, the project is saved in the directory.

📥 New Proje	ct 🛛 🔀
Project Name Enter a nam	e ne for your project and specify a directory where the project data files will be stored
Project name:	project_1
Project location:	C:/Vivado
🔽 Create Proje	ect Subdirectory
Project will be cr	reated at: C:/Vivado/project_1
	< <u>Back</u>

Figure 1-3: Project Name

4. Click **Next** to proceed to the **Project Type** page (Figure 1-4). Select the **Project Type** as **RTL Project** because MIG deliverables are RTL files.

\lambda New Project	×
Project Type Specify the type of project to create.	>
 <u>RTL Project</u> You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. <u>Do</u> not specify sources at this time <u>Post-synthesis Project</u> You will be able to add sources, view device resources, run design analysis, planning and implementation. <u>Do</u> not specify sources at this time <u>Ifo Planning Project</u> Do not specify design sources. You will be able to view part/package resources. <u>Imported Project</u> Create a Vivado project from a Synplify, XST or ISE Project File. 	
< <u>B</u> ack <u>M</u> ext > Einish Cancel	כ

Figure 1-4: Project Type

5. Click **Next** to proceed to the **Add Sources** page (Figure 1-5). RTL files can be added to the project in this page. If the project was not created earlier, proceed to the next page.

🝌 New Project	
Add Sources Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your project. You can also add and create sources later.	2
Id Name Library HDL Source for Location Id Name Library HDL Source for Location Add Files Add Directories Create File Scan and Add RTL Include Files into Project Copy Sources into Project Copy Sources from Subdirectories Target Language: Verilog	× ×
< <u>Back</u> <u>Next</u> > Einish Canc	:el

Figure 1-5: Add Sources

6. Click **Next** to open the **Add Existing IP (Optional)** page (Figure 1-6). If the IP is already created, the XCI file generated by the IP can be added to the project and the previous created IP files are automatically added to the project. If the IP was not created earlier, proceed to the next page.

A New Project	
Add Existing IP (optional) Specify an existing configurable IP file to add to your project.	2
Id IP Name IP File Add Files Copy Sources into Project	X
< Back Next > Einish Co	incel

Figure 1-6: Add Existing IP (Optional)

7. Click **Next** to open the **Add Constraints (Optional)** page (Figure 1-7). If the constraints file exists in the repository, it can be added to the project. Proceed to the next page if the constraints file does not exist.

New Project	X
Add Constraints (optional) Specify or create constraint files for physical and timing constraints.	2
Constraint File Location Add Files Create File	X
< <u>Back</u>	Cancel

Figure 1-7: Add Constraints (Optional)

8. Click **Next** to proceed to the **Default Part** page (Figure 1-8) where the device that needs to be targeted can be selected. The **Default Part** page appears as shown in Figure 1-8.

elault Part								
Choose a default ?	(ilinx part or boar)	d for your proje	t. This can be d	hanged later.				
Specify Filter								
Parts F	Product category	All		-	Package A			*
Boards	Family	All		✓ 5(peed grade A			*
Boards	Sub-Family	All		- 1	Femp grade A			-
			(
			l	Reset All Filt	ers			
earch: Q-		1						
	I/O Die	Ausilabla	1117	N	Plack		Ch	DCT
Device	Count	IOBs	Elements	FlipFlops	RAMs	DSPs	Transceivers	Buses
					1000	2000		4
xc7vx485tffg1157-	2L 1,157	600	303600	607200	1050	2000	20	4
xc7vx485tffg1157 xc7vx485tffg1157	2L 1,157	600 600	303600	607200	1030	2800	20	4
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158	2L 1,157 1 1,157 3 1,158	600 600 350	303600 303600 303600	607200 607200 607200	1030	2800	20 20 48	4 4 4
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158	2L 1,157 1 1,157 3 1,158 2 1,158	600 600 350 350	303600 303600 303600 303600	607200 607200 607200 607200	1030 1030 1030 1030	2800 2800 2800 2800	20 20 48 48	4 4 4 4
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158	2L 1,157 1 1,157 3 1,158 -2 1,158 -2L 1,158	600 600 350 350 350	303600 303600 303600 303600 303600	607200 607200 607200 607200 607200	1030 1030 1030 1030 1030	2800 2800 2800 2800 2800	20 20 48 48 48 48	4 4 4 4 4
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158	2L 1,157 1 1,157 -3 1,158 -2 1,158 -2L 1,158 -1 1,158	600 600 350 350 350 350 350	303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48	4 4 4 4 4 4
 xc7vx485tffg1157- xc7vx485tffg1157- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- 	2L 1,157 1 1,157 3 1,158 2 1,158 2L 1,158 4L 1,158 4L 1,158 4L 1,158 4L 1,158 4L 1,158 4L 1,158	600 600 350 350 350 350 350 350 700	303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 48 28	4 4 4 4 4 4 4 4
> xc7vx485tffg1157- xc7vx485tffg1157- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1158- xc7vx485tffg1761- xc7vx485tffg1761-	2L 1,157 1 1,157 3 1,158 2 1,158 2L 1,158 2L 1,158 3L 1,158 3L 1,158 3L 1,158 3L 1,158 3L 1,761 3L 1,761	600 600 350 350 350 350 350 700 700	303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 28 28 28	4 4 4 4 4 4 4 4 4
<pre>> xc7vx485tfg1157 xc7vx485tfg1157 xc7vx485tfg1158 > xc7vx485tfg1158 > xc7vx485tfg1158 > xc7vx485tfg1158 > xc7vx485tfg1158 > xc7vx485tfg1761 > xc7vx485tfg1761 > xc7vx485tfg1761</pre>	2L 1,157 1 1,157 3 1,158 2 1,158 2L 1,158 1 1,158 3 1,761 2 1,761 2 1,761	600 600 350 350 350 350 350 700 700 700 700	303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 28 28 28 28 28 28	4 4 4 4 4 4 4 4 4 4 4
<pre>> xc7vx485tffg1157 xc7vx485tffg1157 > xc7vx485tffg1158 > xc7vx485tffg1158 > xc7vx485tffg1768 > xc7vx485tffg1761 > xc7vx485tffg1761 > xc7vx485tffg1761 > xc7vx485tffg1761</pre>	2L 1,157 1 1,157 3 1,158 2L 1,158 2L 1,158 3 1,761 2L 1,761 2L 1,761 3L 1,761	600 600 350 350 350 350 700 700 700 700 700	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 28 28 28 28 28 28 28	4 4 4 4 4 4 4 4 4 4 4 4
<pre>> xc7vx485tffg1157; xc7vx485tffg1157 > xc7vx485tffg1158 > xc7vx485tffg1158 > xc7vx485tffg1768; > xc7vx485tffg1768; > xc7vx485tffg1761; > xc7vx485tffg1761; > xc7vx485tffg1761;</pre>	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -1 1,158 -3 1,761 -2L 1,761 -2L 1,761 -3L 1,761 -3L 1,927	600 350 350 350 350 700 700 700 700 700 600	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 28 28 28 28 28 28 28 56	4 4 4 4 4 4 4 4 4 4 4 4 4 4
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761	.2L 1,157 .1 1,157 .3 1,158 .2 1,158 .2L 1,158 .1 1,158 .3 1,761 .2L 1,761 .2L 1,761 .3 1,927	600 600 350 350 350 700 700 700 700 700 600	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 28 28 28 28 28 28 28 28 28 56	4 4 4 4 4 4 4 4 4 4 4 4 4

Figure 1-8: Default Part (Default Window)

Select the target **Family**, **Package**, and **Speed Grade**. The valid devices are displayed in the same page, and the device can be selected based on the targeted device (Figure 1-9).

Choose a default Xiinx part or board for your project. This can be changed later.	New Projec efault Part	t							
Specify Filter Produgt category All Parts Eamily Kintex-7 Sygb-Family All Remaining Temp grade All Remai	Choose a def	ⁱ ault Xilinx part or boar	d for your projec	ct. This can be c	hanged later.				
Image: Sub-Family All Remaining Image: Sub-Family Sub-Fami	Specify F	Filter Product category				Package	FEG900		-
Boards Sub-Family All Remaining I emp grade All Remaining I Reset All Filters Reset All Filters Reset All Filters Reset All Filters PCI vevice I/O Pin Count Available LUT IOBs FlipFlops Block RAMs DSPs Gb PCI xxc7k3255ffg900-3 900 500 203800 407600 445 940 16 1 > xc7k410tffg900-3 900 500 254200 508400 795 1540 16 1	Parts	Family	Kintex-7		* Sc	beed grade	-3		*
Image: Control of the second	Boarus	Sub-Family	All Remaining		- I	emp grade	All Remaining		-
earch: Q+ Device I/O Pin Available LUT Elements FlipFlops Block DSPs Gb Transceivers Buses xc7k325tffg900-3 900 500 203800 407600 445 840 16 1 > xc7k410tffg900-3 900 500 254200 508400 795 1540 16 1				(Reset All Filte	ers			
Count IOBs Elements F. H. RAMs Transceivers Buses xc7k325tffg900-3 900 500 203800 407600 445 840 16 1 xc7k410tffg900-3 900 500 254200 508400 795 1540 16 1	arch: Q+	I/O Pin	Available	LUT	FlipFlops	Block	DSPs	Gb	PCI
Xt.rszszingstor-s 500 500 203600 F07600 F13 670 F0 F1 xc.7k410tffg900-3 900 500 254200 508400 795 1540 16 1		Count	IOBs	Elements	407600	RAMS	940	Transceivers	Buses
	xc7k410tffa90	00-3 900	500	254200	508400	795	1540	16	1
		- Tur							2

Figure 1-9: Default Part (Customized Window)

Apart from selecting the parts by using **Parts** option, parts can be selected by choosing the **Boards** option, which brings up the evaluation boards supported by Xilinx (Figure 1-10). With this option, design can be targeted for the various evaluation boards. If the XCI file of an existing IP was selected in an earlier step, the same part should be selected here.

📥 New Project							
Default Part Choose a default Xilinx part or boar	d for your project. This c	an be chang	ed later.				7
Specify Filter	Eami Backag Spee <u>d</u> grad	ly All le All le All Re:	set All Filters	*]		
Search: Q-							
Board	Part	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs
Kintex-7 KC705 Evaluation Platform	🔷 xc7k325tffg900-2	900	500	203800	407600	445	840
Virtex-7 VC707 Evaluation Platform	xc7vx485tffg1761-2	1,761	200	303600 53200	607200	1030	2800
			< <u>B</u> a	ck Next	> Eini:	sh 🚺	Cancel

Figure 1-10: Default Part Boards Option

9. Click **Next** to open the **New Project Summary** page (Figure 1-11). This includes the summary of selected project details.

Figure 1-11: New Project Summary

10. Click **Finish** to complete the project creation.

- 11. Click **IP Catalog** on the **Project Manager** window to open the IP catalog window. The Vivado IP catalog window appears on the right side panel (see Figure 1-12, highlighted in a red circle).
- 12. The MIG tool exists in the **Memories & Storage Elements > Memory Interface Generators** section of the IP catalog window (Figure 1-12) or you can search from the Search tool bar for the string "MIG."

If the Edit Row Tools Work Local Row Local Row Hole	🝌 project_22 - [C:/Users/avdhesh,	esh/project_22/project_22.xpr] - Vivado 2013.3_U83.0	_ 8 ×
Project Manager project 22 Pr	File Edit Flow Tools Window I	الا المراجع الم	Search commands
Protection Point Nursignar Protect Nanager Point Setting Add Sources Point Setting	🯄 🚵 📾 💵 🛅 🌇 🗙 🗞	😓 🕨 📩 🕼 🗞 🗶 🕼 🖂 Default Layout. 🚽 🖉 🗮 🖹 😜	Ready
Succes I Project Nanager I Project Starmay: I Project Starmay: </th <th>Flow Navigator</th> <th>Project Manager - project_22</th> <th>×</th>	Flow Navigator	Project Manager - project_22	×
Project Manager Project Manager Project Manager Project Manager Project Setting Project Setting Project Setting Project Manager P	🔍 🛣 🖨	Sources _ D L X Deroject Summary X D Project Summary X	□ Ŀ ×
Project Manager		- Q 🛣 🛱 🖬 🛃 👘 🛃 👘 👘	
	4 Project Manager	The Design Sources	
Add Sources Add Soure	Project Settings	e Constraints and Constraints	
P Celebry der P Celebry P Celebry P Celebry P Celebry P Celebry P Celebry P Derbegrater P Derberbegra	Add Sources	Construction Sources	
P Integrator Create Biol, Design Open Biols desig	🖵 IP Catalog	😧 🖶 🗠 Communication & Networking	
Constraints Constrain	4 IB Integrator		
Construction C	Create Plack Design	Concerning The C	
Constructions Constru	Create Block Design	🛒 🔁 🗁 FPGA Features and Design	
Central Block Desyn Central Block Block Centra Block Block Central Block Block Central Block Block Ce	Open Block Design	🔉 🕀 🗁 Math Functions	
Sindation Sindation Settings Proprint Sindating Settings Proprint Sindating S	Generate block Design	C C C C C C C C C C C C C C C C	viliov com/in
Sundation Settings Sundation Settings Sundation Settings Sundation Sundatio	 Simulation 	Hierarchy Libraris Comple Order	. Antoreoning
Run Smulation Run Smu	Simulation Settings	👗 Sources 🔮 Templates Memory Interface Generators	
RTL Analysis Const Elaborated Design Ref Analysis Const Elaborated Design Synthesis Const Status	(III) Run Simulation	IP Properties _ C X III C Annoy Interface Generator (MIG 7 Series) 2.0 AX14 Production Included Dr./Minx/ub.	xilinx.com:ip
A RT. Analysis Bar Constraints Setting Bar Seting Bar Setting Bar Setting Bar Seting Bar Seting	4	← → ¹ / ₁ ≥ Standard Bus Interfaces	~
Constraints Constrain	 RTL Analysis 	🖟 Memory Interface Generator (MIG 7 Series)	
Synthesis	Open Elaborated Design	Version: 2.0 Details	
Synthesis Settings Run Synthesis Part Status: Enduction Part Status: Part Part Status: Part Part Status: Part Part Status: Part Part Part Part Part Part Part Part	4. Carthada	Torrefore: AUT4 Memory Interface Generator (MIG 7 Series)	<u> </u>
Constraints Sectory C	Synciesis Orethonia Cathlena	Pert status: Production 2.0 (Rev. 1)	
Kun Synthesis Kun Synthesin Kun Synthesin Kun Synthesin Kun Synthesin Kun Syn	Synchesis Seconds	License: Included Interfaces: AXI4	
Constraints Constrain	Vin Synthesis	Vendor: Xilinx, Inc Description: This Memory Interface Generator is a simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement	nt constraints that will help
Implementation Design Runs Part Constraints Strategy Status Progress Progres Progress Progres Progress Pro	Open Synthesized Design	Plibrary: lp you design your application. Kintex-7 supports DDR3 SDRAM, DPDR2 SDRAM, LPDR2 SDRAM, DDR2	supports DDR3 SDRAM,
Operation Settings Despinent/Atom Settings Despinent/Atom Settings Strategy Stat Elapsed Filed Routes W16 TNS W15 TNS TNS W16	 Implementation 		
Prox. Implementation Name Part Constraints Strategy Status Progress Statut Elapsed Failed Routes WHS THS	R Implementation Settings	Design Runs	- 🗆 🖻 ×
>	Run Implementation	Name Part Constraints Strategy Status Progress Start Elapsed Faled Routes WNS	TNS WHS THS TPWS
ucTL/22Etita000.2 caaster 1 Ucada Implementation Data de 2012) Mat dante 1	Open Implemented Design	n 🙀 🖻 🗢 synth_1 xr7/325kffg900-2 constrs_1 Vivado Synthesis Defaults (Vivado Synthesis 2013) Not started 0%	
The interval interval in the interval interval in the interval inte		imp_1 xc?K3252tfg900-2 constrs_1 Wvado Implementation Defaults (Wvado Implementation 2013) Not started 0%	
A Program and Debug	 Program and Debug 		
🚯 Bitstream Settings	🔞 Bitstream Settings		
🚵 Generate Bitstream	🚵 Generate Bitstream		
P Popen Hardware Manager	Open Hardware Manager		
Td Console 🖉 Messages 🔍 Log 🔔 Reports 🕼 Cesign Runs		🚆 Td Console 🗋 Messages 🗔 log 🚡 Reports 🖒 Design Runs	

Figure 1-12: IP Catalog Window – Memory Interface Generator

13. Select MIG 7 Series to open the MIG tool (Figure 1-13).

	Memory Interface Generator The Memory Interface Generator (MIG customized Verilog or VHDL RTL sour for implementation and simulation.) creates memory controllers for Xilinx FPGAs. MIG creates complete ce code, pin-out and design constraints for the FPGA selected, and script files
	CORE Generator Options This GUI includes all configurable opti Please note that some of the options s controller. It is very important that the below.	ons along with explanations to aid in generation of the required controller. selected in the CORE Generator Project Options will be used in generation of the correct CORE Generator Project Options are selected. These options are listed
	Selected CORE Generator Project Opt	ions:
Memory	FPGA Family	Kintex-7
wentory	FPGA Part	xc7k325t-ffg900
	Speed Grade	-2
Interface	Synthesis Tool	ISE
	Design Entry	VERILOG
Generator	If any of these options are incom Options, and restart MIG. This ve not tested with other ISE version	rect, please click on "Cancel", change the CORE Generator Project rrsion of MIG is guaranteed to work with ISE 14.3 and Vivado 2012.3, is or Vivado versions.
XILINX		

Figure 1-13: 7 Series FPGAs Memory Interface Generator FPGA Front Page

14. Click **Next** to display the **Output Options** page.

Customizing and Generating the Core

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects, defining IP or managed IP projects, and creating block designs.

MIG Output Options

- 1. Select the **Create Design** to create a new Memory Controller design. Enter a component name in the **Component Name** field (Figure 1-14).
- 2. Choose the number of controllers to be generated. This option determines the replication of further pages.
- 3. DDR2 and DDR3 SDRAM designs support the memory-mapped AXI4 interface. The AXI4 interface is implemented in Verilog only. If an AXI4 interface is required, select the language as "Verilog" in the Vivado Design Suite before invoking the MIG tool. If the AXI4 interface is not selected, the user interface (UI) is the primary interface.

🕻 Xilinx Memory Interface Generator	
Xilinx Memory Interface Generator REFERENCE DESIGN []] Memory Interface Generator	MIG Output Options Create Design Select this option to generate a memory controller. Generating a memory controller will create RTL, design constraints (UCF), implementation and simulation files. Verify Pin Changes and Update Design Select ting to be feature verifies the modified UCF for a design already generated through MIG. This option will allow you to change the pin out and validate it instantly. It updates the input UCF file to be compatible with the current version of MIG. While updating the UCF it preserves the pin outs of the input UCF. This option will also generate the new design with the Component Name you selected in this page. Component Name Rease specify the component name for the memory interface. The design directories will be generated memory interface. The design directories will be generated memory interface. Note that the Component Name will be prepended to all of the RTL files. Component Name Rease specify the controllers with a combination of DDR3 SDRAM, DDR2 SDRAM, QDR11+ SRAM or RLDRAM II can be generated. The number of controllers with a combination of DDR3 SDRAM, DDR2 SDRAM, ODR1+ SRAM or RLDRAM II can be generated. The number of information Number of Controllers 1
User Guide Version Info	< Back Next> Cancel

UG586_c1_09_120311

Figure 1-14: **MIG Output Options**

MIG outputs are generated with the folder name <component name>.

IMPORTANT: Only alphanumeric characters can be used for <component name>. Special characters cannot be used. This name should always start with an alphabetical character and can end with an alphanumeric character.

When invoked from Xilinx Platform Studio (XPS), the component name is corrected to be the IP instance name from XPS.

4. Click Next to display the Pin Compatible FPGAs page.

Pin Compatible FPGAs

The **Pin Compatible FPGAs** page lists FPGAs in the selected family having the same package. If the generated pinout from the MIG tool needs to be compatible with any of these other FPGAs, this option should be used to select the FPGAs with which the pinout has to be compatible (Figure 1-15).

Xilinx 7 series devices using stacked silicon interconnect (SSI) technology have super logic regions (SLRs). Memory interfaces cannot span across SLRs. If the device selected or a compatible device that is selected has SLRs, the MIG tool ensures that the interface does not cross SLR boundaries.

🍕 Xilinx Memory Interface Generato		
REFERENCE DESIGN 🖽	in Compatible FPGAs in Compatible FPGAs include all devices with the same package and speed grade as the target device. Different FPGA devices with the same package do not vave the same bonded pins. By selecting Pin Compatible FPGAs, MIG will only select pins that are common between the target device and all selected devices se the default UCF in the par folder for the target part. If you change the target part, use the appropriate UCF in the compatible_ucf folder. If you do no choose a Pin Compatible FPGA now and need to use a different FPGA later, the generated UCF may not work for the new device and a poard spin may be required. A device is considered compatible only if the package and speed grade matches to the target part. MIG only ensures that UIG generated pin out is compatible among the selected compatible FPGA devices. Unselected devices will not be considered for compatibility during the pin allocation process. Slank list indicates that there are no compatible parts exist for the selected target part and this page can be skipped.	t s,
Pin Compatible FPGAs	Iarget FPGA xc7k325t-fbg676 -2	
Memory Selection	Pin Compatible PPGAs ■- kintex7	-
Controller Options	□ 7k □ xc7k70t-fbg676	
AXI Parameter	- xc7k160t-fbg676	
Memory Options		
FPGA Options		
Extended FPGA Options		
Bank Selection		
System Signals Selection		
Summary		
Memory Model		
PCB Information		
Design Notes		
XILINX.		
User Guide Version Info	< <u>B</u> ack <u>N</u> ext> <u>C</u> ancel	

UG586_c1_10_110610

Figure 1-15: Pin-Compatible 7 Series FPGAs

- 1. Select any of the compatible FPGAs in the list. Only the common pins between the target and selected FPGAs are used by the MIG tool. The name in the text box signifies the target FPGA selected.
- 2. Click **Next** to display the **Memory Selection** page.

Creating 7 Series FPGA DDR3 Memory Controller Block Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

- 1. Select the **DDR3 SDRAM** controller type.
- 2. Click **Next** to display the **Controller Options** page (Figure 1-16).

REFERENCE Memory Selection Select the type of memory interface. Please refer to the User Guide for a detailed ist of supported controllers for each PPGA family. The list below shows currently available interface() for the specific PPGA and speed grade chosen. Pin Compatible FPGAs DDR3 SDRAM DDR3 SDRAM DDR3 SDRAM DDR3 SDRAM DDR3 SDRAM QDR11 + SRAM RLDRAM II Kenory Selection RLDRAM II FeGA Options RLDRAM II Selection System Signals Selection Simulation Options Bank Selection Simulation Options Bank Selection Simulation Options Bank Selection Simulation Options Bank Selection Simulation Options
Pin Compatible FPGAs Pin Compatible FPGAs QDR1 + SRAM QDR1 + SRAM QDR1 + SRAM RLDRAM II Remory Selection FPGA Options FPGA Options Extended FPGA Options IO Planning Options Bank Selection System Signals Selection Summary Simulation Options
Design Notes
User Guide Version Info

Figure 1-16: Memory Type and Controller Selection

Controller Options

This page shows the various controller options that can be selected (Figure 1-17).

TIP: The use of the Memory Controller is optional. The Physical Layer, or PHY, can be used without the Memory Controller. The Memory Controller RTL is always generated by the MIG tool, but this output need not be used. See Physical Layer Interface (Non-Memory Controller Design), page 174 for more information. Controller-only settings such as ORDERING are not needed in this case, and the defaults can be used. Settings pertaining to the PHY, such as the Clock Period, are used to set the PHY parameters appropriately.

Figure 1-17: **Controller Options Page**

If the design has multiple controllers, the controller options page is repeated for each of the controllers. This page is partitioned into a maximum of nine sections. The number of partitions depends on the type of memory selected. The controller options page also contains these pull-down menus to modify different features of the design:

- **Frequency** This feature indicates the operating frequency for all of the controllers. The frequency block is limited by factors such as the selected FPGA and device speed grade.
- **PHY to Controller Clock Ratio** This feature determines the ratio of the physical layer (memory) clock frequency to the controller and user interface clock frequency. The 2:1 ratio lowers the maximum memory interface frequency due to FPGA logic timing limitations. The user interface data bus width of the 2:1 ratio is four times the width of the physical memory interface width, while the bus width of the 4:1 ratio is eight times the physical memory interface width. The 2:1 ratio has lower latency. The 4:1 ratio is necessary for the highest data rates.
- VCCAUX_IO Set based on the period/frequency setting. 2.0V is required at the highest frequency settings in the High Performance column. The MIG tool automatically selects 2.0V when required. Either 1.8 or 2.0V can be used at lower frequencies. Groups of banks share the VCCAUX_IO supply. For more information, see the 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2] and the 7 Series FPGAs Packaging and Pinout Specification (UG475) [Ref 3].
- **Memory Type** This feature selects the type of memory parts used in the design.
- **Memory Part** This option selects a memory part for the design. Selections can be made from the list or a new part can be created.

Note: For a complete list of memory parts available, see Answer Record: 54025.

- **Data Width** The data width value can be selected here based on the memory type selected earlier. The list shows all supported data widths for the selected part. One of the data widths can be selected. These values are generally multiples of the individual device data widths. In some cases, the width might not be an exact multiple. For example, 16 bits is the default data width for x16 components, but eight bits is also a valid value.
- **Data Mask** This option allocates data mask pins when selected. This should be deselected to deallocate data mask pins and increase pin efficiency. Also, this is disabled for memory parts that do not support data mask.

IMPORTANT: The Data Mask (DM) option is always selected for AXI designs and is grayed out (you cannot select it). For AXI interfaces, Read Modify Write (RMW) is supported and for RMW to mask certain bytes of Data Mask bits should be present. Therefore, the DM is always enabled for AXI interface designs. This is the case for all data widths except 72-bit.

For 72-bit interfaces, Error Correcting Code (ECC) is enabled and DM is deselected and grayed out. If DM is enabled for 72-bit designs, computing ECC is not compatible, therefore DM is disabled for 72-bit designs.

- **Number of Bank Machines** The list shows the number of bank machines that are supported for the selected design configuration.
- **Ordering** This feature allows the Memory Controller to reorder commands to improve the memory bus efficiency.
- **Memory Details** The bottom of the **Controller Options** page (Figure 1-17) displays the details for the selected memory configuration (Figure 1-18).

Memory Details: 1Gb, x8, row:14, col:10, bank:3, data bits per strobe:8, with data mask

UG586_c1_20_091410

Create Custom Part

- 1. On the **Controller Options** page select the appropriate frequency. Either use the spin box or enter a valid value using the keyboard. Values entered are restricted based on the minimum and maximum frequencies supported.
- Select the appropriate memory part from the list. If the required part or its equivalent is unavailable, a new memory part can be created. To create a custom part, click the Create Custom Part below the Memory Part pull-down menu. A new page appears, as shown in Figure 1-19.

jelect Base Part				MT413128M8XX-125		
Enter New Me Change the r	emory Part N equired Timii	lame	s. "Value" is th	ne only field that can be edited.		
Parameter	Value	Range	Units	Descriptions	^	
trfc	110	90-350	ns	Refresh to Active or Refresh to Refresh		
tras	35	35-37.5	ns	Active to Precharge command	=	
trp	13.75	10-15	ns	Precharge command period		
tfaw	30	30-55	ns	Four Address Width		
trcd	13.75	10-15	ns	Active to Read or write delay		
trefi	7.8	3.9-7.8	us	Average periodic refresh interval	*	
Row Address				14	~	
Column Address				10	~	
Bank Address				3	~	

Figure 1-19: **Create Custom Part**

The **Create Custom Part** page includes all the specifications of the memory component selected in the **Select Base Part** pull-down menu.

- 3. Enter the appropriate memory part name in the text box.
- 4. Select the suitable base part from the **Select Base Part** list.
- 5. Edit the value column as needed.
- 6. Select the suitable values from the **Row**, **Column**, and **Bank** options as per the requirements.
- 7. After editing the required fields, click **Save**. The new part is saved with the selected name. This new part is added in the Memory Parts list on the **Controller Options** page. It is also saved into the database for reuse and to produce the design.
- 8. Click **Next** to display the **Memory Options** page (or the **AXI Parameter Options** page if AXI Enable is checked on the **Memory Type** selection page).

AXI Parameter Options

This feature allows the selection of AXI parameters for the controller (Figure 1-20). These are standard AXI parameters or parameters specific to the AXI4 interface. Details are available in the ARM[®] AMBA[®] specifications [Ref 4].

These parameters specific to the AXI4 interface logic can be configured:

- Address Width and AXI ID Width When invoked from XPS, address width and ID width settings are automatically set by XPS so the options are not shown.
- **Base** and **High Address** Sets the system address space allocated to the Memory Controller. These values must be a power of 2 with a size of at least 4 KB, and the base address must be aligned to the size of the memory space.
- Narrow Burst Support Deselecting this option allows the AXI4 interface to remove logic to handle AXI narrow bursts to save resources and improving timing. XPS normally auto-calculates whether narrow burst support can be disabled based on the known behavior of connected AXI masters.
- **Arbitration Scheme** Selects the arbitration scheme between read and write address channels.

	AXI Parameter Options C0 - DDR3_SDRAM
	Data Width: AXI DATA WIDTH: Data width of AXI read & write channels. The data width is less than or equal to user interface data width with the possible values 32, 64, 128, 256 & 512.
	Arbitration Scheme:Select the arbitration scheme between the read and write address channels RD_PRI_REG
Pin Compatible FPGAs 🛛 🗡	
Memory Selection	Narrow Burst Support: Enables logic to support narrow bursts on the AXI4 slave interface. Can be set to zero if no masters in the system issue narrow bursts and all the data widths are equal. (1-Enable, 0-Disable)
Controller Options 🛛 🖌	
	Address Width: AXI4 address width of read and write address channels. The address width is always fixed to 32 bits. The most simificant bits when memory colladdress + row address + bank addressis lesser than 32-bits wide will be innored by the controller
lemory Options 🛛 🗡	
PGA Options 🛛 🗸 🗸	ID Width: AX14 ID width for read and write channels. AX14 ID is used as the identification tag for write or read address group of signals
xtended FPGA Options 🛛 🖌	
0 Planning Options 🛛 🗸 🗸 🗸 🗸 🗸 🗸	
ank Selection	
ystem Signals Selection	
ummary	
imulation Options	
CB Information	
esign Notes	
XILINX	

UG586_c1_22_090511

Setting DDR3 Memory Parameter Option

This feature allows the selection of various memory mode register values, as supported by the controller specification (Figure 1-21).

~		Xilir	x Memory Interface Generator				- • ×
	REFERENCE	Memory Options for Controller 0 - DDR3 SDRAM					
		Input Clock Period: Select the period for the PLL i the Memory Clock Period entered above and the clo selected Input Clock and Memory Clock Periods to g available, the Memory Clock Period must be modified Select Additional Clocks(if required) MIG can generate up to 5 additional clocks to be use clock(Clock 0) has a wider rance of choices	nput clock (CLKIN). MIG determines the cking guidelines listed in the User Gui enerate the required PLL parameters. I d. ed in Fabric logic. This will be generate	e allowable input clock p de. The generated desig If the required input cloo drom the same MMCM	which is used for generation	s (932.836 MHz) of UI_CLK. The first	•
		Clock 0	4531 ps (220.69 Mhz)	\$	D = 3.625		
		Clock 1	10000 ps (100 Mhz)	\$	D = 8		
	Pin Compatible FPGAs 🚩	Clock 2	NONE	\$	D = 1		
	Memory Selection	Clock 3	NONE	\$	D = 1		
	Controller Options	Clock 4	NONE	\$	D = 1		
	FPGA Options Extended FPGA Options	Choose the Memory Options for the memory device. for more information. Read Burst Type and Length The burst type determines the data ordering within a	Memory Option selections are restrict a burst. Consult the memory datasheet	ted to those supported t	by the controller. Consult the r urst length 8 is the only	nemory vendor data s	heet
	Bank Selection	supported value.				Sequential	
	System Signals Selection	Programmable impedance for the output buffer.				RZQ/7	•
	Summary	Controller Chip Select Pin					
	Simulation Options	The Chip Select (CS#) pin can be tied low externally Disable is only valid for single rank configurations.	/ to save one pin in the address/comm	and group when this se	lection is set to 'Disable'.	Enable	•
	PCB Information	BTT (nominal) - On Die Termination (ODT)					
		Select the nominal value of ODT for the DQ, DQS/DC ohms) for data rates at 1333 Mbps and above. In 2 be used for the unselected slot during a read. Use b	QS# and DM signals on the component slot DIMM configuations this value will b loard level simulation to choose the op	t or DIMM interface. This be used for the unwritten stimum value.	s must be set to RZQ/6 i(40 n slot during a write and will a	Iso RZQ/4	\$
		Memory Address Mapping Selection User Address					
l	Jser Guide Version Info				< <u>B</u>	ack Next>	<u>C</u> ancel

Figure 1-21: Setting Memory Mode Options

The mode register value is loaded into the load mode register during initialization. Only burst length 8 (BL8) is supported for DDR2 and DDR3 SDRAM.

The **Output Driver Impedance Control** sets the output driver impedance on the DRAM. The selections listed are determined by specific DRAM chosen. RZQ is 240Ω . For example, if RZQ/6 is chosen, the output drive impedance is 40Ω . For more information, consult the memory vendor data sheet.

The DDR2 SDRAM interface has a separate option to select the number of memory clocks called **Memory Clock Selection**. Each component has a **Number of Memory Clocks** setting, and the maximum number of clocks allowed is four.

The desired input clock period is selected from the list. These values are determined by the memory clock period chosen and the allowable limits of the parameters. See Design Guidelines, page 192 for more information on the PLL parameter limits.

Select Additional Clocks option appears for AXI interface designs only. Selection is allowed for up to five additional clocks which are generated from the same MMCM that generates UI_CLK.

IMPORTANT: The Select Additional Clocks option appears in Vivado IP integrator flow only.

Click Next to display the FPGA Options page.

FPGA Options

Figure 1-22 shows the FPGA Options page.

	Xilinx Memory Interface Generator		- = ×							
REFERENCE DESIGN 🖽	System Clock Choose the desired input clock configuration. Design clock can be Differential	pe Differential or Single-Ended.								
	System Clock	Differential	•							
	Reference Clock									
	Choose the desired reference clock configuration. Reference clock can be Dif	ferential or Single-Ended.								
	Reference Clock	Differential	•							
	System Reset Polarity									
Pin Compatible FPGAs	Choose the desired System Reset Polarity.									
Memory Selection	System Reset Polarity	ACTIVE LOW	•							
Controller Options	Debug Signals Control									
AXI Parameter 🗸	This feature allows various debug signals present in the IP to be monitored on	the ChipScope tool. The debug signals include status signals of various PH	IY							
Memory Options	calibration stages. Enabling this feature will connect all the debug signals to the each bus in the debug interface has been grounded so that users can replace	e ChipScope ILA and VIO cores in the example design top module. A part o the grounded signals with the required signals.	of							
FPGA Options	Debug Signals for Memory Controller	OFF	•							
Extended FPGA Options	This selects the value of Sample Data depth for Chipscope ILA used in Debug logic.									
TO Planning Options	Sample Data Depth	1024	\$							
System Signals Selection	Internal Vref									
Summary	Internal Vref can be used to allow the use of the Vref pins as normal IO pins. T	his option can only be used at 800 Mbps and lower data rates. This can fre	e							
Simulation Options	2 pins per bank where inputs are used. This setting has no effect on banks wit Internal Vref	h only outputs.								
PCB Information	IO Power Paduction									
Design Notes	Significantly reduces average IO power by automatically disabling DQ/DQS IBL	JFs and internal terminations during WRITEs and periods of inactivity								
	IO Power Reduction	ON	•							
	XADC Instantiation									
	The memory interface uses the temperature reading from the XADC block to p data window. There is one XADC block per device. If the XADC is not currently instantiated. If the XADC is already used, disable this MIG option. The user is th device_temp_i input port. Refer to Answer Record 51687 or the UG586 for deta	erform temperature compensation and keep the read DQS centered in the r used anywhere in the design, enable this option to have the block nen required to provide the temperature value to the top level 12-bit alled information.								
S XII INIX	XADC Instantiation	Enabled	•							
User Guide Version Info		Back Next>	ancel							

Figure 1-22: FPGA Options

• **System Clock** – This option selects the clock type (Single-Ended, Differential, or No Buffer) for the sys_clk signal pair. When the **No Buffer** option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the system clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the sys_clk_i signal. So for **No Buffer** scenarios, sys_clk_i signal needs to be connected to an internal clock.

The **No Buffer** option must only be selected for designs that already have a system input clock assigned that meets all rules specified in the Clocking, page 210.

Reference Clock – This option selects the clock type (Single-Ended, Differential, No Buffer, or Use System Clock) for the clk_ref signal pair. The Use System Clock option appears when the input frequency is between 199 and 201 MHz (that is, the Input Clock Period is between 5,025 ps (199 MHz) and 4,975 ps (201 MHz). The reference clock frequency is based on the data rate and note that an MMCM is added to create the appropriate ref_clk frequency above 1,333 Mb/s. When the No Buffer option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the reference clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the ref_clk_i signal. So for **No Buffer** scenarios, ref_clk_i signal needs to be connected to an internal clock.

- System Reset Polarity The polarity for system reset (sys_rst) can be selected. If the option is selected as active-Low, the parameter RST_ACT_LOW is set to 1 and if set to active-High the parameter RST_ACT_LOW is set to 0.
- Debug Signals Control Selecting this option enables calibration status and user port signals to be port mapped to the ILA and VIO in the example_top module. This helps in monitoring traffic on the user interface port with the Vivado Design Suite debug feature. Deselecting the Debug Signals Control option leaves the debug signals unconnected in the example_top module and no ILA/VIO modules are generated by the IP catalog. Additionally, the debug port is always disabled for functional simulations.

Note: This option is not available in the Vivado IP integrator flow.

- Sample Data Depth This option selects the Sample Data depth for the ILA module used in the Vivado debug logic. This option can be selected when the Debug Signals for Memory Controller option is ON.
- Internal V_{REF} Selection Internal V_{REF} can be used for data group bytes to allow the use of the V_{REF} pins for normal I/O usage. Internal V_{REF} should only be used for data rates of 800 Mb/s or below.

- **I/O Power Reduction** This option reduces the average I/O power by disabling DQ and DQS IBUFs automatically whenever the controller is in the idle state.
- XADC Instantiation When enabled, this option directs MIG core to instantiate the XADC and a temperature polling circuit for the Temperature Monitor feature (see Temperature Monitor). This option can be disabled if the XADC is already used elsewhere in the design. In this case, the device temperature must be periodically sampled and driven onto the device_temp_i bus in the memory interface top-level user design module. If the device_temp_i signal is left unconnected, then the XADC is instantiated.

Click Next to display the DCI Description page (Figure 1-23).

REFERENCE DESIGN	Internal Termination for High Range Banks Select the internal termination (IN_TERM) impedance for Internal Termination Impedance DDR3 SDRAM	the High Range (HR) banks. This setting applies only to the HR banks used in the interfa S0 Ohms	ce.
Din Comnatible EDCAs	Select the internal termination (IN_TERM) impedance for Internal Termination Impedance DDR3 SDRAM	the High Range (HR) banks. This setting applies only to the HR banks used in the interfa 50 Ohms	ice.
Din Comnatible EDCAs	Internal Termination Impedance	50 Ohms	
Din Compatible EDCAs	DDR3 SDRAM		•
Din Compatible FDCAs			
Pin Compatible FBCAs	Digitally Controlled Impedance (DCI)		
	The DCI (Digitally Controlled Impedance) I/O standar standards (SSTL15_T_DCI for DQ's and DIFF_SSTL15 User Guide for more information and use IBIS simulati	Is are applied appropriately in High Performance banks, DQ and DQS/DQS≠ signals utilize DCI for DQS and DQS≠). DCI is not used for the Address/Control output signals. Cons in to determine the best termination stratery.	DCI ult the
Hamani Calastian	DCI Cascading Information		
Hemory Selection	Select the DCI Carrade for carrading the DCI refere	ce pipe in the hanks to obtain his efficiency. Defer to the MICI liser Guide to know the rule	e for
Controller Options	selecting the Master-Slave banks.	ce pins in the ballies to obtain pin enicency. Nere to the Mtd date date to know the rule	5101
AXI Parameter	DCI Cascade		
Memory Options			
FPGA Options			
Extended EI/CA Detions			
Extended ProA Uptions			
IO Planning Options			
Bank Selection			
System Signals Selection			
Summary			
Simulation Options			
PCB Information			
Design Notes			
User Guide Version Info		< Bark Navts	Cancel
Oper Guide		Z Bary	Zancer

Figure 1-23: DCI Description

- Digitally Controlled Impedance (DCI) The DCI option allows the use of the FPGA on-chip internal resistors for termination. DCI must be used for DQ and DQS/DQS# signals. DCI cascade might have to be used, depending on the pinout and bank selection. DCI is available in the High Performance Banks.
- Internal Termination for High Range Banks The internal termination option can be set to 40, 50, or 60Ω or disabled. This selection is only for High Range banks.

- **DCI Cascade** This selection enables the VRN/VRP pins that are available in High Performance banks to allocate for the address/control and reset_n ports.
- Pin/Bank Selection Mode This allows you to specify an existing pinout and generate the RTL for this pinout, or pick banks for a new design. Figure 1-24 shows the options for using an existing pinout. You must assign the appropriate pins for each signal. A choice of each bank is available to narrow down the list of pins. It is not mandatory to select the banks prior to selection of the pins. Click Validate to check against the MIG pinout rules. You cannot proceed until the MIG DRC has been validated by clicking Validate.

🖣 Xilinx Memory Interface Generator												
REFERENCE												
			Signal Name	Bank Number	Bank Number Byte Number		IO Standard 🔼					
		1	ddr3_dq[0]	34 🗸	тз 💌	AD1 👻	SSTL15_T_DCI					
		2	ddr3_dq[1]	34 🗸	T3 -	AE1 💌	SSTL15_T_DCI					
		3	ddr3_dq[2]	34 💌	T3 <u> </u>	AE3 💽	SSTL15_T_DCI					
	~	4	ddr3_dq[3]	34 💌	T3 •	AE2 •	SSTL15_T_DCI					
Pin Compatible FPGAs		5	ddr3_dq[4]	34 💌	Т3 💌	AE6 💌	SSTL15_T_DCI					
Memory Selection	6	ddr3_dq[5]	34 🗸	Т3 🗾	AES 🗸	SSTL15_T_DCI						
Controller Options 🛛 🚩		7	ddr3_dq[6]	34 🗸	Т3 💌	AF3 🗸	SSTL15_T_DCI					
AXI Parameter	AXI Parameter			34 💌	тз 💌	AF2 💌	SSTL15_T_DCI					
Memory Options	emory Options		ddr3_dq[8]	33 🗸	то 💌	W11 -	SSTL15_T_DCI					
FPGA Options		10	ddr3_dq[9]	33 🗸	то 💌	V8 🗸	SSTL15_T_DCI					
Extended FPGA Options 🛛 🚩		11	ddr3_dq[10]	33 🗸	то 💌	V7 •	SSTL15_T_DCI					
Pin Selection	Pin Selection		ddr3_dq[11]	33 🗸	то 🔻	Y8 🗸	SSTL15_T_DCI					
System Signals Selection		13	ddr3_dq[12]	33 🗸	то •	¥7 •	SSTL15_T_DCI					
Summary		14	ddr3_dq[13]	33 🗸	то •	Y11 -	SSTL15_T_DCI					
Simulation Options		15	ddr3_dq[14]	33 🗸	то •	Y10 -	SSTL15_T_DCI					
PCB Information		16	ddr3_dq[15]	33 -	то •	V9 -	SSTL15_T_DCI					
Design Notes		17	ddr3_dm[0]	34 💌	Т3 🝷	AD4 🔻	SSTL15					
		18	ddr3_dm[1]	33 🗸	то 💽	V11 -	SSTL15					
		19	ddr3_dqs_p[0]	34 🗸	Т3 💌	AF5 💌	DIFF_SSTL15_T_DCI					
		20	ddr3_dqs_n[0]	34 🗸	тз 💌	AF4 💌	DIFF_SSTL15_T_DCI					
		21	ddr3_dqs_p[1]	33 🗸	то 🗸	w10 -	DIFF_SSTL15_T_DCI					
		NFO 20	02: Press "Validate" to	proceed.		Validate	ReadUCF Save PinOut					
User Guide Version Info						< <u>B</u> ack	<u>N</u> ext> <u>Cancel</u>					

Figure 1-24: Pin/Bank Selection Mode

Bank Selection

This feature allows the selection of bytes for the memory interface. Bytes can be selected for different classes of memory signals, such as:

- Address and control signals
- Data signals

	Bank Selection For G	ontroller 0 - DDR3 SDI	RAM				
	Select the byte groups banks. The interface of default configuration configuration pin. F Bank selection may be Address/Control: 26/	s for the data and address annot span horizontally. ons. If bank 14 or 15 is or more information ace. restricted to High Perfor 26 Ø pata: 11/11	s/control ir *Bank 14 s selecte JG586 Ban mance colu	n the architectural view and 15 contain conf d for your memory of k and Pin rules, mms in order to meet th	below. Data and Address/ iguration pins. MIG trie controller, UCF should b e interface data rate select	Control must be sel s to avoid usage e verified to ens	ected within 3 vertical e of these banks for ure по conflicts with the
n Compatible FPGAs 🛛 🚩	Byte Group	Unassigned					î
emory Selection	Byte Group	Unassigned					
antroller Ontions	HD Bank	1		HDBack			
	Bank 14	Signal Sets	*	Bank 34	Signal Sets	*	
ki Parameter	Byte Group	Unassigned	-	Byte Group	Address/Ctrl-0	-	
emory Options 🛛 🕅	Byte Group	Unassigned	-	Byte Group	Address/Ctrl-1	•	
PGA Options 🛛 🗸	Byte Group	Unassigned	-	Byte Group	Address/Ctrl-2	•	
ctended FPGA Options	Byte Group	Unassigned	+ +	Byte Group	DQ[0-7]	- -	
Planning Options	HR Bank			HPBank			
ridning opposits	Bank 13	Signal Sets	^	Bank 33	Signal Sets	*	
ank Selection	Byte Group	Unassigned	*	Byte Group	Unassigned	•	
ystem Signals Selection	Byte Group	Unassigned	-	Byte Group	Unassigned	•	
ummary	Byte Group	Unassigned	-	Byte Group	Unassigned	•	-
mulation Ontions	Byte Group	Unassigned	* *	Byte Group	Unassigned	• •	1
	HR Bank			HPBank			
CB Information	Bank 12	Signal Sets	-	Bank 32	Signal Sets	~	
esign Notes	Byte Group	Unassigned	*	Byte Group	Unassigned	•	
	Byte Group	Unassigned	÷	Byte Group	Unassigned	▼ =	
	Byte Group	Unassigned	*	Byte Group	Unassigned	•	
	Byte Group	Unassigned	* *	Byte Group	Unassigned	• •	
							-
						Deselect Banks	Restore Defaults

Figure 1-25: Bank Selection

For customized settings, click **Deselect Banks** and select the appropriate bank and memory signals. Click **Next** to move to the next page if the default setting is used.

To unselect the banks that are selected, click **Deselect Banks**. To restore the defaults, click **Restore Defaults**.

VCCAUX_IO groups are shown for HP banks in devices with these groups using dashed lines. VCCAUX_IO is common to all banks in these groups. The memory interface must have the same VCCAUX_IO for all banks used in the interface. The MIG core automatically sets the VCCAUX_IO constraint appropriately for the data rate requested.

For devices implemented with SSI technology, the SLRs are indicated by a number in the header in each bank, for example, SLR 1. Interfaces cannot span across Super Logic Regions.

Select the pins for the system signals on this page (Figure 1-26). The MIG tool allows the selection of either external pins or internal connections, as desired.

EFERENCE JESIGN 🖽	Select t informa	he system pins below ap tion see <u>UG586 Bank an</u>	ppropriately for the interfa d Pin rules.	ice. Custonization of these pins	can also be made in the UCF after the design is generated. For more
	Sys The (P/I ave	tem Clock Pin Selection • sys_clk is used as the N) pair for best performa- allable such as when fittle	: system dock for the men ance. This signal should be ng a 15 bit interface in a s	וסיץ interface. This signal should וה the address/control bank, bu ingle bank.	i be connected to a low jitter external clock source via a differential ut may be placed in an adjacent bank if there are not enough pins
		Signal Name	Bank Number	Pin Number	
Compatible FPGAs	/ 1	sys clk p/n	34 -	AC4/AC3(CC P/N)	-
mony Colection		-7			
mory selection					
ntroller Options					
IParameter	Ref	erence Clock Pin Selection	on		
mon Ontions	/ The	e clk_ref input is used a ut can be generated inte	is the reference clock for ernally or can be connecte	the IODELAY. Refer the "7 Series to an external clock source or	s FPGA SelectIO Resources User Guide" for more information. This a dock capable differential (P/N) pair.
		Signal Name	Bank Number	Pin Number	
GA Options		ally and a /a			
tended FPGA Options		CIK_rer_p/n	Select Bank		•
Planning Ontions	/				
rianning options					
ank Selection	Sta	tus Signals			
	The	ese signals may be conne	ected internally to other lo	gic or brought out to a pin.	
		• sys_rst: This inpu	t signal is used to reset th	e interface.	ad astherables and assesses indiates has and is used, for several s
immary		LOC constraint wil	be generated in UCF for E	Example design only based on "F	in Number" selection below.
ummary			signal indicates that the t	raffic generator in the Evample	Design has detected a data mismatch. This signal does not exist in
immary mulation Options		 error: This output the User Design. 		and generator in the Example	
mmary nulation Options B Information		error: This output the User Design.	Bank Number	Pin Number	
mmary mulation Options 18 Information 19 Notes	1	error: This output the User Design. Signal Name sys_rst	Bank Number Select Bank 💌	Fin Number	
immary mulation Options 18 Information 2sign Notes	1	• error: This output the User Design. Signal Name sys_rst	Dank Number Select Bank 🔹	Fin Number No connect	
immary mulation Options .B Information asign Notes	1	error: This output the User Design. Signal Name sys_rst init_calib_complete	Bank Number Select Bank Select Bank	Pin Number No connect	
ummary imulation Options CB Information esign Notes	1 2 3	error: This output the User Design. Signal Name sys_rst init_calib_complete tg_compare_error	Dank Number Select Bank Select Bank Select Bank	Pin Number No connect • No connect • No connect •	
ummary mulation Options CB Information esign Notes	1 2 3	error: This output the User Design. Signal Name sys_rst init_calib_complete tg_compare_error	Dank Number Select Bank Select Bank Select Bank	Fin Number No connect No connect No connect	
immary mulation Options :B Information esign Notes	1 2 3 All pie	error: Inis output the User Design. Signal Name sys_rst init_calib_complete tg_compare_error smust be constraine	Dank Number Select Bank • Select Bank • Select Bank • Select Bank • Select Bank •	Fin Number No connect No connect No connect in order to generate a bit fi	ile in the implementation phase (this is not required for
Immary mulation Options B Information essign Notes	1 2 3 All pin simula	error: Inis output the User Design. Signal Name sys_rst init_calib_complete tg_compare_error s must be constraine tion).	Dank Number Select Bank • Select Bank • Select Bank • Select Bank • Select Bank •	Fin Number No connect No connect No connect in order to generate a bit f	ile in the implementation phase (this is not required for

Figure 1-26: System Pins

sys_clk – This is the system clock input for the memory interface and is typically connected to a low-jitter external clock source. Either a single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 1-22). The sys_clk input must be in the same column as the memory interface. If this pin is connected in the same banks as the memory interface, the MIG tool selects an I/O standard compatible with the interface, such as DIFF_SSTL15 or SSTL15. If sys_clk is not connected in a memory interface bank, the MIG tool selects an appropriate standard such as LVCMOS18 or LVDS. The XDC can be modified as desired after generation.

- clk_ref This is the reference frequency input for the IDELAY control. The clk_ref input can be generated internally or connected to an external source. A single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 1-22). The I/O standard is selected in a similar way as sys_clk.
- sys_rst This is the asynchronous system reset input that can be generated internally or driven from a pin. The MIG tool selects an appropriate I/O standard for the input such as LVCMOS18 and LVCMOS25 for HP and HR banks, respectively. The default polarity of sys_rst pin is active-Low. The polarity of sys_rst pin varies based on the System Reset Polarity option chosen in FPGA Options page (Figure 1-22).
- init_calib_complete This output indicates that the memory initialization and calibration is complete and that the interface is ready to use. The init_calib_complete signal is normally only used internally, but can be brought out to a pin if desired.
- **tg_compare_error** This output indicates that the traffic generator in the example design has detected a data compare error. This signal is only generated in the example design and is not part of the user design. This signal is not typically brought out to a pin but can be, if desired.

Click Next to display the Summary page.

Summary

This page provides the complete details about the 7 series FPGA memory core selection, interface parameters, IP catalog options, and FPGA options of the active project (Figure 1-27).

🤻 Xilinx Memory Interface Generate	DT	
REFERENCE	Selected Compatible Device(s) :	<u>^</u>
DESIGN 🖽	EPGA Ontions:	
	Clock Type : Differential	
	Debug Port : OFF	
	Internal Vref : enabled	
	DCI for DO DOS/DOS# DM : enabled	
	/**************************************	
Pin Compatible FPGAs 🛛 🗡	/* Controller 0 */	
	Controller Options :	
Memory Selection	Memory : DDR3 SDRAM	
Controller Options 🛛 🖌	Design Clock Frequency : 1875 ps (533.33 MHz)	
	Memory Type : Components	
AXI Parameter	Memory Part : MT41J128M8XX-125	
Memory Options 🛛 🖌	Equivalent Part(s) :	
	Data Mask : enabled	
FPGA Uptions	ORDERING : Normal	
Extended FPGA Options 🛛 🚩		
Part Calaria	Memory Options:	
Bank Selection	Burst Length (MRO[1:0]) : 8 - Fixed	
System Signals Selection 🛛 🚩	Cis Latency (MRO[6:4]) : 8	
Common and a second s	Output Drive Strength (MR1[5,1]) : RZQ/7	
Summary	Rtt_NOM - ODT (MR1[9,6,2]) : RZQ/4	
Memory Model	Rtt_WR - Dynamic ODT (MR2[10:9]) : Dynamic ODT off	
PCB Information		
	Bank Selections:	
Design Notes	Bank: 15	
	Byte Group TO: Address/Ctrl-O	
	Byte Group T1: Address/Ctrl-1	
	Byte Group T3: DQ[8-15]	
	A 00 /02 27	
	Reference_Clock:	
	SignalName: clk_ref_p Dedlegstion, 2017/SDCC_D) IOStenderd, LVDS_Perk, 22	
	SignalName: clk ref n	
AT AZIL IN INC	PadLocation: AA18(SRCC N) IOStandard: LVDS Bank: 32	~
		Print
		<u> </u>
User Guide Version Info		Carcel Nexts Carcel
		UG586 c1 38 110610

Figure 1-27: Summary

Memory Model License

The MIG tool can output a chosen vendor's memory model for simulation purposes for memories such as DDR2 or DDR3 SDRAMs. To access the models in the output sim folder, click the license agreement (Figure 1-28). Read the license agreement and check the **Accept License Agreement** box to accept it. If the license agreement is not agreed to, the memory model is not made available. A memory model is necessary to simulate the design.

🐐 Xilinx Memory Interface Generato	u 🗐	
		^
Pin Compatible FPGAs Memory Selection Controller Options AXI Parameter Memory Options FPGA Options Extended FPGA Options Bank Selection System Signals Selection Summary Memory Model PCB Information Design Notes	Micron Technology, Inc. Simulation Model License Agreement PLEASE READ THIS SIMULATION MODEL LICENSE AGREEMENT ("AGREEMENT") FROM MICRON TECHNOLOGY, INC. ("MIT") CAREFULLY BEFORE INSTALLING OR USING THIS SIMULATION MODEL (THE "MODEL"). BY INSTALLING OR USING THE MODEL, YOU ARE ACCEPTING AND AGREEING TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, THEN DO NOT INSTALL OR USE THE MODEL. SOFTWARE LICENSE: You acknowledge and agree that it is your sole responsibility to obtain the appropriate license or permission from the owner(s) of the software platform(s) that are necessary for you to operate the Model. MIT is under no obligation whatsoever to offer, provide or secure such license or permission for you. <u>MODEL LICENSE</u> : WTI hereby grants to you the right to instal, use and modify the Model solely for testing the Model and designing your product(s) in connection with the Model. You shall not use the Model or any modifications for any other purpose, and shall not copy, rent, or lease the Model or the modifications to any third party. MTI may make changes to the Model at any time without notice to you. MTI is under no obligation whatsoever to update, maintain, or provide new versions or other support for the Model. <u>OWNERSHIP OF MATERIALS</u> : You acknowledge and agree that the Model is proprietary property of MTI and is protected by United States copyright law and international treaty provisions. The Model may not be copied, reproduced, published, uploaded, posted, transmitted, or distributed in any way without MTI's prior written or to the Model, but only a limited right to use and modify the Model in accordance with the terms of this Agreement DISCLAIMER OF WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OF LITS CORRECTNESS, ACCURACY, RELIABILITY. OR OTHERWISE. THE ENDEL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MTI EXPRESSI	
E XILINX.	Check Accept or Decline to proceed. By clicking Accept, memory model will be outputted in output simulation directory. By clicking Oecline, you will need to acquire and configure a memory model appropriately.	ne
User Guide Version Info	< <u>B</u> ack Next> Canc	el
	UG586 c1 39	110610

Figure 1-28: License Agreement

Click Next to move to PCB Information page.

PCB Information

This page displays the PCB-related information to be considered while designing the board that uses the MIG tool generated designs. Click **Next** to move to the **Design Notes** page.

Design Notes

Click **Generate** to generate the design files. The MIG tool generates two output directories: example_design and user_design. After generating the design, the MIG GUI closes.

Vivado Integrated Design Flow for MIG

1. After clicking **Generate**, the **Generate Output Products** window appears. This window has the **Out-of-Context Settings** as shown in Figure 1-29.

i Ger	nerate Output Products <@xf 🔲 🗙 The following output products will be generated.
Preview	Termin Zseries O xci
	Ing_relation Template Instantiation Template Synthesized Checkpoint (.dcp) Behavioral Simulation Change Log
	Out of Contoxt Settings
	Qut-of-Context Settings

Figure 1-29: Generate Output Products Window

2. Click **Out-of-Context Settings** to configure generation of synthesized checkpoints. To enable the **Out-of-Context** flow, enable the check box. To disable the **Out-of-Context** flow, disable the check box. The default option is "enable" as shown in Figure 1-30.

I IP and set

Figure 1-30: Out-of-Context Settings Window

3. MIG core designs comply with "Hierarchical Design" flow in Vivado. For more information, see the *Vivado Design Suite User Guide: Hierarchical Design* (UG905) [Ref 5] and the *Vivado Design Suite Tutorial: Hierarchical Design* (UG946) [Ref 6].

4. After generating the MIG core design, the project window appears as shown in Figure 1-31.

Figure 1-31: Vivado Tool Project Window (After IP Generation)

5. After project creation, the XCI file is added to the Project Hierarchy. The same view also displays the module hierarchies of the user design. The list of HDL and XDC files is available in the **IP Sources** view in the **Sources** window. Double-clicking on any module or file opens the file in the Vivado Editor. These files are read only.

kproject_23 - [C:/Users/avdhesh	h/proj	iect_23/project_23.xpr] - Vivado 2013	.3										_	
File Edit Flow Tools Window	Layou	it View Help									0	λ≁ Search comm	ands	
🏄 😂 in 🕫 🗎 🐂 🗙 🔌		🚵 🚳 💥 ∑ 🧑 🔛 Default Layo	ut 👻 🕽	ع ا 🌾 🚸 ک)								A	Ready
Flow Navigator	Pro	pject Manager - project_23												×
Q 🛣 🖨		Sources	-	- 0 & ×	Σ	Project Summary 🗙 👎 IP Catalog 🗙								2 ×
d. Durdent Manager	ertie	🔍 🛣 😂 📄 🔝			20	Search: Q-								
Project Manager Operate Cathings	Prop	E-S Design Sources (2)			-	Name		A1 Version ∇2	AXI4	Status	License	External Re	VENV	
Add Sources		Win mig_7series_0 (mig_7series_0)	s_0.xci)			🖻 🗁 Basic Elements		· · · · ·						
TR Catalog		mig_a.prj				Communication & Networking								
- Ir Catalog		Constraints			1	Debug & Vernication Digital Signal Processing								
▲ IP Integrator		Ginutation Sources (1)				Embedded Processing								
🍰 Create Block Design		E Sim_1 (1)			1	FPGA Features and Design Math Exections								
Dpen Block Design			enes_0.xu)		1	Memories & Storage Elements								
🍓 Generate Block Design						- D ECC		2.0		Production	Included	W:/xbuilds/	xlinx.com:ip	
1 Coultria						E C Memory Interface Generators								
Simulation Gimulation Softings					6	Memory Interface Generator (MIG 7 Serie	s)	2.0 A:	(14	Production	Included	W:/xbuilds/	xilinx.com:ip	. : []
Due Simulation						🗄 🗁 RAMs & ROMs								-
www.eurisindiadon						Details								
RTL Analysis														
👂 💕 Open Elaborated Design						Version: 2.0 (Rev. 1)	G / Series)							
						Interfaces: AX14								
A Synthesis		Hierarchy IP Sources Libraries Comp	ile Order			Description: This Memory Interface Generator is a s	imple menu dr	iven tool to generate adva	nced memory interfa	aces. This tool (penerates HDL a	nd oin placemeni	constraints	-
Cushedia		& Sources 7 Templates				that will help you design your application	n. Kintex-7 su	pports DDR3 SDRAM, DDR:	2 SDRAM, LPDDR2 S	DRAM, QDR II+	SRAM, RLDRAN	1II and RLDRAM	.II. Virtex-7	
 Run Synthesis Anno Synthesized Derivation 		Design Runs												. ×
P per Synthesized Design		Q. Name	Part	Constraints		Strategy	Status	Progress	Start	Flansed	Eailed Routes	WNS TNS	WHS THS	TPA
 Implementation 		😴 ⊟-⇔ synth_1	xc7k325tffg900-2	constrs_1	Vivado	Synthesis Defaults (Vivado Synthesis 2013)	Not started	0%						
Main and Amplementation Settings		inpl_1	xc7k325tffg900-2	constrs_1	Vivado	Implementation Defaults (Vivado Implementation 2013)	Not started	0%						
Run Implementation														
Den Implemented Design		la l												
4. Program and Dahum		hite .												
Bittream Settings		41												
Generate Bistream		-												
 Onen Hardware Mananer 		*												
Launch iMPACT					_									
		🔚 Tcl Console 👔 🗭 Messages 🛛 🔍 L	og 📋 Reports 🖉 🕻	🖇 Design Runs										

Figure 1-32: Vivado Tool Project Sources Window

Design generation from the MIG tool can be generated using the **Create Design** flow or the **Verify Pin Changes** and **Update Design** flows. There is no difference between the flow when generating the design from the MIG tool. Irrespective of the flow by which designs are generated from the MIG tool, the XCI file is added to the Vivado tool project. The implementation flow is the same for all scenarios because the flow depends on the XCI file added to the project.

6. All MIG generated user design RTL and XDC files are automatically added to the project. If files are modified and you wish to regenerate them, right-click the XCI file and select **Generate Output Products** (Figure 1-33).

🍌 project_23 - [C:/Users/avdhesh	h/proj	ect_23/project_23.xpr] - Vivado 2013.3									_ 🗆 🗙
File Edit Flow Tools Window	Layout	View Help							(Q+ Search comman	nda
🟄 🗁 📾 💷 🔄 🐂 🖌 🔈 🕨 💁 🌀 🛞 ∑ 🕼 (Edeals Layout 🔷 🗶 😓 Ready											
Flow Navigator	Pro	ject Manager - project_23									×
🔍 🛣 🌐		Sources _ D 1	×	Σ	Project Summary 🗙 🞐 IP Catalog 🗙						□ Ŀ ×
	ertie	a 🖾 🖨 📑 🛃 🖪		ĺ →]	Search: Q-						
Project Manager	do L	B-@ IP (1)			News	(t University	= 2	Chabur	1	[Eutomation]	
🔞 Project Settings	6	☐ @ • mig_7series_0 (122)	-		Name	Version	1× AX14	btatus	License	External Re	ALIAA
Add Sources	-	Instantiation Template (1)			E Automotive & Industrial						
F IP Catalog		🖹 🗊 Synthesis (52)			E C BaseIP						
<u> </u>		ing 7series 0.xdc			E C Basic Elements						
 IP Integrator 		mig_rseries_v2_0_ck_bur.v			E Communication & Networking						
Create Block Decion		mig / series v2 0 iddelay ctrl.v		1	🕀 ն Debug & Verification						
		e mig_7series_v2_0_tempmon.v			😟 🗁 Digital Signal Processing						
Open Block Design		mig_7series_v2_0_arb_mux.v		1	Embedded Processing						
🍓 Generate Block Design		mig_7series_v2_0_arb_row_col.v		9	🗄 🗁 FPGA Features and Design						
		• mig_7series_v2_0_arb_select.v		0	🖻 🗁 Math Functions						
 Simulation 		mig_/series_v2_0_bank_cntrl.v		-	🖃 🗁 Memories & Storage Elements						
🚳 Simulation Settings		a mig_rseries_v2_0_bank_commare_v		1 100	- FEC	2.0		Production	Included	W:/xbuilds/	xilinx.com:ip
Dup Simulation		mig 7series v2 0 bank mach.v		E	Here FIFOS						
war kan sindiadon		• mig_7series_v2_0_bank_queue.v			Memory Interface Generator (MIG 7 Series)	2.0	0714	Production	Included	We lybuilde?	viliov com/in
4 BTL Applyric	:				Premier y Interface denerator (Fild / Series) Premier y Interface denerator (Fild / Series)	2.0	POL I	rioduction	Included	in contraction of the	Americaning
		mig_7series_v2_0_col_mach.v			E C Standard Bus Interfaces						
Open Elaborated Design		• mig_7series_v2_0_mc.v			E Co Video & Image Processing						
		mig_rseries_v2_0_rank_common v									
 Synthesis 		mig_/series_v2_0_rank_common.v									
🍪 Synthesis Settings		mig 7series v2 0 round robin arb.v									
Run Synthesis		- 🔐 • mig_7series_v2_0_ecc_buf.v									
D P Open Synthesized Design		mig_7series_v2_0_ecc_dec_fix.v									
p open synnesices besign		mig_7series_v2_0_ecc_gen.v									
4 Implementation		w mg_/series_v2_0_ecc_merge_enc.v			Details						
A Trademontation Cathings		mig_rseries_v2_0_mem.c_d_cop_sca.v			Select an IP to see details						
inplementation sectings		mig 7series v2 0 ddr byte group io.v									
Run Implementation		- 🔐 • mig_7series_v2_0_ddr_byte_lane.v									
Open Implemented Design		mig_7series_v2_0_ddr_calib_top.v									
		• mig_7series_v2_0_ddr_if_post_fifo.v									
Program and Debug		mig_7series_v2_0_ddr_mc_phy.v	-1								
🚯 Bitstream Settings		mig_rseries_v2_0_ddr_nic_priv_wrapper.v	÷								
🚵 Generate Bitstream		Hierarchy IP Sources Libraries Compile Order									
Open Hardware Manager	1	& Sources 9 Templates			()						
👺 Launch iMPACT		🗟 🕞 🖾 Design Runs									
Generated Data: mig_7series_0.xdc											

Figure 1-33: Generate RTL and Constraints

7. Clicking the **Generate Output Products** option brings up the **Manage Outputs** window (Figure 1-34).

Figure 1-34: Generate Window

8. All user-design RTL files and constraints files (XDC files) can be viewed in the **Sources** > **Libraries** tab (Figure 1-35).

Figure 1-35: Vivado Project – RTL and Constraints Files

9. The Vivado Design Suite supports **Open IP Example Design** flow. To create the example design using this flow right-click the IP in the **Source Window**, as shown in Figure 1-36 and select.

project_23 - [C:/Users/avdhesh	/proje	ect_23/project_23.xpr] - Vivado 2013.3	_											-	
File Edit Flow Tools Window	Layout	View Help										[Q+ Search comm	ands	
🦽 😂 in 🕫 🗎 🗶 🗞		🛬 🏀 💥 ∑ 🎼 📴 Default Layout	Ŧ	🖉 🔌 🟌 I 😜										R	Ready
Flow Navigator	Pro	ject Manager - project_23													×
Q 🖾 🖨	10	Sources		-00×	D Project	Summary ×	🥬 IP Catalog 🗙							00	<u>- × </u>
	ertie:	< 🔀 🖨 👌 👌 📓 🛃			3 Search	n: [Q									
Project Manager	Prop	Besign Sources (2)	_			1.	Name		/1 Version ⊽	ΔX14	Status	License	External Re	1 VINV	
(6) Project Settings	0	mig_7series_0 (mig_7series_0.xci)	-			010	Manile		Yeraidin 15	86.1	Julia	Liconse	Externarken	1 101	
Add Sources		End Configuration Hies (1) End Constraints	9	Source Node Propert	ties	Ctrl+E									
🔐 IP Catalog		Gimulation Sources (1)	<u>.</u>	Re-customize IP			& Networking								
✓ IP Integrator				Generate Output Pro	oducts		pcessing								1
🚜 Create Block Design				Reset Output Produ	icts		essing								
Dpen Block Design				Update IP			and Design								
h Generate Block Design			_	Copy IP			rage Elements								
			*	Open IP Example De	esign				2.0		Production	Included	W:/xbuilds/	xilinx.com:ip	
 Simulation 				IP Documentation)	arface Generators								
6 Simulation Settings				Replace File			Interface Generator (MIG 7 Serie	:5)	2.0	AXI4	Production	Included	W:/xbuilds/	xilinx.com:ip	
🔍 Run Simulation			Θ	Copy File Into Projec	ct		As								
4 RTI Analysis				Copy All Files Into Pr	roject	Alt+I									
Open Elaborated Design			×	Remove File from Pri	oject	Delete	ry Interface Generator (MI	G 7 Series)							- II
				Enable File		Alt+Equals	sv. 1)								- 11
 Synthesis 		Hiovarchu, IB Sources Libraries Consile Order		Disable File		Alt+Minus									-1
🏀 Synthesis Settings		Revenue O Texelates		Hierarchy Update)	I help you design your applicatio	ampie menu ar n. Kintex-7 su	pports DDR3 SDRAM, D	DR2 SDRAM, LPD	DR2 SDRAM, QDR II	+ SRAM, RLDRA	and pin placement MII and RLDRAM	II. Virtex-7	
🔊 Run Synthesis		Sources V Templates	ø	Refresh Hierarchy											
Open Synthesized Design		Design Runs		IP Hierarchy		,						,			×
4 Implementation		Name P.		Set as Top			ategy	Status	Progress	Star	t Elapsed	Failed Routes	WNS TNS	WHS THS	TPA
Contraction Settings				Set Hie Type			s (Vivado Implementation 2013)	Not started	0%						
Run Implementation				Set Used In			-								
> Doen Implemented Design		•		Edit Constraints Sets	s										
				Edit Simulation Sets.			_								
Program and Debug		4	8	Add Sources		Alt+A									
🚳 Bitstream Settings		4													
🕍 Generate Bitstream															
Open Hardware Manager															
Se Launch MPACT		🔜 Tcl Console 🖉 Messages 🛛 🔍 Log 🕒 Rep	orts	🖄 Design Runs 🛛											
Open Example															1.::

Figure 1-36: Open IP Example Design

10. This option creates a new Vivado project. Selecting the menu brings up a dialog box, which guides you to the directory for a new design project. Select a directory (or use the defaults) and click **OK**.

This launches a new Vivado project with all example design files and a copy of the IP. This project has example_top as the Implementation top directory, and sim_tb_top as the Simulation top directory, as shown in Figure 1-37.

🍌 mig_7series_0_example - [c:/Use	rs/avdhesh/project_23/mig_7series_0_example/mig_7series_0_example.xpr] - Yvvado 2013.3	×
File Edit Flow Tools Window La	Qr Search commands	
🯄 😂 📾 🖉 🐘 🖄 🗙 🗞	🕨 🚵 🚳 💥 🔀 🕼 🔁 Defailt Layout 🥣 🗶 🗞 🔍 🔍 Real	dy
Flow Navigator «	Project Manager - mig_Zseries_0_example	×
Q 🔀 🛱	Sources _ □ Ľ × [∑Project Summary x] □ Ľ >	\sim
		-
Project Manager	B Project Sectings	
10 Project Settings	Project name: mg_/series_v2_0_traffic_gen_top (mg_/series_v2_0_traffic_gen_top.v) (2)	
Add Sources	-we unit men pattern dr. mig Series v2.0 mit men pattern dr. (mig Series v2.0 mit men traff care (mig Series v2.0 mit Traff ca	
🔐 IP Catalog	Gend Aftor mig_Zeeries_v2_0_aftor (mig_Zeeries_v2_0_aftor) Topocupat. National Actions and actions an	
 IP Integrator 	⊕ eu c_gen-ming Zeeties v.2.0. cmd. gen (ming Zeeties v.2.0. cmd. gen. v) (4)	
🕂 Create Block Design	Board	
Doen Block Design	🗄 🐵 write_data_path - mig_Zenries_v2_0_write_data_path (mig_Zenries_v2_0_write_data_path - mig_Zenries_v2_0_write_data_path - Display name: Kintex-7 KC705 Evaluation Platform	
Separate Block Design	- we (d ysaus - mg_zeres _v_20_d ysaus (mg_zeres _v_20_d ysaus (mg_zeres _v_20_d ysaus (mg_zeres _v_20) = Board name: xiinx.com/kintex7kc2051.1	HP.
•	🖶 🔂 Configuration Files (1) 🕴 Board File: W:\txbuilds\2013.3_daly_latest\instals\nt64\Wado\2013.3\data\boards\kintex7\KC705\1_1\board.xml	
 Simulation 	Image: Constraints URL: www.xdinx.com/kr205	-1
🚳 Simulation Settings	Board overview: The KC705 board is intended to showcase and demonstrate Kinker-7 technology. The KC705 board utilizes Xink Xinker-X 7 XCX252F1-F6 biochides Grabit Thinker Children State Monte State Monte State Xinker 7 and the State Xinker Xinker Flash	
🔍 Run Simulation	Debus space in mode space in the debus space in the	
 RTL Analysis 	Synthesis	
Open Elaborated Design	Status; 🗢 Not started Status	
4 Sunthariz	Mesages: No errors or warnings Mesages: No errors or warnings	
Synchold Synchold	Hierarchy IP Sources Libraries Comple Order Part: xc7k325fff900-2 Part: xc7k325fff900-2	-
Synthesis Security	& Sources Templates	
Den Synthesized Design	Design Runs	
	Name Part Constraints Strategy Status Progress Start Elapsed Failed Routes WNS TNS WHS THS	τŀ
 Implementation 	□ ⇒ synth_1 xc7k329tffg00-2 constrs_1 Vivado Synthesis 2013) Not started 0%	1
Implementation Settings	-> impl_1 xc7k325tffg900-2 constrs_1 Wixado Implementation Defaults (Wixado Implementation 2013) Not started 0%	
Run Implementation		
Open Implemented Design		
Program and Debug		
🍪 Bitstream Settings		
📸 Generate Bitstream	*	
Den Hardware Manager		al
Launch iMPACT	📓 Td Console 💿 Messages 🔍 Log 🔚 Reports 💪 Design Runs	-
		-

Figure 1-37: **Example Design Project**

11. Click **Generate Bitstream** under **Project Manager > Program and Debug** to generate the BIT file for the generated design.

The <project directory>/<project directory>.runs/ impl_1 directory includes all report files generated for the project after running the implementation. It is also possible to run the simulation in this project.

12. Recustomization of the MIG IP core can be done by using the **Recustomize IP** option. It is not recommended to recustomize the IP in the example_design project. The correct solution is to close the example_design project, go back to original project and customize there. Right-click the XCI file and click **Recustomize IP** (Figure 1-38) to open the MIG GUI and regenerate the design with the preferred options.

🍌 mig_7series_0_example - [c:/Us	ers/avdhesh/project_23/mig_7	seri	es_0_example/mig_7series_0	_example.	kpr] - Vivado 20	13.3										
File Edit Flow Tools Window L	ayout View Help											0	Q Searc	n commands	-	
🯄 🔁 IO UT 🗟 🎼 🗙 🗞	🕨 🐮 🚳 🗞 🔽 🧔 🔚	Defa	ult Layout 🔹 🗶 🔖	🎉 🎉											Re	zady
Flow Navigator	Project Manager - mig_7series_I	0_ex	ample													×
🔍 🖾 歳	Sources		- 0 2	×Σ	Project Summa	ry X										×
4. Droject Manager	🔍 🛣 🛱 🖄 🔂 📓 🛃				Project Settin	qs									Edit 🛠	
Project Hanager Project Settings	E Design Sources (2)			- 😂	Project name:	min Zseries 0 example									_	111
Add Sources		6	Source Node Properties	Ctrl+E	roduct family:	Kintex-7										
IP Catalog	🗈 🔂 Constraints	<u>ex</u>	Re-customize IP		Project part:	Kintex-7 KC705 Evaluation Platform (xc7k325tffq9	00-2)								
	H-C Simulation Sources (1)		Generate Output Products		op module nam	e: mig 7series 0										
 IP Integrator 			Reset Output Products		Board										\$	
🚜 Create Block Design			Update IP)isplay pamer	Kintey-7 KC705 Evaluation Platform										1
💕 Open Black Design			Copy IP		Board name:	xilinx.com;kintex7;kc705;1.1										
Generate Block Design	Hierarchy IP Sources Librarie	₩	Open IP Example Design		Joard file:	W:\xbuilds\2013.3_daily_latest\installs	nt64\Vivado	\2013.3\data\boar	ds\kintex7\KC705\	1_1\board.xm	nl					
 Simulation 	Sources V Templates		IP Documentation		JRL:	www.xilinx.com/kc705										
o Simulation Settings	Source File Properties		Replace File		Joard overview:	'The KC705 board is intended to showc	ase and dem	onstrate Kintex-7 t	echnology. The KC	705 board util	ilizes Xilinx Ki	intex-7 XC7K325T	FFG900	device. The bo	and	
Run Simulation	← → 39 k	Θ	Copy File Into Project			Debug connectors and RS232 serial por	./PHY, 512Mt t.'	S DUR3 SURAM SOL	21MM memory, 128	MB BPI Linear	r Hash, 128	MB of Platform Ha	ish, 1KB I	C EEPROM, CH	20	
	🚱 mig_7series_0.xci		Copy All Files Into Project	Alt+I										-		
 RTL Analysis Const Clabourbod During 	Vendor: Xilinx, Inc.	~	Remove File from Project	Delete	synthesis			×	Implementati	ion					~	
Den Elaborated Design	IP library: ip		Enable File	AIC+Equal:	Status: 🔿	Not started			Status:	🔶 N	lot started					
4 Synthesis	IP state: Generated		Disable File	AIC+MINUS	Messages: No	errors or warnings			Messages:	No err	ors or warni	ings				
🏀 Synthesis Settings	Conserval Desparations ID	~	Hierarchy Update		Part: xc7	%325tffg900-2			Part:	xc7k32	25tffg900+2					
📚 Run Synthesis	deneral Properties IP	æ	Refresh Herarchy		Strategy: Wy	ado Synthesis Defaults			Strategy	Muade	n Implement	ation Defaulte				
Open Synthesized Design	Design Runs		Set as Top											-		×
4 Implementation	Name Name		Set Ele Type		-	Strategy	Status	Progress	S	itart	Elapsed	Failed Routes	WNS	TNS WHS	THS	TPW
Implementation Settions	Synth_1		Set Lised In		Synthesis Defai	ults (Vivado Synthesis 2013) Defaults (Vivado Implementation 2013)	Not started Not started		0% 0%							
Run Implementation			Edit Construinte Cate		-	(
D Doen Inclemented Design	•		Edit Constraints Sets													
		-	Add General		-											
Program and Debug		89	Add Sources	AK+A												
6 Bitstream Settings	4															
🚮 Generate Bitstream	7															
Open Hardware Manager															J	
Launch IMPACT	📃 🔚 Tcl Console 💭 Messages	5 L B	🗟 Log 🔄 Reports 🛛 🖄 Design I	luns												
Re-customize the selected core																

Figure 1-38: **Recustomize IP**

Directory Structure and File Descriptions

Output Directory Structure

The output directory structure of the selected Memory Controller (MC) design from the MIG tool is shown here. In the <component name> directory, three folders are created:

- docs
- example_design
- user_design

Directory and File Contents

The 7 series FPGAs core directories and their associated files are listed in this section for Vivado implementations.

<component name>/example_design/

The example_design folder contains four folders, namely, par, rtl, sim, and synth.

example_design/rtl

This directory contains the example design (Table 1-1).

Table 1-1:	Files in	example_	_design/	'rtl	Directory
------------	----------	----------	----------	------	-----------

Name	Description
example_top.v/vhd	This top-level module serves as an example for connecting the user design to the 7 series FPGAs memory interface core.

example_design/rtl/traffic_gen

This directory contains the traffic generator that provides the stimulus to the 7 series FPGAs Memory Controller (Table 1-2).

Name ⁽¹⁾	Description
memc_traffic_gen.v	This is the top-level of the traffic generator.
cmd_gen.v	This is the command generator. This module provides independent control of generating the types of commands, addresses, and burst lengths.
cmd_prbs_gen.v	This is a pseudo-random binary sequence (PRBS) generator for generating PRBS commands, addresses, and burst lengths.
memc_flow_vcontrol.v	This module generates flow control logic between the Memory Controller core and the cmd_gen, read_data_path, and write_data_path modules.
read_data_path.v	This is the top-level for the read datapath.
read_posted_fifo.v	This module stores the read command that is sent to the Memory Controller, and its FIFO output is used to generate expect data for read data comparisons.
rd_data_gen.v	This module generates timing control for reads and ready signals to memc_flow_vcontrol.v.
write_data_path.v	This is the top-level for the write datapath.
wr_data_g.v	This module generates timing control for writes and ready signals to memc_flow_vcontrol.v.
s7ven_data_gen.v	This module generates different data patterns.
a_fifo.v	This is a synchronous FIFO using LUT RAMs.
data_prbs_gen.v	This is a 32-bit linear feedback shift register (LFSR) for generating PRBS data patterns.
init_mem_pattern_ctr.v	This module generates flow control logic for the traffic generator.
traffic_gen_top.v	This module is the top-level of the traffic generator and comprises the memc_traffic_gen and init_mem_pattern_ctr modules.

Table 1-2: Files in example_design/rtl/traffic_gen Directory

Notes:

1. All file names are prefixed with the MIG core version number. For example, the MIG 4.1 release module name of cmd_gen in generated output is now mig_7series_v4_1_cmd_gen.

<component name>/example_design/par

Table 1-3 lists the modules in the example_design/par directory.

Table 1-3:	Files in example_	_design/par	Directory
------------	-------------------	-------------	-----------

Name	Description
example_top.xdc	This is the XDC for the core and the example design.

<component name>/example_design/sim

Table 1-4 lists the modules in the example_design/sim directory.

Name	Description
ddr2_model.v ddr3_model.v	These are the DDR2 and DDR3 SDRAM models.
ddr2_model_parameters.vh ddr3_model_parameters.vh	These files contain the DDR2 and DDR3 SDRAM model parameter setting.
ies_run.sh ⁽¹⁾	Linux Executable file for simulating the design using IES simulator.
vcs_run.sh ⁽¹⁾	Linux Executable file for simulating the design using VCS simulator.
readme.txt (1)	Contains the details and prerequisites for simulating the designs using Mentor Graphics Questa Advanced Simulator, IES, and VCS simulators.
sim_tb_top.v	This is the simulation top file.

Table 1-4: Files in example_design/sim Directory

Notes:

1. The ies_run.sh and vcs_run.sh files are generated in the folder mig_7series_0_ex/imports when the example design is created using **Open IP Example Design** for the design generated with **Component Name** entered in Vivado IDE as mig_7series_0.

<component name>/user_design

The user_design folder contains the following:

- rtl and xdc folders
- Top-level wrapper module <component_name>.v/vhd
- Top-level modules <component_name>_mig.v/vhd and
 <component_name>_mig_sim.v/vhd

The top-level wrapper file <component_name>.v/vhd has an instantiation of top-level file <component_name>_mig.v/vhd.

Top-level files <component_name>_mig.v/vhd and <component_name>_mig_sim.v/vhd have the same module name as <component_name>_mig. These two files are same in all respects except that the file <component_name>_mig_sim.v/vhd has parameter values set for simulation where calibration is in fast mode viz., SIM BYPASS INIT CAL = "FAST" etc.

IMPORTANT: The top-level file <component_name>_mig.v/vhd is used for design synthesis and implementation, whereas the top-level file <component_name>_mig_sim.v/vhd is used in simulations.

The top-level wrapper file serves as an example for connecting the user_design to the MIG core.

user_design/rtl/clocking

This directory contains the user design (Table 1-5).

Name ⁽¹⁾	Description
clk_ibuf.v	This module instantiates the input clock buffer.
iodelay_ctrl.v	This module instantiates IDELAYCNTRL primitives needed for IDELAY use.
infrastructure.v	This module helps in clock generation and distribution, and reset synchronization.

Table 1-5: Files in user_design/rtl/clocking Directory

Notes:

1. All file names are prefixed with the MIG core version number. For example, for the MIG 4.1 release module name of clk_ibuf in generated output is now mig_7series_v4_1_clk_ibuf.

user_design/rtl/controller

This directory contains the Memory Controller that is instantiated in the example design (Table 1-6).

Name ⁽¹⁾	Description
arb_mux.v	This is the top-level module of arbitration logic.
arb_row_col.v	This block receives requests to send row and column commands from the bank machines and selects one request, if any, for each state.
arb_select.v	This module selects a row and column command from the request information provided by the bank machines.
bank_cntrl.v	This structural block instantiates the three subblocks that comprise the bank machine.
bank_common.v	This module computes various items that cross all of the bank machines.
bank_compare.v	This module stores the request for a bank machine.
bank_mach.v	This is the top-level bank machine block.
bank_queue.v	This is the bank machine queue controller.
bank_state.v	This is the primary bank state machine.
col_mach.v	This module manages the DQ bus.
mc.v	This is the top-level module of the Memory Controller.
mem_intfc.v	This top-level memory interface block instantiates the controller and the PHY.
rank_cntrl.v	This module manages various rank-level timing parameters.
rank_common.v	This module contains logic common to all rank machines. It contains a clock prescaler and arbiters for refresh and periodic read.
rank_mach.v	This is the top-level rank machine structural block.

Table 1-6: Files in user_design/rtl/controller Directory

Table 1-6:	Files in user	design/rtl/controller	Directory (Cont'd)
	Thes maser_		

Name ⁽¹⁾	Description
round_robin_arb.v	This is a simple round-robin arbiter.

Notes:

1. All file names are prefixed with the MIG core version number. For example, for the MIG 4.1 release module name of arb_mux in generated output is now mig_7series_v4_1_arb_mux.

user_design/rtl/ip_top

This directory contains the user design (Table 1-7).

Table 1-7: Files in user_design/rtl/ip_top Directory

Name ⁽¹⁾	Description
mem_intfc.v	This is the top-level memory interface block that instantiates the controller and the PHY.
memc_ui_top.v	This is the top-level Memory Controller module.

Notes:

1. All file names are prefixed with the MIG core version number. For example, for the MIG 4.1 release module name of mem_intfc in generated output is now mig_7series_v4_1_mem_intfc.

user_design/rtl/phy

This directory contains the 7 series FPGA memory interface PHY implementation (Table 1-8).

Table 1-8:	Files in user_	_design/rtl/	′phy	Directory
------------	----------------	--------------	------	-----------

Name ⁽¹⁾	Description	
ddr_byte_group_io	This module contains the parameterizable I/O logic instantiations and the I/O terminations for a single byte lane.	
ddr_byte_lane	This module contains the primitive instantiations required within an output or input byte lane.	
ddr_calib_top	This is the top-level module for the memory physical layer interface.	
ddr_if_post_fifo	This module extends the depth of a PHASER IN_FIFO up to four entries.	
ddr_mc_phy	This module is a parameterizable wrapper instantiating up to three I/O banks, each with 4-lane PHY primitives.	
ddr_mc_phy_wrapper	This wrapper file encompasses the MC_PHY module instantiation and handles the vector remapping between the MC_PHY ports and your DDR2 or DDR3 ports.	
ddr_of_pre_fifo	This module extends the depth of a PHASER OUT_FIFO up to four entries.	
ddr_phy_4lanes	This module is the parameterizable 4-lane PHY in an I/O bank.	
ddr_phy_ck_addr_cmd_delay	This module contains the logic to provide the required delay on the address and control signals.	
ddr_phy_dqs_delay	This module contains the DQS to DQ phase offset logic.	

Name ⁽¹⁾	Description
ddr_phy_dqs_found_cal	This module contains the Read leveling calibration logic (PHASER_IN DQSFOUND calibration logic).
ddr_phy_init	This module contains the memory initialization and overall master state control during initialization and calibration.
ddr_phy_rdlvl	This module contains the Read leveling Stage1 calibration logic (Window detection with PRBS pattern).
ddr_phy_top	This is the top-level module for the physical layer.
ddr_phy_wrcal	This module contains the write calibration logic.
ddr_phy_wrlvl	This module contains the write leveling logic.
ddr_prbs_gen	This PRBS module uses a many-to-one feedback mechanism for 2n sequence generation.

Table 1-8: Files in user_design/rtl/phy Directory (Cont'd)

Notes:

1. All file names are prefixed with the MIG core version number. For example, for the MIG 4.1 release module name of ddr_byte_group_io in generated output is now mig_7series_v4_1_ddr_byte_group_io.

user_design/rtl/ui

This directory contains the user interface code that mediates between the native interface of the Memory Controller and user applications (Table 1-9).

Name ⁽¹⁾	Description
ui_cmd.v	This is the user interface command port.
ui_rd_data.v	This is the user interface read buffer. It reorders read data returned from the Memory Controller back to the request order.
ui_wr_data.v	This is the user interface write buffer.
ui_top.v	This is the top-level of the Memory Controller user interface.

Table 1-9: Files In user_design/rtl/ui Directory

Notes:

1. All file names are prefixed with the MIG core version number. For example, for the MIG 4.1 release module name of ui_cmd in generated output is now mig_7series_v4_1_ui_cmd.

<component name>/user_design/xdc

Table 1-10 lists the modules in the user_design/xdc directory.

Table 1-10:	Files in user	_design/xdc	Directory
-------------	---------------	-------------	-----------

Name	Description
<component_name>.xdc</component_name>	This is the XDC for the core and the user design.

Verify Pin Changes and Update Design

This feature verifies the input XDC for bank selections, byte selections, and pin allocation. It also generates errors and warnings in a separate dialog box when you click **Validate** on the page. This feature is useful to verify the XDC for any pinout changes made after the design is generated from the MIG tool. You must load the MIG tool generated <code>.prj</code> file, the original <code>.prj</code> file without any modifications, and the XDC that needs to be verified. In the Vivado Design Suite, the recustomization option should be selected to reload the project. The design is allowed to generate only when the MIG DRC is met. Ignore warnings about validating the pinout, which is the intent. Just validating the XDC is not sufficient; it is mandatory to proceed with design generation to get the XDC with updated clock and phaser related constraints and RTL top-level module for various updated Map parameters.

The Update Design feature is required in the following scenarios:

- A pinout is generated using an older version of the MIG tool and the design is to be revised to the current version of MIG. In MIG, the pinout allocation algorithms have been changed for certain MIG designs.
- A pinout is generated independent of the MIG tool or is modified after the design is generated. When a design is generated from the MIG tool, the XDC and HDL code are generated with the correct constraints.

Here are the rules verified from the input XDC:

- If a pin is allocated to more than one signal, the tool reports an error. Further verification is not done if the XDC does not adhere to the uniqueness property.
- Verified common rules:
 - The interface can span across a maximum of three consecutive banks.
 - Interface banks should reside in the same column of the FPGA.
 - Interface banks should be either High Performance (HP) or High Range (HR). HP banks are used for the high frequencies.
 - The chosen interface banks should have the same SLR region if the chosen device is of stacked silicon interconnect technology.
 - V_{REF} I/Os should be used as GPIOs when an internal V_{REF} is used or if there are no inout and input ports in a bank.
 - The I/O standard of each signal is verified as per the configuration chosen.
 - The VCCAUX I/O of each signal is verified and provides a warning message if the provided VCCAUX I/O is not valid.
- Verified data pin rules:
 - Pins related to one strobe set should reside in the same byte group.
 - The strobe pair (DQS) should be allocated to the DQS I/O pair.

- An FPGA byte lane should not contain pins related to two different strobe sets.
- \circ V_{REF} I/O can be used only when the internal V_{REF} is chosen.
- Verified address pin rules:
 - Address signals cannot mix with data bytes except for the ddr3_reset_n signal for DDR3 SDRAM interfaces.
 - Address signals cannot mix with data bytes except for the ddr2_reset_n signal for DDR2 SDRAM interfaces. The ddr2_reset_n port exists for RDIMMs only.
 - It can use any number of isolated byte lanes
- Verified system pin rules:
 - System clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - These pins must be allocated in the Memory banks column.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Reference clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Status signals:
 - The sys_rst signal should be allocated in the bank where the V_{REF} I/O is unallocated or the internal V_{REF} is used.
 - These signals should be allocated in the non-memory banks because the I/O standard is not compatible. The I/O standard type should be LVCMOS with at least 1.8V.
 - These signals can be allocated in any of the columns (there is no hard requirement because these signals should reside in a memory column); however, it is better to allocate closer to the chosen memory banks.

Quick Start Example Design

Overview

After the core is successfully generated, the example design HDL can be processed through the Xilinx implementation toolset.

Implementing the Example Design

For more information on using an IP example design, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 7].

Simulating the Example Design (for Designs with the Standard User Interface)

The MIG tool provides a synthesizable test bench to generate various traffic data patterns to the Memory Controller (MC). This test bench consists of a memc_ui_top wrapper, a traffic_generator that generates traffic patterns through the user interface to a ui_top core, and an infrastructure core that provides clock resources to the memc_ui_top core. A block diagram of the example design test bench is shown in Figure 1-39.

Figure 1-39: Synthesizable Example Design Block Diagram

Figure 1-40 shows the simulation result of a simple read and write transaction between the tb_top and memc_intfc modules.

Figure 1-40: User Interface Read and Write Cycle

Traffic Generator Operation

The traffic generator module contained within the synthesizable test bench can be parameterized to create various stimulus patterns for the memory design. It can produce repetitive test patterns for verifying design integrity as well as pseudo-random data streams that model real-world traffic.

You can define the address range through the BEGIN_ADDRESS and END_ADDRESS parameters. The Init Memory Pattern Control block directs the traffic generator to step sequentially through all the addresses in the address space, writing the appropriate data value to each location in the memory device as determined by the selected data pattern. By default, the test bench uses the address as the data pattern, but the data pattern in this example design can be modified using vio_data_mode signals that can be modified within the Vivado logic analyzer feature.

When the memory has been initialized, the traffic generator begins stimulating the user interface port to create traffic to and from the memory device. By default, the traffic generator sends pseudo-random commands to the port, meaning that the instruction sequences (R/W, R, W) and addresses are determined by PRBS generator logic in the traffic generator module.

The read data returning from the memory device is accessed by the traffic generator through the user interface read data port and compared against internally generated "expect" data. If an error is detected (that is, there is a mismatch between the read data and expected data), an error signal is asserted and the readback address, readback data, and expect data are latched into the error_status outputs.

Modifying the Example Design

The provided example_top design comprises traffic generator modules and can be modified to tailor different command and data patterns. A few high-level parameters can be modified in the example_top.v/vhd module. Table 1-11 describes these parameters.

Parameter Description		Value	
FAMILY	Indicates the family type.	"VIRTEX7"	
MEMORY_TYPE	Indicate the Memory Controller type.	"DDR2", "DDR3"	
nCK_PER_CLK	This is the Memory Controller clock to DRAM clock ratio.	4, 2 (depends on the PHY to Controller Clock ratio chosen in the GUI)	
NUM_DQ_PINS	The is the total memory DQ bus width.	This parameter supports DQ widths from 8 to a maximum of 72 in increments of 8. The available maximum DQ width is frequency dependent on the selected memory device.	
MEM_BURST_LEN	This is the memory data burst length.	This must be set to 8.	
MEM_COL_WIDTH	This is the number of memory column address bits.	This option is based on the selected memory device.	
DATA_WIDTH	This is the user interface data bus width.	For nCK_PER_CLK = 4, DATA_WIDTH = NUM_DQ_PINS × 8.	
ADDR_WIDTH	This is the memory address bus width. It is equal to RANK_WIDTH + BANK_WIDTH + ROW_WIDTH + COL_WIDTH.		
MASK_SIZE	This parameter specifies the mask width in the user interface data bus.		
PORT_MODE	Sets the port mode.	BI_MODE: Generate a WRITE data pattern and monitor the READ data for comparison.	
BEGIN_ADDRESS	Sets the memory start address boundary.	This parameter defines the start boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.	
END_ADDRESS	Sets the memory end address boundary.	This parameter defines the end boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.	

 Table 1-11:
 Traffic Generator Parameters Set in the example_top Module

Parameter	Description	Value	
PRBS_EADDR_MASK_POS	Sets the 32-bit AND MASK position.	This parameter is used with the PRBS address generator to shift random addresses down into the port address space. The END_ADDRESS value is ANDed with the PRBS address for bit positions that have a 1 in this mask.	
PRBS_SADDR_MASK_POS	Sets the 32-bit OR MASK position.	This parameter is used with the PRBS address generator to shift random addresses up into the port address space. The START_ADDRESS value is ORed with the PRBS address for bit positions that have a 1 in this mask	
CMD_PATTERN	This parameter sets the command pattern circuits to be generated. For a larger device, the CMD_PATTERN can be set to "CGEN_ALL." This parameter enables all supported command pattern circuits to be generated. However, it is sometimes necessary to limit a specific command pattern because of limited resources in a smaller device.	 Valid settings for this signal are: CGEN_FIXED: The address, burst length, and instruction are taken directly from the fixed_addr_i, fixed_bl_i, and fixed_instr_i inputs. CGEN_SEQUENTIAL: The address is increased sequentially, and the increment is determined by the data port size. CGEN_PRBS: A 32-stage Linear Feedback Shift register (LFSR) generates pseudo-random addresses, burst lengths, and instruction sequences. The seed can be set from the 32-bit cmd_seed input. CGEN_ALL (default): This option turns on all of the options above and allows addr_mode_i, instr_mode_i, and bl_mode_i to select the type of generation during run time. 	

Table 1-11:	Traffic Generator	Parameters Set in	the example_	top Module	(Cont'd)
-------------	-------------------	-------------------	--------------	------------	----------

Parameter	Description	Value	
DATA_PATTERN	This parameter sets the data pattern circuits to be generated through RTL logic. For larger devices, the DATA_PATTERN can be set to "DGEN_ALL," enabling all supported data pattern circuits to be generated. In hardware, the data pattern is selected and/or changed using vio_data_value_mode. The pattern can only be changed when DATA_PATTERN is set to DGEN_ALL.	 Valid settings for this parameter are: ADDR (default): The address is used as a data pattern. HAMMER: All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS. WALKING1: Walking 1s are on the DQ pins and the starting position of 1 depends on the address value. WALKING0: Walking 0s are on the DQ pins and the starting position of 0 depends on the address value. NEIGHBOR: The Hammer pattern is on all DQ pins except one. The address determines the exception pin location. PRBS: A 32-stage LFSR generates random data and is seeded by the starting address. DGEN_ALL: This option turns on all available options: 0x1: FIXED - 32 bits of fixed_data. 0x2: ADDRESS - 32 bits address as data. 0x3: HAMMER 0x4: SIMPLE8 - Simple eight data pattern that repeats every eight words. 0x5: WALKING1s - Walking 1s are on the DQ pins. 0x6: WALKING1s - Walking 0s are on the DQ pins. 0x7: PRBS - A 32-stage LFSR generates random data. 0x9: SLOW HAMMER - This is the slow MHz hammer data pattern. 0xA: PHY_CALIB pattern - 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero. 	
CMDS_GAP_DELAY	This parameter allows pause delay between each user burst command.	Valid values: 0 to 32.	
SEL_VICTIM_LINE	Select a victim DQ line whose state is always at logic High.	This parameter only applies to the Hammer pattern. Valid settings for this parameter are 0 to NUM_DQ_PINS. When value = NUM_DQ_PINS, all DQ pins have the same Hammer pattern.	

Table 1-11: Traffic Generator Parameters Set in the example_top Module (Cont'd)

Parameter	Description	Value
EYE_TEST	Force the traffic generator to only generate writes to a single location, and no read transactions are generated.	Valid settings for this parameter are "TRUE" and "FALSE." When set to "TRUE," any settings in vio_instr_mode_value are overridden.

Notes:

1. The traffic generator might support more options than are available in the 7 series Memory Controller. The settings must match supported values in the Memory Controller.

The command patterns instr_mode_i, addr_mode_i, bl_mode_i, and data_mode_i of the traffic_gen module can each be set independently. The provided init_mem_pattern_ctr module has interface signals that allow you to modify the command pattern in real-time using the Vivado debug logic core virtual I/O (VIO).

This is the varying command pattern:

- 1. Set vio_modify_enable to 1.
- 2. Set vio_addr_mode_value to:

1: Fixed_address.

- 2: PRBS address.
- 3: Sequential address.
- 3. Set vio_bl_mode_value to:

1: Fixed bl.

2: PRBS bl. If bl_mode value is set to 2, the addr_mode value is forced to 2 to generate the PRBS address.

4. Set vio_data_mode_value to:

0: Reserved.

1: FIXED data mode. Data comes from the fixed_data_i input bus.

2: DGEN_ADDR (default). The address is used as the data pattern.

3: DGEN_HAMMER. All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS.

4: DGEN_NEIGHBOR. All 1s are on the DQ pins during the rising edge of DQS except one pin. The address determines the exception pin location.

5: DGEN_WALKING1. Walking 1s are on the DQ pins. The starting position of 1 depends on the address value.

6: DGEN_WALKINGO. Walking Os are on the DQ pins. The starting position of 0 depends on the address value.

7: DGEN_PRBS. A 32-stage LFSR generates random data and is seeded by the starting address. This data mode only works with PRBS address mode or Sequential address mode.

Modifying Port Address Space

The address space for a port can be modified by changing the BEGIN_ADDRESS and END_ADDRESS parameters found in the top-level test bench file. These two values must be set to align to the port data width. The two additional parameters, PRBS_SADDR_MASK_POS and PRBS_EADDR_MASK_POS, are used in the default PRBS address mode to ensure that out-of-range addresses are not sent to the port. PRBS_SADDR_MASK_POS creates an OR mask that shifts PRBS-generated addresses with values below BEGIN_ADDRESS up into the valid address space of the port. PRBS_SADDR_MASK_POS should be set to a 32-bit value equal to the BEGIN_ADDRESS parameter. PRBS_EADDR_MASK_POS creates an AND mask that shifts PRBS-generated addresses with values above END_ADDRESS down into the valid address space of the port. PRBS_EADDR_MASK_POS should be set to a 32-bit value, where all bits above the most-significant address bit of END_ADDRESS are set to 1 and all remaining bits are set to 0. Table 1-12 shows some examples of setting the two mask parameters.

SADDR	EADDR	PRBS_SADDR_MASK_POS	PRBS_EADDR_MASK_POS
0x1000	0xFFFF	0x00001000	0xFFFF0000
0x2000	0xFFFF	0x00002000	0xFFFF0000
0x3000	0xFFFF	0x00003000	0xFFFF0000
0x4000	0xFFFF	0x00004000	0xFFFF0000
0x5000	0xFFFF	0x00005000	0xFFFF0000
0x2000	0x1FFF	0x00002000	0xFFFFE000
0x2000	0x2FFF	0x00002000	0xFFFFD000
0x2000	0x3FFF	0x00002000	0xFFFFC000
0x2000	0x4FFF	0x00002000	0xFFFF8000
0x2000	0x5FFF	0x00002000	0xFFFF8000
0x2000	0x6FFF	0x00002000	0xFFFF8000
0x2000	0x7FFF	0x00002000	0xFFFF8000
0x2000	0x8FFF	0x00002000	0xFFFF0000
0x2000	0x9FFF	0x00002000	0xFFFF0000

Table 1-12: Example Settings for Address Space and PRBS Masks

	•	•	· · ·
SADDR	EADDR	PRBS_SADDR_MASK_POS	PRBS_EADDR_MASK_POS
0x2000	0xAFFF	0x00002000	0xFFFF0000
0x2000	0xBFFF	0x00002000	0xFFFF0000
0x2000	0xCFFF	0x00002000	0xFFFF0000
0x2000	0xDFFF	0x00002000	0xFFFF0000
0x2000	0xEFFF	0x00002000	0xFFFF0000
0x2000	0xFFFF	0x00002000	0xFFFF0000

Table 1-12: Example Settings for Address Space and PRBS Masks (Cont'd)

Traffic Generator Signal Description

Traffic generator signals are described in Table 1-13.

Table 1-13:	Traffic Generator	Signal	Descriptions
<i>iubic</i> <u>1</u> <u>1</u> <u>5</u> .		0.9.101	Descriptions

Signal	Direction	Description
clk_i	Input	This signal is the clock input.
memc_init_done	Input	This is the input status signal from the Memory Controller to indicate that it is ready accept traffic.
manual_clear_error	Input	Input signal to clear error flag.
memc_cmd_addr_o[31:0]	Output	Start address for current transaction.
memc_cmd_en_o	Output	This active-High signal is the write-enable signal for the Command FIFO.
memc_cmd_full_i	Input	This connects to inversion of app_rdy of Memory Controller. When this input signal is asserted, TG continues to assert the memc_cmd_en_o, memc_cmd_addr_o value and memc_cmd_instr until the memc_cmd_full_i is deasserted.
memc_cmd_instr[2:0]	Output	Command code for current instruction. Command Write: 3'b000 Command Read: 3'b001
memc_rd_data_i[DWIDTH – 1:0]	Input	Read data value returning from memory.
memc_rd_empty_i	Input	This active-High signal is the empty flag for the Read Data FIFO in Memory Controller. It indicates there is no valid data in the FIFO.
memc_rd_en_o	Output	This signal is only used in MCB-like interface.
memc_wr_data_o[DWIDTH – 1:0]	Output	Write data value to be loaded into Write Data FIFO in Memory Controller.
memc_wr_en_o	Output	This active-High signal is the write enable for the Write Data FIFO. It indicates that the value on memc_wr_data is valid.
memc_wr_full_i	Input	This active-High signal is the full flag for the Write Data FIFO from Memory Controller. When this signal is High, TG holds the write data value and keeps assertion of memc_wr_en until the memc_wr_full_i goes Low.
qdr_wr_cmd_o	Output	This signal is only used to send write commands to the QDR II+ user interface.

Signal	Direction	Description
vio_modify_enable	Input	Allow vio_xxxx_mode_value to alter traffic pattern.
vio_modify_enable vio_data_mode_value[3:0]	Input	 Allow vio_xxxx_mode_value to alter traffic pattern. Valid settings for this signal are: 0x0: Reserved. 0x1: FIXED – 32 bits of fixed_data as defined through fixed_data_i inputs. 0x2: ADDRESS – 32 bits address as data. Data is generated based on the logical address space. If a design has a 256-bit user data bus, each write beat in the user bus would have a 256/8 address increment in byte boundary. If the starting address is 1,300, the data is 1,300, followed by 1,320 in the next cycle. To simplify the logic, the user data pattern is a repeat of the increment of the address value Bits[31:0]. 0x3: HAMMER – All 1s are on DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS, except the VICTIM line as defined in the parameter "SEL_VICTIM_LINE." This option is only valid if parameter DATA_PATTERN = "DGEN_HAMMER" or "DGEN_ALL." 0x4: SIMPLE8 – Simple 8 data pattern that repeats every 8 words. The patterns can be defined by the "simple_datax" inputs. 0x5: WALKING1s – Walking 1s are on the DQ pins. The starting position of 1 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_ALL." 0x6: WALKING0s – Walking 0s are on the DQ pins. The starting position of 0 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING0" or "DGEN_ALL." 0x7: PRBS – A 32-stage LFSR generates random data and is
		 seeded by the starting address. This option is only valid if the parameter DATA_PATTERN = "DGEN_PRBS" or "DGEN_ALL." 0x9: SLOW HAMMER – This is the slow MHz hammer data pattern. 0xA: PHY_CALIB pattern – 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero. This is only valid in the Virtex[®]-7 family.
		Valid settings for this signal are:
vio addr mode value[2:0]	Input	 0x1: FIXED address mode. The address comes from the fixed_addr_i input bus. With FIXED address mode, the data_mode is limited to the fixed_data_input. No PRBS data pattern is generated.
vio_auur_mode_value[2:0]	mput	 UX2: PRBS address mode (Default). The address is generated from the internal 32-bit LFSR circuit. The seed can be changed through the cmd_seed input bus.
		 0x3: SEQUENTIAL address mode. The address is generated from the internal address counter. The increment is determined by the user interface port width.

Table 1-13: Traffic Generator Signal Descriptions (Cont'd)

Signal	Direction	Description
		Valid settings for this signal are:
		• 0x1: Command type (read/write) as defined by fixed_instr_i.
vio_instr_mode_value[3:0]	Input	0x2: Random read/write commands.
		OxE: Write only at address zero.
		 0xF: Read only at address zero.
		Valid settings for this signal are:
	_	 0x1: Fixed burst length as defined in the fixed_bl_i inputs.
vio_bl_mode_value[3:0]	Input	 0x2: The user burst length is generated from the internal PRBS generator. Each burst value defines the number of back-to-back commands that are generated.
		Valid settings are:
vio_fixed_instr_value	Input	0x0: Write instruction
		0x1: Read instruction
vio_fixed_bl_value	Input	Valid settings are 1 to 256.
vio_pause_traffic	Input	Pause traffic generation on-the-fly.
vio_data_mask_gen	Input	This mode is only used if the data mode pattern is <i>address as data</i> . If this is enabled, a random memc_wr_mask is generated after the memory pattern has been filled in memory. The write data byte lane is jammed with 8'hFF if the corresponding memc_write_mask is asserted.
cmp_data[DWIDTH – 1:0]	Output	Expected data to be compared with read back data from memory.
cmp_data_valid	Output	Compare data valid signal.
cmp_error	Output	This compare error flag asserts whenever cmp_data is not the same as the readback data from memory.
error	Output	This signal is asserted when the readback data is not equal to the expected value.
error_status[n:0]	Output	 This signal latches these values when the error signal is asserted: [31:0]: Read start address [37:32]: Read burst length [39:38]: Reserved [40]: mcb_cmd_full [41]: mcb_wr_full [42]: mcb_rd_empty [64 + (DWIDTH - 1):64]: expected_cmp_data [64 + (2 × DWIDTH - 1):64 + DWIDTH]: read_data
simple_data0[31:0]	Input	User-defined simple data 0 for simple 8 repeat data pattern.
simple_data1[31:0]	Input	User-defined simple data 1 for simple 8 repeat data pattern.
simple_data2[31:0]	Input	User-defined simple data 2 for simple 8 repeat data pattern.
simple_data3[31:0]	Input	User-defined simple data 3 for simple 8 repeat data pattern.

Table 1-13: Traffic Generator Signal Descriptions (Cont'd)

Signal	Direction	Description
simple_data4[31:0]	Input	User-defined simple data 4 for simple 8 repeat data pattern.
simple_data5[31:0]	Input	User-defined simple data 5 for simple 8 repeat data pattern.
simple_data6[31:0]	Input	User-defined simple data 6 for simple 8 repeat data pattern.
simple_data7[31:0]	Input	User-defined simple data 7 for simple 8 repeat data pattern.
fixed_data_i[31:0]	Input	User-defined fixed data pattern.
fixed_instr_i[2:0]	Input	User-defined fixed command pattern. 000: Write command 001: Read command
fixed_bl_i[5:0]	Input	User-defined fixed burst length. Each burst value defines the number of back to back commands that are generated.

Table 1-13: Traffic Generator Signal Descriptions (Cont'd)

Memory Initialization and Traffic Test Flow

After power-up, the Init Memory Control block directs the traffic generator to initialize the memory with the selected data pattern through the memory initialization procedure.

Memory Initialization

- 1. The data_mode_i input is set to select the data pattern (for example, data_mode_i[3:0] = 0010 for the address as the data pattern).
- 2. The start_addr_i input is set to define the lower address boundary.
- 3. The end_addr_i input is set to define the upper address boundary.
- 4. The bl_mode_i is set to 01 to get the burst length from the fixed_bl_i input.
- 5. The fixed_bl_i input is set to either 16 or 32.
- 6. The instr_mode_i is set to 0001 to get the instruction from the fixed_instr_i input.
- 7. The fixed_instr_i input is set to the "WR" command value of the memory device.
- 8. The addr_mode_i is set to 11 for the sequential address mode to fill up the memory space.
- 9. The mode_load_i is asserted for one clock cycle.

When the memory space is initialized with the selected data pattern, the Init Memory Control block instructs the traffic generator to begin running traffic through the traffic test flow procedure (by default, the addr_mode_i, instr_mode_i, and bl_mode_i inputs are set to select PRBS mode).

Traffic Test Flow

1. The addr_mode_i input is set to the desired mode (PRBS is the default).

- 2. The cmd_seed_i and data_seed_i input values are set for the internal PRBS generator. This step is not required for other patterns.
- 3. The instr_mode_i input is set to the desired mode (PRBS is the default).
- 4. The bl_mode_i input is set to the desired mode (PRBS is the default).
- 5. The data_mode_i input should have the same value as in the memory pattern initialization stage detailed in Memory Initialization.
- 6. The run_traffic_i input is asserted to start running traffic.
- 7. If an error occurs during testing (for example, the read data does not match the expected data), the error bit is set until reset is applied.
- 8. Upon receiving an error, the error_status bus latches the values defined in Table 1-13, page 73.

With some modifications, the example design can be changed to allow addr_mode_i, instr_mode_i, and bl_mode_i to be changed dynamically when run_traffic_i is deasserted. However, after changing the setting, the memory initialization steps need to be repeated to ensure that the proper pattern is loaded into the memory space.

Note:

- When the chip select option is disabled, the simulation test bench always ties the memory model chip select bit(s) to zero for proper operation.
- When the data mask option is disabled, the simulation test bench always ties the memory model data mask bit(s) to zero for proper operation.

Simulating the Example Design (for Designs with the AXI4 Interface)

The MIG tool provides a synthesizable AXI4 test bench to generate various traffic patterns to the Memory Controller. This test bench consists of an instance of user design (Memory Controller) with AXI4 interface, a traffic_generator (axi4_tg) that generates traffic patterns through the AXI4 interface of the controller as shown in Figure 1-41. The infrastructure block inside the user design provides clock resources to both the controller and the traffic generator. Figure 1-41 shows a block diagram of the example design test bench. The details of the clocks in Figure 1-41 are provided in Clocking Architecture, page 119.

Figure 1-41: Synthesizable Example Design Block for AXI4 Interface

Figure 1-42 shows the simple write transaction being performed on the AXI4 interface. This transaction consists of a command phase, a data phase, and a response phase. This follows the standard AXI4 protocol.

Figure 1-42: AXI4 Interface Write Cycle

Figure 1-43 shows a simple read transaction being performed on the AXI4 interface. This transaction consists of a command phase and data phase. This follows the standard AXI4 protocol.

Figure 1-43: **AXI4 Interface Read Cycle**

The example design generated when the AXI4 interface is selected as the user interface is different compared to the standard traffic generator user interface. The intent of this synthesizable test bench is to verify the basic AXI4 transactions as well as the Memory Controller transactions. However, this test bench does not verify all Memory Controller features and is aimed at verifying the AXI4 SHIM features. Table 1-14 shows the signals of interest during verification of the AXI4 test bench. These signals can be found in the example_top module.

Signal	Description
test_cmptd	When asserted, this signal indicates that the current round of tests with random reads and writes is completed. This signal is deasserted when a new test starts.
write_cmptd	This signal is asserted for one clock indicating that the current write transaction is completed.
cmd_err	When asserted, this signal indicates that the command phase of the AXI4 transaction (read or write) has an error.
write_err	When asserted, this signal indicates that the write transaction to memory resulted in an error.
dbg_wr_sts_vld	When asserted, this signal indicates a valid status for the write transaction on the dbg_wr_sts bus. This signal is asserted even if the write transaction does not complete.
dbg_wr_sts	This signal has the status of the write transaction. The details of the status are given in Table 1-15.
read_cmptd	This signal is asserted for one clock indicating that the current read transaction is completed.
read_err	When asserted, this signal indicates that the read transaction to the memory resulted in an error.

Table 1-14: Signals of Interest During Simulation for the AXI4 Test Bench

Signal	Description
dbg_rd_sts_vld	When asserted, this signal indicates a valid status for the read transaction on the dbg_rd_sts bus. This signal is asserted even if the read transaction does not complete.
dbg_rd_sts	This signal has the status of the read transaction. The details of the status are given in Table 1-16.

 Table 1-14:
 Signals of Interest During Simulation for the AXI4 Test Bench

The initialization and the calibration sequence remain the same as that indicated in Simulating the Example Design (for Designs with the Standard User Interface), page 66. The status that is generated for a write transaction can be found in Figure 1-44.

Table 1-15: De	bug Status for	the Write	Transaction
----------------	----------------	-----------	-------------

Bits	Description
39:32	Number of beats/write transfers completed for last burst
31:21	Reserved
	Data pattern used for the current transaction:
	• 000: 5A and A5
	001: PRBS pattern
20:18	010: Walking zeros
	011: Walking ones
	• 100: All ones
	• 101: All zeros
17	Write error occurred. The write transaction could not be completed.
16	Command error occurred during a write transaction.
15:9	Reserved
	AXI wrapper write FSM state when timeout (watchdog timer should be enabled) occurs:
	3'b001: Data write transaction
8:6	3'b010: Waiting for acknowledgment for written data
	3'b011: Dummy data write transaction
	3'b100: Waiting for response from the response channel

Table 1-15:	Debug Status for the Write Transaction (Cont'd)
-------------	---

Bits	Description
5:2	Response ID for the write response
1:0	Write response received for AXI

The status generated for a read transaction is shown in Figure 1-45.

Table 1-16: Debug Status for the Read Transaction

Bits	Description
39:32	Number of beats/read transfers completed for last burst
31:30	Reserved
	Data pattern used for the current check:
	• 000: 5A and A5
	001: PRBS pattern
29:27	010: Walking zeros
	011: Walking ones
	• 100: All ones
	• 101: All zeros
26:19	Pointer value for which the mismatch occurred
18	Data mismatch occurred between the written data and read data
17	Read error occurred, read transaction could not be completed
16	Command error occurred during read transaction
15:4	Reserved
	AXI wrapper read FSM state when timeout (watchdog timer should be enabled) occurs:
3:2	2'b01: Read command transaction
	2'b10: Data read transaction
1	Incorrect response ID presented by the AXI slave
0	Read error response on AXI

Calibration and other DDR data read and write transactions are similar to what is described in Simulating the Example Design (for Designs with the Standard User Interface), page 66. The AXI4 write and read transactions are started only after the init_calib_complete signal is asserted.

Setting Up for Simulation

IMPORTANT: The Xilinx UNISIM library must be mapped into the simulator.

The test bench provided with the example design supports these pre-implementation simulations:

- The test bench, along with vendor's memory model used in the example design
- The RTL files of the Memory Controller and the PHY core, created by the MIG tool

The Questa Advanced Simulator, Vivado Simulator, IES, and VCS simulation tools are used for verification of the MIG IP core at each software release. Script files to run simulations with IES and VCS simulators are generated in MIG generated output. Simulations using Questa Advanced Simulator and Vivado simulators can be done through the Vivado Tcl Console commands or in the Vivado IDE.

IMPORTANT: Other simulation tools can be used for MIG IP core simulation but are not specifically verified by Xilinx.

Simulation Flow Using IES and VCS Script Files

To run the simulation, go to this directory:

<project_dir>/<Component_Name>_ex/imports

For a project created with the name set as project_1 and the Component Name entered in Vivado IDE as mig_7series_0, go to the directory as follows:

project_1/mig_7series_ex/imports

IES and VCS simulation scripts are meant to be executed only in Linux operating systems.

The ies_run.sh and vcs_run.sh files are the executable files for running simulations using IES and VCS simulators respectively. Library files should be added to the ies_run.sh and vcs_run.sh files respectively. See the readme.txt file for details regarding simulations using IES and VCS.

Simulation Flow Using Vivado Simulator

1. In the **Open IP Example Design** Vivado project, under **Flow Navigator**, select **Simulation Settings** (Figure 1-46).

neral	Target simulator:	
		Vivado Simulator
	Simulator language:	Mixed
lation	Simulation set:	📾 sim_1
	Simulation top module name:	sim_tb_top
	Clean up simulation files	
	Conorate scripts only	
~~	Generate scripts only	
	Compilation Elaborati	ion Simulation Netlist Advanced
	xsim.simulate.runtime*	1000ns
	xsim.simulate.uut	
	xsim.simulate.wdb	
	xsim.simulate.saif	
	xsim.simulate.xsim.more_	options

Figure 1-46: **Simulation with Vivado Simulator**

2. Under the **Simulation** tab as shown in Figure 1-46, set the xsim.simulate.runtime as 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time, which is less than 1 ms). Apply the settings and select **OK**.

3. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 1-47.

Figure 1-47: Run Behavioral Simulation

Simulation Flow Using Questa Advanced Simulator

- 1. In the **Open IP Example Design** Vivado project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Questa Advanced Simulator/ModelSim.
 - a. Browse to the **Compiled libraries location** and set the path on **Compiled libraries location** option.
 - b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms), set modelsim.simulate.vsim.more_options to -novopt as shown in Figure 1-46.
- 3. Apply the settings and select **OK**.

C
7series_

Figure 1-48: Simulation with Questa Advanced Simulator

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 1-47.
- 5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa Advanced Simulator tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using VCS

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Verilog Compiler Simulator (VCS).

- a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
- b. Under the Compilation tab, set the vcs.compile.vlogan.more_options to -sverilog.
- c. Under the **Simulation** tab, set the vcs.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time which is less than 1 ms) as shown in Figure 1-49.
- 3. Apply the settings and select **OK**.

🚴 Project Settings		×
	Simulation	
3	Target simulator:	Verilog Compiler Simulator (VCS)
General	Si <u>m</u> ulator language:	Vivado Simulator
Simulation	Simulation set:	Questa Advanced Simulator
8	Simulation top module name:	Verilog Compiler Simulator (VCS)
Elaboration	☑ Clean up simulation files	Riviera-PRO Simulator Active-HDL Simulator
	Gene <u>r</u> ate scripts only	
Synthesis		
	Compiled library location:	
Implementation		on Simulation Netlist Advanced
1010	Verilog options:	
Bitstream	Generics/Parameters options	
	vcs.compile.load_glbl	
IP	vcs.compile.vhdlan.more_	options
	vcs.compile.vlogan.more_	options -sverilog
	vcs.compile.vlogan.more	_options
	More VLOGAN compilation opt	ions
		OK Cancel Apply

Figure 1-49: Simulation with VCS

4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 1-47.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using IES

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Incisive Enterprise Simulator (IES).
 - a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
 - b. Under the Compilation tab, set the ies.compile.ncvlog.more_options to -sv.
 - c. Under the **Elaboration** tab, set the ies.elaborate.ncelab.more_options to -namemap_mixgen.
 - d. Under the **Simulation** tab, set the ies.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time which is less than 1 ms) as shown in Figure 1-50.

3. Apply the settings and select **OK**.

🚴 Project Settings				
	Simulation			
30	Target simulator:	Incisive Enterprise Simulator (IES)		
	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator		
Simulation	Simulation set:	Questa Advanced Simulator		
8	Simulation top module name:	Verilog Compiler Simulator (VCS)		
Elaboration	📝 Clean up simulation files	Riviera-PRO Simulator Active-HDL Simulator		
	Cenerate scripts only			
Synthesis				
	Compiled library location:			
Implementation	Compilation Elaboration	on Simulation Netlist Advanced		
1010	ies.elaborate.update			
Bitstream	les elaborate incelab infore	-options -namemap_mixgen		
<u> </u>				
ĪÞ				
ies.elaborate.ncelab.more_options More NCELAB elaboration options				
		OK Cancel <u>Apply</u>		

Figure 1-50: Simulation with IES

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 1-47.
- 5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation (*UG900) [Ref 8].

Synplify Pro Black Box Testing

Using the Synopsys[®] Synplify Pro[®] flow for example_design, follow these steps to run black box synthesis with Synplify Pro and implementation with Vivado.

- 1. Generate the 7 series architecture DDR3 SDRAM IP core with OOC flow to generate the . dcp file for implementation. The **Target Language** for the project can be selected as **Verilog** or **VHDL**.
- 2. Create the example design for the DDR3 SDRAM IP core using the information provided in the example design section and close the Vivado project.
- 3. Invoke the Synplify Pro software which supports 7 series FPGA and select the same 7 series FPGA part selected at the time of generating the IP core.
- 4. Add the following files into Synplify Pro project based on the **Target Language** selected at the time of invoking Vivado:
 - a. For Verilog:

```
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/ip/<Component_Name>/*stub.v
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/imports/rtl/example_top.v
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/imports/rtl/traffic_gen/*.v
```

b. For VHDL:

```
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/ip/<Component_Name>/*stub.vhdl
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/imports/rtl/example_top.vhd
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/sources_1/imports/rtl/traffic_gen/*.v
```

- 5. Specify top-level module/entity name of the design. In this case it is **example_top**. Run Synplify Pro synthesis to generate the .edf file. Then, close the Synplify Pro project.
- 6. Open a new Vivado project with Project Type as **Post-synthesis Project** and select the **Target Language**, same as selected at the time of generating the IP core.
- 7. Add the Synplify Pro generated .edf file to the Vivado project as **Design Source**.
- 8. Add the DDR3 IP .dcp file present inside the example project in step 2 to this Vivado project as **Design Source**. For example:

<project_dir>/<Component_Name>_example/ <Component_Name>_example.srcs/sources_1/ip/<Component_Name>/<Component_Name>.dcp

9. Add the .xdc file generated in step 2 to the Vivado project as a **constraint** file. For example:

```
<project_dir>/<Component_Name>_example/
<Component_Name>_example.srcs/constrs_1/imports/par/example_top.xdc
```


10. Run implementation flow with the Vivado tool. For details about implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 7].

Note: Similar steps can be followed for the user design using appropriate .dcp and .xdc files.

Core Architecture

This section describes the architecture of the 7 series FPGAs memory interface solutions core, providing an overview of the core modules and interfaces.

Overview

The 7 series FPGAs memory interface solutions core is shown in Figure 1-51.

1. System clock (sys_clk_p and sys_clk_n/sys_clk_i), Reference clock (clk_ref_p and clk_ref_n/clk_ref_i), and system reset (sys_rst_n) port connections are not shown in block diagram.

User FPGA Logic

The user FPGA logic block shown in Figure 1-51 is any FPGA design that requires to be connected to an external DDR2 or DDR3 SDRAM. The user FPGA logic connects to the Memory Controller through the user interface. An example user FPGA logic is provided with the core.

AXI4 Slave Interface Block

The AXI4 slave interface maps AXI4 transactions to the UI to provide an industry-standard bus protocol interface to the Memory Controller.

User Interface Block and User Interface

The UI block presents the UI to the user FPGA logic block. It provides a simple alternative to the native interface by presenting a flat address space and buffering read and write data.

Memory Controller and Native Interface

The front end of the Memory Controller (MC) presents the native interface to the UI block. The native interface allows the user design to submit memory read and write requests and provides the mechanism to move data from the user design to the external memory device, and vice versa. The backend of the Memory Controller connects to the physical interface and handles all the interface requirements to that module. The Memory Controller also provides a reordering option that reorders received requests to optimize data throughput and latency.

PHY and the Physical Interface

The front end of the PHY connects to the Memory Controller. The backend of the PHY connects to the external memory device. The PHY handles all memory device signal sequencing and timing.

IDELAYCTRL

An IDELAYCTRL is required in any bank that uses IDELAYs. IDELAYs are associated with the data group (DQ). Any bank/clock region that uses these signals require an IDELAYCTRL.

The MIG tool instantiates one IDELAYCTRL and then uses the IODELAY_GROUP attribute (see the iodelay_ctrl.v module). Based on this attribute, the Vivado Design Suite properly replicates IDELAYCTRLs as needed within the design.

The IDELAYCTRL reference frequency is set by the MIG tool to either 200 MHz, 300 MHz, or 400 MHz depending on memory interface frequency and speed grade of the FPGA. Based on the IODELAY_GROUP attribute that is set, the Vivado Design Suite replicates the IDELAYCTRLs for each region where the IDELAY blocks exist.

When a user creates a multicontroller design on their own, each MIG output has the component instantiated with the primitive. This violates the rules for IDELAYCTRLs and the usage of the IODELAY_GRP attribute. IDELAYCTRLs need to have only one instantiation of the component with the attribute set properly, and allow the tools to replicate as needed.

User Interface

The UI is shown in Table 1-17 and connects to an FPGA user design to allow access to an external memory device.

Signal	Direction	Description	
app_addr[ADDR_WIDTH – 1:0]	Input	This input indicates the address for the current request.	
app_cmd[2:0]	Input	This input selects the command for the current request.	
app_en	Input	This is the active-High strobe for the app_addr[], app_cmd[2:0], app_sz, and app_hi_pri inputs.	
app_rdy	Output	This output indicates that the UI is ready to accept commands. If the signal is deasserted when app_en is enabled, the current app_cmd and app_addr must be retried until app_rdy is asserted.	
app_hi_pri	Input	This active-High input elevates the priority of the current request.	
app_rd_data [APP_DATA_WIDTH – 1:0]	Output	This provides the output data from read commands.	
app_rd_data_end	Output	This active-High output indicates that the current clock cycle i the last cycle of output data on app_rd_data[]. This is valid onl when app_rd_data_valid is active-High.	
app_rd_data_valid	Output	This active-High output indicates that app_rd_data[] is valid.	
app_sz	Input	This input is reserved and should be tied to 0.	
app_wdf_data [APP_DATA_WIDTH – 1:0]	Input	This provides the data for write commands.	
app_wdf_end	Input	This active-High input indicates that the current clock cycle is the last cycle of input data on app_wdf_data[].	
app_wdf_mask [APP_MASK_WIDTH – 1:0]	Input	This provides the mask for app_wdf_data[].	
app_wdf_rdy	Output	This output indicates that the write data FIFO is ready to receive data. Write data is accepted when app_wdf_rdy = 1'b1 and app_wdf_wren = 1'b1.	
app_wdf_wren	Input	This is the active-High strobe for app_wdf_data[].	
app_correct_en_i	Input	When asserted, this active-High signal corrects single bit data errors. This input is valid only when ECC is enabled in the GUI. In the example design, this signal is always tied to 1.	
app_sr_req	Input	This input is reserved and should be tied to 0.	
app_sr_active	Output	This output is reserved.	

Table 1-17: User Interface (Cont'd)

Signal	Direction	Description		
app_ref_req	Input	This active-High input requests that a refresh command be issued to the DRAM.		
app_ref_ack	Output	This active-High output indicates that the Memory Controller has sent the requested refresh command to the PHY interface.		
app_zq_req	Input	This active-High input requests that a ZQ calibration command be issued to the DRAM.		
app_zq_ack	Output	This active-High output indicates that the Memory Controller has sent the requested ZQ calibration command to the PHY interface.		
ui_clk	Output	This UI clock must be a half or quarter of the DRAM clock.		
init_calib_complete	Output	PHY asserts init_calib_complete when calibration is finished.		
app_ecc_multiple_err[7:0] ⁽¹⁾	Output	This signal is applicable when ECC is enabled and is valid alon with app_rd_data_valid. The app_ecc_multiple_err[3:0] signal non-zero if the read data from the external memory has two b errors per beat of the read burst. The SECDED algorithm doe not correct the corresponding read data and puts a non-zero value on this signal to notify the corrupted read data at the l		
ui_clk_sync_rst Out		This is the active-High UI reset.		
app_ecc_single_err[7:0]	Output	This signal is applicable when ECC is enabled and is valid along with app_rd_data_vali. The app_ecc_single_err signal is non-zero if the read data from the external memory has a single bit error per beat of the read burst.		

Notes:

1. This signal is brought up to the memc_ui_top module level only. This signal should only be used when ECC is enabled.

app_addr[ADDR_WIDTH - 1:0]

This input indicates the address for the request currently being submitted to the UI. The UI aggregates all the address fields of the external SDRAM and presents a flat address space to you.

app_cmd[2:0]

This input specifies the command for the request currently being submitted to the UI. The available commands are shown in Table 1-18.

Table 1-18:	Commands f	for app_	_cmd[2:0]
-------------	------------	----------	-----------

Operation	app_cmd[2:0] Code
Read	001
Write	000

app_en

This input strobes in a request. You must apply the desired values to app_addr[], app_cmd[2:0], and app_hi_pri, and then assert app_en to submit the request to the UI. This initiates a handshake that the UI acknowledges by asserting app_rdy.

app_hi_pri

This input indicates that the current request is a high priority.

app_wdf_data[APP_DATA_WIDTH - 1:0]

This bus provides the data currently being written to the external memory.

app_wdf_end

This input indicates that the data on the app_wdf_data[] bus in the current cycle is the last data for the current request.

app_wdf_mask[APP_MASK_WIDTH - 1:0]

This bus indicates which bytes of app_wdf_data[] are written to the external memory and which bytes remain in their current state. The bytes are masked by setting a value of 1 to the corresponding bits in app_wdf_mask. For example, if the application data width is 256, the mask width takes a value of 32. The least significant byte [7:0] of app_wdf_data is masked using Bit[0] of app_wdf_mask and the most significant byte [255:248] of app_wdf_data is masked using Bit[31] of app_wdf_mask. Hence if you have to mask the last DWORD, that is, bytes 0, 1, 2, and 3 of app_wdf_data, the app_wdf_mask should be set to 32'h0000_000F.

app_wdf_wren

This input indicates that the data on the app_wdf_data[] bus is valid.

app_rdy

This output indicates to you whether the request currently being submitted to the UI is accepted. If the UI does not assert this signal after app_en is asserted, the current request must be retried. The app_rdy output is not asserted if:

- PHY/Memory initialization is not yet completed
- All the bank machines are occupied (can be viewed as the command buffer being full)
 - A read is requested and the read buffer is full

- A write is requested and no write buffer pointers are available
- A periodic read is being inserted

app_rd_data[APP_DATA_WIDTH - 1:0]

This output contains the data read from the external memory.

app_rd_data_end

This output indicates that the data on the app_rd_data[] bus in the current cycle is the last data for the current request.

app_rd_data_valid

This output indicates that the data on the app_rd_data[] bus is valid.

app_wdf_rdy

This output indicates that the write data FIFO is ready to receive data. Write data is accepted when both app_wdf_rdy and app_wdf_wren are asserted.

app_ref_req

When asserted, this active-High input requests that the Memory Controller send a refresh command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_ref_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_ref_ack

When asserted, this active-High input acknowledges a refresh request and indicates that the command has been sent from the Memory Controller to the PHY.

app_zq_req

When asserted, this active-High input requests that the Memory Controller send a ZQ calibration command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_zq_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_zq_ack

When asserted, this active-High input acknowledges a ZQ calibration request and indicates that the command has been sent from the Memory Controller to the PHY.

ui_clk_sync_rst

This is the reset from the UI which is in synchronous with ui_clk.

ui_clk

This is the output clock from the UI. It must be a half or quarter the frequency of the clock going out to the external SDRAM, which depends on 2:1 or 4:1 mode selected in GUI.

init_calib_complete

The PHY asserts init_calib_complete when calibration is finished. The application has no need to wait for init_calib_complete before sending commands to the Memory Controller.

AXI4 Slave Interface Block

The AXI4 slave interface block maps AXI4 transactions to the UI interface to provide an industry-standard bus protocol interface to the Memory Controller. The AXI4 slave interface is optional in designs provided through the MIG tool. The RTL is consistent between both tools. For details on the AXI4 signaling protocol, see the ARM AMBA specifications [Ref 4].

The overall design is composed of separate blocks to handle each AXI channel, which allows for independent read and write transactions. Read and write commands to the UI rely on a simple round-robin arbiter to handle simultaneous requests. The address read/address write modules are responsible for chopping the AXI4 burst/wrap requests into smaller memory size burst lengths of either four or eight, and also conveying the smaller burst lengths to the read/write data modules so they can interact with the user interface.

If ECC is enabled, all write commands with any of the mask bits enabled are issued as read-modify-write operation.

If ECC is enabled, all write commands with none of the mask bits enabled are issued as write operation.

AXI4 Slave Interface Parameters

Table 1-19 lists the AXI4 slave interface parameters.

Table 1-19:	AXI4 Slave	Interface	Parameters

Parameter Name	Default Value	Allowable Values	Description
C_S_AXI_ADDR_WIDTH	32	32	This is the width of address read and address write signals. This value must be set to 32.
C_S_AXI_DATA_WIDTH	32	32, 64, 128, 256	This is the width of data signals; a width of APP_DATA_WIDTH is recommended for better performance. Using a smaller width invokes an Upsizer, which would spend clocks in packing the data.
C_S_AXI_ID_WIDTH	4	1-16	This is the width of ID signals for every channel.
C_S_AXI_SUPPORTS_NARROW_ BURST	1	0, 1	This parameter adds logic blocks to support narrow AXI transfers. It is required if any master connected to the Memory Controller issues narrow bursts. This parameter is automatically set if the AXI data width is smaller than the recommended value.
C_RD_WR_ARB_ALGORITHM	RD_PRI_REG	TDM, ROUND_ROBIN, RD_PRI_REG, RD_PRI_REG_STARVE_LIMI T, WRITE_PRIORITY_REG, WRITE_PRIORITY	This parameter indicates the Arbitration algorithm scheme. See Arbitration in AXI Shim, page 100 for more information.
C_S_AXI_BASEADDR		Valid address	This parameter specifies the base address for the memory mapped slave interface. Address requests at this address map to rank 1, bank 0, row 0, column 0. The base/high address together define the accessible size of the memory. This accessible size must be a power of two. Additionally, the base/high address pair must be aligned to a multiple of the accessible size. The minimum accessible size is 4,096 bytes.

Parameter Name	Default Value	Allowable Values	Description
C_S_AXI_HIGHADDR	_	Valid address	This parameter specifies the high address for the memory mapped slave interface. Address requests received above this value wrap back to the base address. The base/high address together define the accessible size of the memory. This accessible size must be a power of two. Additionally, the base/high address pair must be aligned to a multiple of the accessible size. The minimum accessible size is 4,096 bytes.
C_S_AXI_PROTOCOL	AXI4	AXI4	This parameter specifies the AXI protocol.

Table 1-19: AXI4 Slave Interface Parameters (Cont'd)

AXI4 Slave Interface Signals

Table 1-20 lists the AXI4 slave interface specific signal. All of the AXI interface signals are synchronous to ui_clk.

Table 1-20:	AXI4	Slave	Interface	Signals
10010 1 20.		JIUAC	muchace	Jighais

Name	Width	Direction	Active State	Description
aresetn	1	Input	Low	Input reset to the AXI Shim and it should be in synchronous with FPGA logic clock.
s_axi_awid	C_AXI_ID_WIDTH	Input		Write address ID.
s_axi_awaddr	C_AXI_ADDR_WIDTH	Input		Write address.
s_axi_awlen	8	Input		Burst length. The burst length gives the exact number of transfers in a burst.
s_axi_awsize	3	Input		Burst size. This signal indicates the size of each transfer in the burst.
s_axi_awburst	2	Input		Burst type.
s_axi_awlock	1	Input		Lock type. (This is not used in the current implementation.)
s_axi_awcache	4	Input		Cache type. (This is not used in the current implementation.)
s_axi_awprot	3	Input		Protection type. (Not used in the current implementation.)
s_axi_awvalid	1	Input	High	Write address valid. This signal indicates that valid write address and control information are available.

Table 1-20: AXI4 Slave Interface Signals (Cont'd)

Name	Width	Direction	Active State	Description
s_axi_awready	1	Output	High	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals.
s_axi_wdata	C_AXI_DATA_WIDTH	Input		Write data.
s_axi_wstrb	C_AXI_DATA_WIDTH/8	Input		Write strobes.
s_axi_wlast	1	Input	High	Write last. This signal indicates the last transfer in a write burst.
s_axi_wvalid	1	Input	High	Write valid. This signal indicates that write data and strobe are available.
s_axi_wready	1	Output	High	Write ready.
s_axi_bid	C_AXI_ID_WIDTH	Output		Response ID. The identification tag of the write response.
s_axi_bresp	2	Output		Write response. This signal indicates the status of the write response.
s_axi_bvalid	1	Output	High	Write response valid.
s_axi_bready	1	Input	High	Response ready.
s_axi_arid	C_AXI_ID_WIDTH	Input		Read address ID.
s_axi_araddr	C_AXI_ADDR_WIDTH	Input		Read address.
s_axi_arlen	8	Input		Read burst length.
s_axi_arsize	3	Input		Read burst size.
s_axi_arburst	2	Input		Read burst type.
s_axi_arlock	1	Input		Lock type. (This is not used in the current implementation.)
s_axi_arcache	4	Input		Cache type. (This is not used in the current implementation.)
s_axi_arprot	3	Input		Protection type. (This is not used in the current implementation.)
s_axi_arvalid	1	Input	High	Read address valid.
s_axi_arready	1	Output	High	Read address ready.
s_axi_rid	C_AXI_ID_WIDTH	Output		Read ID tag.
s_axi_rdata	C_AXI_DATA_WIDTH	Output		Read data.
s_axi_rresp	2	Output		Read response.
s_axi_rlast	1	Output		Read last.
s_axi_rvalid	1	Output		Read valid.
s_axi_rready	1	Input		Read ready.

Arbitration in AXI Shim

The AXI4 protocol calls for independent read and write address channels. The Memory Controller has one address channel. The following arbitration options are available for arbitrating between the read and write address channels.

Time Division Multiplexing (TDM)

Equal priority is given to read and write address channels in this mode. The grant to the read and write address channels alternate every clock cycle. The read or write requests from the AXI master has no bearing on the grants. For example, the read requests are served in alternative clock cycles, even when there are no write requests. The slots are fixed and they are served in their respective slots only.

Round-Robin

Equal priority is given to read and write address channels in this mode. The grant to the read and write channels depends on the last served request granted from the AXI master. For example, if the last performed operation is write, then it gives precedence for read operation to be served over write operation. Similarly, if the last performed operation is read, then it gives precedence for write operation to be served over read operation. If both read and write channels requests at the same time when there are no pending requests, this scheme serves write channel ahead of read.

Read Priority (RD_PRI_REG)

Read and write address channels are served with equal priority in this mode. The requests from the write address channel are processed when one of the following occurs:

- No pending requests from read address channel.
- Read starve limit of 256 is reached. It is only checked at the end of the burst.
- Read wait limit of 16 is reached.
- Write QOS is higher which is non-zero. It is only checked at the end of the burst.

The requests from the read address channel are processed in a similar method.

Read Priority with Starve Limit (RD_PRI_REG_STARVE_LIMIT)

The read address channel is always given priority in this mode. The requests from the write address channel are processed when there are no pending requests from the read address channel or the starve limit for read is reached.

Write Priority (WRITE_PRIORITY, WRITE_PRIORITY_REG)

Write address channel is always given priority in this mode. The requests from the read address channel are processed when there are no pending requests from the write address channel. Arbitration outputs are registered in WRITE_PRIORITY_REG mode.

AXI4-Lite Slave Control/Status Register Interface Block

The AXI4-Lite Slave Control register block provides a processor accessible interface to the ECC memory option. The interface is available when ECC is enabled and the primary slave interface is AXI4. The block provides interrupts, interrupt enable, ECC status, ECC enable/disable, ECC correctable errors counter, first failing correctable/uncorrectable data, ECC and address. Fault injection registers for software testing is provided when the ECC_TEST_FI_XOR (C_ECC_TEST) parameter is "ON." The AXI4-Lite interface is fixed at 32 data bits and signaling follows the standard AMBA AXI4-Lite specifications [Ref 4].

The AXI4-Lite control/status register interface block is implemented in parallel to the AXI4 memory-mapped interface. The block monitors the output of the native interface to capture correctable (single bit) and uncorrectable (multiple bit) errors. When a correctable and/or uncorrectable error occurs, the interface also captures the byte address of the failure along with the failing data bits and ECC bits. Fault injection is provided by an XOR block placed in the write datapath after the ECC encoding has occurred. Only the first memory beat in a transaction can have errors inserted. For example, in a memory configuration with a data width of 72 and a mode register set to burst length 8, only the first 72 bits are corruptible through the fault injection interface. Interrupt generation based on either a correctable or uncorrectable error can be independently configured with the register interface.

ECC Enable/Disable

The ECC_ON_OFF register enables/disables the ECC decode functionality. However, encoding is always enabled. The default value at start-up can be parameterized with C_ECC_ONOFF_RESET_VALUE. Assigning a value of 1 for the ECC_ON_OFF bit of this register results in the correct_en signal input into the mem_intfc to be asserted. Writing a value of 0 to the ECC_ON_OFF bit of this register results in the correct_en signal to be deasserted. When correct_en is asserted, decoding is enabled, and the opposite is true when this signal is deasserted. ECC_STATUS/ECC_CE_CNT are not updated when ECC_ON_OFF = 0. The FI_D0, FI_D1, FI_D2, and FI_D3 registers are not writable when ECC_ON_OFF = 0.

Single Error and Double Error Reporting

Two vectored signals from the Memory Controller indicate an ECC error: ecc_single and ecc_multiple. The ecc_single signal indicates if there has been a correctable error, and the ecc_multiple signal indicates if there has been an uncorrectable error. The widths of ecc_multiple and ecc_single are based on the C_NCK_PER_CLK parameter.

101

There can be between 0 and C_NCK_PER_CLK \times 2 errors per cycle with each data beat signaled by one of the vector bits. Multiple bits of the vector can be signaled per cycle indicating that multiple correctable errors or multiple uncorrectable errors have been detected. The ecc_err_addr signal (discussed in Fault Collection) is valid during the assertion of either ecc_single or ecc_multiple.

The ECC_STATUS register sets the CE_STATUS bit and/or UE_STATUS bit for correctable error detection and uncorrectable error detection, respectively.

CAUTION! Multiple bit error is a serious failure of memory and it is uncorrectable. In such cases, the application cannot rely on the contents of the memory. It is suggested to not perform any further transactions to memory.

Interrupt Generation

When interrupts are enabled with the CE_EN_IRQ and/or UE_EN_IRQ bits of the ECC_EN_IRQ register, if a correctable error or uncorrectable error occurs, the interrupt signal is asserted.

Fault Collection

To aid the analysis of ECC errors, there are two banks of storage registers that collect information on the failing ECC decode. One bank of registers is for correctable errors, and another bank is for uncorrectable errors. The failing address, undecoded data, and ECC bits are saved into these register banks as CE_FFA, CE_FFD, and CE_FFE for correctable errors, and UE_FFA, UE_FFD, and UE_FFE for uncorrectable errors. The data in combination with the ECC bits can help determine which bit(s) have failed. CE_FFA stores the address from the ecc_err_addr signal and converts it to a byte address. Upon error detection, the data is latched into the appropriate register. Only the first data beat with an error is stored.

When a correctable error occurs, there is also a counter that counts the number of correctable errors that have occurred. The counter can be read from the CE_CNT register and is fixed as an 8-bit counter; it does not roll over when the maximum value is increased.

Fault Injection

The ECC fault injection register, FI_D and FI_ECC, facilitates testing of the software drivers. When set, the ECC fault injection register XORs with the MIG DFI datapath to simulate errors in the memory. The DFI interface lies between the Memory Controller and the PHY. It is ideal for injection now because this is after the encoding has been completed. There is only support to insert errors on the first data beat, therefore there are two to four FI_D registers to accommodate this. During operation, after the error has been inserted into the datapath, the register clears itself.

AXI4-Lite Slave Control/Status Register Interface Parameters

Table 1-21 lists the AXI4-Lite slave interface parameters.

Parameter Name	Default Value	Allowable Values	Description
C_S_AXI_CTRL_ADDR_WIDTH	32	32, 64	This is the width of the AXI4-Lite address buses.
C_S_AXI_CTRL_DATA_WIDTH	32	32	This is the width of the AXI4-Lite data buses.
C_ECC_ONOFF_RESET_VALUE	1	0, 1	Controls ECC on/off value at startup/reset.
C_S_AXI_CTRL_BASEADDR	_	Valid Address	This parameter specifies the base address for the AXI4-Lite slave interface.
C_S_AXI_CTRL_HIGHADDR	_	Valid Address	This parameter specifies the high address for the AXI4-Lite slave interface.
C_S_AXI_CTRL_PROTOCOL	AXI4LITE	AXI4LITE	AXI4-Lite protocol

Table 1-21: AXI4-Lite Slave Control/Status Register Parameters

AXI4-Lite Slave Control/Status Register Interface Signals

Table 1-22 lists the AXI4 slave interface specific signals. Clock/reset to the interface is provided from the Memory Controller.

Name	Width	Direction	Active State	Description
s_axi_ctrl_awaddr	C_S_AXI_CTRL_ADDR_WIDTH	Input		Write address.
s_axi_ctrl_awvalid	1	Input	High	Write address valid. This signal indicates that valid write address and control information are available.
s_axi_ctrl_awready	1	Output	High	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals.
s_axi_ctrl_wdata	C_S_AXI_CTRL_DATA_WIDTH	Input		Write data
s_axi_ctrl_wvalid	1	Input	High	Write valid. This signal indicates that write data and strobe are available.
s_axi_ctrl_wready	1	Output	High	Write ready.
s_axi_ctrl_bvalid	1	Output	High	Write response valid.
s_axi_ctrl_bready	1	Input	High	Response ready.
s_axi_ctrl_araddr	C_S_AXI_CTRL_ADDR_WIDTH	Input		Read address.
s_axi_ctrl_arvalid	1	Input	High	Read address valid.
s_axi_ctrl_arready	1	Output	High	Read address.
s_axi_ctrl_rdata	C_S_AXI_CTRL_DATA_WIDTH	Output		Read data.
s_axi_ctrl_rvalid	1	Output		Read valid.

Table 1-22: List of New I/O Signals

Table 1-22: List of New I/O Signals (Cont'd)

Name	Width	Direction	Active State	Description
s_axi_ctrl_rready	1	Input		Read ready.
interrupt	1	Output	High	IP Global Interrupt signal

AXI4-Lite Slave Control/Status Register Map

ECC register map is shown in Table 1-23. The register map is Little Endian. Write accesses to read-only or reserved values are ignored. Read accesses to write-only or reserved values return the value 0xDEADDEAD.

Table 1-23: ECC Control Register Map

Address Offset	Register Name	Access Type	Default Value	Description		
0x00	ECC_STATUS	R/W	0x0	ECC Status Register		
0x04	ECC_EN_IRQ	R/W	0x0	ECC Enable Interrupt Register		
0x08	ECC_ON_OFF	R/W	0x0 or 0x1	ECC On/Off Register. If C_ECC_ONOFF_RESET_ VALUE = 1, the default value is 0x1.		
0x0C	CE_CNT	R/W	0x0	Correctable Error Count Register		
(0x10–0x9C) Reserved						
0x100	CE_FFD[31:00]	R	0x0	Correctable Error First Failing Data Register.		
0x104	CE_FFD[63:32]	R	0x0	Correctable Error First Failing Data Register		
0x108	CE_FFD[95:64] ⁽¹⁾	R	0x0	Correctable Error First Failing Data Register.		
0x10C	CE_FFD [127:96] ⁽¹⁾	R	0x0	Correctable Error First Failing Data Register.		
	(0x110–0x17C) Reserved					
0x180	CE_FFE	R	0x0	Correctable Error First Failing ECC Register.		
		(0x1	.84–0x1BC)	Reserved		
0x1C0	CE_FFA[31:0]	R	0x0	Correctable Error First Failing Address		
0x1C4	CE_FFA[63:32] ⁽²⁾	R	0x0	Correctable Error First Failing Address		
		(0x1	.C8–0x1FC)	Reserved		
0x200	UE_FFD [31:00]	R	0x0	Uncorrectable Error First Failing Data Register		
0x204	UE_FFD [63:32]	R	0x0	Uncorrectable Error First Failing Data Register		
0x208	UE_FFD [95:64] ⁽¹⁾	R	0x0	Uncorrectable Error First Failing Data Register		
0x20C	UE_FFD [127:96] ⁽¹⁾	R	0x0	Uncorrectable Error First Failing Data Register		
		(0x2	210–0x27C)	Reserved		
0x280	UE_FFE	R	0x0	Uncorrectable Error First Failing ECC Register		
		(0x2	84–0x2BC)	Reserved		

Address Offset	Register Name	Access Type	Default Value	Description	
0x2C0	UE_FFA[31:0]	R	0x0	Uncorrectable Error First Failing Address	
0x2C4	UE_FFA[63:32] ⁽²⁾	R	0x0	Uncorrectable Error First Failing Address	
(0x2C8–0x2FC) Reserved					
0x300	FI_D[31:0] ⁽³⁾	W	0x0	Fault Inject Data Register	
0x304	FI_D[63:32] ⁽³⁾	W	0x0	Fault Inject Data Register	
0x308	FI_D[95:64] ⁽¹⁾⁽³⁾	W	0x0	Fault Inject Data Register	
0x30C	FI_D[127:96] ⁽¹⁾⁽³⁾	W	0x0	Fault Inject Data Register	
(0x340–0x37C) Reserved					
0x380	FI_ECC ⁽³⁾	W	0x0	Fault Inject ECC Register	

Table 1-23: ECC Control Register Map (Cont'd)

Notes:

1. Data bits 64–127 are only enabled if the DQ width is 144 bits.

2. Reporting address bits 63-32 are only available if the address map is > 32 bits.

3. FI_D* and FI_ECC* are only enabled if ECC_TEST parameter has been set to 1.

AXI4-Lite Slave Control/Status Register Map Detailed Descriptions

ECC_STATUS

This register holds information on the occurrence of correctable and uncorrectable errors. The status bits are independently set to 1 for the first occurrence of each error type. The status bits are cleared by writing a 1 to the corresponding bit position; that is, the status bits can only be cleared to 0 and not set to 1 using a register write. The ECC Status register operates independently of the ECC Enable Interrupt register.

Bits	Name	Core Access	Reset Value	Description
31:2	Reserved	RSVD	-	Reserved
1	CE_STATUS	R/W	0	If 1, a correctable error has occurred. This bit is cleared when a 1 is written to this bit position.
0	UE_STATUS	R/W	0	If 1, an uncorrectable error has occurred. This bit is cleared wher a 1 is written to this bit position

Table 1-24: ECC Status Register Bit Definitions

ECC_EN_IRQ

This register determines if the values of the CE_STATUS and UE_STATUS bits in the ECC Status Register assert the Interrupt output signal (ECC_Interrupt). If both CE_EN_IRQ and

UE_EN_IRQ are set to 1 (enabled), the value of the Interrupt signal is the logical OR between the CE_STATUS and UE_STATUS bits.

Table 1-25: ECC Interrupt Enable Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:2	Reserved	RSVD	-	Reserved
1	CE_EN_IRQ	R/W	0	If 1, the value of the CE_STATUS bit of ECC Status register is propagated to the Interrupt signal. If 0, the value of the CE_STATUS bit of ECC Status Register is not propagated to the Interrupt signal.
0	UE_EN_IRQ	R/W	0	If 1, the value of the UE_STATUS bit of ECC Status register is propagated to the Interrupt signal. If 0, the value of the UE_STATUS bit of ECC Status Register is not propagated to the Interrupt signal.

ECC_ON_OFF

The ECC On/Off Control Register allows the application to enable or disable ECC checking. The design parameter, C_ECC_ONOFF_RESET_VALUE (default on) determines the reset value for the enable/disable setting of ECC. This facilitates start-up operations when ECC might or might not be initialized in the external memory. When disabled, ECC checking is disabled for read but ECC generation is active for write operations.

Table 1-26: ECC On/Off Control Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:1	Reserved	RSVD	-	Reserved
0	ECC_ON_OFF	R/W	Specified by design parameter, C_ECC_ONOFF_ RESET_VALUE	If 0, ECC checking is disabled on read operations. (ECC generation is enabled on write operations when $C_{ECC} = 1$). If 1, ECC checking is enabled on read operations. All correctable and uncorrectable error conditions are captured and status is updated.

CE_CNT

This register counts the number of occurrences of correctable errors. It can be cleared or preset to any value using a register write. When the counter reaches its maximum value, it does not wrap around, but instead it stops incrementing and remains at the maximum value. The width of the counter is defined by the value of the C_CE_COUNTER_WIDTH parameter. The value of the CE counter width is fixed to eight bits.

 Table 1-27:
 Correctable Error Counter Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:8	Reserved	RSVD	-	Reserved
7:0	CE_CNT	R/W	0	Holds the number of correctable errors encountered.

CE_FFA[31:0]

This register stores the address (Bits[31:0]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the address of the next correctable error. Storing of the failing address is enabled after reset.

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFA[31:0]	R	0	Address (Bits[31:0]) of the first occurrence of a correctable error

CE_FFA[63:32]

Note: This register is unused if C_S_AXI_ADDR_WIDTH < 33.

This register stores the address (Bits[63:32]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the address of the next correctable error. Storing of the failing address is enabled after reset.

Table 1-29: Correctable Error First Failing Address [63:32] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFA[63:32]	R	0	Address (Bits[63:32]) of the first occurrence of a correctable error.

CE_FFD[31:0]

This register stores the (corrected) failing data (Bits[31:0]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next correctable error. Storing of the failing data is enabled after reset.

Table 1-30:	Correctable Error First Failing Data [31:0] Register Bit Definitions
-------------	--

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFD[31:0]	R	0	Data (Bits[31:0]) of the first occurrence of a correctable error.

CE_FFD[63:32]

This register stores the (corrected) failing data (Bits[63:32]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared,

this register is re-enabled to store the data of the next correctable error. Storing of the failing data is enabled after reset.

Table 1-31: Correctable Error First Failing Data [63:32] Register Bit Definition
--

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFD[63:32]	R	0	Data (Bits[63:32]) of the first occurrence of a correctable error.

CE_FFD[95:64]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (corrected) failing data (Bits[95:64]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next correctable error. Storing of the failing data is enabled after reset.

Table 1-32: Correctable Error First Failing Data [95:64] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFD[95:64]	R	0	Data (Bits[95:64]) of the first occurrence of a correctable error.

CE_FFD[127:96]

Note: This register is only used when DQ_WIDTH == 144.

This register stores the (corrected) failing data (Bits[127:96]) of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next correctable error. Storing of the failing data is enabled after reset.

Table 1-33: Correctable Error First Failing Data [127:96] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	CE_FFD [127:96]	R	0	Data (Bits[127:96]) of the first occurrence of a correctable error.

CE_FFE

This register stores the ECC bits of the first occurrence of an access with a correctable error. When the CE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the ECC of the next correctable error. Storing of the failing ECC is enabled after reset.

Table 1-34 describes the register bit usage when DQ_WIDTH = 72.

Table 1-34:	Correctable Error First Failing ECC Register Bit Definitions for 72-Bit External Memory
Width	

Bits	Name	Core Access	Reset Value	Description
31:8	Reserved	RSVD	-	Reserved
7:0	CE_FFE	R	0	ECC (Bits[7:0]) of the first occurrence of a correctable error.

Table 1-35 describes the register bit usage when $DQ_WIDTH = 144$.

Table 1-35:Correctable Error First Failing ECC Register Bit Definitions for 144-Bit External MemoryWidth

Bits	Name	Core Access	Reset Value	Description
31:16	Reserved	RSVD	-	Reserved
15:0	CE_FFE	R	0	ECC (Bits[15:0]) of the first occurrence of a correctable error.

UE_FFA[31:0]

This register stores the address (Bits[31:0]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the address of the next uncorrectable error. Storing of the failing address is enabled after reset.

Table 1-36: Uncorrectable Error First Failing Address [31:0] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFA [31:0]	R	0	Address (Bits[31:0]) of the first occurrence of an uncorrectable error.

UE_FFA[63:32]

Note: This register is unused if C_S_AXI_ADDR_WIDTH < 33.

This register stores the address (Bits[63:32]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the address of the next uncorrectable error. Storing of the failing address is enabled after reset.

Table 1-37: Uncorrectable Error First Failing Address [31:0] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFA[63:32]	R	0	Address (Bits[63:32]) of the first occurrence of an uncorrectable error

UE_FFD[31:0]

This register stores the (uncorrected) failing data (Bits[31:0]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing of the failing data is enabled after reset.

Table 1-38: Uncorrectable Error First Failing Data [31:0] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFD[31:0]	R	0	Data (Bits[31:0]) of the first occurrence of an uncorrectable error.

UE_FFD[63:32]

This register stores the (uncorrected) failing data (Bits[63:32]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing of the failing data is enabled after reset.

Table 1-39: Uncorrectable Error First Failing Data [63:32] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFD [63:32]	R	0	Data (Bits[63:32]) of the first occurrence of an uncorrectable error.

UE_FFD[95:64]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (Bits[95:64]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing of the failing data is enabled after reset.

Table 1-40:	Uncorrectable Error First Failing Data [95:64] Register Bit Definitions
-------------	---

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFD[95:64]	R	0	Data (Bits[95:64]) of the first occurrence of an uncorrectable error.

UE_FFD[127:96]

Note: This register is only used when the DQ_WIDTH == 144.

This register stores the (uncorrected) failing data (Bits[127:96]) of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the data of the next uncorrectable error. Storing of the failing data is enabled after reset.

Table 1-41: Uncorrectable Error First Failing Data [127:96] Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	UE_FFD[127:96]	R	0	Data (Bits[127:96]) of the first occurrence of an uncorrectable error.

UE_FFE

This register stores the ECC bits of the first occurrence of an access with an uncorrectable error. When the UE_STATUS bit in the ECC Status register is cleared, this register is re-enabled to store the ECC of the next uncorrectable error. Storing of the failing ECC is enabled after reset.

Table 1-42 describes the register bit usage when $DQ_WIDTH = 72$.

Table 1-42: Uncorrectable Error First Failing ECC Register Bit Definitions for 72-Bit External Memory Width

Bits	Name	Core Access	Reset Value	Description
31:8	Reserved	RSVD	-	Reserved
7:0	UE_FFE	R	0	ECC (Bits[7:0]) of the first occurrence of an uncorrectable error.

Table 1-43 describes the register bit usage when $DQ_WIDTH = 144$.

Table 1-43:	Uncorrectable Error First Failing ECC Register Bit Definitions for 144-Bit External Memory
Width	

Bits	Name	Core Access	Reset Value	Description
31:16	Reserved	RSVD	-	Reserved
15:0	UE_FFE	R	0	ECC (Bits[15:0]) of the first occurrence of an uncorrectable error.

FI_D0

This register is used to inject errors in data (Bits[31:0]) written to memory and can be used to test the error correction and error signaling. The bits set in the register toggle the corresponding data bits (word 0 or Bits[31:0]) of the subsequent data written to the memory without affecting the ECC bits written. After the fault has been injected, the Fault Injection Data register is cleared automatically.

Send Feedback

111

The register is only implemented if C_ECC_TEST = "ON" or ECC_TEST_FI_XOR = "ON" and ECC = "ON" in a MIG design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this register and the subsequent write to the memory must not be interrupted.

Table 1-44: Fault Injection Data (Word 0) Register Bit Definitions

Bits	Name	Core Access	Reset Value	Description
31:0	FI_D0	W	0	Bit positions set to 1 toggle the corresponding Bits[31:0] of the next data word written to the memory. This register is automatically cleared after the fault has been injected.

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only a single error condition is introduced.

FI_D1

This register is used to inject errors in data (Bits[63:32]) written to memory and can be used to test the error correction and error signaling. The bits set in the register toggle the corresponding data bits (word 1 or Bits[63:32]) of the subsequent data written to the memory without affecting the ECC bits written. After the fault has been injected, the Fault Injection Data register is cleared automatically.

This register is only implemented if C_ECC_TEST = "ON" or ECC_TEST_FI_XOR = "ON" and ECC = "ON" in a MIG design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this register and the subsequent write to the memory must not be interrupted.

Table 1-45:	Fault Injection Data	a (Word 1) Reg	ister Bit Definitions
10010 1 10.	ruurt mjeetton But		

Bits	Name	Core Access	Reset Value	Description
31:0	FI_D1	W	0	Bit positions set to 1 toggle the corresponding Bits[63:32] of the next data word written to the memory. This register is automatically cleared after the fault has been injected.

FI_D2

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (Bits[95:64]) written to memory and can be used to test the error correction and error signaling. The bits set in the register toggle the corresponding data bits (word 2 or Bits[95:64]) of the subsequent data written to the memory without affecting the ECC bits written. After the fault has been injected, the Fault Injection Data register is cleared automatically.

This register is only implemented if C_ECC_TEST = "ON" or ECC_TEST_FI_XOR = "ON" and ECC = "ON" in a MIG design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this register and the subsequent write to the memory must not be interrupted.

Bits	Name	Core Access	Reset Value	Description
31:0	FI_D2	w	0	Bit positions set to 1 toggle the corresponding Bits[95:64] of the next data word written to the memory. This register is automatically cleared after the fault has been injected.

Table 1-46: Fault Injection Data (Word 2) Register Bit Definitions

Special consideration must be given across FI_D0, FI_D1, FI_D2, and FI_D3 such that only a single error condition is introduced.

FI_D3

Note: This register is only used when DQ_WIDTH =144.

This register is used to inject errors in data (Bits[127:96]) written to memory and can be used to test the error correction and error signaling. The bits set in the register toggle the corresponding data bits (word 3 or Bits[127:96]) of the subsequent data written to the memory without affecting the ECC bits written. After the fault has been injected, the Fault Injection Data register is cleared automatically.

The register is only implemented if C_ECC_TEST = "ON" or ECC_TEST_FI_XOR = "ON" and ECC = "ON" in a MIG design in the Vivado Design Suite.

Injecting faults should be performed in a critical region in software; that is, writing this register and the subsequent write to the memory must not be interrupted.

Table 1-47:	Fault Injection Data (Word 3) Register Bit Definitions
-------------	--

Bits	Name	Core Access	Reset Value	Description
31:0	FI_D3	W	0	Bit positions set to 1 toggle the corresponding Bits[127:96] of the next data word written to the memory. The register is automatically cleared after the fault has been injected.

FI_ECC

This register is used to inject errors in the generated ECC written to the memory and can be used to test the error correction and error signaling. The bits set in the register toggle the corresponding ECC bits of the next data written to memory. After the fault has been injected, the Fault Injection ECC register is cleared automatically.

The register is only implemented if $C_ECC_TEST = "ON"$ or $ECC_TEST_FI_XOR = "ON"$ and ECC = "ON" in a MIG design in the Vivado IP catalog.

Injecting faults should be performed in a critical region in software; that is, writing this register and the subsequent write to memory must not be interrupted.

Table 1-48 describes the register bit usage when $DQ_WIDTH = 72$.

Bits	Name	Core Access	Reset Value	Description
31:8	Reserved	RSVD	-	Reserved
7:0	FI_ECC	W	0	Bit positions set to 1 toggle the corresponding bit of the next ECC written to the memory. The register is automatically cleared after the fault has been injected.

Table 1-48: Fault Injection ECC Register Bit Definitions for 72-Bit External Memory Width

Table 1-49 describes the register bit usage when DQ_WIDTH = 144.

Table 1-49: Fault Injection ECC Register Bit Definitions for 144-Bit External Memory Width

Bits	Name	Core Access	Reset Value	Description
31:16	Reserved	RSVD	-	Reserved
15:0	FI_ECC	W	0	Bit positions set to 1 toggle the corresponding bit of the next ECC written to the memory. The register is automatically cleared after the fault has been injected.

User Interface Block

The UI block presents the UI to a user design. It provides a simple alternative to the native interface. The UI block:

- Buffers read and write data
- Reorders read return data to match the request order
- Presents a flat address space and translates it to the addressing required by the SDRAM

Native Interface

The native interface connects to an FPGA user design to allow access to an external memory device.

Command Request Signals

The native interface provides a set of signals that request a read or write command from the Memory Controller to the memory device. These signals are summarized in Table 1-50.

Signal	Direction	Description	
accept	Output	This output indicates that the memory interface accepts the request driven on the last cycle.	
bank[2:0]	Input	This input selects the bank for the current request.	
bank_mach_next[]	Output	This output is reserved and should be left unconnected.	

Table 1-50: Native Interface Command Signals

Signal	Direction	Description	
cmd[2:0]	Input	This input selects the command for the current request.	
col[COL_WIDTH – 1:0]	Input	This input selects the column address for the current request.	
	Input	This input indicates the data buffer address where the Memory Controller:	
data_buf_addr[7:0]		 Locates data while processing write commands. 	
		 Places data while processing read commands. 	
hi_priority	Input	This input is reserved and should be connected to logic 0.	
rank[]	Input	This input is reserved and should be connected to logic 0.	
row[ROW_WIDTH – 1:0]	Input	This input selects the row address for the current request.	
use_addr	Input	The user design strobes this input to indicate that the request information driven on the previous state is valid.	

Table 1-50: Native Interface Command Signals (Cont'd)

The bank, row, and column comprise a target address on the memory device for read and write operations. Commands are specified using the cmd[2:0] input to the core. The available read and write commands are shown in Table 1-51.

Table 1-51: Memory Interface Commands

Operation	cmd[2:0] Code
Memory write	000
Memory read	001
Reserved	All other codes

accept

This signal indicates to the user design whether or not a request is accepted by the core. When the accept signal is asserted, the request submitted on the last cycle is accepted, and the user design can either continue to submit more requests or go idle. When the accept signal is deasserted, the request submitted on the last cycle was not accepted and must be retried.

use_addr

The user design asserts the use_addr signal to strobe the request that was submitted to the native interface on the previous cycle.

data_buf_addr

The user design must contain a buffer for data used during read and write commands. When a request is submitted to the native interface, the user design must designate a location in the buffer for when the request is processed. For write commands, data_buf_addr is an address in the buffer containing the source data to be written to the external memory. For read commands, data_buf_addr is an address in the buffer that

receives read data from the external memory. The core echoes this address back when the requests are processed.

Write Command Signals

The native interface has signals that are used when the Memory Controller is processing a write command (Table 1-52). These signals connect to the control, address, and data signals of a buffer in the user design.

Tahle 1-52:	Native Interface Write Command	d Signals
TUDIC 1 52.		a Signais

Signal	Direction	Description
wr_data[2 \times nCK_PER_CLK \times PAYLOAD_WIDTH – 1:0]	Input	This is the input data for write commands.
wr_data_addr [DATA_BUF_ADDR_WIDTH – 1:0]	Output	This output provides the base address for the source data buffer for write commands.
wr_data_mask[2 \times nCK_PER_CLK \times DATA_WIDTH/8 – 1:0]	Input	This input provides the byte enable for the write data.
wr_data_en	Output	This output indicates that the memory interface is reading data from a data buffer for a write command.
wr_data_offset[0:0]	Output	This output provides the offset for the source data buffer for write commands.

wr_data

This bus is the data that needs to be written to the external memory. This bus can be connected to the data output of a buffer in the user design.

wr_data_addr

This bus is an echo of data_buf_addr when the current write request is submitted. The wr_data_addr bus can be combined with the wr_data_offset signal and applied to the address input of a buffer in the user design.

wr_data_mask

This bus is the byte enable (data mask) for the data currently being written to the external memory. The byte to the memory is written when the corresponding wr_data_mask signal is deasserted.

wr_data_en

When asserted, this signal indicates that the core is reading data from the user design for a write command. This signal can be tied to the chip select of a buffer in the user design.

wr_data_offset

This bus is used to step through the data buffer when the burst length requires more than a single cycle to complete. This bus, in combination with wr_data_addr, can be applied to the address input of a buffer in the user design.

Read Command Signals

The native interface provides a set of signals used when the Memory Controller is processing a read command (Table 1-53). These signals are similar to those for processing write commands, except that they transfer data from the memory device to a buffer in the user design.

Table 1-53:	Native Interface Read Command	Signals
10010 1 001		0.0

Signal	Direction	Description
rd_data[2 \times nCK_PER_CLK \times PAYLOAD_WIDTH – 1:0]	Output	This is the output data from read commands.
rd_data_addr[DATA_BUF_ADDR_WIDTH – 1:0]	Output	This output provides the base address of the destination buffer for read commands.
rd_data_en	Output	This output indicates that valid read data is available on the rd_data bus.
rd_data_offset[1:0]	Output	This output provides the offset for the destination buffer for read commands.

rd_data

This bus is the data that was read from the external memory. It can be connected to the data input of a buffer in the user design.

rd_data_addr

This bus is an echo of data_buf_addr when the current read request is submitted. This bus can be combined with the rd_data_offset signal and applied to the address input of a buffer in the user design.

rd_data_en

This signal indicates when valid read data is available on rd_data for a read request. It can be tied to the chip select and write enable of a buffer in the user design.

rd_data_offset

This bus is used to step through the data buffer when the burst length requires more than a single cycle to complete. This bus can be combined with rd_data_addr and applied to the address input of a buffer in the user design.

Native Interface Maintenance Command Signals

 Table 1-54 lists the native interface maintenance command signals.

Signal	Direction	Description
app_sr_req	Input	This input is reserved and should be tied to 0.
app_sr_active	Output	This output is reserved.
app_ref_req	Input	This active-High input requests that a refresh command be issued to the DRAM.
app_ref_ack	Output	This active-High output indicates that the Memory Controller has sent the requested refresh command to the PHY interface.
app_zq_req	Input	This active-High input requests that a ZQ calibration command be issued to the DRAM.
app_zq_ack	Output	This active-High output indicates that the Memory Controller has sent the requested ZQ calibration command to the PHY interface.

Table 1-54: Native Interface Maintenance Command Signals

app_ref_req

When asserted, this active-High input requests that the Memory Controller send a refresh command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_ref_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_ref_ack

When asserted, this active-High input acknowledges a refresh request and indicates that the command has been sent from the Memory Controller to the PHY.

app_zq_req

When asserted, this active-High input requests that the Memory Controller send a ZQ calibration command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_zq_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_zq_ack

When asserted, this active-High input acknowledges a ZQ calibration request and indicates that the command has been sent from the Memory Controller to the PHY.

Clocking Architecture

The PHY design requires that a PLL module be used to generate various clocks, and both global and local clock networks are used to distribute the clock throughout the design. The PHY also requires one MMCM in the same bank as the PLL. This MMCM compensates for the insertion delay of the BUFG to the PHY.

The clock generation and distribution circuitry and networks drive blocks within the PHY that can be divided roughly into four separate, general functions:

- Internal (FPGA) logic
- Write path (output) I/O logic
- Read path (input) and delay I/O logic
- IDELAY reference clock

For DDR3 designs, one MMCM is required for IDELAY reference clock generation. If the design frequency is > 667 MHz, then IDELAY reference clock is either 300 MHz or 400 MHz (depending on FPGA speed grade). MIG instantiates one MMCM for 300 MHz and 400 MHz clock generation.

One MMCM and one PLL are required for the PHY. The PLL is used to generate the clocks for most of the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations.

For DDR3 SDRAM clock frequencies between 400 MHz and 933 MHz, both the phaser frequency reference clocks have the same frequency as the memory clock frequency. For DDR2 or DDR3 SDRAM clock frequencies below 400 MHz, one of the phaser frequency reference clocks runs at the same frequency as the memory clock and the second frequency reference clock must be either 2x or 4x the memory clock frequency such that it meets the range requirement of 400 MHz to 933 MHz. The two phaser frequency reference clocks must be generated by the same PLL so they are in phase with each other. The block diagram of the clocking architecture is shown in Figure 1-52. The phase of freq_refclk varies based on frequency of operation and banks selected for memory interface pins.

- When HP banks are selected for memory interface pins in GUI and the memory frequencies \geq 400 MHz, the phase is 337.5°.
- When HP banks are selected for memory interface pins in GUI and the memory frequencies are between 200–400 MHz (excluding 400 MHz), the phase is 315°.
- For Low Voltage devices when HP banks are selected for memory interface pins in GUI and the memory frequencies ≥ 400 MHz, the phase is 337.5°.
- For Low Voltage devices when HP banks are selected for memory interface pins in GUI and the memory frequencies are between 200–400 MHz (excluding 400 MHz), the phase is 0°.

- When HR banks are selected for memory interface pins in GUI and the memory frequencies \geq 400 MHz, the phase is 337.5°.
- When HR banks are selected for memory interface pins in GUI and the memory frequencies are between 200–400 MHz (excluding 400 MHz), the phase is 0°.

The default setting for the PLL multiply (M) and divide (D) values is for the system clock input frequency to be equal to the memory clock frequency. This 1:1 ratio is not required. The PLL input divider (D) can be any value listed in the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] as long as the PLLE2 operating conditions are met and the other constraints listed here are observed. The PLL multiply (M) value must be between 1 and 16 inclusive. The PLL output divider (O) for the memory clock must be 2 for 800 Mb/s and above, and 4 for 400 to 800 Mb/s. The PLL VCO frequency range must be kept in the range specified in the silicon data sheet. The sync_pulse must be 1/16 of the mem_refclk frequency and must have a duty cycle of 1/16 or 6.25%. For information on physical placement of the PLL and the System Clock CCIO input, see Design Guidelines, page 192.

Figure 1-52: Clocking Architecture

The details of the ISERDES/OSERDES connectivity are shown in Figure 1-58, page 141 and Figure 1-60, page 143.

Internal (FPGA) Logic Clock

The internal FPGA logic is clocked by a global clocking resource at a half or quarter frequency of the DDR2 or DDR3 SDRAM clock frequency, which depends on 4:1 or 2:1 mode selected in the MIG tool. This PLL also outputs the high-speed DDR2 or DDR3 memory clock.

Write Path (Output) I/O Logic Clock

The output path comprising both data and controls is clocked by PHASER_OUT. The PHASER_OUT provides synchronized clocks for each byte group to the OUT_FIFOs and to the OSERDES/ODDR. The PHASER_OUT generates a byte clock (OCLK), a divided byte clock (OCLKDIV), and a delayed byte clock (OCLK_DELAYED) for its associated byte group. These clocks are generated directly from the Frequency Reference clock and are in phase with each other. The byte clock is the same frequency as the Frequency Reference clock and the divided byte clock is half the frequency of the Frequency Reference clock. OCLK_DELAYED is used to clock the DQS ODDR to achieve the required 90° phase offset between the write DQS and its associated DQ bits. The PHASER_OUT also drives the signaling required to generate DQS during writes, the DQS and DQ 3-state associated with the data byte group, and the Read Enable for the OUT_FIFO of the byte group. The clocking details of the address/control and the write paths using PHASER_OUT are shown in Figure 1-58 and Figure 1-60.

Read Path (Input) I/O Logic Clock

The input read datapath is clocked by the PHASER_IN block. The PHASER_IN block provides synchronized clocks for each byte group to the IN_FIFOs and to the IDDR/ISERDES. The PHASER_IN block receives the DQS signal for the associated byte group and generates two delayed clocks for DDR2 or DDR3 SDRAM data captures: read byte clock (ICLK) and read divided byte clock (ICLKDIV). ICLK is the delayed version of the frequency reference clock that is phase-aligned with its associated DQS. ICLKDIV is used to capture data into the first rank of flip-flops in the ISERDES. ICLKDIV is aligned to ICLK and is the parallel transfer clock for the last rank of flip-flops in the ISERDES. ICLKDIV is also used as the write clock for the IN_FIFO associated with the byte group. The PHASER_IN block also drives the write enable (WrEnable) for the IN_FIFO of the byte group. The clocking details of the read path using PHASER_IN is shown in Figure 1-60.

IDELAY Reference Clock

You need to always supply a 200 MHz ref_clk and then MIG creates the appropriate IDELAYCTRL frequency with an additional MMCM. The IDELAYCTRL module continuously calibrates the IDELAY elements in the I/O region to account for varying environmental conditions. The IP core assumes an external clock signal is driving the IDELAYCTRL module. If a PLL clock drives the IDELAYCTRL input clock, the PLL lock signal needs to be incorporated in the rst_tmp_idelay signal inside the IODELAY_CTRL.v module. This ensures that the clock is stable before being used.

Memory Controller

In the core default configuration, the Memory Controller (MC) resides between the UI block and the physical layer. This is depicted in Figure 1-53.

Figure 1-53: **Memory Controller**

The Memory Controller is the primary logic block of the memory interface. The Memory Controller receives requests from the UI and stores them in a logical queue. Requests are optionally reordered to optimize system throughput and latency.

The Memory Controller block is organized as four main pieces:

- A configurable number of "bank machines"
- A configurable number of "rank machines"
- A column machine
- An arbitration block

Bank Machines

Most of the Memory Controller logic resides in the bank machines. Bank machines correspond to DRAM banks. A given bank machine manages a single DRAM bank at any given time. However, bank machine assignment is dynamic, so it is not necessary to have a bank machine for each physical bank. The number of banks can be configured to trade off between area and performance. This is discussed in greater detail in the Precharge Policy section.

The duration of a bank machine assignment to a particular DRAM bank is coupled to user requests rather than the state of the target DRAM bank. When a request is accepted, it is assigned to a bank machine. When a request is complete, the bank machine is released and is made available for assignment to another request. Bank machines issue all the commands necessary to complete the request.

On behalf of the current request, a bank machine must generate row commands and column commands to complete the request. Row and column commands are independent but must adhere to DRAM timing requirements.

The following example illustrates this concept. Consider the case when the Memory Controller and DRAM are idle when a single request arrives. The bank machine at the head of the pool:

- 1. Accepts your request
- 2. Activates the target row
- 3. Issues the column (read or write) command
- 4. Precharges the target row
- 5. Returns to the idle pool of bank machines

Similar functionality applies when multiple requests arrive targeting different rows or banks.

Now consider the case when a request arrives targeting an open DRAM bank, managed by an already active bank machine. The already active bank machine recognizes that the new request targets the same DRAM bank and skips the precharge step (step 4). The bank machine at the head of the idle pool accepts the new user request and skips the activate step (step 2).

Finally, when a request arrives in between both a previous and subsequent request all to the same target DRAM bank, the controller skips both the activate (step 2) and precharge (step 4) operations.

A bank machine precharges a DRAM bank as soon as possible unless another pending request targets the same bank. This is discussed in greater detail in the Precharge Policy section.

Column commands can be reordered for the purpose of optimizing memory interface throughput. The ordering algorithm nominally ensures data coherence. The reordering feature is explained in greater detail in the Reordering section.

Rank Machines

The rank machines correspond to DRAM ranks. Rank machines monitor the activity of the bank machines and track rank or device-specific timing parameters. For example, a rank machine monitors the number of activate commands sent to a rank within a time window. After the allowed number of activates have been sent, the rank machine generates an inhibit signal that prevents the bank machines from sending any further activates to the rank until the time window has shifted enough to allow more activates. Rank machines are statically assigned to a physical DRAM rank.

Column Machine

The single column machine generates the timing information necessary to manage the DQ data bus. Although there can be multiple DRAM ranks, because there is a single DQ bus, all the columns in all DRAM ranks are managed as a single unit. The column machine monitors commands issued by the bank machines and generates inhibit signals back to the bank machines so that the DQ bus is utilized in an orderly manner.

Arbitration Block

The arbitration block receives requests to send commands to the DRAM array from the bank machines. Row commands and column commands are arbitrated independently. For each command opportunity, the arbiter block selects a row and a column command to forward to the physical layer. The arbitration block implements a round-robin protocol to ensure forward progress.

Reordering

DRAM accesses are broken into two quasi-independent parts, row commands and column commands. Each request occupies a logical queue entry, and each queue entry has an associated bank machine. These bank machines track the state of the DRAM rank or bank it is currently bound to, if any.

If necessary, the bank machine attempts to activate the proper rank, bank, or row on behalf of the current request. In the process of doing so, the bank machine looks at the current state of the DRAM to decide if various timing parameters are met. Eventually, all timing parameters are met and the bank machine arbitrates to send the activate. The arbitration is done in a simple round-robin manner. Arbitration is necessary because several bank machines might request to send row commands (activate and precharge) at the same time.

Not all requests require an activate. If a preceding request has activated the same rank, bank, or row, a subsequent request might inherit the bank machine state and avoid the precharge/activate penalties.

After the necessary rank, bank, or row is activated and the RAS to CAS delay timing is met, the bank machine tries to issue the CAS-READ or CAS-WRITE command. Unlike the row command, all requests issue a CAS command. Before arbitrating to send a CAS command, the bank machine must look at the state of the DRAM, the state of the DQ bus, priority, and ordering. Eventually, all these factors assume their favorable states and the bank machine arbitrates to send a CAS command. In a manner similar to row commands, a round-robin arbiter uses a priority scheme and selects the next column command.

The round-robin arbiter itself is a source of reordering. Assume for example that an otherwise idle Memory Controller receives a burst of new requests while processing a refresh. These requests queue up and wait for the refresh to complete. After the DRAM is ready to receive a new activate, all waiting requests assert their arbitration requests simultaneously. The arbiter selects the next activate to send based solely on its round-robin algorithm, independent of request order. Similar behavior can be observed for column commands.

The controller supports three ordering modes:

- **STRICT** In this mode the controller always issues commands to the memory in the exact order received at the native interface. This mode can be useful in situations that do not benefit from reordering and the lowest latency is desired. Because the read data comes back in order, the user interface layer might not be needed thus reducing latency. This mode is also useful for debugging.
- NORM In this mode the controller reorders reads but not writes as needed to improve efficiency. All write requests are issued in the request order relative to all other write requests, and requests within a given rank-bank retire in order. This ensures that it is not possible to observe the result of a later write before an earlier write completes.

Note: This reordering is only visible at the native interface. The user interface reorders the read requests back into the original request order.

 RELAXED – This is the most efficient mode of the controller. Writes and reads can be reordered as needed for maximum efficiency between rank-bank queues. Thus in this mode it is possible to observe the reordering of writes. However, this behavior is not observable at the user interface layer because the requests are retired in order within a rank-bank and the user interface layer returns the read requests in order. Therefore the RELAXED mode is recommended for use with the user interface layer.

Note: This option is not selectable in the MIG GUI. To enable, generate the design with the synthesis options "Global" in the **Generate Output Products** settings. After generating the design, the design top-level RTL file should be edited and the ORDERING parameter should be changed to "RELAXED."

Precharge Policy

The controller implements an aggressive precharge policy. The controller examines the input queue of requests as each transaction completes. If no requests are in the queue for a currently open bank/row, the controller closes it to minimize latency for requests to other rows in the bank. Because the queue depth is equal to the number of bank machines, greater efficiency can be obtained by increasing the number of bank machines (nBANK_MACHS). As this number is increased, FPGA logic timing becomes more challenging. In some situations, the overall system efficiency can be greater with an increased number of bank machines and a lower memory clock frequency. Simulations should be performed with the target design command behavior to determine the optimum setting.

Note: The overall read latency of the MIG 7 series DDR3/DDR2 core is dependent on how the Memory Controller is configured, but most critically on the target traffic/access pattern and the number of commands already in the pipeline before the read command is issued. Read latency is measured from the point where the read command is accepted by the user or native interface. Simulation should be run to analyze read latency.

Error Correcting Code

The Memory Controller optionally implements an Error Correcting Code (ECC). This code protects the contents of the DRAM array from corruption. A Single Error Correct Double Error Detect (SECDED) code is used. All single errors are detected and corrected. All errors of two bits are detected. Errors of more than two bits might or might not be detected.

Figure 1-54 shows the ECC block diagram. These blocks are instantiated in the Memory Controller (mc.v) module.

Figure 1-54: **ECC Block Diagram**

The ECC mode is optional and supported only for a 72-bit data width. The data mask feature is disabled when ECC mode is enabled. When ECC mode is enabled, the entire DQ width is always written. The DRAM DM bits cannot be used because the ECC operates over the entire DQ data width. A top-level parameter called ECC controls the addition of ECC logic. When this parameter is set to "ON," ECC is enabled, and when the parameter is set to "OFF," ECC is disabled.

The ECC functionality is implemented as three functional blocks. A write data merge and ECC generate block. A read data ECC decode and correct block and a data buffer block for temporarily holding the read data for read-modify-write cycles. A fourth block generates the ECC H matrix and passes these matrices to the ECC generate and correct blocks.

For full burst write commands, data fetched from the write data buffer traverses the ECC merge and generate block. This block computes the ECC bits and appends them to the data. The ECC generate step is given one CLK state. Thus the data must be fetched from the write data buffer one state earlier relative to the write command, compared to when ECC is not enabled. At the user interface level, data must be written into the write data buffer no later than one state after the command is written into the command buffer. Other than the earlier data requirement, ECC imposes no other performance loss for writes.

For read cycles, all data traverses the ECC decode fix (ecc_dec_fix) block. This process starts when the PHY indicates read data availability on the phy_rddata_valid signal. The decode fix process is divided into two CLK states. In the first state, the syndromes are computed. In the second state the syndromes are decoded and any indicated bit flips (corrections) are performed. Also in the second state, the ecc_single and ecc_multiple indications are computed based on the syndrome bits and the timing signal ecc_status_valid generated by the Memory Controller core logic. The core logic also provides an ecc_err_addr bus. This bus contains the address of the current read command. Error locations can be logged by looking at the ecc_single, ecc_multiple, and ecc_err_addr buses. ECC imposes a two state latency penalty for read requests.

Read-Modify-Write

Any writes of less than the full DRAM burst must be performed as a read-modify-write cycle. The specified location must be read, corrections if any performed, merged with the write data, ECC computed, and then written back to the DRAM array. The wr_bytes command is defined for ECC operation. When the wr_bytes command is given, the Memory Controller always performs a read-modify-write cycle instead of a simple write cycle. The byte enables must always be valid, even for simple commands. Specifically, all byte enables must be asserted for all wr commands when ECC mode is enabled.

To write partially into memory, app_wdf_mask needs to be driven along with the wr_bytes command for ECC enabled designs. Table 1-55 shows the available commands when ECC mode is enabled.

Operation	app_cmd[2:0] Code
Write	000
Read	001
Write Bytes	011

Table 1-55:	Commands for app	cmd[2:0]

When the wr_bytes command is given, the Memory Controller performs a read-modify-write (RMW) cycle. When a wr_bytes command is at the head of the queue, it first issues a read. But unlike a normal read command, the request remains in the queue. A bit is set in the read response queue indicating this is a RMW cycle. When the read data is returned for this read command, app_rd_data_valid is not asserted. Instead, the ECC is decoded, corrections if any are made, and the data is written into the ECC data buffer.

Meanwhile, the original wr_bytes command is examining all read returns. Based on the data_buf_addr stored in the read return queue, the wr_bytes request can determine when its read data is available in the ECC data buffer. Now, the wr_bytes request starts arbitrating to send the write command. When the command is granted, data is fetched from the write data buffer and the ECC data buffer, merged as directed by the byte enables, ECC is computed, and data is written to the DRAM. The wr_bytes command has significantly lower performance than normal write commands.

In the best case, each wr_bytes command requires a DRAM read cycle and a DRAM write cycle instead of simple DRAM write cycle. Read-to-write and write-to-read turnaround penalties further degrade throughput.

The Memory Controller can buffer up to nBANK_MACHS wr_bytes commands. As long as these commands do not conflict on a rank-bank, the Memory Controller strings together the reads and then the writes, avoiding much of the read-to-write and write-to-read turnaround penalties. However, if the stream of wr_bytes commands is to a single rank-bank, each RMW cycle is completely serialized and throughput is significantly degraded.

IMPORTANT: If performance is important, it is best to avoid the wr_bytes command.

Table 1-56 provides the details of ECC ports at the user interface.

Signal	Direction	Description
app_correct_en_i	Input	When asserted, this active-High signal corrects single bit data errors. This input is valid only when ECC mode is enabled.
app_ecc_multiple_err[7:0]	Output	This signal is applicable when ECC is enabled. It is valid along with app_rd_data_valid. The app_ecc_multiple_err signal is non-zero if the read data from the external memory has two bit errors per beat of the read burst. The SECDED algorithm does not correct the corresponding read data and puts a non-zero value on this signal to notify the corrupted read data at the UI. This signal is four bits wide in 2:1 mode.

Signal	Direction	Description
app_ecc_single_err[7:0]	Output	This signal is applicable when ECC is enabled and is valid along with app_rd_data_vali. The app_ecc_single_err signal is non-zero if the read data from the external memory has a single bit error per beat of the read burst.
app_raw_not_ecc_i[7:0]	Input	This signal is applicable when ECC_TEST is enabled ("ON"). It is valid along with app_rd_data_valid. This signal is asserted to control the individual blocks to be written with raw data in the ECC bits. This signal is four bits wide in 2:1 mode.
app_wdf_mask[APP_MASK_WIDTH - 1:0]	Input	This signal provides the mask for app_wdf_data[].

Table 1-56: User Interface for ECC Operation (Cont'd)

Note: The MIG generated sim_tb_top.v module has error injection logic on DQ[0] bit. Whenever ECC is enabled, the DQ[0] bit is corrupted with error injection. This results in app_ecc_single_err bits toggling for each read data transaction.

ECC Self-Test Functionality

Under normal operating conditions, the ECC part of the data written to the DRAM array is not visible at the user interface. This can be problematic for system self-test because there is no way to test the bits in the DRAM array corresponding to the ECC bits. There is also no way to send errors to test the ECC generation and correction logic.

Controlled by the top-level parameter ECC_TEST, a DRAM array test mode can be generated. When the ECC_TEST parameter is "ON," the entire width of the DQ data bus is extended through the read and write buffers in the user interface. When ECC_TEST is "ON," the ECC correct enable is deasserted.

To write arbitrary data into both the data and ECC parts of the DRAM array, write the desired data into the extended-width write data FIFO, and assert the corresponding app_raw_not_ecc_i bit with the data. The app_raw_not_ecc_i is seven bits wide (four bits in 2:1 mode), allowing individual ECC blocks to be written with raw data in the ECC bits, or the normal computed ECC bits. In this way, any arbitrary pattern can be written into the DRAM array.

In the read interface, the extended data appears with the normal data. However, the corrector might be trying to "correct" the read data. This is probably not desired during array pattern test, and hence the app_correct_en_i should be set to zero to disable correction.

With the above two features, array pattern test can be achieved. ECC generation logic can be tested by writing data patterns but not asserting app_raw_not_ecc_i and deasserting app_correct_en_i. The data along with the computed ECC bits can be read out and compared. ECC decode correct logic can be tested by asserting app_correct_en_i and writing the desired raw pattern as described above. When the data is read back, the operation of decode correct can be observed.

ΡΗΥ

The PHY provides a physical interface to an external DDR2 or DDR3 SDRAM. The PHY generates the signal timing and sequencing required to interface to the memory device. It contains the clock-, address-, and control-generation logic, write and read datapaths, and state logic for initializing the SDRAM after power-up. In addition, the PHY contains calibration logic to perform timing training of the read and write datapaths to account for system static and dynamic delays.

The PHY is provided as a single HDL codebase for DDR2 and DDR3 SDRAMs. The MIG tool customizes the SDRAM type and numerous other design-specific parameters through top-level HDL parameters and constraints contained in a XDC file.

Overall PHY Architecture

The 7 series FPGA PHY is composed of dedicated blocks and soft calibration logic. The dedicated blocks are structured adjacent to one another with back-to-back interconnects to minimize the clock and datapath routing necessary to build high-performance physical layers. Dedicated clock structures within an I/O bank referred to as byte group clocks help minimize the number of loads driven by the byte group clock drivers. Byte group clocks are driven by phaser blocks. The phaser blocks (PHASER_IN and PHASER_OUT) are multi-stage programmable delay line loops that can dynamically track DQS signal variation and provide precision phase adjustment.

Each 7 series FPGA I/O bank has dedicated blocks comprising a PHY control block, four PHASER_IN and PHASER_OUT blocks, four IN/OUT_FIFOs, IOLOGIC (ISERDES, OSERDES, ODDR, IDELAY), and IOBs. Four byte groups exist in an I/O bank, and each byte group contains the PHASER_IN and PHASER_OUT, IN_FIFO and OUT_FIFO, and twelve IOLOGIC and IOB blocks. Ten of the twelve IOIs in a byte group are used for DQ and DM bits, and the other two IOIs are used to implement differential DQS signals.

Figure 1-55 shows the dedicated blocks available in a single I/O bank. A single PHY control block communicates with all four PHASER_IN and PHASER_OUT blocks within the I/O bank.

Figure 1-55: Single Bank DDR2/DDR3 PHY Block Diagram

The Memory Controller and calibration logic communicate with this dedicated PHY in the slow frequency clock domain, which is either a divided by 4 or divided by 2 version of the DDR2 or DDR3 memory clock. A block diagram of the PHY design is shown in Figure 1-56.

Figure 1-56: PHY Block Diagram

Send Feedback

Memory Initialization and Calibration Sequence

After deassertion of system reset, the PHY performs the required power-on initialization sequence for the memory. This is followed by several stages of timing calibration for both the write and read datapaths. After calibration is complete, the PHY indicates that initialization is finished, and the controller can begin issuing commands to the memory.

Figure 1-57 shows the overall flow of memory initialization and the different stages of calibration.

The calibration stages in Figure 1-57 correspond to these sections:

- Memory Initialization, page 144
- PHASER_IN Phase Lock, page 145
- PHASER_IN DQSFOUND Calibration, page 145
- Write Leveling, page 146
- Multi-Purpose Register Read Leveling, page 149
- OCLKDELAYED Calibration, page 150
- Write Calibration, page 152
- Read Leveling, page 154
- PRBS Read Leveling, page 157
- Dynamic Calibration and Periodic Read Behavior, page 157

I/O Architecture

Each 7 series FPGA I/O bank has dedicated blocks comprising a PHY control block, four PHASER_IN and PHASER_OUT blocks, four IN/OUT_FIFOs, ISERDES, OSERDES, ODDR, IDELAY, and IOBs. A single PHY control block communicates with all four PHASER_IN and PHASER_OUT blocks within the I/O bank.

PHY Control Block

The PHY control block is the central control block that manages the flow of data and control information between the FPGA logic and the dedicated PHY. This includes control over the flow of address, command, and data between the IN/OUT_FIFOs and ISERDES/OSERDES, and control of the PHASER_IN and PHASER_OUT blocks. The PHY control block receives control words from the calibration logic or the Memory Controller at the slow frequency (1/4 the frequency of the DDR2 or DDR3 SDRAM clock) PHY_Clk rate and processes the control words at the DDR2 or DDR3 SDRAM clock rate (CK frequency).

The calibration logic or the Memory Controller initiates a DDR2 or DDR3 SDRAM command sequence by writing address, command, and data (for write commands) into the IN/OUT_FIFOs and simultaneously or subsequently writes the PHY control word to the PHY control block. The PHY control word defines a set of actions that the PHY control block does to initiate the execution of a DDR2 or DDR3 SDRAM command.

The PHY control block provides the control interfaces to the byte group blocks within its I/O bank. When multi-I/O bank implementations are required, each PHY control block within a given I/O bank controls the byte group elements in that bank. This requires that the PHY control blocks stay in phase with their adjacent PHY control blocks. The center PHY control block is configured to be the master controller for a three I/O bank implementation. For two bank implementations, either PHY control block can be designated the master.

The PHY control interface is used by the calibration logic or the Memory Controller to write PHY control words to the PHY. The signals in this interface are synchronous to the PHY_Clk and are listed in Table 1-57. This is a basic FIFO style interface. Control words are written into the control word FIFO on the rising edge of PHY_Clk when PHY_Ctl_WrEn is High and PHY_Ctl_Full is Low. For multi-I/O bank PHYs, the same control word must be written into each PHY control block for proper operation.

Signal	Direction	Description
PHY_Clk	Input	This is the PHY interface clock for the control word FIFO. PHY control word signals are captured on the rising edge of this clock.
PHY_Ctl_Wr_N	Input	This active-Low signal is the write enable signal for the control word FIFO. A control word is written into the control word FIFO on the rising edge of PHY_Clk, when this signal is active.
PHY_Ctl_Wd[31:0]	Input	This is the PHY control word described in Table 1-58.
PHY_Ctl_Full	Output	This active-High output is the full flag for the control word FIFO. It indicates that the FIFO cannot accept anymore control words and blocks writes to the control word FIFO.
PHY_Ctl_AlmostFull	Output	This active-High output is the almost full flag for the control word FIFO. It indicates that the FIFO can accept no more than one additional control word as long as the PHY_Ctl_Full signal is inactive.
PHY_Ctl_Ready	Output	This active-High output becomes set when the PHY control block is ready to start receiving commands.

Table 1-57: PHY Control Interface

The PHY control word is broken down into several fields, as shown in Table 1-58.

Table 1-58:PHY Control Word

3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
A P	ct re	E	iven Dela	t y	CA SI	AS ot	Se	pe		Data Offset				Re ve	ser ed	I	Low nde	v X	1	Aux_	_Ou	t	C	ontr	ol (Offs	et	PH	Y Cr	nd	

- **PHY Command** This field defines the actions undertaken by the PHY control block to manage command and data flow through the dedicated PHY. The PHY commands are:
 - Write (Wr 0x01) This command instructs the PHY control block to read the address, command, and data OUT_FIFOs and transfer the data read from those FIFOs to their associated IOIs.
 - Read (Rd 0x03) This command instructs the PHY control block to read the address, command OUT_FIFOs, and transfer the data read from those FIFOs to their associated IOIs. In addition, data read from the memory is transferred after its arrival from the data IOIs to the Data IN_FIFO.
 - Non-Data (ND 0x04) This command instructs the PHY control block to read the address and command OUT_FIFOs and transfer the data read from those FIFOs to their associated IOIs.

- **Control Offset** This field is used to control when the address and command IN/OUT_FIFOs are read and transferred to the IOIs. The control offset is in units of the DDR2 or DDR3 SDRAM clock cycle.
- Auxiliary Output This field is used to control when the auxiliary output signals (Aux_Output[3:0]) are used. Auxiliary outputs can be configured to activate during read and write commands. The timing offset and duration are controlled by the attributes described in Table 1-59, page 138. These outputs are not used by the DDR2 and DDR3 interfaces generated by the MIG tool; they are set to 0.
- Low Index (Bank) The dedicated PHY has internal counters that require this field to specify which of the eight DDR2 or DDR3 SDRAM banks to use for the data command. The MIG IP core does not use these internal counters; therefore, this field should be all zeros.
- **Reserved** This field must always be set to 2'b00.
- Data Offset This field is used to control when the data IN/OUT_FIFOs are read or written based on the PHY command. The data offset is in units of the DDR2 or DDR3 SDRAM clock cycle.
- **Seq** This field contains a sequence number used in combination with the Sync_In control signal from the PLL to keep two or more PHY control blocks executing the commands read from their respective control queues in sync. Commands with a given seq value must be executed by the command parser within the PHY control block during the specific phase indicated by the Seq field.
- **CAS Slot** The slot number being used by the Memory Controller for write/read (CAS) commands.
- **Event Delay** The dedicated PHY has internal counters that require this field to specify the delay values loaded into these counters. The event delay is in units of DDR2 or DDR3 SDRAM clock cycles. The MIG IP core does not use these internal counters; therefore, this field should be all zeros.
- Activate Precharge The dedicated PHY has internal counters that require this field to specify the type of DDR2 or DDR3 command related to the event delay counter. Valid values are:
 - 00: No action
 - 01: Activate
 - 10: Precharge
 - 11: Precharge/Activate

The MIG IP core does not use these internal counters; therefore, this field should be all zeros.

Table 1-59: Auxiliary Output Attributes

Attribute	Туре	Description
MC_AO_WRLVL_EN	Vector[3:0]	This attribute specifies whether or not the related Aux_Output is active during write leveling as specified by the PC_Enable_Calib[1] signal. For example, this attribute specifies whether ODT is active during write leveling.
WR_CMD_OFFSET_0	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active. For example, this attribute ensures that the ODT signal is asserted at the correct clock cycle to meet the JEDEC ODTLon and ODTLoff specifications.
WR_DURATION_0	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a write command. For example, this attribute ensures that the ODT signal is asserted at the correct clock cycle to meet the JEDEC ODTLon and ODTLoff specifications.
RD_CMD_OFFSET_0	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_0	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a read command.
WR_CMD_OFFSET_1	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.
WR_DURATION_1	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a write command.
RD_CMD_OFFSET_1	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_1	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a read command.
WR_CMD_OFFSET_2	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.
WR_DURATION_2	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a write command.
RD_CMD_OFFSET_2	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_2	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a read command.
WR_CMD_OFFSET_3	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.
WR_DURATION_3	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a write command.

Attribute	Туре	Description
RD_CMD_OFFSET_3	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_3	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles the auxiliary output remains active for a read command.
CMD_OFFSET	Vector[5:0]	This attribute specifies how long in DDR2 or DDR3 SDRAM clock cycles after the associated command is executed that the auxiliary output defined by AO_TOGGLE toggles.
AO_TOGGLE	Vector[3:0]	This attribute specifies which auxiliary outputs are in toggle mode. An auxiliary output in toggle mode is inverted when its associated AO bit is set in the PHY control word after the CMD_OFFSET has expired.

Table 1-59: Auxiliary Output Attributes (Cont'd)

The PHY control block has several counters that are not enabled because the synchronous mode is used where PHY_Clk is either 1/4 or 1/2 the frequency of the DDR2 or DDR3 SDRAM clock frequency.

At every rising edge of PHY_Clk, a PHY control word is sent to the PHY control block with information for four memory clock cycles worth of commands and a 2-bit Seq count value. The write enable to the control FIFO is always asserted and no operation (NOP) commands are issued between valid commands in the synchronous mode of operation. The Seq count must be increased with every command sequence of four. The Seq field is used to synchronize PHY control blocks across multiple I/O banks.

The DDR3 SDRAM RESET_N signal is directly controlled by the FPGA logic, not the PHY control word. The DDR2 SDRAM RESET_N signal for RDIMM interfaces is directly controlled by the FPGA logic, not the PHY control word. The PHY control block, in conjunction with the PHASER_OUT, generates the write DQS and the DQ/DQS 3-state control signals during read and write commands.

The PHY cmd field is set based on whether the sequence of four commands has either a write, a read, or neither. The PHY cmd field is set to write if there is a write request in the command sequence. It is set to read if there is a read request in the command sequence, and it is set to non-data if there is neither a write nor a read request in the command sequence. A write and a read request cannot be issued within a sequence of four commands. The control offset field in the PHY control word defines when the command OUT_FIFOs is read out and transferred to the IOLOGIC. The data offset defines when the data OUT_FIFOs are read out with respect to the command OUT_FIFOs being read. For read commands, the data offset is determined during calibration. The PHY control block assumes that valid data associated with a write command is already available in the DQ OUT_FIFO when it is required to be read out.

Command Path

A command requested by the calibration logic or Memory Controller is sent out as a PHY control word to the PHY control block and a simultaneous input to the address/control/command OUT_FIFOs. Each of the address/control/command signals must have values for four memory clock cycles because each PHY_Clk cycle entails four memory clock cycles.

There are three types of commands:

- Write commands including write and write with auto precharge. The PHY command values in the PHY control word for both these write commands are the same (0x01). The difference is the address value input to the OUT_FIFO. Address bit A10 is 1 for writes with auto precharge in the address OUT_FIFOs.
- Read commands including read and read with auto precharge. The PHY command values in the PHY control word for both these read commands are the same (0x11). The difference is the address value input to the OUT_FIFO. Address bit A10 is 1 for reads with auto precharge in the address OUT_FIFOs.
- Non-Data commands including Mode Register Set, Refresh, Precharge, Precharge All Banks, Activate, No Operation, Deselect, ZQ Calibration Long, and ZQ Calibration Short. The PHY command values in the PHY control word for all these commands are the same (0x100). The RAS_N, CAS_N, WE_N, bank address, and address values input to the OUT_FIFOs associated with these commands differ.

Figure 1-58 shows the block diagram of the address/control/command path. The OSERDES is used in single data rate (SDR) mode because address/control/commands are SDR signals. A PHY control word is qualified with the PHY_Ct1_Wr_N signal and an entry to the OUT_FIFOs is qualified with the PHY_Cmd_WrEn signal. The FPGA logic need not issue NOP commands during long wait times between valid commands to the PHY control block because the default in the dedicated PHY for address/commands can be set to 0 or 1 as needed.

Figure 1-58: Address/Command Path Block Diagram

The timing diagram of the address/command path from the output of the OUT_FIFO to the FPGA pins is shown in Figure 1-59.

Figure 1-59: Address/Command Timing Diagram

Datapath

The datapath comprises the write and read datapaths. The datapath in the 7 series FPGA is completely implemented in dedicated logic with IN/OUT_FIFOs interfacing the FPGA logic. The IN/OUT_FIFOs provide datapath serialization/deserialization in addition to clock domain crossing, thereby allowing the FPGA logic to operate at low frequencies up to 1/4 the frequency of the DDR2 or DDR3 SDRAM clock. Figure 1-60 shows the block diagram of the datapath.

Figure 1-60: Datapath Block Diagram

Each IN/OUT_FIFO has a storage array of memory elements arranged as 10 groups eight bits wide and eight entries deep. During a write, the OUT_FIFO receives eight bits of data for each DQ bit from the calibration logic or Memory Controller and writes the data into the storage array in the PHY_Clk clock domain, which is 1/4 the frequency of the DDR2 or DDR3 SDRAM clock.

The OUT_FIFO serializes from eight bits to four bits and outputs the 4-bit data to the OSERDES in the OCLKDIV domain that is half the frequency of the DDR2 or DDR3 SDRAM clock. The OSERDES further serializes the 4-bit data to a serial DDR data stream in the OCLK domain. The PHASER_OUT clock output OCLK is used to clock DQ bits whereas the OCLK_DELAYED output is used to clock DQS to achieve the 90° phase offset between DQS and its associated DQ bits during writes. During write leveling, both OCLK and OCLK_DELAYED are shifted together to align DQS with CK at each DDR2 or DDR3 component.

The IN_FIFO shown in Figure 1-59 receives 4-bit data from each DQ bit ISERDES in a given byte group and writes them into the storage array. The IN_FIFO is used to further deserialize the data by writing two of the 4-bit datagrams into each 8-bit memory element. This 8-bit parallel data is output in the PHY_Clk clock domain which is 1/4 the frequency of the DDR2 or DDR3 SDRAM clock. Each read cycle from the IN_FIFO contains all the byte data read during a burst length 8 memory read transaction. The data bus width input to the dedicated PHY is 8x that of the DDR2 or DDR3 SDRAM when running the FPGA logic at 1/4 the frequency of the DDR2 or DDR3 SDRAM clock.

Power-Saving Features

Designs generated by the MIG tool use the SSTL T_DCI standards, which save power by turning off the DCI when the FPGA output driver is active. Also, by using the IOBUF_DCIEN (High Performance banks) and IOBUF_INTERMDISABLE (High Range banks) primitives, designs automatically disable the IBUF when the output is active. The controller uses these primitives to disable both DCI/IN_TERM and the IBUF when the controller is idle.

For more information on the IOBUF_DCIEN and IOBUF_INTERMDISABLE primitives, see 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2].

Calibration and Initialization Stages

Memory Initialization

The PHY executes a JEDEC[®]-compliant DDR2 or DDR3 initialization sequence for memory following deassertion of system reset. Each DDR2 or DDR3 SDRAM has a series of mode registers, accessed through mode register set (MRS) commands. These mode registers determine various SDRAM behaviors, such as burst length, read and write CAS latency, and additive latency. The particular bit values programmed into these registers are configurable in the PHY and determined by the values of top-level HDL parameters like BURST_MODE (BL), BURST_TYPE, CAS latency (CL), CAS write latency (CWL), write recovery for auto precharge (tWR), on-die termination resistor values (RTT_NOM and RTT_WR), and output driver strength (OUTPUT_DRV).

PHASER_IN Phase Lock

PHASER_IN is placed in the read calibration mode to phase align its free-running frequency reference clock to the associated read DQS. The calibration logic issues back-to-back read commands to provide the PHASER_IN block with a continuous stream of DQS pulses for it to achieve lock. A continuous stream of DQS pulses is required for the PHASER_IN block to phase align the free-running frequency reference clock to the associated read DQS. Each DQS has a PHASER_IN block associated with it. When the PHASER_IN lock signal (pi_phase_locked) of all the DQS PHASER_INs are asserted, the calibration logic deasserts the read calibration signal to put the PHASER_INs in normal operation mode.

PHASER_IN DQSFOUND Calibration

This calibration stage is required to align the different DQS groups to the same PHY_Clk clock edge in an I/O bank. Different DQS groups have different skews with respect to each other because of the clock (CK) fly-by routing differences to each DDR2 or DDR3 component and delay differences in each component. This calibration stage is required to determine the optimal position of read data_offset with respect to the read command per I/O bank.

In this stage of calibration, the PHASER_IN block is in normal operation mode and the calibration logic issues a set of four back-to-back read commands with gaps in between. The data_offset associated with the first read command is not accurate because the round-trip delays are unknown.

For interfaces using HP I/O banks, the data_offset for the first set of read commands is set to CL + 13. The data_offset value for the subsequent set of reads is decreased one memory clock cycle at a time until the DQSFOUND output from the PHASER_IN block is asserted. When the DQSFOUND signal is asserted for all of the bytes, the CK delay stage begins.

For interfaces using HR I/O banks, the data_offset for the first set of read commands is set to CL – 2. The data_offset value for the subsequent set of reads is increased one memory clock cycle at a time until the DQSFOUND output from the PHASER_IN block is asserted. When the DQSFOUND signal is asserted for all of the bytes, the CK delay stage begins.

In the CK delay stage, the PHASER_OUT stage 2 delay tap is increased one at a time starting from 0 to 63 for CK/Address/Command/Control byte lanes. This effectively moves where the read DQS preamble begins and causes the DQSFOUND to fail. Any one DQSFOUND failure of the entire interface is considered a failure. A passing window is determined by recording the taps where the DQSFOUND failures occur. The final tap value for

CK/Address/Command/Control byte lanes is set to the center of the passing window. If no failing edges are found the final tap is set to 32.

Each byte group can be read out of the IN_FIFO on different PHY_Clk cycles due to fly-by routing and delay differences within each group. Therefore, the IN_FIFO Not Empty flags for all the byte groups are ANDed together and used as the read enable for all data IN_FIFOs. Figure 1-61 shows the read data capture timing diagram.

Figure 1-61: Read Data Capture Timing Diagram

Write Leveling

Write leveling, which is a feature available in DDR3 SDRAM, is performed in this stage of calibration. DDR3 SDRAM modules have adopted fly-by topology on clocks, address, commands, and control signals to improve signal integrity. Specifically, the clocks, address, and control signals are all routed in a daisy-chained fashion, and termination is located at the end of each trace. However, this causes a skew between the strobe (DQS) and the clock (CK) at each memory device on the module. Write leveling, a new feature in DDR3 SDRAMs, allows the controller to adjust each write DQS phase independently with respect to the CK forwarded to the DDR3 SDRAM device. This compensates for the skew between DQS and CK and meets the t_{DOSS} specification.

During write leveling, DQS is driven by the FPGA memory interface and DQ is driven by the DDR3 SDRAM device to provide feedback. The FPGA memory interface has the capability to delay DQS until a 0-to-1 transition is detected on DQ. Write leveling is performed once after power-up. The calibration logic ORs the DQ bits in a byte to determine the transition because different memory vendors use different bits in a byte as feedback. The DQS delay can be achieved with the PHASER_OUT fine and coarse delay adjustment in the 7 series FPGAs. Figure 1-62 shows the write leveling block diagram.

Figure 1-62: Write Leveling Block Diagram

The timing diagram for write leveling is shown in Figure 1-63. Periodic DQS pulses are output by the FPGA memory interface to detect the level of the CK clock at the DDR3 SDRAM device. The interval between DQS pulses is specified as a minimum of 16 clock cycles. DQS is delayed using the PHASER_OUT fine and coarse delay in unit tap increments until a 0 to 1 transition is detected on the feedback DQ input. The DQS delay established by write leveling ensures the t_{DOSS} specification.

Figure 1-63: Write Leveling Timing Diagram

Figure 1-64 shows that the worst-case delay required during write leveling can be one tCK (DDR3 SDRAM clock period).

Figure 1-64: Write Leveling Taps Requirement

Implementation Details

The write_calib_n signal indicating the start of write leveling mode is input to the PHY control block after tWLDQSEN to ensure that DQS is driven Low after ODT is asserted. In this mode, periodic write requests must be issued to the PHY control block to generate periodic DQS pulses for write leveling. During write leveling, PHASER_IN outputs a free-running clock used to capture the DQ feedback to the DQ IN_FIFOs. During write leveling, the data byte group IN_FIFOs is in flow-through mode.

Figure 1-65 shows the flow diagram of the sequence of commands during write leveling. The PHASER_OUT fine phase shift taps are increased one tap at a time to observe a 0-to-1 transition on the feedback DQ. A stable counter is implemented in the write leveling logic to mitigate the risk of finding a false edge in the jitter region. A counter value of three means that the sampled data value was constant for three consecutive tap increments and DQS is considered to be in a stable region with respect to CK. The counter value is reset to 0 whenever a value different from the previous value is detected. Edge detection is inhibited when the stable counter value is less than 3. The write_calib_n signal is deasserted when write leveling is performed on all DQSs in all ranks.

Figure 1-65: Write Leveling Flow Diagram

Multi-Purpose Register Read Leveling

At this stage of calibration, the write DQS is not centered in the write DQ window nor is the read DQS centered in the read DQ window. The Multi-Purpose Register (MPR) is used to center the read DQS in the read DQ window. The MPR has a predefined 01010101 pattern that is read back during this stage of calibration. Read DQS centering is required for the next stage of calibration.

MPR read leveling is performed on a per byte basis and it is a two step process.

- The first step is to delay all the DQ bits in a byte using IDELAY taps by monitoring Bit[0] in that byte. The DQ bits are moved to place the first valid rising edge data after the first rising edge of DQS.
- The second step is to sweep DQS across the entire byte window using PHASER_IN fine taps to detect two edges. The entire DQ byte lane (Bits[7:0]) is monitored while sweeping the byte window to find the aggregate eye. Note that although the JEDEC standard states it is only required to send the MPR pattern on Bit[0] of a byte, all vendors tested sent the MPR pattern on the entire byte.
- Minimum data window (MIN_EYE_SIZE) must be met for two edges to be found.

• When second edge is not found, second_edge_taps are set to zero. However, the algorithm computes the midpoint of the data window using 63 as the second edge tap position because 63 is the maximum fine tap value and no edge was detected.

OCLKDELAYED Calibration

Write DQS is centered in the write DQ window using the PHASER_OUT stage 3 delay in this stage of calibration. The starting stage 3 tap value ranges from 28 to 34 depending on the memory clock frequency. There are three substages in this calibration stage performed on a per byte basis:

- Stage 3 tap limit determination
- Detection of write DQ valid window edges
- Write DQS centering in the write data valid window

The DDR3 SDRAM JEDEC specification requires the write DQS to be within $\pm 90^{\circ}$ of CK defined by the t_{DQSS} specification. To avoid t_{DQSS} violation during the edge detection, stage left and right limits of stage 3 tap movement are determined in this substage. These limits are calibrated using MMCM phase shift taps to optimize the calibration center point. The start of this substage is triggered by lim_start. The output signals lim2ocal_stg3_left_lim and lim2ocal_stg3_right_lim validated by lim_done are input to the edge detection substage.

In the edge detection substage, the first step is decrementing stage 3 taps until either one or more edges are found or the tap value reaches lim2ocal_stg3_left_lim. The stage 3 taps are then increased until one or more edges are found or the tap value reaches lim2ocal_stg3_right_lim.

At the end of edge detection stage, the following signals indicate which edges are detected. Figure 1-66 shows the names associated with the different edges.

- **f2z** If asserted, this indicates that the left-edge of the rise window was detected and it validates fuzz2zero as the tap value of the left-edge of the rise window.
- **z2f** If asserted, this indicates that the right-edge of the rise window is detected and it validates zero2fuzz as the tap value of the right-edge of the rise window.
- **f2o** If asserted, this indicates that the left-edge of the fall window was detected and it validates fuzz2oneeighty as the tap value of the left-edge of the fall window.
- **o2f** If asserted, this indicates that the right-edge of the fall window was detected and it validates oneeighty2fuzz as the tap value of the right-edge of the fall window.

Figure 1-66: **Rise and Fall Write Data Window Edges**

The stage 3 start tap value places the DQS anywhere between 90° and 225° with respect to DQ. The number of edges detected depends on the write level taps value after the initial write leveling and the starting DQS position with respect to DQ. If DQS starts in the rise DQ window between 90° and 180°, then the following can occur:

- Either f2z, z2f, and f2o edges can be detected
- Or f2z and z2f edges of the rise window can be detected
- Or only f2z edge can be detected or only z2f edge can be detected

If DQS starts in the noise/jitter region around 180°, then the following can occur:

- Either z2f, f2o, and o2f edges can be detected
- Or f2z, z2f and f2o edges can be detected
- Or z2f and f2o edges of the noise can be detected

Finally, if DQS starts in the fall window between 180° and 225°, then the following can occur:

- Either z2f, f2o, and o2f edges can be detected
- Or f2o and o2f edges can be detected
- Or only f2o edge can be detected

Table 1-60 describes the different starting scenarios of write DQS with respect to DQ, the possible edges that can be detected, and the equation used to determine the center value.

Start DQS	f2z	z2f	f2o	o2f	Center Equation
Rise Window (90 ^o to 180 ^o)					
Case 1	Found	Found	Found	Not Found	(fuzz2zero + zero2fuzz)/2
Case 2	Found	Found	Not Found	Not Found	(fuzz2zero + zero2fuzz)/2

Table 1-60: Starting Scenarios for Write DQS

Start DQS	f2z	z2f	f2o	o2f	Center Equation
Case 3	Found	Not Found	Not Found	Not Found	(fuzz2zero + lim2ocal_stg3_right_lim)/2
Case 4	Not Found	Found	Not Found	Not Found	(lim2ocal_stg3_left_lim + zero2fuzz)/2
			ſ	Noise/Jitter	Region
Case 1	Found	Found	Found	Not Found	(fuzz2zero + zero2fuzz)/2
Case 2	Not Found	Found	Found	Found	(zero2fuzz + fuzz2oneeighty)/2 – 90°
Case 3	Not Found	Found	Found	Not Found	(zero2fuzz + fuzz2oneeighty)/2 – 90°
			Fall	Window 18	0° to 225°
Case 1	Not Found	Found	Found	Found	(zero2fuzz + fuzz2oneeighty)/2 – 90°
Case 2	Not Found	Not Found	Found	Found	(fuzz2oneeighty + oneeighty2fuzz)/2 – 180°
Case 3	Not Found	Not Found	Found	Not Found	(fuzz2oneeighty + lim2ocal_stg3_right_lim)/2 – 180°

Table 1-60: Starting Scenarios for Write DQS (Cont'd)

During the centering substage the write DQS is centered in the write DQ window based on the edges found during the edge detection stage. At the end of this stage, write DQS should be centered in the write DQ window. DQS to CK are not correct therefore write leveling is performed at the end of this stage of calibration.

With every stage 3 tap decrease, the stage 2 taps are increased by 2 to maintain the DQS to CK relationship established during write leveling. Similarly, with every stage 3 tap increment, the stage 2 taps are decreased by 2. If stage 2 taps reach 0 or 63, stage 3 tap increment/decrement is allowed to proceed up to the left and right limit values to avoid t_{DQSS} violation. At the end of this stage of calibration, write leveling is redone to align DQS and CK using stage 2 taps.

Write Calibration

Write calibration is performed after both stages of read leveling because correct data pattern sequence detection is necessary for this stage of calibration. Write calibration is required to align DQS to the correct CK edge. During write leveling, DQS is aligned to the nearest rising edge of CK. However, this might not be the edge that captures the write command. Depending on the interface type (UDIMM, RDIMM, or component), the DQS could either be one CK cycle earlier than, one CK cycle later than, or aligned to the CK edge that captures the write command. Figure 1-67 shows several different scenarios based on the initial phase relationship between DQS and CK for a UDIMM or RDIMM interface.

Figure 1-68 shows an initial DQS to CK alignment case for component interfaces. The assumption is that component interfaces also use the fly-by topology, thereby requiring write leveling.

Figure 1-68: Component DQS-to-CK Initial Alignment

The PHASER_OUT fine and coarse delay provides 1 t_{CK} worth of delay for write leveling. The additional clock cycle of delay required to align to the correct CK edge is achieved using the coarse delay line. If the total delay required is over one clock cycle, the div_cycle_delay input to the PHASER_OUT block need not be asserted because a circular buffer was added to the PHASER_OUT block.

Send Feedback

Implementation Details

A write command is issued with a known write data pattern (FF 00 AA 55 55 AA 99 66) to a specific location. This is followed by a read command to the same location. The data read back out of the IN_FIFO is compared with the expected data pattern on a byte basis. If the data read out matches the expected pattern, no further changes are required in the write path for that byte, as shown in Figure 1-69. If the first two data words read back match the second set of data words in the expected pattern, the DQS and DQ 3-state signal must be delayed by one memory clock. This scenario is shown in Figure 1-70. After all the bytes are calibrated, the calibration logic asserts the init_calib_complete signal indicating the completion of the initialization and calibration sequence. The Memory Controller can now drive the address, command, and data buses.

Figure 1-69: DQS Aligned to the Correct CK Edge – No Change in Write Path

Read Leveling

Read leveling stage 1 is required to center align the read strobe in the read valid data window for the first stage of capture. In strobe-based memory interfaces like DDR2 or DDR3 SDRAM, the second stage transfer requires an additional pulse which in 7 series FPGAs is provided by the PHASER_IN block. This stage of calibration uses the PHASER_IN stage 2 fine delay line to center the capture clock in the valid DQ window. The capture clock is the free-running FREQ_REF clock that is phase aligned to read DQS in the PHASER_IN phase locked stage.

A PHASER_IN provides two clock outputs namely ICLK and ICLKDIV. ICLK is the stage 2 delay output and ICLKDIV is the rising edge aligned divided by 2 version of ICLK.

The ICLK and ICLKDIV outputs of one PHASER_IN block are used to clock all the DQ ISERDES associated with one byte. The ICLKDIV is also the write clock for the read DQ IN_FIFOs. One PHASER_IN block is associated with a group of 12 I/Os. Each I/O bank in the 7 series FPGA has four PHASER_IN blocks, and hence four bytes for DDR2 or DDR3 SDRAM can be placed in a bank.

Implementation Details

This stage of read leveling is performed one byte at a time where each DQS is center aligned to its valid byte window. At the start of this stage, a write command is issued to a specified DDR2 or DDR3 SDRAM address location with a predefined data pattern. This write command is followed by back-to-back read commands to continuously read data back from the same address location that was written to.

The algorithm first increments the IDELAY taps for all DQ bits in a byte simultaneously until an edge is detected. At the end of the IDELAY increments, DQS is at or before the left edge of the window.

The calibration logic reads data out of the IN_FIFO and records it for comparison. The data pattern sequence is important for this stage of calibration. No assumption is made about the initial relationship between DQS and the data window at tap 0 of the fine delay line. The algorithm then delays DQS using the PHASER_IN fine delay line until a DQ window edge is detected.

An averaging algorithm is used for data window detection where data is read back over multiple cycles at the same tap value. The number of sampling cycles is set to 214. In addition to averaging, there is also a counter to track whether DQS is positioned in the unstable jitter region. A counter value of 3 means that the sampled data value was constant for three consecutive tap increments and DQS is considered to be in a stable region. The counter value is reset to 0 whenever a value different from the previous value is detected.

The next step is to increment the fine phase shift delay line of the DQS PHASER_IN block one tap at a time until a data mismatch is detected. The data read out of IN_FIFO after the required settling time is then compared with the recorded data at the previous tap value. This is repeated until a data mismatch is found, indicating the detection of a valid data window edge. A valid window is the number of PHASER_IN fine phase shift taps for which the stable counter value is a constant 3. This algorithm mitigates the risk of detecting a FALSE valid edge in the unstable jitter regions.

There are three possible scenarios for the initial DQS position with respect to the data window. The first valid rising edge of DQS could either be in the previous data window, in the left noise region of the current data window, or just past the left noise region inside the current data window. The PHASER_IN fine delay line has 64 taps (A bit time worth of taps. Tap resolution therefore changes with frequency.).

The first two scenarios would result in the left data window edge being detected with a tap count less than 1/2 the bit time and the second window edge might or might not be detected, depending on the frequency and the width of the noise region. The third scenario results in the right window edge being detected with a tap count close to a bit time. When both edges are detected, the final DQS tap value is computed as:

first_edge_taps + (second_edge_taps - first_edge_taps)/2.

When only one edge is detected and the tap value of the detected edge is less than 1/2 of a bit time, the final DQS tap value is computed as:

(first_edge_taps + (63 - first_edge_taps)/2)

When only one edge is detected and the tap value of the detected edge is almost a bit time, the final DQS tap value is computed as:

(63 – (63 – first_edge_taps/2))

Figure 1-71 shows the timing diagram for DQS center alignment in the data valid window.

Initial DQ Bits Initial DQ Bits DQS at Left Window Edge DQ Bits Delayed using DD Bits Delayed using UDELAY Taps DOS Centered in Valid Window

Figure 1-71: Read Leveling Stage 1 Timing Diagram

PRBS Read Leveling

This stage of read calibration follows the Read Leveling calibration stage. The DQS PHASER_IN fine tap setting determined during the Read Leveling calibration stage is used as the starting point for this stage of calibration. The PRBS read leveling stage does not change the DQ IDELAY tap settings determined during the Read Leveling calibration stage.

Complex pattern pre-loaded in a block RAM is written to the DDR3 SDRAM at the start of this calibration stage. This sequence is then read back non-continuously to determine the read data valid window. For each phaser in tap, read back happens multiple times determined by internal sample count setting. The algorithm starts at the DQS PHASER_IN fine tap setting determined during the Read Leveling calibration stage (initial tap value) and decrements one tap at time until a data mismatch is found when comparing read data with the expected data. Per-bit deskew scheme using FINEDELAY is also added to increase the read valid margin. FINEDELAY is a part of IDELAY primitive. The algorithm starts edge detection at PHASER_IN tap 0. It increments until it detects the valid pattern and records the tap as left edge. The PHASER_IN taps are further increased until a data pattern mismatch is found or tap value is 63 and this tap is recorded as right edge. The algorithm then computes the center of the read data valid window based on the detected edges.

Dynamic Calibration and Periodic Read Behavior

The PHASER_IN performs two dynamic adjustments during reads. The first is within the PHASER_IN DLL which needs to see DQS edges to keep the free-running frequency reference clock phase align locked to the associated read DQS. This dynamic adjustment only looks at the DQS edges and makes adjustments as required. The internal clock is used at the end of the burst when there are no more DQS edges, but clocks are needed to get the final data through the ISERDES.

The second dynamic adjustment is performed within the PHASER_IN to fine tune the position of the DQS preamble for the subsequent read. This dynamic adjustment only looks for the DQS preamble. It is needed to account for drift in the system which can move the DQS with respect to the internal clock.

Both of these PHASER_IN dynamic adjustments require periodic reads to ensure the PHASER_IN is continually adjusted and ready for reads. Because of this, the MIG 7 series DDR2/DDR3 controller sends periodic reads every 1 µs when the bus is idle or performing writes. The PHASER_IN only requires read DQS. Therefore, if reads are being performed as requested from the user interface, the controller does not send the periodic reads.

When the controller is writing and the 1 μ s periodic reads are due, the reads are sent to the address of the next read/write in the queue. When the controller is idle and no reads or writes are requested, the periodic reads use the last address accessed. If this address has been closed, an activate is required. Two back-to-back BL8 reads are required for the dynamic alignment.

All of the dynamic adjustment is hard logic. However, the periodic reads sent to look at DQS is soft logic controlled by the MIG 7 series DDR2/DDR3 controller.

157

IMPORTANT: Customers using the PHY only design must include the periodic read logic within the custom controller.

If the periodic reads are not included, two things can occur that might cause issues:

- 1. The free running PHASER_IN ICLK drifts away from DQS. This exposes the memory system to issues when ICLK switches.
- 2. Read latency adjustments are not done within the phaser. This causes issues with the switching logic in the PHASER_IN.

The periodic read was added in MIG core v1.5, released with ISE Design Suite 14.1. Further characterization work proved the 1 μ s periodic read was required to keep the PHASER_IN aligned and ready for subsequent reads.

IMPORTANT: The frequency of the periodic reads must be $1 \mu s$ and cannot be changed.

Temperature Monitor

The temperature monitor helps maintain DQS center alignment in the data valid window by compensating for temperature drift.

The temperature monitor is comprised of two modules. The first module, tempmon, instantiates the XADC module and periodically samples it for the current device temperature. The tempmon configures the XADC for continuous looping on the XADC calibration and temperature measurement, both with averaging. This generates an updated temperature measurement every 116 µs. The tempmon module resides within the clocking infrastructure. The module also synchronizes the parallel temperature bus to the Memory Controller FPGA logic clock.

The XADC instantiation can be bypassed if the user design already instantiates the XADC. This selection is configured by a selection in the MIG GUI. In this case, you must drive and periodically update the device_temp_i[11:0]. It should be updated at a minimum of once every 116 µs and there is no limit on the maximum update rate. Although updates are more frequent, the REF rate is not affected. The device_temp_i[11:0] value is the raw value as read from the DRP port defined by the XADC specification *XADC Wizard v2.4 LogiCORE IP Product Guide* (PG091) [Ref 11], without any conversion. XADC averaging must be turned on for the temperature channel. Averaging can be turned on only for the temperature if averaging is not desired for the other channels. Averaging should be set to 16, but 64 or 256 is acceptable if already set for other XADC channels.

The second module, ddr_phy_tempmon, resides in the top-level calibration module, calib_top. It receives the device_temp[11:0] from the tempmon module and an enable signal from the Memory Controller. The enable signal is set by the Memory Controller whenever a REF or ZQ command has been sent to the DRAM and all pending transactions have cleared the DQ bus. The temperature value is sampled on the clock when the enable transitions from Low to High.

User designs utilizing the PHY-only design must drive the tempmon_sample_en input every time a ZQ or REF is sent. It should be brought High after all pending reads have been received through the ISERDES and held until the REF or ZQ has completed and an ACT is ready to be sent. After calibration has completed and the enable signal is set, the ddr_phy_tempmon samples the device_temp[11:0] bus and establishes a baseline temperature.

After each subsequent enable, the current temperature is compared to the baseline temperature. If the temperature change is sufficient, the module adjusts the PHASER_IN fine delay to mitigate temperature drift. This process continues throughout normal operation.

Memory Controller to PHY Interface

The calibration logic module constructs the PHY control word before sending it to the PHY control block during calibration. After calibration is complete, the <code>init_calib_complete</code> signal is asserted and sent to the Memory Controller to indicate that normal operation can begin. To avoid latency increase, the Memory Controller must send commands in the format required by the dedicated PHY block. As a result, the address, command, control, and data buses are multiplexed before being sent to the PHY control block. These buses are driven by the calibration module during the memory initialization and calibration stages and by the Memory Controller during normal operation. Table 1-61 describes the Memory Controller to PHY interface signals. These signals are synchronous to the FPGA logic clock.

Signal Name	Width	I/O To/From PHY	Туре	Description
rst	1	Input	-	The rstdiv0 output from the infrastructure module synchronized to the PHY_Clk domain.
PHY_CIk	1	Input	_	This clock signal is 1/4 the frequency of the DDR2 or DDR3 clock.
mem_refclk	1	Input	-	This is the DDR2 or DDR3 frequency clock.
freq_refclk	1	Input	_	This signal is the same frequency as mem_refclk between 400 MHz to 933 MHz, and 1/2 or 1/4 of mem_refclk for frequencies below 400 MHz.

Table 1-61: Memory Controller to Calibration Logic Interface Signals

Table 1-61:	Memory Controller to Calibration Logic Interface Signals (Cont'd)	
-------------	---	--

Signal Name	Width	I/O To/From PHY	Туре	Description
sync_pulse	1	Input	-	This is the synchronization pulse output by the PLL.
pll_lock	1	Input	-	The LOCKED output of the PLL instantiated in the infrastructure module.
mmcm_ps_clk	1	Input	-	MMCM phase shifted clock used in OCLKDELAYED calibration stage to optimize calibration center point.
poc_sample_pd	1	Input	_	Input to phase detector in OCLKDELAYED calibration logic used for optimization of center point.
iddr_rst	1	Input	Active- High	Reset input to phase detector in OCLKDELAYED calibration logic.
psen	1	Output	Active- High	When psen is asserted for one mmcm_ps_clk clock period, a phase shift increment or decrement is initiated.
psincdec	1	Output	Active- High	A High on psincdec initiates a phase increment by 1/56th of the VCO period. A Low on psincdec initiates a phase decrement by 1/56th of the VCO period.
psdone	1	Input	Active- High	The MMCM asserted this signal for one mmcm_ps_clk period when phase shift is completed.
mc_ras_n	[nCK_PER_CLK0 - 1:0]	Input	Active- Low	mc_xxx_n[0] is the first cmd in the sequence of four.
mc_cas_n	[nCK_PER_CLK – 1:0]	Input	Active- Low	mc_xxx_n[0] is the first cmd in the sequence of four.
mc_we_n	[nCK_PER_CLK – 1:0]	Input	Active- Low	mc_xxx_n[0] is the first cmd in the sequence of four.
mc_address	[ROW_WIDTH × nCK_PER_CLK – 1:0]	Input	-	mc_address[ROW_WIDTH – 1:0] is the first command address in the sequence of four.
mc_bank	[BANK_WIDTH × nCK_PER_CLK – 1:0]	Input	-	mc_bank[BANK_WIDTH – 1:0] is the first command bank address in the sequence of four.
mc_cs_n	[CS_WIDTH × nCS_PER_RANK × nCK_PER_CLK - 1:0]	Input	-	mc_cs_n [CS_WIDTH – 1:0] is the cs_n associated with the first command in the sequence.
mc_odt	[1:0]	Input	-	mc_odt [1:0] is the ODT driven by the controller based on the RTT_NOM and RTT_WR values. This signal is valid when the CKE_ODT_AUX parameter is set to FALSE.

Signal Name	Width	I/O To/From PHY	Туре	Description
mc_cke	[nCK_PER_CLK – 1:0]	Input	-	mc_cke [nCK_PER_CLK – 1:0] is the CKE associated with the DRAM interface. This signal is valid when the CKE_ODT_AUX parameter is set to FALSE.
mc_reset_n	1	Input	Active- Low	mc_reset_n is input directly to the IOLOGIC without an OUT_FIFO.
mc_wrdata	[2 × nCK_PER_CLK × DQ_WIDTH – 1:0]	Input	-	This is the write data to the dedicated PHY. It is 8x the memory DQ width for a 4:1 clock ratio.
mc_wrdata_mask	[2 × nCK_PER_CLK × (DQ_WIDTH/8) – 1:0]	Input	-	This is the write data mask to the dedicated PHY. It is 8x the memory DM width for a 4:1 clock ratio.
mc_wrdata_en	1	Input	Active- High	This signal is the WREN input to the DQ OUT_FIFO.
mc_cmd_wren	1	Input	Active- High	This signal is the write enable input of the address/command OUT_FIFOs.
mc_ctl_wren	1	Input	Active- High	This signal is the write enable input to the PHY control word FIFO in the dedicated PHY block.
mc_cmd	[2:0]	Input	_	This signal is used for PHY_Ctl_Wd configuration: 0x04: Non-data command (No column command in the sequence of commands) 0x01: Write command 0x03: Read command
mc_data_offset	[5:0]	Input	_	This signal is used for PHY_Ctl_Wd configuration: 0x00: Non-data command (No column command in the sequence of commands) CWL + COL cmd position + 2 (for nCK_PER_CLK = 4) or CWL + COL cmd position - 2 (for nCK_PER_CLK = 2): Write command calib_rd_data_offset+COL cmd position - 1: Read command
mc_aux_out0	[3:0]	Input	Active- High	This is the auxiliary outputs field in the PHY control word used to control ODT and CKE assertion.
mc_aux_out1	[3:0]	Input	Active- High	This is the auxiliary outputs field in the PHY control word used to control ODT and CKE assertion for four-rank interfaces.
mc_rank_cnt	[1:0]	Input	_	This is the rank accessed by the command sequence in the PHY control word.

Table 1-61:	Memory Controller	to Calibration Logic	Interface Signals (Cont'd)
-------------	-------------------	----------------------	----------------------------

Signal Name	Width	I/O To/From PHY	Туре	Description
phy_mc_ctl_full	1	Output	Active- High	Bitwise AND of all the Almost FULL flags of all the PHY Control FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.
phy_mc_cmd_full	1	Output	Active- High	Bitwise OR of all the Almost FULL flags of all the command OUT_FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.
phy_mc_data_full	1	Output	Active- High	Bitwise OR of all the Almost FULL flags of all the write data OUT_FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.
phy_rd_data	[2 × nCK_PER_CLK × DQ_WIDTH – 1:0]	Output	-	This is the read data from the dedicated PHY. It is 8x the memory DQ width for a 4:1 clock ratio.
phy_rddata_valid	1	Output	Active- High	This signal is asserted when valid read data is available.
calib_rd_data_offset	[6 × RANKS – 1:0]	Output	-	This signal is the calibrated read data offset value with respect to command 0 in the sequence of four commands.
init_calib_complete	1	Output	Active- High	This signal is asserted after memory initialization and calibration are completed.

Table 1-61:	Memory Controller to	Calibration Logic	Interface Signals	(Cont'd)
-------------	----------------------	--------------------------	--------------------------	----------

Notes:

1. The parameter nCK_PER_CLK defines the number of DDR2 or DDR3 SDRAM clock cycles per PHY_Clk cycle.

- 2. The parameter ROW_WIDTH is the number of DDR2 or DDR3 SDRAM ranks.
- 3. The parameter BANK_WIDTH is the number of DDR2 or DDR3 SDRAM banks.
- 4. The parameter CS_WIDTH is the number of DDR2 or DDR3 SDRAM cs_n signals.
- 5. The parameter CKE_WIDTH is the number of DDR2 or DDR3 SDRAM CKE signals.

6. The parameter DQ_WIDTH is the width of the DDR2 or DDR3 SDRAM DQ bus.

Designing with the Core

The core is bundled with an example design that can be simulated. The example design can be used as a starting point for the user design or as a reference for debugging purposes.

Only supported modifications should be made to the configuration of the core. See Customizing the Core, page 180 for supported configuration parameters.

Interfacing to the Core

The Memory Controller can be connected using either the AXI4 slave interface, the UI, or the native interface. The AXI4 slave interface provides an AXI4 memory-mapped compliant slave ideal for connecting to processor subsystems. The AXI4 slave interface converts its transactions to pass them over the UI. The UI resembles a simple FIFO interface and always returns the data in order. The native interface offers higher performance in some situations, but is more challenging to use.

The native interface contains no buffers and returns data as soon as possible, but the return data might be out of order. The application must reorder the received data internally if the native interface is used and reordering is enabled. The following sections describe timing protocols of each interface and how they should be controlled.

Note: For a multi-ported memory interface or an interface that is sending requests faster than the MIG can consume, putting a packet (store and forward) FIFO on the input side of the user logic side of the crossbar is necessary. This allows it to buffer the requests and grants bursts to come out as soon as it is ready.

AXI4 Slave Interface

The AXI4 slave interface follows the AXI4 memory-mapped slave protocol specification as described in the ARM AMBA open specifications. See this specification [Ref 4] for the signaling details of the AXI4 slave interface.

AXI Addressing

The AXI address from the AXI master is a TRUE byte address. The AXI shim converts the address from the AXI master to the memory based on AXI SIZE and memory data width. The LSBs of the AXI byte address are masked to 0, depending on the data width of the memory array. If the memory array is 64 bits (8 bytes) wide, AXI address[2:0] are ignored and treated as 0. If the memory array is 16 bits (2 bytes) wide, AXI address[0] is ignored and treated as 0.

DDR3 DRAM is accessed in blocks of eight DRAM words for a burst length of 8. The UI data port is as wide as eight DRAM words for 4:1 PHY to Memory Controller (MC) clock ratio mode and four DRAM words for 2:1 PHY to MC clock ratio.

PHY to MC Clock Ratio	UI Data Width	Memory Interface Data Width	AXI Byte Address [7:0] (LSBs) Masking
	64	8	A[7:0]
4:1	128	16	A[7:1], 1'b0
	256	32	A[7:2], 2'b00
	512	64	A[7:3], 3'b000

Table 1-62:	AXI	Byte	Address	Masking
-------------	-----	------	---------	---------

PHY to MC Clock Ratio	UI Data Width	Memory Interface Data Width	AXI Byte Address [7:0] (LSBs) Masking
	32	8	A[7:0]
2:1	64	16	A[7:1], 1'b0
	128	32	A[7:2], 2'b00
	256	64	A[7:3], 3'b000

Table 1-62: AXI Byte Address Masking (Cont'd)

Upsizing

When the data width on the User Interface side is wider than that on the AXI Interface side, upsizing is performed in the AXI Shim interface. Data packing is performed for INCR and WRAP bursts.

In the resulting transaction issued to the user interface side, the number of data beats is reduced accordingly:

- For writes, data merging occurs. ٠
- For reads, data serialization occurs. ٠

User Interface

The mapping between the User Interface address bus and the physical memory row, bank and column can be configured. Depending on how the application data is organized, addressing scheme Bank- Row-Column or Row-Bank-Column can be chosen to optimize controller efficiency. These addressing schemes are shown in Figure 1-72 and Figure 1-73.

User Address

Memory

Rank Bank Row	Column
---------------	--------

G586_c1_61_091410

User Address

Rank	Row	Bank	Column
			UG586 c1 61a 012411

Figure 1-72 and Figure 1-73 show that the address map is controlled by the string parameter MEM_ADDR_ORDER. This parameter can take the following values:

- **BANK_ROW_COLUMN** Address map is as shown in Figure 1-72.
- **ROW_BANK_COLUMN** Address map is as shown in Figure 1-73.
- **TG_TEST** Address map is used for testing purpose only. It enables the address remap to test address access to different portions of the DRAM. It remaps the address as explained in the following examples. The remap is done within the UI portion of the controller.

Note: The row width, column width, and bank width value settings are assumed for the following examples:

- **Row Width** 15
- Bank Width 3
- **Column Width** 10

Example (1) – When the selected option in the MIG GUI is BANK_ROW_COLUMN and the address to the controller is mapped accordingly.

	Original Mapping of the Address Bits																										
A	BAN ddre Bits	NK ress ROW Address Bits its																COL	.UM	IN A	ddr	ess	Bits	5			
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
	1												1														
	Remapped Address with TG_TEST																										

	Original Mapping of the Address Bits																										
E Ac	BAN ddre Bits	K ss		ROW Address Bits														(COL	UM	N A	ddr	ess	Bits	5		
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R0	C9	C8	R4	R3	B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	C7	C6	C5	R2	R1	R7	R6	R5	C4	C3	C2	C1	C0

Example (2) – When the selected option in the MIG GUI is ROW_BANK_COLUMN and the address to the controller is mapped accordingly.

	Original Mapping of the Address Bits																										
	ROW Address Bits													E Ac	BAN ddre Bits	K ess	COLUMN Address Bits										
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	B2	Β1	В0	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
								F	Rema	ppe	d Ad	dres	s wi	th T	G_1	EST	•										
					RO	W A	ddre	ss Bi	ts						E Ac	BAN ddre Bits	K ess			COL	UM	N A	ddr	ess	Bits	5	
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R0	C9	C8	R4	R3	B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	C7	C6	C5	R2	R1	R7	R6	R5	C4	C3	C2	C1	C0

Command Path

When the user logic app_en signal is asserted and the app_rdy signal is asserted from the UI, a command is accepted and written to the FIFO by the UI. The command is ignored by the UI whenever app_rdy is deasserted. The user logic needs to hold app_en High along with the valid command and address values until app_rdy is asserted as shown in Figure 1-74.

Figure 1-74: UI Command Timing Diagram with app_rdy Asserted

A non back-to-back write command can be issued as shown in Figure 1-75. This figure depicts three scenarios for the app_wdf_data, app_wdf_wren, and app_wdf_end signals, as follows:

- 1. Write data is presented along with the corresponding write command (second half of BL8).
- 2. Write data is presented before the corresponding write command.
- 3. Write data is presented after the corresponding write command, but should not exceed the limitation of two clock cycles.

For write data that is output after the write command has been registered, as shown in Note 3, the maximum delay is two clock cycles.

Figure 1-75: 4:1 Mode UI Interface Write Timing Diagram (Memory Burst Type = BL8)

Write Path

The write data is registered in the write FIFO when app_wdf_wren is asserted and app_wdf_rdy is High (Figure 1-76). If app_wdf_rdy is deasserted, the user logic needs to hold app_wdf_wren and app_wdf_end High along with the valid app_wdf_data value until app_wdf_rdy is asserted. app_wdf_data data can be pushed even before app_cmd "write command" is asserted. The only condition is that for every app_cmd "write command," the associated app_wdf_data "write data" must be present. The app_wdf_mask signal can be used to mask out the bytes to write to external memory.

Figure 1-76: 2:1 Mode UI Interface Back-to-Back Write Commands Timing Diagram (Memory Burst Type = BL8)

Figure 1-77: 4:1 Mode UI Interface Back-to-Back Write Commands Timing Diagram (Memory Burst Type = BL8)

As shown in Figure 1-75, page 167, the maximum delay for a single write between the write data and the associated write command is two clock cycles.

The app_wdf_end signal must be used to indicate the end of a memory write burst. For memory burst types of eight in 2:1 mode, the app_wdf_end signal must be asserted on the second write data word.

The map of the application interface data to the DRAM output data can be explained with an example.

For a 4:1 Memory Controller to DRAM clock ratio with an 8-bit memory, at the application interface, if the 64-bit data driven is 0000_0806_0000_0805 (Hex), the data at the DRAM interface is as shown in Figure 1-78. This is for a Burst Length 8 (BL8) transaction.

The data values at different clock edges are as shown in Table 1-63.

Table 1-63: Data Values at Different Clock Edges

Rise0	Fall0	Rise1	Fall1	Rise2	Fall2	Rise3	Fall3
05	08	00	00	06	08	00	00

For a 2:1 Memory Controller to DRAM clock ratio, the application data width is 32 bits. Hence for BL8 transactions, the data at the application interface must be provided in two clock cycles. The app_wdf_end signal is asserted for the second data as shown in Figure 1-79. In this case, the application data provided in the first cycle is 0000_0405 (Hex), and the data provided in the last cycle is 0000_080A (Hex). This is for a BL8 transaction.

Figure 1-79: Data at the Application Interface for 2:1 Mode

Figure 1-80: Data at the DRAM Interface for 2:1 Mode

Read Path

The read data is returned by the UI in the requested order and is valid when app_rd_data_valid is asserted (Figure 1-81 and Figure 1-82). The app_rd_data_end signal indicates the end of each read command burst and is not needed in user logic.

Figure 1-81: 4:1 Mode UI Interface Read Timing Diagram (Memory Burst Type = BL8)

Figure 1-82: **2:1 Mode UI Interface Read Timing Diagram (Memory Burst Type = BL4 or BL8)**

In Figure 1-82, the read data returned is always in the same order as the requests made on the address/control bus.

User Refresh

For user-controlled refresh, the Memory Controller managed maintenance should be disabled by setting the USER_REFRESH parameter to "ON."

To request a REF command, app_ref_req is strobed for one cycle. When the Memory Controller sends the command to the PHY, it strobes app_ref_ack for one cycle, after which another request can be sent. Figure 1-83 illustrates the interface.

Figure 1-83: User-Refresh Interface

A user-refresh operation can be performed any time provided the handshake defined above is followed. There are no additional interfacing requirements with respect to other commands. However, pending requests affect when the operation goes out. The Memory Controller fulfills all pending data requests before issuing the refresh command. Timing parameters must be considered for each pending request when determining when to strobe app_ref_req to avoid a tREFI violation. To account for the worst case, subtract tRCD, CL, the data transit time, and tRP for each bank machine to ensure that all transactions can complete before tREFI expires. Equation 1-1 shows the REF request interval maximum.

$$(tREFI - (tRCD + ((CL + 4) \times tCK) + tRP) \times nBANK_MACHS)$$
 Equation 1-1

A user REF should be issued immediately following calibration to establish a time baseline for determining when to send subsequent requests.

User ZQ

For user-controlled ZQ calibration, the Memory Controller managed maintenance should be disabled by setting the tZQI parameter to 0.

To request a ZQ command, app_zq_req is strobed for one cycle. When the Memory Controller sends the command to the PHY, it strobes app_zq_ack for one cycle, after which another request can be sent. Figure 1-84 illustrates the interface.

Figure 1-84: User ZQ Interface

A user ZQ operation can be performed any time provided the handshake defined above is followed. There are no additional interfacing requirements with respect to other commands. However, pending requests affect when the operation goes out. The Memory Controller fulfills all pending data requests before issuing the ZQ command. Timing parameters must be considered for each pending request when determining when to strobe app_zq_req to achieve the desired interval if precision timing is desired.

To account for the worst case, subtract tRCD, CL, the data transit time and tRP for each bank machine to ensure that all transactions can complete before the target tZQI expires. Equation 1-2 shows the ZQ request interval maximum.

$$(tZQI - (tRCD + ((CL + 4) \times tCK) + tRP) \times nBANK MACHS)$$
 Equation 1-2

A user ZQ should be issued immediately following calibration to establish a time baseline for determining when to send subsequent requests.

Native Interface

The native interface protocol is shown in Figure 1-85.

Figure 1-85: Native Interface Protocol

Requests are presented to the native interface as an address and a command. The address is composed of the bank, row, and column inputs. The command is encoded on the cmd input.

The address and command are presented to the native interface one state before they are validated with the use_addr signal. The memory interface indicates that it can accept the request by asserting the accept signal. Requests are confirmed as accepted when use_addr and accept are both asserted in the same clock cycle. If use_addr is asserted but accept is not, the request is not accepted and must be repeated. This behavior is shown in Figure 1-86.

Figure 1-86: Native Interface Flow Control

In Figure 1-86, requests 1 and 2 are accepted normally. The first time request 3 is presented, accept is driven Low, and the request is not accepted. The user design retries request 3, which is accepted on the next attempt. Request 4 is subsequently accepted on the first attempt.

The data_buf_addr bus must be supplied with requests. This bus is an address pointer into a buffer that exists in the user design. It tells the core where to locate data when processing write commands and where to place data when processing read commands. When the core processes a command, the core echoes data_buf_addr back to the user design by wr_data_addr for write commands and rd_data_addr for read commands. This behavior is shown in Figure 1-87. Write data must be supplied in the same clock cycle that wr_data_en is asserted.

Figure 1-87: Command Processing

Transfers can be isolated with gaps of non-activity, or there can be long bursts with no gaps. The user design can identify when a request is being processed and when it finishes by monitoring the rd_data_en and wr_data_en signals. When the rd_data_en signal is asserted, the Memory Controller has completed processing a read command request. Similarly, when the wr_data_en signal is asserted, the Memory Controller is processing a write command request.

When NORM ordering mode is enabled, the Memory Controller reorders received requests to optimize throughput between the FPGA and memory device. The data is returned to the user design in the order processed, not the order received. The user design can identify the specific request being processed by monitoring rd_data_addr and wr_data_addr. These fields correspond to the data_buf_addr supplied when the user design submits the request to the native interface. Both of these scenarios are depicted in Figure 1-87.

The native interface is implemented such that the user design must submit one request at a time and, thus, multiple requests must be submitted in a serial fashion. Similarly, the core must execute multiple commands to the memory device one at a time. However, due to pipelining in the core implementation, read and write requests can be processed in parallel at the native interface.

User Refresh

See User Refresh for the UI. The feature is identical in the native interface.

User ZQ

See User ZQ for the UI. The feature is identical in the native interface.

Physical Layer Interface (Non-Memory Controller Design)

The MIG Physical Layer, or PHY, can be used without the Memory Controller. The PHY files are located in the user_design/rtl/phy directory generated by the MIG tool. Also needed are the infrastructure files located in user_design/rtl/clocking. The MIG Memory Controller can be used as an example of how to interface to the PHY. The user_design/rtl/ip_top/mem_intfc.v file shows a sample instantiation of the Memory Controller and the PHY.

The PHY provides a physical interface to an external DDR2 or DDR3 SDRAM. The PHY generates signal timing and sequencing required to interface to the memory device. It contains clock-, address-, and control- generation logic, write and read datapaths, and state logic for initializing the SDRAM after power-up. In addition, the PHY contains calibration logic to perform timing training of the read and write datapaths to account for system static and dynamic delays. At the end of calibration the PHY asserts the init_calib_complete signal output to the Memory Controller. The assertion of this signal indicates that the Memory Controller can begin normal memory transactions.

A detailed description of the PHY architecture and the various stages of calibration are provided in PHY, page 131. The signals required for the Memory Controller to interface to the PHY are listed in Table 1-61.

For clocking requirements, see Clocking Architecture, page 119. You can choose to use the infrastructure, iodelay_ctrl, and clk_ibuf modules provided in the clocking directory output by the MIG tool or instantiate the primitives in these modules in your system design.

In 2014.4, the OCLKDELAYED calibration stage was enhanced to optimize the calibration center point using MMCM phase shift taps. This resulted in the addition of a BUFG for the distribution of the phase shifted clock output and a few input and output ports between the PHY and the infrastructure module. These additional ports are listed in Table 1-61.

The tempmon module in the clocking directory should be used to supply the temperature data from the XADC to the ddr_phy_tempmon module. For more information, see Temperature Monitor, page 158.

The PHY Control FIFO, command OUT_FIFOs, and write data OUT_FIFOs are all in asynchronous operation mode. The read clock and the write clock to these FIFOs differ in frequency and phase. Therefore all three OUT_FIFO FULL flags (phy_mc_ctl_full, phy_mc_cmd_full, and phy_mc_data_full) described in Table 1-61, page 159 must be monitored by the controller to prevent overflow of the PHY Control FIFO and the OUT_FIFOs, leading to loss of command and data.

Memory commands and data can be sent directly through the PHY interface. Different command types are sent through different slots. The CAS Write Latency (CWL) command dictates the slot number to use for write/read commands. For an odd CWL value, CAS slot numbers 1 or 3 can be used; for an even CWL value, CAS slot numbers 0 or 2 can be used for the write/read commands. In Figure 1-88, the Control Offset, Low Index, Event Delay, Seq, and Act Pre fields of PHY Control words are tied Low internally inside the phy_top module and are not used.

IMPORTANT: Note that the following inputs have to be tied to logic "1."
assign mc_reset_n = 1'b1;
assign mc_cmd_wren = 1'b1;
assign mc_ct1_wren = 1'b1;

Figure 1-88: PHY Interface Example

The data offset field (MC_DATA_OFFSET) in the PHY control word for read commands is determined during PHASER_IN DQSFOUND calibration. It is provided by the PHY through the PHY interface. The Memory Controller must add the slot number being used to this read data offset value provided by the PHY. PHY control inside the PHY needs to know when to read data from IN_FIFO after a READ command has been issued to memory.

Read data offset = Calibrated PHY read data offset + slot number

The data offset field in the PHY control word for write commands must be set based on the slot number being used, CWL, and the nCK_PER_CLK parameter value as shown in the following equations:

• For nCK_PER_CLK = 4

Write data offset = CWL + 2 + slot number

• For nCK_PER_CLK = 2

Write data offset = CWL - 2 + slot number

The write waveform shown in Figure 1-89 illustrates an example with DDR3 SDRAM CWL = 7 and $nCK_{PER_{CLK}} = 4$. The selected slot number can be 1 or 3.

Write data offset = CWL + slot number + 2

= 7 + 1 + 2 = 10

Figure 1-89: Sending Write Commands in the PHY Interface (CWL = 9)

IMPORTANT: Bits[31:27, 24:23, 14:12, and 7:3] in Table 1-58, page 136 are not used in this example.

The write waveform shown in Figure 1-90 illustrates an example with calibrated PHY read data offset = 10. For a selected slot number of 1, nCK_PER_CLK of 4, the read data offset is:

Read data offset = Calibrated PHY read data offset + slot number

= 10 + 1 = 11

☆

IMPORTANT: Bits[31:27, 24:23, 14:12, and 7:3] in Table 1-58, page 136 are not used in this example.

The PHY calibration operates with additive latency AL) equal to 0. If a non-zero additive latency (CL – 1 or CL – 2) is preferred after the completion of calibration, the controller must issue the appropriate MRS command. Furthermore, the mentioned data offset must be recalculated with the addition of the AL value.

Customizing the Core

The 7 series FPGAs memory interface solution supports several configurations for DDR2 or DDR3 SDRAM devices. The specific configuration is defined by Verilog parameters in the top-level of the core. As per the OOC flow, none of the parameter values are passed down to the user design RTL file from the example design top RTL file. So, any design related parameter change is not reflected in the user design logic. The MIG tool should be used to regenerate a design when parameters need to be changed. The parameters set by the MIG tool are summarized in Table 1-64, Table 1-65, and Table 1-66.

Parameter	Description	Options
REFCLK_FREQ ⁽¹⁾	This is the reference clock frequency for IDELAYCTRLs. This can be set to 200.0 for any speed grade device. For DDR3 SDRAM designs, the frequency value is dependent on memory design frequency and FPGA speed grade. For more information, see the IDELAYE2 (IDELAY) and ODELAYE2 (ODELAY) Attribute Summary table in the 7 Series FPGAs SelectIO [™] Resources User Guide [Ref 2]. This parameter should not be changed.	200.0, 300.0, and 400.0
SIM_BYPASS_INIT_CAL ⁽²⁾	This is the calibration procedure for simulation. "OFF" is not supported in simulation. "OFF" must be used for hardware implementations. "FAST" enables a fast version of read and write leveling. "SIM_FULL" enables full calibration but skips the power-up initialization delay. "SIM_INIT_CAL_FULL" enables full calibration including the power-up delays.	"OFF" "SIM_INIT_CAL_FULL" "FAST" "SIM_FULL"
nCK_PER_CLK	This is the number of memory clocks per clock.	4, 2 (depends on the PHY to Controller Clock ratio chosen in the GUI)
nCS_PER_RANK	This is the number of unique CS outputs per rank for the PHY.	1, 2
DQS_CNT_WIDTH	This is the number of bits required to index the DQS bus and is given by ceil(log ₂ (DQS_WIDTH)).	
ADDR_WIDTH	This is the memory address bus width. It is equal to RANK_WIDTH + BANK_WIDTH + ROW_WIDTH + COL_WIDTH.	
BANK_WIDTH	This is the number of memory bank address bits.	This option is based on the selected memory device.
CS_WIDTH	This is the number of unique CS outputs to memory.	This option is based on the selected MIG tool configuration.

Table 1-64: 7 Series FPGA Memory Solution Configuration Parameters

Parameter	Description	Options
CK_WIDTH	This is the number of CK/CK# outputs to memory.	This option is based on the selected MIG tool configuration.
CKE_WIDTH	This is the number of CKE outputs to memory.	This option is based on the selected MIG tool configuration.
ODT_WIDTH	This is the number of ODT outputs to memory.	This option is based on the selected MIG tool configuration.
COL_WIDTH	This is the number of memory column address bits.	This option is based on the selected memory device.
RANK_WIDTH	This is the number of bits required to index the RANK bus.	This parameter value is 1 for both Single and Dual rank devices.
ROW_WIDTH	This is the DRAM component address bus width.	This option is based on the selected memory device.
DM_WIDTH	This is the number of data mask bits.	DQ_WIDTH/8
DQ_WIDTH	This is the memory DQ bus width.	This parameter supports DQ widths from 8 to a maximum of 72 in increments of 8. The available maximum DQ width is frequency dependent on the selected memory device.
DQS_WIDTH	This is the memory DQS bus width.	DQ_WIDTH/8
BURST_MODE	This is the memory data burst length.	DDR3: "8" DDR2: "8"
BM_CNT_WIDTH	This is the number of bits required to index a bank machine and is given by ceil(log ₂ (nBANK_MACHS)).	
ADDR_CMD_MODE	This parameter is used by the controller to calculate timing on the memory addr/cmd bus. This parameter should not be changed.	"1T"
		"NORM": Allows the Memory Controller to reorder read but not write commands to the memory.
ORDERING ⁽³⁾	This option reorders received requests to optimize data throughput and latency.	"RELAXED": Allows the Memory Controller to reorder commands to the memory for maximum efficiency. Strong ordering is not preserved at the native interface in this mode. "STRICT": Forces the Memory
		Controller to execute commands in the exact order received.
STARVE_LIMIT	This sets the number of times a read request can lose arbitration before the request declares itself high priority. The actual number of lost arbitrations is STARVE_LIMIT × nBANK_MACHS.	1, 2, 3, 10

Table 1-64:	7 Series FPGA Memory	Solution Configuration	Parameters (Cont'd)
-------------	----------------------	------------------------	---------------------

Parameter	Description	Options
WRLVL	This option enables write leveling calibration in DDR3 designs. This parameter must always be "ON" for DDR3 and "OFF" for DDR2. This parameter should not be changed.	DDR3: "ON" DDR2: "OFF"
RTT_NOM	This is the nominal ODT value.	DDR3_SDRAM: "120": RZQ/2 "60": RZQ/4 "40": RZ/6 DDR2_SDRAM: "150": 150 Ω "75": 75 Ω "50": 50 Ω
RTT_WR	This is the dynamic ODT write termination used in multiple-RANK designs. RTT_WR should always be set to "OFF" since Dynamic ODT is not supported.	DDR3_SDRAM: "OFF": RTT_WR disabled. "120": RZQ/2 "60": RZQ/4
OUTPUT_DRV	This is the DRAM reduced output drive option.	"HIGH" "LOW"
REG_CTRL	This is the option for DIMM or unbuffered DIMM selection. This parameter should not be changed.	"ON": Registered DIMM "OFF": Components, SODIMMs, UDIMMs.
IODELAY_GRP ⁽⁴⁾	This is an ASCII character string to define an IDELAY group used in a memory design. This is used by the Vivado Design Suite to group all instantiated IDELAYs into the same bank. Unique names must be assigned when multiple IP cores are implemented on the same FPGA.	Default: "IODELAY_MIG"
ECC_TEST	This option, when set to "ON," allows the entire DRAM bus width to be accessible though the UI. For example, if DATA_WIDTH == 64, the app_rd_data width is 288.	"ON" "OFF"
PAYLOAD_WIDTH	This is the actual DQ bus used for user data.	ECC_TEST = OFF: PAYLOAD_WIDTH = DATA_WIDTH ECC_TEST = ON: PAYLOAD_WIDTH = DQ_WIDTH
DEBUG_PORT	This option enables debug signals/control.	"ON" "OFF"
тсq	This is the clock-to-Q delay for simulation purposes.	(The value is in picoseconds.)
tCK	This is the memory tCK clock period (ps).	The value, in picoseconds, is based on the selected frequency in the MIG tool.
DIFF_TERM_SYSCLK	"TRUE," "FALSE"	Differential termination for system clock input pins.

Table 1-64:	7 Series FPGA Memory	y Solution Configuration	Parameters (Cont'd)
-------------	----------------------	--------------------------	---------------------

Parameter	Description	Options
DIFF_TERM_REFCLK	"TRUE," "FALSE"	Differential termination for IDELAY reference clock input pins.
TEMP_MON_CONTROL	This option selects the device temperature source for the Temperature Monitor feature (see Temperature Monitor). Select "INTERNAL" to direct the MIG tool to instantiate the XADC and temperature polling circuit in the memory interface top-level user design module. Select "EXTERNAL" if the XADC is already instantiated elsewhere in the design. In this case, the device temperature must be periodically sampled and driven onto the device_temp_i bus in the memory interface top-level user design module.	"INTERNAL" "EXTERNAL"

	Table 1-64:	7 Series FPGA Memor	y Solution Configuration	Parameters (Cont'd)
--	-------------	---------------------	--------------------------	---------------------

Notes:

- 1. The lower limit (maximum frequency) is pending characterization.
- 2. Core initialization during simulation can be greatly reduced by using SIM_BYPASS_INIT_CAL. Three simulation modes are supported. Setting SIM_BYPASS_INIT_CAL to FAST causes write leveling and read calibration to occur on only one bit per memory device. This is then used across the remaining data bits. Setting SIM_BYPASS_INIT_CAL to SIM_INIT_CAL_FULL causes complete memory initialization and calibration sequence occurs on all byte groups. SIM_BYPASS_INIT_CAL should be set to SIM_INIT_CAL_FULL for simulations only. SIM_BYPASS_INIT_CAL should be set to OFF for implementation, or the core does not function properly.
- 3. When set to NORM or RELAXED, ORDERING enables the reordering algorithm in the Memory Controller. When set to STRICT, request reordering is disabled, which might limit throughput to the external memory device. However, it can be helpful during initial core integration because requests are processed in the order received; the user design does not need to keep track of which requests are pending and which requests have been processed.
- 4. This parameter is prefixed with the module name entered in the MIG tool during design generation. If the design is generated with the module name as mig_7series_0, then IODELAY_GRP parameter name is "mig_7series_0_IODELAY_MIG."

The parameters listed in Table 1-65 depend on the selected memory clock frequency, memory device, memory configuration, and FPGA speed grade. The values for these parameters are embedded in the memc_ui_top IP core and should not be modified in the top-level.

RECOMMENDED: Xilinx strongly recommends that the MIG tool be rerun for different configurations.

Table 1-65: Embedded 7 Series FPGAs Memory Solution Configuration Parameters

Parameter	Description	Options
tFAW	This is the minimum interval of four active commands.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRRD	This is the ACTIVE-to-ACTIVE minimum command period.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRAS	This is the minimum ACTIVE-to-PRECHARGE period for memory.	This value, in picoseconds, is based on the device selection in the MIG tool.

Parameter	Description	Options
tRCD	This is the ACTIVE-to-READ or -WRITE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tREFI	This is the average periodic refresh interval for memory.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRFC	This is the REFRESH-to-ACTIVE or REFRESH-to-REFRESH command interval.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRP	This is the PRECHARGE command period.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRTP	This is the READ-to-PRECHARGE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tWTR	This is the WRITE-to-READ command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tZQI	This is the ZQ short calibration interval. This value is system dependent and should be based on the expected rate of change of voltage and temperature in the system. Consult the memory vendor for more information on ZQ calibration.	This value is set in nanoseconds. Set to 0, if the user manages this function.
tZQCS	This is the timing window to perform the ZQCS command in DDR3 SDRAM.	This value, in CK, is based on the device selection in the MIG tool.
nAL	This is the additive latency in memory clock cycles.	0
CL	This is the read CAS latency. The available option is frequency dependent in the MIG tool.	DDR3: 5, 6, 7, 8, 9, 10, 11 DDR2: 3, 4, 5, 6
CWL	This is the write CAS latency. The available option is frequency dependent in the MIG tool.	DDR3: 5, 6, 7, 8
BURST_TYPE	This is an option for the ordering of accesses within a burst.	"Sequential" "Interleaved"
RST_ACT_LOW	This is the active-Low or active-High reset. This is set to 1 when System Reset Polarity option is selected as active-Low and set to 0 when the option is selected as active-High.	0, 1
IBUF_LPWR_MODE	This option enables or disables the low-power mode for the input buffers.	"ON" "OFF"
IODELAY_HP_MODE	This option enables or disables the IDELAY high-performance mode.	"ON" "OFF"

Table 1-65: Embedded 7 Series FPGAs Memory Solution Configuration Parameters (Cont'd)

Parameter	Description	Options
tRCD	This is the ACTIVE-to-READ or -WRITE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tREFI	This is the average periodic refresh interval for memory.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRFC	This is the REFRESH-to-ACTIVE or REFRESH-to-REFRESH command interval.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRP	This is the PRECHARGE command period.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRTP	This is the READ-to-PRECHARGE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tWTR	This is the WRITE-to-READ command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tZQI	This is the ZQ short calibration interval. This value is system dependent and should be based on the expected rate of change of voltage and temperature in the system. Consult the memory vendor for more information on ZQ calibration.	This value is set in nanoseconds. Set to 0, if the user manages this function.
tZQCS	This is the timing window to perform the ZQCS command in DDR3 SDRAM.	This value, in CK, is based on the device selection in the MIG tool.
nAL	This is the additive latency in memory clock cycles.	0
CL	This is the read CAS latency. The available option is frequency dependent in the MIG tool.	DDR3: 5, 6, 7, 8, 9, 10, 11 DDR2: 3, 4, 5, 6
CWL	This is the write CAS latency. The available option is frequency dependent in the MIG tool.	DDR3: 5, 6, 7, 8
BURST_TYPE	This is an option for the ordering of accesses within a burst.	"Sequential" "Interleaved"
RST_ACT_LOW	This is the active-Low or active-High reset. This is set to 1 when System Reset Polarity option is selected as active-Low and set to 0 when the option is selected as active-High.	0, 1
IBUF_LPWR_MODE	This option enables or disables the low-power mode for the input buffers.	"ON" "OFF"
IODELAY_HP_MODE	This option enables or disables the IDELAY high-performance mode.	"ON" "OFF"

Table 1-65: Embedded 7 Series FPGAs Memory Solution Configuration Parameters (Cont'd)

Parameter	Description	Options
DATA_IO_PRIM_TYPE	This option instantiates IBUF primitives for Data (DQ) and Strobe (DQS) as per banks selected for the interface and also depends on the I/O Power Reduction option in the MIG tool.	"HP_LP" "HR_LP" "DEFAULT"
DATA_IO_IDLE_PWRDWN	This option is set to ON valid when I/O Power reduction option is enabled.	"ON," "OFF"
CA_MIRROR	This option enables Address mirroring on second rank when it is enabled. This is valid for DDR3 SDRAM dual rank UDIMMs only. This parameter should not be changed.	"ON," "OFF"
SYSCLK_TYPE	This parameter indicates whether the system uses single-ended system clocks, differential system clocks, or is driven from an internal clock (No Buffer). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, sys_clk_p/sys_clk_n must be used. For single-ended clocks, sys_clk_i must be used. For the No Buffer option, sys_clk_i, which appears in port list, needs to be driven from an internal clock.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER
REFCLK_TYPE	This parameter indicates whether the system uses single-ended reference clocks, differential reference clocks, is driven from an internal clock (No Buffer), or can connect system clock inputs only (Use System Clock). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, clk_ref_p/clk_ref_n must be used. For single-ended clocks, clk_ref_i must be used. For the No Buffer option, clk_ref_i, which appears in the port list, needs to be driven from an internal clock. For the Use System Clock option, clk_ref_i is connected to the system clock in the user design top module.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER USE_SYSTEM_CLOCK
CLKIN_PERIOD	_	Input clock period.
CLKFBOUT_MULT	_	PLL voltage-controlled oscillator (VCO) multiplier. This value is set by the MIG tool based on the frequency of operation.
CLKOUT0_DIVIDE, CLKOUT1_DIVIDE, CLKOUT2_DIVIDE, CLKOUT3_DIVIDE	_	VCO output divisor for PLL outputs. This value is set by the MIG tool based on the frequency of operation.

Table 1-65: Embedded 7 Series FPGAs Memory Solution Configuration Parameters (Cont'd)

Table 1-65:	Embedded 7 Series FPGAs Memor	y Solution Configuration Parameters ((Cont'd)

Parameter	Description	Options
CLKOUT0_PHASE	-	Phase of PLL output CLKOUT0. This value is set by the MIG tool based on the banks selected for memory interface pins and the frequency of operation.
DIVCLK_DIVIDE	-	PLLE2 VCO divisor. This value is set by the MIG tool based on the frequency of operation.
USE_DM_PORT	This is the enable data mask option used during memory write operations.	0 = Disable 1 = Enable
CK_WIDTH	This is the number of CK/CK# outputs to memory.	
DQ_CNT_WIDTH	This is ceil(log2(DQ_WIDTH)).	
DRAM_TYPE	This is the supported memory standard for the Memory Controller.	"DDR3", "DDR2"
DRAM_WIDTH	This is the DQ bus width per DRAM component.	
AL	This is the additive latency.	0
nBANK_MACHS ⁽¹⁾	This is the number of bank machines. A given bank machine manages a single DRAM bank at any given time.	2, 3, 4, 5, 6, 7, 8
DATA_BUF_ADDR_WIDTH	This is the bus width of the request tag passed to the Memory Controller. This parameter is set to 5 for 4:1 mode and 4 for 2:1 mode. This parameter should not be changed.	5, 4
SLOT_0_CONFIG	This is the rank mapping. This parameter should not be changed.	Single-rank setting: 8'b0000_0001 Dual-rank setting: 8'b0000_0011
ECC	This is the error correction code, available in 72-bit data width configurations. ECC is not currently available.	72
RANKS	This is the number of ranks.	
DATA_WIDTH	This parameter determines the write data mask width and depends on whether or not ECC is enabled.	ECC = ON: DATA_WIDTH = DQ_WIDTH + ECC_WIDTH ECC = OFF: DATA_WIDTH = DQ_WIDTH
APP_DATA_WIDTH	This UI_INTFC parameter specifies the payload data width in the UI.	APP_DATA_WIDTH = 2 x nCK_PER_CLK x PAYLOAD_WIDTH
APP_MASK_WIDTH	This UI_INTFC parameter specifies the payload mask width in the UI.	

Parameter	Description	Options
USER_REFRESH	This parameter indicates if the user manages refresh commands. Can be set for either the User or Native interface.	"ON," "OFF"
REF_CLK_MMCM_ IODELAY_CTRL	This parameter value determines the instantiation of MMCM. This MMCM is used to generate 300 MHz and 400 MHz clock for IDELAY CTRL module.	"TRUE," "FALSE"

Tahle 1-65.	Embedded 7 Series	FPGAs Memory	Solution Configuration	n Parameters <i>(Cont'o</i>	1)
	Linbeated / Series		Johution configuratio		AJ

Notes:

1. nBANK_MACHS parameter values can be changed in user_design top-level RTL file (<module name>_mig.v/vhd: This RTL file is used as user design top RTL file for synthesis and implementation. <module name>_mig_sim.v/vhd: This RTL file is used as user design top RTL file for simulation.). Note that the parameter value can be updated only in non-OOC MIG designs.

Table 1-66 contains parameters set up by the MIG tool based on the pinout selected. When making pinout changes, Xilinx recommends rerunning the MIG tool to set up the parameters properly. See Bank and Pin Selection Guides for DDR3 Designs, page 193 and Bank and Pin Selection Guides for DDR2 Designs, page 203.

Mistakes to the pinout parameters can result in non-functional simulation, an unroutable design, and/or trouble meeting timing. These parameters are used to set up the PHY and route all the necessary signals to and from it. The following parameters are calculated based on selected Data and Address/Control byte groups. These parameters do not consider the system signals selection (that is, system clock, reference clock and status signals).

Parameter	Description	Example
BYTE_LANES_B0, BYTE_LANES_B1, BYTE_LANES_B2	Defines the byte lanes being used in a given I/O bank. A 1 in a bit position indicates a byte lane is used, and a 0 indicates unused. This parameter varies based on the pinout and should not be changed manually in generated design.	Ordering of bits from MSB to LSB is T0, T1, T2, and T3 byte groups. 4'b1101: For a given bank, three byte lanes are used and one byte lane is not used.
DATA_CTL_B0, DATA_CTL_B1, DATA_CTL_B2	Defines mode of use of byte lanes in a given I/O bank. A 1 in a bit position indicates a byte lane is used for data, and a 0 indicates it is used for address/control. This parameter varies based on the pinout and should not be changed manually in generated design.	4'b1100: With respect to the BYTE_LANE example, two byte lanes are used for Data and one for Address/Control.

Table 1-66:	DDR2/DDR3 SDRAM	Memory Interface	Solution Pinout	Parameters
-------------	-----------------	-------------------------	------------------------	------------

Parameter	Description	Example
PHY_0_BITLANES, PHY_1_BITLANES, PHY_2_BITLANES	12-bit parameter per byte lane used to determine which I/O locations are used to generate the necessary PHY structures. This parameter is provided as per bank. Except CK/CK# and RESET_N pins, all Data and Address/Control pins are considered for this parameter generation. DQS pins are excluded when used for DQS pins in data byte groups. This parameter varies based on the pinout and should not be changed manually in generated design.	This parameter denotes for all byte groups of a selected bank. All 12 bits are denoted for a byte lane. For example, this parameter is 48'hFFE_FFF_000_ DF6 for one bank. 12'hDF6 (12'b1101_1111_0110): bit lines 0, 3, and 9 are not used, the rest of the bits are used.
CK_BYTE_MAP	Bank and byte lane location information for the CK/CK#. An 8-bit parameter is provided per pair of signals. [7:4] – Bank position. Values of 0, 1, or 2 are supported [3:0] – Byte lane position within a bank. Values of 0, 1, 2, and 3 are supported. This parameter varies based on the pinout and should not be changed manually in generated design.	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1 and 0, respectively. 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_

Table 1-66: DDR2/DDR3 SDRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
ADDR_MAP	 Bank and byte lane position information for the address. 12-bit parameter provided per pin. [11:8] – Bank position. Values of 0, 1, or 2 are supported [7:4] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. [3:0] – Bit position within a byte lane. Values of [0, 1, 2,, A, B] are supported. This parameter varies based on the pinout and should not be changed manually in generated design. 	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1 and 0, respectively. Bottom-most pin in a byte group is referred as "0" in MAP parameters. Numbering is counted from 0 to 9 from bottom-most pin to top pin with in a byte group by excluding DQS I/Os. DQS_N and DQS_P pins of the byte group are numbered as A and B, respectively. 192'h000_000_039_038_037_036_035_034_033_032_031_029_0 28_027_026_02B: This parameter is denoted for Address width of 16 with 12 bits for each pin. In this case the Address width is 14 bits. Ordering of parameters is from MSB to LSB (that is, ADDR[0] corresponds to the 12 LSBs of the parameter. 12'h02B: Address pin placed in bank 0, byte lane 1, at location B. 12'h235: Address pin placed in bank 2, byte lane 0, at location 5.
BANK_MAP	Bank and byte lane position information for the bank address. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
CAS_MAP	Bank and byte lane position information for the CAS command. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
CKE_MAP	Bank and byte lane position information for the CKE. This parameter is referred to as one of the Address/Control byte groups. See ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.

Table 1-66: DDR2/DDR3 SDRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
ODT_MAP	Bank and byte lane position information for the ODT. This parameter is referred to as one of the Address/Control byte groups. See ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
CS_MAP	Bank and byte lane position information for the chip select. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
PARITY_MAP	Bank and byte lane position information for the parity bit. Parity bit exists for RDIMMs only. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
RAS_MAP	Bank and byte lane position information for the RAS command. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
WE_MAP	Bank and byte lane position information for the WE command. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.

Table 1-66: DDR2/DDR3 SDRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
DQS_BYTE_MAP	Bank and byte lane position information for the strobe. See the CK_BYTE_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_BYTE_MAP example.
DATA0_MAP, DATA1_MAP, DATA2_MAP, DATA3_MAP, DATA4_MAP, DATA5_MAP, DATA6_MAP, DATA7_MAP, DATA8_MAP	Bank and byte lane position information for the data bus. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
MASK0_MAP, MASK1_MAP	Bank and byte lane position information for the data mask. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.

Table 1-66:	DDR2/DDR3 SDRAM Memory	y Interface Solution	Pinout Parameters	(Cont'd)
-------------	------------------------	----------------------	--------------------------	----------

Design Guidelines

Guidelines for DDR2 and DDR3 SDRAM designs are covered in this section.

For general PCB routing guidelines, see Appendix A, General Memory Routing Guidelines.

DDR3 SDRAM

This section describes guidelines for DDR3 SDRAM designs, including bank selection, pin allocation, pin assignments, termination, I/O standards, and trace lengths.

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA, FPGA speed grade, and the design frequency. The final frequency ranges are subject to characterization results.

Bank and Pin Selection Guides for DDR3 Designs

The MIG tool generates pin assignments for a memory interface based on physical layer rules.

Xilinx 7 series FPGAs are designed for very high-performance memory interfaces, and certain rules must be followed to use the DDR3 SDRAM physical layer. Xilinx 7 series FPGAs have dedicated logic for each DQS byte group. Four DQS byte groups are available in each 50-pin bank. Each byte group consists of a clock-capable I/O pair for the DQS and 10 associated I/Os.

Several times in this document byte groups are referenced for address and control as well, this refers to the 12 associated groups. In a typical DDR3 data bus configuration, eight of these 10 I/Os are used for the DQs, one is used for the data mask (DM), and one is left over for other signals in the memory interface.

The MIG tool should be used to generate a pinout for a 7 series DDR3 interface. The MIG tool follows these rules:

• The system clock input must be in the same column as the memory interface. The system clock input is recommended to be in the address/control bank, when possible.

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

- CK must be connected to a p-n pair in one of the control byte groups. Any p-n pair in the group is acceptable, including SRCC, MRCC, and DQS pins.
- If multiple CK outputs are used, such as for dual rank, all CK outputs must come from the same byte lane.
- DQS signals for a byte group must be connected to a designated DQS pair in the bank due to the dedicated strobe connections for DDR2 and DDR3 SDRAM. For more information, see 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].
- DQ and DM (if used) signals must be connected to the byte group pins associated with the corresponding DQS.
- VRN and VRP are used for the digitally controlled impedance (DCI) reference for banks that support DCI.
- The non-byte groups pins (that is, VRN/VRP pins in HP banks and top/bottom most pins in HR banks) can be used for an address/control pin, if the following conditions are met:
 - For HP banks, DCI cascade is used or the bank does not need the VRN/VRP pins, as in the case of only outputs.
 - The adjacent byte group (T0/T3) is used as an address/control byte group.

- An unused pin exists in the adjacent byte group (T0/T3) or the CK output is contained in the adjacent byte group.
- No more than three vertical banks from a die perspective can be used for a single interface.
- The address/control must be in the middle I/O bank of interfaces that span three I/O banks. All address/control must be in the same I/O bank. Address/control cannot be split between banks.
- Control (RAS_N, CAS_N, WE_N, CS_N, CKE, ODT) and address lines must be connected to byte groups not used for the data byte groups.
- RESET_N can be connected to any available pin within the device, including the VRN/VRP pins if DCI cascade is used, as long as timing is met and an appropriate I/O voltage standard is used. The GUI restricts this pin to the banks used for the interface to help with timing, but this is not a requirement.
- Devices implemented with SSI technology have SLRs. Memory interfaces cannot span across SLRs. Ensure that this rule is followed for the part chosen and for any other pin-compatible parts that can also be used.

Pin Swapping

- Pins can be freely swapped within each byte group (data and address/control), except for the DQS pair which must be on a clock-capable DQS pair and the CK which must be on a p-n pair.
- Byte groups (data and address/control) can be freely swapped with each other.
- Pins in the address/control byte groups can be freely swapped within and between their byte groups.
- No other pin swapping is permitted.

Bank Sharing Among Controllers

No unused part of a bank used in a memory interface is permitted to be shared with another memory interface. The dedicated logic that controls all the FIFOs and phasers in a bank is designed to only operate with a single memory interface and cannot be shared with other memory interfaces. With the exception of the shared address and control in the dual controller supported in the MIG core.

System Clock, PLL and MMCM Locations, and Constraints

The PLL and MMCM are required to be in the bank that supplies the clock to the memory to meet the specified interface performance. The system clock input is also strongly recommended to be in this bank. The MIG tool follows these two rules whenever possible. The exception is a 16-bit interface in a single bank where there might not be pins available for the clock input. In this case, the clock input needs to come from an adjacent bank

through the frequency backbone to the PLL. The system clock input to the PLL must come from clock capable I/O.

The system clock input can only be used for an interface in the same column. If the clock came from another column, the additional PLL or MMCM and clock routing required for this induces too much additional jitter.

Unused outputs from the PLL can be used as clock outputs. Only the settings for these outputs can be changed. Settings related to the overall PLL behavior and the used outputs must not be disturbed.

A PLL cannot be shared among interfaces. See Clocking Architecture, page 119 for information on allowed PLL parameters.

DDR3 Component PCB Routing

Fly-by routing topology is required for the clock, address, and control lines. Fly-by means that this group of lines is routed in a daisy-chain fashion and terminated appropriately at the end of the line. The trace length of each signal within this group to a given component must be matched. The controller uses write leveling to account for the different skews between components. This technique uses fewer FPGA pins because signals do not have to be replicated. The data bus routing for each component should be as short as possible. Each signal should be routed on a single PCB layer to minimize discontinuities caused by additional vias.

V_{REF}

The V_{REF} includes internal and external:

- Internal V_{REF} Only be used for data rates of 800 Mb/s or below.
- External V_{REF} and V_{REF} Tracking For the maximum specified data rate in a given FPGA speed grade, external V_{REF} must track the midpoint of the VDD supplied to the DRAM and ground. V_{REF} tracking can be done with a resistive divider or by a regulator that tracks this midpoint. Regulators that supply a fixed reference voltage irrespective of the VDD voltage should not be used at these data rates. V_{REF} traces need to have a larger than the minimum spacing to reduce coupling from other intrusive signals. See 7 Series FPGAs PCB Design and Pin Planning Guide (UG483) [Ref 12], "V_{REF} Stabilization Capacitors" section.

VCCAUX_IO

VCCAUX_IO has two values that can be set to 1.8V or 2.0V depending on memory performance. If migration occurs between different memory performance or FPGA speed grades, VCCAUX_IO might need to be its own supply that can be adjusted. For performance information, see the 7 Series FPGAs Data Sheets [Ref 13].

For more information on VCCAUX_IO, see 7 Series SelectIO[™] Resources User Guide (UG471) [Ref 2], "VCCAUX_IO" section.

Power System and Plane Discontinuities

See 7 Series FPGAs PCB Design and Pin Planning Guide (UG483) [Ref 12].

Termination

These rules apply to termination for DDR3 SDRAM:

- Simulation (IBIS or other) is highly recommended. The loading of address (A, BA), command (RAS_N, CAS_N, WE_N), and control (CS_N, ODT) signals depends on various factors, such as speed requirements, termination topology, use of unbuffered DIMMs, and multiple rank DIMMs, and can be a limiting factor in reaching a performance target.
- Single ended 40Ω traces and termination are required for operation at 1,333 Mb/s and higher. 50Ω is acceptable below 1,333 Mb/s. Figure 1-91 and Figure 1-92 are for 1,333 Mb/s and higher.
- Differential 80Ω traces and termination are required for operation at 1,333 Mb/s and higher. 100Ω is acceptable below 1,333 Mb/s. Figure 1-93 is for 1,333 Mb/s and higher.
- When using a V_{TT} supply, care must be taken to manage the high frequency currents from the terminations. Bypass caps recommendation 1 μ F for every four terminations and 100 μ F for every 25 terminations evenly distributed relative to the terminations. A planelet should also be used to distribute power to the terminations.
- Address and control signals (A, BA, RAS_N, CAS_N, WE_N, CS_N, CKE, ODT) are to be terminated with the onboard DIMM termination. If DIMM termination does not exist or a component is being used, a 40Ω pull-up to V_{TT} at the far end of the line should be used (Figure 1-91). Except for the CK/CK_N which requires a differential termination as shown in Figure 1-93.
- A split 80Ω termination to V_{CCO} and a 80Ω termination to GND can be used (Figure 1-92), but takes more power. For bidirectional signals, the termination is needed at both ends of the signal. ODT should be used on the memory side. For best performance in HP banks, DCI should be used. For best performance in HR banks, IN_TERM (internal termination) should be used.

X18716-012917

Figure 1-91: 40 Ω Termination to V_{TT}

X18717-012917

Figure 1-92: 80 Ω Split Termination to V_{CCO} and GND

 Differential signals should be terminated with the memory device internal termination or an 80Ω differential termination at the load (Figure 1-93). For bidirectional signals, termination is needed at both ends of the signal. ODT should be used on the memory side. For best performance in HP banks, DCI should be used. For best performance in HR banks, IN_TERM (internal termination) should be used.

X16403-012917

Figure 1-93: **80**Ω **Differential Termination**

Note: For CK_P/CK_N differential signals, the termination method mentioned in Figure 1-94 is recommended.

X16404-012917

Figure 1-94: **80**Ω **Differential Termination**

• All termination must be placed as close to the load as possible. The termination can be placed before or after the load provided that the termination is placed within a small distance of the load pin. The allowable distance can be determined by simulation.

197

- DCI (HP banks) or IN_TERM (HR banks) is required at the FPGA to meet the specified performance.
- The RESET_N signal is not terminated. This signal should be pulled down during memory initialization with a 4.7 k Ω resistor connected to GND.
- ODT, which terminates a signal at the memory, is required. The MIG tool should be used to specify the configuration of the memory system for setting the mode register properly. See Micron technical note TN-47-01 [Ref 14] for additional details on ODT.
- DM should be pulled to GND if DM is not driven by the FPGA (data mask not used or data mask disabled scenarios). The value of the pull-down resistor used for DM in this case should be no larger than four times the ODT value. Check with the memory vendor for further information.

Trace Lengths

The trace lengths described here are for high-speed operation. The package delay should be included when determining the effective trace length. Note that different parts in the same package have different internal package skew values. De-rate the minimum period appropriately in the **MIG Controller Options** page when different parts in the same package are used.

Another method is to generate the package lengths using Vivado Design Suite. The following commands generate a csv file that contains the package delay values for every pin of the device under consideration.

```
link_design -part <part_number>
write_csv <file_name>
```

For example, to obtain the package delay information for the 7 series FPGA XC7K160T-FF676, this command should be issued:

```
link_design -part xc7k160tfbg676
write_csv flight_time
```

This generates a file named flight_time.csv in the current directory with package trace delay information for each pin. While applying specific trace-matching guidelines for the DDR3 SDRAM interface, this additional package delay term should be considered for the overall electrical propagation delay.

When migrating between different die sizes in the same package, there might be different delays for the same package pin. The delay values for each of the devices must be accounted for and the mid-range should be used for each pin. This might decrease the maximum possible performance for the target device. See Table 1-67 for exact degradation.

These rules indicate the maximum electrical delays between DDR3 SDRAM signals:

 The maximum electrical delay between any DQ or DM and its associated DQS/DQS# must be ≤ ±5 ps.

- The maximum electrical delay between any address and control signals and the corresponding CK/CK# must be ≤ ±25 ps, with 8 ps being the optimal target.
- CK/CK# signals must arrive at each memory device after the DQS/DQS# signals. The skew allowed between CK/CK# and DQS/DQS# must be bounded between 0 and 1,600 ps. The recommended skew between CK/CK# and DQS/DQS# is 150 ps to 1,600 ps for components/UDIMMs and for RDIMMs it is 450 ps to 750 ps. For DIMM modules, the total CK/CK# and DQS/DQS# propagation delays from the FPGA to the memory components on the DIMM must be accounted for when designing to this requirement.
- CK/CK# must arrive after DQS/DQS# at each memory component to ensure calibration can align DQS/DQS# to the correct CK/CK# clock cycle. Write Calibration failures are seen if this specification is violated. See Debugging Write Calibration Failures (dbg_wrcal_err = 1), page 253 in the Debugging DDR3/DDR2 Designs, page 228.

The specified DQ to DQS skew limit can be increased if the memory interface is not operated at the maximum frequency. Table 1-67 indicates the relaxed skew limit (\pm) for these cases. The vertical axis is the bit rate in Mb/s. The first column is the FPGA maximum rate, check the data sheet to determine this maximum rate. The second column is the actual speed the memory system is operating at. The horizontal axis is the DDR3 SDRAM component speed rating.

FPGA Rating		Memory Component Rating						
Rated	Actual	2,133	1,866	1,600	1,333	1,066	800	
	1,866	18.0	5.0	-	-	-	-	
	1,600	62.6	49.5	31.3	-	-	_	
1,866	1,333	125.2	112.1	93.9	66.4	_	_	
	1,066	150.0	150.0	150.0	150.0	125.4	_	
	800	150.0	150.0	150.0	150.0	150.0	150.0	
1,600	1,866	-	_	_	-	_	_	
	1,600	36.2	23.2	5.0	-	_	_	
	1,333	98.8	85.8	67.6	40.1	_	_	
	1,066	150.0	150.0	150.0	134.0	99.0	_	
	800	150.0	150.0	150.0	150.0	150.0	150.0	
	1,866	-	-	_	_	_	_	
	1,600	-	-	_	_	_	_	
1,333	1,333	63.7	50.7	32.5	5.0	_	_	
	1,066	150.0	144.7	126.4	98.9	63.9	_	
	800	150.0	150.0	150.0	150.0	150.0	150.0	

Table 1-67: DQ to DQS Skew Limit

FPGA Rating Memory Comp			onent Rati	ng					
Rated	Actual	2,133	2,133 1,866 1,600 1,333 1,066 8						
	1,866	-	—	_	_	_	—		
	1,600	-	_	_	_	_	-		
1,066	1,333	-	_	_	_	-	-		
	1,066	98.7	85.7	67.5	40.0	5.0	_		
	800	150.0	150.0	150.0	150.0	150.0	98.5		
	1,866	-	_	_	_	-	-		
	1,600	-	_	_	_	-	-		
800	1,333	_	_	_	_	_	_		
	1,066	-	_	_	_	-	-		
	800	150.0	148.2	130.0	102.5	67.0	5.0		

Table 1-67: DQ to DQS Skew Limit (Cont'd)

For example, if an 1,866 rated -3 FPGA operates at 1,600 Mb/s with a 1,600 rated DDR3 component, the DQ to DQS skew limit is ± 31.3 ps. If the interface operates at 1,066 with a 1,333 rated DDR3 component, the skew limit is ± 150 ps.

Similarly, the specified CK to address/control skew limit can be increased if the memory interface is not operated at the maximum frequency. Table 1-68 indicates the relaxed skew limit (±) for these cases. The vertical axis is the bit rate in Mb/s. The horizontal axis is the DDR3 SDRAM component speed rating. The top portion of the chart is for skew changes relative to the 1,867 Mb/s rated FPGAs, while the lower portion is for the 1,600 Mb/s rated FPGAs.

FPGA Rating Memory Component F			onent Rati	ng			
Rated	Actual	2,133	1,866	1,600	1,333	1,066	800
	1,866	35.0	25.0	_	-	-	-
	1,600	124.1	114.1	94.1	_	-	-
1,866	1,333	150.0	150.0	150.0	150.0	-	-
	1,066	150.0	150.0	150.0	150.0	150.0	_
	800	150.0	150.0	150.0	150.0	150.0	150.0
	1,866	-	-	_	_	-	-
	1,600	55.0	45.0	25.0	-	-	_
1,600	1,333	150.0	150.0	150.0	130.2	-	-
	1,066	150.0	150.0	150.0	150.0	150.0	-
	800	150.0	150.0	150.0	150.0	150.0	150.0

Table 1-68: CK to Address/Control Skew Limit

FPGA Rating		Memory Component Rating						
Rated	Actual	2,133	1,866	1,600	1,333	1,066	800	
	1,866	-	-	-	-	-	-	
	1,600	-	-	-	-	-	-	
1,333	1,333	75.0	65.0	45.0	25.0	-	-	
	1,066	150.0	150.0	150.0	150.0	140.4	-	
	800	150.0	150.0	150.0	150.0	150.0	150.0	
1,066	1,866	-	-	_	_	-	-	
	1,600	-	-	_	_	-	-	
	1,333	-	-	_	_	-	-	
	1,066	147.5	137.5	117.5	97.5	25.0	-	
	800	150.0	150.0	150.0	150.0	150.0	150.0	
	1,866	-	-	_	_	-	-	
	1,600	-	-	-	-	-	-	
800	1,333	-	-	-	-	-	-	
	1,066	-	-	-	-	_	-	
	800	150.0	150.0	150.0	150.0	100.0	25.0	

Table 1-68: CK to Address/Control Skew Limit (Cont'd)

For example, if an 1,863 Mb/s rated FPGA operates at 1600 Mb/s with a 1,600 rated DDR3 component, the CK to address/control skew limit is \pm 94.1 ps. If a 1,600 Mb/s rated FPGA operates at 1,066 with a 1,333 rated DDR3 component, the skew limit is \pm 150 ps.

The skew between bytes in an I/O bank must be 1 ns or less.

Configuration

The XDC contains timing, pin, and I/O standard information. The sys_clk constraint sets the operating frequency of the interface and is set through the MIG GUI. This must be rerun if this needs to be altered, because other internal parameters are affected. For example:

create_clock -period 1.875 [get_ports sys_clk_p]

The clk_ref constraint sets the frequency for the IDELAY reference clock, which is typically 200 MHz. For example:

create_clock -period 5 [get_ports clk_ref_p]

The I/O standards are set appropriately for the DDR3 interface with LVCMOS15, SSTL15, SSTL15_T_DCI, DIFF_SSTL15, or DIFF_SSTL15_T_DCI, as appropriate. LVDS_25 is used for the system clock (sys_clk) and I/O delay reference clock (clk_ref). These standards can be changed, as required, for the system configuration. These signals are brought out to the top-level for system connection:

- **sys_rst** This is the main system reset (asynchronous). The reset signal must be applied for a minimum pulse width of 5 ns.
- **init_calib_complete** This signal indicates when the internal calibration is done and that the interface is ready for use.
- **tg_compare_error** This signal is generated by the example design traffic generator if read data does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design. They can be generated and used internally instead of being brought out to pins.

A 16-bit wide interfaces might need to have the system clock in a bank above or below the bank with the address/control and data. In this case, the MIG tool puts an additional constraint in the XDC. An example is shown here:

```
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_nets sys_clk_p]
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hierarchical *pll*CLKIN1]
```

This results in a warning listed below during PAR. This warning can be ignored.

WARNING:Place:1402 - A clock IOB / PLL clock component pair have been found that are not placed at an optimal clock IOB / PLL site pair. The clock IOB component <sys_clk_p> is placed at site <IOB_X1Y76>. The corresponding PLL component <u_backb16/u_ddr3_infrastructure/plle2_i> is placed at site <PLLE2_ADV_X1Y2>. The clock I/O can use the fast path between the IOB and the PLL if the IOB is placed on a Clock Capable IOB site that has dedicated fast path to PLL sites within the same clock region. You might want to analyze why this issue exists and correct it. This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint was applied on COMP.PIN <sys_clk_p.PAD> allowing your design to continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override is highly discouraged as it might lead to very poor timing results. It is recommended that this error condition be corrected in the design.

Do not drive user clocks through the I/O clocking backbone from the region(s) containing the MIG generated memory interface to CMT blocks in adjacent regions due to resource limitations. For more information, see the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].

The MIG tool sets the VCCAUX_IO constraint based on the data rate and voltage input selected. The generated XDC has additional constraints as needed. For example:

```
# PadFunction: IO_L1P_T0_39
set_property VCCAUX_IO HIGH [get_ports {ddr3_dq[0]}]
set_property SLEW FAST [get_ports {ddr3_dq[0]}]
set_property IOSTANDARD SSTL15_T_DCI [get_ports {ddr3_dq[0]}]
# PadFunction: IO_L1N_T0_39
set_property VCCAUX_IO HIGH [get_ports {ddr3_dq[1]}]
set_property SLEW FAST [get_ports {ddr3_dq[1]}]
set_property IOSTANDARD SSTL15_T_DCI [get_ports {ddr3_dq[1]}]
set_property IOSTANDARD SSTL15_T_DCI [get_ports {ddr3_dq[1]}]
```


Consult the Constraints Guide for more information.

For DDR3 SDRAM interfaces that have the memory system input clock (sys_clk_p/sys_clk_n) placed on CCIO pins within one of the memory banks, the MIG tool assigns the DIFF_SSTL15 I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_SSTL15 and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_SSTL15 CCIO pins. For more details on usage and required circuitry for LVDS and LVDS_25 I/O Standards, see the 7 Series FPGAs SelectIOTM Resources User Guide (UG471) [Ref 2].

I/O Standards

These rules apply to the I/O standard selection for DDR3 SDRAMs:

- Designs generated by the MIG tool use the SSTL15_T_DCI and DIFF_SSTL15_T_DCI standards for all bidirectional I/O (DQ, DQS) in the High-Performance banks. In the High-Range banks, the tool uses the SSTL15 and DIFF_SSTL15 standard with the internal termination (IN_TERM) attribute chosen in the GUI.
- The SSTL15 and DIFF_SSTL15 standards are used for unidirectional outputs, such as control/address, and forward memory clocks.
- LVCMOS15 is used for the RESET_N signal driven to the DDR3 memory.

The MIG tool creates the XDC using the appropriate standard based on input from the GUI.

DDR2 SDRAM

This section describes guidelines for DDR2 SDRAM designs, including bank selection, pin allocation, pin assignments, termination, I/O standards, and trace lengths.

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA, FPGA speed grade, and the design frequency. The final frequency ranges are subject to characterization results.

Pin Assignments

The MIG tool generates pin assignments for a memory interface based on physical layer rules.

Bank and Pin Selection Guides for DDR2 Designs

Xilinx 7 series FPGAs are designed for very high-performance memory interfaces, and certain rules must be followed to use the DDR2 SDRAM physical layer. Xilinx 7 series FPGAs have dedicated logic for each DQS byte group. Four DQS byte groups are available in each 50-pin bank. Each byte group consists of a clock-capable I/O pair for the DQS and 10

associated I/Os. In a typical DDR2 configuration, eight of these 10 I/Os are used for the DQs: one is used for the data mask (DM), and one remains for other signals in the memory interface.

Xilinx 7 series FPGAs have dedicated clock routing for high-speed synchronization that is routed vertically within the I/O banks. Thus, DDR2 memory interfaces must be arranged in the banks vertically and not horizontally. In addition, the maximum height is three banks.

The MIG tool, when available, should be used to generate a pinout for a 7 series DDR2 interface. The MIG tool follows these rules:

- DQS signals for a byte group must be connected to a designated DQS CC pair in the bank.
- DQ signals and a DM signal must be connected to the byte group pins associated with the corresponding DQS.
- Control (RAS_N, CAS_N, WE_N, CS_N, CKE, ODT) and address lines must be connected to byte groups not used for the data byte groups.
- The non-byte groups pins (that is, VRN/VRP pins in HP banks and top/bottom most pins in HR banks) can be used for an address/control pin, if the following conditions are met:
 - For HP banks, DCI cascade is used or the bank does not need the VRN/VRP pins, as in the case of only outputs.
 - The adjacent byte group (T0/T3) is used as an address/control byte group.
 - An unused pin exists in the adjacent byte group (T0/T3) or the CK output is contained in the adjacent byte group.
- All address/control byte groups must be in the same I/O bank. Address/control byte groups cannot be split between banks.
- The address/control byte groups must be in the middle I/O bank of interfaces that span three I/O banks.
- CK must be connected to a p-n pair in one of the control byte groups. Any p-n pair in the group is acceptable, including SRCC, MRCC, and DQS pins. These pins are generated for each component and a maximum of four ports/pairs only are allowed due to I/O pin limitations. Only one CK pair must be connected for one byte group. CK pairs are generated for each component, and a maximum of four pairs only are allowed due to I/O pin limitations. This varies based on **Memory Clock Selection** in the Memory Options page in the MIG GUI.
- CS_N pins are generated for each component and a maximum of four ports/pairs only are allowed due to I/O pin limitations.
- For single rank components and DIMMs, only one CKE port is generated.
- For single rank components and DIMMs, the ODT port is repeated based on the number of components. The maximum number of allowed ports is 3.

- For data widths of 16 with a x8 part, only one set of CK/CK#, CS, ODT ports is generated to fit the design in a single bank.
- VRN and VRP are used for the digitally controlled impedance (DCI) reference for banks that support DCI. DCI cascade is permitted.
- The interface must be arranged vertically.
- No more than three banks can be used for a single interface. All the banks chosen must be consequent.
- The system clock input must be in the same column as the memory interface. The system clock input is recommended to be in the address/control bank, when possible.

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

• Devices implemented with SSI technology have SLRs. Memory interfaces cannot span across SLRs. Ensure that this rule is followed for the part chosen and for any other pin-compatible parts that can also be used.

Bank Sharing Among Controllers

No unused part of a bank used in a memory interface is permitted to be shared with another memory interface. The dedicated logic that controls all the FIFOs and phasers in a bank is designed to only operate with a single memory interface and cannot be shared with other memory interfaces.

Pin Swapping

- Pins can be freely swapped within each byte group (data and address/control), except for the DQS pair which must be on a clock-capable DQS pair and the CK, which must be on a p-n pair.
- Byte groups (data and address/control) can be freely swapped with each other.
- Pins in the address/control byte groups can be freely swapped within and between their byte groups.
- No other pin swapping is permitted.

Internal V_{REF}

Internal V_{REF} can only be used for data rates of 800 Mb/s or below.

System Clock, PLL Location, and Constraints

The PLL is required to be in the bank that supplies the clock to the memory to meet the specified interface performance. The system clock input is also strongly recommended to be in this bank. The MIG tool follows these two rules whenever possible. The exception is a 16-bit interface in a single bank where there might not be pins available for the clock input. In this case, the clock input needs to come from an adjacent bank through the frequency backbone to the PLL. The system clock input to the PLL must come from clock capable I/O.

The system clock input can only be used for an interface in the same column. The system clock input cannot be driven from another column. The additional PLL or MMCM and clock routing required for this induces too much additional jitter.

Unused outputs from the PLL can be used as clock outputs. Only the settings for these outputs can be changed. Settings related to the overall PLL behavior and the used outputs must not be disturbed.

A PLL cannot be shared among interfaces.

See Clocking Architecture, page 119 for information on allowed PLL parameters.

Configuration

The XDC contains timing, pin, and I/O standard information. The sys_clk constraint sets the operating frequency of the interface and is set through the MIG GUI. The MIG GUI must be rerun if this needs to be altered, because other internal parameters are affected. For example:

create_clock -period 1.875 [get_ports sys_clk_p]

The clk_ref constraint sets the frequency for the IDELAY reference clock, which is typically 200 MHz. For example:

create_clock -period 5 [get_ports clk_ref_p]

The I/O standards are set appropriately for the DDR2 interface with LVCMOS18, SSTL18_II, SSTL18_II_T_DCI, DIFF_SSTL18_II, or DIFF_SSTL18_II_T_DCI, as appropriate. LVDS_25 is used for the system clock (sys_clk) and I/O delay reference clock (clk_ref). These standards can be changed, as required, for the system configuration. These signals are brought out to the top-level for system connection:

- **sys_rst** This is the main system reset (asynchronous). The reset signal must be applied for a minimum pulse width of 5 ns.
- **init_calib_complete** This signal indicates when the internal calibration is done and that the interface is ready for use.
- **tg_compare_error** This signal is generated by the example design traffic generator, if read data does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design. They can be generated and used internally instead of being brought out to pins.

A 16-bit wide interface might need to have the system clock in a bank above or below the bank with the address/control and data. In this case, the MIG tool puts an additional constraint in the XDC. An example is shown here:

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_nets sys_clk_p]
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hierarchical *pll*CLKIN1]

This results in a warning listed below during PAR. This warning can be ignored.

WARNING:Place:1402 - A clock IOB/PLL clock component pair have been found that are not placed at an optimal clock IOB/PLL site pair. The clock IOB component <sys_clk_p> is placed at site <IOB_X1Y76>. The corresponding PLL component <u_backb16/u_ddr2_infrastructure/plle2_i> is placed at site <PLLE2_ADV_X1Y2>. The clock I/O can use the fast path between the IOB and the PLL if the IOB is placed on a Clock Capable IOB site that has dedicated fast path to PLL sites within the same clock region. You might want to analyze why this issue exists and correct it. This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint was applied on COMP.PIN <sys_clk_p.PAD> allowing your design to continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override is highly discouraged as it might lead to very poor timing results. It is recommended that this error condition be corrected in the design.

Do not drive user clocks through the I/O clocking backbone from the region(s) containing the MIG generated memory interface to CMT blocks in adjacent regions due to resource limitations. For more information, see the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].

The MIG tool sets the VCCAUX_IO constraint based on the data rate and voltage input selected. The generated XDC has additional constraints as needed. For example:

```
# PadFunction: IO_L14P_T2_SRCC_36
set_property VCCAUX_IO NORMAL [get_ports {ddr2_dq[0]}]
set_property SLEW FAST [get_ports {ddr2_dq[0]}]
set_property IOSTANDARD SSTL18_II_T_DCI [get_ports {ddr2_dq[0]}]
# PadFunction: IO_L14N_T2_SRCC_36
set_property VCCAUX_IO NORMAL [get_ports {ddr2_dq[1]}]
set_property SLEW FAST [get_ports {ddr2_dq[1]}]
set_property IOSTANDARD SSTL18_II_T_DCI [get_ports {ddr2_dq[1]}]
set_property IOSTANDARD SSTL18_II_T_DCI [get_ports {ddr2_dq[1]}]
```

Consult the Xilinx Timing Constraints User Guide (UG612) [Ref 15] for more information.

For DDR2 SDRAM interfaces that have the memory system input clock (sys_clk_p/sys_clk_n placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_SSTL18_II I/O standard (VCCO = 1.8V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_SSTL18_II and LVDS inputs, an LVDS clock

source can be connected directly to the DIFF_SSTL18_II CCIO pins. For more details on usage and required circuitry for LVDS and LVDS_25 I/O Standards, see the 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2].

Termination

These rules apply to termination for DDR2 SDRAM:

- Simulation (using IBIS or other) is highly recommended. The loading of address (A, BA), command (RAS_N, CAS_N, WE_N), and control (CS_N, ODT) signals depends on various factors, such as speed requirements, termination topology, use of unbuffered DIMMs, and multiple rank DIMMs. Loading can be a limiting factor in reaching a performance target.
- Unidirectional signals should be terminated with the memory device internal termination or a pull-up of 50 Ω to VTT at the load (Figure 1-91 with 50 Ω instead of 40 Ω). A split 100 Ω termination to V_{CCO} and a 100 Ω termination to GND can be used (Figure 1-92 with 100 Ω instead of 80 Ω), but takes more power. For bidirectional signals, the termination is needed at both ends of the signal. ODT should be used on the memory side. For best performance in HP banks, DCI should be used. For best performance in HR banks, IN_TERM (internal termination) should be used.
- Differential signals should be terminated with the memory device internal termination or a 100Ω differential termination at the load (Figure 1-93). For bidirectional signals, termination is needed at both ends of the signal. ODT should be used on the memory side. For best performance in HP banks, DCI should be used. For best performance in HR banks, IN_TERM (internal termination) should be used.
- All termination must be placed as close to the load as possible. The termination can be placed before or after the load provided that the termination is placed within a small distance of the load pin. The allowable distance can be determined by simulation.
- DCI (HP banks) or IN_TERM (HR banks) is required at the FPGA to meet the specified performance.
- Address (A, BA) and control signals (RAS_N, CAS_N, WE_N, CS_N, ODT) are to be terminated with the onboard DIMM termination. If DIMM termination does not exist or a component is being used, a 50 Ω pull-up to V_{TT} at the far end of the line should be used except for the CK/CK_N which requires a differential termination.
- The CKE signal is not terminated. This signal should be pulled down during memory initialization with a 4.7 k Ω resistor connected to GND.
- ODT, which terminates a signal at the memory, is required. The MIG tool should be used to specify the configuration of the memory system for setting the mode register properly. See Micron technical note *TN-47-01* [Ref 14] for additional details on ODT.
- ODT applies to the DQ, DQS, and DM signals only. If ODT is used, the mode register must be set appropriately to enable ODT at the memory.

• DM should be pulled to GND if ODT is used but DM is not driven by the FPGA (for scenarios where the data mask is not used or is disabled).

I/O Standards

These rules apply to the I/O standard selection for DDR2 SDRAMs:

- Designs generated by the MIG tool use the SSTL18_II_T_DCI and DIFF_SSTL18_II_T_DCI standards for all bidirectional I/O (DQ, DQS) in the High-Performance banks. In the High-Range banks, the tool uses the SSTL18_II and DIFF_SSTL18_II standard with the internal termination (IN_TERM) attribute chosen in the GUI.
- The SSTL18_II and DIFF_SSTL18_II standards are used for unidirectional outputs, such as control/address and forward memory clocks.
- LVCMOS18 is used for the RESET_N signal driven to the DDR2 memory RDIMM interfaces. The MIG tool creates the XDC using the appropriate standard based on input from the GUI.

Trace Lengths

The trace lengths described in this section are for high-speed operation. The package delay should be included when determining the effective trace length. Different parts in the same package have different internal package skew values. Derate the minimum period appropriately in the **MIG Controller Options** page when different parts in the same package are used.

One method to determine the delay is to use the L and C values for each pin from the IBIS models. The delay value is determined as the square root of $(L \times C)$.

Another method is to generate the package lengths using Vivado. The following commands generate a csv file that contains the package delay values for every pin of the device under consideration.

```
link_design -part <part_number>
write_csv <file_name>
```

For example, to obtain the package delay information for the 7 series FPGA XC7K160T-FF676, this command should be issued:

```
link_design -part xc7k160tfbg676
write_csv flight_time
```

This generates a file named flight_time.csv in the current directory with package trace delay information for each pin. While applying specific trace-matching guidelines for the DDR2 SDRAM interface, this additional package delay term should be considered for the overall electrical propagation delay. Different die in the same package might have different delays for the same package pin. If this is expected, the values should be averaged appropriately to decrease the maximum possible performance for the target device.

These rules indicate the maximum electrical delays between DDR2 SDRAM signals:

- The maximum electrical delay between any DQ or DM and its associated DQS/DQS# must be ≤ ±5 ps.
- The maximum electrical delay between any address and control signals and the corresponding CK/CK# must be ≤ ±25 ps.
- The maximum electrical delay between any DQS/DQS# and CK/CK# must be < ±25 ps.

Clocking

The 7 series FPGA MIG DDR3/DDR2 design has two clock inputs, the reference clock and the system clock. The reference clock drives the IODELAYCTRL components in the design, while the system clock input is used to create all MIG design clocks that are used to clock the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations. For more information on clocking architecture, see Clocking Architecture, page 119.

The MIG tool allows you to input the Memory Clock Period and then lists available Input Clock Periods that follow the supported clocking guidelines. Based on these two clock periods selections, the generated MIG core appropriately sets the PLL parameters. The MIG tool enables automatic generation of all supported clocking structures. For information on how to use the MIG tool to set up the desired clocking structure including input clock placement, input clock frequency, and IDELAYCTRL ref_clk generation, see Creating 7 Series FPGA DDR3 Memory Controller Block Design, page 32.

Input Clock Guidelines

IMPORTANT: The input system clock cannot be generated internally.

• PLL Guidelines

 $\langle \rangle$

- CLKFBOUT_MULT_F (M) must be between 1 and 16 inclusive.
- DIVCLK_DIVIDE (D, Input Divider) can be any value supported by the PLLE2 parameter.
- CLKOUT_DIVIDE (O, Output Divider) must be 2 for 400 MHz and up operation and 4 for below 400 MHz operation.
- The above settings must ensure the minimum PLL VCO frequency (FVCOMIN) is met. For specifications, see the appropriate DC and Switching Characteristics Data Sheet. The 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] includes the equation for calculating FVCO.
- The relationship between the input period and the memory period is InputPeriod = $(MemoryPeriod \times M)/(D \times D1)$.

- The clock input (sys_clk) can be input on any CCIO in the column where the memory interface is located; this includes CCIO in banks that do not contain the memory interface, but must be in the same column as the memory interface. The PLL must be located in the bank containing the clock sent to the memory. To route the input clock to the memory interface PLL, the CMT backbone must be used. With the MIG implementation, one spare interconnect on the backbone is available that can be used for this purpose.
 - MIG core versions 1.4 and later allow this input clocking setup and properly drive the CMT backbone.
 - CLOCK_DEDICATED_ROUTE = BACKBONE constraint is used to implement CMT backbone, following warning message is expected. It can be ignored safely.

WARNING: [Place 30-172] Sub-optimal placement for a clock-capable IO pin and PLL pair. The flow will continue as the CLOCK_DEDICATED_ROUTE constraint is set to BACKBONE.

```
u_mig_7series_0/c0_u_ddr3_clk_ibuf/diff_input_clk.u_ibufg_sys_clk (IBUFDS.O) is
locked to IOB_X0Y176
u_mig_7series_0/c0_u_ddr3_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y1
u_mig_7series_0/c1_u_ddr3_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y5
......
```

- For DDR3 interfaces that have the memory system input clock (sys_clk) placed on CCIO pins within one of the memory banks, the MIG tool assigns the DIFF_SSTL15 I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_SSTL15 and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_SSTL15 CCIO pins.
- It is acceptable to have differential inputs such as LVDS and LVDS_25 in I/O banks that are powered at voltage levels other than the nominal voltages required for the outputs of those standards (1.8V for LVDS outputs, and 2.5V for LVDS_25 outputs). However, these criteria must be met:
 - a. The optional internal differential termination is not used (DIFF_TERM = FALSE, which is the default value).

Note: This might require manually changing DIFF_TERM parameter located in the top-level module or setting this in the UCF or XDC.

- b. The differential signals at the input pins meet the VIN requirements in the Recommended Operating Conditions table of the specific device family data sheet.
- c. The differential signals at the input pins meet the VIDIFF (min) requirements in the corresponding LVDS or LVDS_25 DC specifications tables of the specific device family data sheet.

One way to accomplish the above criteria is to use an external circuit that both AC-couples and DC-biases the input signals. The figure shows an example circuit for providing an AC-coupled and DC-biased circuit for a differential clock input. RDIFF

provides the 100 Ω differential receiver termination because the internal DIFF_TERM is set to FALSE. To maximize the input noise margin, all RBIAS resistors should be the same value, essentially creating a VICM level of VCCO/2. Resistors in the 10k to 100 k Ω range are recommended. The typical values for the AC coupling capacitors CAC are in the range of 100 nF. All components should be placed physically close to the FPGA inputs.

Figure 1-95: Example Circuit for AC-Coupled and DC-Biased Differential Clock Input

Note: The last set of guidelines on differential LVDS inputs are added within the LVDS and LVDS_25 (Low Voltage Differential Signaling) section of the 7 Series SelectIO Resources User Guide (UG471) [Ref 2] in the next release of the document.

These guidelines are irrespective of Package, Column (HR/HP), or I/O Voltage.

Sharing sys_clk between Controllers

The MIG 7 series FPGA designs require sys_clk to be in the same I/O bank column as the memory interface to minimize jitter.

- Interfaces Spanning I/O Columns A single sys_clk input cannot drive memory interfaces spanning multiple I/O columns. The input clock input must be in the same column as the memory interface to drive the PLL using the CMT Backbone, which minimizes jitter.
- Interfaces in Single I/O Column If the memory interfaces are entirely contained within the same I/O column, a common sys_clk can be shared among the interfaces. The sys_clk can be input on any CCIO in the column where the memory interfaces are located. This includes CCIO in banks that do not contain the memory interfaces, but must be in the same column as the memory interfaces.

Information on Sharing BUFG Clock (phy_clk)

The MIG 7 series DDR3 design includes an MMCM which outputs the phy_clk on a BUFG route. It is not possible to share this clock amongst multiple controllers to synchronize the user interfaces. This is not allowed because the timing from the FPGA logic to the PHY Control block must be controlled. This is not possible when the clock is shared amongst multiple controllers. The only option for synchronizing user interfaces amongst multiple controllers is to create an asynchronous FIFO for clock domain transfer.

Information on Sync_Pulse

The MIG 7 series DDR3/DDR2 design includes one PLL that generates the necessary design clocks. One of these outputs is the sync_pulse. The sync pulse clock is 1/16 of the mem_refclk frequency and must have a duty cycle distortion of 1/16 or 6.25%. This clock is distributed across the low skew clock backbone and keeps all PHASER_IN/_OUT and PHY_Control blocks in sync with each other. The signal is sampled by the mem_refclk in both the PHASER_INs/_OUTs and PHY_Control blocks. The phase, frequency, and duty cycle of the sync_pulse is chosen to provide the greatest setup and hold margin across PVT.

DDR3 Pinout Examples

Table 1-69 shows an example of a 16-bit DDR3 interface contained within one bank. This example is for a component interface using a 1 Gb x16 part. If x8 components are used or a higher density part is needed that would require more address pins, these options are possible:

- An additional bank can be used.
- RESET_N can be moved to another bank as long as timing is met. External timing for this signal is not critical and a level shifter can be used.
- DCI cascade can be used to free up the VRN/VRP pins if another bank is available for the DCI master.

Internal V_{REF} is used in this example.

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	VRP	-	SE	49	-
1	DQ15	D_11	Р	48	-
1	DQ14	D_10	N	47	-
1	DQ13	D_09	Р	46	-
1	DQ12	D_08	N	45	-
1	DQS1_P	D_07	Р	44	DQS-P

Table 1-69: 16-Bit DDR3 Interface Contained in One Bank

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	DQS1_N	D_06	N	43	DQS-N
1	DQ11	D_05	Р	42	-
1	DQ10	D_04	N	41	-
1	DQ9	D_03	Р	40	-
1	DQ8	D_02	N	39	-
1	DM1	D_01	Р	38	-
1	_	D_00	N	37	-
1	DQ7	C_11	Р	36	-
1	DQ6	C_10	N	35	-
1	DQ5	C_09	Р	34	-
1	DQ4	C_08	N	33	-
1	DQS0_P	C_07	Р	32	DQS-P
1	DQS0_N	C_06	N	31	DQS-N
1	DQ3	C_05	Р	30	-
1	DQ2	C_04	N	29	-
1	DQ1	C_03	Р	28	CCIO-P
1	DQ0	C_02	N	27	CCIO-N
1	DM0	C_01	Р	26	CCIO-P
1	RESET_N	C_00	N	25	CCIO-N
1	RAS_N	B_11	Р	24	CCIO-P
1	CAS_N	B_10	N	23	CCIO-N
1	WE_N	B_09	Р	22	CCIO-P
1	BA2	B_08	N	21	CCIO-N
1	CK_P	B_07	Р	20	DQS-P
1	CK_N	B_06	N	19	DQS-N
1	BA1	B_05	Р	18	-
1	BAO	B_04	N	17	-
1	CS_N	B_03	Р	16	-
1	ODT	B_02	N	15	-
1	CKE	B_01	Р	14	-
1	A12	B_00	N	13	-
1	A11	A_11	Р	12	-
1	A10	A_10	N	11	-
1	A9	A_09	Р	10	-

Table 1-69:	16-Bit DDR3 Interface Contained in One Bank (Cont'd)
-------------	--

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	A8	A_08	N	9	-
1	A7	A_07	Р	8	DQS-P
1	A6	A_06	N	7	DQS-N
1	A5	A_05	Р	6	-
1	A4	A_04	N	5	-
1	A3	A_03	Р	4	-
1	A2	A_02	N	3	-
1	A1	A_01	Р	2	-
1	A0	A_00	N	1	-
1	VRN	-	SE	0	-

Table 1-69: 16-Bit DDR3 Interface Contained in One Bank (Cont'd)

Table 1-70 shows an example of a 32-bit DDR3 interface contained within two banks. This example uses 2 Gb x8 components.

Table 1-70: 32-Bit DDR3 Interface Contained in Two Ba	anks
---	------

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	VRP	-	SE	49	-
1	-	D_11	Р	48	-
1	-	D_10	N	47	-
1	-	D_09	Р	46	-
1	-	D_08	N	45	-
1	-	D_07	Р	44	DQS-P
1	-	D_06	N	43	DQS-N
1	-	D_05	Р	42	-
1	-	D_04	N	41	-
1	-	D_03	Р	40	-
1	-	D_02	N	39	-
1	-	D_01	Р	38	-
1	-	D_00	N	37	-
1	-	C_11	Р	36	-
1	-	C_10	N	35	-
1	-	C_09	Р	34	-
1	-	C_08	Ν	33	-
1	-	C_07	Р	32	DQS-P

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	_	C_06	N	31	DQS-N
1	_	C_05	Р	30	_
1	_	C_04	N	29	_
1	_	C_03	Р	28	CCIO-P
1	_	C_02	N	27	CCIO-N
1	СКЕ	C_01	Р	26	CCIO-P
1	ODT	C_00	N	25	CCIO-N
1	RAS_N	B_11	Р	24	CCIO-P
1	CAS_N	B_10	N	23	CCIO-N
1	WE_N	B_09	Р	22	CCIO-P
1	BA2	B_08	N	21	CCIO-N
1	CK_P	B_07	Р	20	DQS-P
1	CK_N	B_06	N	19	DQS-N
1	BA1	B_05	Р	18	-
1	BA0	B_04	N	17	_
1	CS_N	B_03	Р	16	-
1	A14	B_02	N	15	-
1	A13	B_01	Р	14	-
1	A12	B_00	N	13	-
1	A11	A_11	Р	12	-
1	A10	A_10	N	11	-
1	A9	A_09	Р	10	-
1	A8	A_08	N	9	-
1	A7	A_07	Р	8	DQS-P
1	A6	A_06	N	7	DQS-N
1	A5	A_05	Р	6	-
1	A4	A_04	N	5	-
1	A3	A_03	Р	4	-
1	A2	A_02	N	3	-
1	A1	A_01	Р	2	-
1	A0	A_00	N	1	-
1	VRN	-	SE	0	-
2	VRP	-	SE	49	-
2	DQ31	D_11	Р	48	-

Table 1-70: 32-Bit DDR3 Interface Contained in Two Banks (Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
2	DQ30	D_10	N	47	-
2	DQ29	D_09	Р	46	-
2	DQ28	D_08	N	45	-
2	DQS3_P	D_07	Р	44	DQS-P
2	DQS3_N	D_06	N	43	DQS-N
2	DQ27	D_05	Р	42	-
2	DQ26	D_04	N	41	_
2	DQ25	D_03	Р	40	_
2	DQ24	D_02	Ν	39	_
2	DM3	D_01	Р	38	_
2	_	D_00	N	37	-
2	DQ23	C_11	Р	36	_
2	DQ22	C_10	Ν	35	_
2	DQ21	C_09	Р	34	_
2	DQ20	C_08	N	33	_
2	DQS2_P	C_07	Р	32	DQS-P
2	DQS2_N	C_06	N	31	DQS-N
2	DQ19	C_05	Р	30	_
2	DQ18	C_04	Ν	29	_
2	DQ17	C_03	Р	28	CCIO-P
2	DQ16	C_02	Ν	27	CCIO-N
2	DM2	C_01	Р	26	CCIO-P
2	_	C_00	N	25	CCIO-N
2	DQ15	B_11	Р	24	CCIO-P
2	DQ14	B_10	N	23	CCIO-N
2	DQ13	B_09	Р	22	CCIO-P
2	DQ12	B_08	N	21	CCIO-N
2	DQS1_P	B_07	Р	20	DQS-P
2	DQS1_N	B_06	N	19	DQS-N
2	DQ11	B_05	Р	18	-
2	DQ10	B_04	Ν	17	-
2	DQ9	B_03	Р	16	-
2	DQ8	B_02	Ν	15	-
2	DM1	B_01	Р	14	_

Table 1-70: 32-Bit DDR3 Interface Contained in Two Banks (Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
2	-	B_00	N	13	-
2	DQ7	A_11	Р	12	-
2	DQ6	A_10	N	11	-
2	DQ5	A_09	Р	10	-
2	DQ4	A_08	N	9	-
2	DQS0_P	A_07	Р	8	DQS-P
2	DQS0_N	A_06	N	7	DQS-N
2	DQ3	A_05	Р	6	-
2	DQ2	A_04	N	5	-
2	DQ1	A_03	Р	4	-
2	DQ0	A_02	N	3	-
2	DM0	A_01	Р	2	-
2	RESET_N	A_00	N	1	-
2	VRN	-	SE	0	-

	Table 1-70:	32-Bit DDR3	Interface	Contained i	n Two	Banks	(Cont'd)
--	-------------	-------------	-----------	-------------	-------	-------	----------

Table 1-71 shows an example of a 64-bit DDR3 interface contained within three banks. This example uses four 2 Gb x16 components.

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	VRP	_	SE	49	-
1	DQ63	D_11	Р	48	-
1	DQ62	D_10	N	47	-
1	DQ61	D_09	Р	46	-
1	DQ60	D_08	N	45	-
1	DQS7_P	D_07	Р	44	DQS-P
1	DQS7_N	D_06	N	43	DQS-N
1	DQ59	D_05	Р	42	-
1	DQ58	D_04	N	41	-
1	DQ57	D_03	Р	40	-
1	DQ56	D_02	N	39	-
1	DM7	D_01	Р	38	-
1	_	D_00	N	37	-
1	DQ55	C_11	Р	36	-

 Table 1-71:
 64-Bit DDR3 Interface in Three Banks

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	DQ54	C_10	N	35	-
1	DQ53	C_09	Р	34	-
1	DQ52	C_08	N	33	-
1	DQS6_P	C_07	Р	32	DQS-P
1	DQS6_N	C_06	N	31	DQS-N
1	DQ51	C_05	Р	30	-
1	DQ50	C_04	N	29	-
1	DQ49	C_03	Р	28	CCIO-P
1	DQ48	C_02	N	27	CCIO-N
1	DM6	C_01	Р	26	CCIO-P
1	-	C_00	N	25	CCIO-N
1	DQ47	B_11	Р	24	CCIO-P
1	DQ46	B_10	N	23	CCIO-N
1	DQ45	B_09	Р	22	CCIO-P
1	DQ44	B_08	N	21	CCIO-N
1	DQS5_P	B_07	Р	20	DQS-P
1	DQS5_N	B_06	N	19	DQS-N
1	DQ43	B_05	Р	18	-
1	DQ42	B_04	N	17	-
1	DQ41	B_03	Р	16	-
1	DQ40	B_02	N	15	_
1	DM5	B_01	Р	14	_
1	_	B_00	N	13	-
1	DQ39	A_11	Р	12	-
1	DQ38	A_10	N	11	_
1	DQ37	A_09	Р	10	-
1	DQ36	A_08	N	9	-
1	DQS4_P	A_07	Р	8	DQS-P
1	DQS4_N	A_06	N	7	DQS-N
1	DQ35	A_05	Р	6	_
1	DQ34	A_04	N	5	-
1	DQ33	A_03	Р	4	-
1	DQ32	A_02	N	3	_
1	DM4	A_01	Р	2	-

Table 1-71:	64-Bit DDR3 Interface in Three Banks (Cont'd)
-------------	---

219

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	_	A_00	N	1	-
1	VRN	-	SE	0	-
2	VRP	-	SE	49	-
2	-	D_11	Р	48	-
2	-	D_10	N	47	-
2	-	D_09	Р	46	-
2	-	D_08	N	45	-
2	_	D_07	Р	44	DQS-P
2	_	D_06	N	43	DQS-N
2	_	D_05	Р	42	-
2	_	D_04	Ν	41	-
2	_	D_03	Р	40	-
2	_	D_02	Ν	39	-
2	-	D_01	Р	38	-
2	-	D_00	Ν	37	-
2	_	C_11	Р	36	-
2	_	C_10	Ν	35	-
2	_	C_09	Р	34	-
2	_	C_08	Ν	33	-
2	-	C_07	Р	32	DQS-P
2	_	C_06	Ν	31	DQS-N
2	_	C_05	Р	30	-
2	_	C_04	Ν	29	-
2	_	C_03	Р	28	CCIO-P
2	_	C_02	N	27	CCIO-N
2	-	C_01	Р	26	CCIO-P
2	ODT	C_00	Ν	25	CCIO-N
2	RAS_N	B_11	Р	24	CCIO-P
2	CAS_N	B_10	Ν	23	CCIO-N
2	WE_N	B_09	Р	22	CCIO-P
2	BA2	B_08	Ν	21	CCIO-N
2	CK_P	B_07	Р	20	DQS-P
2	CK_N	B_06	Ν	19	DQS-N
2	BA1	B_05	Р	18	-

Table 1-71:	64-Bit DDR3	Interface in	Three Banks	(Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
2	BA0	B_04	N	17	-
2	CS_N	B_03	Р	16	_
2	СКЕ	B_02	N	15	_
2	A13	B_01	Р	14	_
2	A12	B_00	N	13	-
2	A11	A_11	Р	12	-
2	A10	A_10	N	11	-
2	A9	A_09	Р	10	-
2	A8	A_08	N	9	-
2	A7	A_07	Р	8	DQS-P
2	A6	A_06	N	7	DQS-N
2	A5	A_05	Р	6	-
2	A4	A_04	N	5	-
2	A3	A_03	Р	4	-
2	A2	A_02	N	3	-
2	A1	A_01	Р	2	-
2	A0	A_00	N	1	-
2	VRN	_	SE	0	-
3	VRP	_	SE	49	-
3	DQ31	D_11	Р	48	-
3	DQ30	D_10	N	47	-
3	DQ29	D_09	Р	46	-
3	DQ28	D_08	N	45	-
3	DQS3_P	D_07	Р	44	DQS-P
3	DQS3_N	D_06	Ν	43	DQS-N
3	DQ27	D_05	Р	42	-
3	DQ26	D_04	Ν	41	-
3	DQ25	D_03	Р	40	-
3	DQ24	D_02	Ν	39	-
3	DM3	D_01	Р	38	_
3	_	D_00	N	37	
3	DQ23	C_11	Р	36	
3	DQ22	C_10	N	35	
3	DQ21	C_09	Р	34	_

 Table 1-71:
 64-Bit DDR3 Interface in Three Banks (Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
3	DQ20	C_08	N	33	_
3	DQS2_P	C_07	Р	32	DQS-P
3	DQS2_N	C_06	N	31	DQS-N
3	DQ19	C_05	Р	30	-
3	DQ18	C_04	N	29	-
3	DQ17	C_03	Р	28	CCIO-P
3	DQ16	C_02	N	27	CCIO-N
3	DM2	C_01	Р	26	CCIO-P
3	-	C_00	N	25	CCIO-N
3	DQ15	B_11	Р	24	CCIO-P
3	DQ14	B_10	N	23	CCIO-N
3	DQ13	B_09	Р	22	CCIO-P
3	DQ12	B_08	N	21	CCIO-N
3	DQS1_P	B_07	Р	20	DQS-P
3	DQS1_N	B_06	N	19	DQS-N
3	DQ11	B_05	Р	18	_
3	DQ10	B_04	N	17	-
3	DQ9	B_03	Р	16	-
3	DQ8	B_02	N	15	-
3	DM1	B_01	Р	14	-
3	-	B_00	N	13	-
3	DQ7	A_11	Р	12	_
3	DQ6	A_10	N	11	-
3	DQ5	A_09	Р	10	_
3	DQ4	A_08	N	9	-
3	DQS0_P	A_07	Р	8	DQS-P
3	DQS0_N	A_06	N	7	DQS-N
3	DQ3	A_05	Р	6	_
3	DQ2	A_04	N	5	_
3	DQ1	A_03	Р	4	-
3	DQ0	A_02	N	3	-
3	DM0	A_01	Р	2	-
3	RESET_N	A_00	N	1	_
3	VRN	_	SE	0	-

 Table 1-71:
 64-Bit DDR3 Interface in Three Banks (Cont'd)

Table 1-72 shows an example of a 72-bit DDR3 interface contained within three banks. This example is for a 4 Gb UDIMM using nine 4 Gb x8 components. The serial presence detect (SPD) pins are not used here. CB[7:0] is represented as DQ[71:64] and S0# as CS_N for consistency with the component design examples in Table 1-69, page 213, Table 1-70, page 215, and Table 1-71, page 218.

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	VRP	-	SE	49	-
1	DQ63	D_11	Р	48	-
1	DQ62	D_10	N	47	-
1	DQ61	D_09	Р	46	-
1	DQ60	D_08	N	45	-
1	DQS7_P	D_07	Р	44	DQS-P
1	DQS7_N	D_06	N	43	DQS-N
1	DQ59	D_05	Р	42	-
1	DQ58	D_04	N	41	-
1	DQ57	D_03	Р	40	-
1	DQ56	D_02	N	39	-
1	DM7	D_01	Р	38	-
1	-	D_00	N	37	-
1	DQ55	C_11	Р	36	-
1	DQ54	C_10	N	35	-
1	DQ53	C_09	Р	34	-
1	DQ52	C_08	N	33	-
1	DQS6_P	C_07	Р	32	DQS-P
1	DQS6_N	C_06	N	31	DQS-N
1	DQ51	C_05	Р	30	-
1	DQ50	C_04	N	29	-
1	DQ49	C_03	Р	28	CCIO-P
1	DQ48	C_02	N	27	CCIO-N
1	DM6	C_01	Р	26	CCIO-P
1	-	C_00	N	25	CCIO-N
1	DQ47	B_11	Р	24	CCIO-P
1	DQ46	B_10	N	23	CCIO-N
1	DQ45	B_09	Р	22	CCIO-P
1	DQ44	B_08	N	21	CCIO-N

Table 1-72: 72-Bit DDR3 UDIMM Interface in Three Banks

Bank	Signal Name	Byte Group	I/O Type	I/O Number	Special Designation
1	DQS5_P	B_07	Р	20	DQS-P
1	DQS5_N	B_06	N	19	DQS-N
1	DQ43	B_05	Р	18	_
1	DQ42	B_04	N	17	_
1	DQ41	B_03	Р	16	_
1	DQ40	B_02	N	15	_
1	DM5	B_01	Р	14	_
1	-	B_00	N	13	_
1	DQ39	A_11	Р	12	_
1	DQ38	A_10	N	11	_
1	DQ37	A_09	Р	10	_
1	DQ36	A_08	N	9	_
1	DQS4_P	A_07	Р	8	DQS-P
1	DQS4_N	A_06	N	7	DQS-N
1	DQ35	A_05	Р	6	_
1	DQ34	A_04	N	5	_
1	DQ33	A_03	Р	4	_
1	DQ32	A_02	N	3	_
1	DM4	A_01	Р	2	_
1		A_00	N	1	_
1	VRN	_	SE	0	-
2	VRP	_	SE	49	_
2	DQ71	D_11	Р	48	_
2	DQ70	D_10	N	47	_
2	DQ69	D_09	Р	46	_
2	DQ68	D_08	N	45	_
2	DQS8_P	D_07	Р	44	DQS-P
2	DQS8_N	D_06	N	43	DQS-N
2	DQ67	D_05	Р	42	_
2	DQ66	D_04	N	41	_
2	DQ65	D_03	Р	40	_
2	DQ64	D_02	N	39	_
2	DM8	D_01	Р	38	_
2	-	D_00	N	37	_

Tuble 1-72. 72-Dit DDits ODitvitvi internace in Timee Danks (cont u)	Table 1-72:	72-Bit DDR3 UDIMM Interface in Three Banks (Cont'd)
--	-------------	---

			•	-	
Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
2	-	C_11	Р	36	-
2	-	C_10	N	35	_
2	-	C_09	Р	34	_
2	-	C_08	N	33	_
2	-	C_07	Р	32	DQS-P
2	-	C_06	N	31	DQS-N
2	-	C_05	Р	30	_
2	-	C_04	N	29	_
2	-	C_03	Р	28	CCIO-P
2	ODT0	C_02	N	27	CCIO-N
2	CKE0	C_01	Р	26	CCIO-P
2	CS_N0	C_00	N	25	CCIO-N
2	RAS_N	B_11	Р	24	CCIO-P
2	CAS_N	B_10	N	23	CCIO-N
2	WE_N	B_09	Р	22	CCIO-P
2	BA2	B_08	N	21	CCIO-N
2	CK_P	B_07	Р	20	DQS-P
2	CK_N	B_06	N	19	DQS-N
2	BA1	B_05	Р	18	_
2	BAO	B_04	N	17	_
2	A15	B_03	Р	16	_
2	A14	B_02	N	15	_
2	A13	B_01	Р	14	_
2	A12	B_00	N	13	_
2	A11	A_11	Р	12	_
2	A10	A_10	N	11	_
2	A9	A_09	Р	10	_
2	A8	A_08	N	9	_
2	A7	A_07	Р	8	DQS-P
2	A6	A_06	Ν	7	DQS-N
2	A5	A_05	Р	6	_
2	A4	A_04	Ν	5	_
2	A3	A_03	Р	4	_
2	A2	A_02	N	3	-

Table 1-72: 72-Bit DDR3 UDIMM Interface in Three Banks (Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
2	A1	A_01	Р	2	-
2	A0	A_00	N	1	_
2	VRN	_	SE	0	_
3	VRP	_	SE	49	_
3	DQ31	D_11	Р	48	_
3	DQ30	D_10	N	47	_
3	DQ29	D_09	Р	46	_
3	DQ28	D_08	N	45	-
3	DQS3_P	D_07	Р	44	DQS-P
3	DQS3_N	D_06	N	43	DQS-N
3	DQ27	D_05	Р	42	-
3	DQ26	D_04	N	41	-
3	DQ25	D_03	Р	40	-
3	DQ24	D_02	N	39	-
3	DM3	D_01	Р	38	_
3	-	D_00	Ν	37	-
3	DQ23	C_11	Р	36	-
3	DQ22	C_10	Ν	35	-
3	DQ21	C_09	Р	34	-
3	DQ20	C_08	N	33	_
3	DQS2_P	C_07	Р	32	DQS-P
3	DQS2_N	C_06	Ν	31	DQS-N
3	DQ19	C_05	Р	30	_
3	DQ18	C_04	N	29	_
3	DQ17	C_03	Р	28	CCIO-P
3	DQ16	C_02	N	27	CCIO-N
3	DM2	C_01	Р	26	CCIO-P
3	_	C_00	N	25	CCIO-N
3	DQ15	B_11	Р	24	CCIO-P
3	DQ14	B_10	N	23	CCIO-N
3	DQ13	B_09	Р	22	CCIO-P
3	DQ12	B_08	N	21	CCIO-N
3	DQS1_P	B_07	Р	20	DQS-P
3	DQS1_N	B_06	N	19	DQS-N

Table 1-72: 72-Bit DDR3 UDIMM Interface in Three Banks (Cont'd)

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
3	DQ11	B_05	Р	18	-
3	DQ10	B_04	N	17	-
3	DQ9	B_03	Р	16	-
3	DQ8	B_02	N	15	-
3	DM1	B_01	Р	14	-
3	_	B_00	N	13	-
3	DQ7	A_11	Р	12	-
3	DQ6	A_10	N	11	-
3	DQ5	A_09	Р	10	-
3	DQ4	A_08	N	9	-
3	DQS0_P	A_07	Р	8	DQS-P
3	DQS0_N	A_06	N	7	DQS-N
3	DQ3	A_05	Р	6	-
3	DQ2	A_04	N	5	_
3	DQ1	A_03	Р	4	-
3	DQ0	A_02	N	3	-
3	DM0	A_01	Р	2	-
3	RESET_N	A_00	N	1	-
3	VRN	_	SE	0	_

Table 1-72: 72-Bit DDR3 UDIMM Interface in Three Banks (Cont'd)

Debugging DDR3/DDR2 Designs

Calibration failures and data errors can occur for many reasons and the debug of these errors can be time consuming. This section is intended to provide a clear step-by-step debug process to quickly identify the root cause of the failure and move to resolution.

To focus the debug of calibration or data errors, use the provided MIG Example Design on the targeted board with the Debug Feature enabled through the MIG 7 series GUI. The latest MIG 7 series release should be used to generate the Example Design.

Finding Help on Xilinx.com

To help in the design and debug process when using the MIG IP core, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the MIG IP core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

The Solution Center specific to the MIG IP core core is located at the Xilinx MIG Solution Center.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can also be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as:

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Answer Record for the DDR2/DDR3 Cores Generated by MIG IP core

AR: 54025 for Vivado

Technical Support

Xilinx provides technical support at Xilinx support web page for this product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Note: Access to WebCase is not available in all cases. Log in to the WebCase tool to see your specific support options.

Debug Tools

There are many tools available to address MIG IP core design issues. It is important to know which tools are useful for debugging various situations.

Example Design

Generation of a DDR2 or DDR3 design through the MIG 7 series tool produces an example design and a user design. The example design includes a synthesizable test bench with a traffic generator that is fully verified in simulation and hardware. This example design can be used to observe the behavior of the MIG 7 series design and can also aid in identifying board-related issues. For complete details on the example design, see the Quick Start Example Design, page 65. This section describes using the example design to perform hardware validation.

Debug Signals

The MIG 7 series tool includes a Debug Signals Control option on the FPGA Options screen. Enabling this feature allows calibration, tap delay, and read data signals to be monitored using the Vivado logic analyzer feature. Selecting this option port maps the debug signals to ILA VIO cores in the design top module. For details on enabling this debug feature, see the "Using MIG in the Vivado Design Suite, page 21. The debug port is disabled for functional simulation and can only be enabled if the signals are actively driven by the user design.

Note: "Debug Signals" are not available when using IP integrator but Integrated Logic Analyzer (ILA) insertion is still available on the synthesized DCP. For more information, see the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

Vivado Design Suite Debug Feature

The Vivado Design Suite debug feature inserts ILA 3.0 and VIO 3.0 directly into your design. The debug feature also allows you to set trigger conditions to capture application and MIG debug signals in hardware. Captured signals can be analyzed though the Vivado logic analyzer feature. For more information about the Vivado logic see the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

IMPORTANT: The ILA operates on a synchronous clock and cannot be triggered during reset. Instead, set the trigger on an ILA signal to look for a rising edge ("R") or falling edge ("F") with the radix value of the signal set to "Binary." With this trigger setting, the trigger can be armed. When the reset is applied and released, the trigger captures the desired ILA results.

The Vivado logic analyzer feature snapshot is shown in Figure 1-96. The Hardware Debug section has a snapshot of the older analyzer version but the debugging steps and data to be captured remain the same.

Hardware Session - xhdbfarma14:12345/xilinx_tcf/Dig	jilent/210203327470A		×
Hardware _ C C ×	hw ila data 1.wcfg* ×		×
< 器 論 圖 ▶ ▶ ■	Iff	125	-
Name	TD Manual	Notes and the second seco	
©- 1 xhdbfarma14:12345 (1) Conne	Name	Value 0 200 400 600 800 1,0	
- d xilinx_tcf/Digilent/210203327470A (1) Open	Qt Budba wrcal start		
- XC7K325T_0 (4) (active) Progra	Q- The ding write I done		
-W hw_vio_1 OK	The she wreat and		
- 😻 hw_ila_1 💿 Idle	a obg_wrca_en		
- 1 hw_vio_2 OK - 0	1 🐧 • dbg_phy_init_5_0[5:0]	16 16)	
- W hw_vio_3 OK - 0	🗌 📲 dbg_rddata_valid_r		11
	•	a8a8a8a8a8a8a	-
	bg_line_adjust_done_r		
	😢 🕼 dba cmd wdt err w		
	St Think and wat are w		
	In diag we welt ore w		
in the second	2 a wood an indicentary		
Debug Probe Properties _ L L ×	B dbg_tg_compare_error_1		
\Rightarrow \Rightarrow \Rightarrow \Rightarrow	M dbg_cmp_data_valid		
le dbg_wrlvl_done	Ve dbg_cmp_error	0	
	• 📲 o 📲 dbg_cmp_data_r[63:0]		
Name: dbg_wrlvl_done	a dbg_dq_error_bytelane_cmp[7:0]		
Source: NETLIST	o dbg cumlative dg lane error[7:0]		
Prohe type: II A	•	00000000	
Winter 1			
width: 1	10 dbg_cmp_bi_(5.0)		
	\e abg_mcb_cma_tuil_i		
			-
	K		•
	X Eind: dbg_calib_rd_data	♥ Find Next 🐟 Find Previous 🛄 Match Case 🛄 Search Full Name	
General Properties			
Debug Probes			<
Name	Compare Value	⁻¹ Trigger Cond Trigger Pos Data Depth	_
dbg_pi_dqs_found_lanes_phy4lanes_6[4:4]	[B] ×		-
- 10 dbg_pi_dqs_found_lanes_phy4lanes_7[4:4]	[B] ×		
- to dbg_pi_dqsfound_done	== [B] X		
- G dbg_pi_dqstound_err	== [6] X		
la dbg.pi.dqsidurd_start	[B] X		
by dbg pi phaselock start	== [B] X		
- to dbg_pi_phaselocked_done	[B] X		
- to dbg_rd_data_edge_detect_r_by_dqs	== [B] ×		
- to dbg_rd_wdt_err_w	[B] ×		
- to dbg_rddata_valid_r	[B] ×		
- b dbg_rdlvf_pat_data_match_r	== [B] ×		
- b dbg_tg_compare_error_1	== [B] ×		
- to dbg_wl_edge_detect_valid_r	== [B] ×		
- to dbg_wr_wdt_err_w	== [B] X		
la dba wrcal arr			
- le dbg wrcal pat data match r	== [8] X		
- to dbg_wrcal_pat_data_match_valid r	== [6] ×		
- to dbg_wrcal_start	[8] ×		
- to dbg_wrlvl_err	== [8] ×		
-16 dbg_wrlvl_start	== [8] ×		-
- bg_wrlvl_done	[8] 1		
ILA Cores VIO Cores		4 b	
Tcl Console Messages So Debug Probes			

Figure 1-96: Vivado Analyzer Feature

Reference Boards

Various Xilinx development boards support MIG IP core that include FPGA interfaces to a DDR SODIMM. These boards can be used to prototype designs and establish that the core can communicate with the system.

- 7 series FPGA evaluation boards
 - VC707
 - KC705
 - AC701

Hardware Debug

Hardware issues can range from calibration failures to issues seen after hours of testing. This section provides debug steps for common issues. The Vivado logic analyzer feature is a valuable resource to use in hardware debug. The signal names mentioned in the following individual sections can be probed using the Vivado logic analyzer feature for debugging the specific issues.

Many of these common issues can also be applied to debugging design simulations. Details are provided on:

- General Checks
- Calibration Stages
- Determine the Failing Calibration Stage
- Debug Signals
- Debugging PHASER_IN PHASELOCKED Calibration Failures (dbg_pi_phaselock_err = 1)
- Debugging PHASER_IN DQSFOUND Calibration Failures (dbg_pi_dqsfound_err = 1)
- Debugging Write Leveling Failures (dbg_wrlvl_err = 1)
- Debugging MPR Read Leveling Failures DDR3 Only (dbg_rdlvl_err[1] = 1)
- Debugging OCLKDELAYED Calibration Failures
- Debugging Write Calibration Failures (dbg_wrcal_err = 1)
- Debugging Read Leveling Failures (dbg_rdlvl_err[0] = 1)
- Debugging PRBS Read Leveling Failures
- Calibration Times
- Debugging Data Errors

General Checks

This section details the list of general checks, primarily board level, which need to be verified before moving forward with the debug process. Strict adherence to the proper board design is critical in working with high speed memory interfaces.

- Ensure all guidelines referenced in the Design Guidelines have been followed. The Design Guidelines section includes information on trace matching, PCB Routing, noise, termination, I/O Standards, and pin/bank requirements. Adherence to these guidelines, along with proper board design and signal integrity analysis, is critical to the success of high-speed memory interfaces.
- Measure all voltages on the board during idle and non-idle times to ensure the voltages are set appropriately and noise is within specifications.
 - Ensure the termination voltage regulator (V_{tt}) is turned on (set to 0.75V).
 - Ensure V_{REF} is measured.
- When applicable, check VRN/VRP resistors. Note the values are not the same as Virtex-6 FPGA.
- Look at the clock inputs to ensure they are clean.

- Check the reset to ensure the polarity is correct and the signal is clean. The reset signal must be applied for a minimum pulse width of 5 ns.
- Check terminations by using this user guide as a guideline.
- Perform general signal integrity analysis.
 - IBIS simulations should run to ensure terminations, ODT, and output drive strength settings are appropriate.
 - Observe DQ/DQS on a scope at the memory. View the alignment of the signals and analyze the signal integrity during both writes and reads.
 - Observe the Address and Command signals on a scope at the memory. View the alignment and analyze the signal integrity.
- Verify the memory parts on the board(s) in test are the correct part(s) set through the MIG tool. The timing parameters and signals widths (that is, address, bank address) must match between the RTL and physical parts. Read/write failures can occur due to a mismatch.
- Verify SDRAM pins are behaving correctly. Look for floating or grounded signals. It is rare, but manufacturing issues with the memory devices can occur and result in calibration failures.
- If Data Mask (DM) is not being used, ensure DM is tied Low at the memory with the appropriate termination as noted in the memory data sheet.
- Measure the CK/CK_n, DQS/DQS_n, and system clocks for duty cycle distortion and general signal integrity.
- If internal V_{REF} is used, ensure the constraints are set appropriately according to the Xilinx Constraints Guide. When the constraints are applied properly, a note similar to the following appears in the .bgn BitGen report file:
 - There were two CONFIG constraint(s) processed from example_top.pcf.
 CONFIG INTERNAL_VREF_BANK12 = 0.75
 CONFIG INTERNAL_VREF_BANK14 = 0.75
- Check the iodelay_ctrl ready signal.
- Check the PLL lock.
- Check the phaser_ref lock signal.
- Bring the init_calib_complete out to a pin and check with a scope.

Calibration Stages

Figure 1-97: Calibration Stages

Memory Initialization

The PHY executes a JEDEC-compliant DDR2 or DDR3 initialization sequence following the deassertion of system reset. Each DDR2 or DDR3 SDRAM has a series of mode registers accessed through Mode Register Set (MRS) commands. These mode registers determine various SDRAM behaviors, such as burst length, read and write CAS latency, and additive latency. The MIG 7 series designs does not issue a calibration failure during Memory Initialization.

All other initialization/calibration stages are reviewed in the following Debugging Calibration Stages section.

Determine the Failing Calibration Stage

Using the Vivado logic analyzer feature, configure the device along with debug_nets.ltx file. This file can be found in the example.runs\impl_1\ directory after implementation completes with Debug_port feature enabled. Observe the following debug signals in the provided ILA core. This indicates which calibration stage failed:

Signal Name	Description
init_calib_complete	Signifies memory initialization and calibration have completed successfully.
dbg_wrlvl_start	Signifies the start of the Write Leveling stage of calibration.
dbg_wrlvl_done	Signifies successful completion of the Write Leveling stage of calibration.
dbg_wrlvl_err	Signifies the Write Leveling stage of calibration exhibited errors and did not complete.
dbg_pi_phaselock_start	Signifies the start of the PHASELOCK stage of calibration.
dbg_pi_phaselock_done	Signifies successful completion of the PHASELOCK stage of calibration.
dbg_pi_phaselock_err	Signifies the PHASELOCK stage of calibration exhibited errors and did not complete.
dbg_pi_dqsfound_start	Signifies the start of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_done	Signifies successful completion of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_err	Signifies the DQSFOUND stage of calibration exhibited errors and did not complete.
dbg_rdlvl_start[0]	Signifies the start of Read Leveling Stage 1 calibration.
dbg_rdlvl_start[1]	Signifies the start of the MPR stage of calibration.
dbg_rdlvl_done[0]	Signifies the successful completion of Read Leveling Stage 1 calibration.
dbg_rdlvl_done[1]	Signifies the successful completion of the MPR Stage of calibration.
dbg_rdlvl_err[0]	Signifies Read Leveling Stage 1 calibration exhibited errors and did not complete.
dbg_rdlvl_err[1]	Signifies the MPR stage of calibration exhibited errors and did not complete.
dbg_oclkdelay_calib_start	Signifies the start of the OCLKDELAY stage of calibration.
dbg_oclkdelay_calib_done	Signifies successful completion of the OCLKDELAY stage of calibration.
dbg_wrcal_start	Signifies the start of the Write Calibration stage of calibration.
dbg_wrcal_done	Signifies successful completion of the Write Calibration stage of calibration.
dbg_wrcal_err	Signifies Write Calibration exhibited errors and did not complete.

Table 1-73: DDR2/DDR3 Basic ILA Debug Signals

Debug Signals

Table 1-74: DDR2/DDR3 Debug Signals

Signal Name	Description
	ILA Signals (Status)
dbg_init_calib_complete	Signifies memory initialization and calibration have completed successfully.
dbg_wrlvl_start	Signifies the start of the Write Leveling stage of calibration.
dbg_wrlvl_done	Signifies successful completion of the Write Leveling stage of calibration.
dbg_wrlvl_err	Signifies the Write Leveling stage of calibration exhibited errors and did not complete.
dbg_pi_phaselock_start	Signifies the start of the PHASELOCK stage of calibration.
dbg_pi_phaselocked_done	Signifies successful completion of the PHASELOCK stage of calibration.
dbg_pi_phaselock_err	Signifies the PHASELOCK stage of calibration exhibited errors and did not complete.
dbg_pi_dqsfound_start	Signifies the start of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_done	Signifies successful completion of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_err	Signifies the DQSFOUND stage of calibration exhibited errors and did not complete.
dbg_rdlvl_start[1]	Signifies the start of the MPR stage of calibration.
dbg_rdlvl_start[0]	Signifies the start of Read Leveling Stage 1 calibration.
dbg_rdlvl_done[1]	Signifies the successful completion of the MPR Stage of calibration.
dbg_rdlvl_done[0]	Signifies the successful completion of Read Leveling Stage 1 calibration.
dbg_rdlvl_err[1]	Signifies Read Leveling Stage 1 calibration exhibited errors and did not complete
dbg_rdlvl_err[0]	Signifies the MPR stage of calibration exhibited errors and did not complete.
dbg_oclkdelay_calib_start	Signifies the start of the OCLKDELAY stage of calibration.
dbg_oclkdelay_calib_done	Signifies successful completion of the OCLKDELAY stage of calibration.
dbg_wrcal_start	Signifies the start of the Write Calibration stage of calibration.
dbg_wrcal_done	Signifies successful completion of the write calibration stage of calibration.
dbg_wrcal_err	Signifies write calibration exhibited errors and did not complete.
dbg_phy_init_5_0	State variable for the PHY Init state machine. States can be decoded in the ddr_phy_init module.
dbg_rddata_valid_r	Asserts when the read data (dbg_rddata_r) is valid.

Signal Name	Description
dbg_rddata_r	Read data read out of the IN_FIFO for the DQS group selected through dbg_dqs on the VIO. This is a 64-bit bus. This debug port does not capture ECC data.
dbg_fine_adjust_done_r	Asserts after fine adjustment is completed in DQS found calibration.
dbg_cmd_wdt_err_w	Watch dog timeout error from Traffic Generator when the user interface is not processing the command from traffic generator.
dbg_rd_wdt_err_w	Watch dog timeout error from Traffic Generator when no read data is available from the user interface.
dbg_wr_wdt_err_w	Watch dog timeout error from Traffic Generator when no write data is taken by the user interface.
dbg_tg_compare_error	Sticky bit from the internal Traffic Generator asserted when a data error is found after calibration is completed.
dbg_cmp_data_valid	Valid signal showing that the compare data from Traffic Generator is valid.
dbg_cmp_error	Asserts when compare data is not matching the read data from User Interface.
dbg_cmp_data_r	Register version of compare data from the Traffic Generator.
dbg_dq_error_bytelane_cmp	Indicates which byte has data comparison error for the Traffic Generator.
dbg_cumlative_dq_lane_error	Indicates which byte has data comparison error for the Traffic Generator. This is a sticky status signal and stays asserted until cleared manually using the dbg_clear_error.
dbg_cmp_addr_i	The start address of the burst for which the first data error occurred.
dbg_cmp_bl_i	Burst length of the burst for which the first data error occurred.
dbg_mcb_cmd_full_i	Memory Controller command FIFO full status when the first data error occurred
dbg_mcb_wr_full_i	Memory Controller write data FIFO full status when the first data error occurred.
dbg_mcb_rd_empty_i	Memory Controller read data FIFO empty status when the first data error occurred.
dbg_ddrx_ila_rdpath_765_764[0]	Signifies PRBS Read Level Stage Start
dbg_ddrx_ila_rdpath_765_764[1]	Signifies PRBS Read Level Stage Done
dbg_wl_state_r	State variable for the Write Leveling State Machine. States can be decoded in the ddr_phy_wrlvl.v module.
dbg_dqs_cnt_r	Signifies the DQS byte group being calibrated during Write Leveling. The algorithm sequentially steps through the DQS byte groups until Write Leveling completes successfully or a data byte group fails due a 0 to 1 transition not being detected on DQ.
dbg_wl_edge_detect_valid_r	Signifies valid time Write Leveling algorithm is searching for edge.
dbg_rd_data_edge_detect_r_by_dqs	Signifies Write Leveling calibration found the 0 to 1 edge transition.

Signal Name	Description
dbg_wl_po_fine_cnt_by_dqs	PHASER_OUT Fine Taps found during Write Leveling. Byte capture based on VIO dbg_dqs setting.
dbg_wl_po_coarse_cnt_by_dqs	PHASER_OUT Coarse Taps found during Write Leveling. Byte capture based on VIO dbg_dqs setting.
dbg_phy_oclkdelay_zfo	OCLKDELAY edge found indicator. {z2f, o2f, f2z, f2o}.
dbg_ocal_fuzz2oneeighty	Stage 3 tap value of the left-edge of the fall window.
dbg_ocal_fuzz2zero	fuzz2zero Stage 3 tap value of the left-edge of the rise window.
dbg_ocal_oneeighty2fuzz	oneeighty2fuzz Stage 3 tap value of the right-edge of the fall window.
dbg_ocal_zero2fuzz	Stage 3 tap value of the right-edge of the rise window.
dbg_ocal_oclkdelay_calib_cnt	DQS group counter indicates which DQS group is in OCLKDELAY calibration.
dbg_ocal_scan_win_not_found	Indicator that window is not found during OCLKDELAY calibration.
dbg_wrcal_pat_data_match_r	Asserts when the data pattern match is found during Write Calibration stage.
dbg_wrcal_pat_data_match_valid_r	Acts as a qualifier and asserts when the data pattern match is valid during Write Calibration stage.
dbg_wrcal_dqs_cnt_r	Current DQS group being calibrated in Write Calibration. When wrcal_start asserts, wrcal_dqs_cnt_r is 0. The algorithm sequentially steps through the DQS byte groups checking to see if the read data pattern matches the expected FF00AA5555AA9966 pattern. If the pattern matches, wrcal_dqs_cnt increments by 1. The algorithm then starts looking for the correct data pattern on the next byte until it reaches DQS_WIDTH – 1 or a data byte group fails due to the data pattern not being detected properly. The wrcal_dqs_cnt stays at DQS_WIDTH – 1 after wrcal_done signal is asserted.
cal2_state_r	Write Calibration state machine variable. States can be decoded in the ddr_phy_wrcal.v module.
not_empty_wait_cnt	Count value during Write Calibration pattern detection. Maximum count is 0x1F. If count reaches 0x1F, write calibration fails with the assertion of dbg_wrcal_err.
dbg_early1_data	Asserts when the pattern detected is one CK clock cycle early. When this is asserted, the Write Leveling algorithm moves the CK clock one cycle. After CK is moved, the Write Calibration algorithm restarts pattern detection.
dbg_early2_data	Asserts when the pattern detected is two CK clock cycles early. When this is asserted, the Write Leveling algorithm moves the CK clock two cycles. After CK is moved, the Write Calibration algorithm restarts pattern detection.
dbg_phy_oclkdelay_cal_57_54	Current DQS group being calibrated from OCLK_DELAY calibration stage.
dbg_phy_wrlvl_128_75	PHASER_OUT Fine Taps found during Write Leveling for all bytes
dbg_phy_wrlvl_155_129	PHASER_OUT Coarse Taps found during Write Leveling for all bytes.

Signal Name	Description
	Signifies which of the PHASER_IN lanes has achieved lock. It is a 12-bit bus, three nibble data.
dbg_pi_phase_locked_phy4lanes	Each nibble corresponds to a bank information. Uppermost Data or Address/Control byte group selected bank is referred to as Bank0, this corresponds to nibble 0 or Bits[3:0] of the bus. Numbering of banks is 0, 1, and 2 from top to bottom. Bank1 corresponds to nibble 1 or Bits[7:4] of the bus. Bank2 corresponds to nibble 2 or Bits[11:8] of the bus.
	LSB to MSB bits in each nibble corresponds to T3 to T0 byte lane information of the corresponding bank.
	For example, Nibble 0, Bit[3] corresponds to T0 byte lane, Bit[2] corresponds to T1 byte lane, Bit[1] corresponds to T2 byte lane, Bit[0] corresponds to T3 byte lane information.
	Signifies which of the PHASER_IN lanes is able to find the DQS. It is a 12-bit bus, three nibble data.
dbg_pi_dqs_found_lanes_phy4lanes	Each nibble corresponds to a bank information. Uppermost Data or Address/Control byte group selected bank is referred to as Bank0, this corresponds to nibble 0 or Bits[3:0] of the bus. Numbering of banks is 0, 1, and 2 from top to bottom. Bank1 corresponds to nibble 1 or Bits[7:4] of the bus. Bank2 corresponds to nibble 2 or Bits[11:8] of the bus.
	LSB to MSB bits in each nibble corresponds to T3 to T0 byte lane information of the corresponding bank.
	For example, Nibble 0, Bit[3] corresponds to T0 byte lane, Bit[2] corresponds to T1 byte lane, Bit[1] corresponds to T2 byte lane, Bit[0] corresponds to T3 byte lane information.
dbg_rd_data_offset	Read data offset found during calibration.
dbg_cal1_state_r	State machine variable for MPR and Read Leveling Stage 1. States can be decoded in the ddr_phy_rdlvl.v module.
dbg_cal1_cnt_cpt_r	Signifies the byte that failed MPR Read Leveling or Read Leveling Stage 1.
dbg_mux_rd_rise0_r	Data pattern received on rising edge 0.
dbg_mux_rd_fall0_r	Data pattern received on falling edge 0.
dbg_mux_rd_rise1_r	Data pattern received on rising edge 1.
dbg_mux_rd_fall1_r	Data pattern received on falling edge 1.
dbg_mux_rd_rise2_r	Data pattern received on rising edge 2.
dbg_mux_rd_fall2_r	Data pattern received on falling edge 2.
dbg_mux_rd_rise3_r	Data pattern received on rising edge 3.
dbg_mux_rd_fall3_r	Data pattern received on falling edge 3.
dbg_rdlvl_pat_data_match_r	Asserts when the valid pattern is detected on the data and is found to match with the expected pattern sent during read leveling.

Signal Name	Description
dbg_mux_rd_valid_r	Asserts when the valid pattern is detected on dbg_mux_rd_rise0_r, dbg_mux_rd_fall0_r, dbg_mux_rd_rise1_r, dbg_mux_rd_fall1_r, dbg_mux_rd_rise2_r, dbg_mux_rd_fall2_r, dbg_mux_rd_rise3_r, and dbg_mux_rd_fall3_r.
dbg_cpt_first_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.
dbg_cpt_second_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.
dbg_cpt_tap_cnt_by_dqs	Signifies the center tap moved to based on when the first and second edges were found. Byte capture based on VIO dbg_dqs setting.
dbg_dq_idelay_tap_cnt_by_dqs	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups. Byte capture based on VIO dbg_dqs setting.
dbg_dbg_calib_rd_data_offset_1	Read data offset found during calibration.
dbg_dbg_calib_rd_data_offset_2	Read data offset found during calibration.
dbg_data_offset	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL + 2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).
dbg_data_offset_1	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL + 2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).
dbg_data_offset_2	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL + 2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).
dbg_cpt_first_edge_cnt	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found.
dbg_cpt_second_edge_cnt	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found.
dbg_cpt_tap_cnt	Center PHASER_IN fine tap value in MPR or Read Leveling Stage 1 is found.
dbg_dq_idelay_tap_cnt	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups. Byte capture based on VIO dbg_dqs setting.
dbg_prbs_rdlvl	Debug signals of PRBS Read Level Stage.
dbg_ocal_lim_done	Indicates that stage 3 lower and upper limits have been determined.
dbg_ocal_stg3_lim_left	Stage 3 lower limit.
dbg_ocal_stg3_lim_right	Stage 3 upper limit.
dbg_ocal_center_calib_start	OCLKDELAY center calibration start indicator.

Signal Name	Description			
dbg_wcal_mux_rd_rise0_r	Data pattern received on the Write Calibration stage MUX on rising edge 0.			
dbg_wcal_mux_rd_fall0_r	Data pattern received on the Write Calibration stage MUX on falling edge 0.			
dbg_wcal_mux_rd_rise1_r	Data pattern received on the Write Calibration stage MUX on rising edge 1.			
dbg_wcal_mux_rd_fall1_r	Data pattern received on the Write Calibration stage MUX on falling edge 1.			
dbg_wcal_mux_rd_rise2_r	Data pattern received on the Write Calibration stage MUX on rising edge 2.			
dbg_wcal_mux_rd_fall2_r	Data pattern received on the Write Calibration stage MUX on falling edge 2.			
dbg_wcal_mux_rd_rise3_r	Data pattern received on the Write Calibration stage MUX on rising edge 3.			
dbg_wcal_mux_rd_fall3_r	Data pattern received on the Write Calibration stage MUX on falling edge 3.			
dbg_early1_data_match_r	Asserts when the pattern detected is one CK clock cycle early and a match is found during Write Calibration.			
dbg_early2_data_match_r	Asserts when the pattern detected is two CK clock cycle early and a match is found during Write Calibration.			
dbg_wcal_sanity_pat_data_match_valid_r	Asserts when the valid pattern is detected on the data and is found to match with the expected pattern sent during Write Calibration sanity check.			
dbg_prbs_final_dqs_tap_cnt_r	Tap values set at the end of PRBS Read Leveling stage.			
dbg_prbs_first_edge_taps	Tap value when the first edge is found during PRBS Read Leveling stage calibration.			
dbg_prbs_second_edge_taps	Tap value when the second edge is found during PRBS Read Leveling stage calibration.			
dbg_ocal_center_calib_done	OCLKDELAY center calibration completing indicator.			
dbg_phy_oclkdelay_cal_taps	Final stage 3 tap values for all the bytes in the interface. Bits[5:0] for byte 0 and Bits[11:6] for byte 1.			
dbg_ocal_tap_cnt	Stage 3 tap value during calibration for each group.			
VIO Signals (Control)				
dbg_bit	Currently Unused			
dbg_dqs	Input to select DQS byte for which the ILA displays the tap counts of PHASER_OUT. For example, set to 4'b0000 to view the results on DQS[0].			
vio_modify_enable	See Table 1-83.			
vio_data_mode_value	See Table 1-83.			
vio_addr_mode_value	See Table 1-83.			

Signal Name	Description
vio_instr_mode_value	See Table 1-83.
vio_bl_mode_value	See Table 1-83.
vio_fixed_bl_value	See Table 1-83.
vio_data_mask_gen	Enables Traffic Generator Data Mask Generation
vio_pause_traffic	See Table 1-83.
vio_fixed_instr_value	See Table 1-83.
dbg_clear_error	See Table 1-83.
vio_tg_rst	Currently Unused
wdt_en_w	Enable Watch Dog Timer in Traffic Generator
win_start	See Table 1-85.
win_sel_pi_pon	See Table 1-85.
vio_dbg_sel_pi_incdec	See Table 1-85.
vio_dbg_sel_po_incdec	See Table 1-85.
vio_dbg_pi_f_inc	See Table 1-85.
vio_dbg_pi_f_dec	See Table 1-85.
vio_dbg_po_f_inc	See Table 1-85.
vio_dbg_po_f_dec	See Table 1-85.
vio_dbg_po_f_stg23_sel	See Table 1-85.
vio_win_byte_select_inc	See Table 1-85.
vio_win_byte_select_dec	See Table 1-85.
vio_sel_mux_rdd[3:0]	See Table 1-85.
vio_tg_simple_data_sel	Currently Unused
	VIO Signals (Status)
win_start	Status signal reflecting the logic level of win_start input.
dbg_pi_counter_read_val	See Table 1-85.
pi_win_left_ram_out	See Table 1-85.
pi_win_right_ram_out	See Table 1-85.
win_active	See Table 1-85.
dbg_win_chk	Debug signals from window margin check module. See _chk_win.v file for details.
win_current_bit	Unused for DDR3 Interface
win_current_byte[3:0]	See Table 1-85.
win_byte_select	See Table 1-85.
po_win_left_ram_out	See Table 1-85.
po_win_right_ram_out	See Table 1-85.

Signal Name	Description
dbg_po_counter_read_val	See Table 1-85.
dbg_mem_pattern_init_done	Signal that indicates initial write to the memory is completed.
dbg_tg_compare_error	Sticky bit indicating the error in data transfer after calibration is done.
dbg_tg_wr_data_counts	Counter for the number of bytes written by the Traffic Generator.
dbg_tg_rd_data_counts	Counter for the number of bytes read by the Traffic Generator.

Debugging PHASER_IN PHASELOCKED Calibration Failures (dbg_pi_phaselock_err = 1)

Calibration Overview

During this stage of calibration, each PHASER_IN is placed in the read calibration mode to phase align its free-running frequency reference clock to the associated read DQS. The calibration logic issues back-to-back read commands to provide the PHASER_IN block with a continuous stream of DQS pulses for it to achieve lock. Each DQS has an associated PHASER_IN block. dbg_pi_phase_locked asserts when all PHASER_INs have achieved lock and the PHASER_INs are then placed in normal operation mode.

Debug

If PHASER_IN PHASELOCKED calibration failed, probe the DQS at the memory. A continuous stream of DQS pulses must be seen for lock to occur. Verify the signal integrity of the DQS pulses.

Debugging PHASER_IN DQSFOUND Calibration Failures (dbg_pi_dqsfound_err = 1)

Calibration Overview

In this stage of calibration, the different DQS groups in an I/O bank are aligned to the same PHY_Clk and the optimal read data offset position is found with respect to the read command. The calibration logic issues a set of four back-to-back reads with gaps in between. Each PHASER_IN detects the read DQS preamble. A single read data offset value is determined for all DQS groups in an I/O bank. The PHASER_OUT stage 2 delay for CK/Address/Command/Control byte lanes are increased and decreased to improve margin on the read DQS preamble detected. This read data offset is then used during read requests to the PHY_CONTROL block.

Debug

- If the DQSFOUND stage fails, probe DQS at the memory. Sets of four back-to-back reads should be seen. Read DQS(s) is required by the PHASER_IN(s) to establish the read_data_offset value. If the design is stuck in the DQSFOUND stage, start observing the quality of DQS at the memory.
- Look at the read_data_offset values. There are two sets of read_data_offset values that need to be compared.
 - To determine the read data offset found at the end of DQSFOUND calibration, look at dbg_rd_data_offset_0, dbg_calib_data_offset_1 (only when more than one bank is used), dbg_calib_data_offset_2 (only when three banks are used).
 - To determine the data offset used during normal operation reads, look at dbg_data_offset, dbg_data_offset_1 (only when more than one bank is used), and dbg_data_ofset_2 (only when three banks are used).
 - These signals change between reads, writes, and non-data commands. During writes, the value is CWL + 2 + slot#. During non-data commands, the value is 0. During reads, the value should match what was found during DQSFOUND calibration (dbg_rd_data_offset_0, dbg_rd_data_offset_1, and dbg_rd_data_offset_2).
- Compare the read data offset values used during calibration and normal operation reads. These values should match for reads with even CWL and be off by 1 for reads with odd CWL. One additional offset is added for odd CWL values because reads/writes are assigned to slot1 by the Memory Controller, whereas slot0 is used for even CWL.
- The read data offset should be equal to or greater than CL (Read Latency) + 4 or 5 memory cycles of round trip delay on the PCB. For DDR2 interfaces at lower frequencies, it is possible for read data offset to equal CL (Read Latency).
- The PHASER_OUT stage 2 delay for CK/Address/Command/Control byte lanes should also be observed for differences between passing and failing cases. The CK PHASER_OUT stage 2 delay can be observed in Vivado logic analyzer using the dbg_po_counter_read_val signal with dbg_pi_dqsfound_done as the trigger.
- When this stage fails (pi_dqsfound_err = 1), look to see if any of the dbg_calib_rd_data_offset/_1/_2 have calculated offsets. If not, focus on the DQS signals associated with the failing bank by probing each and analyzing the signal integrity.

If pi_dqsfound_err asserted, denoting a failure during DQSFOUND calibration, use pi_dqsfound_err = R as the trigger. If this stage completed successfully with the asserting of pi_dqsfound_done = 1, use pi_dqsfound_done = R as the trigger to analyze how the stage completed.

Look at dbg_rd_data_offset, dbg_calib_rd_data_offest_1, and dbg_calib_rd_data_offest _2, these values should vary by one at the most. Next, compare these values to the values used during normal operation reads on the dbg_data_offset, dbg_data_offset_1 and dbg_data_offset_2 signals. Record the results in the "7 Series DDR3 Calibration Results" spreadsheet.

Table 1-75: Debug Signals of Interest for DQSFOUND Calib
--

Signal Name	Description
dbg_pi_dqsfound_start	Signifies the start of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_done	Signifies successful completion of the DQSFOUND stage of calibration.
dbg_pi_dqsfound_err	Signifies the DQSFOUND stage of calibration exhibited errors and did not complete.
dbg_rd_data_offset_0	Read Data Offset found during calibration.
dbg_calib_rd_data_offset_1	Read Data Offset found during calibration.
dbg_calib_rd_data_offset_2	Read Data Offset found during calibration.
dbg_data_offset	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL+2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).
dbg_data_offset_1	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL+2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).
dbg_data_offset_2	Data Offset used during normal operation. Value changes during writes, reads, and idle. During writes, it is CWL+2+slot#. During non-data commands, it is 0. During reads, it should match what was found during DQSFOUND calibration (rd_data_offset_ranks).

Expected Vivado Logic Analyzer Tool Results

Figure 1-98: Expected Vivado Logic Analyzer Tool Results

Debugging Write Leveling Failures (dbg_wrlvl_err = 1)

Calibration Overview

Write leveling, a new feature in DDR3 SDRAMs, allows the controller to adjust each write DQS phase independently with respect to the CK forwarded to the DDR3 SDRAM device. This compensates for the skew between DQS and CK and meets the t_{DQSS} specification. During this stage, the PHY logic asserts the Write_Calib_N input to the PHY Control block to indicate the start of write leveling. Periodic write requests are issued to the PHY Control block to generate periodic DQS pulses. The PHASER_IN outputs a free-running clock to capture the DQ feedback into the DQ IN_FIFOS. The PHASER_OUT fine and coarse taps are used to phase shift DQS one tap at a time until a 0-to-1 transition is seen on the feedback DQ.

Write Leveling is performed at three different points during the calibration process. After memory initialization completes, the PHASER_OUT fine and coarse taps are set to zero. Write Leveling is then initially performed to align DQS to CK. After OCLKDELAYED calibration completes, the coarse tap values found during the initial Write Leveling are carried over and the fine taps are reset to zero. Write Leveling is performed again to ensure the DQS-to-CK relationship is still correct.

Finally, during Write Calibration both the fine and coarse delays are carried over and final adjustments are made when necessary. During Write Calibration, the appropriate pattern must be detected. If Write Leveling aligned DQS to the wrong CK clock, final PHASER_OUT fine/coarse delay adjustments are required to move DQS up to two CK clock cycles. This section shows how to capture the Write Leveling results after each of these adjustments.

Debug

- Verify DQS is toggling on the board. The FPGA sends DQS during Write Leveling. If DQS is not toggling, something is wrong with the setup and the General Checks section of this answer record should be thoroughly reviewed.
- Verify fly-by-routing is implemented correctly on the board.
- Verify CK to DQS trace routing. The CK clocks should be longer than DQS. The recommended value for additional total electrical delay on CK/CK# relative to DQS/DQS# is 150 ps, but any value greater than 0 ps is acceptable.
- The Mode Registers must be properly set up to enable Write Leveling. Specifically, address bit A7 must be correct. If the part chosen in the MIG tool is not accurate or there is an issue with the connection of the address bits on the board, this could be an issue. If the Mode Registers are not set up to enable Write Leveling, the 0-to-1 transition is not seen.

Note: For dual rank design when address mirroring is used, address bit A7 is not the same between the two ranks.

- When dbg_wrlvl_err asserts (equals 1), users must determine during which of the three different stages write leveling is performed the failure occurred. Set the ILA trigger to dbg_wrlvl_err = R and look at the other "DDR Basic" signals to see which stages completed.
 - a. If only PHASELOCK and DQSFOUND completed, the write leveling failure occurred during the initial run through.
 - b. If dbg_wrcal_start did not assert, the write leveling failure occurred after OCLKDELAYED calibration.
 - c. If dbg_wrcal_start asserted but dbg_wrcal_done did not, the write leveling failure occurred during the final run through during Write Calibration.
- When dbg_wrlvl_done asserts (equals 1) and the results of each Write Leveling stage is of interest, separately use the following three ILA triggers to capture the Write Leveling tap results for each stage. Seeing how Write Leveling completed is useful to see how far apart the taps are for different DQS byte groups.
 - a. dbg_wrlvl_done = R
 - b. dbg_wrcal_start = R
 - c. init_calib_complete = R
- To capture the write leveling results at each stage, change/increment dbg_dqs on the VIO and set the appropriate trigger as noted above. Look at the taps results and record in the "7 Series DDR3 Calibration Results" spreadsheet. Later releases of the MIG tool include results for all DQS byte groups removing the need to use dbg_dqs.

Note: The tap variance across DQS byte groups is quite different due to fly-by routing.

Table 1 70. Debug Signals of Interest for write Levening canonatio	Table 1-76:	Debug Signals of Interest for Write Leveling Calibration
--	-------------	--

Signal Name	Description			
dbg_wrlvl_start	Signifies the start of the Write Leveling stage of calibration.			
dbg_wrlvl_done	Signifies successful completion of the Write Leveling stage of calibration.			
dbg_wrlvl_err	Signifies the Write Leveling stage of calibration exhibited errors and did not complete.			
wl_state_r	State variable for the Write Leveling State Machine. States can be decoded in the ddr_phy_wrlvl.v module.			
dbg_dqs_cnt_r	Signifies the DQS byte group being calibrated during Write Leveling. The algorithm sequentially steps through the DQS byte groups until write leveling completes successfully or a data byte group fails due a 0 to 1 transition not being detected on DQ.			
dbg_wl_edge_detect_valid_r	Signifies valid time Write Leveling algorithm is searching for edge.			
dbg_rd_data_edge_detect_r_by_dqs	Signifies Write Leveling calibration found the 0-to-1 edge transition.			
dbg_wl_po_fine_cnt_by_dqs	PHASER_OUT Fine Taps found during Write Leveling. Byte capture based on VIO dbg_dqs setting.			
dbg_phy_wrlvl_128_75	PHASER_OUT Fine Taps found during Write Leveling.			
dbg_wl_po_coarse_cnt_by_dqs	PHASER_OUT Coarse Taps found during Write Leveling. Byte capture base on VIO dbg_dqs setting.			
dbg_phy_wrlvl_155_129	PHASER_OUT Coarse Taps found during Write Leveling.			

Expected Vivado Logic Analyzer Tool Results

nicocitouloj		-						-										~			
 /dbg_oclkdelay_calib_ 	done	2																Х	Bus/Signal	Value	
/dbg_oclkdelay_calib	start							_										Х	- vio modify enable	0	
/dbg_rdlvl_err[1]		_																X	vio data mask men	0	_
/dbg_rdlvl_err[0]		_						-										X	- VIO_dada_mask_gen	0	_
/dbg_rdlvl_done[1]		-						-										X	vio_pause_traffic	U	_
- /dbg_rdlvl_done[0]		-						-										X	dbg_clear_error	0	
- Idbg_rdivi_start[1]		-																X	Reserved	0000000000000	00000
/dbg_rdivi_start[U]		+						-										X	• dbg bit	000	
	ine	-						-										X	- dbg dgs		1
/dbg_pi_dqsfound_dt	art	-																X	0- Decerved	0000000	
/dbg pi phaselock e	rr																	Х	- Reserveu	0000000	_
/dbg_pi_phaselocked	_don	e																Х	- vio_addr_mode_value	0	_
/dbg_pi_phaselock_s	tart																	Х	Longia hil made and an	0	_
/dbg_wrlvl_err																		Х			
/dbg_wrlvl_done																		1)		
/dbg_wrlvl_start																		Х			
finit calib complete	PUTA	1703	25111	1917-7-9	NULL	2011-01	A1											X	_		
	00 (71		0	40	80	120	160	200	240	280	320	360	400	440	490	520	560	600			
Bus/Signal	x	0	Ň.,		l.				240		JZU		400	u du	400			u Lu	Capture results for each byte	roup by	
/wl po coarse cnt	0	0			_											0			incrementing dbg_dqs		
/wl no fine cnt	11	11	-												_	11		_			
· ···· _···· _····			+			1															
			-					_													
Capture wrlvl tap counts)		ſ	Set db	og_wrl	vl_don	e trigg	er													
			C																		

Figure 1-99: **Trigger = dbg_wrlvl_done**

-								
(3)	Triggor	Satur	DE1/0	MuDavical	(VC7K325T)	LIMIT-1 Mirita	Dath /II A	4.3
10.00	Inddel	Setup.	DEV:0	wvpeviceu	180/03/31	UNIT: I VVIII	e Pauri III A	

Value i Pue Signal V	Value	Function		ch Unit	Match Unit
0000_1000_0000_0000_0000(. Dus/signal Ve	>000(_1)00(_000(_000	==	_		P MO:TRIGO
X : vio_modify_enable				[2]	-/Reserved[2]
			-	[1]	-/Reserved[1]
X vio_pause_traffic			_	l_err	/dbg_wrcal_err
1) dbg_clear_error				I_done	/dbg_wrcal_done
X : ~ Reserved 00000000				[0]	/Reserved[0]
i ⊳ dbg_bit) UNIT:1 Write Path (ILA)	C7K32	:0 MyDevice0 ()	🕅 Waveform - DEV:0 MyD
320 360 400 440 480 520 560 600 € ⊶ dbg_dqs	200 240 280 320 360 400 440 480 520	40 80 120 160	0	x	Bus/Signal
1D •• Reserved 000/	1D		10	t 1D	≻ /wl po fine cnt
• vio_addr_mode_value	0		0	cnt 0	> Av] no coarse ont
the same hit washes			-	one o	/m_po_course_ene
320 360 400 440 480 520 560 600 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7	200 240 280 320 360 400 440 480 520) UNIT:1 Write Path (ILA) 40 80 120 160 	0 1D 0	t MyDevice0 () x t 1D cnt 0 ap counts	Waveform - DEV:0 MyD Bus/Signal ≻ /w1_po_fine_cnt ≻ /w1_po_coarse_cnt Capture wrlvl tap cou

Juby pr phaselock en	Function	Value	~	Radix	Counter
/dbg_pi_phaselocked_done			X		
-/dbg_pi_phaselock_start			Х		
-/dbg_wrlvl_err			X		
-/dbg_wrlvl_done			Х		
- /dbg_wrlvl_start			X		
- linit_calib_complete			1)	
Add Active		Trigger Condition Name		VIO Console - DEV:0 MyDevice	e0 (XC7K325T) UN c
Del		mggerConditiono		Bus/Signal	Value
Type: Window Vindow	lows:	1 Depth: 1024	•	vio_modify_enable	0
Storage Qualification:		All Data		vio_data_mask_gen	0
Sample Buffer is full				-vio_pause_traffic	0
	+			dbg_clear_error	0
Aw1_po_coarse_cnt 5 5			5	∽ Reserved	0000000000000
/wl po fine cnt 1B 1B			18	∽ dbg_bit	000
				(° dbg_dqs	1
				← dbg_dqs ← Reserved	0000000
Capture wrlvl tap counts	Set init_calib_compl	ete trigger		 ← dbg_dqs ← Reserved ← vio_addr_mode_value 	00000000

Figure 1-101: Trigger = init_calib_complete

Debugging MPR Read Leveling Failures – DDR3 Only (dbg_rdlvl_err[1] = 1)

Calibration Overview

At this stage of calibration, the write DQS is not centered in the write DQ window, nor is the read DQS centered in the read DQ window. The DDR3 Multi-Purpose Register (MPR) is used to center the read DOS in the read DO window. The MPR has a pre-defined "01010101" or "10101010" pattern that is read back during this stage of calibration. The read DQS centering is required for the next stage of calibration, OCLKDELAYED calibration.

Debug

- If this stage of calibration failed with the assertion of dbg_rdlvl_err[1], set the ILA trigger to dbg_rdlvl_err[1].
- If this stage of calibration was successful and the results need to be analyzed, use the trigger dbg_rdlvl_done[1] = R.
- Set the VIO dbg_dqs for each byte and capture the following signals; the results for each byte should be captured in the "7 Series DDR3 Calibration Results" spreadsheet. Later releases of the MIG tool include results for all DQS byte groups removing the need to use dbg_dqs

Signal Name	Description					
dbg_rdlvl_start[1]	Signifies the start of the MPR stage of calibration.					
dbg_rdlvl_done[1]	Signifies the successful completion of the MPR Stage of calibration.					
dbg_rdlvl_err[1]	Signifies the MPR stage of calibration exhibited errors and did not complete.					
cal1_state_r	State machine variable for MPR and Read Leveling Stage 1. States can be decoded in the ddr_phy_rdlvl.v module.					
cal1_cnt_cpt_r	Signifies the byte that failed MPR read leveling or read leveling stage 1.					
dbg_cpt_first_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.					
dbg_cpt_first_edge_cnt	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found.					
dbg_cpt_second_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.					
dbg_cpt_second_edge_cnt	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found.					
dbg_cpt_tap_cnt_by_dqs	Signifies the center tap moved to based on when the first and second edges were found. Byte capture based on VIO dbg_dqs setting.					
dbg_cpt_tap_cnt	Signifies the center tap moved to based on when the first and second edges were found.					
dbg_dq_idelay_tap_cnt_by_dqs	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups. Byte capture based on VIO dbg_dqs setting.					
dbg_dq_idelay_tap_cnt	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups.					

Table 1-77: Debug Signals of Interest for MPR Read Leveling Calibration

 Always look at DQ[0] for each component. Memory devices either send the "01010101" or "10101010" pattern on all DQ bits or on DQ[0] as specified by the JEDEC standard.

The MIG design only looks at DQ[0]. If there is an issue with DQ[0], the MPR calibration stage would fail.

- If a DQS byte group failed this stage of calibration, cal1_cnt_cpt_r would equal the byte number that is failing as no further progress or increment on cal1_cnt_cpt_r occurred.
- Check if the failing DQS byte has an dq_idelay_tap_cnt value of 31. This means the algorithm ran out of taps searching for the capture edges.
- Check and compare the dq_idelay_tap_cnt, cpt_first_edge_cnt, cpt_second_edge_cnt, and cpt_tap_cnt values across bytes during MPR read leveling.
- Look at idelay_tap_cnt for each byte group. The idelay_tap_cnt across the DQS byte groups should only vary by 2 to 3 taps
- Look at how many edges (up to two) were found. Less than two edges can be found when running around or below 400 MHz. Otherwise, two edges should always be found.
- Using high quality probes and scope, probe the address/command to ensure the load register command to the DRAM that enables MPR was correct. To enable the MPR, a MODE Register Set (MRS) command is issued to the MR3 Register with bit A2 = 1. To make this measurement, bring mpr_rdlvl_start to an I/O pin and use as the trigger to capture A2 (must be 1) and WE_N (must be 0).

Expected Vivado Logic Analyzer Tool Results

Match Unit Function				Valu	e	Radix	Counter		
done[1]							1)		
Add Active Del O					ition Name ndition0		Trigger Condition Equation M0		
Type: Window 🗸 Win			1	Depth: 1024	•	Position:	1023		
Storage Qualification:		-		All D	ata				
Waveform - DEV:0 MyDevice0 (XC7K3)	25T) UNIT:2 F	Read F	Path (ILA)				🗐 VIO Console - DEV:0 MyDev	/ice0 (XC7K325T) UN 🗗 🛛	
Bus/Signal	x	0	1023 -983 -943 😽	-903 -863 -8	323 -783 -743 -703	-663 -623 -583 -543 -503 -4	6: Bus/Signal	Value	
≻/cal1_cnt_cpt_r	7	7				7	vio_modify_enable	0	
/dbg_cpt_first_edge_cnt	07	07				07		0	
/dbg_cpt_second_edge_cnt	32	32				32	vio_pause_traffic	0	
≻ /dbg_cpt_tap_cnt	1D	1D				1D	dbg_clear_error	0	
≻/dbg_dq_idelay_tap_cnt	0A	0A				0A	- Reserved	000000000000000000000000000000000000000	
					_		• dbg_bit	000	
Capture MPR Read Leveling Tap Coun	s	Í	Set dha rdbl	done[1] Trigge	ər)		• dbg_dqs	1)	
		l		aene[1] 11994			- Reserved	00000000	
							/		
						[Capture results for each byte	as	

Figure 1-102: Trigger = dbg_rdlvl_done[1]

Debugging OCLKDELAYED Calibration Failures

Calibration Overview

The 7 series MMCM has outputs with "fine phase shift" capability. This fine phase shift capability is relatively linear and with fairly high resolution. The algorithm finds at least two edges that are either the edges of the data valid window or the edges of the noise region using Phaser_Out stage 3 taps. The MMCM fine phase shift is used to align the MMCM clock to these detected edges to determine the center of the data valid window using MMCM taps. Finally, the write DQS is edge-aligned with the already centered MMCM clock using Phaser_Out stage 3 taps.

There are three substages in this step:

- 1. Set Phaser_Out stage 3 limit for OCLKDELAY calibration using MMCM per byte. This stage determines the limits of stage 3 tap movement during the edge detection substage.
- 2. Detect edges of the write DQ window using simple pattern. These modules perform edge detection by scanning the write DQ window using stage 3 within the limits determined by the limit module.
- 3. Set DQS to the center of write DQ window using MMCM phaser shift. Centering stage during which the write DQS is centered in the write DQ window based on the edges found during the edge detection stage.

Debug

This stage of calibration can fail if no edges are detected (highly unlikely). Sub-optimal OCLKDELAYED calibration can result in data bit errors during normal operation. This occurs because the DQS to DQ 90° relationship is not correct. Full analysis of this calibration stage is critical.

- Probe the DQS to DQ phase relationship at the memory. DQS should be center aligned to DQ.
- Using dbg_oclkdelay_calib_done = R as the ILA trigger, capture the below signals and record the results in the "7 Series DDR3 Calibration Results" spreadsheet.
- Look at how many edges (up to three) were found. Less than three edges can be found when running around 400 MHz or at higher frequencies when the write level tap values are around 56 taps.

Signal Name	Description
dbg_oclkdelay_calib_start	Signifies the start of the OCLKDELAY stage of calibration.
dbg_oclkdelay_calib_done	Signifies the end of the OCLKDELAY stage of calibration.

Table 1-78: Debug Signals of Interest for OCLKDELAYED Calibration

Signal Name	Description
dbg_phy_oclkdelay_zfo[0]	1 indicates that the left-edge of the fall window was detected and it validates fuzz2oneeighty as the tap value of the left-edge of the fall window.
dbg_phy_oclkdelay_zfo[1]	1 indicates that the left-edge of the rise window was detected and it validates fuzz2zero as the tap value of the left-edge of the rise window.
dbg_phy_oclkdelay_zfo[2]	1 indicates that the right-edge of the fall window was detected and it validates oneeighty2fuzz as the tap value of the right-edge of the fall window.
dbg_phy_oclkdelay_zfo[3]	1 indicates that the right-edge of the rise window was detected and it validates zero2fuzz as the tap value of the right-edge of the rise window.
dbg_ocal_fuzz2oneeighty	Stage 3 tap value of the left-edge of the fall window.
dbg_ocal_fuzz2zero	Stage 3 tap value of the left-edge of the rise window.
dbg_ocal_oneeighty2fuzz	Stage 3 tap value of the right-edge of the fall window.
dbg_ocal_zero2fuzz	Stage 3 tap value of the right-edge of the rise window.
dbg_ocal_oclkdelay_calib_cnt	Byte count indicating the byte being calibrated.
dbg_ocal_lim_done	Indicates that stage 3 lower and upper limits have been determined.
dbg_ocal_stg3_lim_left	Stage 3 lower limit
dbg_ocal_stg3_lim_right	Stage 3 upper limit
phy_oclkdelay_cal_taps	Final stage 3 tap values for all the bytes in the interface. Bits[5:0] for byte 0 and Bits[11:6] for byte 1.
dbg_ocal_center_calib_start	Indicates end of edge detection and start of centering in valid window.
dbg_ocal_center_calib_done	Indicates end of the centering stage of calibration.
dbg_ocal_tap_cnt	Stage 3 tap value during calibration for each group.
dbg_ocal_scan_win_not_found	1 indicates that window edge is not found.

Table 1-78: Debug Signals of Interest for OCLKDELAYED Calibration (Cont'd)

Debugging Write Calibration Failures (dbg_wrcal_err = 1)

Calibration Overview

Write calibration is required to align DQS to the correct CK edge. During write leveling, DQS is aligned to the nearest rising edge of CK. However, this might not be the edge that captures the write command.

Depending on the interface type (UDIMM, RDIMM, or component), the DQS could either be one CK cycle earlier than, two CK cycles earlier than, or aligned to the CK edge that captures the write command.

This is a pattern based calibration; hence, multiple writes followed by a single read are issued during this stage. The following data patterns might be seen:

- On-time write pattern read back FF00AA5555AA9966
- One CK early write pattern read back AA5555AA9966BB11

- Two CK early write pattern read back 55AA9966BB11EE44
- One CK late write pattern read back XXXXFF00AA5555AA
 - Calibration cannot correct for this pattern. This pattern indicates that the trace delays are incorrect where CK is incorrectly shorter than DQS.

If none of the above patterns are detected during reads, the algorithm assumes the MPR read leveling IDELAY settings are incorrect and the IDELAYs for the DQ bits associated with that byte are set to 0. MPR read leveling could have an incorrect IDELAY setting because with the "01010101" or "10101010" pattern, it is not possible to differentiate between clock cycles.

Debug

If dbg_wrcal_err is asserted, denoting a Write Calibration failure, use dbg_wrcal_err = R as the trigger and observe the following debug signals. If dbg_wrcal_done asserted but the results of this stage need to be analyzed, use dbg_wrcal_done as the trigger.

Signal Name	Description
dbg_wrcal_start	Signifies the start of the Write Calibration stage of calibration.
dbg_wrcal_done	Signifies successful completion of the Write Calibration stage of calibration.
dbg_wrcal_err	Signifies Write Calibration exhibited errors and did not complete.
pat_data_match	Asserts when the valid pattern is detected.
pat_data_match_valid	Toggles when the correct pattern is detected.
wrcal_dqs_cnt	Current DQS group being calibrated in Write Calibration. When dbg_wrcal_start asserts, wrcal_dqs_cnt is 0. The algorithm sequentially steps through the DQS byte groups checking to see if the read data pattern matches the expected FF00AA5555AA9966 pattern. If the pattern matches, wrcal_dqs_cnt increments by 1. The algorithm then starts looking for the correct data pattern on the next byte until it reaches DQS_WIDTH – 1 or a data byte group fails due to the data pattern not being detected properly. The wrcal_dqs_cnt stays at DQS_WIDTH – 1 after dbg_wrcal_done signal is asserted.
cal2_state	Write Calibration state machine variable.
not_empty_wait_cnt	Count value during write calibration pattern detection. Maximum count is 0x1F. If count reaches 0x1F, write calibration fails with the assertion of dbg_wrcal_err.
early1_data	Asserts when the pattern detected is one CK clock cycle early. When this is asserted, the write leveling algorithm moves the CK clock one cycle. After CK is moved, the write calibration algorithm restarts pattern detection.
early2_data	Asserts when the pattern detected is two CK clock cycles early. When this is asserted, the write leveling algorithm moves the CK clock two cycles. After CK is moved, the write calibration algorithm restarts pattern detection.
dbg_wcal_mux_rd_rise0_r	Data pattern received on rising edge 0.
dbg_wcal_mux_rd_fall0_r	Data pattern received on falling edge 0.
dbg_wcal_mux_rd_rise1_r	Data pattern received on rising edge 1.

 Table 1-79:
 Debug Signals of Interest for Write Calibration

Signal Name	Description
dbg_wcal_mux_rd_fall1_r	Data pattern received on falling edge 1.
dbg_wcal_mux_rd_rise2_r	Data pattern received on rising edge 2.
dbg_wcal_mux_rd_fall2_r	Data pattern received on falling edge 2.
dbg_wcal_mux_rd_rise3_r	Data pattern received on rising edge 3.
dbg_wcal_mux_rd_fall3_r	Data pattern received on falling edge 3.

Table 1-79: Debug Signals of Interest for Write Calibration (Cont'd)

- 1. The number on wrcal_dqs_cnt when dbg_wrcal_err asserts signifies the byte that failed write calibration. Debug should be focused on this byte group.
- 2. Observe the rddata bus or the mux_rd_fall/riseX_r buses and look for the appropriate data pattern. Note, mux_rd_fall/rise_2/3_r is not used with the half-rate controller and it is always zero. Again, the three scenarios that allow write calibration to continue are:
 - On-time write expected pattern FF00AA5555AA9966
 - One cycle early write expected pattern AA5555AA9966BB11
 - Two cycles early expected pattern 55AA9966BB11EE44
- 3. If none of these three patterns are observed on a failing byte, look at the failing pattern and determine how the pattern is failing. Look if there are failing DQ bit(s) within a byte, failing bytes, and others. If the late write pattern noted above was detected, there is most likely a trace length issue between DQS and CK where CK is not longer than DQS as required.
- 4. If the design is stuck in the Write Calibration stage, the issue could be related to either the write or the read. Determining whether the write or read is causing the failure is critical. The following steps should be completed using dbg_wrcal_start as the scope trigger. To perform this, dbg_wrcal_start must be brought out to an I/O. For additional details and example Read and Write scope shots, review the Determining If a Data Error is Due to the Write or Read.
 - a. To ensure the writes are correct, observe the write DQS to write DQ relationship at the memory using high quality scope and probes. During write calibration, a write is followed by a read so care needs to be taken to ensure the write is captured. See the Determining If a Data Error is Due to the Write or Read section for details. If there is a failing bit, determining the write DQS to write DQ relationship for the specific DQ bit is critical. The write ideally has the DQS center aligned in the DQ window. Misalignment between DQS and DQ during Write Calibration points to an issue with OCLKDELAY calibration. Review the Debugging OCLKDELAYED Calibration Failures section.
 - b. If the DQ-DQS alignment looks correct, next observe the WE_N to DQS relationship at the memory during a write again using high quality scope and probes. The WE_N to DQS delay must equal the CAS Write Latency (CWL).

- c. Using high quality scope and probes, verify the expected pattern (FF00AA5555AA9966) is being written to the DRAM during a write and that the expected pattern is being read back during the first Write Calibration read. If the pattern is correct during write and read at the DRAM, verify the DQS-CK alignment. During Write Calibration, these two signals should be aligned. Write Leveling aligned these two signals which has successfully completed before Write Calibration.
- d. Probe ODT and WE_N during a write command. In order for ODT to be properly turned on in the memory, ODT must assert before the write command.
- e. Probe DM to ensure it is held Low during calibration. If a board issue exists causing DM to improperly assert, incorrect data is read back during calibration causing a write calibration failure. An example of a board issue on DM is when DM is not used and tied Low at the memory with improper termination.
- 5. It is possible for write calibration to fail due to rare manufacturing issues with the memory device. Verify SDRAM pins are behaving correctly. Look for floating or grounded signals. The debug signals should be used to determine which byte group is failing and if specific pin(s) within that byte group are causing the incorrect data pattern. These pins should be the focus at the memory device.
- 6. If the DQS-to-DQ, CWL, and DQS-to-CK look correct, review the above Debugging MPR Read Leveling Failures DDR3 Only (dbg_rdlvl_err[1] = 1) section.

Expected Vivado Logic Analyzer Tool Results

Match L	nit	Function			Value					
γ− M0:TRIG0		==				200(1_2000(_2000(_2000(_2000(_2000)				
-/Reserved[2]										X
/Reserved[1]	/Reserved[1]									X
/dbg_wrcal_er	r						X			
(/dbg_wrcal_d	ne							-		1)
/dbg_wrcal_st	art									Х
-/Reserved[0]										X
Waveform - DEV:0 N	lyDevice0	хс7кз	25T) UNIT	T:2 Rea	d Path (ILA)				
Bus/Signal	x	0	-52	23		-518	-513	-508	-503	-498
Bus/Signal	X	0	- 52	23	55	-518 <u> </u>	-513	-508	-503 	- 498
Bus/Signal /mux_rd_fall1_r /mux_rd_fall2_r	x 000 000	0 00 00	-52 00	23 X	55 AA	-518 , , 	-513 	-508	-503 	-498
Bus/Signal /mux_rd_fall1_r /mux_rd_fall2_r /mux_rd_fall3_r	× 00 00 00	0 00 00	-52 00 00 00	23 	55 AA 66	-518	-513 	-508	-503 	-498 01 01 01 01
Bus/Signal /mux_rd_fall1_r /mux_rd_fall2_r /mux_rd_fall3_r /mux_rd_rise0_r	X 00 00 00	0 00 00 00	-52 00 00 00 00	23 X X X X	55 AA 66 FF	-518 <u> , ,</u> X	-513 <u>, , , ,</u>	-508 	-503 	-498
Bus/Signal /mux_rd_fall1_r /mux_rd_fall2_r /mux_rd_fall3_r /mux_rd_rise0_r /mux_rd_rise1_r	X 00 00 00 00 00	0 00 00 00 00	-52 00 00 00 00 00	23 X X X X	55 AA 66 FF AA	-518 <u> , , ,</u> X	-513 	-508	-503 	-498 01 01 01 01 01
Bus/Signal /mux_rd_fall1_r /mux_rd_fall2_r /mux_rd_fall3_r /mux_rd_rise0_r /mux_rd_rise1_r /mux_rd_rise1_r	X 000 000 000 000 000 000	0 00 00 00 00 00	-52 00 00 00 00 00 00	23	55 AA 66 FF AA 55	-518 	-513 	-508 	-503 	-498

Figure 1-103: Trigger = dbg_wrcal_done

Figure 1-104: Trigger = dbg_wrcal_done

Debugging Read Leveling Failures (dbg_rdlvl_err[0] = 1)

For memory clock frequencies of 400 MHz and above, Read Leveling is performed after Write Calibration.

Calibration Overview

The final read DQS to read DQ centering is done in this stage of calibration. The first step in this stage is to decrease the IDELAY and PHASER_IN stage 2 taps values to zero to undo MPR read leveling. MPR read leveling was only required for OCLKDELAYED calibration. This stage of read leveling accurately centers the read DQS in the read DQ window using a 993377EECC992244 data pattern. If this stage calibrates successfully, the init_calib_complete signal is asserted and calibration is complete.

Debug

• If this stage of calibration failed with the assertion of dbg_rdlvl_err[0], set the ILA trigger to dbg_rdlvl_err[0].

- If this stage of calibration was successful and the results need to be analyzed, set the ILA trigger to dbg_rdlvl_done[0] = R.
- Set the VIO dbg_dqs for each byte and capture the following signals. The results for each byte should be captured in the "7 Series DDR3 Calibration Results" spreadsheet. Later releases of the MIG tool include results for all DQS byte groups removing the need to use dbg_dqs.

Table 1-80:	Debug Signals of Interest for	or Read Leveling Stage 1 Calibration	on
1001C ± 00.			

Signal Name	Description
dbg_rdlvl_start[0]	Signifies the start of Read Leveling Stage 1 of calibration.
dbg_rdlvl_done[0]	Signifies the successful completion of Read Leveling Stage 1 of calibration.
dbg_rdlvl_err[0]	Signifies Read Leveling Stage 1 of calibration exhibited errors and did not complete.
cal1_state_r	State machine variable for MPR and Read Leveling Stage 1. States can be decoded in the ddr_phy_rdlvl.v module.
cal1_cnt_cpt_r	Signifies the byte that failed MPR read leveling or read leveling stage 1.
dbg_cpt_first_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.
dbg_cpt_first_edge_cnt	Signifies PHASER_IN fine tap count when the first edge in MPR and Read Leveling Stage 1 is found.
dbg_cpt_second_edge_cnt_by_dqs	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found. Byte capture based on VIO dbg_dqs setting.
dbg_cpt_second_edge_cnt	Signifies PHASER_IN fine tap count when then second edge in MPR and Read Leveling Stage 1 is found.
dbg_cpt_tap_cnt_by_dqs	Signifies the center tap moved to based on when the first and second edges were found. Byte capture based on VIO dbg_dqs setting.
dbg_cpt_tap_cnt	Signifies the center tap moved to based on when the first and second edges were found.
dbg_dq_idelay_tap_cnt_by_dqs	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups. Byte capture based on VIO dbg_dqs setting.
dbg_dq_idelay_tap_cnt	IDELAY tap value for MPR and Read Leveling Stage 1. This should be within 2 to 3 taps across all DQS byte groups.

- Determine which stage is failing by observing cal1_state_r.
- Look at idelay_tap_cnt for each byte group. The idelay_tap_cnt across the DQS byte groups should only vary by 2 to 3 taps.

- Look at how many edges (up to two) were found. Less than two edges can be found when running around or below 400 MHz. Otherwise, two edges should always be found to then center the IDELAY taps.
- Determine if any bytes completed successfully. The read leveling algorithm sequentially steps through each DQS byte group detecting the capture edges. When the failure occurs, the value on call_cnt_cpt_r indicates the byte that failed edge detection.
- If the incorrect data pattern is detected, determine if the error is due to the write access or the read access. See the Determining If a Data Error is Due to the Write or Read section.
- If the dbg_rdlvl_err[0] is asserted (read leveling failure), use high quality probes and scope observe the DQS-to-DQ phase relationship during a write. The scope trigger should be dbg_rdlvl_start[0]. The alignment should be approximately 90°.
- If the DQS-to-DQ alignment is correct, observe the WE_N-to-DQS relationship to see if it meets CWL again using dbg_rdlvl_start[0] as a trigger.

Match Unit	Fu	inction	Value	Radix	Counter
M0:TRIGO		==	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0(_)000(Bin	disabled
- /dbg_rdlvl_err[1]				X Set appropriate	trigger
-/dbg_rdlvl_err[0]				X	
-/dbg_rdlvl_done[1]				x	
-/dbg_rdlvl_done[0]				1	
-/dbg_rdlvl_start[1]				X	
_ /dbg_rdlvl_start[0]				X	
Waveform - DEV:0 MyDevice0 (XC7K32	25T) UNIT:2 R	ead Pat	.A)		
Bus/Signal	x	0	-453 -448 -443 -438 -433	-428 -423 -4	18 -413
cal1_cnt_cpt_r	7	7		7 💮 VIO Console - DEV:0 MyD	evice0 (XC7K325T) UN 🖬
'cal1_state_r	AO	AO		0E Bus/Signal	Value
dbg_cpt_first_edge_cnt	OF	OF		OF RESERVED	000000000000000000000000000000000000000
dbg_cpt_second_edge_cnt	2E	2E		2E Cabg_bit	000
dbg_cpt_tap_cnt	lF	1F		1F C dbg_dgs	0)
dbg_dq_idelay_tap_cnt	AO	AO		0A CReserved	00000000
mux_rd_fall0_r	33	33	1	33 ~ vio_addr_mode_value	0
mux_rd_fall1_r	EE	EE		EE • vio bl mode_value	0
mux_rd_fall2_r	99	99		99 🗢 vio_data_mode_value	0
mux_rd_fall3_r	44	44		44 • vio_fixed_bl_value	00
mux_rd_rise0_r	99	99		99 ~ vio_fixed_instr_value	0
mux_rd_rise1_r	77	77		77 • vio_instr_mode_value	0
mux_rd_rise2_r	cc	cc	<u>\</u>	cc	
have and and and a	22	22		22	

Expected Vivado Logic Analyzer Tool Results

Figure 1-105: Trigger = dbg_rdlvl_done[0]

Debugging PRBS Read Leveling Failures

Calibration Overview

This stage of calibration was added in MIG 7 series v1.7 and determines the read data valid window using complex pattern that is written once and read back from the DDR3 SDRAM.

Debug

Table 1-81:	Debug Signals of Inter	est for PRBS Read	Leveling Calibration

Debug Signal	Signal Description
left_edge_pb	Signifies PHASER_IN fine tap value of starting valid read window (left edge) for each bit in a byte. left_edge_pb[5:0] is the left edge of Bit[0] and left_edge_pb[47:42] is the left edge of Bit[7].
left_loss_pb	Signifies the loss in aggregate window size caused by left edge change for each bit in a byte. If left edge change of the bit does not affect the valid window, it is set to "0," left_loss_pb[1:0] is for Bit[0], and left_loss_pb[15:14] is for Bit[7].
right_edge_pb	Signifies PHASER_IN fine tap value of ending valid read window (right edge) for each bit in a byte. right_edge_pb[5:0] is right edge of Bit[0] and right_edge_pb[47:42] is the right edge of Bit[7].
right_gain_pb	Signifies the gain in aggregate valid window caused by right edge change for each bit in a byte. If right edge change of the bit does not affect the valid window, it is set to "0," right_gain_pb[1:0] is for Bit[0], and right_gain_pb[15:14] is for Bit[7].
prbs_dqs_cnt_r	Signifies the current DQS byte group being calibrated during PRBS Read Leveling. Use VIO dbg_dqs to select the byte group.
prbs_rdlvl_start	Signifies the start of PRBS Read Leveling calibration.
prbs_rdlvl_done	Signifies the successful completion of PRBS Read Leveling.
compare_err_r0	Signifies data mismatch on first rising edge data comparison.
compare_err_r1	Signifies data mismatch on second rising edge data comparison.
compare_err_r2	Signifies data mismatch on third rising edge data comparison.
compare_err_r3	Signifies data mismatch on forth rising edge data comparison.
compare_err_f0	Signifies data mismatch on first falling edge data comparison.
compare_err_f1	Signifies data mismatch on second falling edge data comparison.
compare_err_f2	Signifies data mismatch on third falling edge data comparison.
compare_err_f3	Signifies data mismatch on forth falling edge data comparison.
compare_err	Signifies data comparison failure due to a read data pattern
prbs_dqs_tap_cnt_r	Signifies the internal counter which tracks PHASER_IN fine tap movement.
pi_counter_read_val	Signifies DQS PHASER_IN fine tap setting.

Debug Signal	Signal Description
ref_bit	Signifies that reference bit of the byte which has largest left edge PHASER_IN tap value.
complex_victim_inc	Indicates the victim increment for internal calibration pattern change.
rd_victim_sel	Signifies the victim selection to get the correct data pattern to compare during read back.
prbs_state_r1	Signifies the state of PRBS Read Leveling state machine.
rd_valid_r2	Indicates the read out data is valid to use for comparison.
left_edge_found_pb	Indicates left edge found for each bit in a byte. Left_edge_found_pb[0] is for Bit[0] and left_edge_found_pb[7] is for Bit[7].
right_edge_found_pb	Indicates right edge found for each bit in a byte. right_edge_found_pb[0] is for Bit[0] and right_edge_found_pb[7] is for Bit[7].
largest_left_edge	Signifies the left edge tap value of the byte.
smallest_right_edge	Signifies the right edge tap value of the byte.
fine_delay_incdec_pb	Indicates the increment of FINEDELAY tap in IDELAY primitive for each bit in a byte. fine_delay_incdec_pb[0] is for Bit[0] and fine_delay_incdec_pb[7] is for Bit[7].
fine_delay_sel	Indicates fine_delay_incdec_pb is applied for FINEDELAY in IDELAY primitive.
compare_err_pb_latch_r	Indicates that data mismatch happened for each bit in a byte at a specific PHASER_IN tap setting. compare_err_pb_latch_r[0] is for Bit[0] and compare_err_pb_latch_r[7] is for Bit[7].
fine_pi_dec_cnt	Signifies the computed decrease value of PHASER_IN tap.
match_flag_and	Indicates all bits have data mismatch. Recoded for five consecutive PHASER_IN tap setting.
stage_cnt	Signifies the number of scans with different setting of FINEDELAY in IDELAY primitive.
fine_inc_stage	Indicates that FINEDELAY in IDELAY primitive is in the increment stage.
compare_err_pb_and	Signifies the data mismatch happened for all bits in a byte.
right_edge_found	Indicates the right edge of the byte is found.

Table 1-81: Debug Signals of Interest for PRBS Read Leveling Calibration (Cont'd)

Calibration Times

For Initial ES (IES) with extended calibration, completing calibration in hardware should take about 30 seconds.

For General ES (GES) and Production, hardware calibration time scales with interface data width and data rate. Table 1-82 lists the calibration times for 32-bit and 72-bit interfaces at 800 Mb/s and 1,600 Mb/s. Calibration times are faster at higher frequencies because the required number of reads and writes to perform the phase adjustment can complete faster than at a lower frequency. Calibration is completed on a per-byte basis. Therefore, larger interface widths result in longer calibration times.

Note: These are typical values. Calibration times can vary significantly depending on the board signal integrity, the FPGA, and the frequency of operation.

MIG release 2014.2 includes updates to the read calibration algorithm resulting in calibration time increase compared to the previous release. MIG release 2014.4 includes updates to the write calibration algorithm using MMCM for better write DQS to write data centering which resulted in increased calibration time.

MIC Poloaco	Calibration Time	at 800 Mb/s (4:1)	Calibration Time at 1,600 Mb/s (4:1)		
WIIG Release	32-bit	72-bit	32-bit	72-bit	
2014.1	< 1 second	< 1 second	< 1 second	< 1 second	
2014.2	< 1 second	~1 second	< 1 second	Little over 1 second	
2014.4	< 1 second	~2 seconds	< 1 second	~1 second	
2015.1	~1 second	~2 seconds	< 1 second	~1 second	

Table 1-82: Calibration Time in Hardware

Debugging Data Errors

General Checks

As with calibration error debug, the General Checks section of this answer record should be reviewed. Strict adherence to proper board design is critical in working with high speed memory interfaces. Violation of these general checks is often the root cause of data errors.

Replicating the Error Using the Traffic Generator

When data errors are seen during normal operation, the MIG 7 series Example Design (Traffic Generator) should be used to replicate the error. The Traffic Generator can be configured to send a wide range of data, address, and command patterns allowing customers to test their target traffic pattern on a verified solution. The Traffic Generator stores the write data and compares it to the read data. This allows comparison of expected and actual data when errors occur. The following section details the critical step in Data Error debug.

Signal Name	Description
vio_modify_enable	Set to 1 to vary the command Traffic Generator command pattern.
vio_data_mask_gen	Traffic generator Data Mask generation.
vio_pause_traffic	Set to 1 to pause the Traffic Generator.
dbg_clear_error	Set to clear Traffic Generator errors. This signal can be used in checking for single bit errors or measuring a read window.
	Valid settings for this signal are:
vio addr mode value	 0x1 = FIXED address mode⁽¹⁾
vio_addi_iiiode_vaide	 0x2 = PRBS address mode
	 0x3 = SEQUENTIAL address mode
	Valid settings for this signal are:
vio_bl_mode_value	• $0x1 = FIXED burst length^{(1)}$
	• 0x2 = PRBS burst length
vio_fixed_bl_value	Valid settings are 1 to 256.
	Valid settings are:
vio_fixed_instr_value	• 0x0 = Write instruction
	• 0x1 = Read instruction
	Valid settings for this signal are:
	 0x1 = Command type (read/write) as defined by fixed_instr_i⁽¹⁾
vio_instr_mode_value	 0x2 = Random read/write commands
	• 0xE = Write only at address zero
	 0xF = Read only at address zero

Table 1-83: Debug Signals Used for Configuring the Traffic Generator

Signal Name	Description
	Valid settings for this signal are:
	• 0x0 = Reserved
	• 0x1 = FIXED – 32 bits of fixed_data as defined through fixed_data_i inputs. ⁽¹⁾
	 0x2 = ADDRESS – 32 bits address as data. Data is generated based on the logical address space. If a design has a 256-bit user data bus, each write beat in the user bus would have a 256/8 address increment in byte boundary. If the starting address is 1300, the data is 1300, followed by 1320 in the next cycle. To simplify the logic, the user data pattern is a repeat of the increment of the address value Bits[31:0].
	 0x3 = HAMMER – All 1s are on DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS, except the VICTIM line as defined in the parameter "SEL_VICTIM_LINE." This option is only valid if parameter DATA_PATTERN = "DGEN_HAMMER" or "DGEN_ALL."
vio_data_mode_value	 0x4 = SIMPLE8 – Simple 8 data pattern that repeats every 8 words. The patterns can be defined by the "simple_datax" inputs.⁽¹⁾
	 0x5 = WALKING1s – Walking 1s are on the DQ pins. The starting position of 1 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING" or "DGEN_ALL."
	 0x6 = WALKING0s – Walking 0s are on the DQ pins. The starting position of 0 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING0" or "DGEN_ALL."
	 0x7 = PRBS – A 32-stage LFSR generates random data and is seeded by the starting address. This option is only valid if the parameter DATA_PATTERN = "DGEN_PRBS" or "DGEN_ALL."
	• 0x9 = SLOW HAMMER – This is the slow MHz hammer data pattern.
	• 0xF = PHY_CALIB pattern – 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero. This is only valid in the Virtex-7 family.

Table 1-83: Debug Signals Used for Configuring the Traffic Generator (Cont'd)

Notes:

1. This setting does not work by default and additional RTL modifications are required.

Table 1-84:	Debug Signals of Interes	t When Isolating Data	Error Using the Traffi	c Generator
-------------	--------------------------	-----------------------	------------------------	-------------

Signal Name	Description
dbg_rddata_r	Read data read out of the IN_FIFO for the DQS group selected through dbg_dqs on the VIO. This is a 64-bit bus. This debug port does not capture ECC data.
cmp_data_r	Expected data to be compared with read back data from memory. ⁽¹⁾
dbg_rddata_valid	Signifies that the read data is valid.
cmp_data_valid	Signifies the compare data is valid.
cmp_error	Signifies the cmp_data is not the same as the readback data from memory.

Table 1-84:	Debug Signals of Interes	When Isolating Data Error	r Using the Traffic Genera	ator <i>(Cont'd)</i>
-------------	--------------------------	---------------------------	----------------------------	----------------------

Signal Name	Description
	This signal latches these values when the error signal is asserted:
	• [42] = mcb_rd_empty
error_status[n:0]	• [41] = mcb_wr_full
	• [37:32] = cmp_bl_i
	• [31:0] = cmp_addr_i

Notes:

1. Cmp_data_r is not cycle aligned with dbg_rddata_r and might vary from 1 burst before to 3 bursts after dbg_rddata_r.

Isolating the Data Error

Using either the MIG 7 series Traffic Generator or the user design, the first step in data error debug is to isolate when and where the data errors occur. To perform this, the expected data and actual data must be known and compared. Looking at the data errors, the following should be identified:

- Are the errors bit or byte errors?
 - Are errors seen on data bits belonging to certain DQS groups?
 - Are errors seen on specific DQ bits?
- Is the data shifted, garbage, swapped, and others?
- Are errors seen on accesses to certain addresses, banks, or ranks of memory?
 - Designs that can support multiple varieties of DIMM modules, all possible address and bank bit combinations should be supported.
- Do the errors only occur for certain data patterns or sequences?
 - This can indicate a shorted or open connection on the PCB. It can also indicate an SSO or crosstalk issue.
- Determine the frequency and reproducibility of the error.
 - Does the error occur on every calibration/reset?
 - Does the error occur at specific temperature or voltage conditions?
- Determine if the error is correctable.
 - Rewriting, rereading, resetting, and recalibrating.

To isolate the data error using the MIG 7 series Example Design Traffic Generator, use the following steps.

- Determine what type of data error is being seen (bit or byte errors).
 - a. Set the ILA trigger to cmp_error = 1.

- b. Observe the dbg_rddata_r and cmp_data_r signals in Vivado logic analyzer feature.
 - Are errors seen on a data bit/s belonging to a certain DQS group(s)?
 - Does the data appear shifted, garbage, swapped, and others?
- Determine if errors are seen on accesses to a certain address, bank, or rank of the memory.
 - a. Set the ILA trigger to cmp_error = 1.
 - b. Set the VIO cores.

vio_modify_enable = 1
vio_data_mode_value = 2
vio_addr_mode_value = 3

- c. Observe the cmp_addr_i bits of the error_status[31:0] in Vivado logic analyzer.
- Determine if errors only occur for certain data patterns or sequences. This can indicate a shorted or open connection on the PCB or can also indicate an SSO or crosstalk issue.
 - a. Set the LA trigger to cmp_error = 1.
 - b. Set the VIO cores.

```
vio_modify_enable = 1
vio_instr_mode_value = 2
vio_data_mode_value = 2
vio_addr_mode_value = 3
```

- c. Observe the dbg_rddata_r and cmp_data_r signals and the cmp_addr_i bits of the error_status[31:0] bus in the Vivado logic analyzer feature.
- d. Repeat steps 1 to 3 with setting vio_data_mode_value to values varying from 3-F.
- Determine the frequency and reproducibility of the error.
 - Does the error occur after every calibration or reset?
 - Does the error occur at specific temperature or voltage conditions?
- Determine if the error is correctable.
 - Rewriting, rereading, resetting, and recalibrating.

Note: vio_pause_traffic should be asserted and deasserted each time the VIO inputs are changed.

Determining If a Data Error is Due to the Write or Read

Determining whether a data error is due to the write or the read can be difficult because if writes are the cause, read back of data is bad as well. In addition, issues with control or address timing affect both writes and reads. Some experiments that can help to isolate the issue are:

- If errors are intermittent, issue a small initial number of writes, followed by continuous reads from those locations.
- If the reads intermittently yield bad data, there is a potential read issue. If the reads always yield the same (wrong) data, there is a write issue.

Determine if this is a Write or Read issue using the MIG 7 series Example Design Traffic Generator within the Vivado logic analyzer feature:

- 1. Set up all the FIXED parameter values in the RTL:
 - a. Open example_top.v and change fixed_data_i and fixed_addr_i under the traffic_gen_top instantiation.
 - b. Regenerate bitstream.
- 2. Set the ILA trigger to cmp_error = 1.
- 3. Set VIO cores to:

```
vio_modify_enable = 1
```

```
vio_pause_traffic = 1
```

```
vio_addr_mode_value = 1
```

```
vio_bl_mode_value = 1
```

```
vio_fixed_bl_value = 8
```

```
vio_instr_mode_value = 1
```

```
vio_fixed_instr_value = 0 (Write Only)
```

vio_data_mode_value = 1

vio_pause_traffic = 0

4. Set the VIO cores to:

```
vio_pause_traffic = 1
```



```
vio_fixed_instr_value = 1 (Read Only)
```

vio_pause_traffic = 0

5. Observe the dbg_rddata_r and cmp_data_r signals in Vivado logic analyzer feature.

This can also be done using high quality probes and a scope using the Traffic Generator or your own user design.

- 1. Capture the write at the memory and the read at the FPGA to view data accuracy, appropriate DQS-to-DQ.
- 2. Look at the initial transition on DQS from 3-state to active.
- 3. During Write, DQS does not have a preamble.
- 4. During Read, the DQS has a Low preamble that is 1 clock cycle long.
- 5. The following is an example of a Read and a Write to illustrate the difference.

Figure 1-106: **Read and Write**

Analyze write timing:

- If on-die termination (ODT) is used, check that the correct value is enabled in the DDR2/DDR3 device and that the timing on the ODT signal relative to the write burst is correct.
- Measure the phase of DQ relative to DQS. During a Write, DQS should be center aligned to DQ. If the alignment is not correct, focus on the debugging OCLKDELAYED Calibration, page 150.
- For debugging purposes only, use ODELAY to vary the phase of DQ relative to DQS.

Analyze read timing:

- Check the IDELAY values after calibration. Look for variations between IDELAY values. IDELAY values should be very similar for DQs in the same DQS group.
- For debugging purposes only, vary the IDELAY taps after calibration for the bits that are returning bad data.

Checking and Varying Read Timing

Debug signals are provided to verify read window margin on a per-byte basis and should be used for debugging purposes only. Determining if sufficient margin is available for reliable operation can be useful for debugging purposes if data errors are seen after calibration.

There is an automated window check flow that can be used to step through the entire interface and provides the # of PHASER taps required to reach the left edge and right edge of the data window. The window checking can also be manually verified by manually incrementing and decrementing the PHASER taps to verify how much window margin is available.

Signal Name	Description
win_start	Single pulse that starts the window check logic.
win_sel_pi_pon	Controls window check logic on read path. Valid settings are: • 0x1 = Enables Read Path
vio_dbg_sel_pi_incdec	Enables manual incrementing and decrementing of the PHASER_IN taps.
vio_dbg_pi_f_inc	Increments PHASER_IN fine taps when win_sel_pi_pon = 0x1.
vio_dbg_pi_f_dec	Decrements PHASER_IN fine taps when win_sel_pi_pon = 0x1.
vio_win_byte_select_inc	Increments the byte group being checked by the window margin check module.
vio_win_byte_select_dec	Decrements the byte group being checked by the window margin check module.
dbg_pi_counter_read_val	Current PHASER_IN tap count corresponding to current byte being checked.
pi_win_left_ram_out	PHASER_IN tap count to reach the left edge of the read window for a given byte.
pi_win_right_ram_out	PHASER_IN tap count to reach the right edge of the read window for a given byte.
win_active	Flag to indicate the Window check logic is active and measuring window margins. While active, the other VIOs should not be changed.
win_current_byte	Feedback to indicate which byte is currently being monitored.
win_byte_select	Selects which byte group to display the measured results for.
dbg_clear_error	Clears error in Traffic Generator as a result of changing tap values.
vio_sel_mux_rdd[3:0]	Selects the byte for which the phaser increments or decrements are applied.

Table 1-85:	Debug Signals Used for	or Checking and Varyin	g Read/Write Timing
			0, 0

Automated Window Check

The automated window checking is enabled by asserting win_start with a single pulse. win_active should then assert until all byte groups have been measured. win_sel_pi_pon must be set to 0x1 to enable Read window measurement. and

270

win_byte_select can be used to select between each byte groups measured results and display them to the Vivado logic analyzer feature waveform window. To calculate the total data valid window use the following equation:

(Total # of taps × CLK_PERIOD)/128 = Total Valid Data Window

Note: The Read window measurement results are stored in a block RAM after win_start is asserted.

Manual Window Check

To manually measure the data window margin, follow these steps:

1. Enable the manual window check by asserting dbg_sel_pi_incdec.

Note: When dbg_sel_pi_incdec is enabled, dbg_pi_counter_read_cal does not represent the true centered PHASER_IN tap value.

- 2. Set the ILA trigger to cmp_error = 1.
- 3. Manually increment/decrement the taps using the dbg_pi_f_inc or dbg_pi_f_dec an event is triggered indicating a left or right edge was found. Note the number of taps that occurred until event triggered.
- 4. Manually increment/decrement the taps back the same # of taps.
- 5. Issue a single pulse event to dbg_clear_error, and reset the ILA trigger.
- 6. Manually increment/decrement the taps in the other direction using the dbg_pi_f_inc or dbg_pi_f_dec an event is triggered indicating a left or right edge was found. Note the number of taps that occurred until event triggered.
- 7. Add up the left and right tap values determined and calculate the total data valid window using the following equation:

(Total # of taps × CLK_PERIOD)/128 = Total Valid Data Window

Analyzing Calibration Results

When data errors occur, the results of calibration should be analyzed to ensure the results are expected and accurate. Each of the above debugging calibration sections notes what the expected results are such as how many edges should be found, how much variance across byte groups should exist, and others. Follow these sections to capture and then analyze the calibration results.

Send Feedback

Interface Debug

AXI4-Lite Interfaces

The AXI4 slave interface follows the AXI4 memory-mapped slave protocol specification as described in the ARM AMBA open specifications. See this specification [Ref 4] for the signaling details of the AXI4 slave interface.

Read from a register that does not have all 0s as a default to verify that the interface is functional. Output s_axi_arready asserts when the read address is valid, and output s_axi_rvalid asserts when the read data/response is valid. If the interface is unresponsive, ensure that the following conditions are met:

- The S_AXI_ACLK and ACLK inputs are connected and toggling.
- The interface is not being held in reset, and S_AXI_ARESET is an active-Low reset.
- The interface is enabled, and s_axi_aclken is active-High (if used).
- The main core clocks are toggling and that the enables are also asserted.
- If the simulation has been run, verify in simulation and/or a Vivado logic analyzer feature waveform debugging tool capture that the waveform is correct for accessing the AXI4-Lite interface.

AXI4-Stream Interfaces

The AXI4 slave interface follows the AXI4 memory-mapped slave protocol specification as described in the ARM AMBA open specifications. See this specification [Ref 4] for the signaling details of the AXI4 slave interface.

If data is not being transmitted or received, check the following conditions:

- If transmit <interface_name>_tready is stuck Low following the <interface_name>_tvalid input being asserted, the core cannot send data.
- If the receive <interface_name>_tvalid is stuck Low, the core is not receiving data.
- Check that the ACLK inputs are connected and toggling.
- Check that the AXI4-Stream waveforms are being followed.
- Check core configuration.
- Add appropriate core specific checks.

CLOCK_DEDICATED_ROUTE Constraints

System Clock

If the SRCC/MRCC I/O pin and PLL are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. DDR3/DDR2 SDRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on the SRCC/MRCC I/O and PLL allocation needs to be handled manually for the IP flow. DDR3/DDR2 SDRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Reference Clock

If the SRCC/MRCC I/O pin and MMCM are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint is set to FALSE. Reference clock is a 200 MHz clock source used to drive IODELAY CTRL logic (through an additional MMCM). This clock does not utilize CLOCK_DEDICATED_ROUTE (as they are limited in number), hence the FALSE value is set. DDR3/DDR2 SDRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on SRCC/MRCC I/O and MMCM allocation needs to be handled manually for the IP flow. DDR3/DDR2 SDRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Chapter 2

QDR II+ Memory Interface Solution

Introduction

The QDR II+ SRAM Memory Interface Solution (MIS) is a physical layer for interfacing Xilinx[®] 7 series FPGAs user designs to QDR II+ SRAM devices. QDR II+ SRAM capabilities offer high-speed data transfers on separate read and write buses on the rising and falling edges of the clock. These memory devices are used in high-performance systems as temporary data storage, such as:

- Look-up tables in networking systems
- Packet buffers in network switches
- Cache memory in high-speed computing
- Data buffers in high-performance testers

The QDR II+ SRAM memory solutions core is a PHY that takes simple user commands, converts them to the QDR II+ protocol, and provides the converted commands to the memory. The PHY half-frequency design enables you to provide one read and one write request per cycle eliminating the need for a Memory Controller and the associated overhead, thereby reducing the latency through the core. Unique capabilities of the 7 series FPGAs allow the PHY to maximize performance and simplify read data capture within the FPGA. The full solution is complete with a synthesizable reference design.

This chapter describes the core architecture and information about using, customizing, and simulating a LogiCORE [™] IP QDR II+ SRAM MIS core for the 7 series FPGAs. Although this soft Memory Controller core is a fully verified solution with guaranteed performance, termination and trace routing rules for the PCB design need to be followed to have the best possible solution. For detailed board design guidelines, see Design Guidelines, page 342.

IMPORTANT: QDR II+ SRAM designs currently do not support memory-mapped AXI4 interfaces.

For detailed information and updates about the 7 series FPGAs QDR II+ SRAM MIS core, see the Xilinx 7 Series FPGA Data Sheets [Ref 13] and the Zynq-7000 AP SoC and 7 Series FPGAs Memory Interface Solutions Data Sheet (DS176) [Ref 1].

IMPORTANT: Memory Interface Solutions v4.1 only supports the Vivado[®] Design Suite. The ISE[®] Design Suite is not supported in this version.

Using MIG in the Vivado Design Suite

This section provides the steps to generate the Memory Interface Generator (MIG) IP core using the Vivado Design Suite and run implementation.

1. Start the Vivado Design Suite (see Figure 2-1).

Figure 2-1: Vivado Design Suite

2. To create a new project, click the **Create New Project** option shown in Figure 2-1 to open the page as shown in Figure 2-2.

🝌 New Project	
	Create a New Vivado Project This wizard will guide you through the creation of a new project To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
VIVADO.	To continue, click Next.
	< Back Next > Einish Cancel

Figure 2-2: Create a New Vivado Tool Project

3. Click **Next** to proceed to the **Project Name** page (Figure 2-3). Enter the **Project Name** and **Project Location**. Based on the details provided, the project is saved in the directory.

🝌 New Proje	ect 🛛 🛛 🔀
Project Nam Enter a nan	ie ne for your project and specify a directory where the project data files will be stored
Project name:	project_1
Project location:	: C:/Vivado
🗹 Create Proj	ject Subdirectory
Project will be cr	reated at: C:/Vivado/project_1
	< <u>B</u> ack <u>N</u> ext > Einish Cancel

Figure 2-3: Project Name

4. Click **Next** to proceed to the **Project Type** page (Figure 2-4). Select the **Project Type** as **RTL Project** because MIG deliverables are RTL files.

🚴 New Project	
Project Type Specify the type of project to create.	
 RTL Project You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. Do not specify sources at this time Post-synthesis Project You will be able to add sources, view device resources, run design analysis, planning and implementation. Dg not specify sources at this time J/O Planning Project Do not specify design sources. You will be able to view part/package resources. Imported Project Create a Vivado project from a Synplify, XST or ISE Project File. 	
< <u>B</u> ack Next > Einish	Cancel

Figure 2-4: Project Type

5. Click **Next** to proceed to the **Add Sources** page (Figure 2-5). RTL files can be added to the project in this page. If the project was not created earlier, proceed to the next page.

🚴 New Project	
Add Sources Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your project. You can also add and create sources later.	2
Id Name Library HDL Source for Location Add Files Add Directories Create File Add Files Add Directories Create File Scan and Add RTL Include Files into Project Copy Sources into Project Add Sources from Subdirectories Target Language: Verilog	XXX
< <u>B</u> ack <u>N</u> ext > Einish Car	icel

Figure 2-5: Add Sources

6. Click **Next** to open the **Add Existing IP (Optional)** page (Figure 2-6). If the IP is already created, the XCI file generated by the IP can be added to the project and the previous created IP files are automatically added to the project. If the IP was not created earlier, proceed to the next page.

🝌 New Project	X
Add Existing IP (optional) Specify an existing configurable IP file to add to your project.	A
Id IP Name IP File	
	×
<u>A</u> dd Files ▼ Copy <u>S</u> ources into Project	
< <u>Back</u>	ancel

Figure 2-6: Add Existing IP (Optional)

7. Click **Next** to open the **Add Constraints (Optional)** page (Figure 2-7). If the constraints file exists in the repository, it can be added to the project. Proceed to the next page if the constraints file does not exist.

🚴 New Project	×
Add Constraints (optional) Specify or create constraint files for physical and timing constraints.	1
Constraint File Location Add Files Create File	¥ ×
< <u>Back</u> <u>N</u> ext > Einish Car	

Figure 2-7: Add Constraints (Optional)

8. Click **Next** to proceed to the **Default Part** page (Figure 2-8) where the device that needs to be targeted can be selected. The **Default Part** page appears as shown in Figure 2-8.

🝌 New Project									X
Default Part Choose a default Xilin	× part or boar	d for your projec	ct. This can be o	changed later	9				2
Specify Filter	du <u>c</u> t category	All		*	<u>P</u> ackage	All		÷	
📓 Boards	Eamily Sub-Eamily	All		*	Speed grade			-	
Search: Or	Juon anniy		(Reset All F	ilters				
Device	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs	Gb Transceivers	PCI Buses	
🔷 xc7vx485tffg1157-2L	1,157	600	303600	607200	1030	2800	20	4	~
🔷 xc7vx485tffg1157-1	1,157	600	303600	607200	1030	2800	20	4	
xc7vx485tffg1158-3	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-2	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-2L	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-1	1,158	350	303600	607200	1030	2800	48	4	-
xc7vx485tffg1761-3	1,761	700	303600	607200	1030	2800	28	4	
xc/vx485trrg1/61-2	1,761	700	303600	607200	1030	2800	28	4	
xc/vx485trrg1/61-2L	1,761	700	303600	607200	1030	2800	28	4	
XC/VX485trrg1/61-1	1,761	/00	303600	607200	1030	2800	28	4	-
xu/vx+6501g1927-3	1,927	000	303600	607200	1030	2800	00	7	
					< <u>B</u> ack	<u>N</u> ext >	Einish	Cancel	

Figure 2-8: Default Part (Default Window)

Select the target **Family**, **Package**, and **Speed Grade**. The valid devices are displayed in the same page, and the device can be selected based on the targeted device (Figure 2-9).

Search: Q Device I/O Pin Count Sxc7k325tffg900-3 900	Available LUT IOBs Elemen 500 203800	nts FlipFlops	Block	DSPs	Gb	PCI
xc7k325tffg900-3 900	500 203800	the second se	IV-MP15		Transceivers	Buses
	500 254200	407600 508400	445 795	840 1540	16 16	1
< <u></u>						> [

Figure 2-9: Default Part (Customized Window)

Apart from selecting the parts by using the **Parts** option, parts can be selected by choosing the **Boards** option, which brings up the evaluation boards supported by Xilinx (Figure 2-10). With this option, a design can be targeted for the various evaluation boards. If the XCI file of an existing IP was selected in an earlier step, the same part should be selected here.

🝌 New Project							X
Default Part Choose a default Xilinx part or board	d for your project. This c	an be chang	ed later.				2
Specify Filter	Eami Packag Speed grad	ly All je All		*]		
Search: Q.		Re	set All Filters		.		
Board	Part	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs
Kintex-7 KC705 Evaluation Platform	🔷 xc7k325tffg900-2	900	500	203800	407600	445	840
Virtex-7 VC707 Evaluation Platform	xc7vx485tffg1761-2	1,761	700	303600	607200	1030	2800
ZYNQ-7 ZC702 Evaluation Board	xc7z020clg484-1	484	200	53200	106400	140	220
<							
			< <u>B</u> a	ack Next	: >) [Eini:	sh 🗍 🗖	Cancel

Figure 2-10: Default Part Boards Option

9. Click **Next** to open the **New Project Summary** page (Figure 2-11). This includes the summary of selected project details.

Figure 2-11: New Project Summary

10. Click **Finish** to complete the project creation.

- 11. Click **IP Catalog** on the **Project Manager** window to open the Vivado IP catalog window. The IP catalog window appears on the right side panel (see Figure 2-12, highlighted in a red circle).
- 12. The MIG tool exists in the **Memories & Storage Elements > Memory Interface Generators** section of the IP catalog window (Figure 2-12) or you can search from the Search tool bar for the string "MIG."

🝌 project_22 - [C:/Users/avdhesh,	project_22/project_22.xpr] - Vivado 2013.3_UB3.0		_ 8 ×
File Edit Flow Tools Window L	ayout View Help	Q,- Search commands	
🯄 😂 📾 💷 🛅 🎼 🗙 🔈	🕨 🐮 🍪 🐝 ∑ 🧔 🔛 Default Layout 💿 🗶 🔌 🔌	(Q)	Ready
Flow Navigator	Project Manager - project_22		×
🔍 🛣 🛱	Sources _ 🗆 🖻 🗶	∑Project Summary x 9 IP Catalog x	L* ×
	A 12 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	31 Search: □-	
Project Manager		W Name (1 Varion 12 AVIA Statur Linuxe External Da VIAV	
Project Settings	E Constraints	A Traine Contract Process State Contract State S	
Add Sources	E- C Simulation Sources		
🖵 IP Catalog	64 Sur_1	😫 🖻 🖻 Communication & Networking	
4 IP Integrator		C Debug & Verification	
Create Block Design			
Create Block Design		📲 🔁 EPGA Features and Design	
Crearing Direct Design		P Do Math Functions	
Generate block Design	I the second sec	Construction Included Difference Construction Included Difference Construction Included Difference	
 Simulation 	Hierarchy Libraries Compile Order	B C FIFOS	
🚳 Simulation Settings	Sources V Templates	Section 2012 Secti	
(Run Simulation	IP Properties _ 🗆 🗗 🗶	Memory Interface Generator (MIG 7 Series) 2.0 AXI4 Production Included Dr/Minx/ub painx.com;p	
4			Ŧ
 RTL Analysis 	Memory Interface Generator (MIG 7 Series)	E Co Video & Image Processing	
Open Elaborated Design	Version: 2.0	Details	
4 Sunthasia	Interfaces: AXI4	Name: Memory Interface Generator (MIG 7 Series)	<u> </u>
Synchesis Subbasis Settings	Part status: Production	Version: 2.0 (Rev. 1)	
Synthesis Securitys	License: Included	Interfaces: AXI4	
Run Synthesis	Vendor: Xilinx, Inc.	Description: This Memory Interface Generator is a simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will help	-
Open Synthesized Design	IP library: ip	you design your application. Kintex-7 supports DDR3 SDRAM, DDR2 SDRAM, IPDDR2 SDRAM, QDR II+ SRAM, RUDRAMIII. Wrtex-7 supports DDR3 SDRAM, DDR2 SDRAM, IPDDR2 SDRAM, ODR1 H- SRAM, RUDRAMII and RUDRAMIII. Artic-7 supports DDR3 SDRAM, DR2 SDRAM and IPDDR2 SDRAM, Zvino supports DDR3 SDRAM,	i
4 Implementation	<u> </u>		
R Implementation Settings	Design Runs	- 0	Ŀ* ×
Run Implementation	Name Part Cons	traints Strategy Status Progress Start Elapsed Failed Routes WNS TNS WH5 TH5	TPWS
Open Implemented Design		s_1 Vivado Synthesis Defaults (Vivado Synthesis 2013) Not started 0%	
	mpi_1 xc/k325trrg9UU-2 constr	s_1 vivado implementation Deraulis (vivado implementation 2013) Not started 0%	
Program and Debug			
🚯 Bitstream Settings	14		
🚵 Generate Bitstream			
Den Hardware Manager	41		
	*		
	🔚 Tcl Console 🗋 🖸 Messages 🖉 Log 🔓 Reports 🖄 Design Run	s	

Figure 2-12: IP Catalog Window – Memory Interface Generator

13. Select **MIG 7 Series** to open the MIG tool (Figure 2-13).

EFERENCE ESIGN (1)	Memory Interface Generator	
	The Memory Interface Generator (MIG customized Verilog or VHDL RTL sour for implementation and simulation.	creates memory controllers for Xilinx FPGAs. MIG creates complete ce code, pin-out and design constraints for the FPGA selected, and script files
	CORE Generator Options	
	This GUI includes all configurable opti Please note that some of the options s controller. It is very important that the below.	ions along with explanations to aid in generation of the required controller. selected in the CORE Generator Project Options will be used in generation of the correct CORE Generator Project Options are selected. These options are listed
	Selected CORE Generator Project Opt	ions:
Memory	FPGA Family	Kintex-7
wemory	FPGA Part	xc7k325t-ffg900
	Speed Grade	-2
Interface	Synthesis Tool	ISE
	Design Entry	VERILOG
Generator	If any of these options are incorr Options, and restart MIG. This ve not tested with other ISE version	rect, please click on "Cancel", change the CORE Generator Project ersion of MIG is guaranteed to work with ISE 14.3 and Vivado 2012.3, is or Vivado versions.
XILINX		

Figure 2-13: 7 Series FPGAs Memory Interface Generator FPGA Front Page

14. Click Next to display the **Output Options** page.

Customizing and Generating the Core

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects, defining IP or managed IP projects, and creating block designs.

MIG Output Options

- 1. Select **Create Design** to create a new Memory Controller design. Enter a component name in the Component Name field (Figure 2-14).
- 2. Choose the number of controllers to be generated. This selection determines the replication of further pages.

🖓 Xilinx Memory Interface Generator	
	MIG Output Options
	 Create Design Select this option to generate a memory controller. Generating a memory controller will create RTL, design constraints (UCF), implementation and simulation files.
	Verify Pin Changes and Update Design Selecting this feature verifies the modified UCF for a design already generated through MIG. This option will allow you to change the pin out and validate it instantly. It updates the input UCF file to be compatible with the current version of MIG. While updating the UCF it preserves the pin outs of the input UCF.
	This option will also generate the new design with the Component Name you selected in this page. Component Name
	Please specify the component name for the memory interface. The design directories will be generated under a directory with this name. Three directories will be created "example_design","user_design" and "docs". The user_design will contain the generated memory interface. The example_design adds a simple example application connected to the generated memory interface. Note that the Component Name will be prepended to all of the RTL files.
	Component Name mig_7series
Memory	Up to maximum of 8 controllers with a combination of DDR3 SDRAM, DDR2 SDRAM, QDRII+ SRAM or RLDRAM II can be generated. The number of controllers that can be accommodated may be limited by the data width and the number of banks available in device. Refer user guide for more information
Interface	Number of Controllers 1 🔄
	ANH unterface Enables the AXI4 interface. Only DDR3 SDRAM and DDR2 SDRAM controllers support AXI4 interface.
Generator	
E XILINX.	
User Guide Version Info	< Back Next> Cancel
	UG586 c1 09 12031

Figure 2-14: MIG Output Options

MIG outputs are generated with the folder name <component name>.

IMPORTANT: Only alphanumeric characters can be used for <component name>. Special characters cannot be used. This name should always start with an alphabetical character and can end with an alphanumeric character.

When invoked from Xilinx Platform Studio (XPS), the component name is corrected to be the IP instance name from XPS.

3. Click Next to display the Pin Compatible FPGAs page.

Pin Compatible FPGAs

The **Pin Compatible FPGAs** page lists FPGAs in the selected family having the same package. If the generated pinout from the MIG tool needs to be compatible with any of these other FPGAs, this option should be used to select the FPGAs with which the pinout has to be compatible (Figure 2-15).

💐 Xilinx Memory Interface Generate	or E 🖸 🔀
REFERENCE	Pin Compatible FPGAs
DESIGN 🖽	Pin Compatible FPGAs include all devices with the same package and speed grade as the target device. Different FPGA devices with the same package do not have the same bonded pins. By selecting Pin Compatible FPGAs, MIG will only select pins that are common between the target device and all selected devices. Use the default UCF in the par folder for the target part. If you change the target part, use the appropriate UCF in the compatible UCF folder. If you do not choose a Pin Compatible FPGA now and need to use a different FPGA later, the generated UCF may not work for the new device and a board spin may be required. A device is considered compatible only if the package and speed grade matches to the target part. MIG generated pin out is compatible among the selected compatible FPGA devices. Unselected devices will not be considered for compatibility during the pin allocation process.
Pin Compatible FPGAs	Target FPGA xc7k325t-fbg676 -2
Memory Selection	Pin Compatible FPGAs
Controller Options	□ 7k □ xc7k70t-fbg676
AXI Parameter	✓ xc7k160t-fbg676 ✓ xc7k410t-fbg676
Memory Options	
FPGA Options	
Bank Selection	
System Signals Selection	
Summary	
Memory Model	
PCB Information	
Design Notes	
EXILINX	
User Guide Version Info	
	UG586_c1_10_110610

Figure 2-15: Pin-Compatible 7 Series FPGAs

- 1. Select any of the compatible FPGAs in the list. Only the common pins between the target and selected FPGAs are used by the MIG tool. The name in the text box signifies the target FPGA selected.
- 2. Click Next to display the Memory Selection page.

Creating the 7 Series FPGA QDR II+ SRAM Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

- 1. Select the QDR II+ SRAM controller type.
- 2. Click Next to display the Controller Options page

Figure 2-16: **Memory Selection Page**

QDR II+ SRAM designs do not support memory-mapped AXI4 interfaces.
Controller Options

This page shows the various controller options that can be selected.

Figure 2-17: **Controller Options Page**

- **Frequency** This feature indicates the operating frequency for all the controllers. The frequency block is limited by factors such as the selected FPGA and device speed grade.
- VCCAUX_IO Set based on the period/frequency setting. 2.0V is required at the highest frequency settings in the High Performance column. The MIG tool automatically selects 2.0V when required. Either 1.8 or 2.0V can be used at lower frequencies. Groups of banks share the VCCAUX_IO supply. For more information, see the 7 Series FPGAs Select/O[™] Resources User Guide (UG471) [Ref 2].
- Memory Part This option selects the memory part for the design. Selections can be made from the list, or if the part is not listed, a new part can be created (Create Custom Part). The QDR II+ SRAM devices with read latency 2.0 and 2.5 clock cycles are supported by the design. If a desired part is not available in the list, you can generate or create an equivalent device and then modify the output to support the desired memory device.
- **Data Width** The data width value can be selected here based on the memory part selected. The MIG tool supports values in multiples of the individual device data widths.

• Latency Mode – If fixed latency through the core is needed, the Fixed Latency Mode option allows you to select the desired latency. This option can be used if the user design needs a read response returned in a predictable number of clock cycles. To use this mode, select the Fixed Latency Mode box. After enabling fixed latency, the pull-down box allows you to select the number of cycles until the read response is returned to you. This value ranges from 21 to 30 cycles. Based on actual hardware conditions, if the latency seen through the system is higher, you need to modify this value accordingly in the top-level RTL file.

When **Fixed Latency Mode** is enabled, failures can occur if the actual read latency is larger than the specified **Fixed Latency** value. **Read Latency** can vary across byte lanes by as much as five clock cycles because of the command output path in the PHY control block and data input path across asynchronous IN_FIFO.

Note: Xilinx recommends adding five additional clocks to the minimum latency measured to determine the actual fixed latency value to be used. If **Fixed Latency Mode** is not used, the core uses the minimum number of cycles through the system.

• **Memory Details** – The bottom of the **Controller Options** page. Figure 2-18 displays the details for the selected memory configuration.

Memory Details: 72Mb, ×18, Address: 20, Burst Length: 4

Create Custom Part

- 1. On the **Controller Options** page select the appropriate frequency. Either use the spin box or enter a valid value using the keyboard. Values entered are restricted based on the minimum and maximum frequencies supported.
- Select the appropriate Memory Part from the list. If the required part or its equivalent is unavailable, a new memory part can be created. To create a custom part, click the Create Custom Part below the Memory Part pull-down menu. A new page appears, as shown in Figure 2-19.

🔇 Create Custom Part	×
Custom Memory Part	
This option creates a new memor be a modification of the 'Base Pa can be changed.	y part. Note that the new part will rrt" selected below. The density
Select Base Part	CY7C15632KV18-500BZC -
Enter New Memory Part Name	
Address Width	20 🔹
Help Save	Delete Cancel

Figure 2-19: Create Custom Part Page

The **Create Custom Part** page includes all of the specifications of the memory component selected in the **Select Base Part** pull-down menu.

- 1. Enter the appropriate **Memory Part Name** in the text box.
- 2. Select the suitable base part from the Select Base Part list.
- 3. Select a suitable value for the Row Address.
- 4. After editing the required fields, click **Save**. The new part is saved with the selected name. This new part is added in the **Memory Parts** list on the **Controller Options** page. It is also saved into the database for reuse and to produce the design.
- 5. Click **Next** to display the **FPGA Options** page.

Memory Options

Figure 2-20 shows the Memory Options page.

~		Xilinx Memory Interface Generator		= = ×
		Memory Options for Controller 0 - QDR IIPLUS SRAM		
		Input Clock Period: Select the period for the PLL input clock (CLKIN). MIG determines the allowable input clock periods based on the Memory Clock Period entered above and the clocking guidelines listed in the User Guide. The generated design will use the selected input Clock and Memory Clock Periods to generate the required PLL parameters. If the required input clock period is not available, the Memory Clock Period must be modified.	2222 ps (450.045 MHz)	•
	Pin Compatible FPGAs * Memory Selection * Controller Options * AXI Parameter * Hemory Options * FPGA Options * Extended FPGA Options * Bank Selection * System Signals Selection * Summary * PCB Information * Design Notes *	*		
	E XILINX			
	User Guide Version Info	_	Back Next	⊆ancel

Figure 2-20: Memory Options Page

Input Clock Period – The desired input clock period is selected from the list. These
values are determined by the chosen memory clock period and the allowable limits of
the PLL parameters. See Clocking Architecture, page 322 for more information on the
PLL parameter limits.

FPGA Options

Figure 2-21 shows the **FPGA Options** page.

	Xilinx Memory Interface Ge	nerator								
	System Clock Choose the desired input clock configuration. Design	clock can be Differential or Single-Ended.								
	System Clock	Differential	\$							
	Reference Clock									
Pin Compatible FPGAs 🚩	Choose the desired reference clock configuration. Reference clock can be Differential or Single-Ended.									
Memory Selection	Reference Clock	Differential	\$							
Controller Options	System Reset Polarity									
AXI Parameter 🖌 🖌	Choose the desired System Reset Polarity.									
Memory Options 🛛 🚩	System Reset Polarity	ACTIVE LOW	\$							
FPGA Options	Debug Signals Control									
Extended FPGA Options	This feature allows various debug signals present in include status signals of various PHY calibration stag ChipScope ILA and VIO cores in the example design grounded so that users can replace the grounded si	he IP to be monitored on the ChipScope tool. The del es. Enabling this feature will connect all the debug sig top module. A part of each bus in the debug interface gnals with the required signals.	oug signals Inals to the has been							
Bank Selection	Debug Signals for Memory Controller	OFF	\$							
System Signals Selection	This selects the value of Sample Data depth for Chip	cope ILA used in Debug logic.								
Summary	Sample Data Depth	1024	\$							
Simulation Options	Internal Vref									
Design Notes	Internal Vref can be used to allow the use of the Vref lower data rates. This can free 2 pins per bank where outputs.	pins as normal IO pins. This option can only be used i inputs are used. This setting has no effect on banks	at 800 Mbps and with only							
	Internal Vref									
E XILINX.										
User Guide Version Info		< Back	ext> <u>C</u> ancel							

Figure 2-21: FPGA Options Page

 System Clock – This option selects the clock type (Single-Ended, Differential or No Buffer) for the sys_clk signal pair. When the No Buffer option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the system clock.

If the designs generated from MIG tool for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the sys_clk_i signal. So for **No Buffer** scenarios, sys_clk_i signal needs to be connected to an internal clock.

• **Reference Clock** – This option selects the clock type (Single-Ended, Differential, No Buffer, or Use System Clock) for the clk_ref signal pair. The **Use System Clock** option appears when the input frequency is between 199 and 200 MHz (that is, the Input Clock Period is between 5,025 ps (199 MHz) and 4,975 ps (201 MHz). When the **No Buffer** option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the reference clock.

If the designs generated from MIG tool for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the ref_clk_i signal. So for **No Buffer** scenarios, ref_clk_i signal needs to be connected to an internal clock.

- System Reset Polarity The polarity for system reset (sys_rst) can be selected. If the option is selected as active-Low, the parameter RST_ACT_LOW is set to 1 and if set to active-High the parameter RST_ACT_LOW is set to 0.
- **Debug Signals Control** Selecting this option enables calibration status and user port signals to be port mapped to the ILA and VIO in the example_top module. This helps in monitoring traffic on the user interface port with the Vivado Design Suite debug feature. Deselecting the **Debug Signals Control** option leaves the debug signals unconnected in the example_top module and no ILA/VIO modules are generated by the IP catalog. Additionally, the debug port is always disabled for functional simulations.
- **Sample Data Depth** This option selects the Sample Data depth for the ILA module used in the Vivado debug logic. This option can be selected when the **Debug Signals** for Memory Controller option is ON.
- Internal V_{REF} Selection Internal V_{REF} can be used for data group bytes to allow the use of the V_{REF} pins for normal I/O usage. Internal V_{REF} should only be used for data rates of 800 Mb/s or below.

Click Next to display the Extended FPGA Options page.

Extended FPGA Options

Figure 2-22 shows the Extended FPGA Options page.

Figure 2-22: Extended FPGA Options Page

- **Digitally Controlled Impedance (DCI)** When selected, this option internally terminates the signals from the QDR II+ SRAM read path. DCI is available in the High Performance Banks.
- Internal Termination for High Range Banks The internal termination option can be set to 40, 50, or 60Ω or disabled. This termination is for the read datapath from the QDR II+ SRAM. This selection is only for High Range banks.

I/O Planning Options

Figure 2-23 shows the I/O Planning Options page.

Figure 2-23: I/O Planning Options Page

 Pin/Bank Selection Mode – This allows you to specify an existing pinout and generate the RTL for this pinout or pick banks for a new design. Figure 2-24 shows the options for using an existing pinout. You must assign the appropriate pins for each signal. A choice of each bank is available to narrow down the list of pins. It is not mandatory to select the banks prior to selection of the pins. Click Validate to check against the MIG pinout rules. You cannot proceed until the MIG DRC has been validated by clicking Validate.

DESIGN 🔛		Signal Name	Bank Number	Byte Number	Pin Number	IO Standard
	1	qdriip_q[0]	33	• T1 •	AE7 -	HSTL_I_DCI
	2	qdriip_q[1]	33	• T1 •	AF7 -	HSTL_I_DCI
	3	qdriip_q[2]	33	• 11 •	AA8 -	HSTL_I_DCI
	4	qdriip_q[3]	33	• 11 •	AA7 •	HSTL_I_DCI
n Compatible FPGAs 🛛 🗸	5	qdriip_q[4]	33	• T1 •	AC8 •	HSTL_I_DCI
emory Selection	6	qdriip_q[5]	33	• 11 •	AD8 •	HSTL_I_DCI
ontroller Options 🛛 🗸 🗸	7	qdriip_q[6]	33	• T1 •	AB7 -	HSTL_I_DCI
(I Parameter	8	qdriip_q[7]	33	• T1 •	AC7 •	HSTL_I_DCI
emory Options	9	qdriip_q[8]	33	• T1 •	AD9 -	HSTL_I_DCI
GA Options	10	qdriip_q[9]	33	• T2 •	AA10 -	HSTL_I_DCI
tended FPGA Options 🛛 🗸	11	qdriip_q[10]	33	• T2 •	AB10 -	HSTL_I_DCI
n Selection	12	qdriip_q[11]	33	• T2 •	AB12 -	HSTL_I_DCI
stem Signals Selection	13	qdriip_q[12]	33	• T2 •	AC12 -	HSTL_I_DCI
mmary	14	qdriip_q[13]	33	• T2 •	AA13 -	HSTL_I_DCI
mulation Options	15	qdriip_q[14]	33	• T2 •	AA12 -	HSTL_I_DCI
B Information	16	qdriip_q[15]	33	• T2 •	AC13 -	HSTL_I_DCI
esign Notes	17	qdriip_q[16]	33	• T2 •	AD13 -	HSTL_I_DCI
	18	qdriip_q[17]	33	• T2 •	Y13 -	HSTL_I_DCI
	19	qdriip_q[18]	34	• T1 •	Y3 -	HSTL_I_DCI
	20	qdriip_q[19]	34	• T1 •	Y2 •	HSTL_I_DCI
• • • • • • • • • • • • • • • • • • •	21	qdriip_q[20]	34	• T1 •	v2 •	HSTL_I_DCI
	TNEO 200	2: Press "Validate"	to proceed.		Validate	Read ICE Save Pipi

Figure 2-24: **Pin/Bank Selection Mode**

Bank Selection

This feature allows the selection of bytes for the memory interface. Bytes can be selected for different classes of memory signals, such as:

- Address and control signals
- Data Read signals
- Data Write signals

For customized settings, click **Deselect Banks** and select the appropriate bank and memory signals. Click **Next** to move to the next page if the default setting is used. To unselect the banks that are selected, click **Deselect Banks**. To restore the defaults, click **Restore Defaults**. VCCAUX_IO groups are shown for HP banks in devices with these groups using dashed lines. VCCAUX_IO is common to all banks in these groups. The memory interface must have the same VCCAUX_IO for all banks used in the interface. MIG automatically sets the VCCAUX_IO constraint appropriately for the data rate requested.

For devices implemented with SSI technology, the SLRs are indicated by a number in the header in each bank, for example, *SLR 1*. Interfaces cannot span across Super Logic Regions. Not all devices have Super Logic Regions.

	Bank Selection For Controller 0 - QDRII+ SRAM Select the byte groups for the data and address/cont back. The byte for any posterior backets. "Read	ol in the architectural view below. Data and Address/Control must be selected within 3 vertical
	default configurations. If bank 14 or 15 is sele	ted for your memory controller, UCF should be verified to ensure no conflicts with t
	Configuration pin. For more information see UG 586 Bank selection is restricted to High Performance Banks	<u>Jank and Pin rules.</u> for higher data rates. Bank selection is made sequential on resources requirement basis.
	Address/Control: 23/23 O Data Write: 44/44	O Data Read: 42/42 O
	HR Back	HP Bank
in Compatible FPGAs 🛛 🚩	Bank 14 Signal Sets	Bank 34 Signal Sets
emory Selection	Byte Group Unassigned +	Byte Group
	Byte Group Unassigned	Byte Group Q[0-8]
ontroller Options	Byte Group Unassigned	Byte Group Q[9-17]
UCI Parameter	Byte Group.,, Unassigned -	Byte Group D[18-26]
temory Options		
	HR Bank	HP Bank
PGA Options	Benk 13 Signal Sets	Bank 33 Signal Sets
xtended FPGA Options	Byte Group Unassigned 🔫	Byte Group Address/Ctrl-0
O Planning Options	Byte Group Unassigned -	Byte Group Address/Ctri-1 •
	Byte Group Unassigned -	Byte Group Unassgned -
	Byte Group Unassigned +	Byte Group Unassgned • •
ystem Signals Selection	HR Bank	HP Bank
ummary	Bank 12 Signal Sets	Bank 32 Signal Sets
	Byte Group Unassigned 👻	Byte Group D[0-8]
initiation Options	Byte Group Unassigned 👻	Byte Group Q[18-26]
CB Information	Byte Group Unassigned +	Byte Group Q[27-35]
Nesign Notes	Byte Group Unassigned 👻	Byte Group, D[9-17] + +
vesign notes		
		Deselect Banks Restore Default
	Notes - Proceed Next for design generation. Click Res	tore Defaults to obtain recommended bank selections.
	(9)	

Figure 2-25: Bank Selection Page

System Pins Selection

Select the pins for the system signals on this page. The MIG tool allows the selection of either external pins or internal connections, as desired.

EFERENCE EDIGN (1)	System Signals Selection
CAUNTER	Select the system pris below appropriately for the interface. Customization of these pris can also be made in the UCF after the design is generated. For more information see UCS268 Bank and Pin rules.
	System Glock Pn Selection The sys_cfk is used as the system clock for the memory interface. This signal should be connected to a low jitter external clock source via a differential (P/N) pair for best performance. This signal should be in the address/control bank, but may be placed in an adjacent bank if there are not enough pins available such as when fitting a 16 bit interface in a single bank.
	Signal Name Bank Number Pin Number
Compatible FPGAs 🛛 🗡	1 sys_clk_p/n 34 + AC4/AC3(CC PM) +
mory Selection	
atroller Options	Reference Clock Pin Selection
Parameter	The cik ref mout is used as the reference dock for the IODELAY, Refer the "7 Series FPGA SelectIO Resources User Guide" for more information. This
mory Options 🛛 🚩	input can be generated internally or can be connected to an external dock source on a dock capable differential (P/N) pair.
A Options 🖌	Signal Name Bank Number Pin Number
and ad CDC & Outlines	1 clk_ref_p/n Select Bank No connect
ended FPGA Options	
Planning Options	
ik Selection 🖌 🚩	Status Signals
	These signals may be connected internally to other logic or brought out to a pin.
nmary	• sys_rst: This input signal is used to reset the interface.
wation Ontions	Init_Callo_complete: Insignal notates that the interface has completed calor atom and memory initiatzation and is ready for commands. LOC constraint will be generated in UCP for Example design only based on "Pin Number" selection below.
	 error: This output signal indicates that the traffic generator in the Example Design has detected a data mismatch. This signal does not exist in the User Design.
5 Information	Signal Name Bank Number Pin Number
sign Notes	1 sys_rst Select Bank No connect
	2 init_callb_complete Select Bank No connect
	3 tg_compare_error Select Bank No connect
	 All pins must be constrained to specific locations in order to generate a bit file in the implementation phase (this is not required for simulation).

Figure 2-26: System Pins Selection Page

- sys_clk This is the system clock input for the memory interface and is typically connected to a low-jitter external clock source. Either a single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 2-21). The sys_clk input must be in the same column as the memory interface. If this pin is connected in the same banks as the memory interface, the MIG tool selects an I/O standard compatible with the interface, such as DIFF_HSTL_I or HSTL_I. If sys_clk is not connected in a memory interface bank, the MIG tool selects an appropriate standard such as LVCMOS18 or LVDS. The XDC can be modified as desired after generation.
- clk_ref This is the reference frequency input for the IDELAY control. This is a 200 MHz input. The clk_ref input can be generated internally or connected to an external source. A single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 2-21). The I/O standard is selected in a similar way as sys_clk above.

- sys_rst This is the asynchronous system reset input that can be generated internally or driven from a pin. The MIG tool selects an appropriate I/O standard for the input such as LVCMOS18 and LVCMOS25 for HP and HR banks, respectively. The default polarity of sys_rst pin is active-Low. The polarity of sys_rst pin varies based on the System Reset Polarity option chosen in FPGA Options page (Figure 2-21).
- init_calib_complete This output indicates that the memory initialization and calibration is complete and that the interface is ready to use. The init_calib_complete signal is normally only used internally, but can be brought out to a pin if desired.
- **tg_compare_error** This output indicates that the traffic generator in the example design has detected a data compare error. This signal is only generated in the example design and is not part of the user design. This signal is not typically brought out to a pin but can be, if desired.

Click Next to display the Summary page.

Summary

This page provides the complete details about the 7 series FPGA memory core selection, interface parameters, Vivado IP catalog options, and FPGA options of the active project.

Figure 2-27: Summary Page

Click Next to move to the PCB Information page.

PCB Information

This page displays the PCB-related information to be considered while designing the board that uses the MIG tool generated designs. Click **Next** to move to the **Design Notes** page.

Design Notes

Click **Generate** to generate the design files. The MIG tool generates two output directories: example_design and user_design. After generating the design, the MIG GUI closes.

Finish

After the design is generated, a README page is displayed with additional useful information.

Click **Close** to complete the MIG tool flow.

Vivado Integrated Design Flow for MIG

1. After clicking **Generate**, the **Generate Output Products** window appears. This window has the **Out-of-Context Settings** as shown in Figure 2-28.

ہے 1	Senerate Output Products <@xf X The following output products will be generated.										
Prev	iew P–₽ mig_7series_0.xci —───────────────────────────────────										
	Synthesized Checkpoint (.dcp) Behavioral Simulation Change Log										
	Out-of-Context Settings										
	Generate Skip										

Figure 2-28: Generate Output Products Window

2. Click **Out-of-Context Settings** to configure generation of synthesized checkpoints. To enable the **Out-of-Context** flow, enable the check box. To disable the **Out-of-Context** flow, disable the check box. The default option is "enable" as shown in Figure 2-29.

9	checkpoints (.dcp) for selected IP and set the number of jobs.
Prev 2	iew ⊧ mig_7series_0.xci

Figure 2-29: Out-of-Context Settings Window

3. MIG designs comply with "Hierarchical Design" flow in Vivado. For more information, see the *Vivado Design Suite User Guide: Hierarchical Design* (UG905) [Ref 5] and the *Vivado Design Suite Tutorial: Hierarchical Design* (UG946) [Ref 6].

4. After generating the MIG design, the project window appears as shown in Figure 2-30.

k project_23 - [C:/Users/avdhesh/project_23/project_23.xpr] - Vivado 2013.3									_ 🗆 ×
File Edit Flow Tools Window Layout View Help							0	l≁ Search comm	ands
🦽 🖄 տ 💷 🗎 🗙 🔌 🕨 🐮 🚳 % 🔀 🧕 🖽 Default Layout 🔷 🗴	(🔌 🔌 😣								Ready
Flow Navigator									×
Sources .	. 🗆 🖻 × 🛛 🔎 Project	t Summary 🗙 📴 IP Catalog 🗙							□ Ŀ* ×
👍 Project Manager	Search	th: Q-							
Project Settings		Name	_1	Version V2	AXI4	Status	License	External Re	VLNV
Add Sources	👘 📴 🗁	Basic Elements							<u> </u>
E Gatalon B Synthesis (52)		Communication & Networking							
Graded Graded		Digital Signal Processing							
IP Integrator		Embedded Processing							
ở Create Block Design	1 🕂 🕆 🦢	FPGA Features and Design							
pen Block Design	. 🕫 📴	Memories & Storage Elements							
Senerate Block Design		- DECC	1	.0		Production	Included	W:/xbuilds/	xiinx.com:ip
	()	E FIFOs							
4 Simulation		Memory Interface Generators Memory Interface Generator (MIG 7 Series)	ies)	.0 AX14		Production	Included	W:/xhuilds/	xiinx.com:in
6 Simulation Settings		🗁 RAMs & ROMs		10 11121		10000000	100000	mysodiasym	_
🔍 Run Simulation	🗎 🗎 🗄 🗁	Standard Bus Interfaces							
4 PTI Analysis	Detai	ils							
N Chen Flahovated Design	Nam	e: Memory Interface Generator (Mi	IG 7 Series)						4
	Vers	sion: 2.0 (Rev. 1)							
4 Synthesis	Inter	erfaces: AXI4							
Synthesis Settings	Desc	cription: This Memory Interface Generator is a that will belo you design your application	simple menu driven tool t op. Kiptex-7 supports DD	o generate advance 23 SDRAM INDR2 SD	d memory interface	es. This tool gi	enerates HDL an SRAM RINRAM	id pin placement II and RI DRAMI	constraints
Run Synthesis		and mining you dough you application		to bertaini ebite be		onn generati			
Design Runs									_ 🗆 🖻 ×
Q Name Part	Constraints	Strategy	Status Pr	ogress	Start	Elapsed	Failed Routes	WNS TNS	WHS THS TP
▲ Implementation Synth_1 xc7k325tffg900-	constrs_1 Vivado Synthe	esis Defaults (Vivado Synthesis 2013)	Not started	0%					
implementation Settings	constrs_1 www.ado.tmptem	mencation Deraults (vivado Implementation 2013,) Not scarted	0%					
Run Implementation									
Den Implemented Design									
Program and Debug									
🚳 Bitstream Settings 🛛 📲									
📸 Generate Bitstream 🚽									
Den Hardware Manager									
Launch iMPACT	Design Runs								
)								

Figure 2-30: Vivado Tool Project Window (After IP Generation)

5. After project creation, the XCI file is added to the Project Hierarchy. The same view also displays the module hierarchies of the user design. The list of HDL and XDC files is available in the **IP Sources** view in the **Sources** window. Double-clicking on any module or file opens the file in the Vivado Editor. These files are read only.

project_23 - [C:/Users/avdhesh/	/proj	ect_23/project_23.xpr] - Vivado 2	013.3															
File Edit Flow Tools Window L	Layou	: View Help													Q - Search co	mmands		
🯄 😂 169 🕫 🗎 📉 🗙 🗞		🐮 🍪 💥 ∑ 🧔 🖳 Default	Layout 👻 🎽	(🚸 🎉 🦉	2												R	eady
Flow Navigator 🛛 🔍	Pro	ject Manager - project_23																×
🔍 🛣 🖨	2	Sources	-	- 0 @ ×	Σ	Project Summar	y 🗙 🞐 IP Catalog 🗙										00	×
4 Project Manager	🚦 🔍 🛣 🖨 🖄 🗈 🖪					Search: Q-		_										
R Project Settings	Pro	Design Sources (2)	ravias O veiki		2		Name			∠1 Version	₹2	AXI4	Status	License	External R	e	VLNV	
Add Sources		Configuration Files (1)	series_utxu)		8	Basic Ele	ments											-
📮 IP Catalog		inig_a.prj				🗄 👉 Debug 8	Verification											
		- a constrs_1			2	🗄 🗁 Digital Si	ignal Processing											
IP Integrator Provide Dealer		E Constant Sources (1)				Embedd E C FPGA Fe	ed Processing atures and Design											
Create block Design		₩ mig_7series_0 (m	g_7series_0.xci)		2	🗄 🗁 Math Fu	nctions											
Generate Block Design						ECC	s & Storage Elements			2.0			Production	Included	W:/xbuilds	/ xûnx	.com:ip	
					6	🗄 🗁 FIFO	15											
4 Simulation					63	🗧 🕀 🗁 Mem	ory Interface Generators Interface Generator (MIG)	7 Series)		2.0	AY14		Production	Included	M2 Schuilde	/ viinv	com'in	
6 Simulation Settings						E 🗁 RAM	s & ROMs				10021		rouseen	Lucio o di	in tysic and		real inpiti	-
🔍 Run Simulation						🗄 🗁 Standar	d Bus Interfaces											
A RTL Analysis						Details	-											
🕨 📑 Open Elaborated Design						Name:	Memory Interface Generato	er (MIG 7	Series)									
						Interfaces:	AX14											
Synthesis Synthesis Settings		Hierarchy IP Sources Libraries	Compile Order			Description:	This Memory Interface Generato	r is a simp	ole menu driv	en tool to generat	e advanced	memory interf	aces. This tool	generates HDL	and pin placer	ent constr	raints	2
Run Synthesis		👃 Sources 💡 Templates					that will help you design your app	olication. H	Gintex-7 supp	oorts DDR3 SDRAM	1, DDR2 SDR	AM, LPDDR2 S	idram, qdr II-	- SRAM, RLDR	AMII and RLDR	AMIII. Virt	ex-7	
Open Synthesized Design		Design Runs														-	- 0 0	×
		Q Name	Part	Constraints			Strategy		Status	Progress		Start	Elapsed	Failed Route	s WNS T	VS WH:	S THS	TP\
Implementation Transportation Cathings		Synth_1	xc7k325tffg900-3	constrs_1	Vivad	lo Synthesis Defai lo Implementation	ilts (Vivado Synthesis 2013) Defaults (Vivado Implementation	2012) No	t started	0	%							- 1
Run Implementation			Activized by the second	. conscis_i		o inplomor codori	berdaks (made implementation	2010/ 110										
D Province Contraction																		- 1
																		- 1
 Program and Debug 																		- 1
Bitstream Settings		4																- 1
🐪 Generate Bitstream																		- 1
D Den Hardware Manager					_													
Launch MPACT		🔚 Tcl Console 🖉 🗩 Messages 🖉	🔍 Log 🗋 Reports 🛛 🛛	💲 Design Runs	•													

Figure 2-31: Vivado Tool Project Sources Window

Design generation from MIG can be generated using the **Create Design** flow or the **Verify Pin Changes** and **Update Design** flows. There is no difference between the flow when generating the design from the MIG tool. Irrespective of the flow by which designs are generated from the MIG tool, the XCI file is added to the Vivado tool project. The implementation flow is the same for all scenarios because the flow depends on the XCI file added to the project.

6. All MIG generated user design RTL and XDC files are automatically added to the project. If files are modified and you wish to regenerate them, right-click the XCI file and select **Generate Output Products** (Figure 2-32).

🖕 project_23 - [C/Users/avdhesh/project_23/project_23.apr] - Wvado 2013.3													
File Edit Flow Tools Window Lay	rout View Help								0	Q≁ Search comma	nds		
🯄 😂 🖬 🕫 🗎 🖄 🕽	🕨 🐮 🍪 💥 ∑ 🤪 🔚 Default Layout 💿 👻 🔌 🔌 🍕	Q									Ready		
Flow Navigator 🛛 👋 🕨	Project Manager - project_23										×		
Q 🔀 🛱	Sources _ D 2 ×	1	Σ	Project Summary 🗙 🞐 IP Catalog 🗙									
	 < 🔀 🖨 🗃 강 🛃 	16	÷ηΪ	Search: Q-									
4 Project Manager						- >1				- (
🚳 Project Settings 🗧 👸		111	-	Name	A Versi	n *	AX14	Status	License	External Re	VLNV		
Add Sources	Instantiation Template (1)			H C AVI Johnstructure									
IP Catalog	🖃 🞲 Synthesis (52)		2	E ReceIP									
- I country	- nig_7series_0.xdc			E Co Basir Flements									
4 IP Integrator			-	E Communication & Networking									
A control built	a min Zeries v2_0_Inresordcure.v			E Debug & Verification									
M Create Block Design	mig_ratios_v2_b_boardy_canty			E po Digital Signal Processing									
💕 Open Block Design	mig 7series v2 0 arb mux.v		10	Embedded Processing									
🧠 Generate Block Design	mig_7series_v2_0_arb_row_col.v	114		🗄 🗁 FPGA Features and Design									
	mig_7series_v2_0_arb_select.v			🔁 😰 Math Functions									
4 Simulation			-	😑 🗁 Memories & Storage Elements									
Circulation Satting	mig_7series_v2_0_bank_common.v	115	\$	- 🞐 ECC	2.0			Production	Included	W:/xbuilds/	xilinx.com:ip		
Contraction Seconds			F	🖲 📴 FIFOs									
u Run Simulation	- M a mig /series v2 0 bank queue v	115		Generators									
	nig 7series v2 0 bank state.v			Memory Interface Generator (MIG 7 Series)	2.0	AXI4		Production	Included	W:/xbuilds/	xilinx.com:ip		
A RTL Analysis	mig_7series_v2_0_col_mach.v			E C RAMS & ROMS									
Den Elaborated Design				D Canuaro pus Internaces									
	mig_7series_v2_0_rank_cntrl.v			er 💋 video & tillage Processing									
4 Synthesis	mig_7series_v2_0_rank_common.v												
🚯 Synthesis Settings	mig_/series_v2_U_rank_mach.v												
Dup Supharia	a mig_/series_v2_0_lound_loun_arb.v												
Van Synariosis	- Me mig / Series v2 D ecc dec fix.v												
Open Synthesized Design	mig_7series_v2_0_ecc_gen.v												
	mig_7series_v2_0_ecc_merge_enc.v			Details									
 Implementation 	- mig_7series_v2_0_memc_ui_top_std.v			Select an ID to see details									
Implementation Settings	mig_7series_v2_0_mem_inthc.v			Debut an a to bee details									
Run Implementation													
b Open Implemented Design	ming_rseries_v2_0_dur_dyte_ane.v												
 Open impenienced besign 	nig 7series v2 0 ddr if post fifo.v												
4. Descence and Debug	mig_7series_v2_0_ddr_mc_phy.v												
- Program and Debug	mig_7series_v2_0_ddr_mc_phy_wrapper.v												
Bitstream Settings	- mig_7series_v2_0_ddr_of_pre_fifo.v												
* Generate Bitstream	Hierarchy IP Sources Libraries Compile Order												
Open Hardware Manager	& Sources 🖓 Templates	L		1									
Launch IMPACT	📟 🗭 ঝ 🛅 📫 Design Runs												
Generated Data: mig_7series_0.xdc													

7. Clicking the **Generate Output Products** option brings up the **Manage Outputs** window (Figure 2-33).

Figure 2-33: Generate Window

8. All user-design RTL and constraints files (XDC files) can be viewed in the **Sources** > **Libraries** tab (Figure 2-34).

Figure 2-34: Vivado Project – RTL and Constraints Files

 The Vivado Design Suite supports the Open IP Example Design flow. To create the example design using this flow, right-click the IP in the Source Window, as shown in Figure 2-35 and select.

project_23 - [C:/Users/avdhest	1/proj	ect_23/project_23.xpr] - Vivado 2013.3															-OX			
File Edit Flow Tools Window	Layou	: View Help												[Q → Search com	nands				
🯄 😂 🕼 🕫 🗎 🔛 🔌		🚵 🚳 🐝 ∑ 🧑 🔚 Default Layout	Ŧ	I 🕷 🔌 🖉													Ready			
Flow Navigator	Pro	ject Manager - project_23															×			
🔍 🛣 😂	22	Sources	_ 🗆 🖻 ×	Σ	Project Summary	×	🖟 IP Catalog 🗙									Ŀ×				
d Desirat Manager	oertie	으 🛣 🚔 🚵 🐮 📓 🛃			Search: Q-															
Project Manager Desirat Sattings	Prot	E-S Design Sources (2)			-			Name		∆1 Version	₹2	AXI4	Status	License	External Re.	. VLNV				
Add Sources		Gonfiguration Files (1)	6	Source Made Dreport	tion	Chille														
TD Catalan		Constraints		Dource Node Proper	ues.		_). Networking												
- in Catalog		Gimulation Sources (1)	28	Re-customize IP				tion												
▲ IP Integrator				Generate Output Pr	oduc	xs		cessing												
ở Create Block Design				Resec Output Produ	cts		1	essing and Decian												
Dpen Block Design				Update IP			ľ	and Design												
senerate Block Design			_	Copy IP			_	age Elements												
			*	Open IP Example De	esign					2.0			Production	Included	W:/xbuilds/	. xilinx.com:ip	h			
 Simulation 				IP Documentation			•	rface Generators												
Simulation Settings				Replace File				nterface Generator (MIG 7 Series)	1	2.0	AXI4		Production	Included	W:/xbuilds/	. xilinx.com:ip				
🔍 Run Simulation			Θ	Copy File Into Proje	ct		- í	ls												
4 PTI Analysis	:			Copy All Files Into P	rojec	t Alt+I														
 Interesting to a second second			×	Remove File from Pr	ojeci	t Delete		ry Interface Generator (MIG	7 Series)								-			
p open Elaborated besign				Enable File		Alt+Equ	Jals	v. 1)												
 Synthesis 				Disable File		Alt+Min	us										-1			
🍪 Synthesis Settings		Hierarchy IP Sources Libraries Compile Order		Hierarchy Update			emory Interface Generator is a simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints likely your design your application. Kintey-7 supports DDR3 SDRAM, DDR2 SDRAM, ODR 114 SRAM, BLDRAMII and BLDRAMIII, Virtey-7													
🐎 Run Synthesis		& Sources V Templates	٩	Refresh Hierarchy																
Open Synthesized Design		Design Runs		IP Hierarchy			•									_ 🗆 I	Ľ×			
		Q Name P.	4	Set as Top				tegy	Status	Progress		Start	Elapsed	Failed Route:	WNS TNS	WHS TH	IS TPA			
A Implementation				Set File Type			ł	ado Synthesis 2013) N	lot started [0%						_			
implementation Settings		**************************************		Set Used In			Ì	s (mvado tinpieniericación 2013) n	luc scarteu		J %									
Run Implementation		≱		Edit Constraints Set	s															
Open Implemented Design				Edit Simulation Sets																
4 Program and Debug			8	Add Sources		Alt+A														
🔞 Bitstream Settings		*																		
🚷 Generate Bitstream		-*																		
Den Hardware Manager																				
Launch MPACT				© Danima Duma			_								_					
		🚛 ru cunsole , 🖵 Messages , 🖾 Log , 📓 Rep	urts	Lesign Runs			_													
Open Example																	:			

Figure 2-35: Open IP Example Design

10. This option creates a new Vivado project. Selecting the menu brings up a dialog box, which guides you to the directory for a new design project. Select a directory (or use the defaults) and click **OK**.

This launches a new Vivado project with all example design files and a copy of the IP. This project has example_top as the Implementation top directory, and sim_tb_top as the Simulation top directory, as shown in Figure 2-36.

hig_7series_0_example - [c:/Users	rs/avdhesh/project_23/mig_fseries_0_example/mig_fseries_0_example/mig_fseries_0_example.xpr] - Yivado 2013.3	
File Edit Flow Tools Window Layo	Q- Search commands	
🯄 😂 🖾 💷 🏗 🐘 🗙 💊 🕨	🕨 📩 1 🗞 🛞 🔀 Default Layout 💦 🖉 🚸 🔭 40	Ready
Flow Navigator « P	Project Manager - mig_7series_0_example	×
Q 🛣 🖨	v Sources _ □ ℓ × ∑Project Summary ×	
4 Project Manager	🕴 🔍 🛣 🖨 📄 🚯 🔝 🖳 🕅 🛐	<u>^</u>
Reproject Settings	E Project name: mig 7series 0 example	
Add Sources	[9] □→□@ [*] _n mg_rseries y.c.u.tramic.gen_top (mg_rseries y.c.u.tramic.gen_top y.l.(z) →□@ [*] u.j.m.tem_psteries, y.c.u.tramic.gen_top y.l.(mg_rseries y.c.u.tramic.gen_top y.l.(z)	
IP Catalog	E @ u_mem_traffic_gen_mig_Zearies_v2_0_memc_traffic_gen_mig_Zearies_v2_0_memc_traf Project part: Kintex-7 KC705 Evaluation Platform fxx7/3251ffq900-2)	
_	Image: State	
IP Integrator	Here men control - mig. Zeeries v2.0, mener. [how v control (mig. Zeeries v2.0, mener.] foor with a more control mig. Zeeries v2.0, mener.] foor	
Create block Design	🛊 🐨 write, data, path - mig. Zereis, y.2. D. write, data, path (mig. Zereis, y.2. D. write, data) Display name: Kintex-7 KC705 Evaluation Platform	
Concerning Black Design	Got g status - mig_7series_v2_0_tg_status (mig_7series_v2_0_tg_status.v) Board name: xilinx.com/shitex?sicc705:1.1	
Generate block besign	Board file: W:\xbuilds\2013.3_daix_bloards\/intex7(KC705\1_1\board.xm]	
4 Simulation	B: Constraints URL: www.xilnx.com/kr205	
🚳 Simulation Settings	Board overview: "The KC705 board is intended to showcase and demonstrate Kirtex-7 technology. The KC705 board utilizes Kintx Kirtex-7 XC includes Goabe T-Mode Ehenere MAC(FWK), S12ME DORS SPAMS SOURM MOREON LIVENERS KIINX KIRtex-7 XC.	7K325T-FF orm Flash.
🔍 Run Simulation	Debug connectors and RS232 serial port."	Print (dort)
4 RTL Analysis	Synthesis	
Dpen Elaborated Design	and the second sec	
	Sadus: - No started Satus: - No started	
Synthesis Grathesis Sattleses	Hierarchy IP Sources Libraries Compile Order Parts with 19900-2 Parts with 19900-2 Parts with 19900-2	_
Dup Supherin	& Sources Tart Kricken gebra	
 Kuit Synchesized Design 	Design Runs _	
	Name Part Constraints Strategy Status Progress Start Elapsed Failed Routes WNS TNS W	/HS THS
 Implementation 	w 🛛 🗢 şyrith_1 xc7k325tffg900-2 constrs_1 Vivado Synthesis 2013) Not started 0%	
Implementation Settings	Vivado Implementation Defaults (Vivado Implementation 2013) Not started	
Run Implementation	⇒	
Open Implemented Design		
Program and Debug		
🔞 Bitstream Settings		
🚵 Generate Bitstream	*	
Den Hardware Manager		
👺 Launch IMPACT	Td Console 🗋 Messages 🔲 Log 🗋 Reports 🖧 Design Runs	
·		

Figure 2-36: **Example Design Project**

11. Click **Generate Bitstream** under **Project Manager > Program and Debug** to generate the BIT file for the generated design.

The <project directory>/<project directory>.runs/ impl_1 directory includes all report files generated for the project after running the implementation. It is also possible to run the simulation in this project.

12. Recustomization of the MIG IP core can be done by using the **Recustomize IP** option. It is not recommended to recustomize the IP in the example_design project. The correct solution is to close the example_design project, go back to original project and customize there. Right-click the XCI file and click **Recustomize IP** (Figure 2-37) to open the MIG GUI and regenerate the design with the preferred options.

🍌 mig_7series_0_example - [c:/Us	ers/avdhesh/project_23/mig_7se	ries_0_example/mig_7series_0_exam	mple.xpr] - Vivado 2013.3
File Edit Flow Tools Window L	ayout View Help		Q- Search commands
🏂 🔁 IN 01 📑 🏢 🗙 📎	🌔 🐮 🚳 🐝 ∑ 🥝 🖽 Def	ault Layout 🛛 👻 🗶 🐧	E) Reat
Flow Navigator 🛛 🔍	Project Manager - mig_7series_0_e	xample	
🔍 🖾 🛱	Sources	- 🗆 🖻 ×	∑ Project Summary ×
4. Depinet Manager	🔍 🛣 🛱 🖻 🔂 👘		Project Settings
Project Hanager Report Settions	E Design Sources (2)		Protect name: mig. Zseries 0 example
Add Sources	Gonfiguration Files (1)	Source Node Properties Ctrl+E	+E roduct family: Kintex-7
IP Catalog	🗄 🔂 Constraints	Re-customize IP	Troject part: Kintex-7 KC/05 Evaluation Platform (xx7/325tffr900-2)
	Enco Simulation Sources (1)	Generate Output Products	op module name: mig 7series 0
IP Integrator		Reset Output Products	soard A
Greate Block Design		Update IP	Visplay name: Kintex-7 KC705 Evaluation Platform
Concrete Plack Design	Hierarchy ID Sources Librarie	Copy IP	toard name: xilinx.com:kintex7:kc705:1.1
Generate block besign	A Sources Completer	Open IP Example Design	loard file: W:\xbuilds\2013.3_daily_latest\installs\nt64\Vivado\2013.3\data\boards\kintex7\KC705\1_1\board.xml
 Simulation 	00 Sources V Temperes		RL: www.xilnx.com/kc205
🚳 Simulation Settings	Source Hile Properties	Copy File Into Project	Loard overview: The KC705 board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xilnx Kintex-7 XC7X3251-FFG900 device. The board includes Giabit Tri-Mode Etherent MAC/PHY, 5124B DDR3 SDR4M SODIM memory, 12008 BPI Linear Hash, 1280 de PIlationr Hash, 128 ILC EEROM, CPU Includes Giabit Tri-Mode Etherent MAC/PHY, 5124B DDR3 SDR4M SODIM memory, 12008 BPI Linear Hash, 1280 de PIlationr Hash, 108 ILC EEROM, CPU
🔍 Run Simulation	Tente Tente Auri	Copy All Files Into Project Alt+1	Debug connectors and R5232 serial port.
4 RTL Analysis	Vendor: Xilox, Inc.	Remove File from Project Delete	ete synthesis
👂 🔂 Open Elaborated Design	IP library: ip	Enable File Alt+E	FEQuels on the state of the sta
	IP state: Generated	Disable File Alt+M	Minus Marcanet Marcar or warring and the status: Minus Marcanet Marcar or warring and the status of
Synthesis Suppose Settings	₹	Hierarchy Update	Parti x7/325ffg00-2 Part w21c325ffg00-2
Dun Suntherin	General Properties IP	Refresh Hierarchy	Strategy: Wyado Synthesis Defaults Strategy - Wyado Timulamana Jako Defaulty - Strategy - Wyado Synthesis Defaulty - Strategy - Stra
Open Synthesized Decim	Design Runs	IP Hierarchy)
p por synthesized besign	Name	Set as Top	Strategy Status Progress Start Elapsed Failed Routes WNS TNS WHS TNS THS TP
4 Implementation	😴 ⊟-⇔ synth_1	Set File Type	Synthesis Defaults (Vivado Synthesis 2013) Not started 0%
Maintain Settings	⇒ impl_1	Set Used In	Implementation Defaults (Vivado Implementation 2013) Not started 0%
Run Implementation		Edit Constraints Sets	
Open Implemented Design	14	Edit Simulation Sets	
4 Program and Debug	₩ 8	Add Sources Alt+A	+A
🚳 Bitstream Settings	4		
🚵 Generate Bitstream	-\$		
🕨 💕 Open Hardware Manager	₩ .		
🁺 Launch iMPACT	📃 Tcl Console 💭 Messages	🔍 Log 📄 Reports 🖄 Design Runs	
Re-customize the selected core			

Figure 2-37: Recustomize IP

Directory Structure and File Descriptions

This section explains the MIG tool directory structure and provides detailed output file descriptions.

Output Directory Structure

The MIG tool places all output files and directories in a folder called <component name>, where <component name> was specified on the MIG Output Options, page 285 of the MIG design creation flow.

The output directory structure of the selected Memory Controller (MC) design from the MIG tool is shown here. There are three folders created within the <component name> directory:

- docs
- example_design
- user_design

Directory and File Contents

The 7 series FPGAs core directories and their associated files are listed in this section for Vivado implementations.

<component name>/example_design/

The example_design directory structure contains all necessary RTL, constraints, and script files for simulation and implementation of the complete MIG example design with a test bench. The optional Vivado logic analyzer feature module is also included in this directory structure.

Table 2-1 lists the files in the example_design/rtl directory.

Table 2-1:	Files in example	_design/rfl Directory
------------	------------------	-----------------------

Name	Description
example_top.v	This top-level module serves as an example for connecting the user design to the 7 series FPGA memory interface core.

Table 2-2 lists the files in the example_design/rtl/traffic_gen directory.

Name ⁽¹⁾	Description
memc_traffic_gen.v	This is the top-level module of the traffic generator.
cmd_gen.v	This is the command generator. This module provides independent control of generating the types of commands, addresses, and burst lengths.
cmd_prbs_gen.v	This pseudo-random binary sequence (PRBS) generator generates PRBS commands, addresses, and burst lengths.
memc_flow_vcontrol.v	This module generates flow control logic between the Memory Controller core and the cmd_gen, read_data_path, and write_data_path modules.
read_data_path.v	This is the top-level for the read datapath.
read_posted_fifo.v	This module stores the read command that is sent to the Memory Controller. Its FIFO output is used to generate expect data for read data comparisons.
rd_data_gen.v	This module generates timing control for reads and ready signals to memc_flow_vcontrol.v.
write_data_path.v	This is the top-level for the write datapath.
wr_data_gen.v	This module generates timing control for writes and ready signals to memc_flow_vcontrol.v.
s7ven_data_gen.v	This module generates different data patterns.
a_fifo.v	This is a synchronous FIFO using LUT RAMs.
data_prbs_gen.v	This 32-bit linear feedback shift register (LFSR) generates PRBS data patterns.
init_mem_pattern_ctr.v	This module generates flow control logic for the traffic generator.
traffic_gen_top.v	This module is the top-level of the traffic generator and comprises the memc_traffic_gen and init_mem_pattern_ctr modules.
tg_prbs_gen.v	This PRBS uses one too many feedback mechanisms because it always has a single level XOR (XNOR) for feedback. The TAP is chosen from the table listed in XAPP052, <i>Efficient Shift Registers</i> , <i>LFSR Counters, and Long Pseudo-Random Sequence Generators</i> . The TAPS position can be defined in a parameter.
tg_status.v	This module compares the memory read data against compare data generated from the data_gen module. The error signal is asserted if the comparison is not equal.
vio_init_pattern_bram.v	This module takes external defined data inputs as its block RAM init pattern. It allows users to change simple test data pattern without recompilation.

Table 2-2:	Files in example	_design/rtl/traffic_	gen Directory
------------	------------------	----------------------	---------------

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of memc_traffic_gen in generated output is now mig_7series_v4_1_memc_traffic_gen.

Table 2-3 lists the files in the example_design/sim directory.

Name	Description
ies_run.sh ⁽¹⁾	Linux Executable file for simulating the design using IES simulator.
vcs_run.sh ⁽¹⁾	Linux Executable file for simulating the design using VCS simulator.
readme.txt (1)	Contains the details and prerequisites for simulating the designs using Mentor Graphics Questa Advanced Simulator, IES, and VCS simulators.
sim_tb_top.v	This file is the simulation top-level file.

Table 2-3: Files in example_design/sim Directory

Notes:

1. The ies_run.sh and vcs_run.sh files are generated in the folder mig_7series_ex/imports when the example design is created using **Open IP Example Design** for the design generated with **Component Name** entered in Vivado IDE as mig_7series_0.

<component name>/user_design

The user_design folder contains the following:

- rtl and xdc folders
- Top-level wrapper module <component_name>.v/vhd
- Top-level modules <component_name>_mig.v/vhd and <component_name>_mig_sim.v/vhd

The top-level wrapper file <component_name>.v/vhd has an instantiation of top-level file <component_name>_mig.v/vhd. Top-level wrapper file has no parameter declarations and all the port declarations are of fixed width.

Top-level files <component_name>_mig.v/vhd and <component_name>_mig_sim.v/vhd have the same module name as <component_name>_mig. These two files are same in all respects except that the file <component_name>_mig_sim.v/vhd has parameter values set for simulation where calibration is in fast mode viz., SIM_BYPASS_INIT_CAL = "FAST" etc.

IMPORTANT: The top-level file <component_name>_mig.v/vhd is used for design synthesis and implementation, whereas the top-level file <component_name>_mig_sim.v/vhd is used in simulations.

The top-level wrapper file serves as an example for connecting the user_design to the 7 series FPGA memory interface core.

user_design/rtl/clocking

Table 2-4 lists the files in the user_design/rtl/clocking directory.

Name ⁽¹⁾	Description
infrastructure.v	This module helps in clock generation and distribution.
clk_ibuf.v	This module instantiates the system clock input buffers.
iodelay_ctrl.v	This module instantiates the IDELAYCTRL primitive needed for IODELAY use.

Table 2-4: Files in user_design/rtl/clocking Directory

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of clk_ibuf in generated output is now mig_7series_v4_1_clk_ibuf.

user_design/rtl/phy

Table 2-5 lists the files in the user_design/rtl/phy directory:

Table 2-5:	Files in user	design	/rtl/r	ohv
		_~~~/	· • · / r	••••

Name ⁽¹⁾	Description
qdr_phy_top.v	This is the top-level module for the physical layer.
qdr_phy_write_top.v	This is the top-level wrapper for the write path.
qdr_rld_phy_read_top.v	This is the top-level of the read path.
qdr_rld_mc_phy.v	This module is a parameterizable wrapper instantiating up to three I/O banks each with 4-lane PHY primitives.
qdr_phy_write_init_sm.v	This module contains the logic for the initialization state machine.
qdr_phy_write_control_io.v	This module contains the logic for the control signals going to the memory.
qdr_phy_write_data_io.v	This module contains the logic for the data and byte writes going to the memory.
qdr_rld_prbs_gen.v	This PRBS module uses a many-to-one feedback mechanism for 2n sequence generation.
qdr_rld_phy_ck_addr_cmd_delay.v	This module contains the logic to provide the required delay on the address and control signals
qdr_rld_phy_rdlvl.v	This module contains the logic for stage 1 calibration.
qdr_rld_phy_read_stage2_cal.v	This module contains the logic for stage 2 calibration.
qdr_rld_phy_read_data_align.v	This module realigns the incoming data.
qdr_rld_phy_read_vld_gen.v	This module contains the logic to generate the valid signal for the read data returned on the user interface.
qdr_phy_byte_lane_map.v	This wrapper file handles the vector remapping between the mc_phy module ports and the user memory ports.
qdr_rld_phy_4lanes.v	This module is the parameterizable 4-lane PHY in an I/O bank.
qdr_rld_byte_lane.v	This module contains the primitive instantiations required within an output or input byte lane.

Table 2-5: Files in user_design/rtl/phy (Cont'd)

Name ⁽¹⁾	Description
qdr_rld_byte_group_io.v	This module contains the parameterizable I/O Logic instantiations and the I/O terminations for a single byte lane.

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of qdr_phy_top in generated output is now mig_7series_v4_1_qdr_phy_top.

<component name>/user_design/xdc

Table 2-6 lists the files in the user_design/xdc directory.

Table 2-6: Files in user_design/xdc Directory

Name	Description
<component name="">.xdc</component>	This file is the XDC for the core of the user design.

Verify Pin Changes and Update Design

This feature verifies the input XDC for bank selections, byte selections, and pin allocation. It also generates errors and warnings in a separate dialog box when you click **Validate** on the page. This feature is useful to verify the XDC for any pinout changes made after the design is generated from the MIG tool. You must load the MIG generated <code>.prj</code> file, the original <code>.prj</code> file without any modifications. In the Vivado IP catalog, the recustomization option should be selected to reload the project. The design is allowed to generate only when the MIG DRC is met. Ignore warnings about validating the pinout, which is the intent. Just validating the XDC is not sufficient; it is mandatory to proceed with design generation to get the XDC with updated clock and phaser-related constraints and RTL top-level module for various updated Map parameters.

The Update Design feature is required in the following scenarios:

- A pinout is generated using an older version of MIG and the design is to be revised to the current version of MIG. In MIG the pinout allocation algorithms have been changed for certain MIG designs.
- A pinout is generated independent of MIG or is modified after the design is generated. When a design is generated from MIG, the XDC and HDL code are generated with the correct constraints.

Here are the rules verified from the input XDC:

- If a pin is allocated to more than one signal, the tool reports an error. Further verification is not done if the XDC does not adhere to the uniqueness property.
- Verified common rules:
 - The interface can span across a maximum of three consecutive banks.

- Interface banks should reside in the same column of the FPGA.
- Interface banks should be either High Performance (HP) or High Range (HR). HP banks are used for the high frequencies.
- The chosen interface banks should have the same SLR region if the chosen device is of stacked silicon interconnect technology.
- V_{REF} I/Os should be used as GPIOs when an internal V_{REF} is used or if there are no inout and input ports in a bank.
- The I/O standard of each signal is verified as per the configuration chosen.
- The VCCAUX I/O of each signal is verified and provides a warning message if the provided VCCAUX I/O is not valid.
- Verified data read pin rules:
 - Pins related to one component should be allocated in one bank only.
 - The strobe pair (CQ) should be allocated to either the MRCC P or the MRCC N pin.
 - Read data pins cannot span more than the required byte lanes. For example, an 18-bit component should occupy only two byte lanes.
 - A byte lane should contain pins of only one read byte, for example, Q[8:0] or Q[17:9].
 - A byte lane should not contain pins of more than one component.
 - An FPGA byte lane should not contain pins related to two different strobe sets.
 - \circ V_{REF} I/O can be used only when the internal V_{REF} is chosen.
- Verified data write pin rules:
 - Pins related to one component should be allocated in only one bank.
 - Write clocks (K/K#) pairs should be allocated to the DQS CC I/Os.
 - Write data pins cannot span more than the required byte lanes. For example, an 18-bit component should occupy only 2 byte lanes.
 - A byte lane should not contain pins of more than one component.
 - A byte lane should contain pins of only one write byte, for example, D[8:0] or D[17:9].
 - $\circ~$ Irrespective of internal V_{REF} usage, V_{REF} pins can be used as GPIOs unless the bank contains other input signals.
- Verified address pin rules:
 - Address signals cannot mix with data bytes except for the qdriip_dll_off_n signal.
 - It can use any number of isolated byte lanes.

- Verified system pin rules:
 - System clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - These pins must be allocated in the Memory banks column.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Reference clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Status signals:
 - The sys_rst signal should be allocated in the bank where the V_{REF} I/O is unallocated or the internal V_{REF} is used.
 - These signals should be allocated in the non-memory banks because the I/O standard is not compatible. The I/O standard type should be LVCMOS with the I/O voltage at 1.8V.
 - These signals can be allocated in any of the columns (there is no hard requirement because these signals should reside in a memory column); however, it is better to allocate closer to the chosen memory banks.

Core Architecture

Overview

Figure 2-38 shows a high-level block diagram of the 7 series FPGA QDR II+ SRAM interface solution. This figure shows both the internal FPGA connections to the client interface for initiating read and write commands, and the external interface to the memory device.

Figure 2-38: High-Level Block Diagram of QDR II+ Interface Solution

The PHY is composed of these elements, as shown in Figure 2-39:

- User interface
- Physical interface
 - a. Write path
 - b. Read datapath

Figure 2-39: Components of the QDR II+ SRAM Memory Interface Solution

Send Feedback

The client interface (also known as the user interface) uses a protocol based entirely on single data rate (SDR) signals to make read and write requests. For more details about this protocol, see the User Interface section. The physical interface generating the proper timing relationships and DDR signaling to communicate with the external memory device, while conforming to QDR II+ protocol and timing requirements. For more information, see the Physical Interface section.

Within the PHY, logic is broken up into read and write paths. The read path is responsible for calibration and providing read responses back to you with a corresponding valid signal. For more details about this process, see the Calibration section. The write path generates the QDR II+ signaling for generating read and write requests. This includes control signals, address, data, and byte writes.

User Interface

The client interface connects the 7 series FPGA user design to the QDR II+ SRAM solutions core to simplify interactions between you and the external memory device.

Command Request Signals

The client interface provides a set of signals used to issue a read or write command to the memory device. These signals are summarized in Table 2-7. To accommodate for burst length four devices, the client interface contains ports for two read and two write transactions. When using burst length four, only the ports ending in zero should be used.

Table 2-7:	Client Interface Request Signals
------------	---

Signal	Direction	Description
init_calib_complete	Output	Calibration Done . This signal indicates to the user design that read calibration is complete and you can now initiate read and write requests from the client interface.
app_rd_addr0[ADDR_WIDTH – 1:0]	Input	Read Address . This bus provides the address to use for a read request. It is valid when app_rd_cmd0 is asserted.
app_rd_cmd0	Input	Read Command . This signal is used to issue a read request and indicates that the address on port 0 is valid.
app_rd_data0[DATA_WIDTH $ imes$ BURST_LEN – 1:0]	Output	Read Data . This bus carries the data read back from the read command issued on app_rd_cmd0.
app_rd_valid0	Output	Read Valid . This signal indicates that data read back from memory is now available on app_rd_data0 and should be sampled.
app_rd_addr1[ADDR_WIDTH – 1:0]	Input	Read Address . This bus provides the address to use for a read request. It is valid when app_rd_cmd1 is asserted.

Table 2-7: Client Interface Request Signals (Cont'd)

Signal	Direction	Description
app_rd_cmd1	Input	Read Command . This signal is used to issue a read request and indicates that the address on port 1 is valid.
app_rd_data1[DATA_WIDTH \times 2 – 1:0]	Output	Read Data . This bus carries the data read back from the read command issued on app_rd_cmd1.
app_rd_valid1	Output	Read Valid . This signal indicates that data read back from memory is now available on app_rd_data1 and should be sampled.
app_wr_addr0[ADDR_WIDTH – 1:0]	Input	Write Address. This bus provides the address for a write request. It is valid when app_wr_cmd0 is asserted.
app_wr_bw_n0[BW_WIDTH $ imes$ BURST_LEN – 1:0]	Input	Write Byte Writes . This bus provides the byte writes to use for a write request. It is valid when app_wr_cmd0 is asserted. These enables are active-Low.
app_wr_cmd0	Input	Write Command. This signal is used to issue a write request and indicates that the corresponding sideband signals on write port 0 are valid.
app_wr_data0[DATA_WIDTH $ imes$ BURST_LEN – 1:0]	Input	Write Data. This bus provides the data to use for a write request. It is valid when app_wr_cmd0 is asserted.
app_wr_addr1[ADDR_WIDTH – 1:0]	Input	Write Address. This bus provides the address for a write request. It is valid when app_wr_cmd1 is asserted.
app_wr_bw_n1[BW_WIDTH \times 2 – 1:0]	Input	Write Byte Writes. This bus provides the byte writes to use for a write request. It is valid when app_wr_cmd1 is asserted. These enables are active-Low.
app_wr_cmd1	Input	Write Command. This signal is used to issue a write request and indicates that the corresponding sideband signals on write port 1 are valid.
app_wr_data1[DATA_WIDTH \times 2 – 1:0]	Input	Write Data. This bus provides the data to use for a write request. It is valid when app_wr_cmd1 is asserted.

Interfacing with the Core through the Client Interface

The client interface protocol is the same for using the port 0 or port 1 interface signals and is shown in Figure 2-40.

Figure 2-40: Components of the QDR II+ SRAM Memory Interface Solution

Before any requests can be made, the init_calib_complete signal must be asserted High, as shown in Figure 2-40, no read or write requests can take place, and the assertion of app_wr_cmd or app_rd_cmd on the client interface is ignored. A write request is issued by asserting app_wr_cmd as a single cycle pulse. At this time, the app_wr_addr, app_wr_data, and app_wr_bw_n signals must be valid.

On the following cycle, a read request is issued by asserting app_rd_cmd for a single cycle pulse. At this time, app_rd_addr must be valid. After one cycle of idle time, a read and write request are both asserted on the same clock cycle. In this case, the read to the memory occurs first, followed by the write.

Figure 2-40 also shows data returning from the memory device to the user design. The app_rd_vld signal is asserted, indicating that app_rd_data is now valid. This should be sampled on the same cycle that app_rd_vld is asserted because the core does not buffer returning data. If desired, you can add this functionality. The data returned is not necessarily from the read commands shown in Figure 2-40 and is solely to demonstrate protocol.

Clocking Architecture

The PHY design requires that a PLL module be used to generate various clocks. Both global and local clock networks are used to distribute the clock throughout the design.

The clock generation and distribution circuitry and networks drive blocks within the PHY that can be divided roughly into four separate general functions:

- Internal FPGA logic
- Write path (output) logic
- Read path (input) and delay logic
- IDELAY reference clock (200 MHz)

One MMCM and one PLL are required for the PHY. The PLL is used to generate the clocks for most of the internal logic, the input clocks to the phasers, and a synchronization pulse required to keep the PHASER blocks synchronized in a multi-I/O bank implementation.

The PHASER blocks require three clocks:

- **Memory Reference Clock** The memory reference clock is required to be at the same frequency as that of the QDR II+ memory interface clock.
- Frequency Reference Clock The frequency reference clock must be equal to the memory clock frequency for frequencies ≥ 400 MHz and 2x the memory clock frequency for frequencies < 400 MHz such that it meets the reference range requirement of 400 MHz to 1,066 MHz.
- Phase Reference Clock from the PLL The phase reference clock is used in the read banks, and is generated using the memory read clock (CQ/CQ#) routed internally and provided to the Phaser logic to assist with data capture.

Figure 2-41 shows the clocking architecture.

Figure 2-41: Clocking Architecture

The default setting for the PLL multiply (M) and divide (D) values is for the system clock input frequency to be equal to the memory clock frequency. This 1:1 ratio is not required. The PLL input divider (D) can be any value listed in the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] as long as the PLLE2 operating conditions are met and the other constraints listed here are observed.

The PLL multiply (M) value must be between 1 and 16 inclusive. The PLL VCO frequency range must be kept in the range specified in the silicon data sheet. The sync_pulse must be 1/16 of the mem_refclk frequency and must have a duty cycle of 1/16 or 6.25%. For information on physical placement of the PLL and the System Clock CCIO input, see Design Guidelines, page 342.

The internal FPGA logic clock generated by the PLL is clocked by a global clocking resource at half the frequency of the QDR II+ memory frequency.

A 200 MHz IDELAY reference clock must be supplied to the IDELAYCTRL module. The IDELAYCTRL module continuously calibrates the IDELAY elements in the I/O region to account for varying environmental conditions. The IP core assumes an external clock signal is driving the IDELAYCTRL module. If a PLL clock drives the IDELAYCTRL input clock, the PLL lock signal needs to be incorporated in the rst_tmp_idelay signal inside the IODELAY_CTRL module. This ensures that the clock is stable before being used.

Table 2-8 lists the signals used in the infrastructure module that provides the necessary clocks and reset signals required in the design.

Signal	Direction	Description
mmcm_clk	Input	System clock input.
sys_rst	Input	Core reset from user application.
iodelay_ctrl_rdy	Input	IDELAYCTRL lock status.
clk	Output	Half frequency FPGA logic clock.
mem_refclk	Output	PLL output clock at same frequency as the memory clock.
freq_refclk	Output	PLL output clock to provide the FREQREFCLK input to the Phaser. The freq_refclk is generated such that its frequency in the range of 400 MHz to 1,066 MHz.
sync_pulse	Output	PLL output generated at 1/16 of mem_Refclk and is a synchronization signal sent to the PHY hard blocks that are used in a multi-bank implementation.
pll_locked	Output	Locked output from PLLE2_ADV.
rstdiv0	Output	Reset output synchronized to internal FPGA logic half frequency clock.

Table 2-8: Infrastructure Clocking and Reset Signals

Physical Interface

The physical interface is the connection from the FPGA memory interface solution to an external QDR II+ SRAM device. The I/O signals for this interface are shown in Table 2-9. These signals can be directly connected to the corresponding signals on the QDR II+ SRAM device.

Signal	Direction	Description
qdr_cq_n	Input	QDR CQ# . This is the echo clock returned from the memory derived from qdr_k_n.
qdr_cq_p	Input	QDR CQ . This is the echo clock returned from the memory derived from qdr_k_p.
qdr_d	Output	QDR Data . This is the write data from the PHY to the QDR II+ memory device.
qdr_dll_off_n	Output	QDR DLL Off . This signal turns off the DLL in the memory device.
qdr_bw_n	Output	QDR Byte Write . This is the byte write signal from the PHY to the QDR II+ SRAM device.
qdr_k_n	InOut	QDR Clock K# . This is the inverted input clock to the memory device.
qdr_k_p	InOut	QDR Clock K . This is the input clock to the memory device.
qdr_q	Input	QDR Data Q . This is the data returned from reads to memory.
qdr_sa	Output	QDR Address. This is the address supplied for memory operations.
qdr_w_n	Output	QDR Write . This is the write command to memory.
qdr_r_n	Output	QDR Read. This is the read command to memory.

 Table 2-9:
 Physical Interface Signals

Interfacing with the Memory Device

Figure 2-42 shows the physical interface protocol for a four-word memory device.

Figure 2-42: Four-Word Burst Length Memory Device Protocol

In four-word burst mode:

- The address is in SDR format
- All signals as input to the memory are center aligned with respect to qdr_k_p
- The data for a write request follows on the next rising edge of qdr_k_p after an assertion of qdr_w_n
- Byte writes are sampled along with data
- The qdr_q signal is edge aligned to qdr_cq_p and qdr_cq_n

PHY Architecture

The 7 series FPGA PHY is composed of dedicated blocks and soft calibration logic. The dedicated blocks are structured adjacent to one another with back-to-back interconnects to minimize the clock and datapath routing necessary to build high-performance physical layers.

Some of the dedicated blocks that are used in the QDR II+ SRAM PHY and their features are described as follows:

• I/Os available within each 7 series bank are grouped into four byte groups, where each byte group consists of up to 12 I/Os.

- PHASER_IN/PHASER_OUT blocks are available in each byte group and are multi-stage programmable delay line loops that can provide precision phase adjustment of the clocks. Dedicated clock within an I/O bank referred to as byte group clocks generated by the PHASERs help minimize the number of loads driven by the byte group clock drivers.
- OUT_FIFO and IN_FIFO are shallow 8-deep FIFOs available in each byte group and serve to transfer data from the FPGA logic domain to the I/O clock domain. OUT_FIFOs are used to store output data and address/controls that need to sent to the memory while IN_FIFOs are used to store captured read data before transfer to the FPGA logic.

The Pinout Requirements section explains the rules that need to be followed while placing the memory interface signals inside the byte groups.

Figure 2-43: High-Level PHY Block Diagram for a 36-Bit QDR II+ Interface

Write Path

The write path to the QDR II+ SRAM includes the address, data, and control signals necessary to execute a write operation. The address signals in four-word burst length mode and control signals to the memory use SDR formatting. The write data values qdr_da and qdr_bw_n also use DDR formatting to achieve the required four-word burst within the given clock periods. Figure 2-44 shows a high-level block diagram of the write path and its submodules.

Output Architecture

The output path of the QDR II+ interface solution uses OUT_FIFOs, PHASER_OUT_PHY, and OSERDES primitives available in the 7 series FPGAs. These blocks are used for clocking all outputs of the PHY to the memory device.

The PHASER_OUT provides the clocks required to clock out the outputs to the memory. It provides synchronized clocks for each byte group, to the OUT_FIFOs and to the OSERDES/ODDR. The PHASER_OUT generates the byte clock (OCLK), the divided byte clock (OCLKDIV), and a delayed byte clock (OCLK_DELAYED) for its associated byte group. The byte clock (OCLK) is the same frequency as the memory interface clock and the divided byte clock (OCLKDIV) is half the frequency of the memory interface clock. The byte clock (OCLK) is used to clock the Write data (D) and Byte write (BW) signals to the memory from the OSERDES. OCLK_DELAYED tap position is calibrated using a PHASER_OUT stage 2 and stage 3 delay to determine the center position of a bit window. The detail of the K clock calibration flow is described in the Write Calibration section.

PO stage 2 fine delay elements are used for either decrement or increment. The direction of PO stage 2 taps adjustment is determined during the K clock left edge detection as described above. A positive skew has the PO taps decreased until the correct calibration pattern is obtained. A negative skew has the PO taps increased until the correct calibration pattern is lost. After all of the other bytes have been deskewed, the OCLK_DELAY tap is moved to the calibrated position that has been obtained during the first part of write calibration.

The OUT_FIFOs serve as a temporary buffer to convert the write data from the FPGA logic domain to the PHASER clock domain, which clocks out the output data from the I/O logic. The FPGA logic writes into the OUT_FIFOs in the FPGA logic half-frequency clock based on the FULL flag output from the OUT_FIFO. The clocks required for operating the OUT_FIFOs and OSERDES are provided by the PHASER_OUT.

The clocking details of the write paths using PHASER_OUT are shown in Figure 2-44.

Figure 2-44: **Write Path**

The clocking details of the address/control using PHASER_OUT are shown in Figure 2-45.

Figure 2-45: Address Path

Output Path

Because the address/command and write data are provided by the user backend, the QDR PHY transfers the signals from the FPGA logic domain to their internal PHASER clock domain and provides them from the OSERDES to the memory. The OUT_FIFOs are used mainly as domain transfer elements in the design, and therefore the write and read enables of the OUT_FIFO need to be constantly enabled. The PHY Control block helps with this requirement.

PHY Control Block

The QDR PHY uses the PHY Control block to interface to the OUT_FIFOs and PHASER_OUT_PHY. The PHY Control block helps to prevent the condition where one or more of the OUT_FIFOs are operating close to the EMPTY condition of the OUT_FIFO, which could potentially make the OUT_FIFO go EMPTY (based on how the WRCLK and RDCLK are aligned at the OUT_FIFO over voltage-temperature variations) thereby causing the OUT_FIFO to stall. The PHY Control block helps the OUT_FIFO to operate closer to the FULL condition of the OUT_FIFO.

The steps required for the initialization are as follows:

1. After PHY_CONTROL_READY is asserted, PHY_CONTROL is programmed with a *large* delay into the pc_phy_counters. The control word format is shown in Table 2-10 and Table 2-11.

 Table 2-10:
 Control Word Format

Bits	35:32	31	30	29:25	24:23	22:17	16:15	14:12	11:8	7:3	2	1	0
Field	AO1	Major OP	Minor OP	Event Delay	Seq	Data Offset	IndexHi (Rank)	IndexLo (Bank)	AO0	Command Offset	Non- Data	Read	Data

Table 2-11: Contro	Word	Decode
--------------------	------	--------

MajorOP	MinorOP	EventDelay	IndexHi	IndexLo	Registers
0-REGPRE	0 – REG	Register Data[4:0]	IndexHi[16] = Register Data[5] IndexHi[15] = Register Addr[3]	Register Address Bits [2:0]	4'b0000-4'b0011: Reserved 4'b0100: CTLCORR 4'b0101: RRDCNTR 4'b0110: REF2ACT 4'b0111: TFAW 4'b1000: A2ARD 4'b1001: A2AWR 4'b1010: PRE2ACT 4'b1011: ACT2PRE 4'b1100: RDA2ACT 4'b1101: RD2PRE 4'b1110: WRA2ACT 4'b1111: WR2PRE
		5'b000xx – STALL DC DC	DC		
		5'b010xx - REF	Rank	DC	The STALL operation delays the issue of the Ready signal from pc phy counters to the
	1 – PRE	5'b100xx – PREBANK	Rank	Bank	
		5'b110xx – PREALL	Rank	DC	sequencing state machines.
		All others – NOP	DC	DC	
1–ACTRDWR	АСТ	29:28: ACT Slot 27: AP 26:25: RDWR Slot	Rank	Bank	

The delay counter is used to delay the PHY Control block from fetching the next command from the PHY Control Word FIFO, and allows time for it to be filled to capacity. This FIFO needs to be prevented from going empty, because that stalls the PHY_CONTROL, and in turn leads to gaps in the read enable assertion for the OUT_FIFOs, which should be avoided.

The OUT_FIFO is used in ASYNC_MODE and in the 4x4 mode.

The PHY control word has these assignments:

- Control word [31:30] is set to 01.
- Control word [29:25] is set to 5'b11111, which is the large delay programmed into the pc_phy_Counters.
- A non-data command is issued by asserting control word[2].
- Command and data offset are set to 0.
- Phy_ctl_wr is set to 1 as long as the PHY Control Word FIFO (phy_ctl_fifo) is not FULL.
- 2. Entries are written into the OUT_FIFO (for command/address, and for write data); these entries are NOPs until the FULL condition is reached.
- 3. After the FULL flag goes High with the ninth write, all writes to the FIFO are stopped until the FULL flag is deasserted (see step 4).
- 4. Eventually, the PHY_CONTROL asserts RDENABLE for the OUT_FIFO (after the *large* delay has expired)
- 5. After reads begin, the FULL flag is deasserted.
- 6. Two clock cycles after FULL deassertion, begin writing again to the OUT_FIFO. Continue to provide Data commands to the PHY Control block. Control word[2:0] is set to 001.
- 7. Now, both WRENABLE and RDENABLE are constantly asserted.

Pre-FIFO

When the OUT_FIFO is close to the ALMOST_FULL condition, with VT variations, it is likely that the OUT_FIFO(s) could momentarily be FULL, based on the wr/rd clock phase alignment. A low-latency pre-FIFO is used to store the command requests/write data from you and to help store the signals when the OUT_FIFO indeed goes FULL.

The OSERDES blocks available in every I/O helps to simplify the task of generating the proper clock, address, data, and control signaling for communication with the memory device. The flow through the OSERDES uses two different input clocks to achieve the required functionality. Data input ports D1/D2 or D3/D4 are clocked in using the clock provided on the CLKDIV input port (clk in this case), and then passed through a parallel-to-serial conversion block.

The OSERDES is used to clock all outputs from the PHY to the memory device. Upon exiting the OSERDES, all the output signals must be presented center aligned with respect to the generated clocks K/K#. For this reason, the PHASER_OUT block is also used in conjunction with the OSERDES to achieve center alignment. The output clocks that drive the address, and controls are shifted such that the output signals are center aligned to the K/K# clocks at the memory.

Read Path

The read path includes data capture using the memory provided read clocks and also ensuring that the read clock is centered within the data window to ensure that good margin is available during data capture. Before any read can take place, calibration must occur. Calibration is the main function of the read path and needs to be performed before the user interface can start transactions to the memory.

Data Capture

Figure 2-46 shows a high-level block diagram of the path the read clock and the read data take from entering the FPGA until given to you. The read clock bypasses the ILOGIC and is routed through PHASERs within each byte group through multi-region BUFMRs. The BUFMR output can drive the PHASEREFCLK inputs of PHASERs in the immediate bank and also the PHASERs available in the bank above and below the current bank. The PHASER generated byte group clocks (ICLK, OCLK, and ICLKDIV) are then used to capture the read data (Q) available within the byte group using the ISERDES block. The calibration logic makes use of the fine delay increments available through the PHASER to ensure the byte group clocks are centered inside the read data window, ensuring maximum data capture margin.

The IN_FIFOs available in each byte group shown in Figure 2-46 receive 4-bit data from each Q bit captured in the ISERDES in a given byte group and writes them into the storage array. The half-frequency PHASER_IN generated byte group clock, ICLKDIV, that captures the data in the ISERDES is also used to write the captured read data to the IN_FIFO. The write enables to the IN_FIFO are always asserted to enable data to be written in continuously.

A shallow, synchronous POST_FIFO is used at the receiving side of the IN_FIFO to enable captured data to be read out continuously from the FPGA logic, should a flag assertion occur in the IN_FIFO, which could potentially stall the flow of data from the IN_FIFO. Calibration also ensures that the read data is aligned to the rising edge of the FPGA logic half-frequency clock and that read data from all the byte groups have the same delay. For more details about the actual calibration and alignment logic, see the Calibration section.

Figure 2-46: **Read Datapath**

Calibration

The calibration logic provides the required amount of delay on the read clock and read data to align the clock in the center of the data valid window. The centering of the clock is done using PHASERs which provide very fine resolution delay taps on the clock. Each PHASER_IN fine delay tap increments the clock by 1/64th of the data period.

Calibration begins after the echo clocks are stable from the memory device. The amount of time required to wait for the echo clocks to become stable is based upon the memory vendor and should be specified using the CLK_STABLE parameter to the core. Prior to this point, all read path logic is held in reset. Calibration is performed in two stages:

- 1. Calibration of read clock with respect to Q
- 2. Data alignment and valid generation

Calibration of Read Clock and Data

The PHASER_IN/PHASER_OUT clocks within each byte group are used to clock all ISERDES used to capture read data (Q) associated with the corresponding byte group. ICLKDIV is also the write clock for the read data IN_FIFOs. One PHASER_IN block is associated with a group of 12 I/Os. Each I/O bank in the 7 series FPGA has four PHASER_IN blocks, and hence four read data bytes can be placed in a bank.

Implementation Details

This stage of read leveling is performed one byte at a time where the read clock is center aligned to the corresponding read data in that byte group. At the start of this stage, a write command is issued to a specified QDR II+ SRAM address location with a specific data pattern. This write command is followed by back-to-back read commands to continuously read data back from the same address location that was written to.

The calibration logic reads data out of the IN_FIFO and records it for comparison. The calibration logic checks for the sequence of the data pattern read to determine the alignment of the clock with respect to the data. No assumption is made about the initial relationship between the capture clock and the data window at tap 0 of the fine delay line. The algorithm tries to align the rise and fall clocks to the left edge of their corresponding data window, by delaying the read data through the IDELAY element.

Next, the clocks are then delayed using the PHASER taps and centered within the corresponding data window. The PHASER_TAP resolution is based on the FREQ_REF_CLK period and the per-tap resolution is equal to (FREQ_REFCLK_PERIOD/2)/64 ps. For memory interface frequencies \geq 400 MHz, using the maximum of 64 PHASER taps can provide a delay of 1 data period or 1/2 the clock period. This enables the calibration logic to accurately center the clock within the data window.

For frequencies < 400 MHz, because FREQ_REF_CLK has twice the frequency of the MEM_REF_CLK, the maximum delay that can be derived from the PHASER is 1/2 the data period or 1/4 the clock period. Hence for frequencies < 400 MHz, just using the PHASER delay taps might not be sufficient to accurately center the clock in the data window. So for these frequency ranges, a combination of both data delay using IDELAY taps and PHASER taps is used. The calibration logic determines the best possible delays, based on the initial clock-data alignment.

The next step is to increment the fine phase shift delay line of the PHASER_IN and PHASER_OUT blocks one tap at a time until a data mismatch is detected. The data read out of IN_FIFO after the required settling time is then compared with the recorded data at the previous tap value. This is repeated until a data mismatch is found, indicating the detection of a valid data window edge.

Complex pattern read calibration stage is added as the last stage of calibration to improve margin.

Data Alignment and Valid Generation

This phase of calibration:

- Ensures read data from all the read byte groups are aligned to the rising edge of the ISERDES CLKDIV capture clock
- Sets the latency for fixed-latency mode.
- Matches the latency for each memory when wider memories are derived from small memories.
- Sends the determined latency to the read valid generation logic.

After the read data capture clock centering is achieved, the calibration logic writes out a known data pattern to the QDR II+ memory and issues continuous reads back from the memory. This is done to determine whether the read data comes back aligned to the positive edge or negative edge of the ICLKDIV output of the PHASER_IN. If the captured data from a byte group is found aligned to the negative edge, this is then made to align to the positive edge by using the EDGE_ADV input to the PHASER_IN, which shifts the ICLKDIV output by one fast clock cycle.

The next stage is to generate the valid signal associated with the data on the client interface. During this stage of calibration, a single write of a known data pattern is written to memory and read back. Doing this allows the read logic to count how many cycles elapse before the expected data returns. The basic flow through this phase is:

- 1. Count cycles until the read data arrives for each memory device.
- 2. Determine what value to use as the fixed latency. This value can either be your set indicated value from the PHY_LATENCY parameter or the maximum latency across all memory devices.
- 3. Calibrate the generation of the read valid signal. Using the value determined in the previous step, delay the read valid signal to align with the read data for user.
- 4. Assert cal_done.

Write Calibration

When a write calibration is enabled for design that has memory frequency runs at 400 MHz or above, the results of read calibration data alignment are used to determine if a given setting is valid for correct write operation. After memory initialization, the read capture is first calibrated using this set pattern before moving on to calibrate the writes. There is no training register inside QDR II+ SRAM, the reads and writes cannot be independently verified.

At each step of write calibration, the alignment of the read clock (CQ/CQB) with Q is performed to ensure the correct capture of data. If the data alignment portion of read calibration is performed for a given byte lane and the expected result is not found, the write is assumed to have caused the failure. At each step of write calibration, the read calibration and associated logic are reset and restarted.

Bit window size of data byte lane with K clock (K-byte lane) is first determined by using PHASER_OUT stage 3 delay. Stage 3 tap starts increment from tap 0 until the left-edge is found. If expected pattern return at tap 0, tap 0 is set as left edge tap position.

After the left edge of the K-byte lane is detected, the K clock is kept at this left tap position to perform non-K-byte lanes alignment. All non-K-byte lanes are aligned to the left edge of K-byte lane using the PHASER_OUT stage 2 delay.

Then, K clock (K-byte lane) is moved to the right using the PHASER_OUT stage 3 delay to determine the aggregate right edge of all byte lanes. After the right edge of the data window is determined, the centering process of K clock in the window is performed using the PHASER_OUT stage3 delay.

Customizing the Core

The 7 series FPGAs QDR II+ SRAM interface solution is customizable to support several configurations. The specific configuration is defined by Verilog parameters in the top-level of the core. As per the OOC flow, none of the parameter values are passed down to the user design RTL file from the example design top RTL file. So, any design related parameter change is not reflected in the user design logic. The MIG tool should be used to regenerate a design when parameters need to be changed. These parameters are summarized in Table 2-12.

Parameter	Description	Options
MEM_TYPE	This is the memory address bus width	QDR2PLUS
CLK_PERIOD	This is the memory clock period (ps).	
BURST_LEN	This is the memory data burst length.	4
DATA_WIDTH	This is the memory data bus width and can be set through the MIG tool. A maximum DATA_WIDTH of 36 is supported.	
BW_WIDTH	This must be set to DATA_WIDTH/9	
NUM_DEVICES	This is the number of memory devices used.	
MEM_RD_LATENCY	This specifies the number of memory clock cycles of read latency of the memory device used. This is derived from the memory vendor data sheet.	2.0 2.5
FIXED_LATENCY_MODE	This indicates whether or not to use a predefined latency for a read response from the memory to the client interface.	0, 1
CPT_CLK_CQ_ONLY	This indicates only one of the read clocks provided by the memory (rise clock) is used for the data capture.	TRUE
PHY_LATENCY	This indicates the desired latency through the PHY for a read from the time the read command is issued until the read data is returned on the client interface.	
CLK_STABLE	This is the number of cycles to wait until the echo clocks are stable.	(See memory vendor data sheet)
IODELAY_GRP ⁽¹⁾	This is a unique name for the IODELAY_CTRL that is provided when multiple IP cores are used in the design.	
REFCLK_FREQ	This is the reference clock frequency for IDELAYCTRLs. This parameter should not be changed.	200.0
RST_ACT_LOW	This is the active-Low or active-High reset. This is set to 1 when System Reset Polarity option is selected as active-Low and set to 0 when the option is selected as active-High.	0, 1
IBUF_LPWR_MODE	This enables or disables low power mode for the input buffers.	ON OFF
IODELAY_HP_MODE	This enables or disables high-performance mode within the IODELAY primitive. When set to OFF, the IODELAY operates in low power mode at the expense of performance.	ON OFF

Table 2-12: 7 Series FPGAs QDR II+ SRAM Memory Interface Solution Configurable Parameters

Parameter	Description	Options
SYSCLK_TYPE	This parameter indicates whether the system uses single-ended system clocks, differential system clocks, or is driven from an internal clock (No Buffer). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, sys_clk_p/sys_clk_n must be used. For single-ended clocks, sys_clk_i must be used. For the No Buffer option, sys_clk_i, which appears in the port list, needs to be driven from the internal clock.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER
REFCLK_TYPE	This parameter indicates whether the system uses single-ended reference clocks, differential reference clocks, is driven from an internal clock (No Buffer), or can connect system clock inputs only (Use System Clock). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, clk_ref_p/clk_ref_n must be used. For single-ended clocks, clk_ref_i must be used. For the No Buffer option, clk_ref_i, which appears in port list, needs to be driven from an internal clock. For the Use System Clock option, clk_ref_i is connected to the system clock in the user design top module.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER USE_SYSTEM_CLOCK
DIFF_TERM	This parameter indicates whether differential or non-differential termination is required for the system clock inputs.	TRUE FALSE
CLKIN_PERIOD	Input clock period.	-
CLKFBOUT_MULT	PLL voltage-controlled oscillator (VCO) multiplier. This value is set by the MIG tool based on the frequency of operation.	-
CLKOUT0_DIVIDE, CLKOUT1_DIVIDE, CLKOUT2_DIVIDE, CLKOUT3_DIVIDE	VCO output divisor for PLL outputs. This value is set by the MIG tool based on the frequency of operation.	-
CLKOUT0_PHASE	Phase of PLL output CLKOUT0. This value is set by the MIG based on the banks selected for memory interface pins and the frequency of operation.	-
DIVCLK_DIVIDE	PLLE2 VCO divisor. This value is set by the MIG tool based on the frequency of operation.	-
SIM_BYPASS_INIT_CAL	This simulation only parameter is used to speed up simulations.	FAST OFF

Table 2-12: 7 Series FPGAs QDR II+ SRAM Memory Interface Solution Configurable Parameters (Cont'd)

Table 2-12:	7 Series FPGAs QDR II+ SRAM Memory	y Interface Solution	Configurable Par	ameters (Cont'd)
-------------	------------------------------------	----------------------	-------------------------	------------------

Parameter	Description	Options
DEBUG_PORT	Turning on the debug port allows for use with the VIO of the Vivado logic analyzer feature. This allows you to change the tap settings within the PHY based on those selected though the VIO. This parameter is always set to OFF in the sim_tb_top module of the sim folder, because debug mode is not required for functional simulation.	ON, OFF

Notes:

1. This parameter is prefixed with the module name entered in MIG during design generation. If the design is generated with the module name as mig_7series_0, then IODELAY_GRP parameter name is mig_7series_0_IODELAY_MIG.

Table 2-13 contains parameters set up by the MIG tool based on the pinout selected. When making pinout changes, Xilinx recommends rerunning the MIG tool to set up the parameters properly. See Pinout Requirements, page 344. Mistakes to the pinout parameters can result in non-functional simulation, an unroutable design, and/or trouble meeting timing. These parameters are used to set up the PHY and route all the necessary signals to and from it. The parameters are calculated based on Data Write, Data Read, and Address/Control byte groups selected. These parameters do not consider the System Signals selection (that is, system clock, reference clock, and status signals).

Parameter	Description	Example
BYTE_LANES_B0, BYTE_LANES_B1, BYTE_LANES_B2	Defines the byte lanes being used in a given I/O bank. A 1 in a bit position indicates a byte lane is used, and a 0 indicates unused. This parameter varies based on the pinout and should not be changed manually in generated design.	Ordering of bits from MSB to LSB is T0, T1, T2, and T3 byte groups. 4'b1101: For a given bank, three byte lanes are used, and one byte lane is not used.
CPT_CLK_SEL_B0, CPT_CLK_SEL_B1, CPT_CLK_SEL_B2	 Three fields, one per possible I/O bank. Defines which read capture clocks are used for each byte lane in given bank. MRCC read capture clocks are placed in byte lanes 1 and/or 2, where parameter is defined for each data byte lane to indicate which read clock to use for the capture clock. 8 bits per byte lane, defined such that: [7:4] – 0 (bank below), 1 (current bank), 2 (bank above) to indicate in which bank the clock is placed. [3:0] – 1, 2 to indicate which of two capture clock sources This parameter varies based on the pinout and should not be changed manually in generated design. 	32'h11_11_11_11 = Four data byte lanes, all using the clocks in the same bank. 32'h11_11_01_01 = Four data byte lanes, two lanes using the capture clock from the bank below (16'h01_01), two using the capture clock from the current bank (16'h11_11).

Table 2-13: QDR II+ SRAM Memory Interface Solution Pinout Parameters

Parameter	Description	Example
DATA_CTL_B0, DATA_CTL_B1, DATA_CTL_B2	Defines mode of use of byte lanes in a given I/O bank. A 1 in a bit position indicates a byte lane is used for data, and a 0 indicates it is used for address/control. This parameter varies based on the pinout and should not be changed manually in generated design.	4'b1100: With respect to the BYTE_LANE example, two byte lanes are used for Data and one for Address/Control.
PHY_0_BITLANES, PHY_1_BITLANES, PHY_2_BITLANES	12-bit parameter per byte lane used to determine which I/O locations are used to generate the necessary PHY structures. This parameter is provided per bank. Except for the CQ_P/CQ_N, K_P/K_N, and DLL_OFF_N pins, all Data Write, Data Read, and Address/Control pins are considered for this parameter generation. This parameter varies based on the pinout and should not be changed manually in generated design.	This parameter denotes for all byte groups of a selected bank. All 12 bits are denoted for a byte lane and are ordered from MSB:LSB as BA98_7654_3210. For example, this parameter is 48'hFFE_FFF_000_2FF for one bank. 12'hDF6 (12'b1101_1111_0110): Bit lines 0, 3, and 9 are not used; the rest of the bits are used.
BYTE_GROUP_TYPE_B0, BYTE_GROUP_TYPE_B1, BYTE_GROUP_TYPE_B2	Defines the byte lanes for a given I/O bank as INPUT or OUTPUT. A 1 in a bit position indicates a byte lane contains INPUT pins, and a 0 indicates byte lane contains OUTPUT pins. This parameter varies based on the pinout and should not be changed manually in generated design.	4'b0110: Middle two byte lanes contain INPUT pins, and the other byte lanes contain OUTPUT pins.
K_MAP	 Bank and byte lane position information for write clocks (K/K#). 8-bit parameter provided per pair of signals. [7:4] – Bank position. Values of 0, 1, or 2 are supported [3:0] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. This parameter varies based on the pinout and should not be changed manually in generated design. 	Upper-most Data Write/Data Read or Address/Control byte group selected bank is referred as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1, and 0, respectively. 48'h00_00_00_00_03_13: This parameter is denoted for 6 write clock pairs with 8 bits for each clock pin. In this case, only two write clock pairs are used. Ordering of parameters is from MSB to LSB (that is, K[0]/ K#[0] corresponds to the 8 LSBs of the parameter. 8'h13: K/K# placed in bank 1, byte lane 3. 8'h20: K/K# placed in bank 2, byte lane 0.

Table 2-13: QDR II+ SRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
CQ_MAP	Bank and byte lane position information for the read clocks (CQ/CQ#). See the K_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the K_MAP example.
		Upper-most Data Write/Data Read or Address/Control byte group. The selected bank is referred to as Bank 0 in the parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom.
	Bank and byte lane position information for the address. 12-bit parameter provided per pin.	Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1, and 0, respectively. Bottom-most pin in a byte group is referred as '0' in MAP parameters.
ADD_MAP	 [11:8] – Bank position. Values of 0, 1, or 2 are supported. [7:4] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. 	Bottom-most pin in a byte group is referred as '0' in the MAP parameters. Numbering is counted from 0 to 9 from the bottom-most pin to the top pin within a byte group by excluding DQS I/Os. DQS_N and DQS_P pins of a byte group are numbered as A and B, respectively.
	 [3:0] – Bit position within a byte lane. Values of [0, 1, 2,, A, B] are supported. This parameter varies based on the pinout and should not be changed manually in generated design. 264'h000_000_239_238_237_2 34_233_232_231_230_229_228 A_225_224: This parameter is Address width of 22 bits with 3 In this example, the Address 9 Ordering of parameters is from is, SA[0] corresponds to the 1 parameter). 	264'h000_000_239_238_237_236_23B_23A_235_2 34_233_232_231_230_229_228_227_226_22B_22 A_225_224: This parameter is denoted for an Address width of 22 bits with 12 bits for each pin. In this example, the Address width is 20 bits. Ordering of parameters is from MSB to LSB (that is, SA[0] corresponds to the 12 LSBs of the parameter).
		12'h224: Address pin placed in bank 2, byte lane 2, at location 4.
		1, at location A.
RD_MAP	Bank and byte lane position information for the Read enable. See the ADD_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADD_MAP example.
WR_MAP	Bank and byte lane position information for the Write enable. See the ADD_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADD_MAP example.

Table 2-13: QDR II+ SRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
ADDR_CTL_MAP	Bank and byte lane position information for Address byte groups. Address requires three byte groups and this parameters denotes the byte groups in which all 3 Address byte groups are selected. See the K_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the K_MAP example.
D0_MAP, D1_MAP, D2_MAP, D3_MAP, D4_MAP, D5_MAP, D6_MAP, D7_MAP	Bank and byte lane position information for the Data Write bus. See the ADD_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADD_MAP example.
BW_MAP	Bank and byte lane position information for the Byte Write. See the ADD_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADD_MAP example.
Q0_MAP, Q1_MAP, Q2_MAP, Q3_MAP, Q4_MAP, Q5_MAP, Q6_MAP, Q7_MAP	Bank and byte lane position information for the Data Read bus. See the ADD_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADD_MAP example.

Table 2-13: QDR II+ SRAM Memory Interface Solution Pinout Parameters (Cont'd)

Design Guidelines

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA, FPGA speed grade, and the design frequency. The final frequency ranges are subject to characterization results.

For general PCB routing guidelines, see Appendix A, General Memory Routing Guidelines.

Bank Sharing Among Controllers

No unused part of a bank used in a memory interface is permitted to be shared with another memory interface. The dedicated logic that controls all the FIFOs and phasers in a bank is designed to only operate with a single memory interface and cannot be shared with other memory interfaces. With the exception of the shared address and control in the dual controller supported in MIG.

Trace Length Requirements

The trace lengths described here are for high-speed operation and can be relaxed depending on the application target bandwidth requirements. The package delay should be included when determining the effective trace length. Note that different parts in the same package have different internal package skew values. De-rate the minimum period appropriately in the **MIG Controller Options** page when different parts in the same package are used.

One method for determining the delay is to use the L and C values for each pin from the IBIS models. The delay value is determined as the square root of $(L \times C)$.

Another method is to generate the package lengths using the Vivado Design Suite. The following commands generate a csv file that contains the package delay values for every pin of the device under consideration.

```
link_design -part <part_number>
write_csv <file_name>
```

For example, to obtain the package delay information for the 7 series FPGA XC7K160T-FF676, this command should be issued:

```
link_design -part xc7k160tfbg676
write_csv flight_time
```

This generates a file named flight_time.csv in the current directory with package trace delay information for each pin. While applying specific trace-matching guidelines for the QDR II+ SRAM interface, this additional package delay term should be considered for the overall electrical propagation delay. Different die in the same package might have different delays for the same package pin. If this is expected, the values should be averaged appropriately. This decreases the maximum possible performance for the target device.

These rules indicate the maximum electrical delays between QDR II+ SRAM signals:

- The maximum electrical delay between any bit in the data bus, D, and its associated K/K# clocks should be ±15 ps.
- The maximum electrical delay between any Q and its associated CQ/CQ# should be ±15 ps.

- The maximum electrical delay between any address and control signals and the corresponding K/K# should be ± 50 ps.
- There is no relation between CQ and the K clocks. K should be matched with D, and CQ should be matched with Q (read data).

Pinout Requirements

Xilinx 7 series FPGAs are designed for very high-performance memory interfaces, and certain rules must be followed to use the QDR II+ physical layer. Xilinx 7 series FPGAs have dedicated logic for each byte group. Four byte groups are available in each 50-pin bank. Each 50-pin bank consists of four byte groups that contain one DQS Clock capable I/O pair and ten associated I/Os. Two pairs of Multi-region Clock-capable I/O (MRCC) pins are available in a bank, and are used for placing the read clocks (CQ and CQ#).

In a typical QDR II+ write bank configuration, 9 of these 10 I/Os are used for the Write data (D) and one is used for the byte write (BW). The write clocks (K/K#) use one of the DQS pairs inside the write bank. Within a read bank, the read data are placed on 9 of the 10 I/Os, and the CQ/CQ# clocks placed in the MRCC_P pins available inside the read bank.

Xilinx 7 series FPGAs have dedicated clock routing for high-speed synchronization that is routed vertically within the I/O banks. Thus, QDR II+ memory interfaces must be arranged in the banks vertically and not horizontally. In addition, the maximum height is three banks.

After generating a core through the MIG tool, the most optimal pinout has been selected for the design. Manual changes through the XDC are not recommended. However, if the XDC needs to be altered, the following rules must be taken into consideration:

- The write data bus (D) of a memory interface must be placed within a single bank. It is required to arrange the write data bus byte wise (nine bits wide) among the FPGA byte groups. All byte write (BW) signals of the interface are required to place in the same bank.
- K/K# clocks must be kept in the same bank as the write data bank. They should be placed on a DQS pin pair.
- The read data bus (Q) must be arranged byte wise (nine bits wide) among the FPGA byte groups. Xilinx recommends keeping the complete read data bus of a memory component within a single bank.
- The read data clocks (CQ and CQ#) must be placed on the two MRCC_P or MRCC_N pins available in the same bank as the read data or an adjacent bank to it. Xilinx recommends keeping the read data and read clocks in the same bank.
- All address/control signals must be placed within a single bank. The address bank should be placed adjacent to the data write (D) bank.
- The dll_off_n signal can be placed on any free I/O available in the banks used for the memory interface.

• Xilinx recommends keeping the system clock pins in the data write bank.

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

System Clock, PLL Location, and Constraints

The PLL is required to be in the bank that supplies the clock to the memory to meet the specified interface performance. The system clock input is also strongly recommended to be in this bank. The MIG tool follows these two rules whenever possible. However, exceptions are possible where pins might not be available for the clock input in the bank as that of the PLL. In this case, the clock input needs to come from an adjacent bank through the frequency backbone to the PLL. The system clock input to the PLL must come from clock-capable I/Os.

The system clock input can only be used for an interface in the same column. The system clock input cannot be driven from another column. The additional PLL or MMCM and clock routing required for this induces too much additional jitter.

Unused outputs from the PLL can be used as clock outputs. Only the settings for these outputs can be changed. Settings related to the overall PLL behavior and the used outputs must not be disturbed. A PLL cannot be shared among interfaces.

See Clocking Architecture, page 322 for information on allowed PLL parameters.

Configuration

The XDC contains timing, pin, and I/O standard information. The sys_clk constraint sets the operating frequency of the interface. It is set through the MIG GUI. This must be rerun if this constraint needs to be altered, because other internal parameters are affected. For example:

create_clock -period 1.875 [get_ports sys_clk_p]

The clk_ref constraint sets the frequency for the IDELAY reference clock, which is typically 200 MHz. For example:

create_clock -period 5 [get_ports clk_ref_p]

The I/O standards are set appropriately for the QDR II+ SRAM interface with LVCMOS15, HSTL15_I, HSTL15_I_DCI, DIFF_HSTL15_I, or DIFF_HSTL15_I_DCI, as appropriate. LVDS_25 is used for the system clock (sys_clk) and I/O delay reference clock (clk_ref). These standards can be changed, as required, for the system configuration. These signals are brought out to the top-level for system connection:

- **sys_rst** This signal is the main system reset (asynchronous).
- **init_calib_complete** This signal indicates when the internal calibration is done and that the interface is ready for use.
- **tg_compare_error** This signal is generated by the example design traffic generator if read data does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design. They can be generated and used internally instead of being brought out to pins.

Some interfaces might need to have the system clock in a bank above or below the bank with the address/control and data. In this case, the MIG tool puts an additional constraint in the XDC. For example:

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_nets sys_clk_p]
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hierarchical *pll*CLKIN1]

It results in the following warning during PAR. This warning can be ignored.

WARNING:Place:1402 - A clock IOB / PLL clock component pair have been found that are not placed at an optimal clock IOB / PLL site pair. The clock IOB component <sys_clk_p> is placed at site <IOB_X1Y76>. The corresponding PLL component <u_backb16/u_infrastructure/plle2_i> is placed at site <PLLE2_ADV_X1Y2>. The clock I/O can use the fast path between the IOB and the PLL if the IOB is placed on a Clock Capable IOB site that has dedicated fast path to PLL sites within the same clock region. You may want to analyze why this problem exists and correct it. This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint was applied on COMP.PIN <sys_clk_p.PAD> allowing your design to continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override is highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be corrected in the design.

Do not drive user clocks through the I/O clocking backbone from the region(s) containing the MIG generated memory interface to CMT blocks in adjacent regions due to resource limitations. For more information, see the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].

The MIG tool sets the VCCAUX_IO constraint based on the data rate and voltage input selected. The generated XDC has additional constraints as needed. For example:

```
# PadFunction: IO_L13P_T2_MRCC_37
set_property VCCAUX_IO DONTCARE [get_ports {sys_clk_p}]
set_property IOSTANDARD DIFF_HSTL_I [get_ports {sys_clk_p}]
# PadFunction: IO_L13N_T2_MRCC_37
set_property VCCAUX_IO DONTCARE [get_ports {sys_clk_n}]
set_property IOSTANDARD DIFF_HSTL_I [get_ports {sys_clk_n}]
set_property PACKAGE_PIN J22 [get_ports {sys_clk_n}]
```

For more information, see the Xilinx Timing Constraints Guide (UG612) [Ref 15].

For QDR II+ SRAM interfaces that have the memory system input clock (sys_clk_p/sys_clk_n) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSTL_I I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_HSTL_I and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_HSTL_I CCIO pins. For more details on usage and required circuitry for LVDS and LVDS_25 I/O Standards, see the 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2].

Termination

These recommendations apply to termination for QDR II+ SRAM:

- Simulation (using IBIS or other) is highly recommended. The loading of command and address signals depends on various factors, such as speed requirements and termination topology. Loading can be a limiting factor in reaching a performance target.
- Command and Address signals should be terminated to V_{TT} through a 50 Ω resistor.
- Write Clock (K_P/N) does not require an external termination if ODT is available. If ODT is not available, each line should be terminated to V_{TT} through a 50 Ω resistor.
- Write Data lines (D) do not require an external termination if ODT is available. If ODT is not available, each line should be terminated to V_{TT} through a 50 Ω resistor.
- Read Clock (CQ) does not require an external termination and should use DCI. Set the DCI termination for each single-ended line to 50Ω .
- Read Data lines (Q, QVLD) do not require an external termination and should use DCI. Set the DCI termination to 50Ω .

I/O Standards

The MIG tool generates the appropriate XDC for the core with SelectIO[™] interface standards based on the type of input or output to the 7 series FPGAs. These standards should not be changed. Table 2-14 contains a list of the ports together with the I/O standard used.

Signal ⁽¹⁾	Direction	I/O Standard
qdr_bw_n	Output	HSTL_I
qdr_cq_p, qdr_cq_n	Input	HSTL_I_DCI
qdr_d	Output	HSTL_I
qdr_k_p, qdr_k_n	InOut	DIFF_HSTL_II
qdr_q	Input	HSTL_I_DCI
qdr_r_n	Output	HSTL_I

Table 2-14: I/O Standards

Signal ⁽¹⁾	Direction	I/O Standard
qdr_sa	Output	HSTL_I
qdr_w_n	Output	HSTL_I

Table 2-14: I/O Standards (Cont'd)

Notes:

1. All signals operate at 1.5V.

DCI (HP banks) or IN_TERM (HR banks) is required at the FPGA to meet the specified performance. Designs generated by the MIG tool use the DCI standards for Data Read (Q) and Read Clock (CQ_P and CQ_N) in the High-Performance banks. In the High-Range banks, the MIG tool uses the HSTL_I standard with the internal termination (IN_TERM) attribute chosen in the GUI.

Clocking

The 7 series FPGA MIG QDR II+ SRAM design has two clock inputs, the reference clock and the system clock. The reference clock drives the IODELAYCTRL components in the design, while the system clock input is used to create all MIG design clocks that are used to clock the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations. For more information on clocking architecture, see Clocking Architecture, page 322.

The MIG tool allows you to input the Memory Clock Period and then lists available Input Clock Periods that follow the supported clocking guidelines. Based on these two clock periods selections, the generated MIG core appropriately sets the PLL parameters. The MIG tool enables automatic generation of all supported clocking structures. For information on how to use the MIG tool to set up the desired clocking structure including input clock placement, input clock frequency, and IDELAYCTRL ref_clk generation, see Creating the 7 Series FPGA QDR II+ SRAM Design, page 287.

Input Clock Guidelines

IMPORTANT: The input system clock cannot be generated internally.

• PLL Guidelines

1

- CLKFBOUT_MULT_F (M) must be between 1 and 16 inclusive.
- DIVCLK_DIVIDE (D, Input Divider) can be any value supported by the PLLE2 parameter.
- CLKOUT_DIVIDE (O, Output Divider) must be 2 for 400 MHz and up operation and 4 for below 400 MHz operation.

- The above settings must ensure the minimum PLL VCO frequency (FVCOMIN) is met. For specifications, see the appropriate DC and Switching Characteristics Data Sheet. The 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] includes the equation for calculating FVCO.
- The relationship between the input period and the memory period is InputPeriod = (MemoryPeriod × M)/(D × D1).
- The clock input (sys_clk) can be input on any CCIO in the column where the memory interface is located; this includes CCIO in banks that do not contain the memory interface, but must be in the same column as the memory interface. The PLL must be located in the bank containing the clock sent to the memory. To route the input clock to the memory interface PLL, the CMT backbone must be used. With the MIG implementation, one spare interconnect on the backbone is available that can be used for this purpose.
 - MIG versions 1.4 and later allow this input clocking setup and properly drive the CMT backbone.
 - CLOCK_DEDICATED_ROUTE = BACKBONE constraint is used to implement CMT backbone, following warning message is expected. It can be ignored safely.

WARNING: [Place 30-172] Sub-optimal placement for a clock-capable IO pin and PLL pair. The flow will continue as the CLOCK_DEDICATED_ROUTE constraint is set to BACKBONE.

```
u_mig_7series_0/c0_u_clk_ibuf/diff_input_clk.u_ibufg_sys_clk (IBUFDS.O) is locked
to IOB_X0Y176
u_mig_7series_0/c0_u_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y1
u_mig_7series_0/c1_u_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y5
.....
```

- For QDR II+ SRAM interfaces that have the memory system input clock (sys_clk) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSTL_I I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_HSTL_I and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_HSTL_I CCIO pins.
- It is acceptable to have differential inputs such as LVDS and LVDS_25 in I/O banks that are powered at voltage levels other than the nominal voltages required for the outputs of those standards (1.8V for LVDS outputs, and 2.5V for LVDS_25 outputs). However, these criteria must be met:
 - a. The optional internal differential termination is not used (DIFF_TERM = FALSE, which is the default value).

Note: This might require manually changing DIFF_TERM parameter located in the top-level module or setting this in the UCF or XDC.

b. The differential signals at the input pins meet the VIN requirements in the Recommended Operating Conditions table of the specific device family data sheet.

c. The differential signals at the input pins meet the VIDIFF (min) requirements in the corresponding LVDS or LVDS_25 DC specifications tables of the specific device family data sheet.

One way to accomplish the above criteria is to use an external circuit that both AC-couples and DC-biases the input signals. The figure shows an example circuit for providing an AC-coupled and DC-biased circuit for a differential clock input. RDIFF provides the 100 Ω differential receiver termination because the internal DIFF_TERM is set to FALSE. To maximize the input noise margin, all RBIAS resistors should be the same value, essentially creating a VICM level of VCCO/2. Resistors in the 10k to 100 k Ω range are recommended. The typical values for the AC coupling capacitors CAC are in the range of 100 nF. All components should be placed physically close to the FPGA inputs.

Figure 2-47: Example Circuit for AC-Coupled and DC-Biased Differential Clock Input

Note: The last set of guidelines on differential LVDS inputs are added within the LVDS and LVDS_25 (Low Voltage Differential Signaling) section of the 7 Series SelectIO Resources User Guide (UG471) [Ref 2] in the next release of the document.

These guidelines are irrespective of Package, Column (HR/HP), or I/O Voltage.

Sharing sys_clk between Controllers

The MIG 7 series FPGA designs require sys_clk to be in the same I/O bank column as the memory interface to minimize jitter.

- Interfaces Spanning I/O Columns A single sys_clk input cannot drive memory interfaces spanning multiple I/O columns. The input clock input must be in the same column as the memory interface to drive the PLL using the CMT Backbone, which minimizes jitter.
- Interfaces in Single I/O Column If the memory interfaces are entirely contained within the same I/O column, a common sys_clk can be shared among the interfaces.

The sys_clk can be input on any CCIO in the column where the memory interfaces are located. This includes CCIO in banks that do not contain the memory interfaces, but must be in the same column as the memory interfaces.

Information on Sharing BUFG Clock (phy_clk)

The MIG 7 series QDR II+ SRAM design includes an MMCM which outputs the phy_clk on a BUFG route. It is not possible to share this clock amongst multiple controllers to synchronize the user interfaces. This is not allowed because the timing from the FPGA logic to the PHY Control block must be controlled. This is not possible when the clock is shared amongst multiple controllers. The only option for synchronizing user interfaces amongst multiple controllers is to create an asynchronous FIFO for clock domain transfer.

Information on Sync_Pulse

The MIG 7 series QDR II+ SRAM design includes one PLL that generates the necessary design clocks. One of these outputs is the sync_pulse. The sync pulse clock is 1/16 of the mem_refclk frequency and must have a duty cycle distortion of 1/16 or 6.25%. This clock is distributed across the low skew clock backbone and keeps all PHASER_IN/_OUT and PHY_Control blocks in sync with each other. The signal is sampled by the mem_refclk in both the PHASER_INs/_OUTs and PHY_Control blocks. The phase, frequency, and duty cycle of the sync_pulse is chosen to provide the greatest setup and hold margin across PVT.

Debugging QDR II+ SRAM Designs

This section defines a step-by-step debugging procedure to assist in the identification and resolution of any issues that might arise during each phase of the memory interface design process.

Note: The overall read latency of the MIG 7 series QDR II+ core is dependent on how the Memory Controller is configured, but most critically on the target traffic/access pattern and the number of commands already in the pipeline before the read command is issued. Read latency is measured from the point where the read command is accepted by the user or native interface. Simulation should be run to analyze read latency.

Introduction

The QDR II+ memory interfaces in Virtex-7 FPGAs simplify the challenges associated with memory interface design. However, every application environment is unique and proper due diligence is required to ensure a robust design. Careful attention must be given to functional testing through simulation, proper synthesis and implementation, adherence to PCB layout guidelines, and board verification through IBIS simulation and signal integrity analysis.

This section defines a step-by-step debugging procedure to assist in the identification and resolution of any issues that might arise during each phase of the design process. Details are provided on:

- Functional verification using the UNISIM simulation models
- Design implementation verification
- Board layout verification
- Using the QDR II+ SRAM physical layer to debug board-level issues
- General board-level debug techniques

The two primary issues encountered during verification of a memory interface are:

- Calibration not completing properly
- Data corruption during normal operation

Problems might be seen in simulation, hardware, or both due to various root causes.

Figure 2-48 shows the overall flow for debugging problems associated with these two general types of issues.

Figure 2-48: Virtex-7 FPGA QDR II+ SRAM MIG Tool Debug Flowchart

Debug Tools

Many tools are available to debug memory interface design issues. This section indicates which resources are useful for debugging a given situation.

Example Design

QDR II+ SRAM design generation using the MIG tool produces an example design and a user design. The example design includes a synthesizable test bench that has been fully verified in simulation and hardware. This design can be used to observe the behavior of the MIG tool design and can also aid in identifying board-related problems.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen. Enabling this feature allows calibration, tap delay, and read data signals to be monitored using the Vivado logic analyzer feature. Selecting this option port maps the debug signals to VIO modules of the Vivado logic analyzer feature in the design top module.

Sample debug logic by connecting the debug ports to the Vivado Design Suite debug feature modules (that is, ILA and VIO) is provided in the example design top (example_top) module with a Debug Signals for Memory Controller option value of "ON." In User Design top, all debug port signals are grouped under a few buses and provided in the port list.

To confirm that all debug ports are connected to various modules, look at the reference example design top module. The debug ports generated in the User Design top module for Debug Port enable designs are "qdriip_ila0_data," "qdriip_ila0_trig," "qdriip_ila1_data," "qdriip_ila1_trig," "qdriip_vio2_async_in," and "qdriip_vio2_sync_out."

Vivado Design Suite Debug Feature

The Vivado Design Suite debug feature inserts logic analyzer, bus analyzer, and VIO software cores directly into the design. Supported versions of ILA and VIO are 3.0. The debug feature also allows you to set trigger conditions to capture application and MIG debug signals in hardware. Captured signals can be analyzed though the Vivado logic analyzer feature. For more information about the Vivado logic analyzer, software is available in the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

IMPORTANT: The Integrated Logic Analyzer (ILA) operates on a synchronous clock and cannot be triggered during reset. Instead, set the trigger on an ILA signal to look for a rising edge ("R") or falling edge ("F") with the radix value of the signal set to "Binary." With this trigger setting, the trigger can be armed. When the reset is applied and released, the trigger captures the desired ILA results.

Simulation Debug

Figure 2-49 shows the debug flow for simulation.

Figure 2-49: **Simulation Debug Flowchart**

Verifying the Simulation Using the Example Design

The example design generated by the MIG tool includes a simulation test bench and parameter file based on memory selection in the MIG tool.

The Questa Advanced Simulator, Vivado Simulator, IES, and VCS simulation tools are used for verification of MIG IP core at each software release. Script files to run simulations with IES and VCS simulators are generated in MIG generated output. Simulations using Questa Advanced Simulator and Vivado simulators can be done through Vivado Tcl Console commands or in Vivado IDE.

IMPORTANT: Other simulation tools can be used for MIG IP core simulation but are not specifically verified by Xilinx.

Simulation Flow Using IES and VCS Script Files

To run the simulation, go to this directory:

<project_dir>/<Component_Name>_ex/imports

For a project created with the name set as project_1 and the Component Name entered in Vivado IDE as mig_7series_0, go to the directory as follows:

project_1/mig_7series_0_ex/imports

IES and VCS simulation scripts are meant to be executed only in Linux operating systems.

The ies_run.sh and vcs_run.sh files are the executable files for running simulations using IES and VCS simulators respectively. Library files should be added to the ies_run.sh and vcs_run.sh files respectively. See the readme.txt file for details regarding simulations using IES and VCS.

Simulation Flow Using Vivado Simulator

1. In the **Open IP Example Design** Vivado project, under **Flow Navigator**, select **Simulation Settings** (Figure 2-50).

20	Simulation	
	Target simulator:	Vivado Simulator
	Simulator language:	Mixed
	Simulation set:	📾 sim_1
	Simulation top module name:	sim_tb_top
	Clean up simulation files	
	Generate scripts only	
on		
		ion Simulation Netlist Advanced
	xsim.simulate.runtime*	1000ns
	xsim.simulate.uut	
	xsim.simulate.uut xsim.simulate.wdb xsim.simulate.saif	
	xsim.simulate.uut xsim.simulate.wdb xsim.simulate.saif xsim.simulate.xsim.more_	options
	xsim.simulate.uut xsim.simulate.wdb xsim.simulate.saif xsim.simulate.xsim.more_	options o see a description of it
m	xsim.simulate.uut xsim.simulate.wdb xsim.simulate.saif xsim.simulate.xsim.more_	options o see a description of it
	xsim.simulate.uut xsim.simulate.wdb xsim.simulate.saif xsim.simulate.xsim.more_	options o see a description of it

Figure 2-50: **Simulation with Vivado Simulator**

2. Under the **Simulation** tab as shown in Figure 2-50, set the xsim.simulate.runtime as 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms). Apply the settings and select **OK**.

3. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 2-51.

Figure 2-51: Run Behavioral Simulation

Simulation Flow Using Questa Advanced Simulator

- 1. In the **Open IP Example Design** Vivado project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Questa Advanced Simulator/ModelSim.
 - a. Browse to the **Compiled libraries location** and set the path on **Compiled libraries location** option.
 - b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms), set modelsim.simulate.vsim.more_options to -novopt as shown in Figure 2-50.
- 3. Apply the settings and select **OK**.

0	Simulation		
	Iarget simulator:	QuestaSim/ModelSim Simulator	
	Simulator language: Simulation set:	Vivado Simulator QuestaSim/ModelSim Simulator Incisive Enterprise Simulator (IES) Verilog Compiler Simulator (VCS)	
Synthesis	Clean up simulation files		
	Generate scripts only		
Bitstream	complied library location.	VUSCONCLUVVUR DICLETIOUS/2017/DUDICLE 10000 / SCHCS	
Bitstream	Compilation Elaborati	ion Simulation Netlist Advanced	
Bitstream	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.uut	ion Simulation Netlist Advanced	
Bitstream	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom	ion Simulation Netlist Advanced	
Bitstream	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de	ion Simulation Netlist Advanced	
Bitstream	Compilation Elaboration modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif	ion Simulation Netlist Advanced	
Bitstream	<u>C</u> ompilation <u>E</u> laborati modelsim.simulate.log_air modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit	ion Simulation Netlist Advanced	
Bitstream	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	ion Simulation Netlist Advanced	
Bitstream IP	<u>C</u> ompilation <u>E</u> laborati modelsim.simulate.log_air modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	ion Simulation Netlist Advanced	

Figure 2-52: Simulation with Questa Advanced Simulator

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 2-51.
- 5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa Advanced Simulator tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using VCS

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Verilog Compiler Simulator (VCS).

- a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
- b. Under the Compilation tab, set the vcs.compile.vlogan.more_options to -sverilog.
- c. Under the **Simulation** tab, set the vcs.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time which is less than 1 ms) as shown in Figure 2-53.
- 3. Apply the settings and select **OK**.

🚴 Project Settings 📃 🔀				
	Simulation			
3	Target simulator:	Verilog Compiler Simulator (VCS)		
	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator		
Simulation	Simulation set:	Questa Advanced Simulator		
80	Simulation top module name:	Verilog Compiler Simulator (VCS)		
Elaboration	🔽 Clean up simulation files	Active-HDL Simulator		
	Gene <u>r</u> ate scripts only			
Synthesis				
	Compiled library location:			
Implementation		on Simulation Netlist Advanced		
1010	Verilog options:			
Bitstream	Generics/Parameters options	: •		
	vcs.compile.load_glbl			
ĪÞ	vcs.compile.vhdlan.more_options			
	vcs.compile.vlogan.more_options -sverilog			
vcs.compile.vlogan.more_options				
More VLOGAN compilation options				
		OK Cancel Apply		

Figure 2-53: Simulation with VCS

4. In the **Flow Navigator** window, select **Run Simulation** and select **Run Behavioral Simulation** as shown in Figure 2-51.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using IES

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Incisive Enterprise Simulator (IES).
 - a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
 - b. Under the Compilation tab, set the ies.compile.ncvlog.more_options to -sv.
 - c. Under the **Elaboration** tab, set the ies.elaborate.ncelab.more_options to -namemap_mixgen.
 - d. Under the **Simulation** tab, set the ies.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time which is less than 1 ms) as shown in Figure 2-54.

3. Apply the settings and select **OK**.

A Project Settings			
	Simulation		
3	Target simulator:	Incisive Enterprise Simulator (IES)	
	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator	
Simulation	Simulation set:	Questa Advanced Simulator	
8	Simulation top module name:	Verilog Compiler Simulator (VCS)	
Elaboration	🔽 Clean up simulation files	Active-HDL Simulator	
>	Gene <u>r</u> ate scripts only		
Synthesis			
	Compiled library location:		
Implementation	Compilation Elaboration Simulation Netlist Advanced		
1010	ies.elaborate.update	e options -namemap mixgen	
Bitstream			
<u> </u>			
ĪΡ			
ies.elaborate.ncelab.more_options More NCELAB elaboration options			
		OK Cancel Apply	

Figure 2-54: Simulation with IES

- 4. In the **Flow Navigator** window, select **Run Simulation** and select **Run Behavioral Simulation** as shown in Figure 2-51.
- 5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Note: MIG does not generate memory model files for QDR II+ designs. Appropriate memory model should be added to the **Simulation Sources** under **Sources** window of the **Open IP Example Design** project.

For Samsung Memory models appropriate define values should be added to the memory model itself. Vivado settings does not allow applying define values explicitly on memory models.

For detailed information on setting up Xilinx libraries, see COMPXLIB in the *Command Line Tools User Guide* (UG628) [Ref 17] and the *Synthesis and Simulation Design Guide* (UG626) [Ref 18]. For simulator tool support, see the *Zynq-7000 AP SoC and 7 Series Devices Memory Interface Solutions Data Sheet* (DS176) [Ref 1].

A working example design simulation completes memory initialization and runs traffic in response to the test bench stimulus. Successful completion of memory initialization and calibration results in the assertion of the cal_done signal. When this signal is asserted, the Traffic Generator takes control and begins executing writes and reads according to its parameterization.

Table 2-15 shows the signals and parameters of interest, respectively, during simulation.

Signal Name Usage	Description
tg_compare_error	This signal indicates a mismatch between the data written from the UI and data received during a read on the UI. This signal is a part of the example design. A single error asserts this signal; it is held until the design is reset.
tg_cmp_error	This signal indicates a mismatch between the data written from the UI and the data received during a read on the UI. This signal is part of the example design. This signal is asserted each time a data mismatch occurs.
app_wr_cmd	This signal indicates that the write address and write data are valid for a write command
app_wr_addr	This is the address provided for the write command
app_wr_data	This is the write data for a write command
app_wr_bw_n	This signal is the byte write control
app_rd_cmd	This signal indicates that the read address is valid for a read command
app_rd_addr	This address is provided for the read command
app_rd_data	This read data is returned from the memory device
app_rd_valid	This signal is asserted when app_rd_data is valid

Table 2-15: Signals of Interest During Simulation

Memory Initialization

The QDR II+ memories do not require an elaborate initialization procedure. However, you must ensure that the $Doff_n$ signal is provided to the memory as required by the vendor. The QDR II+ SRAM interface design provided by the MIG tool drives the $Doff_n$ signal from the FPGA. After the internal MMCM has locked after a wait period of 200 µs, the $Doff_n$ signal is asserted High. After $Doff_n$ is asserted and following CLK_STABLE (set to 2,048) number of CQ clock cycles, commands are issued to the memory.

For memory devices that require the $Doff_n$ signal to be terminated at the memory and not be driven from the FPGA, you must perform the required termination procedure.

Calibration

Calibration completes read leveling, write calibration, and read enable calibration. This is completed over two stages. This sequence successfully completes when the cal_done signal is asserted. For more details, see Physical Interface, page 324.

The first stage performs per-bit read leveling calibration. The data pattern used during this stage is 00FF00FF00FFF00. The data pattern is first written to the memory, as shown in Figure 2-55.

♦ sys_clk_p	St0																		
🧇 sys_rst	St1																		
🔶 clk_ref	St1										l								
🖃 🔶 qdriip_k_p	00	00	<u>(</u> j1	<u>)oo</u>	11	<u>)00</u>	(11)00	(11)00	(11	<u> Xoo</u>	11)	00	11	<u>)00</u>	(11	Ľ
[St0			ц													1		٦
l	St0			Ц													1		٦
🖅 🔶 qdriip_k_n	11	11	χρο	11	χοφ	(11)00	(11),00	(11)00	<u>)</u> 11	100)	11	00	<u>X11</u>	<u>Xoo</u>	X
🖅 🔶 qdriip_sa	000000000000000000000000000000000000000	000	000000	oopooc	0000	(000	000000	0000000	001	<u>)00000</u>	000000	00000	000	X	<u> 000000</u>	000000	<u>oopooo</u>	1	X
🗉 🔶 qdriip_bw_n	0000	000	0																
🔶 qdriip_w_n	St1			Ц															
🖃 🔶 qdriip_d	000000000000000000000000000000000000000	000	000000	Dobooc	<u>1000b</u>	000000	00000	1111111	(111)(<u>0000000</u>	<u>00 (</u> 11	11	<u>, ooo</u>	<u>(111)</u>	1)(000	<u>opooc</u>	<u>oopooc</u>	000000	0
	St0			_															
	St0																		
	St0		_							ļ									
	St0		_																
	St0		_																
	St0																		
	St0																		
	St0																		
	St0																		
	St0																		

Figure 2-55: Writes for First Stage Read Calibration

This pattern is then continuously read back while the per-bit calibration is completed, as shown in Figure 2-56.

Figure 2-56: Reads for First Stage Read Calibration

The second stage performs a read enable calibration. The data pattern used during this stage is ..55..AA. The data pattern is first written to the memory, and then read back for the read enable calibration, as shown in Figure 2-57.

Figure 2-57: Write and Read for Second Stage Read Calibration

An additional read is performed so the read bus is driven to a different value. This is mostly required in hardware to make sure that the read calibration can distinguish the correct data pattern.

After second stage calibration completes, cal_done is asserted, signifying successful completion of the calibration process.

Test Bench

After cal_done is asserted, the test bench takes control, writing to and reading from the memory. The data written is compared to the data read back. Any mismatches trigger an assertion of the error signal. Figure 2-58 shows a successful implementation of the test bench with no assertions on error.

Figure 2-58: **Test Bench Operation After Completion of Calibration**

Proper Write and Read Commands

When sending write and read commands, you must properly assert and deassert the corresponding UI inputs. See User Interface, page 319 and Interfacing with the Core through the Client Interface, page 321 for full details. The test bench design provided within the example design can be used as a further source of proper behavior on the UI.

To debug data errors on the QDR II+ SRAM interface, it is necessary to pull the UI signals into the simulation waveform.

In the Questa Advanced Simulator Instance window, highlight **u_ip_top** to display the necessary UI signals in the **Objects** window, as shown in Figure 2-59. Highlight the user interface signals noted in Table 2-15, page 361, right-click, and select **Add > To Wave > Selected Signals**.

Figure 2-59: **Questa Advanced Simulator Instance Window**

Figure 2-60 and Figure 2-61 show example waveforms of a write and read on both the user interface and the QDR II+ interface.

Figure 2-60: User Interface Write and Read

1	💠 sys_clk	1												ЦŢ					ΨF							ЪΨ						
1	💠 sys_rst_n	1																														
4	🔷 qdriip_w_n_delay	1																														
1	🔶 qdriip_r_n_delay	1																													¬	
	💠 qdriip_k_p_delay	0	0)3.0)3 (0)	(3)(0)(3)0 (3)	0)3 (0)3 (0)	3 10 (3)) (3)(o	<u>(3)</u> 0)3	JD)3	10)3 D) (3	<u>)o (</u> 3	0 (3)(0	3 (0):	3 (0)3 (0)(3)(o (3)o	(3)) <u>13 (</u> 0	13 (0)3	3 10)3	10 (3)	οß)0 (3	(0)3 (0)3 (0)3 10 13	_)o (:)0 (3)(
	💠 qdriip_k_n_delay	3	<u>(3)0 (</u> 3	03)	0)3)0)3 (0)	3 (0 (3)[]	0 (3 (0))	3 (0)3	<u>,0)</u> 3 <u>)</u> 0	<u>)</u> 3)0	(3)0 [3)(0]3 (0	3 0 3	0 (3)() (3)0)	3)(0);	3 (0)3		3 (0 (3	10 (3)0) [3](0	3 (0)	30)3 (0	(3)0)(3)0 (3)0 (3)0	3 (0	3 (0)3
H -1	💠 qdriip_sa_delay	0032c	002fc)002fd	(00	2fe)002ff)0	0300	(0030	11 J	1030	2	00303	(003	04)(0324			10032	5)	0032	6	00327	10	0328)003	29 (0
	💠 qdriip_d_delay	000000000	000000	000		X													<u>(</u>)	00000												
	🔶 qdriip_q_delay	22222222																								Ð						
	💠 qdriip_bw_n_delay	0	0																													
B -1	🔶 qdriip_cq_p_delay	0	0 3 0) (3)0	13)0 13	3 (0)3	0)3(0	<u>)</u> (3](0	(3)0(3	0 (3)	0)3(0)3	3 (0);	3 (0 (3	0 3)0 (3	<u>)o]3)o</u>)3 (0	3 10 /3	<u>)o (</u> 3	0 (3)	0 3	0)3)0)3 (0)	<u>3]0 (</u>	3)0(3)o (t	3 (0)3	(0)3(<u>0 (3)</u>	0 (3 (0)	3)0)	3 (0 (3)
	💠 qdriip_cq_n_delay	3	3 (0)3	3 (0)3	10)3 10) (3)0	(3)0(3	Xo 13	<u>) (0) 3) (0</u>	(\$ 10)	3)0 (3)0	13)) <u>(</u> 3 (0	3 (0)3 (0	<u>)</u> 3 lo)3)0 (3	0 (3 (0)3 (0	30	3.0	3 0 3)0 (3)	<u>(</u>) () 3 (0)3 J) (3)0	(3)0(3)0);	3 (0)3)	0)3)	0)(3)(0)
-	💠 qdriip_dll_off_n_delay	1																														

Figure 2-61: QDR II+ Interface Write and Read

\$

Synthesis and Implementation Debug

Figure 2-62 shows the debug flow for synthesis and implementation.

Figure 2-62: Synthesis and Implementation Debug Flowchart

IMPORTANT: The standard synthesis flow for Synplify is not supported for the core.

Verify Successful Synthesis and Implementation

The example design and user design generated by the MIG tool include synthesis/implementation script files and .xdc files. These files should be used to properly synthesize and implement the targeted design and generate a working bitstream.

Verify Modifications to the MIG Tool Output

The MIG tool allows you to select the FPGA banks for the memory interface signals. Based on the banks selected, the MIG tool outputs a XDC with all required location constraints. This file is located in both the example_design/par and user_design/constraints directories and should not be modified.

The MIG tool outputs open source RTL code parameterized by top-level HDL parameters. These parameters are set by the MIG tool and should not be modified manually. If changes are required, such as decreasing or increasing the frequency, the MIG tool should be rerun to create an updated design. Manual modifications are not supported and should be verified independently in behavioral simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MIG tool QDR II+ SRAM designs have been verified to meet timing using the example design across a wide range of configurations. However, timing violations might occur, such as when integrating the MIG tool design with your specific application logic.

Any timing violations that are encountered must be isolated. The timing report output by TRACE (.twx/.twr) should be analyzed to determine if the failing paths exist in the MIG tool QDR II+ SRAM design or the UI (backend application) to the MIG tool design. If failures are encountered, you must ensure the build options (that is, XST, MAP, PAR) specified in the file are used.

If failures still exist, Xilinx has many resources available to aid in closing timing. The PlanAhead[™] tool [Ref 19] improves performance and quality of the entire design. The *Xilinx Timing Constraints User Guide* (UG612) [Ref 15] provides valuable information on all available Xilinx constraints.

Hardware Debug

Figure 2-63 shows the debug flow for hardware.

Figure 2-63: Hardware Debug Flowchart

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and usage of the expected FPGA pin. You must ensure that the design follows all clocking guidelines. If clocking guidelines have been followed, the interface should be run at a slower speed. Not all designs or boards can accommodate slower speeds. Lowering the frequency increases the marginal setup or hold time, or both, due to PCB trace mismatch, poor signal integrity, or excessive loading. When lowering the frequency, the MIG tool should be rerun to regenerate the design with the lower clock frequency. Portions of the calibration logic are sensitive to the CLK_PERIOD parameter; thus, manual modification of the parameter is discouraged.

Verify Board Pinout

You should ensure that the pinout provided by the MIG tool is used without modification. Then, the board schematic should be compared to the <design_name>.pad report generated by PAR. This step ensures that the board pinout matches the pins assigned in the implemented design.

Run Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations must be run using the I/O buffer information specification (IBIS). These simulations should always be run for both pre-board and post-board layouts. The purpose of running these simulations is to confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the *Virtex-5 FPGA ML561 Memory Interfaces Development Board User Guide* (UG199) [Ref 20] can be used as a guideline. This chapter provides a detailed look at signal integrity correlation results for the ML561 board. It can be used as an example for signal integrity analysis. It also provides steps to create a design-specific IBIS model to aid in setting up the simulations. While this guide is specific to Virtex-5 devices and the ML561 development board, the principles therein can be applied to MIG designs with 7 series FPGAs.

Run the Example Design

The example design provided with the MIG tool is a fully verified design that can be used to test the memory interface on the board. It rules out any issues with the backend logic interfacing with the MIG tool core. In addition, the test bench provided by the MIG tool can be modified to send out different data patterns that test different board-level concerns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the Vivado logic analyzer feature should be used to analyze the behavior of MIG tool core signals. For more information about the Vivado logic analyzer, software is available in the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

A good starting point in hardware debug is to load the provided example_design onto the board in question. This is a known working solution with a test bench design that checks for data errors. This design should complete successfully with the assertion of cal_done and no assertions of compare_error. Assertion of cal_done signifies successful completion of calibration while no assertions of compare_error signifies that the data is written to and read from the memory compare with no data errors.

The cmp_err signal can be used to indicate if a single error was encountered or if multiple errors are encountered. With each error encountered, cmp_err is asserted so that the data can be manually inspected to help track down any issues.

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors occur. Looking at the bit errors, these should be identified:

- Are errors seen on data bits belonging to certain CQ clock groups?
- Are errors seen on accesses to certain addresses of memory?
- Do the errors only occur for certain data patterns or sequences?

This can indicate a shorted or open connection on the PCB. This can also indicate an SSO or crosstalk issue. It might be necessary to isolate whether the data corruption is due to writes or reads. This case can be difficult to determine because if writes are the cause, read back of the data is bad as well. In addition, issues with control or address timing affect both writes and reads.

Some experiments that can be tried to isolate the issue are:

- If the errors are intermittent, have the design issue a small initial number of writes, followed by continuous reads from those locations. If the reads intermittently yield bad data, there is a potential read issue.
- Check/vary only write timing:
 - Check that the external termination resistors are populated on the PCB.
 - Use ODELAY to vary the phase of D relative to the K clocks.
- Vary only read timing:
 - Check the IDELAY values after calibration. Look for variations between IDELAY values. IDELAY values should be very similar for Qs in the same CQS group.
 - Vary the IDELAY taps after calibration for the bits that are returning bad data.

This affects only the read capture timing.

Debugging the Core

The Debug port is a set of input and output signals that either provide status (outputs) or allow you to make adjustments as the design is operating (inputs). When generating the QDR II+ SRAM design through the MIG tool, an option is provided to turn the Debug Port on or off. When the Debug port is turned off, the outputs of the debug port are still generated but the inputs are ignored.

When the Debug port is turned on, the inputs are valid and must be driven to a logical value. Driving the signals incorrectly on the debug port might cause the design to fail or have less read data capture margin.

When running the core in hardware, a few key signals should be inspected to determine the status of the design. The dbg_phy_status bus described in Table 2-16 consists of status bits for various stages of calibration. Checking the dbg_phy_status bus gives initial information that can aid in debugging an issue that might arise, determining which portion of the design to look at, or looking for some common issues.

Debug Port Signal	Name	Description	If Issues Arise
dbg_phy_status[0]	rst_wr_clk	FPGA logic reset based on PLL lock and system input reset	If this signal stays asserted, check your clock source and system reset input
dbg_phy_status[1]	io_fifo_rden_cal_done & po_ck_addr_cmd_delay_ done	I/O FIFO initialization to ensure the I/O FIFOs are in an almost full condition and the phaser out delay to provide the 90° phase shift to address/control signals are done	Check if the PHY control ready signal is asserted
dbg_phy_status[2]	init_done	QDR II+ SRAM initialization sequence is complete	N/A ⁽¹⁾
dbg_phy_status[3]	cal_stage1_start	Stage 1 read calibration start signal	N/A
dbg_phy_status[4]	edge_adv_cal_done	Stage 1 calibration is complete and edge_adv calibration is complete	Stage 1 calibration did not happen right. Make sure valid read data is seen during stage1 calibration.
dbg_phy_status[5]	cal_stage2_start	Latency calibration start signal after pi_edge_adv calibration is completed.	If this signal does not go High, then stage 1 has not completed. Make sure the expected data is being returned from the memory.
dbg_phy_status[6]	cal_stage2_start & cal_done	Latency calibration start signal	N/A
dbg_phy_status[7]	Cal_done	Calibration complete	N/A

Notes:

1. N/A indicates that as long as previous stages have completed, this stage is also completed.

The read calibration results are provided as part of the Debug port as various output signals. These signals can be used to capture and evaluate the read calibration results.

Read calibration uses the IODELAY to align the capture clock in the data valid window for captured data. The algorithm shifts the IODELAY values and looks for edges of the data valid window on a per-byte basis as part of the calibration procedure.

Margin Check

Debug signals are provided to move either clocks or data to verify functionality and to confirm sufficient margin is available for reliable operation. These signals can also be used to check for signal integrity issues affecting a subset of signals or to deal with trace length mismatches on the board. To verify read window margin, enable the debug port when generating a design in the MIG tool and use the provided example design. The steps to follow are:

- 1. Open the Vivado hardware session and program the FPGA under test with generated BIT and LTX files.
- Verify that calibration completes (init_calib_complete should be asserted) and no errors currently exist in the example design (both tg_compare_error and dbg_cmp_err should be Low).
- 3. To measure margin with PRBS8 pattern, set VIO signals with the listed values in the traffic_gen_top instance in example_top:

vio_modify_enable = 'd1 vio_data_mode_value = 'd7 vio_addr_mode_value = 'd3 vio_instr_mode_value = 'd4 vio_bl_mode_value = 'd2 vio_fixed_bl_value = 'd128 vio_fixed_instr_value = 'd1 vio_data_mask_gen = 'd0

- 4. Assert vio_dbg_clear_error or system reset.
- 5. Select a given byte lane using dbg_byte_sel.
- 6. Observe the tap values on PHASER_IN for the selected byte lane using dbg_pi_counter_read_val.
- 7. Increment the tap values on PHASER_IN until an error occurs (tg_compare_error should be asserted) using dbg_pi_f_inc. Record how many phaser taps it took to get an error from the starting location. This value is the tap counts to reach one side of the window for the entire byte lane.
- 8. Decrease the tap values on PHASER_IN using dbg_pi_f_dec back to the starting value.
- 9. Clear the error recorded previously by asserting vio_dbg_clear_error.

- 10. Decrement the PHASER_IN taps using dbg_pi_f_dec to find the other edge of the window until another error occurs (tg_compare_error should be asserted).
- 11. Record those results, return the PHASER_IN taps to the starting location, and clear the error again (vio_dbg_clear_error).

This technique uses the error signal that is common for the entire interface, so any marginality in another bit or byte not being tested might affect the results. For better results, a per-bit error signal should be used. PHASER_IN taps need to be converted into a common unit of time to properly analyze the results.

Automated Margin Check

Manually moving taps to verify functionality is useful to check issue bits or bytes, but it can be difficult to step through an entire interface looking for issues. For this reason, the QDR II+ SRAM Memory Interface Debug port contains automated window checking that can be used to step through the entire interface. A state machine is used to take control of the debug port signals and report results of the margin found per-bit. Currently, the automated window check only uses PHASER_IN to check window sizes, so depending on the tap values after calibration, the left edge of the read data window might not be found properly.

To measure margin with PRBS8 traffic pattern, set VIO signals with the listed values in the traffic_gen_top instance in example_top:

vio_modify_enable = 'd1 vio_data_mode_value = 'd7 vio_addr_mode_value = 'd3 vio_instr_mode_value = 'd4 vio_bl_mode_value = 'd2 vio_fixed_bl_value = 'd128 vio_fixed_instr_value = 'd1 vio_data_mask_gen = 'd0

Next, assert vio_dbg_clear_error or assert system reset before proceeding with automated margin check. The steps to follow for automated margin check include:

- Start automated window check by issuing a single pulse on the VIO signal dbg_win_start.
- 2. The VIO signal dbg_win_active indicates that the automated window check is in progress. The signals dbg_pi_f_inc and dbg_pi_f_dec must not be used when dbg_win_active is asserted.

- 3. The current bit and byte being measured are indicated by the VIO signals dbg_win_current_bit and dbg_win_current_byte, respectively.
- 4. To get the left and right tap counts for a completed bit, select the desired bit using VIO signal dbg_win_bit_select and observe the results on dbg_win_left_ram_out and dbg_win_right_ram_out, respectively.

Table 2-17 lists the signals associated with this automated window checking functionality.

Signal	Description
dbg_win_start	Single pulse that starts the chk_win state machine. Use the Vivado logic debug VIO module to control this.
dbg_win_bit_select[6:0]	Manual bit selection for reporting of results. The results are provided on dbg_win_left_ram_out and dbg_win_right_ram_out for the bit indicated.
dbg_win_active	Flag to indicate chk_win is active and measuring read window margins. While active, the state machine has control over the debug port signals.
vio_dbg_clear_error	Clear error control signal controlled by chk_win.
dbg_win_current_bit[6:0]	Feedback to indicate which bit is currently being monitored during automatic window checking.
dbg_win_current_byte[3:0]	Feedback to indicate which byte is currently being monitored (and used to select the byte lane controls with dbg_byte_sel).
dbg_win_left_ram_out [WIN_SIZE – 1:0]	PHASER_IN tap count to reach the left edge of the read window for a given bit.
dbg_win_right_ram_out [WIN_SIZE – 1:0]	PHASER_IN tap count to reach the right edge of the read window for a given bit.
dbg_pi_f_inc	chk_win control signal to increment PHASER_IN. This signal should be used only when dbg_win_active is deasserted.
dbg_pi_f_dec	chk_win control signal to decrease PHASER_IN. This signal should be used only when dbg_win_active is deasserted.

Table 2-17: **Debug Window Port Signals**

DEBUG_PORT Signals

The top-level wrapper, user_top, provides several output signals that can be used to debug the core if the debug option is checked when generating the design through the MIG tool. Each debug signal output begins with dbg_. The DEBUG_PORT parameter is always set to OFF in the sim_tb_top module of the sim folder, which disables the debug option for functional simulations. These signals and their associated data are described in Table 2-18.

Table 2-18: DEBUG_PORT Signal Descriptions

Signal	Direction	Description
dbg_phy_wr_cmd_n[1:0]	Output	This active-Low signal is the internal wr_cmd used for debug with the Vivado logic analyzer feature.
dbg_phy_rd_cmd_n[1:0]	Output	This active-Low signal is the internal rd_cmd used for debug with the Vivado logic analyzer feature.
dbg_phy_addr[ADDR_WIDTH × 4 – 1:0]	Output	Control address bus used for debug with the Vivado logic analyzer feature.
dbg_phy_wr_data[DATA_WIDTH × 4 – 1:0]	Output	Data being written that is used for debug with the Vivado logic analyzer feature.
dbg_phy_init_wr_only	Input	When this input is High, the state machine in qdr_phy_write_init_sm stays at the write calibration pattern to QDR II+ memory. This verifies calibration write timing. This signal must be Low for normal operation.
dbg_phy_init_rd_only	input	When this input is High, the state machine in qdr_phy_write_init_sm stays at read calibration state from QDR II+ memory. This verifies calibration read timing and returned calibration data. This signal must be Low for normal operation.
dbg_byte_sel	Input	This input selects the corresponding byte lane and you set the phaser/IDELAY tap controls
dbg_pi_f_inc	Input	This signal increments the PHASER_IN generated ISERDES clk that is used to capture rising data
dbg_pi_f_dec	Input	This signal decrements the PHASER_IN generated ISERDES clk that is used to capture rising data
dbg_po_f_inc	Input	This signal increments the PHASER_OUT generated OSERDES clk that is used to capture falling data
dbg_po_f_dec	Input	This signal increments the PHASER_OUT generated OSERDES clk that is used to capture falling data
dbg_phy_pi_fine_cnt	Output	This output indicates the current PHASER_IN tap count position
dbg_phy_po_fine_cnt	Output	This output indicates the current PHASER_OUT tap count position
dbg_cq_num	Output	This signal indicates the current CQ/CQ# being calibrated
dbg_q_bit	Output	This signal indicates the current Q being calibrated
dbg_valid_lat[4:0]	Output	Latency in cycles of the delayed read command
dbg_q_tapcnt	Output	Current Q tap setting for each device
dbg_inc_latency	Output	This output indicates that the latency of the corresponding byte lane was increased to ensure proper alignment of the read data to the user interface.
dbg_error_max_latency	Output	This signal indicates that the latency could not be measured before the counter overflowed. Each device has one error bit.

Table 2-18:	DEBUG	PORT	Signal	Descriptions	(Cont'd)
-------------	-------	------	--------	--------------	----------

Signal	Direction	Description
dbg_error_adj_latency	Output	This signal indicates that the target PHY_LATENCY could not be achieved
dbg_align_rd0 [DATA_WIDTH – 1:0]	Output	This bus shows the captured output of the first rising data
dbg_align_rd1 [DATA_WIDTH – 1:0]	Output	This bus shows the captured output of the second rising data
dbg_align_fd0 [DATA_WIDTH – 1:0]	Output	This bus shows the captured output of the first falling data
dbg_align_fd1 [DATA_WIDTH – 1:0]	Output	This bus shows the captured output of the second falling data
dbg_cmplx_rd_loop	Input	When High, complex read level continues forever.
dbg_cmplx_rd_lane[2:0]	Input	Selects the lane to hang on when dbg_cmplx_rd_loop == 'b1.
dbg_K_left_shift_right	Input	Shifts the location of the left edge sent to the POC right.
dbg_K_right_shift_left	Input	Shifts the location of the right edge sent to the POC left.
dbg_cmplx_wr_loop	Input	When High, complex write pattern is written indefinitely.

Write Init Debug Signals

Table 2-19 indicates the mapping between the write init debug signals on the dbg_wr_init bus and debug signals in the PHY. All signals are found within the qdr_phy_write_init_sm module and are all valid in the clk domain.

Bits	PHY Signal Name	Description
dbg_wr_init[14:0]	phy_init_r	One hot state machine.
dbg_wr_init[18:15]	phase_valid	Per byte lane comparison results.
dbg_wr_init[22:19]	lanes_solid_r	Comparison success post threshold per lane.
dbg_wr_init[23]	po_delay_done	Phaser out adjustment complete.
dbg_wr_init[24]	rdlvl_stg1_done	Read level cycle complete.
dbg_wr_init[25]	rdlvl_stg1_start	Start read level calibration.
dbg_wr_init[26]	edge_adv_cal_start	Start cycle (edge) alignment.
dbg_wr_init[27]	edge_adv_cal_done	Edge alignment complete.
dbg_wr_init[28]	cal_stage2_start	Start latency calibration.
dbg_wr_init[29]	read_cal_done	Latency calibration complete.
dbg_wr_init[30]	rst_stg1_r	Reset read level block.
dbg_wr_init[31]	rst_stg2_r	Reset edge and latency calibration logic.
dbg_wr_init[32]	suppress_stg1	All bytes successfully read leveled. Suppress further read levels.

Bits	PHY Signal Name	Description
dbg_wr_init[36:33]	seen_valid_r	Successful read level recorded per lane.
dbg_wr_init[37]	qdr_edge_adv_err	Edge advance timeout.
dbg_wr_init[38]	qdr_stg2_err	Latency calibration timeout.
dbg_wr_init[39]	rst_samp_cnt	Reset sample counters.

Table 2-19: Write Init Debug Signal Map (Cont'd)

Read Stage 1 Calibration Debug Signals

Table 2-20 indicates the mapping between bits within the dbg_rd_stage1_cal bus and debug signals in the PHY. All signals are found within the qdr_rld_phy_rdlvl module and are all valid in the clk domain.

Table 2-20: Read Stage 1 Debug Signal Map

Bits	PHY Signal Name	Description
dbg_rd_stage1_cal[2:0]	sm_r	Read level main state machine.
dbg_rd_stage1_cal[7:6]	seq_sm_r	Read level sequence state bits.
dbg_rd_stage1_cal[14:12]	rdlvl_work_lane_r	Lane currently undergoing read level calibration.
dbg_rd_stage1_cal[15]	rdlvl_stg1_start	Write side signal causing read level block to start.
dbg_rd_stage1_cal[16]	rdlvl_stg1_done	Read level block signals completion.
dbg_rd_stage1_cal[17]	rdlvl_stg1_start	Write side signal causing read level to copy first lane result across all lanes.
dbg_rd_stage1_cal[25:18]	rdlvl_stg1_cal_bytes_r	Lanes for which write side is requesting calibration.
dbg_rd_stage1_cal[31]	cmplx_rdcal_start	Write side signal causing read level to do complex cal.
dbg_rd_stage1_cal[32]	cmplx_rd_data_valid	Write side signal informing read level that complex read data is valid.
dbg_rd_stage1_cal[48:41]	rd_data_comp_r	Per byte comparison results for complex calibration.
dbg_rd_stage1_cal[56:49]	iserdes_comp_r	Per byte comparison results for simple calibration.
dbg_rd_stage1_cal[57]	rdlvl_lane_match	Overall comparison result for both simple and complex.
dbg_rd_stage1_cal[66:61]	largest_left_edge	Phaser in taps when the right most left edge was found.
dbg_rd_stage1_cal[72:67]	smallest_right_edge	Phaser in taps when the left most right edge was found.
dbg_rd_stage1_cal[78:73]	mem_out_dec	Output of static compensation ROM.
dbg_rd_stage1_cal[81]	rdlvl_pi_stg2_f_incdec	Controls directing of phaser in stepping.
dbg_rd_stage1_cal[82]	rdlvl_pi_en_stg2_f	Phaser in step command.
dbg_rd_stage1_cal[85:83]	pi_lane_r	Lane to which phaser in commands apply.
dbg_rd_stage1_cal[91]	prev_match_r	Previous sample matched.
dbg_rd_stage1_cal[96:92]	match_out_r	idelay of last detected invalid to valid match transition.
dbg_rd_stage1_cal[102:97]	samp_cnt_r	Sample counter.
dbg_rd_stage1_cal[108:103]	samps_match_r	Cumulative sample match count.

Bits	PHY Signal Name	Description
dbg_rd_stage1_cal[109]	samp_result_held_r	Result from previous sample cycle.
dbg_rd_stage1_cal[154+:40]	simp_dlyval_r	Five bits per lane dlyval results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_left_r	Six bits per lane left results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_right_r	Six bits per lane right results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_center_r	Six bits per lane center results for simple pattern.
dbg_rd_stage1_cal[378+:48]	cmplx_left_r	Six bits per lane left results for complex pattern.
dbg_rd_stage1_cal[426+:48]	cmplx_right_r	Six bits per lane right results for complex pattern.
dbg_rd_stage1_cal[474+:48]	cmplx_center_r	Six bits per lane center results for complex pattern.
dbg_rd_stage1_cal[682+:48]	simp_left_63	Left edge result is 63 for simple pattern, one bit per lane.
dbg_rd_stage1_cal[690+:48]	cmplx_left_63	Left edge result is 63 for complex pattern, one bit per lane.
dbg_rd_stage1_cal[698+:48]	simp_right_63	Right edge result is 63 for simple pattern, one bit per lane.
dbg_rd_stage1_cal[706+:48]	cmplx_right_63	Right edge result is 63 for complex pattern, one bit per lane.
dbg_rd_stage1_cal[522+:72]	rd_data_lane_r	Aligned PHY data for lane currently undergoing calibration.
dbg_rd_stage1_cal[594+:72]	iserdes_lane_r	Raw PHY data for lane currently undergoing calibration.
dbg_rd_stage1_cal[714+:72]	cmplx_rd_burst_bytes	Complex data to compare against memory read data.
dbg_rd_stage1_cal[786+:9]	bit_comp	Cumulative compare per bit.
dbg_rd_stage1_cal[795+:8]	simp_min_eye_r	Minimum eye detected per lane simple pattern.
dbg_rd_stage1_cal[803+:8]	cmplx_min_eye_r	Minimum eye detected per lane complex pattern.

Table 2-20: Read Stage 1 Debug Signal Map (Cont'd)

Read Stage 2 Calibration Debug

Table 2-21 indicates the mapping between bits within the dbg_rd_stage2_cal bus and debug signals in the PHY. All signals are found within the qdr_rld_phy_read_stage2_cal module and are all valid in the clk domain.

Table 2-21: Read Stage 2 Debug Signal Map

Bits	PHY Signal Name	Description
dbg_stage2_cal[0]	en_mem_latency	Signal to enable latency measurement
dbg_stage2_cal[5:1]	latency_cntr[0]	Indicates the latency for the first byte lane in the interface
dbg_stage2_cal[6]	rd_cmd	Internal rd_cmd for latency calibration
dbg_stage2_cal[7]	latency_measured[0]	Indicates latency has been measured for byte lane 0
dbg_stage2_cal[8]	bl4_rd_cmd_int	Indicates calibrating for burst length of 4 data words
dbg_stage2_cal[9]	bl4_rd_cmd_int_r	Internal register stage for burst 4 read command

Bits	PHY Signal Name	Description				
dbg_stage2_cal[10]	edge_adv_cal_start	Indicates start of edge_adv calibration, to see if the pi_edge_adv signal needs to be asserted				
dbg_stage2_cal[11] rd0_vld		Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[12]	fd0_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[13]	rd1_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[14]	fd1_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[15]	phase_vld	Valid data is seen for the particular byte for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[16]	rd0_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[17]	fd0_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[18]	rd1_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[19]	fd1_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[20]	phase_bslip_vld	Valid data is seen when bitslip applied to read data for the byte being calibrated (indicated by byte_cnt)				
dbg_stage2_cal[21]	clkdiv_phase_cal_done_4r	Indicates data validity complete, proceed to assert the pi_edge_adv signal if needed				
dbg_stage2_cal[22]	pi_edge_adv	Phaser control signal to advance the Phaser clock, ICLKDIV by one fast clk cycle. Only used for $nCK_PER_CLK = = 2$.				
dbg_stage2_cal[25:23]	byte_cnt[2:0]	Indicates the byte that is being checked for data validity				
dbg_stage2_cal[26]	inc_byte_cnt	Internal signal to increment to the next byte				
dbg_stage2_cal[29:27]	pi_edge_adv_wait_cnt	Counter to wait between asserting the phaser control signal, pi_edge_adv signal in the various byte lanes.				
dbg_stage2_cal[30]	bitslip	FPGA logic bitslip control signal, indicates when the logic shifts the data alignment. Only used for nCK_PER_CLK == 4.				
dbg_stage2_cal[31]	rd2_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.				
dbg_stage2_cal[32]	fd2_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.				
dbg_stage2_cal[33]	rd3_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for				

 $nCK_PER_CLK = = 4.$

Table 2-21: Read Stage 2 Debug Signal Map (Cont'd)

Bits	PHY Signal Name	Description			
dbg_stage2_cal[34]	fd3_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.			
dbg_stage2_cal[35]	latency_measured[1]	Indicates latency has been measured for byte lane 1			
dbg_stage2_cal[36]	latency_measured[2]	Indicates latency has been measured for byte lane 2			
dbg_stage2_cal[37]	latency_measured[3]	Indicates latency has been measured for byte lane 3			
dbg_stage2_cal[38]	error_adj_latency	Indicates error when target PHY_LATENCY cannot be achieved			
dbg_stage2_cal[127:39]	Reserved	Reserved			

Table 2-21: Read Stage 2 Debug Signal Map (Cont'd)

CLOCK_DEDICATED_ROUTE Constraints

System Clock

If the SRCC/MRCC I/O pin and PLL are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. QDR II+ SRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on the SRCC/MRCC I/O and PLL allocation needs to be handled manually for the IP flow. QDR II+ SRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Reference Clock

If the SRCC/MRCC I/O pin and MMCM are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint is set to FALSE. Reference clock is a 200 MHz clock source used to drive IODELAY CTRL logic (through an additional MMCM). This clock is not utilized, CLOCK_DEDICADE_ROUTE (as they are limited in number), hence the FALSE value is set. QDR II+ SRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on SRCC/MRCC I/O and MMCM allocation needs to be handled manually for the IP flow. QDR II+ SRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Chapter 3

RLDRAM II and RLDRAM 3 Memory Interface Solutions

Introduction

The RLDRAM II and RLDRAM 3 Memory Interface Solutions (MIS) are a Memory Controller and physical layer for interfacing Xilinx[®] 7 series FPGAs user designs to RLDRAM II and RLDRAM 3 devices. An RLDRAM II/RLDRAM 3 device can transfer up to two, four, or eight words of data per request and are commonly used in applications such as look-up tables (LUTs), L3 cache, and graphics.

The RLDRAM II/RLDRAM 3 memory solutions core is composed of a user interface (UI), Memory Controller (MC), and physical layer (PHY). It takes simple user commands and converts them to the RLDRAM II/RLDRAM 3 protocol before sending them to the memory. Unique capabilities of the 7 series FPGAs allow the PHY to maximize performance and simplify read data capture within the FPGA. The full solution is complete with a synthesizable reference design.

This chapter describes the core architecture and information about using, customizing, and simulating a LogiCORE[™] IP RLDRAM II/RLDRAM 3 memory interface core for the 7 series FPGAs.

Although this soft Memory Controller core is a fully verified solution with guaranteed performance, termination and trace routing rules for PCB design need to be followed to have the best design. For detailed board design guidelines, see Design Guidelines, page 466.

IMPORTANT: *RLDRAM II and RLDRAM 3 designs currently do not support memory-mapped AXI4 interfaces.*

For detailed information and updates about the 7 series FPGAs RLDRAM II and RLDRAM 3 interface cores, see the appropriate 7 series FPGAs data sheet [Ref 13] and the Zynq-7000 AP SoC and 7 Series FPGAs Memory Interface Solutions Data Sheet (DS176) [Ref 1].

IMPORTANT: Memory Interface Solutions v4.1 only supports the Vivado[®] Design Suite. The ISE[®] Design Suite is not supported in this version.

379

Using MIG in the Vivado Design Suite

This section provides the steps to generate the Memory Interface Generator (MIG) IP core using the Vivado Design Suite and run implementation.

1. Start the Vivado Design Suite (see Figure 3-1).

Figure 3-1: Vivado Design Suite

2. To create a new project, click the **Create New Project** option shown in Figure 3-1 to open the page as shown in Figure 3-2.

🝌 New Project	
	Create a New Vivado Project This wizard will guide you through the creation of a new project To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
VIVADO.	To continue, click Next.
	< Back Next > Einish Cancel

Figure 3-2: Create a New Vivado Tool Project

3. Click **Next** to proceed to the **Project Name** page (Figure 3-3). Enter the **Project Name** and **Project Location**. Based on the details provided, the project is saved in the directory.

📥 New Proje	ect 🛛	
Project Nam Enter a nan	ne me for your project and specify a directory where the project data files will be stored	N
Project name:	project_1]
Project location:	: C:/Vivado)
🔽 Create Proj	ject Subdirectory	
Project will be cr	reated at: C:/Vivado/project_1	
	< <u>B</u> ack <u>N</u> ext > Einish Cancel]

Figure 3-3: Project Name

4. Click **Next** to proceed to the **Project Type** page (Figure 3-4). Select the **Project Type** as **RTL Project** because MIG deliverables are RTL files.

🔺 New Project
Project Type Specify the type of project to create.
 RTL Project You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. Do not specify sources at this time Pog not specify sources, view device resources, run design analysis, planning and implementation. Do not specify sources at this time J/O Planning Project Do not specify design sources. You will be able to view part/package resources. Imported Project Create a Vivado project from a Synplify, XST or ISE Project File.
< <u>B</u> ack <u>N</u> ext > Einish Cancel

Figure 3-4: Project Type

5. Click **Next** to proceed to the **Add Sources** page (Figure 3-5). RTL files can be added to the project in this page. If the project was not created earlier, proceed to the next page.

À New Project	
Add Sources Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your project. You can also add and create sources later.	2
Id Name Library HDL Source for Location Id Name Library HDL Source for Location Add Files Add Directories Create File Scan and Add RTL Include Files Into Project Copy Sources into Project Copy Sources into Project Add Sources from Subdirectories Target Language: Verilog	*
< <u>Back</u> Next > Einish Ca	incel

Figure 3-5: Add Sources

6. Click **Next** to open the **Add Existing IP (Optional)** page (Figure 3-6). If the IP is already created, the XCI file generated by the IP can be added to the project and the previous created IP files are automatically added to the project. If the IP was not created earlier, proceed to the next page.

A New Project	
Add Existing IP (optional) Specify an existing configurable IP file to add to your project.	2
Id IP Name IP File Add Files Copy Sources into Project	X
< Back Next > Einish Co	incel

Figure 3-6: Add Existing IP (Optional)

7. Click **Next** to open the **Add Constraints (Optional)** page (Figure 3-7). If the constraints file exists in the repository, it can be added to the project. Proceed to the next page if the constraints file does not exist.

dd Constraints (optional) Specify or create constraint files for physical and timing constraints.	
Specify or create constraint files for physical and timing constraints.	
Constraint File Location	X
Add Files Create File	

Figure 3-7: Add Constraints (Optional)

 Click Next to proceed to the Default Part page (Figure 3-8) where the device that needs to be targeted can be selected. The Default Part page appears as shown in Figure 3-8.

Chasse a default Vilia		d fan tratin anaia		the second labor					1
Choose a deradic XIIII	x part or boart	u for your proje	u, misican ber	.nangeu later.					k
Pricer Pricer		A.I.			Destroyed	All.		-	
Parts Pro	Juct category	All		· · ·	Package All			*	
📓 Boards	Eamily	All		²	opeed grade	All		*	
	Sub-Family	All		*	Temp grade	All			
			ſ	Reset All Fil	ters				
			, i						
		12							
earch: Q+									
)evice	I/O Pin	Available	LUT	FlipFlops	Block	DSPs	Gb	PCI	
	Count	IOBs	Elements	. apr oppo	RAMs		Transceivers	Buses	
xc7vx485tffg1157-2L	1,157	600	303600	607200	1030	2800	20	4	
xc7vx485tffg1157-1	1,157	600	303600	607200	1030	2800	20	4	
xc7vx485tffg1158-3	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-2	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-2L	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1158-1	1,158	350	303600	607200	1030	2800	48	4	
xc7vx485tffg1761-3	1,761	700	303600	607200	1030	2800	28	4	
xc7vx485tffg1761-2	1,761	700	303600	607200	1030	2800	28	4	
xc7vx485tffg1761-2L	1,761	700	303600	607200	1030	2800	28	4	
xc7vx485tffg1761-1	1,761	700	303600	607200	1030	2800	28	4	
xc7vx485tffg1927-3	1,927	600	303600	607200	1030	2800	56	4	
								>	

Figure 3-8: Default Part (Default Window)

Select the target **Family**, **Package**, and **Speed Grade**. The valid devices are displayed in the same page, and the device can be selected based on the targeted device (Figure 3-9).

Boards Eamily Kintex-7 Speed grade -3 -4 Sub-Family All Remaining Imp grade All Remaining Imp grade All Remaining Imp grade rch: Q- Reset All Filters Imp grade Block RAMs DSPs Gb Transceivers PCI rice I/O Pin Count Available LUT Elements FlipFlops Block RAMs DSPs Gb Transceivers Buse c7k410tffg900-3 900 500 203800 407600 445 840 16 1	pecify Fi	lter Produ <u>c</u> t category	All		*	Package	FFG900		•
Sub-Family All Remaining Igmp grade All Remaining Igmp grade Reset All Filters Reset All Filters Reset All Filters rch: Q- Q- Sub-Family Available LUT FilpFlops Block DSPs Gb PCI rice I/O Pin Available LUT FilpFlops Block DSPs Gb Transceivers Buse c7k410tffg900-3 900 500 203800 407600 445 840 16 1 c7k410tffg900-3 900 500 254200 508400 795 1540 16 1	Boards	Eamily	Kintex-7		→ Sp	bee <u>d</u> grade	-3		*
Reset All Filters rch: Q /ice I/O Pin Count Available IOBs LUT Elements FlipFlops Block RAMs DSPs Gb Transceivers PCI Buse c7k425tffg900-3 900 500 203800 407600 445 840 16 1 c7k410tffg900-3 900 500 254200 508400 795 1540 16 1		S <u>u</u> b-Family	All Remaining		- I	emp grade	All Remaining		-
rch: Q+ //ce I/O Pin Available LUT FlipFlops Block DSPs Gb PCI Count IOBs Elements FlipFlops RAMs DSPs Transceivers Buse c7K325tffg900-3 900 500 203800 407600 445 840 16 1 c7K410tffg900-3 900 500 254200 508400 795 1540 16 1				[Reset All Filte	ers			
rch: Q vice I/O Pin Available LUT Elements FlipFlops RMs DSPs Gb PCI Count IOBs 203800 407600 445 840 16 1 c7k410tffg900-3 900 500 254200 508400 795 1540 16 1									
vice II/O Pin Available LUT Elements FlipFlops Block DSPs Gb PCI Count 10Bs 203800 407600 445 840 16 1 c7k410tffg900-3 900 500 254200 508400 795 1540 16 1	arch: Q+								
c7K325tffg900-3 900 500 203800 407600 445 840 16 1 c7K410tffg900-3 900 500 254200 508400 795 1540 16 1	evice	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs	Gb Transceivers	PCI Buse
c7k410tffg900-3 900 500 254200 508400 795 1540 16 1	xc7k325tffg90l	900	500	203800	407600	445	840	16	1
	xc7k410tffg90	0-3 900	500	254200	508400	795	1540	16	1

Figure 3-9: Default Part (Customized Window)

Apart from selecting the parts by using **Parts** option, parts can be selected by choosing the **Boards** option, which brings up the evaluation boards supported by Xilinx (Figure 3-10). With this option, design can be targeted for the various evaluation boards. If the XCI file of an existing IP was selected in an earlier step, the same part should be selected here.

🝌 New Project							
Default Part Choose a default Xilinx part or boar	d for your project. This c	an be chang	ed later.				2
Specify Filter Parts Boards	<u>E</u> amil <u>P</u> ackag Spee <u>d</u> grad	y All e All e All Re	set All Filters	*]		
Search: Q.	Part	I/O Pin	Available	LUT	FlipFlops	Block	DSPs
Kintex-7 KC705 Evaluation Platform	xc7k325tffg900-2	900	500	203800	407600	445	840
Virtex-7 VC707 Evaluation Platform	xc7vx485tffg1761-2 xc7z020clg484-1	1,761 484	700 200	303600 53200	607200 106400	1030 140	2800 220
			< <u>B</u> a	ack Next	>][Eini	sh 📃	Cancel

Figure 3-10: **Default Part Boards Option**

9. Click **Next** to open the **New Project Summary** page (Figure 3-11). This includes the summary of selected project details.

Figure 3-11: New Project Summary

10. Click **Finish** to complete the project creation.

- 11. Click **IP Catalog** on the **Project Manager** window to open the Vivado IP catalog window. The IP catalog window appears on the right side panel (see Figure 3-12, highlighted in a red circle).
- 12. The MIG tool exists in the **Memories & Storage Elements > Memory Interface Generators** section of the IP catalog window (Figure 3-12) or you can search from the Search tool bar for the string "MIG."

🙏 project_22 - [C:/Users/avdhesh/	project_22/project_22.xpr] - Vivado 20	13.3_UB3.0									_ 8 ×
File Edit Flow Tools Window L	ayout View Help									Q. Search commands	
🯄 😂 📾 🖉 🗈 🎼 🗙 🗞	🕨 🚵 🚳 💥 🔽 🧔 🔛 Default L	ayout 👻 🕅	(🔶 🔭	\$							Ready
Flow Navigator	Project Manager - project_22										×
Q 🔀 🛱	Sources	_ C] Ŀ" ×	Σ Project	Summary 🗙 💷 IP Catalog 🗙						
	 조 😄 📦 장 🖹 🗷 			⇒]] Search	: 0,-						
Project Manager	Constant Sources		_		Alama		1 Version 52	AV14 0	abur Licence	External De ULNU	
Project Settings	⊕ · Constraints				Name Page 10		version (*	A614 D	atus License	External Re VLNV	a l
St Add Sources	Gimulation Sources				Basic Elements						
💷 IP Catalog				😼 🖬 👝	Communication & Networking						
				Pr (***	Debug & Verification						
· IP Integrator					Digital Signal Processing Embedded Processing						
Create block Design					FPGA Features and Design						
Open Block Design				R 🕞	Math Functions						
🍓 Generate Block Design				S 🖻 🗁	Memories & Storage Elements						
4 Simulation	Hierarchy Libraries Compile Order			O	F ECC		2.0	Produ	ction Included	D:/Xlinx/ub xlinx.com:ip	
Simulation Simulation Soltings	🚴 Sources 🛛 💡 Templates			6	Memory Interface Generators						
Due Coulding	IP Properties	- 5	Le ×		- 📔 Memory Interface Generator (MIG 7 Series)		2.0 AXI4	Produ	ction Included	D:/Xilinx/ub xilinx.com:ip	
w Run Simulation				•	C RAMs & ROMs						_
 RTL Analysis 				B-00	Standard Bus Interfaces						
Open Elaborated Design	- memory interrace Generator (MIG 7 Serie	15)		Detail	i i i i i i i i i i i i i i i i i i i						
	Version: 2.0		<u></u>		Manage Tabada an Garage backwird 7						
 Synthesis 	Interfaces: AXI4			Nam	Memory Incertace Generator (MIG 7	series)					
🚳 Synthesis Settings	Part status: Production		_	vers	on: 2.0 (Rev. 1)						
Run Synthesis	License: Included			Deer	ialles: AALY						will be also
Open Synthesized Design	Vendor: Xilinx, Inc.		-	Desc	you design your application. Kintex-7 suppo	rts DDR3 SDRAM	in to generate advanced 1, DDR2 SDRAM, LPDDR2	SDRAM, QDR II+ SRAM	, RLDRAMII and RLE	RAMIII. Virtex-7 supports DDR3 SD	RAM,
	IP library: ip				DDR2 SDRAM, LPDDR2 SDRAM, QDR II+ SF	AM, RLDRAMII	and RLDRAMIII. Artix-7 s	upports DDR3 SDRAM, [DR2 SDRAM and LP	DDR2 SDRAM. Zyng supports DDR3	SDRAM, 🔲
 Implementation 											
Implementation Settings	Design Runs	1	1			1		1	1		- U C ×
Run Implementation	Name	Part ws7k225kffe000.2	Constr	aints Varado	Strategy Suphasis Defaults (Wurde Suphasis 2012)	Status	Progress	Start	Elapsed Faile	d Routes WNS TNS WHS	THS TPWS
Open Implemented Design	→ impl 1	xc7k325tffq900-2	constrs_	1 Vivado 1 Vivado	Implementation Defaults (Vivado Implementation 201	3) Not started	0%				
Program and Debug	●										
6 Bitstream Settings	14										
🛀 Generate Bitstream	▶										
Den Hardware Manager	4										
	mit .										
			_								
	Tcl Console 🗋 🗭 Messages 📜 🔍 Lo	g 🗋 Reports 🔤 🖾 De	esign Runs	J							

Figure 3-12: IP Catalog Window – Memory Interface Generator

13. Select MIG 7 Series to open the MIG tool (Figure 3-13).

	e construir construires for are riser serected, and scriptines
CORE Generator Options This GUI includes all configurable opti Please note that some of the options s controller. It is very important that the below.	ons along with explanations to aid in generation of the required controller. elected in the CORE Generator Project Options will be used in generation of th correct CORE Generator Project Options are selected. These options are lister
Selected CORE Generator Project Opti	ons:
FPGA Family	Kintex-7
FPGA Part	xc7k325t-ffg900
Speed Grade	-2
Synthesis Tool	ISE
Design Entry	VERILOG
If any of these options are incorr Options, and restart MIG. This ve not tested with other ISE version	ect, please click on "Cancel", change the CORE Generator Project rsion of MIG is guaranteed to work with ISE 14.3 and Vivado 2012.3 s or Vivado versions.
9	
	CORE Generator Options This GUI includes all configurable options s controller. It is very important that the below. Selected CORE Generator Project Opti FPGA Family FPGA Part Speed Grade Synthesis Tool Design Entry If any of these options are incorr Options, and restart MIG. This ven not tested with other 15E version

Figure 3-13: 7 Series FPGAs Memory Interface Generator FPGA Front Page

14. Click **Next** to display the **Output Options** page.

Customizing and Generating the Core

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects, defining IP or managed IP projects, and creating block designs.

MIG Output Options

- 1. Select **Create Design** to create a new Memory Controller design. Enter a component name in the Component Name field (Figure 3-14).
- 2. Choose the number of controllers to be generated. This option determines the replication of further pages.

Kilinx Memory Interface Generator	
	MIG Output Options
action [1]	© Create Design
	Select this option to generate a memory controller. Generating a memory controller will create RTL, design constraints (UCF), implementation and simulation files.
	O Verify Pin Changes and Update Design
	Selecting this feature verifies the modified UCF for a design already generated through MIG. This option will allow you to change the pin out and validate it instantly. It updates the input UCF file to be compatible with the current version of MIG. While updating the UCF it preserves the pin outs of the input UCF. This option will also generate the new design with the Component Name you selected in this page.
	Component Name
	Please specify the component name for the memory interface. The design directories will be generated under a directory with this name. Three directories will be created "example_design", "user_design" and "docs". The user_design will contain the generated memory interface. The example_design adds a simple example application connected to the generated memory interface. Note that the Component Name will be prepended to all of the RTL fles.
	Component Name mig_7series
	Multi-Controller
Memory	Up to maximum of 8 controllers with a combination of DDR3 SDRAM, DDR2 SDRAM, QDRII+ SRAM or RLDRAM II can be generated. The number of controllers that can be accommodated may be limited by the data width and the number of banks available in device. Refer user guide for more information
3	Number of Controllers 1
Interface	AXI4 Interface
	Enables the AXI4 interface. Only DDR3 SDRAM and DDR2 SDRAM controllers support AXI4 interface.
Generator	AXI4 Interface
User Guide Version Info	< Back Next> Cancel

Figure 3-14: MIG Output Options

MIG outputs are generated with the folder name <component name>.

IMPORTANT: Only alphanumeric characters can be used for <component name>. Special characters cannot be used. This name should always start with an alphabetical character and can end with an alphanumeric character.

When invoked from Xilinx Platform Studio (XPS), the component name is corrected to be the IP instance name from XPS.

3. Click Next to display the Pin Compatible FPGAs page.

Pin Compatible FPGAs

The **Pin Compatible FPGAs** page lists FPGAs in the selected family having the same package. If the generated pinout from the MIG tool needs to be compatible with any of these other FPGAs, this option should be used to select the FPGAs with which the pinout has to be compatible (Figure 3-15).

🖣 Xilinx Memory Interface Generat	or 📃 🗆 🔀
REFERENCE DESIGN EL	Pn Compatible FPGAs include all devices with the same peckage and speed grade as the target device. Different FPGA devices with the same peckage do not have the same bonded pins. By selecting Fin Compatible FPGAs, NIG will only select pins that are common between the target device and all selected devices. Use the default UCF in the part folder for the target part. If the target part is changed, use the appropriate UCF in the compatible LPGA is not. If a Pin Compatible FPGA is not chosen now and later a different FPGA is needed to be used, the generated UCF may not work for the new device and a board spin may be required. A device is considered compatible only if the package and speed grade matches to the target part. MIG only ensures that NIG generated pin cut is compatible arrong the selected compatible FPGA devices. A blank lating is a black of the case, the generated pin cut is compatible and the selected target part and this page can be skeped. A blank lating dates that there are no compatible parts exist for the selected target part and this page can be skeped.
Pin Compatible FPGAs	Note that different parts in the same package will have different internal package skew values. Do rate the minimum period appropriately in the Controller Options page when different parts in the same package are used. Consult the User Gude for more information.
Memory Selection	Target FPGA xxC7k4101-fbg676 -3
Controller Options	Pin Competible FPGAs
AXI Parameter	□ kntex7
Memory Options	♥ xc%70(+fbg676 ♥ xc%160)-fbg576
FPGA Options	xc7K3251-fbg576
Extended FPGA Options	
Bank Selection	
System Signals Selection	
Summary	
Simulation Options	
PCB Information	
Design Notes	
User Guide Version Info	< <u>D</u> ack <u>U</u> ext> <u>C</u> ancel

Figure 3-15: Pin-Compatible 7 Series FPGAs

- 1. Select any of the compatible FPGAs in the list. Only the common pins between the target and selected FPGAs are used by the MIG tool. The name in the text box signifies the target FPGA selected.
- 2. Click **Next** to display the **Memory Selection** page.

Creating the 7 Series FPGAs RLDRAM II/RLDRAM 3 Memory Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

- 1. Select the RLDRAM II or RLDRAM 3 controller type.
- 2. Click **Next** to display the **Controller Options** page.

Figure 3-16: **Memory Selection Page**

RLDRAM II and RLDRAM 3 designs currently do not support memory-mapped AXI4 interfaces.

Controller Options

This page shows the various controller options that can be selected.

REFERENCE DESIGN	Options for Controller 0 - RLDRAM II		
	Clock Period: Choose the dock period for the desired frequency. The allowed period range(2000 - 5000) is a function of the selected FEGA part and FEGS speed grade. Refer to the User Guide for nore information.	2000 💿 ps	500.00 MHz
	The allowed period range is PRELINDIARY. The final range will be listed after characterization.		
	Vocany, low Youx, joinst he set b 2.0% in the High Performance banks for the highest data rates. Vocau, jo is not available in the High Kange banks, how that Vocau, is a someon to groups of banks. Consult the 7 Series Detasheets and FPGA SelectID Resources User Guide for more information.	1.89	v
Pin Compatible FPGAs 🛛 🌱	Memory Part: Select the memory part. Part(s) marked with a warning symbol are not compatible		
nemory selection	with the trequency selection above. Find an equivalent part or create a part using the "Create Custom Part" button if the part needed is not listed here. The "Create Custom Part" leature is not supported for RLDRAMIT.	43630-18	•
landraðher Oytisten 🛛 🚩	Data Width: Select the Data Width. Parts marked with a warning symbol are not compatible with the frequency and memory part selected above.	36	•
NI Parameter Nemory Options	Data Mask: Enable or disable the generation of Data Mask (DM) pins using this check box. This option can be	-	
PGA Options	selectable only if the memory part selected has DM pins. Uncheck this box to not use data masks and save FPGA I/Ds that are used for DM signals. ECC designs (DDR3 SDRAM, DDR2 SDRAM) will not use Data Mask.	×	
xtended FPGA Options			
IO Planning Options			
ank Selection	User Interface FIFO. Interfacing with the FIFOs heps improve fabric timing while interfacing directly with the controller gives lower latency.	ON	
Summary	Control of the Andrew Control of P		
Simulation Options			
CB Information			
Pesign Notes			
XILINX	Memory Details: \$764b, x36, addres: 20, with data mask		
	(a)		

Figure 3-17: **Controller Options Page**

- **Frequency** This feature indicates the operating frequency for all the controllers. The frequency block is limited by factors such as the selected FPGA and device speed grade.
- **PHY to Controller Clock Ratio** This feature determines the ratio of the physical layer (memory) clock frequency to the controller and user interface clock frequency. The user interface data bus width of the 2:1 ratio is four times the width of the physical memory interface width, while the bus width of the 4:1 ratio is eight times the physical memory interface width. RLDRAM II must use 2:1 while RLDRAM 3 must use 4:1.
- VCCAUX_IO Set based on the period/frequency setting. 2.0V is required at the highest frequency settings in the High Performance column. The MIG tool automatically selects 2.0V when required. Either 1.8 or 2.0V can be used at lower frequencies. Groups of banks share the VCCAUX_IO supply. For more information, see the 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2].
- Memory Part This option selects the memory part for the design. Selections can be made from the list, or if the part is not listed, a new part can be created (Create Custom Part). If a desired part is not available in the list, you can generate or create an equivalent device and then modify the output to support the desired memory device.

- **Data Width** The data width value can be selected here based on the memory part selected. The MIG tool supports values in multiples of the individual device data widths.
- **Data Mask** This option allocates data mask pins when selected. This option should be deselected to deallocate data mask pins and increase pin efficiency.
- **Memory Details** The bottom of the **Controller Options** page. Figure 3-18 displays the details for the selected memory configuration.

- Menter , excension of the vool against the again and
--

Figure 3-18: Selected Memory Configuration Details

Memory Options

This feature allows the selection of various memory mode register values, as supported by the controller specification (Figure 3-19).

Figure 3-19: Memory Options Page

The Mode register value is loaded into the Load Mode register during initialization.

- **Input Clock Period** The desired input clock period is selected from the list. These values are determined by the chosen memory clock period and the allowable limits of the PLL parameters. See Clocking Architecture, page 434 for more information on the PLL parameter limits.
- **Configuration** (RLDRAM II only). This option sets the configuration value associated with write and read latency values. Available values of 1, 2, and 3 are controlled based on the selected design frequency.
- **Burst Length** This option sets the length of a burst for a single memory transaction. This option is a trade-off between granularity and bandwidth and should be determined based on the application. Values of 4 and 8 are available for RLDRAM II, and 2, 4, and 8 are allowed for RLDRAM 3.
- **Address Multiplexing** This option minimizes the number of address pins required for a design, because the address is provided using less pins but over two consecutive clock cycles. This option is not supported with a burst length of two.
- **Impedance Matching** This option determines how the memory device tunes its outputs, either by an internal setting or using an external reference resistor connected to the ZQ input of the memory device.
- On-Die Termination This option is used to apply termination to the DQ and DM signals at the memory device during write operations. When set, the memory device dynamically switches off ODT when driving the bus during a read command. For RLDRAM II this can only be off or on, but for RLDRAM 3 when a value must be selected, either RZQ/6, RZQ/4, or RZQ/2.
- **Output Driver Impedance Control** Not available for RLDRAM II. MRS setting in the DRAM that selects the impedance of the output buffers during reads.

Click Next to display the FPGA Options page.

FPGA Options

Figure 3-20 shows the **FPGA Options** page.

	Xilinx Memory Interface G	enerator	
REFERENCE DESIGN 🔛	System Clock Choose the desired input clock configuration. Desig	n clock can be Differential or Single-Ended.	
	System Clock	Differential	\$
Pin Compatible FPGAs 🚩	Reference Clock Choose the desired reference clock configuration. F Reference Clock	Reference clock can be Differential or Single-End	ded.
Memory Selection 🛛 🚩			
Controller Options 🛛 🚩	System Reset Polarity		
AXI Parameter	System Reset Polarity	ACTIVE LOW	\$
EPGA Ontions	Debug Signals Control		
Extended FPGA Options IO Planning Options Bank Selection	include status signals of various PHY calibration stag ChipScope ILA and VIO cores in the example design grounded so that users can replace the grounded s	es. Enabling this feature will connect all the deb top module. A part of each bus in the debug int ignals with the required signals.	bug signals to the terface has been
System Signals Selection			
Summary	Sample Data Depth	scope ILA used in Debug logic.	*
Simulation Options		2024	•
PCB Information Design Notes	Internal Vref Internal Vref can be used to allow the use of the Vre lower data rates. This can free 2 pins per bank when outputs.	f pins as normal IO pins. This option can only be re inputs are used. This setting has no effect on	e used at 800 Mbps and banks with only
	Internal Vref		
User Guide Version Info	9	< <u>B</u> ack	<u>N</u> ext> <u>C</u> ancel

Figure 3-20: FPGA Options Page

 System Clock – This option selects the clock type (Single-Ended, Differential, or No Buffer) for the sys_clk signal pair. When the No Buffer option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the system clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the sys_clk_i signal. So for **No Buffer** scenarios, sys_clk_i signal needs to be connected to an internal clock.

• **Reference Clock** – This option selects the clock type (Single-Ended, Differential, No Buffer, or Use System Clock) for the clk_ref signal pair. The **Use System Clock** option appears when the input frequency is between 199 and 201 MHz (that is, the Input Clock Period is between 5,025 ps (199 MHz) and 4,975 ps (201 MHz). When the **No Buffer** option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the reference clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the ref_clk_i signal. So for **No Buffer** scenarios, ref_clk_i signal needs to be connected to an internal clock.

- System Reset Polarity The polarity for system reset (sys_rst) can be selected. If the option is selected as active-Low, the parameter RST_ACT_LOW is set to 1 and if set to active-High the parameter RST_ACT_LOW is set to 0.
- Debug Signals Control Selecting this option enables calibration status and user port signals to be port mapped to the ILA and VIO in the example_top module. This helps in monitoring traffic on the user interface port with the Vivado Design Suite debug feature. Deselecting the Debug Signals Control option leaves the debug signals unconnected in the example_top module and no ILA/VIO modules are generated by the IP catalog. Additionally, the debug port is always disabled for functional simulations.
- **Sample Data Depth** This option selects the Sample Data depth for the ILA module used in the Vivado debug logic. This option can be selected when the **Debug Signals** for Memory Controller option is ON.
- Internal V_{REF} Selection Internal V_{REF} can be used for data group bytes to allow the use of the V_{REF} pins for normal I/O usage. Internal V_{REF} should only be used for data rates of 800 Mb/s or below.

Click Next to display the Extended FPGA Options page.

Extended FPGA Options

Figure 3-21 shows the Extended FPGA Options page.

Figure 3-21: Extended FPGA Options Page

- **Digitally Controlled Impedance (DCI)** When selected, this option internally terminates the signals from the RLDRAM II read path. DCI is available in the High Performance Banks.
- Internal Termination for High Range Banks The internal termination option can be set to 40, 50, or 60Ω or disabled. This termination is for the RLDRAM II and RLDRAM 3 read path. This selection is only for High Range banks.

Bank Selection

This feature allows the selection of bytes for the memory interface. Bytes can be selected for different classes of memory signals, such as:

- Address and control signals
- Data Read signals
- Data Write signals

For customized settings, click **Deselect Banks** and select the appropriate bank and memory signals. Click **Next** to move to the next page if the default setting is used. To unselect the banks that are selected, click **Deselect Banks**. To restore the defaults, click **Restore Defaults**. VCCAUX_IO groups are shown for HP banks in devices with these groups using dashed lines. VCCAUX_IO is common to all banks in these groups. The memory interface must have the same VCCAUX_IO for all banks used in the interface. MIG automatically sets the VCCAUX_IO constraint appropriately for the data rate requested.

For devices implemented with SSI technology, the SLRs are indicated by a number in the header in each bank, for example, *SLR 1*. Interfaces cannot span across Super Logic Regions. Not all devices have Super Logic Regions.

MEMORY []]	8aa	A Selection for Co	ntroller B - REERAM	E .	for projectural con-	hulan. Data and Add	an Costal softe set	ted other Justice
ns Comparable PPCAs Tempy Sciencias	1 1 N	ola, "Yezharfazza Maut eestigaratis selaperatio per ek seketoris roots desse/Cortesi 20/ HR. Evs. Barit (4 Byta Group-	ernel sport herzontalls son, IT bank 34 en 15 in mit er i Granalot sone ted tortigh Performanc 28 Disso 46/46 Signal Sets Unausigned	*Bank 14 - k wiected US 55 5est	end ES-contain com for your memory of andre cars, open detainates, Rort 19 Sack Bark 34 Byte Group,	Recruition pins. PD controller, LCP who is advectorile made or Signal Sets DQ(0-8)	Strics to avoid unage aid to venified to ensu perifiel oversource rep	ef Hose berks for re to conflicts with the nevertbalk
estraller Options	*	Byte Group- Byte Group- Byte Group-	Unanigned Unanigned Unanigned		Byte Group Byte Group Byte Group	0Q(9-17) 0Q(18-34] 0Q(27-15)		
temory Options	*	HELDeric			HP2ek			
RCA Options Intended FPLA Options In Planters Options Intended Control Options Intended Control Options Intended Control Options Its Jations Advances	* * *	Bank 11 Ayte com.pt. Bytt: Group- Bytt: Group- Bytt: Group- Bytt: Group- Bytt: Group- Bytt: Group- Bytt: Group-	Signal Sets Unansigned Unansigned Unansigned Unansigned Unansigned Unansigned Unansigned	• • • •	Eark 33 5/46 Group. 5/46 Group. 5/46 Group. 6/7 Sark Eark 32 3/46 Group. 3/46 Group. 3/46 Group.	Signal Sels Address/Cirl-B Address/Cirl-2 Unensigned Signal Sen Unensigned Unensigned Unensigned Unensigned		
XILIN	IX.	liyte Group	Unacing ned	dd in Dese	elect finks to have	te narud alectors	ossetectoariu	nestre telaits

Figure 3-22: Bank Selection Page

System Pins Selection

Figure 3-23 shows the System Pins Selection page.

NDTENDACE LEDALAR []]	System Equila Eductor Select the system pins before exprepriority for the role face. Customization of these princes also be needs in the UCT after the design is generated. For m information need UCSRE Same and Am. state,	PR .
	Explain God Pe Solucion The spa_clik is used as the system dod, for the removy metfice. This signal should be connected to a law inter-external dods source via a differentia PAN your two book performance. This signal should be in the address lower blank, but may be pload in an advance bank if there are not enough and available such as sment foring a us of marticle in a single bank.	
	Signal Name Bank Number Pin Homber	
In Compatible Press	1 sys.cl.,p/n 14 + (404/2:300_PM) +	
tensiry Selection		
antroller Options 🛛 👻		
OCI Parameter 🖌 🖌	Reference Cookfin Seecter	
Icmary Options	The dic_refreque to used to the intervence book or the LOCUM, where the 7 server reunstances to executive user such as non-intervence to an external code source on a dock coulds of Ferential (PV) pail.	
EA Orthon Y	Signal Name Dank Namber Pin Namber	
international PERCA Destinant	1 cli te' p'n Select Bask + Na connect +	
A Feature vycens		
Larik Selection	Stetus Syrak	
	These optain may be connected intervally to other logic or transfer out to a per-	
Garmenney	 sys_st: thumput optime used to report the mention init_coldb_complete. This sign indicates that the mention has concluded coloration and menory milliourism and is seen y for commands. 	
Samulation Options	 LOC constraint will be generated in LOC for Example design only based on "Tin Number" adection below. error: The output regnal indicated that the traffic generator in the transfer Design has detected a cata restration. The signal descript exist in 	
PCD Information	fiellier Design.	
Pasign Notas	Signal Name Daub Humber Fin Namber	
	1 instratt Select Bank • Ne connect •	
	2 int_calls_complete identifiant + Ne connect +	
	3 lg.compres.com Select Tank + No context +	
	Makes much be constrained to use the bestimes is under to connecte a bit the independent of the basis (this is not constrained for	-
VII INIV	simulatives).	
	3	

Figure 3-23: **System Pins Selection Page**

Select the pins for the system signals on this page. The MIG tool allows the selection of either external pins or internal connections, as desired.

- sys_clk This is the system clock input for the memory interface and is typically connected to a low-jitter external clock source. Either a single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 3-20). The sys_clk input must be in the same column as the memory interface. If this pin is connected in the same banks as the memory interface, the MIG tool selects an I/O standard compatible with the interface, such as DIFF_HSTL_I or HSTL_I. If sys_clk is not connected in a memory interface bank, the MIG tool selects an appropriate standard such as LVCMOS18 or LVDS. The XDC can be modified as desired after generation.
- clk_ref This is the reference frequency input for the IDELAY control. This is a 200 MHz input. The clk_ref input can be generated internally or connected to an external source. A single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 3-20). The I/O standard is selected in a similar way as sys_clk above.

- sys_rst This is the asynchronous system reset input that can be generated internally
 or driven from a pin. The MIG tool selects an appropriate I/O standard for the input
 such as LVCMOS18 and LVCMOS25 for HP and HR banks, respectively. The default
 polarity of sys_rst pin is active-Low. The polarity of sys_rst pin varies based on the
 System Reset Polarity option chosen in FPGA Options page (Figure 3-20).
- init_calib_complete This output indicates that the memory initialization and calibration is complete and that the interface is ready to use. The init_calib_complete signal is normally only used internally, but can be brought out to a pin if desired.
- **tg_compare_error** This output indicates that the traffic generator in the example design has detected a data compare error. This signal is only generated in the example design and is not part of the user design. This signal is not typically brought out to a pin but can be, if desired.

Click Next to display the Summary page.

Summary

This page (Figure 3-24) provides the complete details about the memory core selection, interface parameters, Vivado IP catalog options, and FPGA options of the active project.

🖣 Xilinx Memory Interface Generat	lor E	
DEFEDENCE	CORE Generator Options:	~
DESIGN 🔛	Target Device : xc7k410t-fbg676	
	Speed Grade : -3	
	Abl : verilog	
	Synchesis foor : Foundation_ISE	
	If any of the above options are incorrect, please click on "Cancel", change the CORE Generator Project	
	Options, and restart HIG.	
	NIG Output Options:	
	Hodule Name : mig_7series_v1_2	
	No of Controllers : 1	
	Selected Compatible Device(s) : Xerkint-ingeve, Xerkint-ingeve	
	FPGA Outlons:	
	Clock Type : Differential	
	Debug Port : OFF	
	Internal Vref : disabled	
	Recorded FDCA Continues	
	DCL for late and Read Clocks - enabled	
Pio Compatible EPGAs		
	······································	
Memory Selection 🛛 🚩	/* Controller 0 */	
Controller Ontions	/**************************************	
	LORINGY PLODE :	
AXI Parameter	Design Clock Frequency : 1675 ps (593.33 MHz)	
Memory Options	Remoty Type : CIO	=
	Remory Part : NT49H16N36XX-18	
FPGA Options 🗸	Equivalent Part(s) :	
Extended FPGA Options	Data Ulath : 36	
	Fixed Lotney Mode : 3 Fixed Lotney	
Bank Selection 🚩	Phy Latency Value : * PhyLatency	
System Signals Selection 🛛 🚩		
	Remory Options:	
Summary	Configuration (RK[2:U]) : 3 Buyer Learth (NG[4:3]) : 8	
Simulation Options	Address XUX (HR[5]) : Non Bultiplexed	
1177 I. C	Drive Impedance (MR[8]) : Internal	
PCB Information	On-Die Termination (MR[9]) : On	
Design Notes		
	Bank Selections:	
	Bank: 33	
	Byte Group TD: Address/Ctrl-O	
	Byte Group T1: Address/Ctrl-1	
	Byte Group T2: Address/Ctr1-2	
	DADK: J4 Byte Group TD: DOCE-81	
	Byte Group T1: DQ[9-17]	
	Byte Group T2: 00[18-26]	
	Byte Group T3: PQ[27-35]	
	Pederana Clark	
	Reference_thor: SignalName: clk ref p/n	
	Padlocation: C12/C11/CC P/N) Bank: 16	
	-	
	System Clock:	
	SignalLycene: syd_clk_p/h Pedication: 1110/1810/00 P/ML Bank: 13	
	Calification, KATO, ADD (cc_F/N) Bank, 33	~
		vint
User Guide Version Info	< Back Dext> Ca	ncel

Figure 3-24: Summary Page

Click Next to move to PCB Information page.

PCB Information

This page displays the PCB-related information to be considered while designing the board that uses the MIG tool generated designs. Click **Next** to move to the **Design Notes** page.

Design Notes

Click **Generate** to generate the design files. The MIG tool generates two output directories: example_design and user_design. After generating the design, the MIG GUI closes.

Finish

After the design is generated, a README page is displayed with additional useful information.

Click **Close** to complete the MIG tool flow.

Vivado Integrated Design Flow for MIG

1. After clicking **Generate**, the **Generate Output Products** window appears. This window has the **Out-of-Context Settings** as shown in Figure 3-25.

Generate Output Products <@xi The following output products will be generated.
Preview
Inity / Series o. Act Instantiation Template Synthesized Checkpoint (.dcp) Behavioral Simulation Change Log
Out-of-Context Settings
<u>G</u> enerate S <u>k</u> ip

Figure 3-25: Generate Output Products Window

2. Click **Out-of-Context Settings** to configure generation of synthesized checkpoints. To enable the **Out-of-Context** flow, enable the check box. To disable the **Out-of-Context** flow, disable the check box. The default option is "enable" as shown in Figure 3-26.

i	Configure the generation of synthesized checkpoints (.dcp) for selected IP and set the number of jobs.
Previ	ew • mig_7series_0.xci

Figure 3-26: Out-of-Context Settings Window

3. MIG designs comply with "Hierarchical Design" flow in Vivado. For more information, see the *Vivado Design Suite User Guide: Hierarchical Design* (UG905) [Ref 5] and the *Vivado Design Suite Tutorial: Hierarchical Design* (UG946) [Ref 6].

4. After generating the MIG design, the project window appears as shown in Figure 3-27.

broject_23 - [C:/Users/avdhesh/project_23/project_23.xpr] - Vivado 2013.3		_ D ×
File Edit Flow Tools Window Layout View Help	Q- Search commands	
🧨 🖄 💷 💷 🐂 🗙 🔌 🕨 🧌 🧠 💥 🔽 🚱 🕮 Default Layout 💿 🖉 🗮 💥	φ	Ready
Flow Navigator		×
🔍 🛣 🏟 💦 Sources 💷 🗠 🖄	Deroject Summary x 🗣 IP Catalog x	
4 Project Manager	케 Search: Q-	
Project Settings	🔀 Name 斗 Version 🖓 AXI4 Status License External Re VI	NV
Add Sources	and a second sec	-
IP Catalon	the Communication is Networking	
Simulation (68) Hereit and the second sec	a the Course of Contraction of Contr	
4 IP Integrator	P Contraction of the second se	
🚜 Create Block Design	11 the PFGA Freatures and Design	
Den Block Design	Memories & Storage Elements	
🍓 Generate Block Design	Production Included W:/xbuilds/ xilinx.c	:om:ip
	di di la FIFOS de la Martíne Generators	
Simulation Graduate California	Control Memory Interface Generator (MIG 7 Series) 2.0 AX14 Production Included W:/xbuilds/ palinx.c	iom:ip
Contractor Seconds	Reine RAMs & ROMs	-
w Run Simuladon	the Standard bus Interfaces	
# RTL Analysis		
Den Elaborated Design	Name: Memory Interface Generator (MIG / Series)	
	VESUE: 2.0 (Rev.1) Interface: 0.014	
Synthesis Hierarchy IP Sources Libraries Compile Order	Description: This Memory Interface Generator is a simple meru driven trol to generate advanced memory interfaces. This tool generates HDL and nin placement constra	ints 🔳
Synthesis Settings	that will help you design your application. Kintex-7 supports DDR3 SDRAM, DDR2 SDRAM, UPDR2 SDRAM, ODR II + SRAM, RLDRAMII and RLDRAMIII. Virte	x-7 🔲
Run Synthesis		
Open Synthesized Design Design Runs		
Implementation Implementation Implementation Implementation	Visado Sunthario Defaulto (Visado Sunthario 2013) Not chatad Progress Start Elapsed Paled Routes WINS INS WHS	I IHS IPA
G Implementation Settings	Wead implementation Defaults (Wead implementation 2013) Not started 0%	
Run Implementation		
> Den Implemented Design		
Program and Debug		
🔞 Bitstream Settings 🛛 🐳		
🚵 Generate Bitstream 🏼 🚽		
> 🔐 Open Hardware Manager		
Launch MPACT		
(<u> </u>	

Figure 3-27: Vivado Tool Project Window (After IP Generation)

5. After project creation, the XCI file is added to the Project Hierarchy. The same view also displays the module hierarchies of the user design. The list of HDL and XDC files is available in the **IP Sources** view in the **Sources** window. Double-clicking on any module or file opens the file in the Vivado Editor. These files are read only.

🍌 project_23 - [C:/Users/avdhesh	1/proj	ect_23/project_23.xpr] - Vivado 201	13.3										-	
File Edit Flow Tools Window	Layou	: View Help									C	(≁ Search comn	ands	
🯄 😂 in 🕫 🗎 🗙 🔌		🐮 🌀 💥 🔽 🧔 🖽 Default La	iyout 👻 🌶	(🚸 🦹 🧕	2								R	Ready
Flow Navigator	Pro	ject Manager - project_23												×
🔍 🖫 🖨		Sources	-	- 0 & ×	Σ	Project Summary 🗙 💷 IP Catalog 🗙							0.6	- ×
Project Manager	opertie:	a 🔀 🖨 😂 🐮 🗎 🗷			Ð	Search: Q-								
noject Settings	PP 1	E to Design Sources (2)	ries (Lyri)			Name		A1 Version ∇2	AXI4	Status	License	External Re	. VLNV	
dd Sources	∟	- Configuration Files (1)			8	H Communication & Naturation								
IP Catalog		i 🗎 mig_a.prj				E Debug & Verification								
_		Constraints				🗄 😥 Digital Signal Processing								
IP Integrator		E-C Simulation Sources (1)				Embedded Processing								
🍰 Create Block Design		□ log sim_1 (1)	Zensing () usi)		1	PGA Features and Design								
💕 Open Block Design			_/series_0.xu)			E C Memories & Storage Elements								
🍓 Generate Block Design						ECC		2.0		Production	Included	W:/xbuilds/	xilinx.com:ip	
					l Ol	H C FIFOs								
 Simulation 					6	Memory Interface Generators	s)	2.0 AX	[4	Production	Included	W:/xbuids/	xilinx.com:ip	
3 Simulation Settings						🗈 📴 RAMs & ROMs								
📖 Run Simulation						🗄 🗁 Standard Bus Interfaces								
4 RTI Analysis						Details								
Open Elaborated Design						Name: Memory Interface Generator (MIC	5 7 Series)							<u> </u>
						Version: 2.0 (Rev. 1)								- 11
4 Synthesis			101			Interfaces: AXI4								F
🚳 Synthesis Settings		Hierarchy IP Sources Libraries Co	mplie Order			Description: This Memory Interface Generator is a s that will help you design your application	imple menu di n. Kintex-7 si	riven tool to generate advar inports DDR3 SDRAM, DDR2	ced memory interfac SDRAM, LPDDR2 SDF	es. This tool (RAM, ODR II+	enerates HDL ar SRAM, RLDRAM	nd pin placemen II and RLDRAM	t constraints III. Virtex-7	÷ II
🔈 Run Synthesis		Sources V Templates												
Open Synthesized Design		Design Runs											2	×
4 Territorentetter		Name	Part	Constraints		Strategy	Status	Progress	Start	Elapsed	Failed Routes	WNS TNS	WHS THS	TP\
a Implementation		B synth_1	xc7k325tffg900-2	constrs_1	Vivado	o Synthesis Defaults (Vivado Synthesis 2013)	Not started	0%						
The internet action Seconds			xc/k52501g900-2	. consus_t	11/000	Simplementation beradits (wrado implementation 2013)	Not started	0.0						
Run Implementation														
Open Implemented Design														- 1
Program and Debug		•												- 1
🚯 Bitstream Settings		4												
Cenerate Bitstream														- 1
Open Hardware Manager														
Launch iMPACT					_									
		🔚 I di Console 📋 🎦 Messages 🗌 🔀	Log 📋 Reports 🖸	🕉 Design Runs	5									
														:

Figure 3-28: Vivado Tool Project Sources Window

Design generation from MIG can be generated using the **Create Design** flow or the **Verify Pin Changes** and **Update Design** flows. There is no difference between the flow when generating the design from the MIG tool. Irrespective of the flow by which designs are generated from the MIG tool, the XCI file is added to the Vivado tool project. The implementation flow is the same for all scenarios because the flow depends on the XCI file added to the project.

6. All MIG generated user design RTL and XDC files are automatically added to the project. If files are modified and you wish to regenerate them, right-click the XCI file and select **Generate Output Products** (Figure 3-29).

🍌 project_23 - [C:/Users/avdhes	h/proj	ect_23/project_23.xpr] - ¥ivado 2013.3										-	
File Edit Flow Tools Window	Layou	t View Help								0	λ≁ Search command.	s	
🯄 🖻 in 🕫 🖻 🐘 X \$	• •	🐮 🍪 % ∑ 🧔 🔛 Default Layout 💿 🗶 🔌 🎉	3									Я	teady
Flow Navigator 🛛 🐇	Pro	ject Manager - project_23											X
🔍 🖫 😄		Sources _ D L ²		Σ	Project Summary 🗙 🞐 IP Catalog 🗙								××
	rties	Q		₩	Sauta IO								
4 Project Manager	obe		- I .		search: JOC+								
Reproject Settings	소	E-G IP (1)	4	Z	Name	∠1 Version		XI4	Status	License	External Re	VENV	
Add Sources		H-1 Instantiation Template (1)		e	Automotive & Industrial								
		Synthesis (52)		-72	AXI Infrastructure								
- IP Catalog				74	to De de Classerte								- I
4 ID Integrator				8	Communication & Networking								1.1
= IF Integrator		mig_7series_v2_0_intrastructure.v		P	E Communication of Networking								6 B
🚟 Create Block Design		a mig_/series_v2_0_lodelay_ccn.v		2	Debug a Validadar Digital Signal Processing								1.1
📄 Open Black Design		a mig_rseries_v2_0_tempinor.v		20	Embedded Processing								(I
Seperate Block Design		mig / series v2 0 arb row col.v			FPGA Features and Design								1.1
		• mig_7series_v2_0_arb_select.v		a	Math Functions								1 B
4 Simulation				-	E C Memories & Storage Elements								1
		- mig_7series_v2_0_bank_common.v		6	- JECC	2.0		1	roduction	Included	W:/xbuilds/ xil	inx.com:ip	
3 Simulation Settings		mig_7series_v2_0_bank_compare.v			🗷 📴 FIFOs								
(iii) Run Simulation		mig_7series_v2_0_bank_mach.v			😑 🗁 Memory Interface Generators								
		mig_/series_v2_u_bank_queue.v			Memory Interface Generator (MIG 7 Series)	2.0	AXI4		Production	Included	W:/xbuilds/ xil	inx.com:ip	
RTL Analysis					🗄 🗁 RAMs & ROMs								
Open Elaborated Design	1	mig / series v2 0 mc.v			🗄 🗁 Standard Bus Interfaces								
		• mig_7series_v2_0_rank_cntrl.v			🖭 🗁 Video & Image Processing								
 Synthesis 													
Custhesis Settings													
go synchesis securigs		mig_7series_v2_0_round_robin_arb.v											
Run Synthesis		• mig_7series_v2_0_ecc_but.v											
Open Synthesized Design		mig_/series_v2_0_ecc_dec_nx.v											
_		a min Zeeries v2.0 ecc.gen.v											
 Implementation 		- a mig 7 series v2 0 memor ui tan std.v			Details								
A Implementation Settions		e mig 7series v2 0 mem intfc.v			Select an IP to see details								
		• mig_7series_v2_0_ddr_byte_group_io.v											- 18
Run Implementation		• mig_7series_v2_0_ddr_byte_lane.v											- 18
Open Implemented Design		mig_7series_v2_0_ddr_calib_top.v											- 18
		• mig_7series_v2_0_ddr_it_post_tito.v											- 18
Program and Debug		mig_/series_v2_0_ddr_mc_phy.v	_1										- 18
🛞 Bitstream Settings		- Me mig_/series_v2_0_dur_inc_bity_wrapper.v	<u> </u>										- 11
🚵 Generate Bitstream		Hierarchy IP Sources Libraries Compile Order											- 11
Open Hardware Manager		& Sources S Templates	-1		1								
👺 Launch iMPACT		B C R besign Runs		-									
Generated Data: mig_7series_0.xdc			-	_									

7. Clicking **Generate Output Products** option brings up the **Manage Outputs** window (Figure 3-30).

Figure 3-30: Generate Window

8. All user-design RTL files and constraints files (XDC files) can be viewed in the **Sources** > **Libraries** tab (Figure 3-31).

Figure 3-31: Vivado Project – RTL and Constraints Files

9. The Vivado Design Suite supports **Open IP Example Design** flow. To create the example design using this flow right-click the IP in the **Source Window**, as shown in Figure 3-32 and select.

project_23 - [C:/Users/avdhesh	/proj	ject_	_23/project_23.xpr] - Vivado 2013.3	-		_											-	
File Edit Flow Tools Window	Layou	ut N	View Help													Q+ Search comm	ands	
🯄 😂 in 🕫 🖹 🐘 🗙 🗞	• •		🌀 🐝 ∑ 🧔 🔛 Default Layout	Ŧ	🗶 🚸 🖹 😜													Ready
Flow Navigator	Pro	ojeci	t Manager - project_23															×
🔍 🛣 🖨		So	urces		_ 🗆 🕑 ×		Project Summary	: 💷 IP Catalog	×								Ο ι	e ×
	sttles	Q	🔀 🛱 🔁 🐮 📓 🖪			÷	Search: Or											
4 Project Manager	Prope		Design Sources (2)					Marga			(1 Nordian	= 2	AVIA	Status	Lisonso	Eutornal Do	U MU	
Project Settings	0	JIT	- Series_0 (mig_7series_0.xci)			1	0	INGINE			2- Version		MALT	Status	License	Externar Ke	00140	
Stand Sources			Configuration Files (1)		Source Node Prope	rties	Ctrl+E											
🖵 IP Catalog		Ē	Simulation Sources (1)	<u>.</u>	Re-customize IP			& Networking										
4 ID Integrator					Generate Output P	rodu	cts	pcessing										
Create Block Design					Reset Output Prod	ucts.		essing										
Open Block Design					Update IP			and Design										
Generate Block Derion					Copy IP			rage Elements										
denerate block besign				₩	Open IP Example D	esigr					2.0			Production	Included	W:/xbuilds/	xilinx.com:ip	
4 Simulation					IP Documentation			•	-									
🚳 Simulation Settings					Replace File			Interface Gener	s ator (MIG 7 Serie	es)	2.0	AXI4		Production	Included	W:/xbuilds/	xilinx.com:ip	
🔍 Run Simulation				Θ	Copy File Into Proje	ect		As										
:					Copy All Files Into F	Proje	ct Alt+I											
A RTL Analysis				×	Remove File from P	rojec	t Delete	ory Interface	ienerator (MI	G 7 Series)								<u> </u>
Open Elaborated Design					Enable File		Alt+Equal	ev. 1)										
4 Synthesis					Disable File		Alt+Minus											
🚯 Synthesis Settings		H	lierarchy IP Sources Libraries Compile Order		Hierarchy Update			emory Interface	Generator is a	simple menu d	riven tool to gener	ate advanced	I memory interfa	aces. This tool	generates HDL	and pin placement	constraints	
Run Synthesis			👃 Sources 🛛 🖓 Templates	ø	Refresh Hierarchy			li neip you desid	n your applicatio	on. Kincex+7 si	upports DDR3 SDR/	AM, DURZ SDA	RAM, LPUDRZ S	ORAM, QDR II4	SRAM, REDRA	Inti and REDRAM	II. Virtex-7	
D Den Synthesized Design		De	esign Runs		IP Hierarchy												- 0 0	×
_		Q	Name	ā. 👬	Set as Top			ategy		Status	Progress		Start	Elapsed	Failed Route	s WNS TNS	WHS THS	TPA
4 Implementation		I	□ ⇒ synth_1 xc7k32	5	Set File Type			ado Synthesis 2	013)	Not started		0%						
Implementation Settings				5	Set Used In			s (Vivado Imple	nentation 2013)	Not started		0%						
Run Implementation					Edit Constraints Sei	ts		-										
Open Implemented Design					Edit Simulation Sets													
Program and Debug		Þ	•	8	Add Sources		Alt+A	-										
🚳 Bitstream Settings		-41																
🍓 Generate Bitstream		4																
👂 💕 Open Hardware Manager		1														1		
Launch iMPACT		-	Tri Concole Messages Strong Da	morte	Besign Pung													
	_		Can reconside the messages that tog the R	pores	🚬 🛶 Design Runs)												
Open Example																		.::

Figure 3-32: Open IP Example Design

10. This option creates a new Vivado project. Selecting the menu brings up a dialog box, which guides you to the directory for a new design project. Select a directory (or use the defaults) and click **OK**.

This launches a new Vivado project with all example design files and a copy of the IP. This project has example_top as the Implementation top directory, and sim_tb_top as the Simulation top directory, as shown in Figure 3-33.

File Edit Flow Tools Workey Lawy Main	
📌 🔁 📾 💷 🐘 🗙 🗞 🗞 🐒 🖸 😳 Defeat Leyout 💿 🕅 🔆	Ready
Flow Navigator C Project Manager - mig_7series_0_example	×
Q I boundary x	1 & X
d Project Manager	_
Image: Project Settings Image: Setings Image: Settings	25T-FF Flash
Rn. Simulation ARL Analysis Br. Analysis Souther influences (agabate in Photoe Ethernet Macuparty, 512mb DUR's Southern resont), 128mb DUR's Southern resont, 128mb DUR's	Hash,
Synthesis Settings Part: xc7/325tfrg900-2 Part: xc7/325tfrg900-2	
Run Synthesis	
Design Runs Design Runs	L ×
Implementation Part Constraints Wando Synthesis Defaults Observation Status Progress Statut Elapsed False And Routes WHS Ths WHS Ths <th< th=""><th>THS</th></th<>	THS
Con Hardware Manager	
🕼 Launch NPACT 🔄 Tid Console 💭 Messages 💭 Log L 🚠 Reports 🖉 Costign Runs	

Figure 3-33: Example Design Project

11. Click **Generate Bitstream** under **Project Manager > Program and Debug** to generate the BIT file for the generated design.

The <project directory>/<project directory>.runs/ impl_1 directory includes all report files generated for the project after running the implementation. It is also possible to run the simulation in this project.

12. Recustomization of the MIG IP core can be done by using the **Recustomize IP** option. It is not recommended to recustomize the IP in the example_design project. The correct solution is to close the example_design project, go back to original project and customize there. Right-click the XCI file and click **Recustomize IP** (Figure 3-34) to open the MIG GUI and regenerate the design with the preferred options.

Mig_7series_0_example - [c:/Us	ers/avdhesh/project_23/mig_7s	series_0_example/mig_7series_	0_example.	le.xpr] - Vivado 2013.3	_ 🗆 🗵
File Edit Flow Tools Window L	ayout View Help			Q- Search commands	
🔆 🔁 🗈 🕫 🗎 🗙 🔌	🕨 🍓 🚳 🕺 🔽 🧕 💷	Default Layout 🛛 👻 🔌	🎉 🔇		Ready
Flow Navigator	Project Manager - mig_7series_0	_example			X]
🔍 🛣 🖨	Sources	- 0 0	× Σ	∑ Project Summary ×	00×
4 Project Mapager	🔍 🛣 🛱 🖄 📸 📗 🛃			Project Settings	* 1
Review Settings	E To Design Sources (2)			Project name: mig 7series 0 example	
Add Sources	Gonfiguration Files (1)	Source Node Properties	Ctrl+E	voduct family: Kintex-7	
IP Catalog	🗄 🛅 Constraints	👯 Re-customize IP		Troject part: Kintex-7 KC705 Evaluation Platform (xc7k325tffg900-2)	
_	En Calificación Sources (1)	Generate Output Products		op module name: mia_7series_0	
IP Integrator		Reset Output Products		Soard	*
Greate Block Design		Update IP		Jisplav name: Kintex-7 KC705 Evaluation Platform	
Open Block Design	In company to the state	Copy IP		loard name: xilmx.com:kintex7;kc705:1.1	
Generate Block Design	Hierarchy IP Sources Librarie	Open IP Example Design		oard file: W:\xbuilds\2013.3_daily_latest\installs\nt64\Vivado\2013.3\data\boards\kintex7(KC705\1_1\board.xml	
4 Simulation	Sources V Templates	IP Documentation		PRL: www.xilmx.com/sc705	
🔞 Simulation Settings	Source File Properties	Replace File		bard overview: The KC705 board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xilnx Kintex-7 XC7X3251-FFG900 device. The board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xilnx Kintex-7 XC7X3251-FFG900 device. The board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xilnx Kintex-7 XC7X3251-FFG900 device. The board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xilnx Kintex-7 XC7X3251-FFG900 device. The board utilizes Xilnx Kintex-7 X	. –
🔍 Run Simulation		 Copy File Into Project 		includes equal: Infinite Extension of the interference of the end	
4 DT Asshula	mig_7series_0.xci	Copy All Files Into Project	Alt+1	instance A Transmission	
 RTL Alldrysis Coan Elaborated Derive 	Vendor: Xilinx, Inc.	Enable File	Ob+Equal		<u> </u>
	IP library: Ip ID state: Generated	Dicable File	Alt+Minus	Status: Not started Status: Not started	
 A Synthesis 		Hisrarchy Lindate	Pik TPillings	Messages: No errors or warnings Messages: No errors or warnings	
🗞 Synthesis Settings	General Properties IP	Refresh Hierarchy		Part: xc7k325ktrg900-2 Part: xc7k35ktrg900-2 Part: xc7k35ktrg900-2 Part: xc7k35ktrg900-2 Pa	-1
Run Synthesis		IP Herarchy		Diddeur: Wodur Sviluess Detaulus	
Open Synthesized Design	Design Runs	🔒 Set as Top			16 ×
4 Implementation	Name	Set File Type		Strategy Status Progress Start Elapsed Failed Routes WNS TNS WHS T Distribusion Default (state Scale and S	HS TPW
🚯 Implementation Settings	impl_1	Set Used In		Synthesis Defaults (wadd Synthesis 2013) Mok started 0%	
Run Implementation		Edit Constraints Sets			
Den Implemented Design	=₽ 14	Edit Simulation Sets			
4 Program and Debug		Add Sources	Alt+A		
🚱 Bitstream Settings	4				
Cenerate Bitstream					
Open Hardware Manager	1 A				
Launch iMPACT	Td Console O Messages	🔍 Log 📄 Reports 🖄 Design	Runs		
Re-customize the selected core					

Figure 3-34: Recustomize IP

Directory Structure and File Descriptions

This section explains the MIG tool directory structure and provides detailed output file descriptions.

Output Directory Structure

The MIG tool places all output files and directories in a folder called <component name>, where <component name> was specified on the MIG Output Options, page 388 of the MIG design creation flow.

The output directory structure of the selected Memory Controller (MC) design from the MIG tool is shown here There are three folders created within the <component name> directory:

- docs
- example_design
- user_design

Directory and File Contents

The 7 series FPGAs core directories and their associated files are listed in this section for Vivado implementations.

<component name>/example_design/

The example_design directory structure contains all necessary RTL, constraints, and script files for simulation and implementation of the complete MIG example design with a test bench.

Table 3-1 lists the files in the example_design/rtl directory.

Name	Description
example_top.v	This top-level module serves as an example for connecting the user design to the 7 series FPGAs memory interface core.

Table 3-1: Files in example_design/rtl Directory

Table 3-2 lists the files in the example_design/rtl/traffic_gen directory.

Name ⁽¹⁾	Description
memc_traffic_gen.v	This is the top-level of the traffic generator.
cmd_gen.v	This is the command generator. This module provides independent control of generating the types of commands, addresses, and burst lengths.
cmd_prbs_gen.v	This is a pseudo-random binary sequence (PRBS) generator for generating PRBS commands, addresses, and burst lengths.
memc_flow_vcontrol.v	This module generates flow control logic between the Memory Controller core and the cmd_gen, read_data_path, and write_data_path modules.
read_data_path.v	This is the top-level for the read datapath.
read_posted_fifo.v	This module stores the read command sent to the Memory Controller; its FIFO output is used to generate expected data for read data comparisons.
rd_data_gen.v	This module generates timing control for reads and ready signals to mem_flow_vcontrol.v.
write_data_path.v	This is the top-level for the write datapath.
wr_data_g.v	This module generates timing control for writes and ready signals to mem_flow_vcontrol.v.
s7ven_data_gen.v	This module generates different data patterns.
a_fifo.v	This is a synchronous FIFO using LUT RAMs.
data_prbs_gen.v	This is a 32-bit linear feedback shift register (LFSR) for generating PRBS data patterns.
init_mem_pattern_ctr.v	This module generates flow control logic for the traffic generator.
traffic_gen_top.v	This module is the top-level of the traffic generator and comprises the memc_traffic_gen and init_mem_pattern_ctr modules.

Table 3-2:	Files in example_	_design/rtl/traffic_	gen Directory
------------	-------------------	----------------------	---------------

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of cmd_gen in generated output is now mig_7series_v4_1_cmd_gen.

Table 3-3 lists the files in the example_design/sim directory.

Name	Description
ies_run.sh (1)	Linux Executable file for simulating the design using IES simulator.
vcs_run.sh ⁽¹⁾	Linux Executable file for simulating the design using VCS simulator.
readme.txt ⁽¹⁾	Contains the details and prerequisites for simulating the designs using Mentor Graphics Questa Advanced Simulator, IES, and VCS simulators.

Table 3-3:	Files in example_	_design/sim	Directory	(Cont'd)
------------	-------------------	-------------	-----------	----------

Name	Description
sim_tb_top.v	This file is the simulation top-level file.

Notes:

1. The ies_run.sh and vcs_run.sh files are generated in the folder mig_7series_0_ex/imports when the example design is created using **Open IP Example Design** for the design generated with **Component Name** entered in Vivado IDE as mig_7series_0.

<component name>/user_design/

The user_design folder contains the following:

- rtl and xdc folders
- Top-level wrapper module <component_name>.v/vhd
- Top-level modules <component_name>_mig.v/vhd and <component_name>_mig_sim.v/vhd

The top-level wrapper file <component_name>.v/vhd has an instantiation of top-level file <component_name>_mig.v/vhd. Top-level wrapper file has no parameter declarations and all the port declarations are of fixed width.

Top-level files <component_name>_mig.v/vhd and <component_name>_mig_sim.v/vhd have the same module name as <component_name>_mig. These two files are same in all respects except that the file <component_name>_mig_sim.v/vhd has parameter values set for simulation where calibration is in fast mode viz., SIM_BYPASS_INIT_CAL = "FAST" etc.

IMPORTANT: The top-level file <component_name>_mig.v/vhd is used for design synthesis and implementation, whereas the top-level file <component_name>_mig_sim.v/vhd is used in simulations.

The top-level wrapper file serves as an example for connecting the user_design to the 7 series FPGA memory interface core.

user_design/rtl/controller

Table 3-4 lists the files in the user_design/rtl/controller directory.

Table 3-4:	Files in user_	_design/rtl	/controller	Directory
------------	----------------	-------------	-------------	-----------

Name ⁽¹⁾	Description
rld_mc.v	This module implements the Memory Controller.

Notes:

1. All file names are prefixed with MIG version number. For example, for the MIG 4.1 release module name of rld_mc in generated output is now mig_7series_v4_1_rld_mc.

user_design/rtl/ui

Table 3-5 lists the files in the user_design/rtl/ui directory.

Name ⁽¹⁾	Description
rld_ui_top.v	This is the top-level wrapper for the user interface.
rld_ui_wr.v	This module generates the FIFOs used to buffer write data for the user interface.
rld_ui_addr.v	This module generates the FIFOs used to buffer address and commands for the user interface.

Table 3-5: Files in user_design/rtl/ui Directory

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of rld_ui_top in generated output is now mig_7series_v4_1_rld_ui_top.

user_design/rtl/phy

Table 3-6 lists the files in the user_design/rtl/phy directory.

Name ⁽¹⁾	Description
rld_phy_top.v	This is the top-level module for the physical layer file.
rld_phy_write_top.v	This is the top-level wrapper for the write path.
qdr_rld_phy_read_top.v	This is the top-level of the read path.
qdr_rld_mc_phy.v	This module is a parameterizable wrapper instantiating up to three I/O banks each with four-lane PHY primitives.
rld_phy_write_init_sm.v	This module contains the logic for the initialization state machine.
rld_phy_write_control_io.v	This module contains the logic for the control signals going to the memory.
rld_phy_write_data_io.v	This module contains the logic for the data and byte writes going to the memory.
qdr_rld_prbs_gen.v	This PRBS module uses a many-to-one feedback mechanism for 2n sequence generation.
qdr_rld_phy_ck_addr_cmd_delay.v	This module contains the logic to provide the required delay on the address and control signals.
qdr_rld_phy_rdlvl.v	This module contains the logic for stage 1 calibration.
qdr_rld_phy_read_stage2_cal.v	This module contains the logic for stage 2 calibration.
qdr_rld_phy_read_data_align.v	This module realigns the incoming data.
qdr_rld_phy_read_vld_gen.v	This module contains the logic to generate the valid signal for the read data returned on the user interface.
rld_phy_byte_lane_map.v	This module handles the vector remapping between the mc_phy module ports and the user memory ports.

Table 3-6: Files in user_design/rtl/phy Directory

Name ⁽¹⁾	Description	
qdr_rld_phy_4lanes.v	This module is the parameterizable four-lane PHY in an I/O bank.	
qdr_rld_byte_lane.v	This module contains the primitive instantiations required within an output or input byte lane.	
qdr_rld_byte_group_io.v	This module contains the parameterizable I/O logic instantiations and the I/O terminations for a single byte lane.	
rld_phy_write_cal.v	This module contains the logic for performing write calibration.	

 Table 3-6:
 Files in user_design/rtl/phy Directory (Cont'd)

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of rld_phy_top in generated output is now mig_7series_v4_1_rld_phy_top.

user_design/rtl/xdc

Table 3-7 lists the files in the user_design/xdc directory.

Name	Description
<component name="">.xdc</component>	This file is the XDC for the core of the user design.

Verify Pin Changes and Update Design

This feature verifies the input XDC for bank selections, byte selections, and pin allocation. It also generates errors and warnings in a separate dialog box when you click **Validate** on the page. This feature is useful to verify the XDC for any pinout changes made after the design is generated from the MIG tool. You must load the MIG generated <code>.prj</code> file, the original <code>.prj</code> file without any modifications, and the XDC that needs to be verified. In the Vivado IP catalog, the recustomization option should be selected to reload the project. The design is allowed to generate only when the MIG DRC is met. Ignore warnings about validating the pinout, which is the intent. Just validating the XDC is not sufficient; it is mandatory to proceed with design generation to get the XDC with updated clock and phaser related constraints and RTL top-level module for various updated Map parameters.

The Update Design feature is required in the following scenarios:

- A pinout is generated using an older version of MIG and the design is to be revised to the current version of MIG. In MIG the pinout allocation algorithms have been changed for certain MIG designs.
- A pinout is generated independent of MIG or is modified after the design is generated. When a design is generated from MIG, the XDC and HDL code are generated with the correct constraints.

Here are the rules verified from the input XDC:

- If a pin is allocated to more than one signal, the tool reports an error. Further verification is not done if the XDC does not adhere to the uniqueness property.
- Verified common rules:
 - The interface can span across a maximum of three consecutive banks.
 - Interface banks should reside in the same column of the FPGA.
 - Interface banks should be either High Performance (HP) or High Range (HR). HP banks are used for the high frequencies.
 - The chosen interface banks should have the same SLR region if the chosen device is of stacked silicon interconnect technology.
 - V_{REF} I/Os should be used as GPIOs when an internal V_{REF} is used or if there are no input and input ports in a bank.
 - The I/O standard of each signal is verified as per the configuration chosen.
 - The VCCAUX I/O of each signal is verified and provides a warning message if the provided VCCAUX I/O is not valid.
- Verified data pin rules:
 - Pins related to one strobe set should reside in the same byte group.
 - Write clocks (DK/DK#) should be allocated to the DQS I/O pair.
 - Read clocks (QK/QK#) should be allocated to the MRCC pins for RLDRAM II and should be allocated to DQS I/O pair for RLDRAM 3.
 - Data (DQ) pins should not be allocated to DQS N pin.
 - An FPGA byte lane should not contain pins related to two different strobe sets.
 - \circ V_{REF} I/O can be used only when the internal V_{REF} is chosen.
- Verified address pin rules:
 - Address signals cannot mix with data bytes.
 - It can use any number of isolated byte lanes
- Verified system pin rules:
 - System clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - These pins must be allocated in the Memory banks column.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.

- Reference clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
- Status signals:
 - The sys_rst signal should be allocated in the bank where the V_{REF} I/O is unallocated or the internal V_{REF} is used.
 - These signals should be allocated in the non-memory banks because the I/O standard is not compatible. The I/O standard type should be LVCMOS with at least 1.8V.
 - These signals can be allocated in any of the columns (there is no hard requirement because these signals should reside in a memory column); however, it is better to allocate closer to the chosen memory banks.

Quick Start Example Design

Overview

After the core is successfully generated, the example design HDL can be processed through the Xilinx implementation toolset.

Implementing the Example Design

For more information on using an IP example design, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 7].

Simulating the Example Design (for Designs with the Standard User Interface)

The MIG tool provides a synthesizable test bench to generate various traffic data patterns to the Memory Controller (MC). This test bench consists of a rld_memc_ui_top wrapper, a traffic_generator that generates traffic patterns through the user interface to a rld_ui_top core, and an infrastructure core that provides clock resources to the rld_memc_ui_top core. A block diagram of the example design test bench is shown in Figure 3-35.

Figure 3-35: Synthesizable Example Design Block Diagram

Figure 3-36 shows the simulation result of a simple read and write transaction between the tb_top and memc_intfc modules.

Figure 3-36: User Interface Read and Write Cycle

Traffic Generator Operation

The traffic generator module contained within the synthesizable test bench can be parameterized to create various stimulus patterns for the memory design. It can produce repetitive test patterns for verifying design integrity as well as pseudo-random data streams that model real-world traffic.

You can define the address range through the BEGIN_ADDRESS and END_ADDRESS parameters. The Init Memory Pattern Control block directs the traffic generator to step sequentially through all the addresses in the address space, writing the appropriate data value to each location in the memory device as determined by the selected data pattern. By default, the test bench uses the address as the data pattern, but the data pattern in this example design can be modified using vio_data_mode signals that can be modified within the Vivado logic analyzer feature.

When the memory has been initialized, the traffic generator begins stimulating the user interface port to create traffic to and from the memory device. By default, the traffic generator sends pseudo-random commands to the port, meaning that the instruction sequences (R/W, R, W) and addresses are determined by PRBS generator logic in the traffic generator module.

The read data returning from the memory device is accessed by the traffic generator through the user interface read data port and compared against internally generated "expect" data. If an error is detected (that is, there is a mismatch between the read data and expected data), an error signal is asserted and the readback address, readback data, and expect data are latched into the error_status outputs.

Modifying the Example Design

The provided example_top design comprises traffic generator modules and can be modified to tailor different command and data patterns. A few high-level parameters can be modified in the example_top.v/vhd module. Table 3-8 describes these parameters.

Parameter	Description	Value	
FAMILY	Indicates the family type.	"VIRTEX7"	
MEMORY_TYPE	Indicate the Memory Controller type.	Current support is DDR2 SDRAM, DDR3 SDRAM, QDR II+ SRAM, and RLDRAM II.	
nCK_PER_CLK	This is the Memory Controller clock to DRAM clock ratio. This parameter should not be changed.	RLDRAM II: 2 RLDRAM 3: 4	
NUM_DQ_PINS	The is the total memory DQ bus width.	This parameter supports DQ widths from 8 to a maximum of 72 in increments of 9. The available maximum DQ width is frequency dependent on the selected memory device.	
MEM_BURST_LEN	This is the memory data burst length.	This must be set to 8.	
MEM_COL_WIDTH	This is the number of memory column address bits.	This must be set to 10.	
DATA_WIDTH	This is the user interface data bus width.	2 × nCK_PER_CLK × NUM_DQ_PINS	
ADDR_WIDTH This is the memory address bus width.			
MASK_SIZE This parameter specifies the mask width in the user interface data bus.		This must be set to DATA_WIDTH/8.	
PORT_MODE	Sets the port mode.	BI_MODE: Generate a WRITE data pattern and monitor the READ data for comparison.	
BEGIN_ADDRESS Sets the memory start address boundary.		This parameter defines the start boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.	
END_ADDRESS	Sets the memory end address boundary.	This parameter defines the end boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.	

 Table 3-8:
 Traffic Generator Parameters Set in the example_top Module

Parameter	Description	Value
PRBS_EADDR_MASK_POS	Sets the 32-bit AND MASK position.	This parameter is used with the PRBS address generator to shift random addresses down into the port address space. The END_ADDRESS value is ANDed with the PRBS address for bit positions that have a 1 in this mask.
PRBS_SADDR_MASK_POS	Sets the 32-bit OR MASK position.	This parameter is used with the PRBS address generator to shift random addresses up into the port address space. The START_ADDRESS value is ORed with the PRBS address for bit positions that have a 1 in this mask
CMD_PATTERN	This parameter sets the command pattern circuits to be generated. For a larger device, the CMD_PATTERN can be set to "CGEN_ALL." This parameter enables all supported command pattern circuits to be generated. However, it is sometimes necessary to limit a specific command pattern because of limited resources in a smaller device.	 Valid settings for this signal are: CGEN_FIXED – The address, burst length, and instruction are taken directly from the fixed_addr_i, fixed_bl_i, and fixed_instr_i inputs. CGEN_SEQUENTIAL – The address is increased sequentially, and the increment is determined by the data port size. CGEN_PRBS – A 32-stage Linear Feedback Shift register (LFSR) generates pseudo-random addresses, burst lengths, and instruction sequences. The seed can be set from the 32-bit cmd_seed input. CGEN_ALL (default) – This option turns on all of the options above and allows addr_mode_i, instr_mode_i, and bl_mode_i to select the type of generation during run time.

Table 3-8: Traffic Generator Parameters Set in the example_top Module (Cont'd)

Parameter	Description	Value
DATA_PATTERN	This parameter sets the data pattern circuits to be generated through RTL logic. For larger devices, the DATA_PATTERN can be set to "DGEN_ALL," enabling all supported data pattern circuits to be generated. In hardware, the data pattern is selected and/or changed using vio_data_value_mode. The pattern can only be changed when DATA_PATTERN is set to DGEN_ALL.	 Valid settings for this parameter are: ADDR (default) – The address is used as a data pattern. HAMMER – All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS. WALKING1 – Walking 1s are on the DQ pins and the starting position of 1 depends on the address value. WALKING0 – Walking 0s are on the DQ pins and the starting position of 0 depends on the address value. NEIGHBOR – The Hammer pattern is on all DQ pins except one. The address determines the exception pin location. PRBS – A 32-stage LFSR generates random data and is seeded by the starting address. DGEN_ALL – This option turns on all available options: 0x1: FIXED – 32 bits of fixed_data. 0x2: ADDRESS – 32 bits address as data. 0x3: HAMMER 0x4: SIMPLE8 – Simple 8 data pattern that repeats every 8 words. 0x5: WALKING0s – Walking 0s are on the DQ pins. 0x7: PRBS – A 32-stage LFSR generates random data. This mode only works with either a PRBS address or a SEQUENTIAL address pattern. 0x9: SLOW HAMMER – This is the slow MHz hammer data pattern. 0x4: PHY_CALIB pattern – 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero.
CMDS_GAP_DELAY	This parameter allows pause delay between each user burst command.	Valid values: 0 to 32.
SEL_VICTIM_LINE	Select a victim DQ line whose state is always at logic High.	This parameter only applies to the Hammer pattern. Valid settings for this parameter are 0 to NUM_DQ_PINS. When value = NUM_DQ_PINS, all DQ pins have the same Hammer pattern.

Table 3-8: Traffic Generator Parameters Set in the example_top Module (Cont'd)

Parameter	Description	Value
EYE_TEST	Force the traffic generator to only generate writes to a single location, and no read transactions are generated.	Valid settings for this parameter are "TRUE" and "FALSE." When set to "TRUE," any settings in vio_instr_mode_value are overridden.

Table 3-8:	Traffic Generator	Parameters	Set in the	example_	_top Module	(Cont'd)
------------	-------------------	------------	------------	----------	-------------	----------

Notes:

1. The traffic generator might support more options than are available in the FPGA Memory Controller. The settings must match supported values in the Memory Controller.

The command patterns instr_mode_i, addr_mode_i, bl_mode_i, and data_mode_i of the traffic_gen module can each be set independently. The provided init_mem_pattern_ctr module has interface signals that allow you to modify the command pattern in real-time using the Vivado logic analyzer feature virtual I/O (VIO) core.

This is the varying command pattern:

- 1. Set vio_modify_enable to 1.
- 2. Set vio_addr_mode_value to:

1: Fixed_address.

- 2: PRBS address.
- 3: Sequential address.
- 3. Set vio_bl_mode_value to:

1: Fixed bl.

2: PRBS bl. If bl_mode value is set to 2, the addr_mode value is forced to 2 to generate the PRBS address.

4. Set vio_data_mode_value to:

0: Reserved.

1: FIXED data mode. Data comes from the fixed_data_i input bus.

2: DGEN_ADDR (default). The address is used as the data pattern.

3: DGEN_HAMMER. All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS.

4: DGEN_NEIGHBOR. All 1s are on the DQ pins during the rising edge of DQS except one pin. The address determines the exception pin location.

5: DGEN_WALKING1. Walking 1s are on the DQ pins. The starting position of 1 depends on the address value.

6: DGEN_WALKINGO. Walking Os are on the DQ pins. The starting position of 0 depends on the address value.

7: DGEN_PRBS. A 32-stage LFSR generates random data and is seeded by the starting address. The PRBS data pattern only works together with a PRBS address or a sequential address.

Core Architecture

Overview

Figure 3-37 shows a high-level block diagram of the RLDRAM II and RLDRAM 3 memory interface solution. This figure shows both the internal FPGA connections to the client interface for initiating read and write commands, and the external interface to the memory device.

Figure 3-37: High-Level Block Diagram of RLDRAM II/RLDRAM 3 Interface Solution

The core is composed of these elements, as shown in Figure 3-38:

- Client Interface
- Memory Controller
- Physical Interface
- Read Path
- Write Path

Figure 3-38: Components of the RLDRAM II/RLDRAM 3 Memory Interface Solution

The client interface (also known as the user interface) uses a simple protocol based entirely on SDR signals to make read and write requests. For more details describing this protocol, see the Client Interface section.

The Memory Controller takes commands from the user interface and adheres to the protocol requirements of the RLDRAM II/RLDRAM 3 device. For more information, see the Memory Controller section.

The physical interface generates the proper timing relationships and DDR signaling to communicate with the external memory device, while conforming to the RLDRAM II/RLDRAM 3 protocol and timing requirements. For more details, see the Physical Interface section.

Within the PHY, logic is broken up into read and write paths. The write path generates the RLDRAM II/RLDRAM 3 signaling for generating read and write requests. This includes clocking, control signals, address, data, and data mask signals. The read path is responsible for calibration and providing read responses back to you with a corresponding valid signal. For more details describing this process, see the Calibration section.

Client Interface

The client interface connects the 7 series FPGA user design to the RLDRAM II/RLDRAM 3 memory solutions core to simplify interactions between you and the external memory device.

Command Request Signals

The client interface provides a set of signals used to issue a read or write command to the memory device. These signals are summarized in Table 3-9.

Signal	Direction	Description
user_cmd_en	Input	Command Enable. This signal issues a read or write request and indicates that the corresponding command signals are valid.
user_cmd[2 × CMD_PER_CLK – 1:0]	Input	Command. This signal issues a read, write, or NOP request. When user_cmd_en is asserted: 2'b00 = Write Command 2'b01 = Read Command 2'b10 = NOP 2'b11 = NOP The NOP command is useful when more than one command per clock cycle must be provided to the Memory Controller yet not all command slots are required in a given clock cycle. The Memory Controller acts on the other commands provided and ignore the NOP command. NOP is not supported when CMD_PER_CLK == 1. CMD_PER_CLK is a top-level parameter used to determine how many memory commands are provided to the controller per FPGA logic clock cycle, it depends on nCK_PER_CLK and the burst length (see Figure 3-39)
user_addr[CMD_PER_CLK × ADDR_WIDTH – 1:0]	Input	Command Address. This is the address to use for a command request. It is valid when user_cmd_en is asserted.
user_ba[CMD_PER_CLK × BANK_WIDTH – 1:0]	Input	Command Bank Address. This is the address to use for a write request. It is valid when user_cmd_en is asserted.

Table 3-9: Client Interface Request Signals

427

Table 3-9: Client Interface Request Signals (Cont'd)

Signal	Direction	Description
user_wr_en	Input	Write Data Enable. This signal issues the write data and data mask. It indicates that the corresponding user_wr_* signals are valid.
user_wr_data[2 × nCK_PER_CLK × DATA_WIDTH – 1:0]	Input	Write Data. This is the data to use for a write request and is composed of the rise and fall data concatenated together. It is valid when user_wr_en is asserted.
user_wr_dm[2 × nCK_PER_CLK × DM_WIDTH – 1:0]	Input	Write Data Mask. When active-High, the write data for a given selected device is masked and not written to the memory. It is valid when user_wr_en is asserted.
user_afifo_empty	Output	Address FIFO empty. If asserted, the command buffer is empty.
user_wdfifo_empty	Output	Write Data FIFO empty. If asserted, the write data buffer is empty.
user_afifo_full	Output	Address FIFO full. If asserted, the command buffer is full, and any writes to the FIFO are ignored until deasserted.
user_wdfifo_full	Output	Write Data FIFO full. If asserted, the write data buffer is full, and any writes to the FIFO are ignored until deasserted.
user_afifo_aempty	Output	Address FIFO almost empty. If asserted, the command buffer is almost empty.
user_afifo_afull	Output	Address FIFO almost full. If asserted, the command buffer is almost full.
user_wdfifo_aempty	Output	Write Data FIFO almost empty. If asserted, the write data buffer is almost empty.
user_wdfifo_afull	Output	Write Data FIFO almost full. If asserted, the Write Data buffer is almost full.
user_rd_valid[nCK_PER_CLK – 1:0]	Output	Read Valid. This signal indicates that data read back from memory is available on user_rd_data and should be sampled.
user_rd_data[2 × nCK_PER_CLK × DATA_WIDTH – 1:0]	Output	Read Data. This is the data read back from the read command.
init_calib_complete	Output	Calibration Done. This signal indicates back to the user design that read calibration is complete and requests can now take place.
mem_ck_lock_complete	Output	Memory CK Lock Done. The system should be kept in a quiet state until assertion of mem_ck_lock_complete to ensure minimal noise on the CK being driven to the memory.

Interfacing with the Core through the Client Interface

The width of certain client interface signals is dependent on the system clock frequency and the burst length. This allows the client to send multiple commands per FPGA logic clock cycle as might be required for certain configurations.

Figure 3-39 shows the user_cmd signal and how it is made up of multiple commands depending on the configuration.

Figure 3-39: Multiple Commands for user_cmd Signal

As shown in Figure 3-39, four command slots are present in a single user interface clock cycle for BL2. Similarly, two command slots are present in a single user interface clock cycle for BL4. These command slots are serviced sequentially and the return data for read commands are presented at the user interface in the same sequence. Note that the read data might not be available in the same slot as that of its read command. The slot of a read data is determined by the timing requirements of the controller and its command slot. One such example is mentioned in the following BL2 design configuration.

Assume that the following set of commands is presented at the user interface for a given user interface cycle.

Table 3-10: Command Set in User Interface Cy	/cle
--	------

Slots	Commands
0	RD0
1	NOP
2	RD1
3	NOP

It is not guaranteed that the read data appears in {DATA0, NOP, DATA1, NOP} order. It might also appear in {NOP, DATA0, NOP, DATA1} or {NOP, NOP, DATA0, DATA1} etc. orders. In any case, the sequence of the commands are maintained.

The client interface protocol is shown in Figure 3-40 for the RLDRAM II four-word burst architecture.

Figure 3-40: RLDRAM II Client Interface Protocol (Four-Word Burst Architecture)

The client interface protocol for the RLDRAM 3 four-word burst architecture is shown in Figure 3-41.

Figure 3-41: RLDRAM 3 Client Interface Protocol (Four-Word Burst Architecture)

Before any requests can be accepted, the ui_clk_sync_rst signal must be deasserted Low. After the ui_clk_sync_rst signal is deasserted, the user interface FIFOs can accept commands and data for storage. The init_calib_complete signal is asserted after the memory initialization procedure and PHY calibration are complete, and the core can begin to service client requests.

A command request is issued by asserting user_cmd_en as a single cycle pulse. At this time, the user_cmd, user_addr, and user_ba signals must be valid. To issue a read request, user_cmd is set to 2'b01, while for a write request, user_cmd is set to 2'b00. For a write request, the data is to be issued in the same cycle as the command by asserting the user_wr_en signal High and presenting valid data on user_wr_data and user_wr_dm.

IMPORTANT: Both write and read commands in the same user_cmd cycle is not allowed.

For RLDRAM II and eight-word burst architecture, an extra cycle of data is required for a given write command, as shown in Figure 3-42. Any gaps in the command flow required can be filled with read commands, if desired.

Figure 3-42: RLDRAM II Client Interface Protocol (Eight-Word Burst Architecture)

The client interface protocol for the RLDRAM 3 eight-word burst architecture is shown in Figure 3-43.

Figure 3-43: RLDRAM 3 Client Interface Protocol (Eight-Word Burst Architecture)

When a read command is issued some time later (based on the configuration and latency of the system), the user_rd_valid[0] signal is asserted, indicating that user_rd_data is now valid, while user_rd_valid[1] is asserted indicating that user_rd_data is valid, as shown in Figure 3-44. The read data should be sampled on the same cycle that user_rd_valid[0] and user_rd_valid[1] are asserted because the core does not buffer returning data. If desired, you can add this functionality.

The Memory Controller only puts commands on certain slots to the PHY such that the user_rd_valid signals are all asserted together and return the full width of data, but the extra user_rd_valid signals are provided in case of controller modifications.

Figure 3-44: Client Interface Protocol Read Data

Clocking Architecture

The PHY design requires that an MMCM and a PLL module be used to generate various clocks. Both global and local clock networks are used to distribute the clock throughout the design.

The clock generation and distribution circuitry and networks drive blocks within the PHY that can be divided roughly into four separate general functions:

- Internal FPGA logic
- Write path (output) logic
- Read path (input) and delay logic
- IDELAY reference clock (200 MHz)

One MMCM and one PLL is required for the PHY. The MMCM and PLL generate the clocks for most of the internal logic, the input clocks to the phasers, and a synchronization pulse required to keep the PHASER blocks synchronized in a multi-I/O bank implementation.

The PHASER blocks require three clocks:

- **Memory Reference Clock** The memory reference clock is required to be at the same frequency as that of the RLDRAM II/RLDRAM 3 memory interface clock.
- Frequency Reference Clock The frequency reference clock must be equal to the memory clock frequency for frequencies ≥ 400 MHz and 2x the memory clock frequency for frequencies < 400 MHz such that it meets the reference range requirement of 400 MHz to 1,066 MHz.
- **Phase Reference Clock from the PLL** The phase reference clock is used in the read banks, and is generated using the memory read clock (QK/QK#) routed internally and provided to the Phaser logic to assist with data capture.

Figure 3-45: **Clocking Architecture**

The default setting for the PLL multiply (M) and divide (D) values is for the system clock input frequency to be equal to the memory clock frequency. This 1:1 ratio is not required. The PLL input divider (D) can be any value listed in the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] as long as the PLLE2 operating conditions are met and the other constraints listed here are observed.

The PLL multiply (M) value must be between 1 and 16 inclusive. The PLL VCO frequency range must be kept in the range specified in the silicon data sheet. The sync_pulse must be 1/16 of the mem_refclk frequency and must have a duty cycle of 1/16 or 6.25%. For information on physical placement of the PLL and the System Clock CCIO input, see Design Guidelines, page 466.

The internal FPGA logic clock generated by the PLL is clocked by a global clocking resource at half the frequency of the RDRAM II memory frequency and a quarter of the frequency of the RLDRAM 3 memory frequency.

A 200 MHz IDELAY reference clock must be supplied to the IDELAYCTRL module. The IDELAYCTRL module continuously calibrates the IDELAY elements in the I/O region to account for varying environmental conditions. The IP core assumes an external clock signal is driving the IDELAYCTRL module. If a PLL clock drives the IDELAYCTRL input clock, the PLL lock signal needs to be incorporated in the rst_tmp_idelay signal inside the IODELAY_CTRL module. This ensures that the clock is stable before being used.

Table 3-11 lists the signals used in the infrastructure module that provides the necessary clocks and reset signals required in the design.

Signal	Direction	Description
mmcm_clk	Input	System clock input
sys_rst	Input	Core reset from user application
iodelay_ctrl_rdy	Input	IDELAYCTRL lock status
clk	Output	Half frequency FPGA logic clock
mem_refclk	Output	PLL output clock at same frequency as the memory clock
freq_refclk	Output	PLL output clock to provide the FREQREFCLK input to the Phaser. The freq_refclk is generated such that its frequency in the range of 400 MHz–1,066 MHz
sync_pulse	Output	PLL output generated at 1/16 of mem_Refclk and is a synchronization signal sent to the PHY hard blocks that are used in a multi-bank implementation
pll_locked	Output	Locked output from PLLE2_ADV
rstdiv0	Output	Reset output synchronized to internal FPGA logic half-frequency clock.
rst_phaser_ref	Output	Reset for the Phaser in the Physical Layer.

Table 3-11: Infrastructure Clocking and Reset Signals

Physical Interface

The physical interface is the connection from the FPGA memory interface solution to an external RLDRAM II/RLDRAM 3 device. The I/O signals for this interface are defined in Table 3-12. These signals can be directly connected to the corresponding signals on the RLDRAM II/RLDRAM 3 device.

Signal	Direction	Description
rld_ck_p	Output	System Clock CK. This is the address/command clock to the memory device.
rld_ck_n	Output	System Clock CK#. This is the inverted system clock to the memory device.
rld_dk_p	InOut	Write Clock DK. This is the write clock to the memory device.
rld_dk_n	InOut	Write Clock DK#. This is the inverted write clock to the memory device.
rld_a	Output	Address. This is the address supplied for memory operations.
rld_ba	Output	Bank Address. This is the bank address supplied for memory operations.
rld_cs_n	Output	Chip Select CS#. This is the active-Low chip select control signal for the memory.
rld_we_n	Output	Write Enable WE#. This is the active-Low write enable control signal for the memory.
rld_ref_n	Output	Refresh REF#. This is the active-Low refresh control signal for the memory.
rld_dm	Output	Data Mask DM. This is the active-High mask signal, driven by the FPGA to mask data that a user does not want written to the memory during a write command.

Table 3-12: Physical Interface Signals

Signal	Direction	Description
rld_dq	Input/Output	Data DQ. This is a bidirectional data port, driven by the FPGA for writes and by the memory for reads.
rld_qk_p	Input	Read Clock QK. This is the read clock returned from the memory edge aligned with read data on rld_dq. This clock (in conjunction with QK#) is used by the PHY to sample the read data on rld_dq.
rld_qk_n	Input	Read Clock QK#. This is the inverted read clock returned from the memory. This clock (in conjunction with QK) is used by the PHY to sample the read data on rld_dq.
rld_reset_n	Output	RLDRAM 3 reset pin. This is the active-Low reset to the RLDRAM 3 device (not used for RLDRAM II).

Table 3-12: Physical Interface Signals (Cont'd)

Figure 3-46 shows the timing diagram for a typical RLDRAM II configuration 3, burst length of four with commands being sent to the PHY from a controller. After cal_done is asserted, the controller begins issuing commands. A single write command is issued by asserting the cs0 and we0 signals (with ref0 being held Low) and ensuring that addr0 and ba0 are valid. Because this is a burst length of four configuration, the second command that must be issued is a No Operation (NOP), that is, all the control signals (cs1, we1, ref1) are held Low.

Two clock cycles later, the $wr_en0/1$ signals are asserted, and the $wr_data0/1$ and $wr_dm0/1$ signals are valid for the given write command. In this same clock cycle, a single read command is issued by asserting cs0 (with we0 and ref0 being held Low) and placing the associated addresses on addr0 and ba0. Two refresh commands are issued by asserting cs0/1, ref0/1, and ba0/1. The refresh commands can be issued in the same clock cycle as long as the memory banking rules are met.

Figure 3-46: **PHY-Only Interface for RLDRAM II Burst Length 4, Configuration 3, and Address Multiplexing OFF**

The controller sends the wr_en signals and data at the necessary time based on the configuration setting. This time changes depending on the configuration. Table 3-13 details when the wr_en signals should be asserted with the data valid for a given configuration. If address multiplexing is used, the PHY handles rearranging the address signals and outputting the address over two clock cycles rather than one.

Table 3-13: RLDRAM II Command to Write Enable Timing

Address Multiplexing	Configuration	Command to Write Enable (Clock Cycles)
ON	1	3
	2	4

Address Multiplexing	Configuration	Command to Write Enable (Clock Cycles)
	3	5
OFF	1	2
	2	3
	3	4 (1)

	Table 3-13:	RLDRAM II Command to Write Enable Timing	(Cont'd)
--	-------------	--	----------

Notes:

1. Shown in Figure 3-44.

The wr_en signals are required to be asserted an extra clock cycle before the first wr_en signal is asserted, and held for an extra clock cycle after deassertion. This ensures that the shared bus has time to change from read to write and from write to read. The physical layer has a requirement of two clock cycles of no operation (NOP) when transitioning from a write to a read, and from a read to a write. This two clock cycle requirement depends on the PCB and might need to be increased for different board layouts.

Memory Controller

The Memory Controller enforces the RLDRAM II/RLDRAM 3 access requirements and interfaces with the PHY. The controller processes commands in order, so the rank of commands presented to the controller is the order in which they are presented to the memory device.

The Memory Controller first receives commands from the user interface and determines if the command can be processed immediately or needs to wait. When all requirements are met, the command is placed on the PHY interface. For a write command, the controller generates a signal for the user interface to provide the write data to the PHY. This signal is generated based on the memory configuration to ensure the proper command-to-data relationship. Auto-refresh commands are inserted into the command flow by the controller to meet the memory device refresh requirements.

For CIO devices, the data bus is shared for read and write data. Switching from read commands to write commands and vice versa introduces gaps in the command stream due to switching the bus. For better throughput, changes in the command bus should be minimized when possible.

Figure 3-47 shows the state machine logic for the controller.

Figure 3-47: Controller State Machine Logic (CMD_PER_CLK == 1 or 2)

PHY Architecture

The PHY consists of dedicated blocks and soft calibration logic. The dedicated blocks are structured adjacent to one another with back-to-back interconnects to minimize the clock and datapath routing necessary to build high-performance physical layers.

Some of the dedicated blocks that are used in the RLDRAM II/RLDRAM 3 PHY and their features are described as follows:

• I/Os available within each FPGA bank are grouped into four byte groups, where each byte group consists of up to 12 I/Os.

- PHASER_IN/PHASER_OUT blocks are available in each byte group and are multi-stage programmable delay line loops that can provide precision phase adjustment of the clocks. Dedicated clock structures within an I/O bank, referred to as byte group clocks, generated by the PHASERs help minimize the number of loads driven by the byte group clock drivers.
- OUT_FIFO and IN_FIFO are shallow eight or four-deep FIFOs available in each byte group and serve to transfer data from the FPGA logic domain to the I/O clock domain. OUT_FIFOs are used to store output data and address/controls that need to be sent to the memory while IN_FIFOs are used to store captured read data before transfer to the FPGA logic.

The Pinout Requirements, page 467 explains the rules that need to be followed when placing the memory interface signals inside the byte groups.

UG586_c3_04_051811

Figure 3-48: High-Level PHY Block Diagram of the RLDRAM II/RLDRAM 3 Interface Solution

Note: The overall read latency of the MIG 7 series RLDRAM II/RLDRAM 3 core is dependent on how the Memory Controller is configured, but most critically on the target traffic/access pattern and the number of commands already in the pipeline before the read command is issued. Read latency is measured from the point where the read command is accepted by the user or native interface. Simulation should be run to analyze read latency.

Write Path

The write path to the RLDRAM II/RLDRAM 3 includes the address, data, and control signals necessary to execute any memory operation. The control strobes rld_cs_n, rld_we_n, rld_ref_n, and rld_reset_n (RLDRAM 3 only), including addresses rld_a and rld_ba to the memory all use SDR formatting. The write data values rld_dq and rld_dm also use DDR formatting to achieve the required two/four/eight-word burst within the given clock periods.

Output Architecture

The output path of the RLDRAM II/RLDRAM 3 interface solution uses OUT_FIFOs, PHASER_OUT_PHY, PHY_CNTRL, and OSERDES primitives available in 7 series FPGAs. These blocks are used for clocking all outputs of the PHY to the memory device.

The PHASER_OUT_PHY block provides the clocks required to clock out the outputs to the memory. It provides synchronized clocks for each byte group, to the OUT_FIFOs and to the OSERDES/ODDR. PHASER_OUT_PHY generates the byte clock (OCLK), the divided byte clock (OCLKDIV), and a delayed byte clock (OCLK_DELAYED) for its associated byte group. The byte clock (OCLK) is the same frequency as the memory interface clock and the divided byte clock (OCLKDIV) is half the frequency of the memory interface clock. The byte clock (OCLK) is used to clock the Write data (DQ), Data Mask (DM), Address, controls, and system clock (CK/CK#) signals to the memory from the OSERDES/ODDR. The PHASER_OUT_PHY output, OCLK_DELAYED, is an adjustable phase-shifted output with respect to the byte clock (OCLK) and is used to generate the write clock (DK/DK#) to the memory.

Figure 3-49 shows the alignment of the various clocks and how they are used to generate the necessary signal alignment.

Figure 3-49: Write Path Output Alignment

OCLK_DELAYED generates a center-aligned clock for DDR write data but it does not produce an ideal alignment for SDR address/control signals. For this reason, OCLK is used to generate CK/CK#, and depending on if calibration must be done on the write datapath either the address/control byte lanes are shifted or data byte lanes are shifted, to properly align the memory clock CK and the write clock DK. For certain frequencies a one-time calibration is performed for OCLK_DELAYED to ensure reliable write operations. For details, see the Calibration section.

The OUT_FIFO serves as a temporary buffer to convert the write data from the FPGA logic domain to the PHASER clock domain, which clocks out the output data from the I/O logic. The OUT_FIFO runs in asynchronous mode, with the read and write clocks running at the same frequency yet an undetermined phase. A shallow, synchronous PRE_FIFO drives the OUT_FIFO with continuous data from the FPGA logic in an event of a flag assertion from the OUT_FIFO, which might potentially stall the flow of data through the OUT_FIFO. The clocks required for operating the OUT_FIFOs and OSERDES are provided by PHASER_OUT_PHY.

The clocking details of the write paths using PHASER_OUT_PHY are shown in Figure 3-50. The PHY Control block is used to ensure proper start-up of all PHASER_OUT_PHY blocks used in the interface as well as to control the 3-state timing for RLDRAM 3 operation.

Figure 3-50: Write Path Block Diagram of the RLDRAM II Interface Solution

The OSERDES blocks available in every I/O simplifies generation of the proper clock, address, data, and control signaling for communication with the memory device. The flow through the OSERDES uses two different input clocks to achieve the required functionality. Data input ports D1/D2 or D3/D4 are clocked in using the clock provided on the CLKDIV input port, and then passed through a parallel-to-serial conversion block. The OSERDES is used to clock all outputs from the PHY to the memory device. Upon exiting the OSERDES, all output signals must be presented center-aligned with respect to the generated clocks (CK/CK# for address/control signals, DK/DK# for data and data mask). For this reason, the PHASER_OUT_PHY block is also used in conjunction with the OSERDES to achieve center alignment.

Read Path

The read path includes data capture using the memory-provided read clocks and also ensures that the read clock is centered within the data window for good margin during data capture. Before any read can take place, calibration must occur. Calibration is the main function of the read path and needs to be performed before the user interface can start transactions to the memory.

Data Capture

Figure 3-51 shows a high-level block diagram of the path the read clock and the read data captures from entering the FPGA until it is given to you. The read clock bypasses the ILOGIC and is routed through PHASERs within each byte group. For RLDRAM II, the multiregion BUFMR is used to get the read capture clock to the necessary PHASERS used in read data capture. The BUFMR output can drive the PHASEREFCLK inputs of the PHASERs in the immediate bank and also the PHASERs available in the bank above and below the current bank. The BUFMR is needed for RLDRAM II because there can potentially be a single capture clock for two bytes of data, and only the BUFMR can allocate the clock to the multiple PHASERs as required.

Because RLDRAM 3 includes a capture clock per byte of data, the multiregion BUFMR is not required. The PHASER generated byte group clocks (ICLK and ICLKDIV) are then used to capture the read data (DQ) available within the byte group using the ISERDES block. The calibration logic makes use of the fine delay increments available through the PHASER to ensure the byte group clock, ICLK, is centered inside the read data window, ensuring maximum data capture margin.

IN_FIFOs available in each byte group (shown in Figure 3-51) receive 4-bit data from each DQ bit captured in the ISERDES in a given byte group and write them into the storage array. The half-frequency PHASER_IN generated byte group clock, ICLKDIV, that captures the data in the ISERDES is also used to write the captured read data to the IN_FIFO. The write enables to the IN_FIFO are always asserted to enable input data to be continuously written.

For RLDRAM 3, the IN_FIFO also transfers the data from the ICLKDIV domain (which runs at half the memory clock frequency) to the FPGA logic clock domain (which runs at a quarter the memory clock frequency). A shallow, synchronous post_fifo is used at the receiving side of the IN_FIFO to enable captured data to be read out continuously from the FPGA logic, in an event of a flag assertion in the IN_FIFO which might potentially stall the flow of data from the IN_FIFO. Calibration also ensures that the read data is aligned to the rising edge of the FPGA logic half-frequency clock and that read data from all the byte groups have the same delay. More details about the actual calibration and alignment logic is explained in the Calibration.

Figure 3-51: Read Path Block Diagram of the RLDRAM II/RLDRAM 3 Interface Solution

Calibration

The calibration logic includes providing the required amount of delay on the read clock and read data to align the clock in the center of the data valid window. The centering of the clock is done using PHASERs, which provide very fine resolution delay taps on the clock. Each PHASER_IN fine delay tap increments the clock by 1/64th of the reference clock period with a maximum of 64 taps possible.

For designs running at or above 400 MHz, the calibration logic also performs a one-time write calibration to ensure the write clock is center aligned properly with the write data. Calibration begins after memory initialization. Prior to this point, all read path logic is held in reset.

The calibration procedure is different depending on memory type. While similar, RLDRAM II and RLDRAM 3 require different FPGA pin rules that must be accounted for in the calibration algorithm (see Pin Rules in Verify Pin Changes and Update Design, page 415). RLDRAM 3 also runs at higher frequencies which requires using a quarter rate FPGA logic clock versus the half-rate FPGA logic clock used for RLDRAM II.

Figure 3-52 shows the calibration simulation flow for the RLDRAM II and RLDRAM 3. In simulation some of the steps are skipped to speed up the time required before processing user commands.

Figure 3-52: Calibration Flow Diagram

Calibration of Read Clock and Data

PHASER_IN clocks all ISERDES used to capture read data (DQ) associated with the corresponding byte group. ICLKDIV is also the write clock for the read data IN_FIFOs. One PHASER_IN block is associated with a group of 12 I/Os. Each I/O bank in the FPGA has four PHASER_IN blocks, and hence four read data bytes can be placed in a bank.

Implementation Details

This stage of read leveling is performed one byte at a time, where the read clock is center-aligned to the corresponding read data in that byte group. At the start of this stage, a single write command is issued to address location 0 in each bank of the memory device (eight banks for RLDRAM II and 16 for RLDRAM 3). All banks are used to ensure no matter which burst length is selected, the read commands can be issued to ensure read data is returned back-to-back without any gaps in the data stream.

If performing write calibration for RLDRAM 3, you can calibrate reads first by using the Read-Training Register (RTR) of the DRAM. This provides a clock-like pattern from the DRAM that does not require writing in a pattern first. All other times a pattern of "0F0F_0FF0" is used to calibrate read clock and data capture.

If performing write calibration for RLDRAM II, this stage of calibration is continually restarted based on the requirements on the write calibration algorithm.

The calibration logic reads data out of the IN_FIFO and records it for comparison. The calibration logic checks for the sequence of the data pattern read, to determine the alignment of the clock with respect to the data. No assumption is made about the initial relationship between the capture clock and the data window at tap 0 of the fine delay line. The algorithm tries to align the clock to the left edge of the data window, by delaying the read data through the IDELAY element.

Next, the clock is delayed using the PHASER taps and centered within the corresponding data window. The PHASER_TAP resolution is based on the FREQ_REF_CLK period, and the per-tap resolution is equal to (FREQ_REFCLK_PERIOD/2)/64 ps. For memory interface frequencies \geq 400 MHz, using the maximum of 64 PHASER taps can provide a delay of one data period or one-half the clock period. This enables the calibration logic to accurately center the clock within the data window. Figure 3-53 shows this example.

Figure 3-53: Read Level Stage 1

For frequencies < 400 MHz, because FREQ_REF_CLK has twice the frequency of MEM_REF_CLK, the maximum delay that can be derived from the PHASER is 1/2 the data period or 1/4 the clock period. Hence for frequencies < 400 MHz, just using the PHASER delay taps might not be sufficient to accurately center the clock in the data window. For these frequency ranges, a combination of both data delay using IDELAY taps and PHASER taps is used. The calibration logic determines the best possible delays, based on the initial clock-data alignment. The algorithm first delays the read capture clock using the PHASER_IN fine delay line until a data window edge is detected.

The next step is to increment the fine phase shift delay line of the PHASER_IN block one tap at a time until a data mismatch is detected. The data read out of IN_FIFO after the required settling time is then compared with the recorded data at the previous tap value. This is repeated until a data mismatch is found, indicating detection of a valid data window edge.

Complex pattern read calibration stage is added as the last stage of calibration to improve margin.

Data Alignment and Valid Generation

This phase of calibration:

- Ensures read data from all the read byte groups is aligned to the rising edge of the ISERDES CLKDIV capture clock
- Matches the latency for each memory when wider memories are derived from small memories.
- Sends the determined latency to the read valid generation logic.

After read data capture clock centering is achieved, the calibration logic writes out a known data pattern to the memory device and issues continuous reads back from the memory. This is done to determine whether the read data comes back aligned to the positive edge or negative edge of the ICLKDIV output of the PHASER_IN. This stage of read calibration acts as feedback to the write calibration state machine (if enabled) to determine the results of a write for a given byte lane.

For RLDRAM II, captured data from a byte group that is aligned to the negative edge is made to align to the positive edge using the EDGE_ADV input to the PHASER_IN, which shifts the ICLKDIV output by one fast clock cycle.

For RLDRAM 3, because the FPGA logic is running at a quarter the rate of the memory clock frequency, the data is bitslipped in the FPGA logic by a memory clock cycle each time the pulse is issued to ensure proper alignment of all captured data in the expected order.

The next stage is to generate the valid signal associated with the data on the client interface. During this stage of calibration, a burst of data equal to a single FPGA logic clock cycle pattern is written to memory and read back. This phase allows the read logic to count how many cycles elapse before the expected data returns. The basic flow through this phase is:

- 1. Count cycles until the read data arrives for each memory device.
- 2. Determine what value to use as the fixed latency. This value can either be your set indicated value from the PHY_LATENCY parameter or the maximum latency across all memory devices.
- 3. Calibrate the generation of the read valid signal. Using the value determined in step 2, delay the read valid signal to align with the read data for you.
- 4. Assert init_calib_complete.

Write Calibration

When write calibration is enabled, the results of read calibration data alignment are used to determine if a given setting is valid for correct write operation. RLDRAM 3 contains an MRS read training register that can be used for reading out a set pattern from the memory without having to write a pattern to the memory first. After memory initialization, the read capture is first calibrated using this set pattern before moving on to calibrate the writes.

Because RLDRAM II lacks this read training register, the reads and writes cannot be independently verified. At each step of write calibration, the alignment of the read clock with DQ is performed to ensure the correct capture of data. If the data alignment portion of read calibration is performed for a given byte lane and the expected result is not found, the write is assumed to have caused the failure. For RLDRAM II, at each step of write calibration, the read calibration and associated logic are reset and restarted.

See Figure 3-52, page 448 for write calibration flow.

PHASER_OUT provides all of the clocking resources for the output path and is adjusted on a byte lane basis by the calibration algorithm. Each byte lane is independently checked against the write clock being sent to the DRAM to ensure proper write timing. Depending on the pinout, either OCLK_DELAYED is used to adjust the DK clock in relation to the data DQ, or OCLK for a given byte lane is adjusted in relation to the DK clock in another byte lane. Due to the length of time required to independently calibrate each byte lane, write calibration is usually skipped for simulation.

The steps taken for write calibration is dependent on the pinout. Figure 3-54 shows the RLDRAM II pinout block diagram with two data byte lanes and the overview for the steps taken for write calibration.

Figure 3-54: RLDRAM II Write Calibration

The first stage of RLDRAM II write calibration is to calibrate DK clock with respect to DQ in the same byte lane. The write clock DK is adjusted in relation to the DQ to find the data valid window and center in that window as shown in Figure 3-55.

Figure 3-55: RLDRAM II Write Calibration (Stage 1, DK-to-DQ)

Figure 3-56 shows the second stage of RLDRAM II write calibration for in which the entire byte lane is shifted in relation to the CK to sweep and find where the write data transfer breaks for the DK-to-CK alignment.

Figure 3-56: RLDRAM II Write Calibration (Stage 2, DK-to-CK)

Figure 3-57 shows the last step of RLDRAM II write calibration, where the byte lanes that do not share a DK clock as part of their PHASER_OUT output, are calibrated with respect to the DK clock in another byte lane.

Figure 3-57: RLDRAM II Write Calibration (Stage 3, DK-to-DQ2)

Figure 3-58 shows the RLDRAM 3 pinout with two data byte lanes and the overview for the steps taken for write calibration.

Figure 3-58: RLDRAM 3 Write Calibration

Figure 3-59 shows the steps taken for a byte lane for RLDRAM 3. The data is adjusted with respect to the DK clock coming from another bank. This is the same as RLDRAM 3 stage 3, just the first two stages of calibration are skipped for RLDRAM 3.

Figure 3-59: RLDRAM 3 Write Calibration (Stage 3, DK-to-DQ2)

When write calibration completes, the read calibration is restarted one last time to run with the proper write settings and allowed to complete through read valid generation.

The simulation waveforms for write calibration of a 36-bit RLDRAM II design is shown in Figure 3-60. The state machine steps through the calibration one byte at a time, selecting the PHASERs for a given byte lane, making adjustments, and recording the results to optimize the write timing. Adjustments are only made within the limits of the PHASER_OUT fine tap delay. To debug any problems, it is important to check the margin found during both read and write calibration, and to check the cmd-to-data write latency seen by the DRAM matches what is programmed in the MRS register. For more details, see Debugging RLDRAM II and RLDRAM 3 Designs, page 481.

Figure 3-60: **RLDRAM II Write Calibration Waveforms**

Customizing the Core

The RLDRAM II/RLDRAM 3 memory interface solution is customizable to support several configurations. The specific configuration is defined by Verilog parameters in the top-level of the core. As per the OOC flow, none of the parameter values are passed down to the user design RTL file from the example design top RTL file. So, any design related parameter change is not reflected in the user design logic. The MIG tool should be used to regenerate a design when parameters need to be changed. The parameters are summarized in Table 3-14.

Parameter	Description	Options
CLK_PERIOD	Memory clock period (ps).	-
ADDR_WIDTH	Memory address bus width.	18–22
RLD_ADDR_WIDTH	Physical Memory address bus width when using Address Multiplexing mode.	11, 18–22
BANK_WIDTH	Memory bank address bus width.	RLDRAM II: 3 RLDRAM 3: 4

Table 3-14: RLDRAM II Memory Interface Solution Configurable Parameters

Parameter	Description	Options
DATA_WIDTH	Memory data bus width and can be set through the MIG tool. A maximum DATA_WIDTH of 72 is supported.	-
QK_WIDTH	Memory read clock bus width.	RLDRAM II: 2 per x18/x36 device RLDRAM 3: DATA_WIDTH/9
DK_WIDTH	Memory write clock bus width.	RLDRAM II: 2 per x36 device, 1 per x18 device RLDRAM 3: 2 per device
BURST_LEN	Memory data burst length.	RLDRAM II: 4, 8 RLDRAM 3: 2, 4, 8
DM_PORT	This parameter enables and disables the generation of the data mask ports.	ON, OFF
NUM_DEVICES	Number of memory devices used.	1-4
MRS_CONFIG	This parameter sets the configuration setting in the RLDRAM II/RLDRAM 3 memory register.	RLDRAM II: 1, 2, 3 RLDRAM 3: 3, 4, 5, 6, 7, 8, 9, 10, 11
MRS_ADDR_MUX	This parameter sets the address multiplexing setting in the RLDRAM II/RLDRAM 3 memory register.	ON, OFF
MRS_DLL_RESET	This parameter sets the DLL setting in the RLDRAM II/RLDRAM 3 memory register.	DLL_ON
MRS_IMP_MATCH	This parameter sets the impedance setting in the memory register.	INTERNAL, EXTERNAL
MRS_ODT	This parameter sets the ODT setting in the memory register.	ON, OFF
MRS_RD_LATENCY	This parameter sets the Read latency and write latency setting in the RLDRAM 3 memory register, and is dependent on memory device and frequency of operation.	8–16
MRS_RTT_WR	This parameter sets the output drive impedance setting in the MRS register for RLDRAM 3.	40, 60, 120
MRS_RTT_RD	This parameter sets the ODT setting in the MRS register for RLDRAM 3. If ODT is not used this parameter becomes a "Do not care."	40, 60
MEM_TRC	This parameter sets the RLDRAM 3 TRC setting, and is dependent on the memory device and read latency selected.	4–11
MEM_TYPE	This parameter specifies the memory type.	RLD2_CIO, RLD3
IODELAY_GRP ⁽¹⁾	This is a unique name for the IODELAY_CTRL provided when multiple IP cores are used in the design.	-
REFCLK_FREQ	Reference clock frequency for IDELAYCTRLs. This parameter should not be changed.	200.0

Tuble 5-14. REDITATION IN METHOD Y INCENTIACE SOlution Configurable Falameters (Cont o	Table 3-14:	RLDRAM II Memory	y Interface Solution	Configurable Parameters	s (Cont'd)
--	-------------	-------------------------	----------------------	--------------------------------	------------

Parameter	Description	Options
BUFMR_DELAY	Simulation-only parameter used to model buffer delays (RLDRAM II only).	-
RST_ACT_LOW	Active-Low or active-High reset. This is set to 1 when System Reset Polarity option is selected as active-Low and set to 0 when the option is selected as active-High.	0, 1
IBUF_LPWR_MODE	Enables or disables low power mode for the input buffers.	ON, OFF
IODELAY_HP_MODE	Enables or disables high-performance mode within the IODELAY primitive. When set to OFF, IODELAY operates in low power mode at the expense of performance.	ON, OFF
SYSCLK_TYPE	This parameter indicates whether the system uses single-ended system clocks, differential system clocks, or is driven from an internal clock (No Buffer). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, sys_clk_p/sys_clk_n must be used. For single-ended clocks, sys_clk_i must be used. For the No Buffer option, sys_clk_i, which appears in the port list, needs to be driven from an internal clock.	DIFFERENTIAL, SINGLE_ENDED, NO_BUFFER
REFCLK_TYPE	This parameter indicates whether the system uses single-ended reference clocks, differential reference clocks, is driven from an internal clock (No Buffer), or can connect to the system clock input only (Use System Clock). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, clk_ref_p/clk_ref_n must be used. For single-ended clocks, clk_ref_i must be used. For the No Buffer option, clk_ref_i, which appears in the port list, needs to be driven from an internal clock. For the Use System Clock option, clk_ref_i is connected to the system clock in the user design top module.	DIFFERENTIAL, SINGLE_ENDED, NO_BUFFER, USE_SYSTEM_CLOCK
CLKIN_PERIOD	Input clock period.	-
CLKFBOUT_MULT	PLL voltage-controlled oscillator (VCO) multiplier. This value is set by the MIG tool based on the frequency of operation.	-
CLKOUT0_DIVIDE, CLKOUT1_DIVIDE, CLKOUT2_DIVIDE, CLKOUT3_DIVIDE	VCO output divisor for PLL outputs. This value is set by the MIG tool based on the frequency of operation.	-
CLKOUT0_PHASE	Phase of PLL output CLKOUT0. This value is set by the MIG based on the banks selected for memory interface pins and the frequency of operation.	-
DIVCLK_DIVIDE	PLL VCO divisor. This value is set by the MIG tool based on the frequency of operation.	_

Table 3-14: RLDRAM II Memory Interface Solution Configurable Parameters (Cont'd)

Parameter	Description	Options
SIM_BYPASS_INIT_CAL	This simulation-only parameter is used to speed up simulations, by skipping the initialization wait time and speeding up calibration. SKIP_AND_WRCAL and FAST_AND_WRCAL are options to SKIP or perform FAST read calibration, but to simulate write calibration.	FAST, NONE, SKIP_AND_WRCAL, FAST_AND_WRCAL
SIMULATION	Set to "TRUE" for simulation; set to "FALSE" for implementation.	"TRUE," "FALSE"
DEBUG_PORT	Turning on the debug port allows for use with the VIO of the Vivado logic analyzer feature. This allows you to change the tap settings within the PHY based on those selected though the VIO. This parameter is always set to OFF in the sim_tb_top module of the sim folder, because debug mode is not required for functional simulation.	ON, OFF
N_DATA_LANES	Calculated number of data byte lanes, used to set up signal widths for using the debug port. This parameter should not be changed.	DATA_WIDTH/9
DIFF_TERM_SYSCLK	Differential Termination for System clock input pins	"TRUE," "FALSE"
DIFF_TERM_REFCLK	Differential Termination for IDELAY reference clock input pins	"TRUE," "FALSE"
nCK_PER_CLK	Number of memory clocks per FPGA logic clocks. This parameter should not be changed.	RLDRAM II: 2 RLDRAM 3: 4
TCQ	Register delay for simulation.	100

10018 3-14. REDRAIN II Memory Interface Solution Configurable Parameters (Co	Table 3-14:	RLDRAM II Memory	/ Interface Solution	Configurable Parameter	s (Cont'd
--	-------------	-------------------------	----------------------	-------------------------------	-----------

Notes:

1. This parameter is prefixed with the module name entered in MIG during design generation. If the design is generated with the module name as mig_7series_0, then IODELAY_GRP parameter name is mig_7series_0_IODELAY_MIG.

Table 3-15 contains parameters set up by the MIG tool based on the pinout selected. When making pinout changes, Xilinx recommends rerunning the MIG tool so the parameters are set up properly; otherwise see Pinout Requirements, page 467. Mistakes to the pinout parameters can result in non-functional simulation, an unroutable design, and/or trouble meeting timing. These parameters are used to set up the PHY and route all the necessary signals to and from it. The parameters are calculated based on Data and Address/Control byte groups selected. These parameters do not consider the System Signals selection (that is, system clock, reference clock, and status signals).

Parameter	Description	Example
MASTER_PHY_CTL	0, 1, 2. This parameter varies based on the pinout and should not be changed manually in generated design.	The bank where the master PHY_CONTROL resides (usually corresponds to MMCM/PLL bank location).
BYTE_LANES_B0, BYTE_LANES_B1, BYTE_LANES_B2	Three fields, one per possible I/O bank. Defines the byte lanes being used in a given I/O bank. A 1 in a bit position indicates a byte lane is used, and a 0 indicates unused. This parameter varies based on the pinout and should not be changed manually in generated design.	Ordering of bits from MSB to LSB is T0, T1, T2, and T3 byte groups. 4'b1101 = Three byte lanes in use for a given bank, with one not in use.
DATA_CTL_B0, DATA_CTL_B1, DATA_CTL_B2	Three fields, one per possible I/O bank. Defines the byte lanes for a given I/O bank. A 1 in a bit position indicates a byte lane is used for data, and a 0 indicates it is used for address/control. This parameter varies based on the pinout and should not be changed manually in generated design.	4'b1100 = Two data byte lanes, and, if used with a BYTE_LANES_B0 parameter as in the example shown above, one address/control.
CPT_CLK_SEL_B0, CPT_CLK_SEL_B1, CPT_CLK_SEL_B2	 RLDRAM II Only. Three fields, one per possible I/O bank. Defines which read capture clocks are used for each byte lane in given bank. MRCC read capture clocks are placed in byte lanes 1 and/or 2, where parameter is defined for each data byte lane to indicate which read clock to use for the capture clock. 8 bits per byte lane, defined such that: [3:0] - 1, 2 to indicate which of two capture clock sources [7:4] - 0 (bank below), 1 (current bank), 2 (bank above) to indicate in which bank the clock is placed. This parameter varies based on the pinout and should not be changed manually in generated design. 	32'h12_12_11_11 = Four data byte lanes, all using the clocks in the same bank. 32'h21_22_11_11 = Four data byte lanes, two lanes using the capture clock from the bank above (16'h21_22), two using the capture clock from the current bank (16'h11_11).

Parameter	Description	Example
PHY_0_BITLANES, PHY_1_BITLANES, PHY_2_BITLANES	Three fields, one per possible I/O bank. 12-bit parameter per byte lane used to determine which I/O locations are used to generate the necessary PHY structures. This parameter is provided per bank. Except for the CK_P/CK_N, DK_P/DK_N, QK_P/QK_N, and all Data and Address/Control pins are considered for this parameter generation. This parameter varies based on the pinout and should not be changed manually in generated design.	This parameter is denoted for all byte groups of a selected bank. All 12 bits are denoted for a byte lane and are ordered from MSB:LSB as BA98_7654_3210. For example, this parameter is 48'hFFE_FFF_000_ DF6 for one bank. 12'hBFC (12'b1011_1111_1100) = bit lanes 0, 1, and 10 are not used, all others are used.
СК_МАР	 Bank and byte lane position information for the chip select. 12-bit parameter provided per pin. [3:0] – Bit position within a byte lane. Values of [0, 1, 2,, A, B] are supported. [7:4] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. [11:8] – Bank position. Values of 0, 1, or 2 are supported This parameter varies based on the pinout and should not be changed manually in generated design. 	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1, and 0 respectively. Bottom-most pin in a byte group is referred to as "0" in MAP parameters. Numbering is counted from 0 to 9 from the bottom-most pin to the top pin within a byte group by excluding DQS I/Os. DQS_N and DQS_P pins of byte group are numbered as A and B, respectively. 144'h000_000_000_000_000_000_000_000_000_00

Table 3-15: RLDRAM II Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
DK_MAP	Bank and byte lane position information for the DK/DK#. 8-bit parameter provided per pair of	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom.
	 signals. [3:0] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. [7:4] – Bank position. Values of 0, 1, or 2 are supported This parameter varies based on the pinout and should not be changed manually in generated design. 	Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1, and 0, respectively.
		96'h00_00_00_00_00_00_00_00_00_10_13 = This parameter is denoted for 12 clock pairs with 8 bits for each clock pin. In this case, two clock
		pairs are used. Ordering of parameters is from MSB to LSB (that is, DK[0]/ DK#[0] corresponds to
		the 8 LSBs of the parameter). 8'h13 = DK/DK# placed in bank 1, byte lane 3.
		8'h20 = DK/DK# placed in bank 2, byte lane 0.
	information for the QK/QK#. 8-bit parameter provided per pair of signals.	
ΟΚ ΜΑΡ	 [3:0] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are 	See the DK_MAP example for parameter values notation.
Z.(), (supported.	8'h11 = QK/QK# placed in bank 1, byte lane 1.
	or 2 are supported	$8 \text{ n}_{22} = QK/QK\#$ placed in bank 2, byte lane 2.
	This parameter varies based on the pinout and should not be changed manually in generated design.	
CS_MAP	Bank and byte lane position information for the chip select. 12-bit parameter provided per pin.	
	 [3:0] – Bit position within a byte lane. Values of [0, 1, 2,, A, B] are supported. 	
	 [7:4] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. 	See the CK_MAP example.
	 [11:8] – Bank position. Values of 0, 1, or 2 are supported 	
	This parameter varies based on the pinout and should not be changed manually in generated design.	
WE_MAP	Bank and byte lane position information for the write enable. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.

Table 3-15: RLDRAM II Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
REF_MAP	Bank and byte lane position information for the refresh signal. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.
ADDR_MAP	Bank and byte lane position information for the address. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.
BANK_MAP	Bank and byte lane position information for the bank address. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.
DQTS_MAP	Bank and byte lane position information for the 3-state control. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.
DM_MAP	Bank and byte lane position information for the data mask. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.
DATA0_MAP, DATA1_MAP, DATA2_MAP, DATA3_MAP, DATA4_MAP, DATA5_MAP, DATA6_MAP, DATA7_MAP	Bank and byte lane position information for the data bus. See CS_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_MAP example.

Table 3-15: RLDRAM II Memory Interface Solution Pinout Parameters (Cont'd)

Design Guidelines

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA, FPGA speed grade, and the design frequency. The final frequency ranges are subject to characterization results.

For general PCB routing guidelines, see Appendix A, General Memory Routing Guidelines.

Bank Sharing Among Controllers

No unused part of a bank used in a memory interface is permitted to be shared with another memory interface. The dedicated logic that controls all the FIFOs and phasers in a bank is designed to only operate with a single memory interface and cannot be shared with other memory interfaces. With the exception of the shared address and control in the dual controller supported in MIG.

Trace Length Requirements

The trace lengths described here are for high-speed operation and can be relaxed depending on the application target bandwidth requirements. The package delay should be included when determining the effective trace length. Note that different parts in the same package have different internal package skew values. De-rate the minimum period appropriately in the **MIG Controller Options** page when different parts in the same package are used.

One method for determining the delay is to use the L and C values for each pin from the IBIS models. The delay value is determined as the square root of $(L \times C)$.

Another method is to generate the package lengths using Vivado Design Suite. The following commands generate a csv file that contains the package delay values for every pin of the device under consideration.

```
link_design -part <part_number>
write_csv <file_name>
```

For example, to obtain the package delay information for the 7 series FPGA XC7K160T-FF676, this command should be issued:

```
link_design -part xc7k160tfbg676
write_csv flight_time
```


This generates a file named flight_time.csv in the current directory with package trace delay information for each pin. While applying specific trace-matching guidelines for the RLDRAM II/RLDRAM 3 interface, this additional package delay term should be considered for the overall electrical propagation delay. Different die in the same package might have different delays for the same package pin. If this is expected, the values should be averaged appropriately. This decreases the maximum possible performance for the target device.

These rules indicate the maximum electrical delays between RLDRAM II/RLDRAM 3 signals:

- RLDRAM II
 - For x36 data width, the maximum skew between DQ[17:0] and DK/DK#[0] should be ±15 ps.
 - For x36 data width, the maximum skew between DQ[35:18] and DM and DK/DK#[1] should be ±15 ps.
 - For x18 data width, the maximum skew between any DQ/DM and DK/DK# should be ±15 ps.
- RLDRAM 3
 - The maximum skew between DQ[8:0] and DQ[26:18] and DM[0] to DK/DK#[0] should be ±15 ps.
 - The maximum skew between DQ[17:9] and DQ[35:27] and DM[1] to DK/DK#[1] should be ±15 ps.
- The maximum skew between any DQ and its associated QK/QK# should be:
 - RLDRAM II: ±15 ps
 - RLDRAM 3: ±10 ps
- The maximum skew between any address and control signals and the corresponding CK/CK# should be ±50 ps.
- The maximum skew between any DK/DK# and CK/CK# should be ±25 ps.

Pinout Requirements

Xilinx 7 series FPGAs are designed for very high-performance memory interfaces, and certain rules must be followed to use the RLDRAM II/RLDRAM 3 physical layer. Xilinx 7 series FPGAs have dedicated logic for each byte group. Four byte groups are available in each 50-pin bank. Each 50-pin bank consists of two pairs of multiregion clock capable I/O (MRCC) pins and four byte groups that contain 1 DQS clock-capable I/O pair and 10 associated I/Os.

RLDRAM II

In a typical RLDRAM II data bank configuration, 9 of these 10 I/Os are used for the data (DQ) and one can be used for the data mask (DM). DM must be placed in the same byte lane as the corresponding data; if two bytes share the same DM then it should be placed with one of those bytes. The write clocks (DK/DK#) use one of the DQS pairs inside the data bank. QK/QK# clocks must be placed on MRCC pins in a given data bank or in the bank above or below the data. Xilinx 7 series FPGAs have dedicated clock routing for high-speed synchronization that is routed vertically within the I/O banks. Thus, RLDRAM II interfaces must be arranged in the banks vertically and not horizontally. In addition, the maximum height is three banks.

After a core is generated through the MIG tool, the most optimal pinout has been selected for the design. Manual changes through the XDC are not recommended. However, if the XDC needs to be altered, these rules must be taken into consideration:

- The CK/CK# clocks must be placed in an address/control byte lane. The CK/CK# clocks also need to be placed on a DQS pin pair. CK must be placed on the P location, and CK# must be placed on the N location.
- The DK/DK# clocks must be placed in a data byte lane. The DK/DK# clocks also need to be placed on a DQS pin pair. DK must be placed on the P location, and DK# must be placed on the N location.
- Data (DQ) is placed such that all signals corresponding to 1-byte (nine bits) are placed inside a byte group. DQ must not be placed on the DQS N location in a byte lane, because this location is used for the 3-state control.
- Data Mask (DM) must be placed with one of the corresponding data byte lanes it is associated with.

Note: If DM pins are not used, they should be tied to ground. For more information, consult the memory vendor data sheet.

- Xilinx recommends keeping all of the data generated from a single memory component within a bank.
- Read clocks (QK and QK#) need to be placed on the MRCC pins that are available in each bank, respectively. Data must be in the same bank as the associated QK/QK#, or in the bank above or below.
- Address/control signals can be placed in byte groups that are not used for data and all should be placed in the same bank. The address/control must be in the middle I/O bank of the interfaces that span three I/O banks. Also, all address/control signals must be in the same I/O bank. Address/control cannot be split between banks.
- For a given byte lane, the DQS_N location is used to generate the 3-state control signal. The 3-state can share the location with DK# or DM only data.

• The system clock input must be in the same column as the memory interface. The system clock input is strongly recommended to be in the address/control bank. If this is not possible, the system clock input must be in the bank above or below the address/control bank.

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

• Devices implemented with SSI technology have SLRs. Memory interfaces cannot span across SLRs. Ensure that this rule is followed for the part chosen and for any other pin-compatible parts that can also be used.

RLDRAM 3

In a typical RLDRAM 3 data bank configuration, 9 of these 10 I/Os are used for the data (DQ) and one can be used for the data mask (DM). The write clocks (DK/DK#) use one of the DQS pairs inside the Address/Control bank, or the DQS pairs in a free byte lane in a data bank. QK/QK# clocks must be placed on DQS pins in a given data bank lane associated with this same clock. Xilinx 7 series FPGAs have dedicated clock routing for high-speed synchronization that is routed vertically within the I/O banks. Thus, RLDRAM 3 interfaces must be arranged in the banks vertically and not horizontally. In addition, the maximum height is three banks.

After a core is generated through the MIG tool, the most optimal pinout has been selected for the design. Manual changes through the XDC are not recommended. However, if the XDC needs to be altered, these rules must be taken into consideration:

- The CK/CK# clocks must be placed in an address/control byte lane. CK must be placed on the P location, and CK# must be placed on the N location, of an I/O pin pair in that byte lane.
- The DK/DK# clocks must be placed on a DQS pin pair. DK must be placed on the P location, and DK# must be placed on the N location.
- Data (DQ) is placed such that all signals corresponding to 1-byte (nine bits) are placed inside a byte group. DQ must not be placed on the DQS N location in a byte lane, because this location is used for the 3-state control.
- Data Mask (DM) must be placed with one of the corresponding data byte lanes it is associated with. For the x18 device DM[0] corresponds to DQ[8:0] and DM[1] to DQ[17:9], while for the x36 device DM[0] corresponds to DQ[8:0]/DQ[26:18] and DM[1] to DQ[17:9]/DQ[35/27].

RECOMMENDED: If DM pins are not used, they should be tied to ground. For more information, see the memory vendor data sheet.

• Xilinx recommends keeping all of the data generated from a single memory component within a bank.

- Read clocks (QK and QK#) need to be placed on the DQS pins that are available in a data byte lane, respectively. Data must be in the same byte lane as the associated QK/QK#.
- Address/control signals can be placed in byte groups that are not used for data and all should be placed in the same bank. The address/control must be in the middle I/O bank of the interfaces that span three I/O banks. Also, all address/control signals must be in the same I/O bank. Address/control cannot be split between banks.
- For a given byte lane, the DQS_N location is used to generate the 3-state control signal. The 3-state can share the location with DK# only
- The system clock input must be in the same column as the memory interface. The system clock input is strongly recommended to be in the address/control bank. If this is not possible, the system clock input must be in the bank above or below the address/control bank.

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

• Devices implemented with SSI technology have SLRs. Memory interfaces cannot span across SLRs. Ensure that this rule is followed for the part chosen and for any other pin-compatible parts that can also be used.

System Clock, PLL Location, and Constraints

The PLL is required to be in the bank that supplies the clock to the memory to meet the specified interface performance. The system clock input is also strongly recommended to be in this bank. The MIG tool follows these two rules whenever possible. However, exceptions are possible where pins might not be available for the clock input in the bank as that of the PLL. In this case, the clock input needs to come from an adjacent bank through the frequency backbone to the PLL. The system clock input to the PLL must come from clock-capable I/Os.

The system clock input can only be used for an interface in the same column. The system clock input cannot be driven from another column. The additional PLL or MMCM and clock routing required for this induces too much additional jitter.

Unused outputs from the PLL can be used as clock outputs. Only the settings for these outputs can be changed. Settings related to the overall PLL behavior and the used outputs must not be disturbed. A PLL cannot be shared among interfaces.

See Clocking Architecture, page 434 for information on allowed PLL parameters.

Configuration

The XDC contains timing, pin, and I/O standard information. The sys_clk constraint sets the operating frequency of the interface. It is set through the MIG GUI. This must be rerun if this constraint needs to be altered, because other internal parameters are affected. For example:

create_clock -period 1.875 [get_ports sys_clk_p]

The clk_ref constraint sets the frequency for the IDELAY reference clock, which is typically 200 MHz. For example:

create_clock -period 5 [get_ports clk_ref_p]

The I/O standards are set appropriately for the RLDRAM II interface with LVCMOS15, HSTL15_I, HSTL15_I_DCI, DIFF_HSTL15_I, or DIFF_HSTL15_I_DCI, as appropriate. LVDS_25 is used for the system clock (sys_clk) and I/O delay reference clock (clk_ref). These standards can be changed, as required, for the system configuration. These signals are brought out to the top-level for system connection:

- sys_rst This signal is the main system reset (asynchronous).
- **init_calib_complete** This signal indicates when the internal calibration is done and that the interface is ready for use.
- **tg_compare_error** This signal is generated by the example design traffic generator if read data does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design. They can be generated and used internally instead of being brought out to pins.

Some interfaces might need to have the system clock in a bank above or below the bank with the address/control and data. In this case, the MIG tool puts an additional constraint in the XDC. For example:

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_nets sys_clk_p]
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hierarchical *pll*CLKIN1]

It results in the following warning during PAR. This warning can be ignored.

WARNING:Place:1402 - A clock IOB / PLL clock component pair have been found that are not placed at an optimal clock IOB / PLL site pair. The clock IOB component <sys_clk_p> is placed at site <IOB_X1Y76>. The corresponding PLL component <u_backb16/u_infrastructure/plle2_i> is placed at site <PLLE2_ADV_X1Y2>. The clock I/O can use the fast path between the IOB and the PLL if the IOB is placed on a Clock Capable IOB site that has dedicated fast path to PLL sites within the same clock region. You may want to analyze why this problem exists and correct it. This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint was applied on COMP.PIN <sys_clk_p.PAD> allowing your design to continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override is highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be corrected in the design.

Do not drive user clocks through the I/O clocking backbone from the region(s) containing the MIG generated memory interface to CMT blocks in adjacent regions due to resource limitations. For more information, see the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].

The MIG tool sets the VCCAUX_IO constraint based on the data rate and voltage input selected. The generated XDC has additional constraints as needed. For example:

```
# PadFunction: IO_L13P_T2_MRCC_37
set_property VCCAUX_IO DONTCARE [get_ports {sys_clk_p}]
set_property IOSTANDARD DIFF_HSTL_I [get_ports {sys_clk_p}]
# PadFunction: IO_L13N_T2_MRCC_37
set_property VCCAUX_IO DONTCARE [get_ports {sys_clk_n}]
set_property IOSTANDARD DIFF_HSTL_I [get_ports {sys_clk_n}]
set_property PACKAGE_PIN J22 [get_ports {sys_clk_n}]
```

For more information, see the Xilinx Timing Constraints Guide (UG612) [Ref 15].

For RLDRAM II interfaces that have the memory system input clock (sys_clk_p/sys_clk_n) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSTL_I I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_HSTL_I and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_HSTL_I CCIO pins. For more details on usage and required circuitry for LVDS and LVDS_25 I/O Standards, see the 7 Series FPGAs SelectIO[™] Resources User Guide (UG471) [Ref 2].

Termination

These recommendations apply to termination for RLDRAM II and RLDRAM 3 memory interface solution:

- Simulation (using IBIS or other) is highly recommended. The loading of command and address signals depends on various factors, such as speed requirements and termination topology. Loading can be a limiting factor in reaching a performance target.
- Command and Address signals should be terminated to V_{TT} through a 40 Ω resistor if operating at and above 1,333 Mb/s, or 50 Ω if operating below 1,333 Mb/s.
- Data signals (DQ) do not require an external termination, and should use DCI. Set DCI termination to 40Ω for operation at and above 1,333 Mb/s, or 50Ω if operating below 1,333 Mb/s.
- Data Mask (DM) does not require an external termination, as On-Die Termination (ODT) is sufficient.
- QVLD (RLDRAM 3 only) does not require an external termination and should use DCI. Set DCI termination to 40Ω for operation at and above 1,333 Mb/s, or 50Ω if operating below 1,333 Mb/s.

- Write Data clock (DK_P/N) does not require an external termination, as On-Die Termination is sufficient.
- Input Clock (CK_P/N) should be differentially terminated with an 80Ω resistor.
- Read Data clock (QK_P/N) does not require an external termination and should use DCI. Set DCI termination to 40Ω for operation at and above 1,333 Mb/s, or 50Ω if operating below 1,333 Mb/s.

Manual Pinout Changes

For manually manipulating the parameters described in Table 3-15, the following examples show how to allocate parameters for a given byte lane. Table 3-16 shows a typical RLDRAM II data byte lane, indicating the bank, byte lane, and bit position for each signal.

Bank	Byte Lane	Bit	DDR	Byte Group	I/O Type	I/O Number	Special Designation	В	ITLAN	IES		
		9	VREF	A_11	Р	12	VREF			0		
		8	DQ8	A_10	N	11				1		
		7	DQ7	A_09	Р	10			1	1		
		6	DQ6	A_08	N	9			1			
		В	DK0_P	A_07	Р	8	DQS-P			0	0001	
		А	DK0_N	A_06	Ν	7	DQS-N			0	1	
0	0	5	DQ5	A_05	Р	6			1	111 1	_	
		4	DQ4	A_04	Ν	5			1	F		
		3	DQ3	A_03	Р	4		1		-		
		2	DQ2	A_02	Ν	3		1				
		1	DQ1	A_01	Р	2		1	111 1			
		0	DQ0	A_00	Ν	1		1	F			1FF
		•	VRN	N/A	SE	0						

Table 3-16: Example RLDRAM II Byte Lane #1

The byte lane parameters for Table 3-16 are shown in Table 3-17.

Table 3-17:	Parameters for	Example RLDRAM	II Data By	te Lane #1
-------------	----------------	----------------	------------	------------

Parameter	Value
DK_MAP	8'h00
DQTS_MAP	12'h00A
PHY_0_BITLANES	12'h1FF
DATA0_MAP	108'h008_007_006_005_004_003_002_001_000

Table 3-18 shows the byte lane with the Data Mask (DM) placed on the 3-state location. While the DM can share the OSERDES location with the 3-state control, they cannot share the same location in the OUT_FIFO in the PHY. Thus some signals from the OUT_FIFO have to shift as shown in Table 3-18. In this case, the direction of the shift is determined on the byte lane location, with byte lanes 0, 1 shifted up, and 2, 3 shifted down. In this case, the PHY merges the 3-state control with the DM to share the same OSERDES location.

Bank	Byte Lane	Bit	МАР	DDR	Byte Group	I/O Type	I/O Number	Special Designation		BITL	ANES.		
	XDC												
		9		QK0_P	B_11	Р	24	CCIO-P			0		
		8	DQ17	QK0_N	B_10	N	23	CCIO-N			1		
		7	DQ16	DQ17	B_09	Р	22	CCIO-P		1			
		6	DQ15	DQ16	B_08	N	21	CCIO-N		1			
		В	3-state	DQ15	B_07	Р	20	DQS-P			0	0101	
		А	DM	DM	B_06	N	19	DQS-N			1	5	
0	1	5	DQ14	DQ14	B_05	Р	18			1	111 1	-	
		4	DQ13	DQ13	B_04	N	17			1	F		
		3	DQ12	DQ12	B_03	Р	16		1		-		
		2	DQ11	DQ11	B_02	N	15		1				
		1	DQ10	DQ10	B_01	Р	14		1	111 1			
		0	DQ9	DQ9	B_00	Ν	13		1	F			5FF

Table 3-18: Example RLDRAM II Byte Lane #3, Shared 3-State with DM in Byte Lane #1

The byte lane parameters for Table 3-18 are shown in Table 3-19.

Table 3-19: Parameters for Example RLDRAM II Data Byte Lane #3

Parameter	Value
DM_MAP	12'h01A
DQTS_MAP	12'h01B
PHY_0_BITLANES	12'h5FF
DATA1_MAP	108'h018_017_016_015_014_013_012_011_010
QK_MAP	8'h01

Table 3-20 shows another RLDRAM II byte lane with the 3-state control location unused.

Bank	Byte Lane	Bit	МАР	DDR	Byte Group	I/O Type	I/O Number	Special Designation	BITLANES				
	XDC												
		9	DQ26	DQ26	C_11	Р	12				1		
		8	DQ25	DQ25	C_10	N	11				1		
		7	DQ24	DQ24	C_09	Р	10			1			
		6	DQ23	DQ23	C_08	N	9			1			
		В	DQ22	DQ22	C_07	Р	8	DQS-P			1	1011	
		А			C_06	N	7	DQS-N			0	В	
0	2	5	DQ21	DQ21	C_05	Р	6			1	111 1	-	
		4	DQ20	DQ20	C_04	N	5			1	F		
		3	DQ19	DQ19	C_03	Р	4	CCIO-P	1		-		
		2	DQ18	DQ18	C_02	N	3	CCIO-N	1				
		1		QK1_P	C_01	Р	2	CCIO-P	0	110 0			
		0		QK1_N	C_00	Ν	1	CCIO-N	0	С			BFC

Table 3-20: Example RLDRAM II Byte Lane #4, 3-State with Control Location Unused

The byte lane parameters for Table 3-20 are shown in Table 3-21.

Table 3-21:	Parameters for Example RLDRAM II Data Byte Lane #4
-------------	--

Parameter	Value
DQTS_MAP	12'h02A
PHY_0_BITLANES	12'hBFC
DATA1_MAP	108'h029_028_027_026_02B_025_024_023_022
QK_MAP	8'h02

Table 3-22 shows the RLDRAM II byte lane with the 3-state pin location used for DM. In this situation the signals are shifted down in the OUT_FIFO.

Bank	Byte Lane	Bit	МАР	DDR	Byte Group	I/O Type	I/O Number	Special Designation	В	ITLAN	ES		
				>	(DC								
		9	DQ26	DQ26	C_11	Р	12				1		
		8	DQ25	DQ25	C_10	N	11				1		
		7	DQ24	DQ24	C_09	Р	10			1			
		6	DQ23	DQ23	C_08	N	9			1			
		В	DQ22	DQ22	C_07	Р	8	DQS-P			1	1111	
		А	DM	DM	C_06	Ν	7	DQS-N			1	F	
0	2	5	3-state	DQ21	C_05	Р	6			0	110 1	_	
		4	DQ21	DQ20	C_04	N	5			1	D		
		3	DQ20	DQ19	C_03	Р	4	CCIO-P	1		-		
		2	DQ19	DQ18	C_02	Ν	3	CCIO-N	1				
		1	DQ18	QK1_P	C_01	Р	2	CCIO-P	1	111 0			
		0		QK1_N	C_00	Ν	1	CCIO-N	0	E			FDE

Table 3-22: Example RLDRAM II Byte Lane #5, Shared 3-State with DM in Byte Lane #2

The byte lane parameters for Table 3-22 are shown in Table 3-23.

$TUDIE J^2 Z J$. Falameters for Example REDITAIN in Data Dyte Lane πJ

Parameter	Value
DM_MAP	12'h02A
DQTS_MAP	12'h025
PHY_0_BITLANES	12'hFDE
DATA1_MAP	108'h029_028_027_026_02B_024_023_022_021
QK_MAP	8'h02

I/O Standards

The MIG tool generates the appropriate XDC for the core with SelectIO[™] standards based on the type of input or output to the 7 series FPGAs. These standards should not be changed. Table 3-24 and Table 3-25 contain a list of the ports with the I/O standard used.

Signal	Direction	I/O Standard
rld_ck_p, rld_ck_n	Output	DIFF_HSTL_I
rld_dk_p, rld_dk_n	InOut	DIFF_HSTL_II
rld_cs_n	Output	HSTL_I
rld_we_n	Output	HSTL_I
rld_ref_n	Output	HSTL_I
rld_a	Output	HSTL_I
rld_ba	Output	HSTL_I
rld_dm	Output	HSTL_I
rld_dq	Input/Output	HSTL_II_T_DCI, HSTL_II
rld_qk_p, rld_qk_n	Input	DIFF_HSTL_II_DCI, DIFF_HSTL_II

Table 3-24: RLDRAM II I/O Standards

Table 3-25: RLDRAM 3 I/O Standards

Signal	Direction	I/O Standard
rld_ck_p, rld_ck_n	Output	DIFF_SSTL12
rld_dk_p, rld_dk_n	InOut	DIFF_SSTL12
rld_cs_n	Output	SSTL12
rld_we_n	Output	SSTL12
rld_ref_n	Output	SSTL12
rld_a	Output	SSTL12
rld_ba	Output	SSTL12
rld_dm	Output	SSTL12
rld_dq	Input/Output	SSTL12_T_DCI, SSTL12
rld_qk_p, rld_qk_n	Input	DIFF_SSTL12_DCI, DIFF_SSTL12

DCI (HP banks) or IN_TERM (HR banks) is required at the FPGA to meet the specified performance. Designs generated by the MIG tool use the DCI standards for Data (DQ) and Read Clock (QK_P and QK_N) in the High-Performance banks. In the High-Range banks for RLDRAM II, the MIG tool uses the HSTL_II and DIFF_HSTL_II standards with the internal termination (IN_TERM) attribute chosen in the GUI.

Clocking

The 7 series FPGA MIG RLDRAM II/RLDRAM 3 design has two clock inputs, the reference clock and the system clock. The reference clock drives the IODELAYCTRL components in the design, while the system clock input is used to create all MIG design clocks that are used to clock the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations. For more information on clocking architecture, see Clocking Architecture, page 434.

The MIG tool allows you to input the Memory Clock Period and then lists available Input Clock Periods that follow the supported clocking guidelines. Based on these two clock periods selections, the generated MIG core appropriately sets the PLL parameters. The MIG tool enables automatic generation of all supported clocking structures. For information on how to use the MIG tool to set up the desired clocking structure including input clock placement, input clock frequency, and IDELAYCTRL ref_clk generation, see Creating the 7 Series FPGAs RLDRAM IJ/RLDRAM 3 Memory Design, page 390.

Input Clock Guidelines

IMPORTANT: The input system clock cannot be generated internally.

• PLL Guidelines

\$

- CLKFBOUT_MULT_F (M) must be between 1 and 16 inclusive.
- DIVCLK_DIVIDE (D, Input Divider) can be any value supported by the PLLE2 parameter.
- CLKOUT_DIVIDE (O, Output Divider) must be 2 for 400 MHz and up operation and 4 for below 400 MHz operation.
- The above settings must ensure the minimum PLL VCO frequency (FVCOMIN) is met. For specifications, see the appropriate DC and Switching Characteristics Data Sheet. The *7 Series FPGAs Clocking Resources User Guide* (UG472) [Ref 10] includes the equation for calculating FVCO.
- The relationship between the input period and the memory period is InputPeriod = (MemoryPeriod × M)/(D × D1).
- The clock input (sys_clk) can be input on any CCIO in the column where the memory interface is located; this includes CCIO in banks that do not contain the memory interface, but must be in the same column as the memory interface. The PLL must be located in the bank containing the clock sent to the memory. To route the input clock to the memory interface PLL, the CMT backbone must be used. With the MIG implementation, one spare interconnect on the backbone is available that can be used for this purpose.

- MIG versions 1.4 and later allow this input clocking setup and properly drive the CMT backbone.
- CLOCK_DEDICATED_ROUTE = BACKBONE constraint is used to implement CMT backbone, following warning message is expected. It can be ignored safely.

```
WARNING: [Place 30-172] Sub-optimal placement for a clock-capable IO pin and PLL pair. The flow will continue as the CLOCK_DEDICATED_ROUTE constraint is set to BACKBONE.
```

```
u_mig_7series_0/c0_u_clk_ibuf/diff_input_clk.u_ibufg_sys_clk (IBUFDS.O) is locked
to IOB_X0Y176
u_mig_7series_0/c0_u_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y1
u_mig_7series_0/c1_u_infrastructure/plle2_i (PLLE2_ADV.CLKIN1) is locked to
PLLE2_ADV_X0Y5
.....
```

- For RLDRAM II interfaces that have the memory system input clock (sys_clk) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSTL_I I/O standard (VCCO = 1.5V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_HSTL_I and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_HSTL_I CCIO pins.
- For RLDRAM 3 interfaces that have the memory system input clock (sys_clk) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_SSTL12 I/O standard (VCCO = 1.2V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_SSTL12 and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_SSTL12 CCIO pins.
- It is acceptable to have differential inputs such as LVDS and LVDS_25 in I/O banks that are powered at voltage levels other than the nominal voltages required for the outputs of those standards (1.8V for LVDS outputs, and 2.5V for LVDS_25 outputs). However, these criteria must be met:
 - a. The optional internal differential termination is not used (DIFF_TERM = FALSE, which is the default value).

Note: This might require manually changing DIFF_TERM parameter located in the top-level module or setting this in the UCF or XDC.

- b. The differential signals at the input pins meet the VIN requirements in the Recommended Operating Conditions table of the specific device family data sheet.
- c. The differential signals at the input pins meet the VIDIFF (min) requirements in the corresponding LVDS or LVDS_25 DC specifications tables of the specific device family data sheet.

One way to accomplish the above criteria is to use an external circuit that both AC-couples and DC-biases the input signals. The figure shows an example circuit for providing an AC-coupled and DC-biased circuit for a differential clock input. RDIFF provides the 100 Ω differential receiver termination because the internal DIFF_TERM is set to FALSE. To maximize the input noise margin, all RBIAS resistors should be the same value, essentially creating a VICM level of VCCO/2. Resistors in the 10k to 100 k Ω range are recommended. The typical values for the AC coupling capacitors CAC are in the range of 100 nF. All components should be placed physically close to the FPGA inputs.

Figure 3-61: Example Circuit for AC-Coupled and DC-Biased Differential Clock Input

Note: The last set of guidelines on differential LVDS inputs are added within the LVDS and LVDS_25 (Low Voltage Differential Signaling) section of the 7 Series SelectIO Resources User Guide (UG471) [Ref 2] in the next release of the document.

These guidelines are irrespective of Package, Column (HR/HP), or I/O Voltage.

Sharing sys_clk between Controllers

MIG 7 series FPGA designs require sys_clk to be in the same I/O bank column as the memory interface to minimize jitter.

- Interfaces Spanning I/O Columns A single sys_clk input cannot drive memory interfaces spanning multiple I/O columns. The input clock input must be in the same column as the memory interface to drive the PLL using the CMT Backbone, which minimizes jitter.
- Interfaces in Single I/O Column If the memory interfaces are entirely contained within the same I/O column, a common sys_clk can be shared among the interfaces. The sys_clk can be input on any CCIO in the column where the memory interfaces are located. This includes CCIO in banks that do not contain the memory interfaces, but must be in the same column as the memory interfaces.

Send Feedback

Information on Sharing BUFG Clock (phy_clk)

The MIG 7 series RLDRAM II/RLDRAM 3 design includes an MMCM which outputs the phy_clk on a BUFG route. It is not possible to share this clock amongst multiple controllers to synchronize the user interfaces. This is not allowed because the timing from the FPGA logic to the PHY Control block must be controlled. This is not possible when the clock is shared amongst multiple controllers. The only option for synchronizing user interfaces amongst multiple controllers is to create an asynchronous FIFO for clock domain transfer.

Information on Sync_Pulse

The MIG 7 series RLDRAM II/RLDRAM 3 design includes one PLL that generates the necessary design clocks. One of these outputs is the sync_pulse. The sync pulse clock is 1/16 of the mem_refclk frequency and must have a duty cycle distortion of 1/16 or 6.25%. This clock is distributed across the low skew clock backbone and keeps all PHASER_IN/_OUT and PHY_Control blocks in sync with each other. The signal is sampled by the mem_refclk in both the PHASER_INs/_OUTs and PHY_Control blocks. The phase, frequency, and duty cycle of the sync_pulse is chosen to provide the greatest setup and hold margin across PVT.

Debugging RLDRAM II and RLDRAM 3 Designs

This section defines a step-by-step debugging procedure to assist in the identification and resolution of any issues that might arise during each phase of the memory interface design process.

Introduction

The RLDRAM II and RLDRAM 3 memory interfaces simplify the challenges associated with memory interface design. However, every application environment is unique and proper due diligence is required to ensure a robust design. Careful attention must be given to functional testing through simulation, proper synthesis and implementation, adherence to PCB layout guidelines, and board verification through IBIS simulation and signal integrity analysis.

This section defines a step-by-step debugging procedure to assist in the identification and resolution of any issues that might arise during each phase of the design process. Details are provided on:

- Functional verification using the UNISIM simulation models
- Design implementation verification
- Board layout verification

- Using the RLDRAM II/RLDRAM 3 physical layer to debug board-level issues
- General board-level debug techniques

The two primary issues encountered during verification of a memory interface are:

- Calibration not completing properly
- Data corruption during normal operation

Problems might be seen in simulation, hardware, or both due to various root causes.

Figure 3-62 shows the overall flow for debugging problems associated with these two general types of issues.

Figure 3-62: RLDRAM II/RLDRAM 3 MIG Tool Debug Flowchart

Debug Tools

Many tools are available to debug memory interface design issues. This section indicates which resources are useful for debugging a given situation.

Example Design

RLDRAM II/RLDRAM 3 design generation using the MIG tool produces an example design and a user design. The example design includes a synthesizable test bench that has been fully verified in simulation and hardware. This design can be used to observe the behavior of the MIG tool design and can also aid in identifying board-related problems.

Debug Signals

The MIG tool includes a Debug Signals Control option on the FPGA Options screen. Enabling this feature allows calibration, tap delay, and read data signals to be monitored using the Vivado logic analyzer feature. Selecting this option port maps the debug signals to VIO modules of the Vivado logic analyzer feature in the design top module.

Vivado Design Suite Debug Feature

The Vivado Design Suite debug feature inserts logic analyzer, bus analyzer, and VIO software cores directly into the design. Supported versions of ILA and VIO are 3.0. The debug feature also allows you to set trigger conditions to capture application and MIG debug signals in hardware. Captured signals can be analyzed though the Vivado logic analyzer feature. For more information about the Vivado logic analyzer, software is available in the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

IMPORTANT: The Integrated Logic Analyzer (ILA) operates on a synchronous clock and cannot be triggered during reset. Instead, set the trigger on an ILA signal to look for a rising edge ("R") or falling edge ("F") with the radix value of the signal set to "Binary." With this trigger setting, the trigger can be armed. When the reset is applied and released, the trigger captures the desired ILA results.

Simulation Debug

Figure 3-63 shows the debug flow for simulation.

Figure 3-63: Simulation Debug Flowchart

Verifying the Simulation Using the Example Design

The example design generated by the MIG tool includes a simulation test bench and parameter file based on memory selection in the MIG tool. Successful completion of this example design simulation verifies a proper simulation environment.

The Questa Advanced Simulator, Vivado Simulator, IES, and VCS simulation tools are used for verification of MIG IP core at each software release. Script files to run simulations with IES and VCS simulators are generated in MIG generated output. Simulations using Questa Advanced Simulator and Vivado simulators can be done through Vivado Tcl Console commands or in Vivado IDE.

IMPORTANT: Other simulation tools can be used for MIG IP core simulation but are not specifically verified by Xilinx.

Simulation Flow Using IES and VCS Script Files

To run the simulation, go to this directory:

<project_dir>/<Component_Name>_ex/imports

For a project created with the name set as project_1 and the Component Name entered in Vivado IDE as mig_7series_0, go to the directory as follows:

project_1/mig_7series_0_ex/imports

IES and VCS simulation scripts are meant to be executed only in Linux operating systems.

The ies_run.sh and vcs_run.sh files are the executable files for running simulations using IES and VCS simulators respectively. Library files should be added to the ies_run.sh and vcs_run.sh files respectively. See the readme.txt file for details regarding simulations using IES and VCS.

Simulation Flow Using Vivado Simulator

1. In the **Open IP Example Design** Vivado project, under **Flow Navigator**, select **Simulation Settings** (Figure 3-64).

LU)	Simulation	
	Target simulator:	Vivado Simulator
al	Si <u>m</u> ulator language:	Mixed
	Simulation set:	📾 sim_1
	Simulation top module name:	sim_tb_top
	Clean up simulation files	
	Concercito servinte colu	
ation		
	Compilation Elaborati	on Simulation Netlist Advanced
	xsim.simulate.runtime*	1000ns
	xsim.simulate.uut	
	xsim.simulate.wdb	
	xsim.simulate.saif	
	xsim.simulate.xsim.more_	options

Figure 3-64: Simulation with Vivado Simulator

2. Under the **Simulation** tab as shown in Figure 3-64, set the xsim.simulate.runtime as 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms). Apply the settings and select **OK**.

3. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 3-65.

Figure 3-65: Run Behavioral Simulation

Note: RLDRAM 3 memory model has System Verilog constructs, which are not supported by Vivado Simulator.

Simulation Flow Using Questa Advanced Simulator

- 1. In the **Open IP Example Design** Vivado project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Questa Advanced Simulator/ModelSim.
 - a. Browse to the **Compiled libraries location** and set the path on **Compiled libraries location** option.
 - b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms), set modelsim.simulate.vsim.more_options to -novopt as shown in Figure 3-64.
 - c. Under Compilation tab, set modelsim.compile.vlog.more_options to -sv (only for RLDRAM 3 designs).
- 3. Apply the settings and select **OK**.

	Simulation			
30	Target simulator:	QuestaSim/Mod	elSim Simulator	
General	Circulation Incomensation	Vivado Simulator		
	Simulator language:	QuestaSim/Mode	lSim Simulator	
	Simulation set:	Incisive Enterpris	e Simulator (IES)	
Simulation		Verilog Compiler	Simulator (VCS)	
8	Simulation top module name:	sim_tb_top		8
Synthesis	Clean up simulation files			
- Service and a				
	Generate scripts only			
plementation				
1010	Compiled library location:	y:/seshagi/Work	Space/Docs/2014.3	project_1/mig_7series_
Bitstream	Compilation Elaborati	on Simulation	Netlist Advanced	
	modelsim.simulace.log_all	signais		
=LF	modelsim.simulate.uut			
and the second se				
IP	modelsim.simulate.custom	_do		
IP	modelsim.simulate.custom modelsim.simulate.custom	_do _udo		
IP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de	i_do i_udo lay	sdfmax	
qI	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif	u_do u_udo lay	sdfmax	
IP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit	u_do u_udo Iay	sdfmax	
ΙP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	u_do u_udo lay ore_options	sdfmax	
ΙP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	u_do u_udo lay ore_options	sdfmax	[]
IP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	u_do u_udo lay ore_options o see a descript	sdfmax	
IP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	u_do u_udo lay ore_options o see a descript	sdfmax ion of it	
ΙP	modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit modelsim.simulate.vsim.m	u_do u_udo lay ore_options o see a descript	sdfmax ion of it	

Figure 3-66: **Simulation with Questa Advanced Simulator**

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 3-65.
- 5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa Advanced Simulator tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using VCS

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Verilog Compiler Simulator (VCS).

- a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
- b. Under the Compilation tab, set the vcs.compile.vlogan.more_options to -sverilog.
- c. Under the **Simulation** tab, set the vcs.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time which is less than 1 ms) as shown in Figure 3-67.
- 3. Apply the settings and select **OK**.

🚴 Project Settings		×
	Simulation	
1	Target simulator:	Verilog Compiler Simulator (VCS)
General	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator
Simulation	Simulation set:	Questa Advanced Simulator
80	Simulation top module name:	Verilog Compiler Simulator (VCS)
Elaboration	🔽 Clean up simulation files	Active-HDL Simulator
>	Gene <u>r</u> ate scripts only	
Synthesis		
	Compiled library location:	
Implementation		on Simulation Netlist Advanced
1010	Verilog options:	
Bitstream	Generics/Parameters options	:
	vcs.compile.load_glbl	
ĪP	vcs.compile.vhdlan.more_	options
	vcs.compile.vlogan.more_	options -sverilog
	vcs.compile.vlogan.more	_options
	More VLOGAN compliation opt	lons
		OK Cancel Apply

Figure 3-67: Simulation with VCS

4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 3-65.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using IES

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Incisive Enterprise Simulator (IES).
 - a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
 - b. Under the Compilation tab, set the ies.compile.ncvlog.more_options to -sv.
 - c. Under the **Elaboration** tab, set the ies.elaborate.ncelab.more_options to -namemap_mixgen.
 - d. Under the **Simulation** tab, set the ies.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time which is less than 1 ms) as shown in Figure 3-68.

3. Apply the settings and select **OK**.

🚴 Project Settings		X
	Simulation	
30	Target simulator:	Incisive Enterprise Simulator (IES)
	Simulator language:	Vivado Simulator ModelSim Simulator
Simulation	Simulation set:	Questa Advanced Simulator
	Simulation top module name:	Verilog Compiler Simulator (VCS)
Elaboration	✓ Clean up simulation files	Riviera-PRO Simulator Active-HDL Simulator
	Generate scripts only	
Synthesis		
	Compiled library location:	
Implementation	Compilation Elaboration	on Simulation Netlist Advanced
1010	ies.elaborate.update	
Bitstream	les.elaborate.ncelab.more	
_=		
ĪP		
	ies.elaborate.ncelab.more More NCELAB elaboration opt	e_options
	-	
		OK Cancel Apply

Figure 3-68: Simulation with IES

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 3-65.
- 5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation (*UG900) [Ref 8].

For detailed information on setting up Xilinx libraries, see COMPXLIB in the Command Line Tools User Guide (UG628) [Ref 17] and the Synthesis and Simulation Design Guide (UG626) [Ref 18]. For simulator tool support, see the Zynq-7000 AP SoC and 7 Series Devices Memory Interface Solutions Data Sheet (DS176) [Ref 1].

A working example design simulation completes memory initialization and runs traffic in response to the test bench stimulus. Successful completion of memory initialization and calibration results in the assertion of the init_calib_complete signal. When this signal is asserted, the Traffic Generator takes control and begins executing writes and reads according to its parameterization.

Table 3-26 shows the signals and parameters of interest, respectively, during simulation.

Signal Name Usage	Signal Name Usage
tg_compare_error	This signal indicates a mismatch between the data written from the UI and data received during a read on the UI. This signal is a part of the example design. A single error asserts this signal; it is held until the design is reset.
dbg_cmp_err	This signal indicates a mismatch between the data written from the UI and the data received during a read on the UI. This signal is part of the example design. This signal is asserted each time a data mismatch occurs.
user_cmd_en	This signal indicates if a command is valid.
user_cmd	This signal indicates if you requests a write or a read command. 2'b00 = Write Command 2'b01 = Read Command 2'b10 = NOP 2'b11 = NOP
user_addr	This is the address location for the current command.
user_ba	This is the bank address location for the current command.
user_wr_en	This signal is asserted when the user_wr_data is valid. This signal is necessary for write commands.
user_wr_data	This signal is the write data provided for write commands.
user_wr_dm	This signal is the data mask for masking off and not writing all of the data in a given write transaction.
user_afifo_empty	This signal indicates that the command and address FIFO is empty.
user_afifo_full	This signal indicates that the command and address FIFO is full. When this signal is asserted additional commands and data is not accepted.
user_wdfifo_empty	This signal indicates that the write data FIFO is empty.
user_wdfifo_full	This signal indicates that the write data FIFO is full. When this signal is asserted, additional Write data is not accepted.
user_rd_valid	Asserted when user_rd_data is valid.
user_rd_data	Read data returned from the memory as a result of a read command.

Table 3-26: Signals of Interest During Simulation

Memory Initialization

For simulation, the MIG tool sets up the design parameters such that long wait times usually required for memory initialization are skipped. These parameters can result in memory model warnings. For the design to properly initialize and calibrate the full memory array in hardware, the top-level MIG tool design file (example_top.v) cannot use any abbreviated value for these parameters. The MIG tool output properly sets the abbreviated values in the test bench and the full range values in the top-level design module.

Calibration

Calibration completes read leveling and read enable calibration. This is completed over three stages. This sequence successfully completes when the init_calib_complete signal is asserted. For more details, see Physical Interface, page 436.

The first stage performs per-bit read leveling calibration. The data pattern used during this stage is $0_F_0_F_0_F_0_F_0$. The data pattern is first written to the memory, as shown in Figure 3-69.

Figure 3-69: Writes for First Stage Read Calibration

This pattern is then continuously read back while the calibration is completed, as shown in Figure 3-70.

Figure 3-70: **Reads for First Stage Read Calibration**

The second stage performs an alignment to ensure data is returned in the correct order. The length of the data pattern depends on the ratio of the memory clock to the FPGA logic clock. For RLDRAM II, the data pattern of A_5_0_F is first written to the memory and continuously read back and adjusted internally if required.

For RLDRAM 3, the data pattern of A_5_0_F_9_6_D_2 is first written to the memory and continuously read back and adjusted internally if required.

The third stage performs a read enable calibration. The data pattern used during this stage is the same pattern used during the second stage of calibration. The data pattern is first written to the memory, and then read back for the read enable calibration, as shown in Figure 3-71.

Figure 3-71: Write and Read for Second Stage Read Calibration (Pattern Shown for RLDRAM II)

Figure 3-72: Write and Read for Third Stage Read Calibration (Pattern Shown for RLDRAM II)

An additional write/read is performed so the read bus is driven to a different value. This is mostly required in hardware to make sure that the read calibration can distinguish the correct data pattern.

After the third stage calibration completes, <code>init_calib_complete</code> is asserted, signifying successful completion of the calibration process.

Test Bench

After init_calib_complete is asserted, the test bench takes control, writing to and reading from the memory. The data written is compared to the data read back. Any mismatches trigger an assertion of the error signal. Figure 3-73 shows a successful implementation of the test bench with no assertions on error.

Figure 3-73: Test Bench Operation After Completion of Calibration

Proper Write and Read Commands

When sending write and read commands, you must properly assert and deassert the corresponding UI inputs. See Client Interface, page 427 and Interfacing with the Core through the Client Interface, page 429 for full details. The test bench design provided within the example design can be used as a further source of proper behavior on the UI.

To debug data errors on the RLDRAM II/RLDRAM 3 interface, it is necessary to pull the UI signals into the simulation waveform.

In the Questa Advanced Simulator Instance window, highlight **u_ip_top** to display the necessary UI signals in the Objects window, as shown in Figure 3-74. Highlight the user interface signals noted in Table 3-26, page 491, right-click, and select **Add > To Wave > Selected Signals**.

🖉 vsim - Default 📥 🛲 🛨 🖪 🗵	🕙 Objects 🖂 🚽	
Instance	▼ Name	△ Value 🏻
□	🖽 💎 tg_ra_tito_counts	2222222
Januarity and stand	🖪 🔶 tg_wr_fifo_counts	ZZZZZZZ
u_nu_example_top	🖽 🔷 user_addr	0000000000000110
	🔷 user_afifo_aempty	St0
u_led_display_unver	🔷 user_afifo_afull	St1
ter_gen_trainc_gen	🔷 user_afifo_empty	St0
	🔷 user_afifo_full	St0
	🖽 🔶 user_ba	101
iaig 🗖	⊕ 🔶 user_cmd	01
	🔷 user_cmd_en	St1
		00100111101110100
	· → ↓ user_rd_valid	00
	🔷 user_wdfifo_aempty	St0
	🔷 user_wdfifo_afull	St0
	🔷 user_wdfifo_empty	St0
	🔷 user_wdfifo_full	St0
		01011110000000011
	⊕ 🔶 user_wr_dm	0000
	🔷 user_wr_en	St0
	🖃 🔷 vio_addr_mode_value	011
	🖃 🔷 vio_bl_mode_value	10
	🔷 vio_data_mask_gen	St0
	🛨 🔷 vio_data_mode_value	0111

Figure 3-74: Questa Advanced Simulator Instance Window

Figure 3-75 and Figure 3-76 show example waveforms of a write and read on both the user interface.

	n				╞┐┍			┣┐ ┍━			\vdash			┡┑┍━			
<pre>sit frst_clk</pre>	1																
🧼 user_cmd_en	×																
🖅 🍫 user_cmd	х	0															
🖽 🛷 user_addr	0Xxxx	00000														(00001	
🖽 🍫 user_ba	×	0			<u> </u>		12	3)4	<u>)(5</u>		.(6)7		<u>Хо</u>	1
🥠 user_wr_en	×			Г													
🖽 🍫 user_wr_data		5e01bd	0abc037a	157806f582	af00)85	5e01 (385e0.	. (d385e)f	d385 (dfd3	38 (1 dfd3	.)(71 dfd)(l	o71df (8b7	d)f8b71	(9f8b7)	d9f8b (6d91	8 (26d9f	(626d9	(1626d (5f)
🖅 🍫 user_wr_dm	0	0															
🔩 user_afifo_empty	×						╞┅────										
🔩 user_afifo_full	×																
🖕 user_afifo_aempty	×																Ц
🔩 user_afifo_afull	×																
🖕 user_wdfifo_empty	×																
🖕 user_wdfifo_full	×																
🔩 user_wdfifo_aem	×																
🖕 🖕 user_wdfifo_afull	×																

Figure 3-75: User Interface Write

Figure 3-76: User Interface Read

\$

Synthesis and Implementation Debug

Figure 3-77 shows the debug flow for synthesis and implementation.

Figure 3-77: Synthesis and Implementation Debug Flowchart

IMPORTANT: The standard synthesis flow for Synplify is not supported for the core.

Verify Successful Synthesis and Implementation

The example design and user design generated by the MIG tool include synthesis/implementation script files and .xdc files. These files should be used to properly synthesize and implement the targeted design and generate a working bitstream.

Verify Modifications to the MIG Tool Output

The MIG tool allows you to select the FPGA banks for the memory interface signals. Based on the banks selected, the MIG tool outputs a XDC with all required location constraints. This file is located in both the example_design/par and user_design/par directories and should not be modified.

The MIG tool outputs open source RTL code parameterized by top-level HDL parameters. These parameters are set by the MIG tool and should not be modified manually. If changes are required, such as decreasing or increasing the frequency, the MIG tool should be rerun to create an updated design. Manual modifications are not supported and should be verified independently in behavioral simulation, synthesis, and implementation.

Identifying and Analyzing Timing Failures

The MIG tool RLDRAM II/RLDRAM 3 designs have been verified to meet timing using the example design across a wide range of configurations. However, timing violations might occur, such as when integrating the MIG tool design with your specific application logic.

Any timing violations that are encountered must be isolated. The timing report output by TRACE (.twx/.twr) should be analyzed to determine if the failing paths exist in the MIG tool RLDRAM II design or the UI (backend application) to the MIG tool design. If failures are encountered, you must ensure the build options (that is, XST, MAP, PAR) specified in the file are used.

If failures still exist, Xilinx has many resources available to aid in closing timing. The PlanAhead[™] tool [Ref 19] improves performance and quality of the entire design. The *Xilinx Timing Constraints User Guide* (UG612) [Ref 15] provides valuable information on all available Xilinx constraints.

Hardware Debug

Figure 3-78 shows the debug flow for hardware.

Figure 3-78: Hardware Debug Flowchart

Clocking

The external clock source should be measured to ensure frequency, stability (jitter), and usage of the expected FPGA pin. You must ensure that the design follows all clocking guidelines. If clocking guidelines have been followed, the interface should be run at a slower speed. Not all designs or boards can accommodate slower speeds. Lowering the frequency increases the marginal setup or hold time, or both, due to PCB trace mismatch, poor signal integrity, or excessive loading. When lowering the frequency, the MIG tool should be rerun to regenerate the design with the lower clock frequency. Portions of the calibration logic are sensitive to the CLK_PERIOD parameter; thus, manual modification of the parameter is discouraged.

Verify Board Pinout

You should ensure that the pinout provided by the MIG tool is used without modification. Then, the board schematic should be compared to the <design_name>.pad report generated by PAR. This step ensures that the board pinout matches the pins assigned in the implemented design.

Run Signal Integrity Simulation with IBIS Models

To verify that board layout guidelines have been followed, signal integrity simulations must be run using the I/O buffer information specification (IBIS). These simulations should always be run for both pre-board and post-board layouts. The purpose of running these simulations is to confirm the signal integrity on the board.

The ML561 Hardware-Simulation Correlation chapter of the *Virtex-5 FPGA ML561 Memory Interfaces Development Board User Guide* (UG199) [Ref 20] can be used as a guideline. This chapter provides a detailed look at signal integrity correlation results for the ML561 board. It can be used as an example for signal integrity analysis. It also provides steps to create a design-specific IBIS model to aid in setting up the simulations. While this guide is specific to Virtex-5 devices and the ML561 development board, the principles therein can be applied to MIG designs with 7 series FPGAs.

Run the Example Design

The example design provided with the MIG tool is a fully verified design that can be used to test the memory interface on the board. It rules out any issues with the backend logic interfacing with the MIG tool core. In addition, the test bench provided by the MIG tool can be modified to send out different data patterns that test different board-level concerns.

Debugging Common Hardware Issues

When calibration failures and data errors are encountered in hardware, the Vivado logic analyzer feature should be used to analyze the behavior of MIG tool core signals. For more information about the Vivado logic analyzer, software is available in the *Vivado Design Suite User Guide: Programming and Debugging* (UG908) [Ref 16].

A good starting point in hardware debug is to load the provided example_design onto the board in question. This is a known working solution with a test bench design that checks for data errors. This design should complete successfully with the assertion of init_calib_complete and no assertions of tg_compare_error. Assertion of init_calib_complete signifies successful completion of calibration while no assertion of tg_compare_error signifies that the data is written to and read from the memory compare with no data errors.

The dbg_cmp_err signal can be used to indicate if a single error was encountered or if multiple errors are encountered. With each error encountered, dbg_cmp_err is asserted so that the data can be manually inspected to help track down any issues.

Isolating Bit Errors

An important hardware debug step is to try to isolate when and where the bit errors occur. Looking at the bit errors, these should be identified:

- Are errors seen on data bits belonging to certain QK clock groups?
- Are errors seen on accesses to certain addresses of memory?
- Do the errors only occur for certain data patterns or sequences?

This can indicate a shorted or open connection on the PCB. This can also indicate an SSO or crosstalk issue. It might be necessary to isolate whether the data corruption is due to writes or reads. This case can be difficult to determine because if writes are the cause, read back of the data is bad as well. In addition, issues with control or address timing affect both writes and reads.

Some experiments that can be tried to isolate the issue are:

- If the errors are intermittent, have the design issue a small initial number of writes, followed by continuous reads from those locations. If the reads intermittently yield bad data, there is a potential read issue.
- Check/vary only write timing:
 - Check that the external termination resistors are populated on the PCB.
 - Use ODELAY, if available, to vary the phase of DQ relative to the DK clocks. Another option is to adjust the PHASER_OUT timing using the fine_adjust feature of the PHASER to adjust output timing.
 - Verify the timing relationship between CK and DK clocks.
- Vary only read timing:
 - Check the IDELAY/PHASER_IN values after calibration. Look for variations between IDELAY/PHASER_IN values. IDELAY values should be very similar for DQs in the same byte group.
 - Vary the IDELAY/PHASER_IN taps after calibration for the bits that are returning bad data.

This affects only the read capture timing.

Debugging the Core

The Debug port is a set of input and output signals that either provide status (outputs) or allow you to make adjustments as the design is operating (inputs). When generating the RLDRAM II/RLDRAM 3 design through the MIG tool, an option is provided to turn the Debug Port ON or OFF. When the Debug port is turned OFF, the outputs of the debug port are still generated but the inputs are ignored. When the Debug port is turned ON, the inputs are valid and must be driven to a logical value. Driving the signals incorrectly on the debug port might cause the design to fail or have less read data capture margin.

When running the core in hardware, a few key signals should be inspected to determine the status of the design. The dbg_phy_status bus described in Table 3-27 consists of status bits for various stages of calibration. Checking the dbg_phy_status bus gives initial information that can aid in debugging an issue that might arise, determining which portion of the design to look at, or looking for some common issues.

Debug Port Signal	Name	Description	If Problems Arise
dbg_phy_status[0]	~rst_wr_clk	FPGA logic reset based on PLL lock and system input reset	If this signal is deasserted, check your clock source and system reset input
dbg_phy_status[1]	po_delay_done	I/O FIFO initialization to ensure the I/O FIFOs are in an almost full condition and the phaser out delay to provide the 90° phase shift to address/control signals are done	Check if the PHY control ready signal is asserted
dbg_phy_status[2]	init_done	RLDRAM II/RLDRAM 3 initialization sequence is complete	N/A ⁽¹⁾
dbg_phy_status[3]	rtr_cal_start	(RLDRAM 3 only) Read training register stage 1 read calibration start signal	N/A
dbg_phy_status[4]	rtr_cal_done	(RLDRAM 3 only) Read training register stage 1 read calibration is complete	N/A
dbg_phy_status[5]	wrcal_start	Write Calibration start signal	N/A
dbg_phy_status[8:6]	dbg_wrcal_done	Write Calibration stage complete	Check the results of the read training register stage 1 calibration. See Write Calibration, page 452.
dbg_phy_status[9]	rdlvl_stg1_start	Stage 1 read calibration start signal	Check results of write calibration
dbg_phy_status[10]	rdlvl_cal_done	Stage 1 read calibration is complete	N/A

Table 3-27:	Physical Layer	Simple Status	Bus Description De	efined in the rld_p	hy_top Module
-------------	----------------	---------------	---------------------------	---------------------	---------------

Debug Port Signal	Name	Description	If Problems Arise
dbg_phy_status[11]	edge_adv_cal_start	Edge Advance calibration start signal	N/A
dbg_phy_status[12]	edge_adv_cal_done	Edge Advance calibration is complete	Make sure the expected data is being returned from the memory. Check results of stage 1 read calibration. Check the results of write calibration (if enabled).
dbg_phy_status[13]	init_cal_done	Latency calibration completed	Check which byte lane failed and check the margin found during read training stage 1 and write calibration for the byte lane that fails.
dbg_phy_status[14]	init calib complete	Calibration complete	N/A

Table 3-27: Physical Layer Simple Status Bus Description Defined in the rld_phy_top Module (Cont'd)

Notes:

1. N/A indicates that as long as previous stages have completed, this stage is also completed.

The read calibration results are provided as part of the Debug port as various output signals. These signals can be used to capture and evaluate the read calibration results.

Read calibration uses the IODELAY to align the capture clock in the data valid window for captured data. The algorithm shifts the IDELAY/PHASER_IN values and looks for edges of the data valid window on a per-byte basis as part of the calibration procedure.

DEBUG_PORT Signals

The top-level wrapper, user_top, provides several output signals that can be used to debug the core if the debug option is checked when generating the design through the MIG tool. Each debug signal output begins with dbg_. The DEBUG_PORT parameter is always set to OFF in the sim_tb_top module of the sim folder, which disables the debug option for functional simulations. These signals and their associated data are described in Table 3-28.

Table 3-28: **DEBUG_PORT Signal Descriptions**

Signal	Direction	Description
dbg_phy_cmd_n[nCK_PER_CLK × 3 – 1:0]	Output	This active-Low signal is the internal command that is sent to the memory used for debug with the Vivado logic analyzer feature.
dbg_phy_addr[nCK_PER_CLK × RLD_ADDR_WIDTH × 2 – 1:0]	Output	Address being accessed for the commands given with dbg_phy_cmd_n.
dbg_phy_ba[nCK_PER_CLK × BANK_WIDTH × 2 – 1:0]	Output	Control bank address bus used for debug with the Vivado logic analyzer feature.

Table 3-28: DEBUG_PORT Signal Descriptions (Cont'd)

Signal	Direction	Description
dbg_phy_wr_data[nCK_PER_CLK × 2 × DATA_WIDTH – 1:0]	Output	Data being written that is used for debug with the Vivado logic analyzer feature.
dbg_phy_init_wr_only	Input	When this input is High, the state machine in the rld_phy_write_init_sm module keeps issuing write commands for Stage 1 data to the RLDRAM II. This can be used to verify write timing, for measuring the DK to DQ timing relationship at the memory using an oscilloscope. This signal must be Low for normal operation.
dbg_phy_init_rd_only	Input	When this input is High, the state machine in the rld_phy_write_init_sm module keeps issuing read commands for Stage 1 read calibration. This is useful to probe the signals on the PCB and look for any SI issues or verify the previous write command occurred properly. This signal must be Low for normal operation.
dbg_byte_sel[CQ_BITS – 1:0]	Input	This input selects the corresponding byte lane and you set the phaser/IDELAY tap controls.
dbg_bit_sel[Q_BITS – 1:0]	Input	This input selects the corresponding bit lane and you set the IDELAY tap controls. It also controls which read data signals are presented to you for debug (dbg_rd_data_rd and dbg_rd_data_fd).
dbg_idel_up_all	Input	This input increments all IDELAY tap values for the entire bus.
dbg_idel_down_all	Input	This input decrements all IDELAY tap values for the entire bus.
dbg_idel_up	Input	This input increments all IDELAY tap values for a single bit, selected by dbg_bit_sel.
dbg_idel_down	Input	This input decrements all IDELAY tap values for a single bit, selected by dbg_bit_sel.
dbg_pi_f_inc	Input	This signal increments the PHASER_IN generated ISERDES clk that is used to capture rising data.
dbg_pi_f_dec	Input	This signal decrements the PHASER_IN generated ISERDES clk that is used to capture rising data.
dbg_po_f_inc	Input	This signal increments the PHASER_OUT generated OSERDES clk that is used to capture falling data.

Table 3-28: DEBUG_PORT Signal Descriptions (Cont'd)

Signal	Direction	Description
dbg_po_f_dec	Input	This signal increments the PHASER_OUT generated OSERDES clk that is used to capture falling data.
dbg_pi_tap_cnt[5:0]	Output	This output indicates the current PHASER_IN tap count position.
dbg_po_tap_cnt[5:0]	Output	This output indicates the current PHASER_OUT tap count position.
dbg_rd_stage1_rtr_error[N_DATA_LANES – 1:0]	Output	(RLDRAM 3 only) Per byte lane error signal indicating valid window not found during read training register stage 1 read calibration.
dbg_rd_stage1_error[N_DATA_LANES – 1:0]	Output	Per byte lane error signal indicating valid window not found during stage 1 read calibration.
dbg_cq_num[CQ_BITS – 1:0]	Output	This signal indicates the current byte lane selected (either during calibration or through the debug port).
dbg_valid_lat[4:0]	Output	Latency in cycles of the delayed read command.
dbg_idel_tap_cnt_sel[TAP_BITS – 1:0]	Output	Current IDELAY tap setting for bits selected using dbg_bit_sel.
dbg_inc_latency	Output	This output indicates that the latency of the corresponding byte lane was increased to ensure proper alignment of the read data to the user interface.
dbg_error_max_latency	Output	This signal indicates that the latency could not be measured before the counter overflowed. Each device has one error bit.
dbg_error_adj_latency	Output	This signal indicates that the target PHY_LATENCY could not be achieved.
dbg_rd_data_rd[nCK_PER_CLK × 9 – 1:0]	Output	This bus shows the captured output of the rising data for a single byte lane, selected using dbg_byte_sel.
dbg_rd_data_fd[nCK_PER_CLK × 9 – 1:0]	Output	This bus shows the captured output of the falling data for a single byte lane, selected using dbg_byte_sel.
dbg_rd_valid	Output	Read data valid signal that aligns with the dbg_rd_data_rd and dbg_rd_data_fd.
dbg_wrcal_sel_stg[1:0]	Input	Selects which stage of write calibration to output: dbg_wrcal_po_first_edge, dbg_wrcal_po_second_edge, or dbg_wrcal_po_final.
dbg_wrcal[63:0]	Output	General Debug port for write calibration

Table 3-28: DEB	UG_PO	RT Signal	Descriptions	(Cont'd)
-----------------	-------	-----------	--------------	----------

Signal	Direction	Description
dbg_wrcal_done[2:0]	Output	Indicates stage of write calibration completed.
dbg_wrcal_po_first_edge[5:0]	Output	First edge of write calibration window found for the selected byte lane (using dbg_byte_sel). To select a given stage of calibration, use dbg_wrcal_sel_stg, 2'b01 is for byte lanes with a DK clock, and 2'b10 is for byte lanes without a DK clock.
dbg_wrcal_po_second_edge[5:0]	Output	Second edge of write calibration window found for the selected byte lane (using dbg_byte_sel). To select a given stage of calibration, use dbg_wrcal_sel_stg, 2'b01 is for byte lanes with a DK clock, and 2'b10 is for byte lanes without a DK clock.
dbg_wrcal_po_final[5:0]	Output	Final tap setting for write calibration for the selected byte lane (using dbg_byte_sel). To select a given stage of calibration, use dbg_wrcal_sel_stg, 2'b01 is for byte lanes with a DK clock, and 2'b10 is for byte lanes without a DK clock.

Write Init Debug Signals

Table 3-29 indicates the mapping between the write init debug signals on the dbg_wr_init bus and debug signals in the PHY. All signals are found within the rld_phy_write_init_sm module and are all valid in the clk domain.

Table 3-29: Write Init Debug Signal Map

Bits	PHY Signal Name	Description
dbg_phy_init_sm[3:0]	phy_init_cs	Current state of the initialization state machine
dbg_phy_init_sm[6:4]	start_cal	Flags to determine stages of calibration
dbg_phy_init_sm[7]	init_complete	Memory initialization is complete
dbg_phy_init_sm[8]	refr_req	Refresh request
dbg_phy_init_sm[9]	refr_done	Refresh complete
dbg_phy_init_sm[10]	stage2_done	Stage 2 calibration is complete
dbg_phy_init_sm[22:11]	refr_cnt	Refresh counter
dbg_phy_init_sm[26:23]	phy_init_ps	Previous state of the initialization state machine
dbg_phy_init_sm[31:27]	Reserved	Reserved

Read Stage 1 Calibration Debug Signals

Table 3-30 indicates the mapping between bits within the dbg_rd_stage1_cal bus and debug signals in the PHY. All signals are found within the $qdr_rld_phy_rdlvl$ module and are all valid in the clk domain.

Bits	PHY Signal Name	Description
dbg_rd_stage1_cal[2:0]	sm_r	Read level main state machine.
dbg_rd_stage1_cal[7:6]	seq_sm_r	Read level sequence state bits.
dbg_rd_stage1_cal[14:12]	rdlvl_work_lane_r	Lane currently undergoing read level calibration.
dbg_rd_stage1_cal[15]	rdlvl_stg1_start	Write side signal causing read level block to start.
dbg_rd_stage1_cal[16]	rdlvl_stg1_done	Read level block signals completion.
dbg_rd_stage1_cal[17]	rdlvl_stg1_start	Write side signal causing read level to copy first lane result across all lanes.
dbg_rd_stage1_cal[25:18]	rdlvl_stg1_cal_bytes_r	Lanes for which write side is requesting calibration.
dbg_rd_stage1_cal[31]	cmplx_rdcal_start	Write side signal causing read level to do complex cal.
dbg_rd_stage1_cal[32]	cmplx_rd_data_valid	Write side signal informing read level that complex read data is valid.
dbg_rd_stage1_cal[48:41]	rd_data_comp_r	Per byte comparison results for complex calibration.
dbg_rd_stage1_cal[56:49]	iserdes_comp_r	Per byte comparison results for simple calibration.
dbg_rd_stage1_cal[57]	rdlvl_lane_match	Overall comparison result for both simple and complex.
dbg_rd_stage1_cal[66:61]	largest_left_edge	Phaser in taps when the right most left edge was found.
dbg_rd_stage1_cal[72:67]	smallest_right_edge	Phaser in taps when the left most right edge was found.
dbg_rd_stage1_cal[78:73]	mem_out_dec	Output of static compensation ROM.
dbg_rd_stage1_cal[81]	rdlvl_pi_stg2_f_incdec	Controls directing of phaser in stepping.
dbg_rd_stage1_cal[82]	rdlvl_pi_en_stg2_f	Phaser in step command.
dbg_rd_stage1_cal[85:83]	pi_lane_r	Lane to which phaser in commands apply.
dbg_rd_stage1_cal[91]	prev_match_r	Previous sample matched.
dbg_rd_stage1_cal[96:92]	match_out_r	idelay of last detected invalid to valid match transition.
dbg_rd_stage1_cal[102:97]	samp_cnt_r	Sample counter.
dbg_rd_stage1_cal[108:103]	samps_match_r	Cumulative sample match count.
dbg_rd_stage1_cal[109]	samp_result_held_r	Result from previous sample cycle.
dbg_rd_stage1_cal[154+:40]	simp_dlyval_r	Five bits per lane dlyval results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_left_r	Six bits per lane left results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_right_r	Six bits per lane right results for simple pattern.
dbg_rd_stage1_cal[194+:48]	simp_center_r	Six bits per lane center results for simple pattern.
dbg_rd_stage1_cal[378+:48]	cmplx_left_r	Six bits per lane left results for complex pattern.
dbg_rd_stage1_cal[426+:48]	cmplx_right_r	Six bits per lane right results for complex pattern.

Table 3-30: Read Stage 1 Debug Signal Map

Bits	PHY Signal Name	Description
dbg_rd_stage1_cal[474+:48]	cmplx_center_r	Six bits per lane center results for complex pattern.
dbg_rd_stage1_cal[682+:48]	simp_left_63	Left edge result is 63 for simple pattern, one bit per lane.
dbg_rd_stage1_cal[690+:48]	cmplx_left_63	Left edge result is 63 for complex pattern, one bit per lane.
dbg_rd_stage1_cal[698+:48]	simp_right_63	Right edge result is 63 for simple pattern, one bit per lane.
dbg_rd_stage1_cal[706+:48]	cmplx_right_63	Right edge result is 63 for complex pattern, one bit per lane.
dbg_rd_stage1_cal[522+:72]	rd_data_lane_r	Aligned PHY data for lane currently undergoing calibration.
dbg_rd_stage1_cal[594+:72]	iserdes_lane_r	Raw PHY data for lane currently undergoing calibration.
dbg_rd_stage1_cal[714+:72]	cmplx_rd_burst_bytes	Complex data to compare against memory read data.
dbg_rd_stage1_cal[786+:9]	bit_comp	Cumulative compare per bit.
dbg_rd_stage1_cal[795+:8]	simp_min_eye_r	Minimum eye detected per lane simple pattern.
dbg_rd_stage1_cal[803+:8]	cmplx_min_eye_r	Minimum eye detected per lane complex pattern.

Table 3-30: Read Stage 1 Debug Signal Map (Cont'd)

Read Stage 2 Calibration Debug

Table 3-31 indicates the mapping between bits within the dbg_rd_stage2_cal bus and debug signals in the PHY. All signals are found within the

qdr_rld_phy_read_stage2_cal module and are all valid in the clk domain.

Bits	PHY Signal Name	Description
dbg_stage2_cal[0]	en_mem_latency	Signal to enable latency measurement
dbg_stage2_cal[5:1]	latency_cntr[0]	Indicates the latency for the first byte lane in the interface
dbg_stage2_cal[6]	rd_cmd	Internal rd_cmd for latency calibration
dbg_stage2_cal[7]	latency_measured[0]	Indicates latency has been measured for byte lane 0
dbg_stage2_cal[8]	bl4_rd_cmd_int	Indicates calibrating for burst length of 4 data words
dbg_stage2_cal[9]	bl4_rd_cmd_int_r	Internal register stage for burst 4 read command
dbg_stage2_cal[10]	edge_adv_cal_start	Indicates start of edge_adv calibration, to see if the pi_edge_adv signal needs to be asserted
dbg_stage2_cal[11]	rd0_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[12]	fd0_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[13]	rd1_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)

Table 3-31: Read Stage 2 Debug Signal Map

		• •/
Bits	PHY Signal Name	Description
dbg_stage2_cal[14]	fd1_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[15]	phase_vld	Valid data is seen for the particular byte for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[16]	rd0_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[17]	fd0_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[18]	rd1_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[19]	fd1_bslip_vld	Indicates valid ISERDES read data requiring bitslip for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[20]	phase_bslip_vld	Valid data is seen when bitslip applied to read data for the byte being calibrated (indicated by byte_cnt)
dbg_stage2_cal[21]	clkdiv_phase_cal_done_4r	Indicates data validity complete, proceed to assert the pi_edge_adv signal if needed
dbg_stage2_cal[22]	pi_edge_adv	Phaser control signal to advance the Phaser clock, ICLKDIV by one fast clk cycle. Only used for nCK_PER_CLK == 2.
dbg_stage2_cal[25:23]	byte_cnt[2:0]	Indicates the byte that is being checked for data validity
dbg_stage2_cal[26]	inc_byte_cnt	Internal signal to increment to the next byte
dbg_stage2_cal[29:27]	pi_edge_adv_wait_cnt	Counter to wait between asserting the phaser control signal, pi_edge_adv signal in the various byte lanes.
dbg_stage2_cal[30]	bitslip	FPGA logic bitslip control signal, indicates when the logic shifts the data alignment. Only used for nCK_PER_CLK == 4.
dbg_stage2_cal[31]	rd2_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.
dbg_stage2_cal[32]	fd2_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.
dbg_stage2_cal[33]	rd3_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.
dbg_stage2_cal[34]	fd3_vld	Indicates valid ISERDES read data for the byte being calibrated (indicated by byte_cnt). Only valid for nCK_PER_CLK == 4.
dbg_stage2_cal[35]	latency_measured[1]	Indicates latency has been measured for byte lane 1
dbg_stage2_cal[36]	latency_measured[2]	Indicates latency has been measured for byte lane 2
dbg_stage2_cal[37]	latency_measured[3]	Indicates latency has been measured for byte lane 3

Table 3-31: Read Stage 2 Debug Signal Map (Cont'd)

Table 3-31: Read Stage 2 Debug Signal Map (Cont'd)

Bits	PHY Signal Name	Description
dbg_stage2_cal[38]	error_adj_latency	Indicates error when target PHY_LATENCY cannot be achieved
dbg_stage2_cal[127:39]	Reserved	Reserved

Write Calibration Debug Map

Table 3-32 indicates the mapping between bits within the dbg_wr_cal bus and debug signals in the PHY.

Table 3-32:Write Debug Signal Map

Bits	PHY Signal Name	Description
dbg_wrcal[3:0]	write_cal_cs	State machine current state register
dbg_wrcal[4]	data_valid_r	Data is valid across data_valid_cnt FPGA logic clock cycles
dbg_wrcal[5]	first_edge_found	Flag to indicate first edge is found
dbg_wrcal[6]	second_edge_found	Flag to indicate second edge is found
dbg_wrcal[7]	rdlvl_timeout_error	Flag to indicate timeout error to ensure enough time given to stage 2 edge advanced calibration so you can sample the results of a given byte lane.
dbg_wrcal[8]	inc_byte_lane_cnt	Flag to increment byte lane counter
dbg_wrcal[14:9]	po_fine_taps	PHASER_OUT current tap setting
dbg_wrcal[20:15]	po_fine_first_edge	PHASER_OUT first edge tap
dbg_wrcal[26:21]	po_fine_second_edge	PHASER_OUT second edge tap
dbg_wrcal[27]	stg2_eod	PHASER_OUT stage 2 end of delay
dbg_wrcal[28]	stg3_eod	PHASER_OUT stage 3 end of delay
dbg_wrcal[37:29]	po_counter_read_val	PHASER_OUT counter value from the PHY
dbg_wrcal[40:38]	wrcal_stg	Flag to indicate which stage of write calibration is currently running
dbg_wrcal[41]	record_po_taps	Flag to record a given PHASER_OUT value
dbg_wrcal[42]	data_valid	Instantaneous data valid check for a given byte lane
dbg_wrcal[48:43]	wrcal_byte_sel	Byte lane counter
dbg_wrcal[49]	window_valid	When first edge and second edge are found, a check is done to ensure the window is larger than a set size. If too small and first/second edges cleared, this bit keeps going.
dbg_wrcal[54:50]	data_valid_cnt	Counter used to check multiple read samples to ensure data is valid
dbg_wrcal[60:55]	po_fine_prev_taps	"Previous" counter to record direction so you know which direction to move to when an edge found.
dbg_wrcal[61]	first_edge_eod	First edge not a true edge, hit the limit of the PHASER_OUT taps

Table 3-32: Write Debug Signal Map (Cont'd)

Bits	PHY Signal Name	Description
dbg_wrcal[62]	second_edge_eod	Second edge not a true edge, hit the limit of the PHASER_OUT taps
dbg_wrcal[63]	po_fine_underflow_check, po_fine_overflow_check	Check for underflow or overflow on the internal PHASER_OUT tap counter.

Margin Check

Debug signals are provided to move either clocks or data to verify functionality and to confirm sufficient margin is available for reliable operation. These signals can also be used to check for signal integrity issues affecting a subset of signals or to deal with trace length mismatches on the board. To verify read window margin, enable the debug port when generating a design in the MIG tool and use the provided example design. The steps to follow are:

- 1. Open the Vivado hardware session and program the FPGA under test with generated BIT and LTX files.
- Verify that calibration completes (init_calib_complete should be asserted) and no errors currently exist in the example design (both tg_compare_error and dbg_cmp_err should be Low).
- 3. To measure margin with PRBS8 pattern, set VIO signals with the listed values in the traffic_gen_top instance in example_top:

```
vio_modify_enable = 'd1
vio_data_mode_value = 'd7
vio_addr_mode_value = 'd3
vio_instr_mode_value = 'd4
vio_bl_mode_value = 'd2
vio_fixed_bl_value = 'd128
vio_fixed_instr_value = 'd1
vio_data_mask_gen = 'd0
```

- 4. Assert vio_dbg_clear_error or system reset.
- 5. Select a given byte lane using dbg_byte_sel.
- 6. Observe the tap values on PHASER_IN for the selected byte lane using dbg_pi_counter_read_val.

- 7. Increment the tap values on PHASER_IN until an error occurs (tg_compare_error should be asserted) using dbg_pi_f_inc. Record how many phaser taps it took to get an error from the starting location. This value is the tap count to reach one side of the window for the entire byte lane.
- 8. Decrease the tap values on PHASER_IN using dbg_pi_f_dec back to the starting value.
- 9. Clear the error recorded previously by asserting vio_dbg_clear_error.
- 10. Decrement the PHASER_IN taps using dbg_pi_f_dec to find the other edge of the window until another error occurs (tg_compare_error should be asserted).
- 11. Record those results, return the PHASER_IN taps to the starting location and clear the error again (vio_dbg_clear_error).

This simple technique uses the error signal that is common for the entire interface, so any marginality in another bit or byte not being tested might affect the results. For better results, a per-bit error signal should be used. PHASER_IN taps need to be converted into a common unit of time to properly analyze the results.

Automated Margin Check

Manually moving taps to verify functionality is useful to check issue bits or bytes, but it can be difficult to step through an entire interface looking for issues. For this reason, the RLDRAM II/RLDRAM 3 Memory Interface Debug port contains automated window checking that can be used to step through the entire interface. A simple state machine is used to take control of the debug port signals and report results of the margin found per-bit. Currently, the automated window check only uses PHASER_IN to check window sizes, so depending on the tap values after calibration, the left edge of the read data window might not be found properly.

To measure margin with PRBS8 traffic pattern, set the VIO signals with the listed values in the traffic_gen_top instance in example_top:

```
vio_modify_enable = 'd1
vio_data_mode_value = 'd7
vio_addr_mode_value = 'd3
vio_instr_mode_value = 'd4
vio_bl_mode_value = 'd2
vio_fixed_bl_value = 'd128
vio_fixed_instr_value = 'd1
vio_data_mask_gen = 'd0
```

Next, assert vio_dbg_clear_error or assert system reset before proceeding with automated margin check. The steps to follow for automated margin check include:

- Start automated window check by issuing a single pulse on the VIO signal, dbg_win_start.
- 2. The VIO signal, dbg_win_active indicates that the automated window check is in progress. The signals dbg_pi_f_inc and dbg_pi_f_dec must not be used when dbg_win_active is asserted.
- 3. The current bit and byte being measured are indicated by the VIO signals, dbg_win_current_bit and dbg_win_current_byte, respectively.
- 4. To obtain the left and right tap counts for a completed bit, select the desired bit using VIO signal, dbg_win_bit_select and observe the results on dbg_win_left_ram_out and dbg_win_right_ram_out, respectively.

Table 3-33 lists the signals associated with this automated window checking functionality.

Signal	Description
dbg_win_start	Single pulse that starts the chk_win state machine. Use the Vivado logic debug VIO to control this.
dbg_win_bit_select[6:0]	Manual bit selection for reporting of results. The results are provided on dbg_win_left_ram_out and dbg_win_right_ram_out for the bit indicated.
dbg_win_active	Flag to indicate chk_win is active and measuring read window margins. While active, the state machine has control over the debug port signals.
vio_dbg_clear_error	Clear error control signal controlled by chk_win.

Table 3-33: Debug Port Signals

TUDIE 5-55. Debug For Signais (Cont u)
--

Signal	Description
dbg_win_current_bit[6:0]	Feedback to indicate which bit is currently being monitored during automatic window checking.
dbg_win_current_byte[3:0]	Feedback to indicate which byte is currently being monitored (and used to select the byte lane controls with dbg_byte_sel).
dbg_win_left_ram_out [WIN_SIZE – 1:0]	PHASER_IN tap count to reach the left edge of the read window for a given bit.
dbg_win_right_ram_out [WIN_SIZE – 1:0]	PHASER_IN tap count to reach the right edge of the read window for a given bit.
dbg_pi_f_inc	chk_win control signal to increment PHASER_IN. This signal should be used only when dbg_win_active is deasserted.
dbg_pi_f_dec	chk_win control signal to decrease PHASER_IN. This signal should be used only when dbg_win_active is deasserted.

Debugging Write Calibration

Due to the length of time required for completing write calibration for RLDRAM II/RLDRAM 3, it is useful to use the N-sample feature of the Vivado logic analyzer feature to selectively trigger and display a small window after a given trigger point. This allows you to capture signals across a larger period of time than would be allowed if you just captured a single window when the trigger condition first occurs. A good trigger condition is the wrcal_byte_sel signal as well as the state machine indicator, write_cal_cs (see Table 3-32).

This allows you to focus in on a given byte lane and capture each time an adjustment is made to the PHASER_OUT. An example of what to look for is shown in Figure 3-79.

Figure 3-79: Vivado Logic Analyzer Feature Capture of Write Calibration

When looking for issues, check to see if the read data being returned for a given byte lane is correct, as indicated by the data_valid_r signal. This signal checks the data across multiple clock cycles to ensure all data written during the burst is properly received. If you see gaps in this signal, this might indicate most of the data was written properly but not all of it was correct. Check to make sure the latency between the command and the data at the DRAM is correct for the given settings selected.

Next, check where the algorithm finds the edges of the window and compare with the data being received. If the data being received is always wrong, this can indicate an issue with the read leveling performed in an earlier step of calibration or indicate an issue on the PCB that requires additional debug.

CLOCK_DEDICATED_ROUTE Constraints

System Clock

If the SRCC/MRCC I/O pin and PLL are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. RLDRAM II/RLDRAM 3 manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on the SRCC/MRCC I/O and PLL allocation needs to be handled manually for the IP flow. RLDRAM II/RLDRAM 3 does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Reference Clock

If the SRCC/MRCC I/O pin and MMCM are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint is set to FALSE. Reference clock is a 200 MHz clock source used to drive IODELAY CTRL logic (through an additional MMCM). This clock is not utilized, CLOCK_DEDICADE_ROUTE (as they are limited in number), hence the FALSE value is set. RLDRAM II/RLDRAM 3 manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on SRCC/MRCC I/O and MMCM allocation needs to be handled manually for the IP flow. RLDRAM II/RLDRAM 3 does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Chapter 4

LPDDR2 SDRAM Memory Interface Solution

Introduction

The Xilinx[®] 7 series FPGAs Memory Interface Solutions (MIS) core is a combined pre-engineered controller and physical layer (PHY) for interfacing 7 series FPGA user designs to LPDDR2 SDRAM devices. This user guide provides information about using, customizing, and simulating a LPDDR2 SDRAM interface core for 7 series FPGAs.

Features

Enhancements to the Xilinx 7 series FPGA memory interface solutions from the earlier memory interface solution device families include:

- Higher performance.
- New hardware blocks used in the physical layer: PHASER_IN and PHASER_OUT, PHY control block, and I/O FIFOs (see Core Architecture, page 575).
- Pinout rules changed due to the hardware blocks (see Design Guidelines, page 631).
- Controller and user interface operate at 1/2 of the memory clock frequency.

Using MIG in the Vivado Design Suite

This section provides the steps to generate the Memory Interface Generator (MIG) IP core using the Vivado[®] Design Suite and run implementation.

1. Start the Vivado Design Suite (see Figure 4-1).

Figure 4-1: Vivado Design Suite

2. To create a new project, click the **Create New Project** option shown in Figure 4-1 to open the page as shown in Figure 4-2.

🝌 New Project	
New Project	Create a New Vivado Project This wizard will guide you through the creation of a new project To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
VIVADO.	To continue, click Next.
	< Back Next > Einish Cancel

Figure 4-2: Create a New Vivado Tool Project

3. Click **Next** to proceed to the **Project Name** page (Figure 4-3). Enter the **Project Name** and **Project Location**. Based on the details provided, the project is saved in the directory.

🝌 New Proje	ect	X
Project Nam Enter a nan	ne me for your project and specify a directory where the project data files will be stored	2
Project name:	project_1	0
Project location:	n: C:/Vivado	- C
🔽 Create Proj	nject Subdirectory	
Project will be cr	created at: C:/Vivado/project_1	
	Seck Next > Einish	Cancel

Figure 4-3: Project Name

4. Click **Next** to proceed to the **Project Type** page (Figure 4-4). Select the **Project Type** as **RTL Project** because MIG deliverables are RTL files.

🚴 New Project	
Project Type Specify the type of project to create.	2
 <u>RTL Project</u> You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. <u>Do not specify sources at this time</u> <u>Post-synthesis Project</u> You will be able to add sources, view device resources, run design analysis, planning and implementation. <u>Do not specify sources at this time</u> <u>JO Planning Project</u> Do not specify design sources. You will be able to view part/package resources. <u>Imported Project</u> Create a Vivado project from a Synplify, XST or ISE Project File. 	
< <u>B</u> ack Next > Einish	Cancel

Figure 4-4: Project Type

5. Click **Next** to proceed to the **Add Sources** page (Figure 4-5). RTL files can be added to the project in this page. If the project was not created earlier, proceed to the next page.

🝌 New Project	
Add Sources Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your project. You can also add and create sources later.	7
Id Name Library HDL Source for Location	× ×
Add Files Add Directories Create File Scan and Add RTL Include Files into Project Copy Sources into Project	
Add Soyrces from Subdirectories Target Language: Verilog (Verilog (Seack Next > Finish Call	ncel

Figure 4-5: Add Sources

6. Click **Next** to open the **Add Existing IP (Optional)** page (Figure 4-6). If the IP is already created, the XCI file generated by the IP can be added to the project and the previous created IP files are automatically added to the project. If the IP was not created earlier, proceed to the next page.

À New Project	
Add Existing IP (optional) Specify an existing configurable IP file to add to your project.	2
Id IP Name IP File Id IP Name IP File Add Files Add Files	×
< <u>Back</u> Next > Einish C	ancel

Figure 4-6: Add Existing IP (Optional)

7. Click **Next** to open the **Add Constraints (Optional)** page (Figure 4-7). If the constraints file exists in the repository, it can be added to the project. Proceed to the next page if the constraints file does not exist.

A New Project	
Add Constraints (optional)	
Specify or create constraint files for physical and timing constraints.	
Constraint File Location	
	×
	₹.
Add Files	
Conv Constraints into Project	
Clock constance inder	
< Back Next > Einish	Cancel

Figure 4-7: Add Constraints (Optional)

8. Click **Next** to proceed to the **Default Part** page (Figure 4-8) where the device that needs to be targeted can be selected. The **Default Part** page appears as shown in Figure 4-8.

New Project									
efault Part									1
Choose a derault.	siinx part or boar	a ror your proje	cc, i nis can be c	nanged later				1	1
Specify Filter		i Line				2 1		-	
I Parts	Produ <u>c</u> t category	All		٣	Package	All		*	
Boards	Eamily	All		*	Spee <u>d</u> grade	All		-	
	S <u>u</u> b-Family	All		*	Temp grade	All		-	
			ſ	Pecet All E	iltorc				
			l	Reset All P	licers				
earch: Q+									
Device	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs	Gb Transceivers	PCI Buses	
xc7vx485tffg1157	-2L 1,157	600	303600	607200	1030	2800	20	4	
xc7vx485tffg1157 xc7vx485tffg1157	-2L 1,157 -1 1,157	600 600	303600 303600	607200 607200	1030 1030	2800 2800	20 20	4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158	-2L 1,157 -1 1,157 -3 1,158	600 600 350	303600 303600 303600	607200 607200 607200	1030 1030 1030	2800 2800 2800	20 20 48	4 4 4	
 xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 	-2L 1,157 -1 1,157 -3 1,158 -2 1,158	600 600 350 350	303600 303600 303600 303600	607200 607200 607200 607200	1030 1030 1030 1030	2800 2800 2800 2800 2800	20 20 48 48	4 4 4 4	
 xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158	600 600 350 350 350	303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200	1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800	20 20 48 48 48	4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158	2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -2L 1,158 -1 1,158	600 600 350 350 350 350 350	303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48	4 4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -1 1,158 -3 1,761	600 600 350 350 350 350 350 350 700	303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 48 28	4 4 4 4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1761 xc7vx485tffg1761	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -1 1,158 -3 1,761 -2 1,761	600 600 350 350 350 350 350 700 700	303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 28 28 28	4 4 4 4 4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1561 xc7vx485tffg1761 xc7vx485tffg1761	-2L 1,157 -1 1,157 -3 1,158 -2L 1,158 -2L 1,158 -1 1,158 -3 1,761 -2 1,761 -2 1,761	600 600 350 350 350 350 700 700 700 700	303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 48 28 28 28 28	4 4 4 4 4 4 4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -3 1,761 -3 1,761	600 600 350 350 350 350 700 700 700 700 700	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 28 28 28 28 28 28 28	4 4 4 4 4 4 4 4 4 4 4 4	
xc7vx485tffg1157 xc7vx485tffg1157 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg1158 xc7vx485tffg158 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761 xc7vx485tffg1761	-2L 1,157 -1 1,157 -3 1,158 -2 1,158 -2L 1,158 -3 1,758 -3 1,761 -2 1,761 -1 1,761 -2 1,761 -3 1,927	600 600 350 350 350 350 700 700 700 700 700 600	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 48 48 28 28 28 28 28 28 28 28 56	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
xc7vx485tfg1157 xc7vx485tfg1157 xc7vx485tfg1158 xc7vx485tfg1158 xc7vx485tfg1158 xc7vx485tfg1158 xc7vx485tfg158 xc7vx485tfg1761 xc7vx485tfg1761 xc7vx485tfg1761	21 1,157 -1 1,157 -3 1,158 -2 1,158 -2 1,158 -1 1,158 -3 1,761 -2 1,761 -3 1,927	600 500 350 350 350 350 700 700 700 700 600	303600 303600 303600 303600 303600 303600 303600 303600 303600 303600	607200 607200 607200 607200 607200 607200 607200 607200 607200 607200 607200	1030 1030 1030 1030 1030 1030 1030 1030	2800 2800 2800 2800 2800 2800 2800 2800	20 20 48 48 48 28 28 28 28 28 28 56	4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Figure 4-8: Default Part (Default Window)

Select the target **Family**, **Package**, and **Speed Grade**. The valid devices are displayed in the same page, and the device can be selected based on the targeted device (Figure 4-9).

ipecify F	ilter								
🛞 Parts	Produ <u>c</u> t category	All		τ.	<u>P</u> ackage	FFG900		*	
Boards	<u>E</u> amily	Kintex-7 *			Spee <u>d</u> grade	-3		*	
	S <u>u</u> b-Family	All Remaining		- I	emp grade	All Remaining		-	
arch: Q-			l	Reset All Flice	ers				
evice	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSPs	Gb Transceivers	PCI Buse	
xc7k325tffg9C	900	500	203800	407600	445	840	16	1	
xc7k410tffn9C	900	500	254200	508400	795	1540	16	1	

Figure 4-9: Default Part (Customized Window)

Apart from selecting the parts by using **Parts** option, parts can be selected by choosing the **Boards** option, which brings up the evaluation boards supported by Xilinx (Figure 4-10). With this option, design can be targeted for the various evaluation boards. If the XCI file of an existing IP was selected in an earlier step, the same part should be selected here.

🝌 New Project							×
Default Part Choose a default Xilinx part or boar	d for your project. This c	an be chang	ed later.				2
Specify Filter	Eami Packag Spee <u>d</u> grad	ly All je All je All Re	set All Filters	*			
∑earch: Q.+	Part	I/O Pin Count	Available	LUT	FlipFlops	Block RAMs	DSPs
Kintex-7 KC705 Evaluation Platform	🔷 xc7k325tffg900-2	900	500	203800	407600	445	840
Virtex-7 VC707 Evaluation Platform	xc7vx485tffg1761-2	1,761	700	303600	607200	1030	2800
							1-3691
			< Be	ick Next	> <u>Eini</u>	sh	Cancel

Figure 4-10: Default Part Boards Option

9. Click **Next** to open the **New Project Summary** page (Figure 4-11). This includes the summary of selected project details.

Figure 4-11: New Project Summary

10. Click **Finish** to complete the project creation.

- 11. Click **IP Catalog** on the **Project Manager** window to open the IP catalog window. The IP catalog window appears on the right side panel (see Figure 4-12, highlighted in a red circle).
- 12. The MIG tool exists in the **Memories & Storage Elements > Memory Interface Generators** section of the IP catalog window (Figure 4-12) or you can search from the Search tool bar for the string "MIG."

🚴 project_22 - [C:/Users/avdhesh/	project_22/project_22.xpr] - Vivado 2013.3_UB3.0		Ξ×
File Edit Flow Tools Window L	ayout View Help	Q → Search commands	
🯄 😂 🕼 💷 🗈 🐘 🗙 🗞	🕨 🐮 🚳 🐝 🔽 🎯 🔚 Default Layout 💿 🛒 🗮 🎉	Re Re	ady
Flow Navigator	Project Manager - project_22		×
Q 🔀 🛱	Sources _ 🗆 🖻 😕	Der Project Summary x De La Catalog x	×
	 조 응 응 응 응 응 응 	I Search: Q-	
4 Project Manager		The second secon	
Project Settings	B- Constraints	A Name /* Version /* AAA* Status Litense Externairke YLW	
Stand Sources	E- C Simulation Sources	the post of t	-
🖳 IP Catalog		💱 🖶 👩 Communication 8. Networking	
		Product 20 Perfection	
 IP Integrator 		Co Digital Signal Processing	
Create Block Design			
Den Block Design		D Co Math Functions	
🍓 Generate Block Design		🖉 🖻 📨 Memories & Storage Elements	
4. Churcheller	Hierarchy Libraries Compile Order	9 ECC 2.0 Production Included D:/Xiinx./ub xiinx.com:jp	
 Simulation 	& Sources 🖓 Templates	G C Provide Comparison	
Simulation Settings	TP Properties	The Memory Interface Generator (MIG 7 Series) 2.0 AX14 Production Included Dr/Minx.ub x/iinx.com.ip	
🔍 Run Simulation		🔛 🕀 🗁 RAMS & ROMS	
4 PTI Analysis		C Co Standard Bus Interfaces	2
Open Elaborated Design	Memory Interface Generator (MIG 7 Series)	the whole outmage Processing	
Den Elaborated Design	Version: 2.0	Detais	-
Synthesis	Interfaces: AXI4	Name: Memory Interface Generator (MIG 7 Series)	-
🚯 Synthesis Settings	Part status: Production	Version: 2.0 (Rev. 1)	- 1
Run Synthesis	License: Included	Interfaces: AXI4	
 Coop Synthesized Design 	Vendor: Xilinx, Inc.	Description: This Memory Interface Generator is a simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple memory interfaces. This tool generates HDL and pin placement constraints that will help developed to the simple developed to the simp	-1
P per Synchesized Design	IP library: ip	you design your application. Kinkey's supports borks solvering borks solvering borks solvering your as shering hours solvering and the solvering the solvering and the solveri	ā
 Implementation 	,		_
(%) Implementation Settings	Design Runs	- 0 2	×
Run Implementation	Name Part Cons	traints	₩S
Open Implemented Design		s_1 Vivado Synthesis Defaults (Vivado Synthesis 2013) Not started 0%	
	impl_1 xc7k325tthg900-2 constr	s_1 Vivado Implementation Detaults (Vivado Implementation 2013) Not started0%	
 Program and Debug 	*		
🚳 Bitstream Settings	lat		
🍓 Generate Bitstream	14 Martin Carlos		
Open Hardware Manager			
-			
	🔚 Tcl Console 📘 🗢 Messages 📃 🔍 Log 📘 🔓 Reports 🖉 🖄 Design Run	s	_
		-	

Figure 4-12: IP Catalog Window – Memory Interface Generator

13. Select MIG 7 Series to open the MIG tool (Figure 4-13).

and the state of the second state of the second		
REFERENCE	Memory Interface Generator ————————————————————————————————————	
design 🔛	The Memory Interface Generator (MIC customized Verilog or VHDL RTL sour for implementation and simulation.	creates memory controllers for Xilinx FPGAs. MIG creates complete ce code, pin-out and design constraints for the FPGA selected, and script files
	CORE Generator Options	
	This GUI includes all configurable opt Please note that some of the options controller. It is very important that the below.	ions along with explanations to aid in generation of the required controller. selected in the CORE Generator Project Options will be used in generation of the correct CORE Generator Project Options are selected. These options are liste
	Selected CORE Generator Project Opt	ions:
Memory	FPGA Family	Kintex-7
wentory	FPGA Part	xc7k325t-ffg900
	Speed Grade	-2
Interface	Synthesis Tool	ISE
	Design Entry	VERILOG
Generator	If any of these options are incor Options, and restart MIG. This ve not tested with other ISE version	rect, please click on "Cancel", change the CORE Generator Project ersion of MIG is guaranteed to work with ISE 14.3 and Vivado 2012.3 ns or Vivado versions.
XILINX		

Figure 4-13: 7 Series FPGAs Memory Interface Generator FPGA Front Page

14. Click **Next** to display the **Output Options** page.

Customizing and Generating the Core

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects, defining IP or managed IP projects, and creating block designs.

MIG Output Options

- 1. Select **Create Design** to create a new Memory Controller design. Enter a component name in the Component Name field (Figure 4-14).
- 2. Number of controllers supported for LPDDR2 SDRAM is 1.

Xilinx Memory Interface Generator	
	MIG Output Options
	Create Design
	Select this option to generate a memory controller. Generating a memory controller will create RTL, design constraints (UCF), implementation and simulation files.
	Verify Pin Changes and Update Design
	Selecting this feature verifies the modified UCF for a design already generated through MIG. This option will allow you to change the pin out and validate it instantly. It updates the input UCF file to be compatible with the current version of MIG. While updating the UCF it preserves the pin outs of the input UCF. This option will also generate the new design with the Component Name you selected in this page.
	Component Name
	Please specify the component name for the memory interface. The design directories will be generated under a directory with this name. Three directories will be created "example_design", "user_design" and "docs". The user_design will contain the generated memory interface. The example_design adds a simple example application connected to the generated memory interface.
Memory	- Multi-Controller
Interface	Up to maximum of 8 controllers with a combination of DDR3 SDRAM, QDRIH+ SRAM or RLDRAM II can be generated. The number of controllers that can be accommodated may be limited by the data width and the number of banks available in device. Refer user guide for more information Number of Controllers
Generator	_ AVM Interface
Generator	Enables the AXI4 interface. AXI4 interface is supported only for DDR3 SDRAM and DDR2 SDRAM controllers with Verilog design entry.
🐍 XILIINX	
User Guide Version Info	< <u>B</u> ack <u>N</u> ext> <u>C</u> ancel
_	

Figure 4-14: MIG Output Options

MIG outputs are generated with the folder name <component name>.

IMPORTANT: Only alphanumeric characters can be used for <component name>. Special characters cannot be used. This name should always start with an alphabetical character and can end with an alphanumeric character.

3. Click **Next** to display the **Pin Compatible FPGAs** page.

Pin Compatible FPGAs

The **Pin Compatible FPGAs** page lists FPGAs in the selected family having the same package. If the generated pinout from the MIG tool needs to be compatible with any of these other FPGAs, this option should be used to select the FPGAs with which the pinout has to be compatible (Figure 4-15).

Xilinx 7 series devices using stacked silicon interconnect (SSI) technology have Super Logic Regions (SLRs). Memory interfaces cannot span across SLRs. If the device selected or a compatible device that is selected has SLRs, the MIG tool ensures that the interface does not cross SLR boundaries.

Xilinx Memory Interface Generator	
REFERENCE DESIGN (1)	Pin Compatible FPGAs Pin Compatible FPGAs include all devices with the same package and speed grade as the target device. Different FPGA devices with the same package do not have the same bonded pins. By selecting Pin Compatible FPGAs, MIG will only select pins that are common between the target device and all selected devices. Use the default UCF in the par folder for the target part. If the target part is changed, use the appropriate UCF in the compatible_uCf folder. If a Pin Compatible FPGA is not chosen now and later a different FPGA is used, the generated UCF may not work for the new device and a board spin may be required. MIG only ensures that MIG generated pin out is compatible among the selected compatible FPGA devices. Unselected devices will not be considered for compatibility during the pin allocation process. A blank list indicates that there are no compatible parts exist for the selected target part and this page can be skipped. Note that different parts in the same package will have different internal package skew values. De-rate the minimum period appropriately in the Controller Options page when different
Memory Selection Controller Options AXI Parameter Memory Options FPGA Options Extended FPGA Options IO Planning Options Bank Selection	parts in the same package are used. Consult the User Guide for more information. Target FPGA xc7k325t-fbg676 -2 Pin Compatible FPGAs Rintex7 Tk cx7k70t-fbg676 cxc7k10t-fbg676 cxc7k10t-fbg676 cxc7k410t-fbg676
Summary Simulation Options PCB Information Design Notes	
User Guide Version Info	< Back Next> Cancel

Figure 4-15: Pin-Compatible 7 Series FPGAs

- 1. Select any of the compatible FPGAs in the list. Only the common pins between the target and selected FPGAs are used by the MIG tool. The name in the text box signifies the target FPGA selected.
- 2. Click Next to display the Memory Selection page.

Creating 7 Series FPGA LPDDR2 SDRAM Memory Controller Block Design

Memory Selection

This page displays all memory types that are supported by the selected FPGA family.

- 1. Select the LPDDR2 SDRAM controller type.
- 2. Click **Next** to display the **Controller Options** page (Figure 4-16).

Figure 4-16: Memory Type and Controller Selection

Controller Options

This page shows the various controller options that can be selected (Figure 4-17).

TIP: The use of the Memory Controller is optional. The Physical Layer, or PHY, can be used without the Memory Controller. The Memory Controller RTL is always generated by the MIG tool, but this output need not be used. Controller only settings such as ORDERING are not needed in this case, and the defaults can be used. Settings pertaining to the PHY, such as the Clock Period, are used to set the PHY parameters appropriately.

Xilinx Memory Interface Generator	_6
REFERENCE DESIGN	Options for Controller 0 - LPDDR2 SDRAM
	Clock Period: Choose the clock period for the desired frequency. The allowed period range(3000 - 5000) is a function of the selected FPGA part and FPGA speed grade. Refer to the User Guide for more information.
	The allowed period range is PRELIMINARY. The final range will be listed after characterization.
	PHY to Controller Clock Ratio: Select the PHY to Memory Controller clock ratio. The PHY operates at the Memory Clock Period chosen above. The controller operates at either 1/4 or 1/2 of the PHY rate. The selected Memory Clock Period will limit the choices.
Pin Compatible FPGAs 🚩	Memory Type: Select the memory type. Type(s) marked with a warning symbol are not compatible with the frequency selection above.
Memory Selection	Mamory Bast: Select the memory part Partic) marked with a warning symbol are not compatible with the frequency relaction shave End. MT421128M16D1KL-25.IT
Controller Options	an equivalent part or create a part using the "Create Custom Part" button if the part needed is not listed here. The "Create Custom Part"
AXI Parameter	feature is not supported for RLDRAM II. Create Custom Part
Memory Options	Data Width: Select the Data Width. Parts marked with a warning symbol are not compatible with the frequency and memory part selected above.
FPGA Options	
Extended FPGA Options	Data Mask: Enable or disable the generation of Data Mask (DM) pins using this check box. This option can be selectable only if the memory part selected has DM pins. Uncheck this box to not use data masks and save FPGA I/Os that are used for DM signals. ECC designs (DDR3 SDRAM, DDR2
IO Planning Options	SUKAM) Will not use Data Mask.
Bank Selection	
System Signals Selection	
Summary	
Simulation Options	
PCB Information	ORDERING: Normal mode allows the memory controller to reorder commands to the memory to obtain the highest possible efficiency. Strict mode
Design Notes	Torces the controller to execute commands in the exact order received.
E XILINX.	Memory Details: 2Gb, x16, row:14, col:10, bank:3, data bits per strobe:8, with data mask
User Guide Version Info	< <u>Back</u> <u>Next></u> <u>Cancel</u>

Figure 4-17: Controller Options Page

If the design has multiple controllers, the controller options page is repeated for each of the controllers. This page is partitioned into a maximum of nine sections. The number of partitions depends on the type of memory selected. The controller options page also contains these pull-down menus to modify different features of the design:

- **Frequency** This feature indicates the operating frequency for all the controllers. The frequency block is limited by factors such as the selected FPGA and device speed grade.
- **PHY to Controller Clock Ratio** This feature determines the ratio of the physical layer (memory) clock frequency to the controller and user interface clock frequency. The user interface data bus width of the 2:1 ratio is four times the width of the physical memory interface width.
- **Memory Type** This feature selects the type of memory parts used in the design.
- **Memory Part** This option selects a memory part for the design. Selections can be made from the list or a new part can be created.
- **Data Width** The data width value can be selected here based on the memory type selected earlier. The list shows all supported data widths for the selected part. One of the data widths can be selected.
- **Data Mask** This option allocates data mask pins when selected. This option should be deselected to deallocate data mask pins and increase pin efficiency. This option is disabled for memory parts that do not support data mask.

- **Ordering** This feature allows the Memory Controller to reorder commands to improve the memory bus efficiency.
- **Memory Details** The bottom of the **Controller Options** page (Figure 4-17, page 529) displays the details for the selected memory configuration (Figure 4-18).

Memory Details: 2Gb, x16, row:14, col:10, bank:3, data bits per strobe:8, with data mask

Figure 4-18: Memory Details

Create Custom Part

- 1. On the **Controller Options** page select the appropriate frequency. Either use the spin box or enter a valid value using the keyboard. Values entered are restricted based on the minimum and maximum frequencies supported.
- Select the appropriate memory part from the list. If the required part or its equivalent is unavailable, a new memory part can be created. To create a custom part, click Create Custom Part below the Memory Part pull-down menu. A new page appears, as shown in Figure 4-19.

Select Base Part MT42L128M16D1KL-25-IT								
Enter New Memory Part Name								
Change th	e required	d Timing Pa	rameters.	"Value" is the only field that can be edited				
² arametei	Value	Range	Units	Descriptions	-			
tfaw	50	50-60	ns	Four Address Width				
tras	42	40-70	ns	Active to Precharge command				
trcd	18	10-25	ns	ns Active to Read or write delay				
trefi	3.9	3.9-15.6	us	us Average periodic refresh interval				
trfc	130	90-210	ns	ns Refresh to Active or Refresh to Refr				
trp	18	10-30	ns	Precharge command period	▲ ▼			
Row Addre	ess			14	-			
Column Ac	dress			10	-			
trp Row Addre Column Ac	18 ess Idress	10-30	ns	Precharge command period 14 10				

Figure 4-19: **Create Custom Part**

The **Create Custom Part** page includes all the specifications of the memory component selected in the Select Base Part pull-down menu.

- 3. Enter the appropriate memory part name in the text box.
- 4. Select the suitable base part from the **Select Base** Part list.
- 5. Edit the value column as needed.
- 6. Select the suitable values from the **Row**, **Column**, and **Bank** options as per the requirements.
- 7. After editing the required fields, click **Save**. The new part is saved with the selected name. This new part is added in the **Memory Parts** list on the **Controller Options** page. It is also saved into the database for reuse and to produce the design.
- 8. Click Next to display the Memory Options page.

Setting LPDDR2 SDRAM Memory Parameter Option

This feature allows the selection of various memory mode register values, as supported by the controller specification (Figure 4-20).

✓ Xilinx Memory Interface Generator	-	, a ×
	Memory Options for Controller 0 - LPDDR2 SDRAM	
	Input Clock Period: Select the period for the PLL input clock (CLKIN). MIG determines the allowable input clock periods based on the Memory Clock Period entered above and the clocking guidelines listed in the User Guide. The generated design will use the selected Input Clock and Memory Clock Periods to generate the required PLL parameters. If the required input clock period is not available, the Memory Clock Period must be modified.	•
Pin Compatible FPGAs 🗡	Choose the Memory Options for the memory device. Memory Option selections are restricted to those supported by the controller. Consult the memory vendor data sheet for more information.	
Memory Selection 🖌 Controller Options 🖌	Burst Type The ordering of accesses with in a burst is determined based on the burst length, the burst type and the starting column address. Sequential	-
AXI Parameter Memory Options		
FPGA Options Extended FPGA Options	User Address	
IO Planning Options Bank Selection	ROW BANK COLUMN BANK ROW COLUMN	
System Signals Selection Summary		
Simulation Options PCB Information		
Design Notes		
E XILINX		
User Guide Version Info	< <u>Back</u> <u>Next></u> <u>Can</u>	cel
		-

Figure 4-20: Setting Memory Mode Options

The mode register value is loaded into the load mode register during initialization.

The desired input clock period is selected from the list. These values are determined by the memory clock period chosen and the allowable limits of the parameters. For more information on the MMCM parameter limits, see Design Guidelines, page 631.

Click Next to display the FPGA Options page.

FPGA Options

Figure 4-21 shows the **FPGA Options** page.

Xilinx Memory Interface Generator		
REFERENCE	- System Clock	
DESIGN 🔛	Choose the desired input clock configuration. Design clock can be Differ	rantial or Single Ended
	Svetem Clock	
	System clock	Direction
	Reference Clock	
	Choose the desired reference clock configuration. Reference clock can be	be Differential or Single-Ended.
nin Commetitue Encar 🗸	Reference Clock	Differential 🔹
Pin Compatible PPGAS		
1emory Selection	System Reset Polarity	
Controller Options 🛛 🚩	Choose the desired System Reset Polarity.	
AXI Parameter	System Reset Polarity	ACTIVE LOW
Memory Options 🛛 🗡	- Debug Signals Control	
	This feature allows various debug signals present in the IP to be monitore	ad on the ChinScope tool. The debug signals include status signals of various PHY calibration stages
Extended FPGA Options	Enabling this feature will connect all the debug signals to the ChipScope I grounded so that users can replace the grounded signals with the require	Id and YO cores in the example design top module. A part of each bus in the debug interface has been ied signals.
O Planning Options	Debug Signals for Memory Controller	OFF
Bank Selection	This selects the value of Sample Data depth for Chipscope ILA used in De	ebua loaic.
System Signals Selection	Sample Data Depth	1024
Summary		
Simulation Options	Internal Vrer	
PCB Information	Internal Vref can be used to allow the use of the Vref pins as normal IO pi inputs are used. This setting has no effect on banks with only outputs.	ins. This option can only be used at 800 Mbps and lower data rates. This can free 2 pins per bank where
Design Notes	Internal Vref	
	- IO Power Reduction	
	Significantly reduces average IO power by automatically disabling DQ/DO	QS IBUFs and internal terminations during WRITEs and periods of inactivity
	IO Power Reduction	ON V
ser Guide Version Info		< <u>B</u> ack <u>N</u> ext> <u>C</u> ance

Figure 4-21: FPGA Options

 System Clock – This option selects the clock type (Single-Ended, Differential, or No Buffer) for the sys_clk signal pair. When the No Buffer option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the system clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the sys_clk_i signal. So for No Buffer scenarios, sys_clk_i signal needs to be connected to an internal clock.

• **Reference Clock** – This option selects the clock type (Single-Ended, Differential, No Buffer, or Use System Clock) for the clk_ref signal pair. The **Use System Clock** option appears when the input frequency is between 199 and 201 MHz (that is, the Input Clock Period is between 5,025 ps (199 MHz) and 4,975 ps (201 MHz). When the **No Buffer** option is selected, IBUF primitives are not instantiated in RTL code and pins are not allocated for the reference clock.

If the designs generated from MIG for the **No Buffer** option are implemented without performing changes, designs can fail in implementation due to IBUFs not instantiated for the ref_clk_i signal. So for **No Buffer** scenarios, ref_clk_i signal needs to be connected to an internal clock.

- System Reset Polarity The polarity for system reset (sys_rst) can be selected. If the option is selected as active-Low, the parameter RST_ACT_LOW is set to 1 and if set to active-High the parameter RST_ACT_LOW is set to 0.
- Debug Signals Control Selecting this option enables calibration status and user port signals to be port mapped to the ILA and VIO in the example_top module. This helps in monitoring traffic on the user interface port with the Vivado Design Suite debug feature. Deselecting the Debug Signals Control option leaves the debug signals unconnected in the example_top module and no ILA/VIO modules are generated by the IP catalog. Additionally, the debug port is always disabled for functional simulations.
- **Sample Data Depth** This option selects the Sample Data depth for the ILA module used in the Vivado debug logic. This option can be selected when the **Debug Signals** for Memory Controller option is ON.
- Internal V_{REF} Selection Internal V_{REF} can be used for data group bytes to allow the use of the V_{REF} pins for normal I/O usage. Internal V_{REF} should only be used for data rates of 800 Mb/s or below.

Click Next to display the Pin/Bank Selection Mode page.

 Pin/Bank Selection Mode – This allows you to specify an existing pinout and generate the RTL for this pinout, or pick banks for a new design. Figure 4-22 shows the options for using an existing pinout. You must assign the appropriate pins for each signal. A choice of each bank is available to narrow down the list of pins. It is not mandatory to select the banks prior to selection of the pins. Click Validate to check against the MIG pinout rules. You cannot proceed until the MIG DRC has been validated by clicking Validate.

		Signal Name	Bank Number		Byte Number		Pin Number		IO Standard
	1	lpddr2_dq[0]	All Banks	-	Select Byte	-	Select Pin	-	
	2	lpddr2_dq[1]	All Banks	-	Select Byte	-	Select Pin	-	
	3	lpddr2_dq[2]	All Banks	-	Select Byte	-	Select Pin	-	
Compatible FPGAs 🚩	4	lpddr2_dq[3]	All Banks	-	Select Byte	-	Select Pin	-	
mory Selection 🖌	5	lpddr2_dq[4]	All Banks	-	Select Byte	-	Select Pin	-	
troller Options 🖌	6	lpddr2_dq[5]	All Banks	-	Select Byte	-	Select Pin	-	
Parameter	7	lpddr2_dq[6]	All Banks	-	Select Byte	-	Select Pin	-	
nory Options 🛛 🖌	8	lpddr2_dq[7]	All Banks	-	Select Byte	-	Select Pin	-	
A Options 🗸 🗸	9	lpddr2_dq[8]	All Banks	-	Select Byte	-	Select Pin	-	
ended FPGA Options	10	lpddr2_dq[9]	All Banks	•	Select Byte	-	Select Pin	-	
Planning Options 🖌	11	lpddr2_dq[10]	All Banks	-	Select Byte	-	Select Pin	-	
Selection	12	lpddr2_dq[11]	All Banks	•	Select Byte	-	Select Pin	-	
tem Signals Selection	13	lpddr2_dq[12]	All Banks	•	Select Byte	-	Select Pin	-	
nmary	14	lpddr2_dq[13]	All Banks	-	Select Byte	-	Select Pin	-	
ulation Options	15	lpddr2_dq[14]	All Banks	-	Select Byte	-	Select Pin	-	
3 Information	16	lpddr2_dq[15]	All Banks	-	Select Byte	-	Select Pin	-	
	17	lpddr2_dm[0]	All Banks	-	Select Byte	-	Select Pin	-	
sign Notes		Indde 7 dm [1]	All Banks	-	Select Byte	-	Select Pin	-	
sign Notes	18	ipddi2_dii[1]		1000					
sign Notes	18 19	lpddr2_dds_p[0]	All Banks	-	Select Byte	-	Select Pin	-	

Figure 4-22: Pin/Bank Selection Mode

Bank Selection

This feature allows the selection of bytes for the memory interface. Bytes can be selected for different classes of memory signals, such as:

- Address and control signals
- Data signals

Xilinx Memory Interface Generator			_ 8
	Bank Selection For Controller 0 - LPDDR2	SDRAM	
	Select the byte groups for the data and addre horizontally. *Bank(s) 14,15 contain confi memory controller, UCF should be verifi The Address/Control byte groups must single bank. Bank selection may be restrict Address/Control: 14,14 O Data: 22/22 C	ess/control in the architectural view below. Data and Address/Control must be selected within 3 vertical banks iguration pins. MIG tries to avoid usage of these banks for default configurations. If bank(s) 14, ied to ensure no conflicts with the configuration pin. For more information see <u>UG586 Bank and Pin rul</u> be selected in the middle bank in interfaces using 3 banks. All Address/Control byte groups mu ed to High Performance columns in order to meet the interface data rate selected.	. The interface cannot span ,15 is selected for your les. st be selected in a
Pin Compatible FPGAs 🚩	HB Bank*	- HP Bank	
Memory Selection	Bank 14 Signal Sets	Bank 34 Signal Sets	
Controller Ontions	Byte Group T0 Unassigned	Byte Group T0 Address/Ctrl-0	
controller options	Byte Group T1 Unassigned	Byte Group T1 Address/Ctrl-1	
AXI Parameter	Byte Group T2 Unassigned	Byte Group T2 DQ[0-7]	
Memory Options	Rute Group T3 Ilnaccinned		
FPGA Options 🖌 🖌			
Extended FPGA Options	HR Bank	HP Bank	
O Planning Options 🛛 🖌	Bank 13 Signal Sets	Bank 33 Signal Sets	
Bank Selection	- Byte Group T1 Unassigned	- Byte Group To Unassigned	
System Signals Selection	Byte Group T2 Unassigned	Byte Group T2 Unassigned	
	Rute Group T3 Unassigned	Rute Groun T3 Unaccioned	
summary			
Simulation Options	HR Bank	HP Bank	
PCB Information	Bank 12 Signal Sets	Bank 32 Signal Sets	
Design Notes	Byte Group T0 Unassigned	Byte Group TO Unassigned	
	Byte Group T2 Unassigned	Byte Group 12 Unassigned	
	Ryte Group T3 Unassigned	Bute Group T3 Upassigned	
			Ē
E XILINX.		Deselect B	anks Restore Defaults
User Guide Version Info		< <u>B</u> ac	ck <u>N</u> ext> <u>C</u> ancel

Figure 4-23: Bank Selection

For customized settings, click **Deselect Banks** and select the appropriate bank and memory signals. Click **Next** to move to the next page if the default setting is used.

To unselect the banks that are selected, click **Deselect Banks**. To restore the defaults, click **Restore Defaults**.

VCCAUX_IO groups are shown for HP banks in devices with these groups using dashed lines. VCCAUX_IO is common to all banks in these groups. The memory interface must have the same VCCAUX_IO for all banks used in the interface. MIG automatically sets the VCCAUX_IO constraint appropriately for the data rate requested.

For devices implemented with SSI technology, the SLRs are indicated by a number in the header in each bank, for example, SLR 1. Interfaces cannot span across Super Logic Regions.

Select the pins for the system signals on this page (Figure 4-24). The MIG tool allows the selection of either external pins or internal connections, as desired.

Xilinx Memory Interface Ger REFERENCE DESIGN	erator Syster Select inform	n Signals Selection the system pins below ap lation see <u>UG586 Bank an</u>	propriately for the interfa	ace. Custonization of these	e pins can also be made in the UCF after the design is generated. For more
	5) Ti (F	vstem Clock Pin Selection ne sys_clk is used as the VN) pair for best performa vailable such as when fittli	system dock for the men ance. This signal should be ng a 16 bit interface in a s	nory interface. This signal si e in the address/control bar ingle bank.	should be connected to a low jitter external clock source via a differential nk, but may be placed in an adjacent bank if there are not enough pins
		Signal Name	Bank Number	Pin Number	
Pin Compatible FPGAs	V 1	sys_clk_p/n	34 🗸	AC4/AC3/CC_P/N)	•
Memory Selection	~				
	~				
Controller Options	R	eference Clock Pin Selectio	on -		
AXI Parameter	V 11	ne dk ref input is used a	is the reference clock for	the IODELAY, Refer the "7	Series EPGA Selectio Resources User Guide" for more information. This
Memory Options	V in	put can be generated inte	ernally or can be connected	d to an external clock source	ce on a dock capable differential (P/N) pair.
FPGA Options	~	Signal Name	Bank Number	Pin Number	
	- 1	clk_ref_p/n	Select Bank 🔻	No connect	• E
Extended FPGA Options				ļ	
10 Planning Options	¥ L				
Bank Selection	Y St	atus Signals			
	π	nese signals may be conne	ected internally to other lo	gic or brought out to a pin.	
Gummany		• sys_rst: This inpu	t signal is used to reset th	ne interface.	
Summary		 init_calib_comp LOC constraint will 	lete: This signal indicates be generated in UCF for E	that the interface has com Example design only based	upleted calibration and memory initialization and is ready for commands. on "Pin Number" selection below.
Simulation Options		error: This output the User Design	signal indicates that the t	raffic generator in the Exar	mple Design has detected a data mismatch. This signal does not exist in
PCB Information		Cie UN	D. I. N I	D' H - L	
Design Notes		orginal Name		Nessee	
		sys_rst	Select Bank	INO CONNECT V	
	2	2 init_calib_complete	Select Bank 🔹	No connect 🔹	
	3	3 tg_compare_error	Select Bank 🔹	No connect 🔻	
					-
			مريح بالمعرفة والمعرفة والمعرفة	in and as to an an -t	hit file in the involution where files is not coming if for
	All pi	ns must be constraine lation).	ed to specific locations	in order to generate a	bit file in the implementation phase (this is not required for
E XILIN	JX a	ns must be constraine lation).	ed to specific locations	in order to generate a	bit file in the implementation phase (this is not required for
E XILIN		ns must be constraine lation).	d to specific locations	in order to generate a	bit file in the implementation phase (this is not required for

Figure 4-24: System Pins

- sys_clk This is the system clock input for the memory interface and is typically connected to a low-jitter external clock source. Either a single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 4-21). The sys_clk input must be in the same column as the memory interface. If this pin is connected in the same banks as the memory interface, the MIG tool selects an I/O standard compatible with the interface, such as DIFF_SSTL12 or SSTL12. If sys_clk is not connected in a memory interface bank, the MIG tool selects an appropriate standard such as LVCMOS18 or LVDS. The XDC can be modified as desired after generation.
- clk_ref This is the reference frequency input for the IDELAY control. This is a 200 MHz input. The clk_ref input can be generated internally or connected to an external source. A single input or a differential pair can be selected based on the System Clock selection in the FPGA Options page (Figure 4-21). The I/O standard is selected in a similar way as sys_clk.
- sys_rst This is the asynchronous system reset input that can be generated internally
 or driven from a pin. The MIG tool selects an appropriate I/O standard for the input
 such as LVCMOS18 and LVCMOS25 for HP and HR banks, respectively. The default
 polarity of sys_rst pin is active-Low. The polarity of sys_rst pin varies based on the
 System Reset Polarity option chosen in FPGA Options page (Figure 4-21).
- init_calib_complete This output indicates that the memory initialization and calibration is complete and that the interface is ready to use. The init_calib_complete signal is normally only used internally, but can be brought out to a pin if desired.
- **tg_compare_error** This output indicates that the traffic generator in the example design has detected a data compare error. This signal is only generated in the example design and is not part of the user design. This signal is not typically brought out to a pin but can be, if desired.

Click Next to display the Summary page.

Summary

This page provides the complete details about the 7 series FPGA memory core selection, interface parameters, Vivado tool options, and FPGA options of the active project (Figure 4-25).

Figure 4-25: Summary

Memory Model License

The MIG tool can output a chosen vendor's memory model for simulation purposes for memories such as LPDDR2 SDRAMs. To access the models in the output sim folder, click the license agreement (Figure 4-26). Read the license agreement and check the **Accept License Agreement** box to accept it. If the license agreement is not agreed to, the memory model is not made available. A memory model is necessary to simulate the design.

💐 Xilinx Memory Interface Generate	or EDX
AFTERFUCE	
2	Micron Technology, Inc. Simulation Model License Agreement
	PLEASE READ THIS SIMULATION MODEL LICENSE AGREEMENT ("AGREEMENT") FROM MICRON TECHNOLOGY, INC. ("MTI") CAREFULLY BEFORE INSTALLING OR USING THIS SIMULATION MODEL (THE "MODEL"). BY INSTALLING OR USING THE MODEL, YOU ARE ACCEPTING AND AGREEING TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, THEN DO NOT INSTALL OR USE THE MODEL.
Pin Compatible FPGAs	<u>SOFTWARE LICENSE</u> : You acknowledge and agree that it is your sole responsibility to obtain the appropriate license or permission from the owner(s) of the software platform(s) that are necessary for you to operate the Model. MTI is under no obligation whatsoever to offer, provide or secure such license or permission for you.
AXI Parameter	MODEL LICENSE: MTI hereby grants to you the right to install, use and modify the Model solely for testing the Model and designing your product(s) in connection with the Model. You shall not use the Model or any modifications for any
Memory Options 🛛 🖌	other purpose, and shall not copy, rent, or lease the Model or the modifications to any third party. MTI may make changes to the Model at any time without notice to you. MTI is under no obligation whatsoever to update, maintain,
FPGA Options 🛛 🖌	or provide new versions or other support for the Model.
Extended FPGA Options 🛛 🚩	OWNERSHIP OF MATERIALS: You acknowledge and agree that the Model is proprietary property of MTI and is protected by United States copyright law and international treaty provisions. The Model may not be copied,
Bank Selection	reproduced, published, uploaded, posted, transmitted, or distributed in any way without MTI's prior written permission. Except as expressly provided herein, MTI does not grant any express or implied right to you under any
System Signals Selection	patents, copyrights, trademarks, or trade secret information. This Agreement does not convey to you an interest in or to the Model, but only a limited right to use and modify the Model in accordance with the terms of this Agreement.
Memory Model	DISCLAIMER OF WARRANTY: THE MODEL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MTI EXPRESSLY DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, NONINFRINGEMENT OF THIRD
PCB Information	PARTY RIGHTS, AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Design Notes	MODEL WILL BE UNINTERRUPTED OR ERROR-FREE. FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE MODEL IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE MODEL REMAINS WITH YOU. IN NO EVENT SHALL MTI, ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE THE MODEL, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Because
	Print
EXILINX	Check Accept or Decline to proceed. By clicking Accept, memory model will be outputted in output simulation directory. By clicking Decline, you will need to acquire and configure a memory model appropriately.
User Guide Version Info	< <u>B</u> ack <u>N</u> ext> <u>C</u> ancel
and and and and	UG586_c1_39_110610

Figure 4-26: License Agreement

Click **Next** to move to PCB Information page.

PCB Information

This page displays the PCB-related information to be considered while designing the board that uses the MIG tool generated designs. Click **Next** to move to the **Design Notes** page.

Design Notes

Click **Generate** to generate the design files. The MIG tool generates two output directories: example_design and user_design. After generating the design, the MIG GUI closes.

Vivado Integrated Design Flow for MIG

1. After clicking **Generate**, the **Generate Output Products** window appears. This window has the **Out-of-Context Settings** as shown in Figure 4-27.

i Ger	nerate Output Products <@xf 🔲 🗙 The following output products will be generated.
Preview	Termin Zseries O xci
	Ing_relation Template Instantiation Template Synthesized Checkpoint (.dcp) Behavioral Simulation Change Log
	Out of Contoxt Settings
	Qut-of-Context Settings

Figure 4-27: Generate Output Products Window

2. Click **Out-of-Context Settings** to configure generation of synthesized checkpoints. To enable the **Out-of-Context** flow, enable the check box. To disable the **Out-of-Context** flow, disable the check box. The default option is "enable" as shown in Figure 4-28.

i	Configure the generation of synthesized checkpoints (.dcp) for selected IP and set the number of jobs.
Previ	iew Fmig_7series_0.xci

Figure 4-28: Out-of-Context Settings Window

- 3. MIG designs comply with "Hierarchical Design" flow in Vivado. For more information, see the *Vivado Design Suite User Guide: Hierarchical Design* (UG905) [Ref 5] and the *Vivado Design Suite Tutorial: Hierarchical Design* (UG946) [Ref 6].
- 4. After generating the MIG design, the project window appears as shown in Figure 4-29.

🔥 project. 23 - [C:/ISers/avdhesh/project. 23/project. 23.pr) - Yvado 2013.3														
File Edit Flow Tools Window	Layou	: View Help									0	Q ≁ Search comn	ands	
🯄 🖄 in 🕫 🗎 🗙 i 🕸		🐁 🏀 🛞 ∑ 🧔 🖽 Default Layo	ut 👻 🌶	१ 🚸 🎉 🖉)									Ready
Flow Navigator 《	Pro	ject Manager - project_23												×
Q 🛣 🖨	5	Sources	-	- 0 0 ×	Σ	Project Summary 🗙 🞐 IP Catalog 🗙								1 🛃 🗶
4 Project Manager	pertie	🔍 🖾 😂 🖄 🛃			20	Search: Q-								
R Project Settings	Pro	E-@ IP (1)				Name		A1 Version ∇2	AXI4	Status	License	External Re.	. VLNV	
Add Sources		Instantiation Template (1)			-	Basic Elements								<u> </u>
IP Catalog		Synthesis (52)				Communication & Networking Debug & Verification								
		Implementation (1)			•	🗄 🗁 Digital Signal Processing								
 IP Integrator 						Embedded Processing Enco Encloses and Decision								
🕂 Create Block Design						Compared to the second se								
Dpen Block Design						🖻 📂 Memories & Storage Elements							1	
🍓 Generate Block Design						ECC		2.0		Production	Included	W:/xbuilds/	xiinx.com:i	p
4 Simulation					0	Generators								
Simulation Settings					1	Memory Interface Generator (MIG 7 Serie	s)	2.0 A:	(14	Production	Included	W:/xbuilds/	xiînx.com:i	p
Run Simulation					1	The Standard Bus Interfaces								Ê
<u> </u>						Details								
RTL Analysis						Name: Memory Interface Generator (MI	7 Series)							
Den Elaborated Design	:					Version: 2.0 (Rev. 1)								
4 Synthesis						Interfaces: AXI4								
🚯 Synthesis Settings		Hierarchy IP Sources Libraries Comp	oile Order			Description: This Memory Interface Generator is a s	mple menu d	riven tool to generate adva	nced memory interf	aces. This tool (enerates HDL a	nd pin placemen	t constraints	-
Run Synthesis		👃 Sources 💎 Templates				that will help you design your application	n. Kintex-7 si	upports DDR3 SDRAM, DDR	2 SDRAM, LPDDR2 S	5DRAM, QDR II4	SKAM, RLDRAM	ALL and RLDRAM	III. Virtex-7	
Open Synthesized Design		Design Runs											_ 0	e ×
		Q Name	Part	Constraints		Strategy	Status	Progress	Start	Elapsed	Failed Routes	WNS TNS	WHS T	HS TPA
4 Implementation		E Synth_1	xc7k325tffg900-2	constrs_1	¥ivado	o Synthesis Defaults (Vivado Synthesis 2013)	Not started	0%						
Mig Implementation Settings		impl_1	xc7k325thtg900-2	constrs_1	Vivado	o Implementation Defaults (Vivado Implementation 2013)	Not started	0%						
Run Implementation														
Open Implemented Design														
Program and Debug		10												
🚯 Bitstream Settings		*												
🚷 Generate Bitstream		-*												
▷ 💕 Open Hardware Manager														
👺 Launch iMPACT		Tri Concola O Marcagar SL	og 🗋 Reporte d	Design Runs								1		
			og (🔚 Kepuris / L	 Design Runs 										
														:

Figure 4-29: Vivado Tool Project Window (After IP Generation)

5. After project creation, the XCI file is added to the Project Hierarchy. The same view also displays the module hierarchies of the user design. The list of HDL and XDC files is available in the **IP Sources** view in the **Sources** window. Double-clicking on any module or file opens the file in the Vivado Editor. These files are read only.

Figure 4-30: Vivado Tool Project Sources Window

Design generation from MIG can be generated using the **Create Design** flow or the **Verify Pin Changes** and **Update Design** flows. There is no difference between the flow when generating the design from the MIG tool. Irrespective of the flow by which designs are generated from the MIG tool, the XCI file is added to the Vivado tool project. The implementation flow is the same for all scenarios because the flow depends on the XCI file added to the project.

6. All MIG generated user design RTL and XDC files are automatically added to the project. If files are modified and you wish to regenerate them, right-click the XCI file and select **Generate Output Products** (Figure 4-31).

Figure 4-31: Generate RTL and Constraints

7. Clicking **Generate Output Products** option brings up the **Manage Outputs** window (Figure 4-32).

project_23 - [C/Users/ardhesh/project_23.pr] - Yivada 2013.3						
File Edit Flow Tools Window	Layout View Help		Q Search commands			
🯄 😂 in 🕫 🗟 🎼 🗙 🔇	🕨 🏷 🚳 🛞 🔀 🤪 🔚 Default Layout 💿 🗶 🗞 🌾	,	Ready			
Flow Navigator	Project Manager - project_23		X			
🔍 🛣 🖨	Sources _ D ど 🗙	E Project Summary X 👂 IP Catalog X	□ ℓ ×			
4 Design & Manager	오 🖾 🛱 🖻 않기 🖩 💽					
Project Planager Project Settings	E S Design Sources (2)	Name	/ 1 Version V2 AXI4 Status License External Re VLNV			
Add Sources	JF mig_7series_0 (mig_7series_0.xci) For Configuration Files (1)	😝 🗄 🗁 Basic Elements				
IP Catalog	Constraints	Communication & Networking E C Debug & Verification				
	E-@ sim_1 (1)	🕂 🕀 👝 Dinital Sinnal Procession				
 IP Integrator 	mig_7series_0 (mig_7series_0.xci)	Generate Output Products				
Create Block Design		The following output products will be generated.				
Copen Block Design	Hierarchy IP Sources Libraries Compile Order	Conservato Optimore	2.0 Production Included W//Weilde/ viloy convin			
Generate block besign	& Sources P Templates	Generate Synthesized Cherkmant (dm)				
 Simulation 	Source File Properties _ D L ^a ×	G	2.0 AV24 Decidentian Recturbed MV. Advided hitery convin			
🔞 Simulation Settings		Preview	2.0 AASA Produccion Incidado Writebolioster participante			
🔍 Run Simulation	0 mig_7series_0.xci	Instantiation Template				
A RTL Analysis	Vendor: Xilov Inc.	RTL Sources				
👂 📄 Open Elaborated Design	IP library: ip	ees enavioral simulation	eries)			
1.0.0.0	IP state: Customized					
Synthesis Synthesis Settings			menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will			
Dun Synthesis	General Properties IP		oports DDR3 SDRAM, DDR2 SDRAM, LPDDR2 SDRAM, QDR II+ SRAM, RLDRAMII and RLDRAMIII. Virtex-7 supports DDR3			
 D D Open Synthesized Design 	Design Runs		- D 2 ×			
	Name Part Constraints	Generate Skip	atus Progress Start Elapsed Failed Routes WNS TNS WHS THS TPWS			
 Implementation 		Vivado synamoso por sano como synamoso zoroy	arted 0%			
Implementation Settings	impl_1 xc7k325tFfg900-2 constrs_1	Vivado Implementation Defaults (Vivado Implementation 2013) Not :	started 0%			
Run Implementation	*					
Den Impiemented Design	14					
Program and Debug	10					
🔞 Bitstream Settings	4					
National Sector State St	-*					
Open Hardware Manager						
Se Launch IMPACT	🔚 Tcl Console 💭 Messages 🔄 Log 🎦 Reports 🖄 Design Run	s				
Generate HDL files						

Figure 4-32: Generate Window

8. All user-design RTL files and constraints files (XDC files) can be viewed in the **Sources** > **Libraries** tab (Figure 4-33).

🔈 project_23 - [C:/Users/avdhesh/project_23/project_23.ppr] - Yivado 2013.3										
File Edit Flow Tools Window Layo	out View Help							(λ ≁ Search comm	ands
🯄 🖻 🕼 🕫 🗎 🐘 🗙 🔈 🕨	🕨 🐮 🏀 🎉 🚬 🤪 🔚 Default Layout 💿 👻 💓	🖹 🖉								Read
Flow Navigator « Pr	roject Manager - project_23									;
🔍 🛣 🌐	Sources _ [ı.e.×	Σ	Project Summary 🗙 👎 IP Catalog 🗙						00×
			1	Curte D						
4 Project Manager				Search: JQ*						
Reproject Settings	E- P (1)	<u>^</u>		Name	∠1 Version	∇2 AXI4	Status	License	External Re	VLNV
Add Sources	E-gr • mig_/series_0 (122) E-mig_r Instantiation Template (1)			🕀 🗁 Automotive & Industrial						
Mud Jources	E-3 Synthesis (52)			🕀 🗁 AXI Infrastructure						
🔐 IP Catalog	D • mig Zseries 0.xdc			🗈 🗁 BaseIP						
	mig 7series v2 0 ck ibuf.v		•	🕀 🗁 Basic Elements						
# IP Integrator	- 👔 • mig 7series v2 0 infrastructure.v		15	🗄 🗁 Communication & Networking						
ở Create Block Design	- 🚱 • mig_7series_v2_0_iodelay_ctrl.v		1 💷	🖽 🗁 Debug & Verification						
	• mig_7series_v2_0_tempmon.v		193	🗈 😰 Digital Signal Processing						
Open Block Design				🗄 🗁 Embedded Processing						
🍓 Generate Block Design	mig_7series_v2_0_arb_row_col.v		9	🗈 😰 FPGA Features and Design						
	mig_7series_v2_0_arb_select.v		6	E C Math Functions						
4 Simulation	mig_7series_v2_0_bank_cntrl.v		-	🕀 😥 Memories & Storage Elements						
Coulation Settings	• mig_/series_v2_U_bank_common.v		100	ECC ECC	2.0		Production	Included	W:/xbuilds/	xilinx.com:ip
Sindiduon Securgs	mig_/series_v2_0_bank_compare.v			🖲 🗁 FIFOs						
Contraction (U) Run Simulation	a mig_7series_v2_0_bank_macri.v			🖃 🗁 Memory Interface Generators						
:	a min Zseries v2.0 bank state v			Memory Interface Generator (MIG 7 Series)	2.0	AXI4	Production	Included	W:/xbuilds/	xiinx.com:ip
A RTL Analysis	mig 7 series v2 0 col mach.v			🗄 🗁 RAMs & ROMs						
Open Elaborated Design	mig 7series v2 0 mc.v			E Co Standard Bus Interfaces						
	💀 • mig 7series v2 0 rank ontri.v			🗄 🗁 Video & Image Processing						
4 Synthesis	- nig_7series_v2_0_rank_common.v									
A Carthada Cathara										
No synthesis settings										
Run Synthesis										
D Rep Synthesized Design	- mig_7series_v2_0_ecc_dec_fix.v									
	mig_7series_v2_0_ecc_gen.v									
4 Implementation	mig_/series_v2_0_ecc_merge_enc.v			Details						
	ming_rseries_v2_0_memc_u_cop_std.v			Select an IP to see details						
Mig Implementation Settings	wing_rseries_v2_0_mem_intrc.v									
Run Implementation	e mig 7series v2 0 ddr byte lace v									
N 📑 Onen Implemented Design	• mig_rseries_v2_0_ddr_byte_tariet.v									
P Open implemented besign	• mig 7series v2 0 ddr if post fifo.v									
4. Brogram and Debug	mig_7series_v2_0_ddr_mc_phy.v									
- rrogramanu bebug	• mig_7series_v2_0_ddr_mc_phy_wrapper.v	*								
Ki Bitstream Settings	• mig_7series_v2_0_ddr_of_pre_fifo.v									
🚵 Generate Bitstream	Hierarchy IP Sources Libraries Compile Order									
Open Hardware Manager	& Sources 9 Templates			J						
S Launch MPACT										
Consultad Datas and Tanka Auda			-							

Figure 4-33: Vivado Project – RTL and Constraints Files

9. The Vivado Design Suite supports **Open IP Example Design** flow. To create the example design using this flow right-click the IP in the **Source Window**, as shown in Figure 4-34 and select.

Figure 4-34: Open IP Example Design

10. This option creates a new Vivado project. Selecting the menu brings up a dialog box, which guides you to the directory for a new design project. Select a directory (or use the defaults) and click **OK**.

This launches a new Vivado project with all example design files and a copy of the IP. This project has example_top as the Implementation top directory, and sim_tb_top as the Simulation top directory, as shown in Figure 4-35.

hig_7series_0_example - [c:/Users/	/avdhesh/project_23/mig_7series_0_example/mig_7series_0_example/mig_7series_0_exa	ple.xpr] - Vivado 2013.3
File Edit Flow Tools Window Layou	ut View Help	Q. Search commanda
🯄 😂 🖾 🖉 🐚 🐘 🗙 🔌 🕨	🚵 🚳 💥 📡 🤪 🔚 Default Layout 🛛 👻 💥 🔌 🍾 🔍	Read
Flow Navigator « P	roject Manager - mig_7series_0_example	
Q 🖾 🖨 👘	Sources _ D 2 ×	∑ Project Summary ×
ertie	오 🎞 🖨 🖻 🔠 🖪	Project Settings
Project Manager	E- Design Sources (3)	Project Sectings
Add Sources	B-@ in mig_7series_v2_0_traffic_gen_top (mig_7series_v2_0_traffic_gen_top.v) (2)	Project name: http://www.mig_rsenes_jet.ampre
TR Catalog	B W u_memc_traffic_gen - mig_7series_v2_0_memc_traffic_gen (mig_7series_v2_0_memc_traffic_gen (mig_7series_v2_0_memc_t	Project part: Kintex-7 KC705 Evaluation Platform (xc7k325tfg900-2)
	cmd_fifo - mig_7series_v2_0_afifo (mig_7series_v2_0_afifo.v) How u c_gen - mig_7series_v2_0_cmd_gen (mig_7series_v2_0_cmd_gen v) (4)	Top module name: mig. 7series v2. 0 traffic gen top
4 IP Integrator	memc_control - mig_7series_v2_0_memc_flow_vcontrol (mig_7series_v2_0_memc_flow	Board
ở Create Block Design	⊕ write data_path - mig_7series_v2_0_read_data_path (mig_7series_v2_0_read_data_path) ⊕ write data_path - mig_7series_v2_0 write data_path (mig_7series_v2_0 write data_path)	Diaday ayang Kistay 7 K7700 Suduking Diatang
Dpen Block Design	tg_status - mig_7series_v2_0_tg_status (mig_7series_v2_0_tg_status.v)	Board name: vinx convictev7/kc/05 Evaluation Hatrorm
🍓 Generate Block Design	- 9 mig_7series_0 (mig_7series_0.xci)	Board file: W:\xbuilds\2013.3 daily_latest\installs\nt64\Wado\2013.3\data\boards\kintex7\KC705\1_1\board.xml
4 Simulation	E-Constraints	URL: www.xlinx.com/kc705
Simulation Settings	E-C Simulation Sources (2)	Board overview: 'The KC705 board is intended to showcase and demonstrate Kintex-7 technology. The KC705 board utilizes Xlinx Kintex-7 XC7K32ST-FF
Run Simulation		includes Gigabit Tri-Mode Ethernet MAC/PHY, 512MB DDR3 SDRAM SODIMM memory, 128MB BPI Linear Flash, 128MB of Platform Flash, Debug connectors and R5232 serial port.
A RTL Analysis		Synthesis Synthesis Synthesis Synthesis
👂 📸 Open Elaborated Design 🧮		Status: i Not started Status: i Not started
4 Synthesis	Ularanda W Gunna Libertia Longia Order L	Messages: No errors or warnings Messages: No errors or warnings
Synthesis Settings	References Durates Completorder	Part: xc7l325thg900-2 Part: xc7l325thg900-2
Run Synthesis	38 Sources V templates	
Den Synthesized Design	Design Runs	
4 Implementation	Name Part Constraints	Strategy Status Progress Start Elapsed Failed Routes WNS TNS WHS THS r (Vivide Surphasis 2012) Net strated 00%
Implementation Settings		efaults (Vivado Implementation 2013) Not started 0%
Run Implementation		
> 💕 Open Implemented Design		
4 Program and Debug		
🚳 Bitstream Settings	4	
🎦 Generate Bitstream	-\$	
Den Hardware Manager		
S Launch IMPACT	🔚 Tcl Console 📘 🗭 Messages 🛛 🔛 Log 🗋 Reports 🗸 📫 Design Runs	

Figure 4-35: Example Design Project

11. Click **Generate Bitstream** under **Project Manager > Program and Debug** to generate the BIT file for the generated design.

The <project directory>/<project directory>.runs/ impl_1 directory includes all report files generated for the project after running the implementation. It is also possible to run the simulation in this project.

12. Recustomization of the MIG IP core can be done by using the **Recustomize IP** option. It is not recommended to recustomize the IP in the example_design project. The correct solution is to close the example_design project, go back to original project and customize there. Right-click the XCI file and click **Recustomize IP** (Figure 4-36) to open the MIG GUI and regenerate the design with the preferred options.

Amig 7series 0 example - [c:/Us	ers/avdhesh/project 23/mig 7	7series 0 example/mig 7series () example.	e.xpr] - ¥ivado 2013.3	- O X
File Edit Flow Tools Window L	ayout View Help			Q- Search commands	
🯄 🖻 🕼 🕫 🗎 🐂 🗙 🔌	🕨 🐮 🚳 🛞 🔽 🥥 🔛	Default Layout 🛛 👻 🔌	🧏 🎉		Ready
Flow Navigator	Project Manager - mig_7series_	0_example			×
🔍 🖾 🖨	Sources	2	×	Project Summary X	D & X
4 Project Manager	🔍 🛣 🛱 🖻 🔂 📓 🛃			Project Settings	* -
R Project Settings	Design Sources (2)			Project name: mig_7series_0_example	
Add Sources	E-Configuration Files (1)	Source Node Properties	Ctrl+E	Yroduct Family: Kintex-7	
IP Catalog	😟 🛅 Constraints	👫 Re-customize IP		Yroject part: Kintex-7 KC705 Evaluation Platform (xc7k325tffq900-2)	
_	Enter Sinuadon Sources (1)	Generate Output Products		op module name: mig 7series 0	
 IP Integrator 		Reset Output Products		Soard	â
2 Create Block Design		Update IP		Visiday pame: Kiptes-7 KC705 Evaluation Platform	
Open Block Design		Copy IP		Soard name: xiinx.com/kintex7/kc705/1.1	
Generate Block Design	Hierarchy IP Sources Librarie	📕 Open IP Example Design		oard file: W:{xbuilds\2013.3_daiy_latest\instals\nt64\Vivado\2013.3\data\boards\intex7\KC705\1_1\board.xml	
4 Simulation	6 sources V Templaces	IP Documentation		FL: www.xlinx.com/tc705	
🏀 Simulation Settings	Source File Properties	Replace File		bard overview: The KC705 board is intended to showcase and demonstrate Kintes-7 technology. The KC705 board utilizes Xilinx Kintes-7 XC7X3251-FF6900 device. The board intended Cashit 7 Michael Baharate MACIBNE 120180 PDD3 SCI01MM segment. 12808 BAIL Junes Black. UKI SCIEDCOM, COU	
🔍 Run Simulation	← → ⁽³⁾ R	 Copy File Into Project 		Includes again, minute contents interprint, sized box's boxen boblinn memory, izono bri unear mast, izono or hautiminant, izo ic cizerkon, ceo Debug connectors and RS225 serial port."	
4 DTI Analysis	🚱 mig_7series_0.xci	Copy All Files Into Project	Alt+1 Dalaha	Transformation	
 RTL Analysis Coop Elaborated Decision 	Vendor: Xilinx, Inc.	Kemove File from Project	AlbuEquals		_
p open Liaborated besign	IP IDrary: Ip IR state: Generated	Dicable File	Alt+Minur	Status: Not started Status: Not started	
 Synthesis 	4	Lifenerality Lie date	ACTIVITO	Messages: No errors or warnings Messages: No errors or warnings	
🍪 Synthesis Settings	General Properties IP	Refrect Hierarchy		Part: xx7k325lffg900-2 Part: xx7k325lffg900-2	-
📚 Run Synthesis		IP Hierarchy		Dratedy: Wyado Svittess Defaults Chrateour Wyado Tronkementation Defaulter	
Open Synthesized Design	Design Runs	🔒 Set as Top			16 ×
4 Implementation	Name	Set File Type		Strategy Status Progress Start Elapsed Failed Routes WNS TNS WHS T	HS TPW
Implementation Settings	i → impl_1	Set Used In		Implementation Defaults (Wadd Sinflementation 2013) Not started 0%	
Run Implementation		Edit Constraints Sets			
Open Implemented Design	- ₽	Edit Simulation Sets			
4 Program and Debug		Add Sources	Alt+A		
🚯 Bitstream Settings	4				
🚵 Generate Bitstream	-\$				
🕨 💕 Open Hardware Manager	1 III				
👺 Launch IMPACT	Ici Console O Message	s 🔄 Log 📄 Reports 🖄 Design	Runs		
Re-customize the selected core					

Figure 4-36: Recustomize IP

Directory Structure and File Descriptions

Output Directory Structure

The MIG tool outputs are generated with folder name <component name>.

The output directory structure of the selected Memory Controller (MC) design from the MIG tool is shown here. In the <component name> directory, three folders are created:

- docs
- example_design
- user_design

Directory and File Contents

The 7 series FPGAs core directories and their associated files are listed in this section for Vivado implementations.

<component name>/example_design/

The example_design folder contains four folders, namely, par, rtl, sim, and synth.

example_design/rtl

This directory contains the example design (Table 4-1).

Table 4-1:	Files in e	example_	_design/rtl	Directory
------------	------------	----------	-------------	-----------

Name	Description
example_top.v	This top-level module serves as an example for connecting the user design to the 7 series FPGAs memory interface core.

example_design/rtl/traffic_gen

This directory contains the traffic generator that provides the stimulus to the 7 series FPGAs Memory Controller (Table 4-2).

Name ⁽¹⁾	Description
memc_traffic_gen.v	This is the top-level of the traffic generator.
cmd_gen.v	This is the command generator. This module provides independent control of generating the types of commands, addresses, and burst lengths.
cmd_prbs_gen.v	This is a pseudo-random binary sequence (PRBS) generator for generating PRBS commands, addresses, and burst lengths.
memc_flow_vcontrol.v	This module generates flow control logic between the Memory Controller core and the cmd_gen, read_data_path, and write_data_path modules.
read_data_path.v	This is the top-level for the read datapath.
read_posted_fifo.v	This module stores the read command that is sent to the Memory Controller, and its FIFO output is used to generate expect data for read data comparisons.
rd_data_gen.v	This module generates timing control for reads and ready signals to memc_flow_vcontrol.v.
write_data_path.v	This is the top-level for the write datapath.
wr_data_g.v	This module generates timing control for writes and ready signals to memc_flow_vcontrol.v.
s7ven_data_gen.v	This module generates different data patterns.
a_fifo.v	This is a synchronous FIFO using LUT RAMs.
data_prbs_gen.v	This is a 32-bit linear feedback shift register (LFSR) for generating PRBS data patterns.
init_mem_pattern_ctr.v	This module generates flow control logic for the traffic generator.
traffic_gen_top.v	This module is the top-level of the traffic generator and comprises the memc_traffic_gen and init_mem_pattern_ctr modules.

Table 4-2: Files in example_design/rtl/traffic_gen Directory

Notes:

1. All file names are prefixed with the MIG version number. For example, the MIG 4.1 release module name of cmd_gen in generated output is now mig_7series_v4_1_cmd_gen.

<component name>/example_design/par

Table 4-3 lists the modules in the example_design/par directory.

Name	Description
example_top.xdc	This is the XDC for the core and the example design.

<component name>/example_design/sim

Table 4-4 lists the modules in the example_design/sim directory.

Table 4-4: Files in example_design/sim Directory

Name	Description
mobile_ddr2_model.v	These are the LPDDR2 SDRAM models.
mobile_ddr2_model_parameters.vh	These files contain the LPDDR2 SDRAM model parameter setting.
ies_run.sh ⁽¹⁾	Linux Executable file for simulating the design using IES simulator.
vcs_run.sh ⁽¹⁾	Linux Executable file for simulating the design using VCS simulator.
readme.txt ⁽¹⁾	Contains the details and prerequisites for simulating the designs using Mentor Graphics Questa Advanced Simulator, IES, and VCS simulators.
sim_tb_top.v	This is the simulation top file.

Notes:

 The ies_run.sh and vcs_run.sh files are generated in the folder mig_7series_0_ex/imports when the example design is created using **Open IP Example Design** for the design generated with **Component Name** entered in Vivado IDE as mig_7series_0.

<component name>/user_design

The user_design folder contains the following:

- rtl and xdc folders
- Top-level wrapper module <component_name>.v/vhd
- Top-level modules <component_name>_mig.v/vhd and
 <component_name>_mig_sim.v/vhd

The top-level wrapper file <component_name>.v/vhd has an instantiation of top-level file <component_name>_mig.v/vhd. Top-level wrapper file has no parameter declarations and all the port declarations are of fixed width.

Top-level files <component_name>_mig.v/vhd and

<component_name>_mig_sim.v/vhd have the same module name as <component_name>_mig. These two files are same in all respects except that the file <component_name>_mig_sim.v/vhd has parameter values set for simulation where calibration is in fast mode viz., SIM_BYPASS_INIT_CAL = "FAST" etc.

IMPORTANT: The top-level file <component_name>_mig.v/vhd is used for design synthesis and implementation, whereas the top-level file <component_name>_mig_sim.v/vhd is used in simulations.

The top-level wrapper file serves as an example for connecting the user_design to the 7 series FPGA memory interface core.

user_design/rtl/clocking

This directory contains the user design (Table 4-5).

Table 4-5: Modules in user_design/rtl/clocking D	Directory
--	-----------

Name ⁽¹⁾	Description	
clk_ibuf.v	This module instantiates the input clock buffer.	
iodelay_ctrl.v	This module instantiates IDELAYCNTRL primitives needed for IDELAY use.	
infrastructure.v	This module helps in clock generation and distribution, and reset synchronization.	

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of clk_ibuf in generated output is now mig_7series_v4_1_clk_ibuf.

user_design/rtl/controller

This directory contains the Memory Controller that is instantiated in the example design (Table 4-6).

Name ⁽¹⁾	Description	
arb_mux.v	This is the top-level module of arbitration logic.	
arb_row_col.v	This block receives requests to send row and column commands from the bank machines and selects one request, if any, for each state.	
arb_select.v	This module selects a row and column command from the request information provided by the bank machines.	
bank_cntrl.v	This structural block instantiates the three subblocks that comprise the bank machine.	
bank_common.v	This module computes various items that cross all of the bank machines.	
bank_compare.v	This module stores the request for a bank machine.	
bank_mach.v	This is the top-level bank machine block.	
bank_queue.v	This is the bank machine queue controller.	
bank_state.v	This is the primary bank state machine.	
col_mach.v	This module manages the DQ bus.	
mc.v	This is the top-level module of the Memory Controller.	
mem_intfc.v	This top-level memory interface block instantiates the controller and the PHY.	
rank_cntrl.v	This module manages various rank-level timing parameters.	

Table 4-6: Modules in user_design/rtl/controller Directory

Name ⁽¹⁾	Description
rank_common.v	This module contains logic common to all rank machines. It contains a clock prescaler and arbiters for refresh and periodic read.
rank_mach.v	This is the top-level rank machine structural block.
round_robin_arb.v	This is a simple round-robin arbiter.

Table 4-6: Modules in user_design/rtl/controller Directory (Cont'd)

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of arb_mux in generated output is now mig_7series_v4_1_arb_mux.

user_design/rtl/ip_top

This directory contains the user design (Table 4-7).

Table 4-7: Modules in user_design/rtl/ip_top Directory

Name ⁽¹⁾	Description	
mem_intfc.v	This is the top-level memory interface block that instantiates the controller and the PHY.	
memc_ui_top.v	This is the top-level Memory Controller module.	

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of mem_intfc in generated output is now mig_7series_v4_1_mem_intfc.

user_design/rtl/phy

This directory contains the 7 series FPGA memory interface PHY implementation (Table 4-8).

Name ⁽¹⁾	Description	
ddr_byte_group_io	This module contains the parameterizable I/O logic instantiations and the I/O terminations for a single byte lane.	
ddr_byte_lane	This module contains the primitive instantiations required within an output or input byte lane.	
ddr_calib_top	This is the top-level module for the memory physical layer interface.	
ddr_mc_phy	This module is a parameterizable wrapper instantiating up to three I/O banks, each with 4-lane PHY primitives.	
ddr_mc_phy_wrapper	This wrapper file encompasses the MC_PHY module instantiation and handles the vector remapping between the MC_PHY ports and your LPDDR2 ports.	
ddr_of_pre_fifo	This module extends the depth of a PHASER OUT_FIFO up to four entries.	
ddr_phy_4lanes	This module is the parameterizable 4-lane PHY in an I/O bank.	
ddr_phy_init_lpddr2	This module contains the memory initialization and overall master state control during initialization and calibration.	

Table 4-8: Modules in user design/rtl/phy Directory

Name ⁽¹⁾	Description
ddr_phy_rdlvl	This module contains the Read leveling Stage1 calibration logic.
ddr_phy_top	This is the top-level module for the physical layer.
ddr_phy_wrlvl_off_delay.v	This module sets up the command and write datapath delays.
ddr_bitslip.v	This module contains the shift registers and MUXes to compensate the bitslip and align the read data.
ddr_phy_pd.v	This module contains the Phase detector logic to compensate any drift over the voltage and temperature variations.
ddr_phy_pd_top.v	This module is the top instance of phy_pd. This is used to instantiate Phase detector based on different calibration mode of parallel or sequential detection.
ddr_phy_prbs_rdlvl.v	This module contains calibration logic to perform data valid window detection and capture clock alignment using PRBS data pattern.

Table 4-8: Modules in user_design/rtl/phy Directory (Cont'd)

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of ddr_byte_group_io in generated output is now mig_7series_v4_1_ddr_byte_group_io.

user_design/rtl/ui

This directory contains the user interface code that mediates between the native interface of the Memory Controller and user applications (Table 4-9).

Name ⁽¹⁾	Description	
ui_cmd.v	This is the user interface command port.	
ui_rd_data.v	This is the user interface read buffer. It reorders read data returned from the Memory Controller back to the request order.	
ui_wr_data.v	This is the user interface write buffer.	
ui_top.v	This is the top-level of the Memory Controller user interface.	

Notes:

1. All file names are prefixed with the MIG version number. For example, for the MIG 4.1 release module name of ui_cmd in generated output is now mig_7series_v4_1_ui_cmd.

<component name>/user_design/xdc

Table 4-10 lists the modules in the user_design/xdc directory.

Table 4-10: Modules in user_design/xdc Directory

Name	Description
<component_name>.xdc</component_name>	This is the XDC for the core and the user design.

Verify Pin Changes and Update Design

This feature verifies the input XDC for bank selections, byte selections, and pin allocation. It also generates errors and warnings in a separate dialog box when you click **Validate** on the page. This feature is useful to verify the XDC for any pinout changes made after the design is generated from the MIG tool. You must load the MIG generated <code>.prj</code> file, the original <code>.prj</code> file without any modifications, and the XDC that needs to be verified. In the Vivado tool, the Re-customize IP option should be selected to reload the project. The design is allowed to generate only when the MIG DRC is met. Ignore warnings about validating the pinout, which is the intent. Just validating the XDC is not sufficient; it is mandatory to proceed with design generation to get the XDC with updated clock and phaser related constraints and RTL top-level module for various updated Map parameters.

The Update Design feature is required in the following scenarios:

- A pinout is generated using an older version of MIG and the design is to be revised to the current version of MIG. In MIG the pinout allocation algorithms have been changed for certain MIG designs.
- A pinout is generated independent of MIG or is modified after the design is generated. When a design is generated from MIG, the XDC and HDL code are generated with the correct constraints.

Here are the rules verified from the input XDC:

- If a pin is allocated to more than one signal, the tool reports an error. Further verification is not done if the XDC does not adhere to the uniqueness property.
- Verified common rules:
 - The interface can span across a maximum of three consecutive banks.
 - Interface banks should reside in the same column of the FPGA.
 - Interface banks should be either High Performance (HP) or High Range (HR). HP banks are used for the high frequencies.
 - The chosen interface banks should have the same SLR region if the chosen device is of stacked silicon interconnect technology.
 - V_{REF} I/Os should be used as GPIOs when an internal V_{REF} is used or if there are no inout and input ports in a bank.
 - The I/O standard of each signal is verified as per the configuration chosen.
 - The VCCAUX I/O of each signal is verified and provides a warning message if the provided VCCAUX I/O is not valid.
- Verified data pin rules:
 - Pins related to one strobe set should reside in the same byte group.
 - The strobe pair (DQS) should be allocated to the DQS I/O pair.

- An FPGA byte lane should not contain pins related to two different strobe sets.
- V_{REF} I/O can be used only when the internal V_{REF} is chosen.
- Verified address pin rules:
 - Address signals cannot mix with data bytes.
 - It can use any number of isolated byte lanes.
 - Memory clock pins should be allocated to DQS I/O only.
 - Except memory clock pins, any other Address/Control pin should not be allocated to DQS.
- Verified system pin rules:
 - System clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - These pins must be allocated in the Memory banks column.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Reference clock:
 - These pins should be allocated to either SR/MR CC I/O pair.
 - If the selected system clock type is single-ended, you need to check whether the reference voltage pins are unallocated in the bank or the internal V_{REF} is used.
 - Status signals:
 - The sys_rst signal should be allocated in the bank where the V_{REF} I/O is unallocated or the internal V_{REF} is used.
 - These signals should be allocated in the non-memory banks because the I/O standard is not compatible. The I/O standard type should be LVCMOS with at least 1.8V.
 - These signals can be allocated in any of the columns (there is no hard requirement because these signals should reside in a memory column); however, it is better to allocate closer to the chosen memory banks.

Quick Start Example Design

Overview

After the core is successfully generated, the example design HDL can be processed through the Xilinx implementation toolset.

Simulating the Example Design (for Designs with the Standard User Interface)

The MIG tool provides a synthesizable test bench to generate various traffic data patterns to the Memory Controller (MC). This test bench consists of a memc_ui_top wrapper, a traffic_generator that generates traffic patterns through the user interface to a ui_top core, and an infrastructure core that provides clock resources to the memc_ui_top core. A block diagram of the example design test bench is shown in Figure 4-37.

Figure 4-37: Synthesizable Example Design Block Diagram

Figure 4-38 shows the simulation result of a simple read and write transaction between the tb_top and memc_intfc modules.

Figure 4-38: User Interface Read and Write Cycle

Traffic Generator Operation

The traffic generator module contained within the synthesizable test bench can be parameterized to create various stimulus patterns for the memory design. It can produce repetitive test patterns for verifying design integrity as well as pseudo-random data streams that model real-world traffic.

You can define the address range through the BEGIN_ADDRESS and END_ADDRESS parameters. The Init Memory Pattern Control block directs the traffic generator to step sequentially through all the addresses in the address space, writing the appropriate data value to each location in the memory device as determined by the selected data pattern. By default, the test bench uses the address as the data pattern, but the data pattern in this example design can be modified using vio_data_mode signals that can be modified within the Vivado logic analyzer feature.

When the memory has been initialized, the traffic generator begins stimulating the user interface port to create traffic to and from the memory device. By default, the traffic generator sends pseudo-random commands to the port, meaning that the instruction sequences (R/W, R, W) and addresses are determined by PRBS generator logic in the traffic generator module.

The read data returning from the memory device is accessed by the traffic generator through the user interface read data port and compared against internally generated "expect" data. If an error is detected (that is, there is a mismatch between the read data and expected data), an error signal is asserted and the readback address, readback data, and expect data are latched into the error_status outputs.

Modifying the Example Design

The provided example_top design comprises traffic generator modules and can be modified to tailor different command and data patterns. A few high-level parameters can be modified in the example_top.v/vhd module. Table 4-11 describes these parameters.

Parameter	Description	Value
FAMILY	Indicates the family type.	"VIRTEX7"
MEMORY_TYPE	Indicate the Memory Controller type.	"LPDDR2"
nCK_PER_CLK	This is the Memory Controller clock to DRAM clock ratio. This parameter should not be changed.	2
NUM_DQ_PINS	The is the total memory DQ bus width.	This parameter supports DQ widths from 8 to a maximum of 72 in increments of 8. The available maximum DQ width is frequency dependent on the selected memory device.
MEM_BURST_LEN	This is the memory data burst length.	This must be set to 8.
MEM_COL_WIDTH	This is the number of memory column address bits.	This option is based on the selected memory device.
DATA_WIDTH	This is the user interface data bus width.	For nCK_PER_CLK = 4, DATA_WIDTH = NUM_DQ_PINS × 8.
ADDR_WIDTH	This is the memory address bus width. It is equal to RANK_WIDTH + BANK_WIDTH + ROW_WIDTH + COL_WIDTH.	
MASK_SIZE	This parameter specifies the mask width in the user interface data bus.	
PORT_MODE	Sets the port mode.	BI_MODE: Generate a WRITE data pattern and monitor the READ data for comparison.
BEGIN_ADDRESS	Sets the memory start address boundary.	This parameter defines the start boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.

Table 4-11: Traffic Generator Parameters Set in the example_top Module

Parameter	Description	Value
END_ADDRESS	Sets the memory end address boundary.	This parameter defines the end boundary for the port address space. The least-significant Bits[3:0] of this value are ignored.
PRBS_EADDR_MASK_POS	Sets the 32-bit AND MASK position.	This parameter is used with the PRBS address generator to shift random addresses down into the port address space. The END_ADDRESS value is ANDed with the PRBS address for bit positions that have a 1 in this mask.
PRBS_SADDR_MASK_POS	Sets the 32-bit OR MASK position.	This parameter is used with the PRBS address generator to shift random addresses up into the port address space. The START_ADDRESS value is ORed with the PRBS address for bit positions that have a 1 in this mask
	This parameter sets the command pattern circuits to be generated. For a larger device, the CMD_PATTERN can be set to "CGEN_ALL." This parameter enables all supported command pattern circuits to be generated. However, it is sometimes necessary to limit a specific command pattern because of limited resources in a smaller device.	Valid settings for this signal are:
CMD_PATTERN		 CGEN_FIXED: The address, burst length, and instruction are taken directly from the fixed_addr_i, fixed_bl_i, and fixed_instr_i inputs. CGEN SEQUENTIAL: The address is
		increased sequentially, and the increment is determined by the data port size.
		 CGEN_PRBS: A 32-stage Linear Feedback Shift register (LFSR) generates pseudo-random addresses, burst lengths, and instruction sequences. The seed can be set from the 32-bit cmd_seed input. CGEN_ALL (default): This option powers on all of the options above and allows addr_mode_i, instr_mode_i, and bl_mode_i to select the type of generation during run time.

Table 4-11: Traffic Generator Parameters Set in the example_top Module (Cont'd)

Parameter	Description	Value
DATA_PATTERN	This parameter sets the data pattern circuits to be generated through RTL logic. For larger devices, the DATA_PATTERN can be set to "DGEN_ALL," enabling all supported data pattern circuits to be generated. In hardware, the data pattern is selected and/or changed using vio_data_value_mode. The pattern can only be changed when DATA_PATTERN is set to DGEN_ALL.	 Valid settings for this parameter are: ADDR (default): The address is used as a data pattern. HAMMER: All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS. WALKING1: Walking 1s are on the DQ pins and the starting position of 1 depends on the address value. WALKING0: Walking 0s are on the DQ pins and the starting position of 0 depends on the address value. NEIGHBOR: The Hammer pattern is on all DQ pins except one. The address determines the exception pin location. PRBS: A 32-stage LFSR generates random data and is seeded by the starting address. DGEN_ALL: This option turns on all available options: 0x1: FIXED – 32 bits of fixed_data. 0x2: ADDRESS – 32 bits address as data. 0x3: HAMMER 0x4: SIMPLE8 – Simple 8 data pattern that repeats every 8 words. 0x5: WALKING1s – Walking 1s are on the DQ pins. 0x6: WALKING0s – Walking 0s are on the DQ pins. 0x7: PRBS – A 32-stage LFSR generates random data. 0x9: SLOW HAMMER – This is the slow MHz hammer data pattern. 0xA: PHY_CALIB pattern – 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero.
CMDS_GAP_DELAY	This parameter allows pause delay between each user burst command.	Valid values: 0 to 32.
SEL_VICTIM_LINE	Select a victim DQ line whose state is always at logic High.	This parameter only applies to the Hammer pattern. Valid settings for this parameter are 0 to NUM_DQ_PINS. When value = NUM_DQ_PINS, all DQ pins have the same Hammer pattern.

Table 4-11: Traffic Generator Parameters Set in the example_top Module (Cont'd)

Parameter	Description	Value
EYE_TEST	Force the traffic generator to only generate writes to a single location, and no read transactions are generated.	Valid settings for this parameter are "TRUE" and "FALSE." When set to "TRUE," any settings in vio_instr_mode_value are overridden.

Table 4-11:	Traffic Generator	Parameters S	et in the example_	top Module (Con	t'd)
-------------	-------------------	---------------------	--------------------	-----------------	------

Notes:

1. The traffic generator might support more options than are available in the 7 series Memory Controller. The settings must match supported values in the Memory Controller.

The command patterns instr_mode_i, addr_mode_i, bl_mode_i, and data_mode_i of the traffic_gen module can each be set independently. The provided init_mem_pattern_ctr module has interface signals that allow you to modify the command pattern in real-time using the Vivado logic analyzer feature virtual I/O (VIO).

This is the varying command pattern:

- 1. Set vio_modify_enable to 1.
- 2. Set vio_addr_mode_value to:

1: Fixed_address.

2: PRBS address.

3: Sequential address.

3. Set vio_bl_mode_value to:

1: Fixed bl.

2: PRBS bl. If bl_mode value is set to 2, the addr_mode value is forced to 2 to generate the PRBS address.

4. Set vio_data_mode_value to:

0: Reserved.

1: FIXED data mode. Data comes from the fixed_data_i input bus.

2: DGEN_ADDR (default). The address is used as the data pattern.

3: DGEN_HAMMER. All 1s are on the DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS.

4: DGEN_NEIGHBOR. All 1s are on the DQ pins during the rising edge of DQS except one pin. The address determines the exception pin location.

5: DGEN_WALKING1. Walking 1s are on the DQ pins. The starting position of 1 depends on the address value.

6: DGEN_WALKING0. Walking 0s are on the DQ pins. The starting position of 0 depends on the address value.

7: DGEN_PRBS. A 32-stage LFSR generates random data and is seeded by the starting address. This data mode only works with PRBS address mode or Sequential address mode.

Modifying Port Address Space

The address space for a port can be modified by changing the BEGIN_ADDRESS and END_ADDRESS parameters found in the top-level test bench file. These two values must be set to align to the port data width. The two additional parameters, PRBS_SADDR_MASK_POS and PRBS_EADDR_MASK_POS, are used in the default PRBS address mode to ensure that out-of-range addresses are not sent to the port. PRBS_SADDR_MASK_POS creates an OR mask that shifts PRBS-generated addresses with values below BEGIN_ADDRESS up into the valid address space of the port.

PRBS_SADDR_MASK_POS should be set to a 32-bit value equal to the BEGIN_ADDRESS parameter. PRBS_EADDR_MASK_POS creates an AND mask that shifts PRBS-generated addresses with values above END_ADDRESS down into the valid address space of the port. PRBS_EADDR_MASK_POS should be set to a 32-bit value, where all bits above the most-significant address bit of END_ADDRESS are set to 1 and all remaining bits are set to 0. Table 4-12 shows some examples of setting the two mask parameters.

1	-		1
SADDR	EADDR	PRBS_SADDR_MASK_POS	PRBS_EADDR_MASK_POS
0x1000	0xFFFF	0x00001000	0xFFFF0000
0x2000	0xFFFF	0x00002000	0xFFFF0000
0x3000	0xFFFF	0x00003000	0xFFFF0000
0x4000	0xFFFF	0x00004000	0xFFFF0000
0x5000	0xFFFF	0x00005000	0xFFFF0000
0x2000	0x1FFF	0x00002000	0xFFFE000
0x2000	0x2FFF	0x00002000	0xFFFFD000
0x2000	0x3FFF	0x00002000	0xFFFFC000
0x2000	0x4FFF	0x00002000	0xFFFF8000
0x2000	0x5FFF	0x00002000	0xFFFF8000
0x2000	0x6FFF	0x00002000	0xFFFF8000
0x2000	0x7FFF	0x00002000	0xFFFF8000
0x2000	0x8FFF	0x00002000	0xFFFF0000
0x2000	0x9FFF	0x00002000	0xFFFF0000
0x2000 0x2000	0x8FFF 0x9FFF	0x00002000 0x00002000	0xFFFF0000 0xFFFF0000

Table 4-12: Example Settings for Address Space and PRBS Masks

	•	•	• •
SADDR	EADDR	PRBS_SADDR_MASK_POS	PRBS_EADDR_MASK_POS
0x2000	0xAFFF	0x00002000	0xFFFF0000
0x2000	0xBFFF	0x00002000	0xFFFF0000
0x2000	0xCFFF	0x00002000	0xFFFF0000
0x2000	0xDFFF	0x00002000	0xFFFF0000
0x2000	0xEFFF	0x00002000	0xFFFF0000
0x2000	0xFFFF	0x00002000	0xFFFF0000

Table 4-12: Example Settings for Address Space and PRBS Masks (Cont'd)

Traffic Generator Signal Description

Traffic generator signals are described in Table 4-13.

Tahle 4-13.	Traffic Generator S	ignal Descriptions
<i>TUDIE</i> 4-15.	manne Generator 5	ignai Descriptions

Signal Name	Direction	Description
clk_i	Input	This signal is the clock input.
memc_init_done	Input	This is the input status signal from the Memory Controller to indicate that it is ready accept traffic.
manual_clear_error	Input	Input signal to clear error flag.
memc_cmd_addr_o[31:0]	Output	Start address for current transaction.
memc_cmd_en_o	Output	This active-High signal is the write-enable signal for the Command FIFO.
memc_cmd_full_i	Input	This connects to inversion of app_rdy of Memory Controller. When this input signal is asserted, TG continues to assert the memc_cmd_en_o, memc_cmd_addr_o value and memc_cmd_instr until the memc_cmd_full_i is deasserted.
memc_cmd_instr[2:0]	Output	Command code for current instruction. Command Write: 3'b000 Command Read: 3'b001
memc_rd_data_i[DWIDTH - 1:0]	Input	Read data value returning from memory.
memc_rd_empty_i	Input	This active-High signal is the empty flag for the Read Data FIFO in Memory Controller. It indicates there is no valid data in the FIFO.
memc_rd_en_o	Output	This signal is only used in MCB-like interface.
memc_wr_data_o[DWIDTH – 1:0]	Output	Write data value to be loaded into Write Data FIFO in Memory Controller.
memc_wr_en_o	Output	This active-High signal is the write enable for the Write Data FIFO. It indicates that the value on memc_wr_data is valid.
memc_wr_full_i	Input	This active-High signal is the full flag for the Write Data FIFO from Memory Controller. When this signal is High, TG holds the write data value and keeps assertion of memc_wr_en until the memc_wr_full_i goes Low.
qdr_wr_cmd_o	Output	This signal is only used to send write commands to the QDR II+ user interface.

Signal Name	Direction	Description
vio_modify_enable	Input	Allow vio_xxxx_mode_value to alter traffic pattern.
		 Valid settings for this signal are: 0x0: Reserved. 0x1: FIXED – 32 bits of fixed_data as defined through fixed_data_i inputs. 0x2: ADDRESS – 32 bits address as data. Data is generated based on the logical address space. If a design has a 256-bit user data bus, each write beat in the user bus would have a 256/8 address increment in byte boundary. If the starting address is 1,300, the data is 1,300, followed by 1,320 in the next cycle. To simplify the logic, the user data pattern is a repeat of the increment of the address value Bits[31:0]. 0x3: HAMMER – All 1s are on DQ pins during the rising edge of DQS, and all 0s are on the DQ pins during the falling edge of DQS, except the VICTIM line as defined in the parameter
vio_data_mode_value[3:0]	Input	 "SEL_VICTIM_LINE." This option is only valid if parameter DATA_PATTERN = "DGEN_HAMMER" or "DGEN_ALL." 0x4: SIMPLE8 – Simple 8 data pattern that repeats every 8 words. The patterns can be defined by the "simple_datax" inputs. 0x5: WALKING1s – Walking 1s are on the DQ pins. The starting position of 1 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING" or "DGEN_ALL." 0x6: WALKING0s – Walking 0s are on the DQ pins. The starting position of 0 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING" or "DGEN_ALL." 0x6: WALKING0s – Walking 0s are on the DQ pins. The starting position of 0 depends on the address value. This option is only valid if the parameter DATA_PATTERN = "DGEN_WALKING0" or "DGEN_ALL." 0x7: PRBS – A 32-stage LFSR generates random data and is seeded by the starting address. This option is only valid if the parameter DATA_PATTERN = "DGEN_PRBS" or "DGEN_ALL." 0x9: SLOW HAMMER – This is the slow MHz hammer data
		 pattern. 0xA: PHY_CALIB pattern – 0xFF, 00, AA, 55, 55, AA, 99, 66. This mode only generates READ commands at address zero. This is only valid in the Virtex[®]-7 family.
vio_addr_mode_value[2:0]	Input	 Valid settings for this signal are: 0x1: FIXED address mode. The address comes from the fixed_addr_i input bus. With FIXED address mode, the data_mode is limited to the fixed_data_input. No PRBS data pattern is generated. 0x2: PRBS address mode (Default). The address is generated from the internal 32-bit LFSR circuit. The seed can be changed through the cmd_seed input bus. 0x3: SEQUENTIAL address mode. The address is generated from the internal address mode. The address is generated from the internal address mode. The address is generated from the internal address mode. The address is generated from the internal address mode. The address is generated from the internal address mode. The increment is determined by the set of the internal address counter.

Table 4-13: Traffic Generator Signal Descriptions (Cont'd)

Table 4-13:	Traffic Generator	Signal Descri	ptions (Cont'd)
10010 1 10.		orginal Deseri	

Signal Name	Direction	Description
vio instr mode value[3:0]	Input	 Valid settings for this signal are: 0x1: Command type (read/write) as defined by fixed_instr_i. 0x2: Random read/write commands.
		 0xE: Write only at address zero.
		OxF: Read only at address zero.
		Valid settings for this signal are:
		• 0x1: Fixed burst length as defined in the fixed_bl_i inputs.
vio_bl_mode_value[3:0]	Input	 0x2: The user burst length is generated from the internal PRBS generator. Each burst value defines the number of back-to-back commands that are generated.
		Valid settings are:
vio_fixed_instr_value	Input	0x0: Write instruction
		0x1: Read instruction
vio_fixed_bl_value	Input	Valid settings are 1 to 256.
vio_pause_traffic	Input	Pause traffic generation on-the-fly.
vio_data_mask_gen	Input	This mode is only used if the data mode pattern is address as data. If this is enabled, a random memc_wr_mask is generated after the memory pattern has been filled in memory. The write data byte lane is jammed with 8'hFF if the corresponding memc_write_mask is asserted.
cmp_data[DWIDTH – 1:0]	Output	Expected data to be compared with read back data from memory.
cmp_data_valid	Output	Compare data valid signal.
cmp_error	Output	This compare error flag asserts whenever cmp_data is not the same as the readback data from memory.
error	Output	This signal is asserted when the readback data is not equal to the expected value.
		This signal latches these values when the error signal is asserted:
		• [31:0]: Read start address
		• [37:32]: Read burst length
	.	• [39:38]: Reserved
error_status[n:0]	Output	• [40]: mcb_cmd_full
		• [41]: mcb_wr_tull
		• $[42]$. mcb_rd_empty • $[64 + (DWIDTH = 1):64]$: expected cmp_date
		• $[64 + (2 \times \text{DWIDTH} - 1):64 + \text{DWIDTH}]$ read data
simple_data0[31:0]	Input	User-defined simple data 0 for simple 8 repeat data pattern.
simple data1[31·0]	Input	User-defined simple data 1 for simple 8 repeat data pattern
simple_data2[31:0]	Input	User-defined simple data 2 for simple 8 repeat data pattern
simple_data3[31:0]	Input	User-defined simple data 3 for simple 8 repeat data pattern
simple_uatas[st.0]	input	oser denned simple data s for simple o repeat data pattern.

Signal Name	Direction	Description
simple_data4[31:0]	Input	User-defined simple data 4 for simple 8 repeat data pattern.
simple_data5[31:0]	Input	User-defined simple data 5 for simple 8 repeat data pattern.
simple_data6[31:0]	Input	User-defined simple data 6 for simple 8 repeat data pattern.
simple_data7[31:0]	Input	User-defined simple data 7 for simple 8 repeat data pattern.
fixed_data_i[31:0]	Input	User-defined fixed data pattern.
		User-defined fixed command pattern.
fixed_instr_i[2:0]	Input	000: Write command
		001: Read command
fixed_bl_i[5:0]	Input	User-defined fixed burst length. Each burst value defines the number of back to back commands that are generated.

Table 4-13: Traffic Generator Signal Descriptions (Cont'd)

Memory Initialization and Traffic Test Flow

After power-up, the Init Memory Control block directs the traffic generator to initialize the memory with the selected data pattern through the memory initialization procedure.

Memory Initialization

- 1. The data_mode_i input is set to select the data pattern (for example, data_mode_i[3:0] = 0010 for the address as the data pattern).
- 2. The start_addr_i input is set to define the lower address boundary.
- 3. The end_addr_i input is set to define the upper address boundary.
- 4. The bl_mode_i is set to 01 to get the burst length from the fixed_bl_i input.
- 5. The fixed_bl_i input is set to either 16 or 32.
- 6. The instr_mode_i is set to 0001 to get the instruction from the fixed_instr_i input.
- 7. The fixed_instr_i input is set to the "WR" command value of the memory device.
- 8. The addr_mode_i is set to 11 for the sequential address mode to fill up the memory space.
- 9. The mode_load_i is asserted for one clock cycle.

When the memory space is initialized with the selected data pattern, the Init Memory Control block instructs the traffic generator to begin running traffic through the traffic test flow procedure (by default, the addr_mode_i, instr_mode_i, and bl_mode_i inputs are set to select PRBS mode).

Traffic Test Flow

1. The addr_mode_i input is set to the desired mode (PRBS is the default).

- 2. The cmd_seed_i and data_seed_i input values are set for the internal PRBS generator. This step is not required for other patterns.
- 3. The instr_mode_i input is set to the desired mode (PRBS is the default).
- 4. The bl_mode_i input is set to the desired mode (PRBS is the default).
- 5. The data_mode_i input should have the same value as in the memory pattern initialization stage detailed in Memory Initialization.
- 6. The run_traffic_i input is asserted to start running traffic.
- 7. If an error occurs during testing (for example, the read data does not match the expected data), the error bit is set until reset is applied.
- 8. Upon receiving an error, the error_status bus latches the values defined in Table 4-13, page 563.

With some modifications, the example design can be changed to allow addr_mode_i, instr_mode_i, and bl_mode_i to be changed dynamically when run_traffic_i is deasserted. However, after changing the setting, the memory initialization steps need to be repeated to ensure that the proper pattern is loaded into the memory space.

Note:

- When the chip select option is disabled, the simulation test bench always ties the memory model chip select bit(s) to zero for proper operation.
- When the data mask option is disabled, the simulation test bench always ties the memory model data mask bit(s) to zero for proper operation.

Setting Up for Simulation

The Xilinx UNISIM library must be mapped into the simulator. The test bench provided with the example design supports these pre-implementation simulations:

- The test bench, along with vendor's memory model used in the example design
- The RTL files of the Memory Controller and the PHY core, created by the MIG tool

The Questa Advanced Simulator, Vivado Simulator, IES, and VCS simulation tools are used for verification of the MIG IP core at each software release. Script files to run simulations with IES and VCS simulators are generated in MIG generated output. Simulations using Questa Advanced Simulator and Vivado simulators can be done through the Vivado Tcl Console commands or in the Vivado IDE.

IMPORTANT: Other simulation tools can be used for MIG IP core simulation but are not specifically verified by Xilinx.

Simulation Flow Using IES and VCS Script Files

To run the simulation, go to this directory:

<project_dir>/<Component_Name>_ex/imports

For a project created with the name set as project_1 and the Component Name entered in Vivado IDE as mig_7series_0, go to the directory as follows:

project_1/mig_7series_0_ex/imports

IES and VCS simulation scripts are meant to be executed only in Linux operating systems.

The ies_run.sh and vcs_run.sh files are the executable files for running simulations using IES and VCS simulators respectively. Library files should be added to the ies_run.sh and vcs_run.sh files respectively. See the readme.txt file for details regarding simulations using IES and VCS.

Simulation Flow Using Vivado Simulator

1. In the **Open IP Example Design** Vivado project, under **Flow Navigator**, select **Simulation Settings** (Figure 4-39).

	Simulation	
	Target simulator:	Vivado Simulator
	Simulator language:	Mixed
ulation	Simulation set:	📾 sim_1
	Simulation top module name:	sim_tb_top
hesis	🔽 Clean up simulation files	
	Generate scripts only	
entation		
010	Compilation Elaborati	ion Simulation Netlist Advanced
	xsim.simulate.runtime*	1000ns
5	xsim.simulate.uut	
	xsim.simulate.wdb	
	xsim.simulate.saif	
>	xsim.simulate.xsim.more_	options
5	xsim.simulate.xsim.more_	options
	xsim.simulate.xsim.more_	options
	xsim.simulate.xsim.more_	options
2	xsim.simulate.xsim.more_	options o see a description of it
	xsim.simulate.xsim.more_	options o see a description of it
	xsim.simulate.xsim.more_	options o see a description of it
	xsim.simulate.xsim.more_	options o see a description of it

Figure 4-39: Simulation with Vivado Simulator

2. Under the **Simulation** tab as shown in Figure 4-39, set the xsim.simulate.runtime as 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time, which is less than 1 ms). Apply the settings and select **OK**.

3. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 4-40.

Figure 4-40: Run Behavioral Simulation

Simulation Flow Using Questa Advanced Simulator

- 1. In the **Open IP Example Design** Vivado project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select **Target simulator** as Questa Advanced Simulator/ModelSim.
 - a. Browse to the **Compiled libraries location** and set the path on **Compiled libraries location** option.
 - b. Under the Simulation tab, set the modelsim.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time, which is less than 1 ms), set modelsim.simulate.vsim.more_options to -novopt as shown in Figure 4-39.
- 3. Apply the settings and select **OK**.

20	Simulation	
	Iarget simulator:	QuestaSim/ModelSim Simulator
Seneral		Vivado Simulator
	Simulator language:	QuestaSim/ModelSim Simulator
	Simulation set:	Incisive Enterprise Simulator (IES)
ulation		Verilog Compiler Simulator (VCS)
	Simulation top module name:	sim_tb_top
sis	Clean up simulation files	
	Generate scripts only	
entation		
0	Compiled library location:	y:/seshagi/WorkSpace/Docs/2014.3/project_1/mig_7series
m	Compilation Elaborati	ion Simulation Netlist Advanced
m	Compilation Elaborati	ion Simulation Netlist Advanced
m	Compilation Elaborati modelsim.simulate.iog_aii modelsim.simulate.uut	ion Simulation Netlist Advanced
n	Compilation Elaborati modelsim.simulate.log_air modelsim.simulate.uut modelsim.simulate.custom	ion Simulation Netlist Advanced
	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom	ion Simulation Netlist Advanced _signais
	Compilation Elaborati modelsim.simulate.iog_aii modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de	ion Simulation Netlist Advanced
n	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif	ion Simulation Metlist Advanced signais
ı	Compilation Elaborati modelsim.simulate.uut modelsim.simulate.uut modelsim.simulate.custom modelsim.simulate.custom modelsim.simulate.sdf_de modelsim.simulate.saif modelsim.simulate.64bit	ion Simulation Netlist Advanced

Figure 4-41: Simulation with Questa Advanced Simulator

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 4-40.
- 5. Vivado invokes Questa Advanced Simulator and simulations are run in the Questa Advanced Simulator tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using VCS

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Verilog Compiler Simulator (VCS).

- a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
- b. Under the Compilation tab, set the vcs.compile.vlogan.more_options to -sverilog.
- c. Under the **Simulation** tab, set the vcs.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after a certain period of time which is less than 1 ms) as shown in Figure 4-42.
- 3. Apply the settings and select **OK**.

🚴 Project Settings 📃 🔀				
	Simulation			
30	Target simulator:	Verilog Compiler Simulator (VCS)		
General	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator		
Simulation	Simulation set:	Questa Advanced Simulator		
-	Simulation top module name:	Verilog Compiler Simulator (VCS)		
Elaboration	✓ Clean up simulation files	Active-HDL Simulator		
>	Cenerate scripts only			
Synthesis				
	Compiled library location:			
Implementation		on Simulation Netlist Advanced		
1010	Verilog options:			
Bitstream	Generics/Parameters options			
	vcs.compile.load_glbl			
ĪP	P vcs.compile.vhdlan.more_options			
	vcs.compile.vlogan.more_	options -sverilog		
	vcs.compile.vlogan.more More VLOGAN compilation opt	_options ions		
		OK Cancel Apply		

Figure 4-42: Simulation with VCS

4. In the **Flow Navigator** window, select **Run Simulation** and select **Run Behavioral Simulation** as shown in Figure 4-40.

5. Vivado invokes VCS and simulations are run in the VCS tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Flow Using IES

- 1. In the **Open IP Example Design Vivado** project, under **Flow Navigator** select **Simulation Settings**.
- 2. Select Target simulator as Incisive Enterprise Simulator (IES).
 - a. Browse to the **Compiled libraries location** and set the path on **Compiles libraries location** option.
 - b. Under the Compilation tab, set the ies.compile.ncvlog.more_options to -sv.
 - c. Under the **Elaboration** tab, set the ies.elaborate.ncelab.more_options to -namemap_mixgen.
 - d. Under the **Simulation** tab, set the ies.simulate.runtime to 1 ms (there are simulation RTL directives which stop the simulation after certain period of time which is less than 1 ms) as shown in Figure 4-43.

3. Apply the settings and select **OK**.

🚴 Project Settings 📃 🗾				
	Simulation			
30	Target simulator:	Incisive Enterprise Simulator (IES)		
	Si <u>m</u> ulator language:	Vivado Simulator ModelSim Simulator		
Simulation	Simulation set:	Questa Advanced Simulator		
8	Simulation top module name:	Verilog Compiler Simulator (VCS)		
Elaboration	📝 Clean up simulation files	Riviera-PRO Simulator Active-HDL Simulator		
	Cenerate scripts only			
Synthesis				
	Compiled library location:			
Implementation	Compilation Elaboration Simulation Netlist Advanced			
Toto	ies.elaborate.update			
Bitstream	lesteraborace. Incerabilitione	-options		
-				
ĪP				
	ies.elaborate.ncelab.more_options More NCELAB elaboration options			
		OK Cancel <u>Apply</u>		

Figure 4-43: **Simulation with IES**

- 4. In the Flow Navigator window, select Run Simulation and select Run Behavioral Simulation as shown in Figure 4-40.
- 5. Vivado invokes IES and simulations are run in the IES tool. For more information, see the *Vivado Design Suite User Guide: Logic Simulation (*UG900) [Ref 8].

Core Architecture

This section describes the architecture of the 7 series FPGAs memory interface solutions core, providing an overview of the core modules and interfaces.

Overview

The 7 series FPGAs memory interface solutions core is shown in Figure 4-44.

1. System clock (sys_clk_p and sys_clk_n/sys_clk_i), Reference clock (clk_ref_p and clk_ref_n/clk_ref_i), and system reset (sys_rst_n) port connections are not shown in block diagram.

Figure 4-44: 7 Series FPGAs Memory Interface Solution

User FPGA Logic

The user FPGA logic block shown in Figure 4-44 is any FPGA design that requires to be connected to an external LPDDR2 SDRAM. The user FPGA logic connects to the Memory Controller through the user interface. An example user FPGA logic is provided with the core.

User Interface Block and User Interface

The UI block presents the UI to the user FPGA logic block. It provides a simple alternative to the native interface by presenting a flat address space and buffering read and write data.

Memory Controller and Native Interface

The front end of the Memory Controller (MC) presents the native interface to the UI block. The native interface allows the user design to submit memory read and write requests and provides the mechanism to move data from the user design to the external memory device, and vice versa. The backend of the Memory Controller connects to the physical interface and handles all the interface requirements to that module. The Memory Controller also provides a reordering option that reorders received requests to optimize data throughput and latency.

PHY and the Physical Interface

The front end of the PHY connects to the Memory Controller. The backend of the PHY connects to the external memory device. The PHY handles all memory device signal sequencing and timing.

IDELAYCTRL

An IDELAYCTRL is required in any bank that uses IDELAYs. IDELAYs are associated with the data group (DQ). Any bank/clock region that uses these signals require an IDELAYCTRL.

The MIG tool instantiates one IDELAYCTRL and then uses the IODELAY_GROUP attribute (see the iodelay_ctrl.v module). Based on this attribute, the Vivado tool properly replicates IDELAYCTRLs as needed within the design.

The IDELAYCTRL reference frequency should be set to 200 MHz. Based on the IODELAY_GROUP attribute that is set, the Vivado tool replicates the IDELAYCTRLs for each region where the IDELAY blocks exist. When a user creates a multicontroller design on their own, each MIG output has the component instantiated with the primitive. This violates the rules for IDELAYCTRLs and the usage of the IODELAY_GRP attribute. IDELAYCTRLs need to have only one instantiation of the component with the attribute set properly, and allow the tools to replicate as needed.

User Interface

The UI is shown in Table 4-14 and connects to an FPGA user design to allow access to an external memory device.

Table 4-14: User Interface

Signal	Direction	Description
app_addr[ADDR_WIDTH – 1:0]	Input	This input indicates the address for the current request.
app_cmd[2:0]	Input	This input selects the command for the current request.
app_en	Input	This is the active-High strobe for the app_addr[], app_cmd[2:0], and app_hi_pri inputs.
app_rdy	Output	This output indicates that the UI is ready to accept commands. If the signal is deasserted when app_en is enabled, the current app_cmd and app_addr must be retried until app_rdy is asserted.
app_hi_pri	Input	This active-High input elevates the priority of the current request.
app_rd_data [APP_DATA_WIDTH – 1:0]	Output	This provides the output data from read commands.
app_rd_data_end	Output	This active-High output indicates that the current clock cycle is the last cycle of output data on app_rd_data[].
app_rd_data_valid	Output	This active-High output indicates that app_rd_data[] is valid.
app_wdf_data [APP_DATA_WIDTH – 1:0]	Input	This provides the data for write commands.
app_wdf_end	Input	This active-High input indicates that the current clock cycle is the last cycle of input data on app_wdf_data[].
app_wdf_mask [APP_MASK_WIDTH – 1:0]	Input	This provides the mask for app_wdf_data[].
app_wdf_rdy	Output	This output indicates that the write data FIFO is ready to receive data. Write data is accepted when app_wdf_rdy = 1'b1 and app_wdf_wren = 1'b1.
app_wdf_wren	Input	This is the active-High strobe for app_wdf_data[].
app_ref_req	Input	This active-High input requests that a refresh command be issued to the DRAM.
app_ref_ack	Output	This active-High output indicates that the Memory Controller has sent the requested refresh command to the PHY interface.
app_zq_req	Input	This active-High input requests that a ZQ calibration command be issued to the DRAM.
app_zq_ack	Output	This active-High output indicates that the Memory Controller has sent the requested ZQ calibration command to the PHY interface.
ui_clk	Output	This UI clock must be a half or quarter of the DRAM clock.
init_calib_complete	Output	PHY asserts init_calib_complete when calibration is finished.
ui_clk_sync_rst	Output	This is the active-High UI reset.

app_addr[ADDR_WIDTH - 1:0]

This input indicates the address for the request currently being submitted to the UI. The UI aggregates all the address fields of the external SDRAM and presents a flat address space to you.

app_cmd[2:0]

This input specifies the command for the request currently being submitted to the UI. The available commands are shown in Table 4-15.

Table 4-15: Commands for app_cmd[2:0]

Operation	app_cmd[2:0] Code
Read	001
Write	000

app_en

This input strobes in a request. You must apply the desired values to app_addr[], app_cmd[2:0], and app_hi_pri, and then assert app_en to submit the request to the UI. This initiates a handshake that the UI acknowledges by asserting app_rdy.

app_hi_pri

This input indicates that the current request is a high priority.

app_wdf_data[APP_DATA_WIDTH - 1:0]

This bus indicates which bytes of app_wdf_data[] are written to the external memory and which bytes remain in their current state. The bytes are masked by setting a value of 1 to the corresponding bits in app_wdf_mask. For example, if the application data width is 256, the mask width takes a value of 32. The least significant byte [7:0] of app_wdf_data is masked using Bit[0] of app_wdf_mask and the most significant byte [255:248] of app_wdf_data is masked using Bit[31] of app_wdf_mask. Hence if you have to mask the last DWORD, that is, bytes 0, 1, 2, and 3 of app_wdf_data, the app_wdf_mask should be set to 32'h0000_000F.

app_wdf_end

This input indicates that the data on the app_wdf_data[] bus in the current cycle is the last data for the current request.

app_wdf_mask[APP_MASK_WIDTH - 1:0]

This bus indicates which bits of $app_wdf_data[]$ are written to the external memory and which bits remain in their current state.

app_wdf_wren

This input indicates that the data on the app_wdf_data[] bus is valid.

app_rdy

This output indicates to you whether the request currently being submitted to the UI is accepted. If the UI does not assert this signal after app_en is asserted, the current request must be retried. The app_rdy output is not asserted if:

- PHY/Memory initialization is not yet completed
- All the bank machines are occupied (can be viewed as the command buffer being full)
 - A read is requested and the read buffer is full
 - A write is requested and no write buffer pointers are available
- A periodic read is being inserted

app_rd_data[APP_DATA_WIDTH - 1:0]

This output contains the data read from the external memory.

app_rd_data_end

This output indicates that the data on the app_rd_data[] bus in the current cycle is the last data for the current request.

app_rd_data_valid

This output indicates that the data on the app_rd_data[] bus is valid.

app_wdf_rdy

This output indicates that the write data FIFO is ready to receive data. Write data is accepted when both app_wdf_rdy and app_wdf_wren are asserted.

app_ref_req

When asserted, this active-High input requests that the Memory Controller send a refresh command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_ref_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_ref_ack

When asserted, this active-High input acknowledges a refresh request and indicates that the command has been sent from the Memory Controller to the PHY.

app_zq_req

When asserted, this active-High input requests that the Memory Controller send a ZQ calibration command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_zq_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_zq_ack

When asserted, this active-High input acknowledges a ZQ calibration request and indicates that the command has been sent from the Memory Controller to the PHY.

ui_clk_sync_rst

This is the reset output from the UI which is in synchronous with ui_clk.

ui_clk

This is the output clock from the UI. It must be half the frequency of the clock going out to the external SDRAM.

init_calib_complete

The PHY asserts init_calib_complete when calibration is finished. The application has no need to wait for init_calib_complete before sending commands to the Memory Controller.

User Interface Block

The UI block presents the UI to a user design. It provides a simple alternative to the native interface. The UI block:

- Buffers read and write data
- Reorders read return data to match the request order
- Presents a flat address space and translates it to the addressing required by the SDRAM

Native Interface

The native interface connects to an FPGA user design to allow access to an external memory device.

Command Request Signals

The native interface provides a set of signals that request a read or write command from the Memory Controller to the memory device. These signals are summarized in Table 4-16.

Signal	Direction	Description
accept	Output	This output indicates that the memory interface accepts the request driven on the last cycle.
bank[2:0]	Input	This input selects the bank for the current request.
bank_mach_next[]	Output	This output is reserved and should be left unconnected.
cmd[2:0]	Input	This input selects the command for the current request.
col[COL_WIDTH – 1:0]	Input	This input selects the column address for the current request.
data_buf_addr[7:0]	Input	This input indicates the data buffer address where the Memory Controller:
		Locates data while processing write commands.
		Places data while processing read commands.
hi_priority	Input	This input is reserved and should be connected to logic 0.
rank[]	Input	This input is reserved and should be connected to logic 0.
row[ROW_WIDTH - 1:0]	Input	This input selects the row address for the current request.
use_addr	Input	The user design strobes this input to indicate that the request information driven on the previous state is valid.

Table 4-16: Native Interface Command Signals

The bank, row, and column comprise a target address on the memory device for read and write operations. Commands are specified using the cmd[2:0] input to the core. The available read and write commands are shown in Table 4-17.

Operation	cmd[2:0] Code
Memory read	000
Memory write	001
Reserved	All other codes

Table 4-17: Memory Interface Commands

accept

This signal indicates to the user design whether or not a request is accepted by the core. When the accept signal is asserted, the request submitted on the last cycle is accepted, and the user design can either continue to submit more requests or go idle. When the accept signal is deasserted, the request submitted on the last cycle was not accepted and must be retried.

use_addr

The user design asserts the use_addr signal to strobe the request that was submitted to the native interface on the previous cycle.

data_buf_addr

The user design must contain a buffer for data used during read and write commands. When a request is submitted to the native interface, the user design must designate a location in the buffer for when the request is processed. For write commands, data_buf_addr is an address in the buffer containing the source data to be written to the external memory. For read commands, data_buf_addr is an address in the buffer that receives read data from the external memory. The core echoes this address back when the requests are processed.

Write Command Signals

The native interface has signals that are used when the Memory Controller is processing a write command (Table 4-18). These signals connect to the control, address, and data signals of a buffer in the user design.

Table 4-18:	Native Interface	Write	Command	Signals
-------------	------------------	-------	---------	---------

Signal	Direction	Description
wr_data[2 \times nCK_PER_CLK \times PAYLOAD_WIDTH – 1:0]	Input	This is the input data for write commands.
wr_data_addr [DATA_BUF_ADDR_WIDTH – 1:0]	Output	This output provides the base address for the source data buffer for write commands.
wr_data_mask[2 \times nCK_PER_CLK \times DATA_WIDTH/8 – 1:0]	Input	This input provides the byte enable for the write data.

582

Table 4-18:	Native Interface	Write Command	Signals (Cont'd)
-------------	------------------	---------------	-----------	---------

Signal	Direction	Description
wr_data_en	Output	This output indicates that the memory interface is reading data from a data buffer for a write command.
wr_data_offset[0:0]	Output	This output provides the offset for the source data buffer for write commands.

wr_data

This bus is the data that needs to be written to the external memory. This bus can be connected to the data output of a buffer in the user design.

wr_data_addr

This bus is an echo of data_buf_addr when the current write request is submitted. The wr_data_addr bus can be combined with the wr_data_offset signal and applied to the address input of a buffer in the user design.

wr_data_mask

This bus is the byte enable (data mask) for the data currently being written to the external memory. The byte to the memory is written when the corresponding wr_data_mask signal is deasserted.

wr_data_en

When asserted, this signal indicates that the core is reading data from the user design for a write command. This signal can be tied to the chip select of a buffer in the user design.

wr_data_offset

This bus is used to step through the data buffer when the burst length requires more than a single cycle to complete. This bus, in combination with rd_data_addr, can be applied to the address input of a buffer in the user design.

Read Command Signals

The native interface provides a set of signals used when the Memory Controller is processing a read command (Table 4-19). These signals are similar to those for processing write commands, except that they transfer data from the memory device to a buffer in the user design.

Table 4-19:	Native Interface Read Command Signals
-------------	---------------------------------------

Signal	Direction	Description
$rd_data[2 \times nCK_PER_CLK \times PAYLOAD_WIDTH - 1:0]$	Output	This is the output data from read commands.
rd_data_addr[DATA_BUF_ADDR_WIDTH – 1:0]	Output	This output provides the base address of the destination buffer for read commands.
rd_data_en	Output	This output indicates that valid read data is available on the rd_data bus.
rd_data_offset[1:0]	Output	This output provides the offset for the destination buffer for read commands.

rd_data

This bus is the data that was read from the external memory. It can be connected to the data input of a buffer in the user design.

rd_data_addr

This bus is an echo of data_buf_addr when the current read request is submitted. This bus can be combined with the rd_data_offset signal and applied to the address input of a buffer in the user design.

rd_data_en

This signal indicates when valid read data is available on rd_data for a read request. It can be tied to the chip select and write enable of a buffer in the user design.

rd_data_offset

This bus is used to step through the data buffer when the burst length requires more than a single cycle to complete. This bus can be combined with rd_data_addr and applied to the address input of a buffer in the user design.

Native Interface Maintenance Command Signals

Table 4-20 lists the native interface maintenance command signals.

Signal	Direction	Description
app_sr_req	Input	This input is reserved and should be tied to 0.
app_sr_active	Output	This output is reserved.
app_ref_req	Input	This active-High input requests that a refresh command be issued to the DRAM.
app_ref_ack	Output	This active-High output indicates that the Memory Controller has sent the requested refresh command to the PHY interface.

Table 4-20: Native Interface Maintenance Command Signals

Signal	Direction	Description
app_zq_req	Input	This active-High input requests that a ZQ calibration command be issued to the DRAM.
app_zq_ack	Output	This active-High output indicates that the Memory Controller has sent the requested ZQ calibration command to the PHY interface.

Table 4-20: Native Interface Maintenance Command Signals (Cont'd)

app_ref_req

When asserted, this active-High input requests that the Memory Controller send a refresh command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_ref_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_ref_ack

When asserted, this active-High input acknowledges a refresh request and indicates that the command has been sent from the Memory Controller to the PHY.

app_zq_req

When asserted, this active-High input requests that the Memory Controller send a ZQ calibration command to the DRAM. It must be pulsed for a single cycle to make the request and then deasserted at least until the app_zq_ack signal is asserted to acknowledge the request and indicate that it has been sent.

app_zq_ack

When asserted, this active-High input acknowledges a ZQ calibration request and indicates that the command has been sent from the Memory Controller to the PHY.

Clocking Architecture

The PHY design requires that a MMCM module be used to generate various clocks, and both global and local clock networks are used to distribute the clock throughout the design. The PHY also requires one PLL in the same bank as the PLL. This MMCM compensates for the insertion delay of the BUFG to the PHY.

The clock generation and distribution circuitry and networks drive blocks within the PHY that can be divided roughly into four separate, general functions:

- Internal (FPGA) logic
- Write path (output) I/O logic
- Read path (input) and delay I/O logic
- IDELAY reference clock (200 MHz)

One MMCM and one PLL are required for the PHY. The MMCM is used to generate the clocks for most of the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations.

For LPDDR2 SDRAM clock frequency range of 200 MHz to 333 MHz, one of the phaser frequency reference clocks runs at the same frequency as the memory clock and the second frequency reference clock must be either 2x or 4x the memory clock frequency such that it meets the range requirement of 400 MHz. The two phaser frequency reference clocks must be generated by the same MMCM so they are in phase with each other. The block diagram of the clocking architecture is shown in Figure 4-45.

The default setting for the MMCM multiply (M) and divide (D) values is for the system clock input frequency to be equal to the memory clock frequency. This 1:1 ratio is not required. The MMCM input divider (D) can be any value listed in the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] as long as the MMCME2_ADV operating conditions are met and the other constraints listed here are observed. The MMCM multiply (M) value must be between 1 and 16 inclusive. The MMCM output driver (O) for the memory clock must be 2. The MMCM VCO frequency range must be kept in the range specified in the silicon data sheet. The sync_pulse must be 1/16 of the mem_refclk frequency and must have a duty cycle of 1/16 or 6.25%. For information on physical placement of the MMCM and the System Clock CCIO input, see Design Guidelines, page 631.

Figure 4-45: Clocking Architecture

The details of the ISERDES/OSERDES connectivity are shown in Figure 4-50 and Figure 4-52.

Internal (FPGA) Logic Clock

The internal FPGA logic is clocked by a global clocking resource at a half frequency of the LPDDR2 SDRAM clock frequency. This MMCM also outputs the high-speed LPDDR2 memory clock.

Write Path (Output) I/O Logic Clock

The output path comprising both data and controls is clocked by PHASER_OUT. The PHASER_OUT provides synchronized clocks for each byte group to the OUT_FIFOs and to the OSERDES/ODDR. The PHASER_OUT generates a byte clock (OCLK), a divided byte clock (OCLKDIV), and a delayed byte clock (OCLK_DELAYED) for its associated byte group. These clocks are generated directly from the Frequency Reference clock and are in phase with each other. The byte clock is the same frequency as the Frequency Reference clock and the divided byte clock is half the frequency of the Frequency Reference clock. OCLK_DELAYED is used to clock the DQS ODDR to achieve the required 90° phase offset between the write DQS and its associated DQ bits.

The PHASER_OUT also drives the signaling required to generate DQS during writes, the DQS and DQ 3-state associated with the data byte group, and the Read Enable for the OUT_FIFO of the byte group. The clocking details of the address/control and the write paths using PHASER_OUT are shown in Figure 4-50 and Figure 4-52.

Read Path (Input) I/O Logic Clock

The input read datapath is clocked by the PHASER_IN block. The PHASER_IN block provides synchronized clocks for each byte group to the IN_FIFOs and to the IDDR/ISERDES. The PHASER_IN block generates two delayed clocks for LPDDR2 SDRAM data captures: read byte clock (ICLK) and read divided byte clock (ICLKDIV). ICLK is the delayed version of the frequency reference clock. ICLKDIV is used to capture data into the first rank of flip-flops in the ISERDES. ICLKDIV is aligned to ICLK and is the parallel transfer clock for the last rank of flip-flops in the ISERDES. ICLKDIV is also used as the write clock for the IN_FIFO associated with the byte group. The clocking details of the read path using PHASER_IN is shown in Figure 4-52.

IDELAY Reference Clock

A 200 MHz IDELAY clock must be supplied to the IDELAYCTRL module. The IDELAYCTRL module continuously calibrates the IDELAY elements in the I/O region to account for varying environmental conditions. The IP core assumes an external clock signal is driving the IDELAYCTRL module. If a PLL clock drives the IDELAYCTRL input clock, the PLL lock signal needs to be incorporated in the rst_tmp_idelay signal inside the IODELAY_CTRL.v module. This ensures that the clock is stable before being used.

Memory Controller

In the core default configuration, the Memory Controller (MC) resides between the UI block and the physical layer. This is depicted in Figure 4-46.

Figure 4-46: **Memory Controller**

The Memory Controller is the primary logic block of the memory interface. It receives requests from the UI and stores them in a logical queue. Requests are optionally reordered to optimize system throughput and latency.

The Memory Controller block is organized as four main pieces:

- Configurable number of "bank machines"
- Configurable number of "rank machines"
- Column machine
- Arbitration block

Bank Machines

Most of the Memory Controller logic resides in the bank machines. A given bank machine manages a single DRAM bank at any given time. However, bank machine assignment is dynamic, so it is not necessary to have a bank machine for each physical bank. The number of banks can be configured to trade off between area and performance. This is discussed in greater detail in the Precharge Policy section.

The duration of a bank machine assignment to a particular DRAM bank is coupled to user requests rather than the state of the target DRAM bank. When a request is accepted, it is assigned to a bank machine. When a request is complete, the bank machine is released and is made available for assignment to another request. Bank machines issue all the commands necessary to complete the request.

On behalf of the current request, a bank machine must generate row commands and column commands to complete the request. Row and column commands are independent but must adhere to DRAM timing requirements.

The following simplified example illustrates this concept. Consider the case when the Memory Controller and DRAM are idle when a single request arrives. The bank machine at the head of the pool:

- 1. Accepts your request
- 2. Activates the target row
- 3. Issues the column (read or write) command
- 4. Precharges the target row
- 5. Returns to the idle pool of bank machines

Similar functionality applies when multiple requests arrive targeting different rows or banks.

Now consider the case when a request arrives targeting an open DRAM bank, managed by an already active bank machine. The already active bank machine recognizes that the new request targets the same DRAM bank and skips the precharge step (step 4). The bank machine at the head of the idle pool accepts the new user request and skips the activate step (step 2).

Finally, when a request arrives in between both a previous and subsequent request all to the same target DRAM bank, the controller skips both the activate (step 2) and precharge (step 4) operations.

A bank machine precharges a DRAM bank as soon as possible unless another pending request targets the same bank. This is discussed in greater detail in the Precharge Policy section.

Column commands can be reordered for the purpose of optimizing memory interface throughput. The ordering algorithm nominally ensures data coherence. The reordering feature is explained in greater detail in the Reordering section.

Rank Machines

The rank machines correspond to DRAM ranks. Rank machines monitor the activity of the bank machines and track rank or device-specific timing parameters. For example, a rank machine monitors the number of activate commands sent to a rank within a time window. After the allowed number of activates have been sent, the rank machine generates an inhibit signal that prevents the bank machines from sending any further activates to the rank until the time window has shifted enough to allow more activates. Rank machines are statically assigned to a physical DRAM rank.

Column Machine

The single column machine generates the timing information necessary to manage the DQ data bus. Although there can be multiple DRAM ranks, because there is a single DQ bus, all the columns in all DRAM ranks are managed as a single unit. The column machine monitors commands issued by the bank machines and generates inhibit signals back to the bank machines so that the DQ bus is utilized in an orderly manner.

Arbitration Block

The arbitration block receives requests to send commands to the DRAM array from the bank machines. Row commands and column commands are arbitrated independently. For each command opportunity, the arbiter block selects a row and a column command to forward to the physical layer. The arbitration block implements a round-robin protocol to ensure forward progress.

Reordering

DRAM accesses are broken into two quasi-independent parts, row commands and column commands. Each request occupies a logical queue entry, and each queue entry has an associated bank machine. These bank machines track the state of the DRAM rank or bank it is currently bound to, if any.

If necessary, the bank machine attempts to activate the proper rank, bank, or row on behalf of the current request. In the process of doing so, the bank machine looks at the current state of the DRAM to decide if various timing parameters are met. Eventually, all timing parameters are met and the bank machine arbitrates to send the activate. The arbitration is done in a simple round-robin manner. Arbitration is necessary because several bank machines might request to send row commands (activate and precharge) at the same time.

Not all requests require an activate. If a preceding request has activated the same rank, bank, or row, a subsequent request might inherit the bank machine state and avoid the precharge/activate penalties.

After the necessary rank, bank, or row is activated and the RAS to CAS delay timing is met, the bank machine tries to issue the CAS-READ or CAS-WRITE command. Unlike the row command, all requests issue a CAS command. Before arbitrating to send a CAS command, the bank machine must look at the state of the DRAM, the state of the DQ bus, priority, and ordering. Eventually, all these factors assume their favorable states and the bank machine arbitrates to send a CAS command. In a manner similar to row commands, a round-robin arbiter uses a priority scheme and selects the next column command.

The round-robin arbiter itself is a source of reordering. Assume for example that an otherwise idle Memory Controller receives a burst of new requests while processing a refresh. These requests queue up and wait for the refresh to complete. After the DRAM is ready to receive a new activate, all waiting requests assert their arbitration requests simultaneously. The arbiter selects the next activate to send based solely on its round-robin algorithm, independent of request order. Similar behavior can be observed for column commands.

The controller supports three ordering modes:

- **STRICT** In this mode the controller always issues commands to the memory in the exact order received at the native interface. This mode can be useful in situations that do not benefit from reordering and the lowest latency is desired. Because the read data comes back in order, the user interface layer might not be needed thus reducing latency. This mode is also useful for debugging.
- **NORM** In this mode the controller reorders reads but not writes as needed to improve efficiency. All write requests are issued in the request order relative to all other write requests, and requests within a given rank-bank retire in order. This ensures that it is not possible to observe the result of a later write before an earlier write completes.

Note: This reordering is only visible at the native interface. The user interface reorders the read requests back into the original request order.

RELAXED – This is the most efficient mode of the controller. Writes and reads can be
reordered as needed for maximum efficiency between rank-bank queues. Thus in this
mode it is possible to observe the reordering of writes. However, this behavior is not
observable at the user interface layer because the requests are retired in order within a
rank-bank and the user interface layer returns the read requests in order. Therefore the
RELAXED mode is recommended for use with the user interface layer.

Note: This option is not selectable in the MIG GUI. To enable, generate the design with the synthesis options "Global" in the **Generate Output Products** settings. After generating the design, the design top-level RTL file should be edited and the ORDERING parameter should be changed to "RELAXED."

Precharge Policy

The controller implements an aggressive precharge policy. The controller examines the input queue of requests as each transaction completes. If no requests are in the queue for a currently open bank/row, the controller closes it to minimize latency for requests to other rows in the bank. Because the queue depth is equal to the number of bank machines, greater efficiency can be obtained by increasing the number of bank machines (nBANK_MACHS).

As this number is increased, FPGA logic timing becomes more challenging. In some situations, the overall system efficiency can be greater with an increased number of bank machines and a lower memory clock frequency. Simulations should be performed with the target design command behavior to determine the optimum setting.

Note: The overall read latency of the MIG 7 series LPDDR2 core is dependent on how the Memory Controller is configured, but most critically on the target traffic/access pattern and the number of commands already in the pipeline before the read command is issued. Read latency is measured from the point where the read command is accepted by the user or native interface. Simulation should be run to analyze read latency.

PHY

The PHY provides a physical interface to an external LPDDR2 SDRAM. The PHY generates the signal timing and sequencing required to interface to the memory device. It contains the clock-, address-, and control-generation logic, write and read datapaths, and state logic for initializing the SDRAM after power-up. In addition, the PHY contains calibration logic to perform timing training of the read and write datapaths to account for system static and dynamic delays.

The PHY is provided as a single HDL codebase for LPDDR2 SDRAMs. The MIG tool customizes the SDRAM type and numerous other design-specific parameters through top-level HDL parameters and constraints contained in a XDC file.

Overall PHY Architecture

The 7 series FPGA PHY is composed of dedicated blocks and soft calibration logic. The dedicated blocks are structured adjacent to one another with back-to-back interconnects to minimize the clock and datapath routing necessary to build high-performance physical layers. Dedicated clock structures within an I/O bank referred to as byte group clocks help minimize the number of loads driven by the byte group clock drivers. Byte group clocks are driven by phaser blocks. The phaser blocks (PHASER_IN and PHASER_OUT) are multi-stage programmable delay line loops that can dynamically track DQS signal variation and provide precision phase adjustment.

Each 7 series FPGA I/O bank has dedicated blocks comprising a PHY control block, four PHASER_IN and PHASER_OUT blocks, four IN/OUT_FIFOs, IOLOGIC (ISERDES, OSERDES, ODDR, IDELAY), and IOBs. Four byte groups exist in an I/O bank, and each byte group contains the PHASER_IN and PHASER_OUT, IN_FIFO and OUT_FIFO, and twelve IOLOGIC and IOB blocks. Ten of the twelve IOIs in a byte group are used for DQ and DM bits, and the other two IOIs are used to implement differential DQS signals. Figure 4-47 shows the dedicated blocks available in a single I/O bank. A single PHY control block communicates with all four PHASER_IN and PHASER_OUT blocks within the I/O bank.

Figure 4-47: Single Bank LPDDR2 PHY Block Diagram

The Memory Controller and calibration logic communicate with this dedicated PHY in the slow frequency clock domain, which is either a divided by 4 or divided by 2 version of the LPDDR2 memory clock. A block diagram of the PHY design is shown in Figure 4-48.

Figure 4-48: PHY Block Diagram

Memory Initialization and Calibration Sequence

After deassertion of system reset, the PHY performs the required power-on initialization sequence for the memory. This is followed by several stages of timing calibration for both the write and read datapaths. After calibration is complete, the PHY indicates that initialization is finished, and the controller can begin issuing commands to the memory.

Figure 4-49 shows the overall flow of memory initialization and the different stages of calibration.

Figure 4-49: **PHY Overall Initialization and Calibration Sequence**

The calibration stages in Figure 4-49 correspond to these sections:

- Memory Initialization, page 604
- Read Leveling, page 604
- Read Valid Calibration, page 607
- PRBS Read Leveling, page 607
- Phase Detector, page 608

I/O Architecture

Each 7 series FPGA I/O bank has dedicated blocks comprising a PHY control block, four PHASER_IN and PHASER_OUT blocks, four IN/OUT_FIFOs, ISERDES, OSERDES, ODDR, IDELAY, and IOBs. A single PHY control block communicates with all four PHASER_IN and PHASER_OUT blocks within the I/O bank.

PHY Control Block

The PHY control block is the central block that manages the flow of data and control information between the FPGA logic and the dedicated PHY. This includes control over the flow of address, command, and data between the IN/OUT_FIFOs and ISERDES/OSERDES, and control of the PHASER_IN and PHASER_OUT blocks. The PHY control block receives control words from the calibration logic or the Memory Controller at the slow frequency (1/2 the frequency of the LPDDR2 SDRAM clock) PHY_Clk rate and processes the control words at the LPDDR2 SDRAM clock receive).

The calibration logic or the Memory Controller initiates a LPDDR2 SDRAM command sequence by writing address, command, and data (for write commands) into the IN/OUT_FIFOs and simultaneously or subsequently writes the PHY control word to the PHY control block. The PHY control word defines a set of actions that the PHY control block does to initiate the execution of a LPDDR2 SDRAM command.

The PHY control block provides the control interfaces to the byte group blocks within its I/O bank. When multi-I/O bank implementations are required, each PHY control block within a given I/O bank controls the byte group elements in that bank. This requires that the PHY control blocks stay in phase with their adjacent PHY control blocks. The center PHY control block is configured to be the master controller for a three I/O bank implementation. For two bank implementations, either PHY control block can be designated the master.

The PHY control interface is used by the calibration logic or the Memory Controller to write PHY control words to the PHY. The signals in this interface are synchronous to the PHY_Clk and are listed in Table 4-21. This is a basic FIFO style interface. Control words are written into the control word FIFO on the rising edge of PHY_Clk when PHY_Ctl_WrEn is High and PHY_Ctl_Full is Low. For multi-I/O bank PHYs, the same control word must be written into each PHY control block for proper operation.

Signal	Direction	Description
PHY_Clk	Input	This is the PHY interface clock for the control word FIFO. PHY control word signals are captured on the rising edge of this clock.
PHY_Ctl_Wr_N Input		This active-Low signal is the write enable signal for the control word FIFO. A control word is written into the control word FIFO on the rising edge of PHY_Clk, when this signal is active.
PHY_Ctl_Wd[31:0]	Input	This is the PHY control word described in Table 4-22.
PHY_Ctl_Full	Output	This active-High output is the full flag for the control word FIFO. It indicates that the FIFO cannot accept anymore control words and blocks writes to the control word FIFO.
PHY_Ctl_AlmostFull	Output	This active-High output is the almost full flag for the control word FIFO. It indicates that the FIFO can accept no more than one additional control word as long as the PHY_Ctl_Full signal is inactive.
PHY_Ctl_Ready	Output	This active-High output becomes set when the PHY control block is ready to start receiving commands.

Table 4-21: PH	Y Control	Interface
----------------	-----------	-----------

The PHY control word is broken down into several fields, as shown in Table 4-22.

Table 4-22: PHY Control Word

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ac	t	Eve	ent		CA	S	Sec	7	Da	ta C)ffse	et			Res	ser	L٥١	N		Au	x_0	ut		Co	ntro	ol O	ffse	t	PH	YC	md
Pre	è	De	lay		Slo	t									vec	k	Ind	lex													

- **PHY Command** This field defines the actions undertaken by the PHY control block to manage command and data flow through the dedicated PHY. The PHY commands are:
 - Write (Wr 0x01) This command instructs the PHY control block to read the address, command, and data OUT_FIFOs and transfer the data read from those FIFOs to their associated IOIs.
 - Read (Rd 0x03) This command instructs the PHY control block to read the address, command OUT_FIFOs, and transfer the data read from those FIFOs to their associated IOIs. In addition, data read from the memory is transferred after its arrival from the data IOIs to the Data IN_FIFO.
 - Non-Data (ND 0x04) This command instructs the PHY control block to read the address and command OUT_FIFOs and transfer the data read from those FIFOs to their associated IOIs.
- Control Offset This field is used to control when the address and command IN/OUT_FIFOs are read and transferred to the IOIs. The control offset is in units of the LPDDR2 SDRAM clock cycle.
- **Auxiliary Output** This field is used to control when the auxiliary output signals (Aux_Output[3:0]) are used. Auxiliary outputs can be configured to activate during read and write commands. The timing offset and duration are controlled by the attributes described in Table 4-23, page 598. These outputs are not used by the LPDDR2 interface generated by the MIG tool; they are set to 0.
- Low Index (Bank) The dedicated PHY has internal counters that require this field to specify which of the eight LPDDR2 SDRAM banks to use for the data command. The MIG IP core does not use these internal counters; therefore, this field should be all zeros.
- **Reserved** This field must always be set to 2'b00.
- **Data Offset** This field is used to control when the data IN/OUT_FIFOs are read or written based on the PHY command. The data offset is in units of the LPDDR2 SDRAM clock cycle.
- **Seq** This field contains a sequence number used in combination with the Sync_In control signal from the PLL to keep two or more PHY control blocks executing the commands read from their respective control queues in sync. Commands with a given seq value must be executed by the command parser within the PHY control block during the specific phase indicated by the Seq field.
- **CAS Slot** The slot number being used by the Memory Controller for write/read (CAS) commands.

- Event Delay The dedicated PHY has internal counters that require this field to specify the delay values loaded into these counters. The event delay is in units of LPDDR2 SDRAM clock cycles. The MIG IP core does not use these internal counters; therefore, this field should be all zeros.
- Activate Precharge The dedicated PHY has internal counters that require this field to specify the type of LPDDR2 command related to the event delay counter. Valid values are:
 - 00: No action
 - 01: Activate
 - 10: Precharge
 - 11: Precharge/Activate.

The MIG IP core does not use these internal counters; therefore, this field should be all zeros.

Attribute	Туре	Description			
MC_AO_WRLVL_EN	Vector[3:0]	This attribute specifies whether or not the related Aux_Output is active during write leveling as specified by the PC_Enable_Calib[1] signal. For example, this attribute specifies whether ODT is active during write leveling.			
WR_CMD_OFFSET_0	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active. For example, this attribute ensures that the ODT signal is asserted at the correct clock cycle to meet the JEDEC ODTLon and ODTLoff specifications.			
WR_DURATION_0	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a write command. For example, this attribute ensures that the ODT signal is asserted at the correct clock cycle to meet the JEDEC ODTLon and ODTLoff specifications.			
RD_CMD_OFFSET_0	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.			
RD_DURATION_0	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a read command.			
WR_CMD_OFFSET_1 Vector[5:0]		This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.			
WR_DURATION_1	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a write command.			
RD_CMD_OFFSET_1 Vector[5:0]		This attribute specifies how long in LPDDR2 SDRAM clock cycles after t associated read command is executed that the auxiliary output becom active.			

Table 4-23: Auxiliary Output Attributes

Table 4-23:	Auxiliary	Output Attributes	(Cont'd)
-------------	-----------	--------------------------	----------

Attribute	Туре	Description
RD_DURATION_1	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a read command.
WR_CMD_OFFSET_2	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.
WR_DURATION_2	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a write command.
RD_CMD_OFFSET_2 Vector[5:0]		This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_2	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a read command.
WR_CMD_OFFSET_3	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated write command is executed that the auxiliary output becomes active.
WR_DURATION_3	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a write command.
RD_CMD_OFFSET_3	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated read command is executed that the auxiliary output becomes active.
RD_DURATION_3	Vector[5:0]	This attribute specifies how long in LPDDR2 SDRAM clock cycles the auxiliary output remains active for a read command.
CMD_OFFSET Vector[5:0]		This attribute specifies how long in LPDDR2 SDRAM clock cycles after the associated command is executed that the auxiliary output defined by AO_TOGGLE toggles.
AO_TOGGLE	Vector[3:0]	This attribute specifies which auxiliary outputs are in toggle mode. An auxiliary output in toggle mode is inverted when its associated AO bit is set in the PHY control word after the CMD_OFFSET has expired.

The PHY control block has several counters that are not enabled because the synchronous mode is used where PHY_Clk is 1/2 the frequency of the LPDDR2 SDRAM clock frequency.

At every rising edge of PHY_Clk, a PHY control word is sent to the PHY control block with information for two memory clock cycles worth of commands and a 2-bit Seq count value. The write enable to the control FIFO is always asserted and no operation (NOP) commands are issued between valid commands in the synchronous mode of operation. The Seq count must be increased with every command sequence of four. The Seq field is used to synchronize PHY control blocks across multiple I/O banks.

The PHY control block, in conjunction with the PHASER_OUT, generates the write DQS and the DQ/DQS 3-state control signals during read and write commands.

The PHY cmd field is set based on whether the sequence of two commands has either a write, a read, or neither. The PHY cmd field is set to write if there is a write request in the command sequence. It is set to read if there is a read request in the command sequence, and it is set to non-data if there is neither a write nor a read request in the command sequence. A write and a read request cannot be issued within a sequence of two commands. The control offset field in the PHY control word defines when the command OUT_FIFOs is read out and transferred to the IOLOGIC. The data offset defines when the data OUT_FIFOs are read out with respect to the command OUT_FIFOs being read. For read commands, the data offset is set to zero. The PHY control block assumes that valid data associated with a write command is already available in the DQ OUT_FIFO when it is required to be read out.

Command Path

A command requested by the calibration logic or Memory Controller is sent out as a PHY control word to the PHY control block and a simultaneous input to the address/control/command OUT_FIFOs. Each of the address/control/command signals must have values for two memory clock cycles because each PHY_Clk cycle entails two memory clock cycles.

There are three types of commands:

- Write commands including write and write with auto precharge. The PHY command values in the PHY control word for both these write commands are the same (0x01). The difference is the address value input to the OUT_FIFO. Address bit CA[0] bit on falling edge of CK is 1 for writes with auto precharge in the address OUT_FIFOs.
- Read commands including read and read with auto precharge. The PHY command values in the PHY control word for both these read commands are the same (0x11). The difference is the address value input to the OUT_FIFO. Address bit CA[0] bit on falling edge of CK is 1 for reads with auto precharge in the address OUT_FIFOs.
- Non-Data commands including Mode Register Set, Refresh, Precharge, Precharge All Banks, Activate, No Operation, and Deselect. The PHY command values in the PHY control word for all these commands are the same (0x100). The ca value inputs to the OUT_FIFOs associated with these commands differ.

Figure 4-50 shows the block diagram of the address/control/command path. The OSERDES is used in single data rate mode because address/control/commands are DDR signals. A PHY control word is qualified with the Phy_Ct1_Wr_N signal and an entry to the OUT_FIFOs is qualified with the PHY_Cmd_WrEn signal. The FPGA logic need not issue NOP commands during long wait times between valid commands to the PHY control block because the default in the dedicated PHY for address/commands can be set to 0 or 1 as needed.

Figure 4-50: Address/Command Path Block Diagram

The timing diagram of the address/command path from the output of the OUT_FIFO to the FPGA pins is shown in Figure 4-51.

Send Feedback

Figure 4-51: Address/Command Timing Diagram

Datapath

The datapath comprises the write and read datapaths. The datapath in the 7 series FPGA is completely implemented in dedicated logic with IN/OUT_FIFOs interfacing the FPGA logic. The IN/OUT_FIFOs provide datapath serialization/deserialization in addition to clock domain crossing, thereby allowing the FPGA logic to operate at low frequencies up to 1/2 the frequency of the LPDDR2 SDRAM clock. Figure 4-52 shows the block diagram of the datapath.

Figure 4-52: **Datapath Block Diagram**

Each IN/OUT_FIFO has a storage array of memory elements arranged as 10 groups eight bits wide and eight entries deep. During a write, the OUT_FIFO receives four bits of data for each DQ bit from the calibration logic or Memory Controller and writes the data into the storage array in the PHY_Clk clock domain, which is 1/2 the frequency of the LPDDR2 SDRAM clock.

Send Feedback

The OUT_FIFO outputs the 4-bit data to the OSERDES in the OCLKDIV domain that is half the frequency of the LPDDR2 SDRAM clock. The OSERDES further serializes the 4-bit data to a serial DDR data stream in the OCLK domain. The PHASER_OUT clock output OCLK is used to clock DQ bits whereas the OCLK_DELAYED output is used to clock DQS to achieve the 90° phase offset between DQS and its associated DQ bits during writes.

The IN_FIFO shown in Figure 4-51 receives 4-bit data from each DQ bit ISERDES in a given byte group and writes them into the storage array. This 4-bit parallel data is output in the PHY_Clk clock domain which is 1/2 the frequency of the LPDDR2 SDRAM clock. Each read cycle from the IN_FIFO contains half the byte data read during a burst length eight memory read transaction. Therefore, two cycles are required to get burst length eight worth of data. The data bus width input to the dedicated PHY is 4x that of the LPDDR2 SDRAM when running the FPGA logic at 1/2 the frequency of the LPDDR2 SDRAM clock.

Calibration and Initialization Stages

Memory Initialization

The PHY executes a JEDEC[®]-compliant LPDDR2 initialization sequence for memory following deassertion of system reset. Each LPDDR2 SDRAM has a series of mode registers, accessed through mode register write (MRW) commands. These mode registers determine various SDRAM behaviors, such as burst length, read and write CAS latency, and others. The particular bit values programmed into these registers are configurable in the PHY and determined by the values of top-level HDL parameters like BURST_MODE (BL), BURST_TYPE, CAS latency (CL), CAS write latency (CWL), write recovery for auto precharge (tWR).

Read Leveling

Read leveling stage 1 is required to center align the read strobe in the read valid data window for the first stage of capture. In strobe-based memory interfaces like LPDDR2 SDRAM, the second stage transfer requires an additional pulse which in 7 series FPGAs is provided by the PHASER_IN block. This stage of calibration uses the PHASER_IN stage 2 fine delay line to center the capture clock in the valid DQ window. The capture clock is the free-running FREQ_REF clock. A PHASER_IN provides two clock outputs namely ICLK and ICLKDIV. ICLK is the stage 2 delay output and ICLKDIV is the rising edge aligned divided by 2 version of ICLK.

The ICLK and ICLKDIV outputs of one PHASER_IN block are used to clock all the DQ ISERDES associated with one byte. The ICLKDIV is also the write clock for the read DQ IN_FIFOs. One PHASER_IN block is associated with a group of 12 I/Os. Each I/O bank in the 7 series FPGA has four PHASER_IN blocks, and hence four bytes for LPDDR2 SDRAM can be placed in a bank.

Implementation Details

This stage of read leveling is performed one byte at a time where each DQS is center aligned to its valid byte window. At the start of this stage, a write command is issued to a specified LPDDR2 SDRAM address location with a predefined data pattern. The write data pattern used is static pattern of FF, 00, FF, 00, FF, 00, FF, 00. This write command is followed by back-to-back read commands to continuously read data back from the same address location that was written to.

The algorithm first increments the PHASER_IN stg2 fine delay taps for all DQ bits in a byte simultaneously until an edge is detected. The STG2 fine tap are increased until a edge is found. If no edge is found then the STG2 fine taps are decreased to their initial positions.

The calibration logic reads data out of the IN_FIFO and records it for comparison. The data pattern sequence is important for this stage of calibration. No assumption is made about the initial relationship between DQS and the data window at tap 0 of the fine delay line. The algorithm then delays DQ using the IDELAY taps until a DQ window edge is detected.

An averaging algorithm is used for data window detection where data is read back over multiple cycles at the same tap value. The number of sampling cycles is set to 214. In addition to averaging, there is also a counter to track whether DQS is positioned in the unstable jitter region. A counter value of 3 means that the sampled data value was constant for three consecutive tap increments and DQS is considered to be in a stable region. The counter value is reset to 0 whenever a value different from the previous value is detected.

The next step is to increment the IDELAY tap values one tap at a time until a data mismatch is detected. The data read out of IN_FIFO after the required settling time is then compared with the recorded data at the previous tap value. This is repeated until a data mismatch is found, indicating the detection of a valid data window edge. A valid window is the number of IDELAY taps for which the stable counter value is a constant 3. This algorithm mitigates the risk of detecting a FALSE valid edge in the unstable jitter regions.

There are three possible scenarios for the initial DQS position with respect to the data window. The first valid rising edge of DQS could either be in the previous data window, in the left noise region of the current data window, or just past the left noise region inside the current data window.

The PHASER_IN fine delay line has 64 taps. (A bit time worth of taps. Tap resolution therefore changes with frequency.)

First, the PHASER_IN fine delay lines are used to find the start of right noise region. In the first two cases, right noise region would be found with PHASER_IN fine tap increments less than 64 taps. After the right noise region is found with FINE taps, proceed to use IDELAY taps to find the start of left noise region by delaying the DATA.

In the third scenario, because operating in frequencies < 400 MHz and PHASER_IN is operating in DIV2 mode, you would not be able to find the right noise region with 64 taps. Thus, assume that you are close to left noise region and bring back the PHASER_IN fine taps values to their initial position. After the PHASER_IN fine taps increments/decrements, use IDELAY taps to delay the DQ to find both the edges (third case). When both edges are detected, the final DQS tap value is computed as:

```
first_edge_taps + (second_edge_taps - first_edge_taps)/2.
```

When only one edge is detected, the final DQS tap value is computed as:

```
(first_edge_taps + (31 - first_edge_taps)/2)
```

Figure 4-53 shows the timing diagram for DQS center alignment in the data valid window.

Figure 4-53: **Read Leveling Stage 1 Timing Diagram**

Read Valid Calibration

During read valid calibration, PHY generates delay count to align the internal Read Valid with the correct read data. In LPDDR2, WREN to IN_FIFO is tied to 1, which means it is always writing to the IN_FIFO. The RDEN is tied to inverted registered version of IF_EMPTY, which means it is always reading once and there is a single entry in IN_FIFO. This soft calibration is preformed to generate RD_VALID to validate the correct read data from the SDRAM.

During reads, PHY performs three back-to-back reads, with the first and third address used are the second column address for the first set of writes. The second address used is the second column address for the second set of writes performed earlier to SDRAM.

The Read Valid state machine waits for a read to occur and then checks if the pattern is matched. In doing so it also counts the number of cycles used to see the pattern match (correct data of 55, 55, 55, 55, 55, 55, 55, 55, 55). If the state machine does not see a pattern match for delay count of 31, it increments the bitslip count, waits and issues another set of three reads. This process is repeated until either the correct pattern is found and read delay count is finalized or the bitslip count \leq 3. If the bitslip count exceeds three, it is considered a calibration failure.

The bitslip count is fed to select inputs of a MUX which shifts the read data captured from the output of ISERDESE2 and aligns it to match the entire rise and fall data in the same cycle.

PRBS Read Leveling

This stage of read calibration follows the Read Leveling calibration stage. The IDELAY tap setting determined during the Read Leveling calibration stage is used as the starting point for this stage of calibration. The PRBS read leveling stage does not change the PHASER_IN fine tap settings determined during the Read Leveling calibration stage.

A 64-bit LFSR generates a 128 long PRBS sequence that is written to the LPDDR2 SDRAM at the start of this calibration stage. This sequence is then read back continuously to determine the read data valid window. An averaging algorithm is used for data window detection where data is read back over multiple cycles at the same tap value. The number of sampling cycles is set to 36'hFFFFFFFF. The algorithm starts at the IDELAY tap setting determined during the Read Leveling calibration stage (initial tap value) and decrements one tap at time until a data mismatch is found when comparing read data with the expected data.

Note that the expected data is generated using the same 64-bit LFSR logic that was used to write the 128 long PRBS sequence to the SDRAM. The data mismatch tap value is recorded as the left edge.

The algorithm then increments to the initial tap value and edge detection begins with every increment after the initial tap value until a data mismatch is found or the tap value is 31. The algorithm then computes the center of the read data valid window based on the detected edges.

Phase Detector

In the 7 series FPGA memory interface design, read DQ is not sampled by the corresponding DQS signal. Instead, read DQ is sampled by a free-running clock operating at the same frequency as the differential SDRAM CK/CK# signals. The free-running clock has a single source for all DQ bits, but the phase of each byte capture clock output can be separately adjusted using IODELAY elements. The phase detector initially locks the phase of each byte-capture clock such that it is in phase with the corresponding DQS signal (Figure 4-54).

Figure 4-54: Phase Detector Block Diagram

Subsequent changes in capture timing delays after initial calibration due to voltage and temperature changes can be compensated for by maintaining the phase relationship between the byte-capture clock and the corresponding DQS. Periodic dummy reads are required from the Memory Controller to dynamically maintain phase lock between the byte-capture clock and DQS (Figure 4-55).

Periodic compensation can be accomplished by adjusting the phase of the MMCM-generated source capture clock using the fine-phase shift capability of the MMCM.

This method allows fine adjustment of the capture clocks of all bytes simultaneously but does not allow control over individual byte clock phase adjustment.

Memory Controller to PHY Interface

The calibration logic module constructs the PHY control word before sending it to the PHY control block during calibration. After calibration is complete, the <code>init_calib_complete</code> signal is asserted and sent to the Memory Controller to indicate that normal operation can begin. To avoid latency increase, the Memory Controller must

send commands in the format required by the dedicated PHY block. As a result, the address, command, control, and data buses are multiplexed before being sent to the PHY control block. These buses are driven by the calibration module during the memory initialization and calibration stages and by the Memory Controller during normal operation. Table 4-24 describes the Memory Controller to PHY interface signals. These signals are synchronous to the FPGA logic clock.

Signal Name	Width	I/O To/From PHY	Туре	Description
rst	1	Input	-	The rstdiv0 output from the infrastructure module synchronized to the PHY_Clk domain.
PHY_Clk	1	Input	-	This clock signal is 1/4 the frequency of the LPDDR2 clock.
mem_refclk	1	Input	-	This is the LPDDR2 frequency clock.
freq_refclk	1	Input	_	This signal is the same frequency as mem_refclk between 400 MHz to 933 MHz, and 1/2 or 1/4 of mem_refclk for frequencies below 400 MHz.
sync_pulse	1	Input	_	This is the synchronization pulse output by the PLL.
pll_lock	1	Input	-	The LOCKED output of the PLL instantiated in the infrastructure module.
mc_ca	[CA_WIDTH × 2 × nCK_PER_CLK – 1:0]	Input	-	$mc_ca[2 \times CA_WIDTH - 1:0]$ is the first command address in the sequence of four.

Table 4-24: Memory Controller to Calibration Logic Interface Signals

Signal Name	Width	I/O To/From PHY	Туре	Description
mc_cs_n	[CS_WIDTH × nCS_PER_RANK × nCK_PER_CLK – 1:0]	Input	-	mc_cs_n [CS_WIDTH – 1:0] is the cs_n associated with the first command in the sequence.
mc_cke	[nCK_PER_CLK – 1:0]	Input	_	mc_cke [nCK_PER_CLK – 1:0] is the CKE associated with the DRAM interface. This signal is valid when the CKE_ODT_AUX parameter is set to FALSE.
mc_wrdata	[2 × nCK_PER_CLK × DQ_WIDTH – 1:0]	Input	_	This is the write data to the dedicated PHY. It is 4x the memory DQ width.
mc_wrdata_mask	$\begin{array}{l} [2 \times nCK_PER_CLK \times \\ (DQ_WIDTH/8) - 1:0] \end{array}$	Input	_	This is the write data mask to the dedicated PHY. It is 4x the memory DM width.
mc_wrdata_en	1	Input	Active- High	This signal is the WREN input to the DQ OUT_FIFO.
mc_cmd_wren	1	Input	Active- High	This signal is the write enable input of the address/command OUT_FIFOs.
mc_ctl_wren	1	Input	Active- High	This signal is the write enable input to the PHY control word FIFO in the dedicated PHY block.
mc_cmd	[2:0]	Input	-	This signal is used for PHY_Ctl_Wd configuration: 0x04: Non-data command (No column command in the sequence of commands) 0x01: Write command 0x03: Read command
mc_data_offset	[5:0]	Input	_	This signal is used for PHY_Ctl_Wd configuration: 0x00: Non-data command (No column command in the sequence of commands) CWL + COL cmd position: Write command 0x00: Read command
mc_aux_out0	[3:0]	Input	Active- High	This is the auxiliary outputs field in the PHY control word used to control ODT and CKE assertion.
mc_aux_out1	[3:0]	Input	Active- High	This is the auxiliary outputs field in the PHY control word used to control ODT and CKE assertion for four-rank interfaces.
mc_rank_cnt	[1:0]	Input	-	This is the rank accessed by the command sequence in the PHY control word.
phy_mc_ctl_full	1	Output	Active- High	Bitwise AND of all the Almost FULL flags of all the PHY Control FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.

|--|

Signal Name	Width	I/O To/From PHY	Туре	Description
phy_mc_cmd_full	1	Output	Active- High	Bitwise OR of all the Almost FULL flags of all the command OUT_FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.
phy_mc_data_full	c_data_full 1		Active- High	Bitwise OR of all the Almost FULL flags of all the write data OUT_FIFOs. The Almost FULL flag is asserted when the FIFO is one entry away from being FULL.
phy_rd_data	[2 × nCK_PER_CLK × DQ_WIDTH – 1:0]	Output	-	This is the read data from the dedicated PHY. It is 4x the memory DQ width.
phy_rddata_valid	1	Output	Active- High	This signal is asserted when valid read data is available.
calib_rd_data_offset	[6 × RANKS – 1:0]	Output	-	This signal is the calibrated read data offset value with respect to command 0 in the sequence of four commands.
init_calib_complete	1	Output	Active- High	This signal is asserted after memory initialization and calibration are completed.

Table 4-24: Memory Controller to Calibration Logic Interface Signals (Cont'd)

Notes:

1. The parameter nCK_PER_CLK defines the number of LPDDR2 SDRAM clock cycles per PHY_Clk cycle.

2. The parameter ROW_WIDTH is the number of LPDDR2 SDRAM ranks.

3. The parameter BANK_WIDTH is the number of LPDDR2 SDRAM banks.

4. The parameter CS_WIDTH is the number of LPDDR2 SDRAM cs_n signals.

5. The parameter CKE_WIDTH is the number of LPDDR2 SDRAM CKE signals.

6. The parameter DQ_WIDTH is the width of the LPDDR2 SDRAM DQ bus.

Designing with the Core

The core is bundled with an example design that can be simulated. The example design can be used as a starting point for the user design or as a reference for debugging purposes.

Only supported modifications should be made to the configuration of the core. See Customizing the Core, page 621 for supported configuration parameters.

Interfacing to the Core

The Memory Controller can be connected using either the UI or the native interface. The UI resembles a simple FIFO interface and always returns the data in order. The native interface offers higher performance in some situations, but is more challenging to use.

The native interface contains no buffers and returns data as soon as possible, but the return data might be out of order. The application must reorder the received data internally if the native interface is used and reordering is enabled. The following sections describe timing protocols of each interface and how they should be controlled.

User Interface

The mapping between the User Interface address bus and the physical memory row, bank and column can be configured. Depending on how the application data is organized, addressing scheme Bank- Row-Column or Row-Bank-Column can be chosen to optimize controller efficiency. These addressing schemes are shown in Figure 4-56 and Figure 4-57.

User Address

Memory

Rank	Bank	Row	Column
			UG586 c1 61 091410

Figure 4-56: Memory Address Mapping for Bank-Row-Column Mode in UI Module

User Address

Memory

Rank Row	Bank	Column
----------	------	--------

UG586_c1_61a_012411

Figure 4-56 and Figure 4-57 show that the address map is controlled by the string parameter MEM_ADDR_ORDER. This parameter can take the following values:

- **BANK_ROW_COLUMN** Address map is as shown in Figure 4-56.
- **ROW_BANK_COLUMN** Address map is as shown in Figure 4-57.
- **TG_TEST** Address map is used for testing purpose only. It enables the address remap to test address access to different portions of the DRAM. It remaps the address as explained in the following examples. The remap is done within the UI portion of the controller.

Note: The row width, column width, and bank width value settings are assumed for the following examples:

- **Row Width** 15
- Bank Width 3
- **Column Width** 10

Example (1) – When the selected option in the MIG GUI is BANK_ROW_COLUMN and the address to the controller is mapped accordingly.

	Original Mapping of the Address Bits																										
E Ac	ANK Idress ROW Address Bits Bits										COLUMN Address Bits																
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0
											1	1		1			1	1	1								
									Rem	app	ed A	ddre	ss w	vith	TG_	TES	Т										
E Ac	BANK Address ROW Address Bits Bits													COL	UM	N A	ddr	ess	Bits	5							
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R0	C9	C8	R4	R3	B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	C7	C6	C5	R2	R1	R7	R6	R5	C4	C3	C2	C1	C0

Example (2) – When the selected option in the MIG GUI is ROW_BANK_COLUMN and the address to the controller is mapped accordingly.

	Original Mapping of the Address Bits																										
					RO	N A	ddre	ss Bi	ts						E Ac	BAN ddre Bits	K ess			COL	UM	N A	ddr	ess	Bits	5	
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	B2	B1	B0	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

	Original Mapping of the Address Bits																										
	Remapped Address with TG_TEST																										
					RO	W A	ddre	ss Bi	ts						E Ac	BAN ddre Bits	K SS			COL	UM	N A	ddr	ess	Bits	5	
27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R0	C9	C8	R4	R3	B2	B1	B0	R14	R13	R12	R11	R10	R9	R8	C7	C6	C5	R2	R1	R7	R6	R5	C4	C3	C2	C1	C0

Command Path

When the user logic app_en signal is asserted and the app_rdy signal is asserted from the UI, a command is accepted and written to the FIFO by the UI. The command is ignored by the UI whenever app_rdy is deasserted. The user logic needs to hold app_en High along with the valid command and address values until app_rdy is asserted as shown in Figure 4-58.

Figure 4-58: UI Command Timing Diagram with app_rdy Asserted

A non back-to-back write command can be issued as shown in Figure 4-59. This figure depicts three scenarios for the app_wdf_data, app_wdf_wren, and app_wdf_end signals, as follows:

- 1. Write data is presented along with the corresponding write command (second half of BL8).
- 2. Write data is presented before the corresponding write command.
- 3. Write data is presented after the corresponding write command, but should not exceed the limitation of two clock cycles.

For write data that is output after the write command has been registered, as shown in Note 3, the maximum delay is two clock cycles.

Figure 4-59: UI Interface Write Timing Diagram (Memory Burst Type = BL8)

Write Path

The write data is registered in the write FIFO when app_wdf_wren is asserted and app_wdf_rdy is High (Figure 4-60). If app_wdf_rdy is deasserted, the user logic needs to hold app_wdf_wren and app_wdf_end High along with the valid app_wdf_data value until app_wdf_rdy is asserted. The app_wdf_mask signal can be used to mask out the bytes to write to external memory.

Figure 4-60: UI Interface Back-to-Back Write Commands Timing Diagram (Memory Burst Type = BL8)

As shown in Figure 4-59, the maximum delay for a single write between the write data and the associated write command is two clock cycles. When issuing back-to-back write commands, there is no maximum delay between the write data and the associated back-to-back write command, as shown in Figure 4-61.

Figure 4-61: UI Interface Back-to-Back Write Commands Timing Diagram (Memory Burst Type = BL8)

The app_wdf_end signal must be used to indicate the end of a memory write burst. For memory burst types of eight, the app_wdf_end signal must be asserted on the second write data word.

The map of the application interface data to the DRAM output data can be explained with an example.

For a 2:1 Memory Controller, the User Interface clock to DRAM clock ratio is 2:1. For an 8-bit wide memory interface, the User Interface data width is 32-bit wide ($8 \times 2 \times 2 = mem_data_width \times nck_per_clk \times ddr_rate$). To perform a BL8 transaction, write data at the application interface must be provided in two clock cycles. The app_wdf_end signal is asserted for the second data as shown in Figure 4-62. In this case, the application data provided in the first cycle is 0000_0405 (Hex), and the data provided in the last cycle is 0000_080A (Hex). This is for a BL8 transaction.

Figure 4-62: Data at the Application Interface for 2:1 Mode

Figure 4-63 shows the corresponding data at the DRAM interface.

Figure 4-63: Data at the DRAM Interface for 2:1 Mode

Read Path

The read data is returned by the UI in the requested order and is valid when app_rd_data_valid is asserted (Figure 4-64 and Figure 4-65). The app_rd_data_end signal indicates the end of each read command burst.

Figure 4-64: UI Interface Read Timing Diagram (Memory Burst Type = BL8)

Figure 4-65: UI Interface Read Timing Diagram (Memory Burst Type = BL4 or BL8)

In Figure 4-65, the read data returned is always in the same order as the requests made on the address/control bus.

User ZQ

For user-controlled ZQ calibration, the Memory Controller managed maintenance should be disabled by setting the tZQI parameter to 0.

To request a ZQ command, app_zq_req is strobed for one cycle. When the Memory Controller sends the command to the PHY, it strobes app_zq_ack for one cycle, after which another request can be sent. Figure 4-66 illustrates the interface.

Figure 4-66: User ZQ Interface

A user ZQ operation can be performed any time provided the handshake defined above is followed. There are no additional interfacing requirements with respect to other commands. However, pending requests affect when the operation goes out. The Memory Controller fulfills all pending data requests before issuing the ZQ command.

Timing parameters must be considered for each pending request when determining when to strobe app_zq_req to achieve the desired interval if precision timing is desired. To account for the worst case, subtract tRCD, CL, the data transit time and tRP for each bank machine to ensure that all transactions can complete before the target tZQI expires. Equation 4-1 shows the ZQ request interval maximum.

$$(tZQI - (tRCD + ((CL + 4) \times tCK) + tRP) \times nBANK_MACHS)$$
 Equation 4-1

A user ZQ should be issued immediately following calibration to establish a time baseline for determining when to send subsequent requests.

Native Interface

The native interface protocol is shown in Figure 4-67.

Figure 4-67: Native Interface Protocol

Requests are presented to the native interface as an address and a command. The address is composed of the bank, row, and column inputs. The command is encoded on the cmd input.

The address and command are presented to the native interface one state before they are validated with the use_addr signal. The memory interface indicates that it can accept the request by asserting the accept signal. Requests are confirmed as accepted when use_addr and accept are both asserted in the same clock cycle. If use_addr is asserted but accept is not, the request is not accepted and must be repeated. This behavior is shown in Figure 4-68.

Figure 4-68: Native Interface Flow Control

In Figure 4-68, requests 1 and 2 are accepted normally. The first time request 3 is presented, accept is driven Low, and the request is not accepted. The user design retries request 3, which is accepted on the next attempt. Request 4 is subsequently accepted on the first attempt.

The data_buf_addr bus must be supplied with requests. This bus is an address pointer into a buffer that exists in the user design. It tells the core where to locate data when processing write commands and where to place data when processing read commands. When the core processes a command, the core echoes data_buf_addr back to the user design through wr_data_addr for write commands and rd_data_addr for read commands. This behavior is shown in Figure 4-69. Write data must be supplied in the same clock cycle that wr_data_en is asserted.

Figure 4-69: **Command Processing**

Transfers can be isolated with gaps of non-activity, or there can be long bursts with no gaps. The user design can identify when a request is being processed and when it finishes by monitoring the rd_data_en and wr_data_en signals. When the rd_data_en signal is asserted, the Memory Controller has completed processing a read command request.

Similarly, when the wr_data_en signal is asserted, the Memory Controller is processing a write command request.

When NORM ordering mode is enabled, the Memory Controller reorders received requests to optimize throughput between the FPGA and memory device. The data is returned to the user design in the order processed, not the order received. The user design can identify the specific request being processed by monitoring rd_data_addr and wr_data_addr. These fields correspond to the data_buf_addr supplied when the user design submits the request to the native interface. Both of these scenarios are depicted in Figure 4-69.

The native interface is implemented such that the user design must submit one request at a time and, thus, multiple requests must be submitted in a serial fashion. Similarly, the core must execute multiple commands to the memory device one at a time. However, due to pipelining in the core implementation, read and write requests can be processed in parallel at the native interface.

User ZQ

See User ZQ for the UI. The feature is identical in the native interface.

Customizing the Core

The 7 series FPGAs memory interface solution supports several configurations for LPDDR2 SDRAM devices. The specific configuration is defined by Verilog parameters in the top-level of the core. As per the OOC flow, none of the parameter values are passed down to the user design RTL file from the example design top RTL file. So, any design related parameter change is not reflected in the user design logic. The MIG tool should be used to regenerate a design when parameters need to be changed. The parameters set by the MIG tool are summarized in Table 4-25 to Table 4-27.

Parameter	Description	Options
REFCLK_FREQ ⁽¹⁾	This is the reference clock frequency for IDELAYCTRLs. This can be set to 200.0 for any speed grade device. For more information, see the IDELAYE2 (IDELAY) and ODELAYE2 (ODELAY) Attribute Summary table in the 7 Series FPGAs SelectIO [™] Resources User Guide [Ref 2]. This parameter should not be changed.	200.0
SIM_BYPASS_INIT_CAL ⁽²⁾	This is the calibration procedure for simulation. "OFF" is not supported in simulation. "OFF" must be used for hardware implementations. "FAST" enables a fast version of read and write leveling. "SIM_FULL" enables full calibration but skips the power-up initialization delay. "SIM_INIT_CAL_FULL" enables full calibration including the power-up delays.	"OFF" "FAST" "SIM_FULL"
nCK_PER_CLK	This is the number of memory clocks per clock. This parameter should not be changed.	2
nCS_PER_RANK	This is the number of unique CS outputs per rank for the PHY.	1, 2
DQS_CNT_WIDTH	This is the number of bits required to index the DQS bus and is given by ceil(log ₂ (DQS_WIDTH)).	
ADDR_WIDTH	This is the memory address bus width. It is equal to RANK_WIDTH + BANK_WIDTH + ROW_WIDTH + COL_WIDTH.	
BANK_WIDTH	This is the number of memory bank address bits.	This option is based on the selected memory device.
CS_WIDTH	This is the number of unique CS outputs to memory.	This option is based on the selected MIG tool configuration.
CK_WIDTH	This is the number of CK/CK# outputs to memory.	This option is based on the selected MIG tool configuration.
CKE_WIDTH	This is the number of CKE outputs to memory.	This option is based on the selected MIG tool configuration.
COL_WIDTH	This is the number of memory column address bits.	This option is based on the selected memory device.
RANK_WIDTH	This is the number of bits required to index the RANK bus.	This parameter value is 1 for both Single and Dual rank devices.
ROW_WIDTH	This is the DRAM component address bus width.	This option is based on the selected memory device.
DM_WIDTH	This is the number of data mask bits.	DQ_WIDTH/8

Table 4-25:	7 Series FPGA Memor	y Solution Configuration Parameters
-------------	---------------------	-------------------------------------

Parameter	Description	Options
DQ_WIDTH	This is the memory DQ bus width.	This parameter supports DQ widths from 8 to a maximum of 72 in increments of 8. The available maximum DQ width is frequency dependent on the selected memory device.
DQS_WIDTH	This is the memory DQS bus width.	DQ_WIDTH/8
BURST_MODE	This is the memory data burst length.	LPDDR2: "8"
BM_CNT_WIDTH	This is the number of bits required to index a bank machine and is given by ceil(log ₂ (nBANK_MACHS)).	
ADDR_CMD_MODE	This parameter is used by the controller to calculate timing on the memory addr/cmd bus. This parameter should not be changed.	"1T"
ORDERING ⁽³⁾	This option reorders received requests to optimize data throughput and latency.	"NORM": Allows the Memory Controller to reorder read but not write commands to the memory. "RELAXED": Allows the Memory Controller to reorder commands to the memory for maximum efficiency. Strong ordering is not preserved at the native interface in this mode. "STRICT": Forces the Memory Controller to execute commands in the exact order received.
STARVE_LIMIT	This sets the number of times a read request can lose arbitration before the request declares itself high priority. The actual number of lost arbitrations is STARVE_LIMIT × nBANK_MACHS.	1, 2, 3, 10
IODELAY_GRP ⁽⁴⁾	This is an ASCII character string to define an IDELAY group used in a memory design. This is used by the Vivado tools to group all instantiated IDELAYs into the same bank. Unique names must be assigned when multiple IP cores are implemented on the same FPGA.	Default: "IODELAY_MIG"
PAYLOAD_WIDTH	This is the actual DQ bus used for user data.	PAYLOAD_WIDTH = DATA_WIDTH
DEBUG_PORT	This option enables debug signals/control.	"ON" "OFF"
тсQ	This is the clock-to-Q delay for simulation purposes.	(The value is in picoseconds.)
tCK	This is the memory tCK clock period (ps).	The value, in picoseconds, is based on the selected frequency in the MIG tool.
DIFF_TERM_SYSCLK	"TRUE," "FALSE"	Differential termination for system clock input pins.

Table 4-25:	7 Series FPGA Memory	y Solution Configuration	Parameters (Cont'd)
-------------	----------------------	---------------------------------	---------------------

623

Table 4-25:	7 Series FPGA M	emory Solution	Configuration	Parameters	(Cont'd)
-------------	-----------------	----------------	---------------	------------	----------

Parameter	Description	Options
DIFF_TERM_REFCLK	"TRUE," "FALSE"	Differential termination for IDELAY reference clock input pins.

Notes:

- 1. The lower limit (maximum frequency) is pending characterization.
- 2. Core initialization during simulation can be greatly reduced by using SIM_BYPASS_INIT_CAL. Three simulation modes are supported. Setting SIM_BYPASS_INIT_CAL to FAST causes write leveling and read calibration to occur on only one bit per memory device. This is then used across the remaining data bits. Setting SIM_BYPASS_INIT_CAL to SIM_INIT_CAL_FULL causes complete memory initialization and calibration sequence occurs on all byte groups. SIM_BYPASS_INIT_CAL should be set to SIM_INIT_CAL_FULL for simulations only. SIM_BYPASS_INIT_CAL should be set to OFF for implementation, or the core does not function properly.
- 3. When set to NORM or RELAXED, ORDERING enables the reordering algorithm in the Memory Controller. When set to STRICT, request reordering is disabled, which might limit throughput to the external memory device. However, it can be helpful during initial core integration because requests are processed in the order received; the user design does not need to keep track of which requests are pending and which requests have been processed.
- 4. This parameter is prefixed with the module name entered in MIG during design generation. If the design is generated with the module name as mig_7series_0, then IODELAY_GRP parameter name is mig_7series_0_IODELAY_MIG.

The parameters listed in Table 4-26 depend on the selected memory clock frequency, memory device, memory configuration, and FPGA speed grade. The values for these parameters are integrated in the memc_ui_top IP core and should not be modified in the top-level.

RECOMMENDED: Xilinx strongly recommends that the MIG tool be rerun for different configurations.

Parameter	Description	Options
tFAW	This is the minimum interval of four active commands.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRRD	This is the ACTIVE-to-ACTIVE minimum command period.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRAS	This is the minimum ACTIVE-to-PRECHARGE period for memory.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRCD	This is the ACTIVE-to-READ or -WRITE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tREFI	This is the average periodic refresh interval for memory.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRFC	This is the REFRESH-to-ACTIVE or REFRESH-to-REFRESH command interval.	This value, in picoseconds, is based on the device selection in the MIG tool.

Table 1 7C.	Employed 7 Carles EDCAs Mamor	· Colution Configuration Doromotors
10012 4-20:	Embedded / Series FPGAS Wemon	v Solution Configuration Parameters

Parameter	Description	Options
tRP	This is the PRECHARGE command period.	This value, in picoseconds, is based on the device selection in the MIG tool.
tRTP	This is the READ-to-PRECHARGE command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tWTR	This is the WRITE-to-READ command delay.	This value, in picoseconds, is based on the device selection in the MIG tool.
tZQI	This is the ZQ short calibration interval. This value is system dependent and should be based on the expected rate of change of voltage and temperature in the system. Consult the memory vendor for more information on ZQ calibration.	This value is set in nanoseconds. Set to 0, if you manage this function.
tZQCS	This is the timing window to perform the ZQCS command in DDR3 SDRAM.	This value, in CK, is based on the device selection in the MIG tool.
nAL	This is the additive latency in memory clock cycles.	0
CL	This is the read CAS latency. The available option is frequency dependent in the MIG tool.	LPDDR2: 3, 4, 5, 6
CWL	This is the write CAS latency. The available option is frequency dependent in the MIG tool.	
BURST_TYPE	This is an option for the ordering of accesses within a burst.	"Sequential" "Interleaved"
RST_ACT_LOW	Active-Low or active-High reset. This is set to 1 when System Reset Polarity option is selected as active-Low and set to 0 when the option is selected as active-High.	0, 1
IBUF_LPWR_MODE	This option enables or disables the low-power mode for the input buffers.	"ON" "OFF"
IODELAY_HP_MODE	This option enables or disables the IDELAY high-performance mode.	"ON" "OFF"
DATA_IO_IDLE_PWRDWN	This option is set to ON valid when I/O Power reduction option is enabled.	"ON," "OFF"

Table 4-26: Embedded 7 Series FPGAs Memory Solution Configuration Parameters (Cont'd)

Parameter	Description	Options
SYSCLK_TYPE	This parameter indicates whether the system uses single-ended system clocks, differential system clocks, or is driven from an internal clock (No Buffer). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, sys_clk_p/sys_clk_n must be used. For single-ended clocks, sys_clk_i must be used. For the No Buffer option, sys_clk_i, which appears in port list, needs to be driven from an internal clock.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER
REFCLK_TYPE	This parameter indicates whether the system uses single-ended reference clocks, differential reference clocks, is driven from an internal clock (No Buffer), or can connect system clock inputs only (Use System Clock). Based on the selected CLK_TYPE, the clocks must be placed on the correct input ports. For differential clocks, clk_ref_p/clk_ref_n must be used. For single-ended clocks, clk_ref_i must be used. For the No Buffer option, clk_ref_i, which appears in the port list, needs to be driven from an internal clock. For the Use System Clock option, clk_ref_i is connected to the system clock in the user design top module.	DIFFERENTIAL SINGLE_ENDED NO_BUFFER USE_SYSTEM_CLOCK
CLKIN_PERIOD	Input clock period.	
CLKFBOUT_MULT	PLL voltage-controlled oscillator (VCO) multiplier. This value is set by the MIG tool based on the frequency of operation.	
CLKOUT0_DIVIDE, CLKOUT1_DIVIDE, CLKOUT2_DIVIDE, CLKOUT3_DIVIDE	VCO output divisor for PLL outputs. This value is set by the MIG tool based on the frequency of operation.	
DIVCLK_DIVIDE	PLLE2 VCO divisor. This value is set by the MIG tool based on the frequency of operation.	
USE_DM_PORT	This is the enable data mask option used during memory write operations.	0 = Disable 1 = Enable
CK_WIDTH	This is the number of CK/CK# outputs to memory.	
DQ_CNT_WIDTH	This is ceil(log2(DQ_WIDTH)).	
DRAM_TYPE	This is the supported memory standard for the Memory Controller.	LPDDR2
DRAM_WIDTH	This is the DQ bus width per DRAM component.	

Table 4-26: Embedded 7 Series FPGAs Memory Solution Configuration Parameters (Cont'd)

Parameter	Description	Options
nBANK_MACHS	This is the number of bank machines. A given bank machine manages a single DRAM bank at any given time.	2, 3, 4, 5, 6, 7, 8
DATA_BUF_ADDR_WIDTH	This is the bus width of the request tag passed to the Memory Controller. This parameter is set to 4. This parameter should not be changed.	4
RANKS	This is the number of ranks.	
DATA_WIDTH	This parameter determines the write data mask width and depends on whether or not ECC is enabled.	DATA_WIDTH = DQ_WIDTH
APP_DATA_WIDTH	This UI_INTFC parameter specifies the payload data width in the UI.	APP_DATA_WIDTH = 2 × nCK_PER_CLK × PAYLOAD_WIDTH
APP_MASK_WIDTH	This UI_INTFC parameter specifies the payload mask width in the UI.	
USER_REFRESH	This parameter indicates if you manage refresh commands. Can be set for either the User or Native interface.	"ON," "OFF"

Table 4-26.	Embedded 7 Series	EPGAs Memory	<pre>/ Solution Cor</pre>	nfiguration F	Parameters /	(Cont'd)
<i>iubie</i> 4-20.	Linbeaueu / Series	FF GAS MEILION	j Solution Col	illigulation r	arameters (com uj

Table 4-27 contains parameters set up by the MIG tool based on the pinout selected. When making pinout changes, Xilinx recommends rerunning the MIG tool to set up the parameters properly. See Bank and Pin Selection Guides for LPDDR2 Designs, page 631.

Mistakes to the pinout parameters can result in non-functional simulation, an unroutable design, and/or trouble meeting timing. These parameters are used to set up the PHY and route all the necessary signals to and from it. The following parameters are calculated based on selected Data and Address/Control byte groups. These parameters do not consider the system signals selection (that is, system clock, reference clock and status signals).

Table 4-27: LPDDR2 SDRAM M	emory Interface Solution Pinout Parameters
----------------------------	--

Parameter	Description	Example
BYTE_LANES_B0, BYTE_LANES_B1, BYTE_LANES_B2	Defines the byte lanes being used in a given I/O bank. A 1 in a bit position indicates a byte lane is used, and a 0 indicates unused. This parameter varies based on the pinout and should not be changed manually in generated design.	Ordering of bits from MSB to LSB is T0, T1, T2, and T3 byte groups. 4'b1101: For a given bank, three byte lanes are used and one byte lane is not used.

Parameter	Description	Example
DATA_CTL_B0, DATA_CTL_B1, DATA_CTL_B2	Defines mode of use of byte lanes in a given I/O bank. A 1 in a bit position indicates a byte lane is used for data, and a 0 indicates it is used for address/control. This parameter varies based on the pinout and should not be changed manually in generated design.	4'b1100: With respect to the BYTE_LANE example, two byte lanes are used for Data and one for Address/Control.
PHY_0_BITLANES, PHY_1_BITLANES, PHY_2_BITLANES	12-bit parameter per byte lane used to determine which I/O locations are used to generate the necessary PHY structures. This parameter is provided as per bank. Except CK/CK# pins, all Data and Address/Control pins are considered for this parameter generation. DQS pins are excluded when used for DQS pins in data byte groups. One of the unused pins where Data byte group is allocated should be set to 1 which is used for DQS0_MAP (DQS still allocated to DQS I/O only and extra bit is used internally in the PHY). This parameter varies based on the pinout and should not be changed manually in generated design.	This parameter denotes for all byte groups of a selected bank. All 12 bits are denoted for a byte lane. For example, this parameter is 48'hFFE_FFF_000_ DF6 for one bank. 12'hDF6 (12'b1101_1111_0110): bit lines 0, 3, and 9 are not used, the rest of the bits are used.
CK_BYTE_MAP	 Bank and byte lane location information for the CK/CK#. An 8-bit parameter is provided per pair of signals. (7:4) – Bank position. Values of 0, 1, or 2 are supported [3:0] – Byte lane position within a bank. Values of 0, 1, 2, and 3 are supported. This parameter varies based on the pinout and should not be changed manually in generated design. 	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1 and 0, respectively. 144'h00_00_00_00_00_00_00_00_00_00_00_00_00_

Table 4-27: LPDDR2 SDRAM Memory Interface Solution Pinout Parameters (Cont'd)

628

Parameter	Description	Example
ADDR_MAP	 Bank and byte lane position information for the address. 12-bit parameter provided per pin. [11:8] – Bank position. Values of 0, 1, or 2 are supported [7:4] – Byte lane position within a bank. Values of 0, 1, 2, or 3 are supported. 	Upper-most Data or Address/Control byte group selected bank is referred to as Bank 0 in parameters notation. Numbering of banks is 0, 1, and 2 from top to bottom. Byte groups T0, T1, T2, and T3 are numbered in parameters as 3, 2, 1 and 0, respectively. Bottom-most pin in a byte group is referred as "0" in MAP parameters. Numbering is counted from 0 to 9 from bottom-most pin to top pin with in a byte group by excluding DQS I/Os. DQS_N and DQS_P pins of the byte group are numbered as A and B, respectively. 192'h000_000_039_038_037_036_035_034_033_032_031_029_0
	 [3:0] – Bit position within a byte lane. Values of [0, 1, 2,, A, B] are supported. This parameter varies based on the pinout and should not be changed manually in generated design. 	28_027_026_02B: This parameter is denoted for Address width of 16 with 12 bits for each pin. In this case the Address width is 14 bits. Ordering of parameters is from MSB to LSB (that is, ADDR[0] corresponds to the 12 LSBs of the parameter. One important change w.r.t DDR3/DDR2 designs is that LPDDR2 have only 10 bits available for Address mapping in byte lane. The reason for that is in LPDDR2, the CA is DDR. 12'h235: Address pin placed in bank 2, byte lane 3, at location 5.
CS_MAP	Bank and byte lane position information for the chip select. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
DQS_BYTE_MAP	Bank and byte lane position information for the strobe. See the CK_BYTE_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the CK_BYTE_MAP example.
DATA0_MAP, DATA1_MAP, DATA2_MAP, DATA3_MAP, DATA4_MAP, DATA5_MAP, DATA6_MAP, DATA7_MAP, DATA8_MAP	Bank and byte lane position information for the data bus. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.

Table 4-27: LPDDR2 SDRAM Memory Interface Solution Pinout Parameters (Cont'd)

Parameter	Description	Example
MASK0_MAP	Bank and byte lane position information for the data mask. See the ADDR_MAP description. This parameter varies based on the pinout and should not be changed manually in generated design.	See the ADDR_MAP example.
DQS0_MAP	Bank and byte lane position information for the DQS of respective data lanes. This parameter varies based on the pinout and should not be changed manually in generated design.	See the DQS_MAP example.
ADDR_0_BITLANES, ADDR_1_BITLANES, ADDR_2_BITLANES	12-bit parameter per byte lane used to determine which I/O locations are used to generate the necessary PHY structures. This parameter is provided as per bank where Address/Control are selected. Except CK/CK# and Data pins, only the Address/Control pins are considered for this parameter generation. DQS pins are excluded when used for CK/CK# in command/address byte group. This parameter varies based on the pinout and should not be changed manually in generated design.	See the PHY_0_BIT_LANES example.

Table 4-27:	LPDDR2 SDRAM Memory	y Interface Solution	Pinout Parameters (Cont'd)
-------------	---------------------	----------------------	----------------------------

Design Guidelines

Guidelines for LPDDR2 SDRAM designs are covered in this section.

For general PCB routing guidelines, see Appendix A, General Memory Routing Guidelines.

LPDDR2 SDRAM

This section describes guidelines for LPDDR2 SDRAM designs, including bank selection, pin allocation, pin assignments, termination, I/O standards, and trace lengths.

Design Rules

Memory types, memory parts, and data widths are restricted based on the selected FPGA, FPGA speed grade, and the design frequency. The final frequency ranges are subject to characterization results.

Pin Assignments

The MIG tool generates pin assignments for a memory interface based on physical layer rules.

Bank and Pin Selection Guides for LPDDR2 Designs

Xilinx 7 series FPGAs are designed for very high-performance memory interfaces, and certain rules must be followed to use the LPDDR2 SDRAM physical layer. Xilinx 7 series FPGAs have dedicated logic for each DQS byte group. Four DQS byte groups are available in each 50-pin bank. Each byte group consists of a clock-capable I/O pair for the DQS and 10 associated I/Os.

In a typical LPDDR2 configuration, 8 of these 10 I/Os are used for the DQS: one is used for the data mask (DM), and the remaining one is used for DQS sampling. However, there would not be any physical connect on this pin because it would be internally used to capture the DQS for the phase detector.

Xilinx 7 series FPGAs have dedicated clock routing for high-speed synchronization that is routed vertically within the I/O banks. Thus, LPDDR2 memory interfaces must be arranged in the banks vertically and not horizontally. In addition, the maximum height is three banks.

The MIG tool, when available, should be used to generate a pinout for a 7 series LPDDR2 interface. The MIG tool follows these rules:

- DQS signals for a byte group must be connected to a designated DQS CC pair in the bank.
- DQ signals and a DM signal must be connected to the byte group pins associated with the corresponding DQS.
- Control (CA, CS_N, CKE) and address lines must be connected to byte groups not used for the data byte groups.
- All address/control byte groups must be in the same I/O bank. Address/control byte groups cannot be split between banks.
- The address/control byte groups must be in the middle I/O bank of interfaces that span three I/O banks.
- CK must be connected to a DQS pair in one of the control byte groups. These pins are generated for each component and a maximum of four ports/pairs only are allowed due to I/O pin limitations. Only one CK pair must be connected for one byte group. CK pairs are generated for each component, and a maximum of four pairs only are allowed due to I/O pin limitations. This varies based on Memory Clock Selection in the Memory Options page in the MIG GUI. Except CK/CK#, any of the Address/Control pin should not be allocated to DQS.
- CS_N pins are generated for each component and a maximum of four ports/pairs only are allowed due to I/O pin limitations.
- Only one CKE port is generated.
- VRN and VRP are used for the digitally controlled impedance (DCI) reference for banks that support DCI. DCI cascade is permitted.
- The interface must be arranged vertically.
- No more than three banks can be used for a single interface. All the banks chosen must be consequent.
- The system clock input must be in the same column as the memory interface. The system clock input is recommended to be in the address/control bank, when possible

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

• Devices implemented with SSI technology have SLRs. Memory interfaces cannot span across SLRs. Ensure that this rule is followed for the part chosen and for any other pin-compatible parts that can also be used.

Bank Sharing Among Controllers

No unused part of a bank used in a memory interface is permitted to be shared with another memory interface. The dedicated logic that controls all the FIFOs and phasers in a bank is designed to only operate with a single memory interface and cannot be shared with other memory interfaces.

Pin Swapping

- Pins can be freely swapped within each byte group (data and address/control), except for the DQS pair which must be on a clock-capable DQS pair and the CK, which must be on a clock-capable DQS pair.
- Byte groups (data and address/control) can be freely swapped with each other.
- Pins in the address/control byte groups can be freely swapped within and between their byte groups.
- No other pin swapping is permitted.

Internal V_{REF}

Internal V_{REF} can only be used for data rates of 800 Mb/s or below.

System Clock, MMCM Location, and Constraints

The MMCM is required to be in the bank that supplies the clock to the memory to meet the specified interface performance. The system clock input is also strongly recommended to be in this bank. The MIG tool follows these two rules whenever possible. The exception is a 16-bit interface in a single bank where there might not be pins available for the clock input. In this case, the clock input needs to come from an adjacent bank through the frequency backbone to the MMCM. The system clock input to the MMCM must come from clock capable I/O.

The system clock input can only be used for an interface in the same column. The system clock input cannot be driven from another column. The additional PLL or MMCM and clock routing required for this induces too much additional jitter.

Unused outputs from the MMCM can be used as clock outputs. Only the settings for these outputs can be changed. Settings related to the overall MMCM behavior and the used outputs must not be disturbed.

A MMCM cannot be shared among interfaces.

See Clocking Architecture, page 585 for information on allowed MMCM parameters.

Configuration

The XDC contains timing, pin, and I/O standard information. The sys_clk constraint sets the operating frequency of the interface and is set through the MIG GUI. The MIG GUI must be rerun if this needs to be altered, because other internal parameters are affected. For example:

create_clock -period 1.875 [get_ports sys_clk_p]

The clk_ref constraint sets the frequency for the IDELAY reference clock, which is typically 200 MHz. For example:

create_clock -period 5 [get_ports clk_ref_p]

The I/O standards are set appropriately for the LPDDR2 interface with HSUL_12, as appropriate. If system clock (sys_clk*) and I/O delay reference clock (clk_ref*) are allocated in LPDDR2 memory interface allocated bank, then the I/O Standards would need to be DIFF_HSLU_12 or HSUL_12 depending on whether these clocks are differential or single-ended. If these clocks are placed outside the LPDDR2 interface banks, then the I/O Standards are LVDS_25 or LVCMOS25 (depending on whether these clocks are differential or single-ended). These standards can be changed, as required, for the system configuration. These signals are brought out to the top-level for system connection:

- **sys_rst** This is the main system reset (asynchronous).
- **init_calib_complete** This signal indicates when the internal calibration is done and that the interface is ready for use.
- **tg_compare_error** This signal is generated by the example design traffic generator, if read data does not match the write data.

These signals are all set to LVCMOS25 and can be altered as needed for the system design. They can be generated and used internally instead of being brought out to pins.

A 16-bit wide interface might need to have the system clock in a bank above or below the bank with the address/control and data. In this case, the MIG tool puts an additional constraint in the XDC. An example is shown here:

set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_nets sys_clk_p]
set_property CLOCK_DEDICATED_ROUTE BACKBONE [get_pins -hierarchical *pll*CLKIN1]

This results in a warning listed during PAR. This warning can be ignored.

WARNING:Place:1402 - A clock IOB/PLL clock component pair have been found that are not placed at an optimal clock IOB/PLL site pair. The clock IOB component <sys_clk_p> is placed at site <IOB_X1Y76>. The corresponding PLL component <u_backb16/u_ddr2_infrastructure/plle2_i> is placed at site <PLLE2_ADV_X1Y2>. The clock I/O can use the fast path between the IOB and the PLL if the IOB is placed on a Clock Capable IOB site that has dedicated fast path to PLL sites within the same clock region. You might want to analyze why this issue exists and correct it. This is normally an ERROR

but the CLOCK_DEDICATED_ROUTE constraint was applied on COMP.PIN <sys_clk_p.PAD> allowing your design to continue. This constraint disables all clock placer rules related to the specified COMP.PIN. The use of this override is highly discouraged as it might lead to very poor timing results. It is recommended that this error condition be corrected in the design.

Do not drive user clocks through the I/O clocking backbone from the region(s) containing the MIG generated memory interface to CMT blocks in adjacent regions due to resource limitations. For more information, see the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10].

The MIG tool sets the VCCAUX_IO constraint based on the data rate and voltage input selected. The generated XDC has additional constraints as needed. For example:

```
# PadFunction: IO_L13P_T2_MRCC_34
set_property VCCAUX_IO NORMAL [get_ports {lpddr2_dq[0]}]
set_property SLEW FAST [get_ports {lpddr2_dq[0]}]
set_property IOSTANDARD HSUL_12 [get_ports {lpddr2_dq[0]}]
# PadFunction: IO_L13N_T2_MRCC_34
set_property VCCAUX_IO NORMAL [get_ports {lpddr2_dq[1]}]
set_property SLEW FAST [get_ports {lpddr2_dq[1]}]
set_property IOSTANDARD HSUL_12 [get_ports {lpddr2_dq[1]}]
set_property IOSTANDARD HSUL_12 [get_ports {lpddr2_dq[1]}]
```

For more information, see the Xilinx Timing Constraints User Guide (UG612) [Ref 15].

For LPDDR2 SDRAM interfaces that have the memory system input clock (sys_clk_p/sys_clk_n) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSUL_12 I/O standard (V_{CCO} = 1.2V) to the CCIO pins.

Termination

These rules apply to termination for LPDDR2 SDRAM:

- Simulation (using IBIS or other) is highly recommended. The loading of command address and control (CS_N) signals depends on various factors, such as speed requirements, and termination topology. Loading can be a limiting factor in reaching a performance target.
- If termination is used, unidirectional signals should be terminated with a resistor to V_{TT} at the load. A split termination to V_{CCO} and GND can be used, but takes more power. Bidirectional signals might need termination at both ends of the signal.
- If termination is used, differential signals should be terminated with a differential termination at the load. Bidirectional signals might need termination at both ends of the signal.

- If used, all termination must be placed as close to the load as possible. The termination can be placed before or after the load provided that the termination is placed within a small distance of the load pin. The allowable distance can be determined by simulation.
- The CKE signal should be pulled down during memory initialization with a 4.7 $k\Omega$ resistor connected to GND.
- DM should be pulled to GND if DM is not driven by the FPGA (for scenarios where the data mask is not used or is disabled).
- LPDDR2 does not have a GUI option to configure the SDRAM output drive strength like DDR2/DDR3. For LPDDR2, use the default setting of 40Ω for output drive strength.

I/O Standards

These rules apply to the I/O standard selection for LPDDR2 SDRAMs:

- Designs generated by the MIG tool use the HSUL_12 and DIFF_HSUL_12 standards for all bidirectional I/O (DQ, DQS) in the High-Performance banks.
- The HSUL_12 and DIFF_HSUL_12 standards are used for unidirectional outputs, such as control/address and forward memory clocks.

Trace Lengths

The trace lengths described in this section are for high-speed operation. The package delay should be included when determining the effective trace length. Different parts in the same package have different internal package skew values. Derate the minimum period appropriately in the **MIG Controller Options** page when different parts in the same package are used.

One method to determine the delay is to use the L and C values for each pin from the IBIS models. The delay value is determined as the square root of $(L \times C)$.

Another method is to generate the package lengths using Vivado Design Suite. The following commands generate a csv file that contains the package delay values for every pin of the device under consideration.

```
link_design -part <part_number>
write_csv <file_name>
```

For example, to obtain the package delay information for the 7 series FPGA XC7K160T-FF676, this command should be issued:

```
link_design -part xc7k160tfbg676
write_csv flight_time
```

This generates a file named flight_time.csv in the current directory with package trace delay information for each pin. While applying specific trace-matching guidelines for the LPDDR2 SDRAM interface, this additional package delay term should be considered for the

overall electrical propagation delay. Different die in the same package might have different delays for the same package pin. If this is expected, the values should be averaged appropriately to decrease the maximum possible performance for the target device.

These rules indicate the maximum electrical delays between LPDDR2 SDRAM signals:

- The maximum electrical delay between any DQ or DM and its associated DQS/DQS# must be ≤ ±15 ps.
- The maximum electrical delay between any address and control signals and the corresponding CK/CK# must be $\leq \pm 25$ ps, with 15 ps being the optimum target.
- The maximum electrical delay between any DQS/DQS# and CK/CK# must be < ±25 ps.

Clocking

The 7 series FPGA MIG LPDDR2 SDRAM design has two clock inputs, the reference clock and the system clock. The reference clock drives the IODELAYCTRL components in the design, while the system clock input is used to create all MIG design clocks that are used to clock the internal logic, the frequency reference clocks to the phasers, and a synchronization pulse required for keeping PHY control blocks synchronized in multi-I/O bank implementations. For more information on clocking architecture, see Clocking Architecture, page 585.

The MIG tool allows you to input the Memory Clock Period and then lists available Input Clock Periods that follow the supported clocking guidelines. Based on these two clock periods selections, the generated MIG core appropriately sets the MMCM parameters. The MIG tool enables automatic generation of all supported clocking structures. For information on how to use the MIG tool to set up the desired clocking structure including input clock placement, input clock frequency, and IDELAYCTRL ref_clk generation, see Creating 7 Series FPGA LPDDR2 SDRAM Memory Controller Block Design, page 528.

Input Clock Guidelines

IMPORTANT: The input system clock cannot be generated internally.

• MMCM Guidelines

 $\langle \rangle$

- CLKFBOUT_MULT_F (M) must be between 1 and 16 inclusive.
- DIVCLK_DIVIDE (D, Input Divider) can be any value supported by the MMCME2 parameter.
- CLKOUT_DIVIDE (O, Output Divider) must be 2 for 400 MHz and up operation and 4 for below 400 MHz operation.

- The above settings must ensure the minimum MMCM VCO frequency (FVCOMIN) is met. For specifications, see the appropriate DC and Switching Characteristics Data Sheet. The 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 10] includes the equation for calculating FVCO.
- The relationship between the input period and the memory period is InputPeriod = (MemoryPeriod × M)/(D × D1).
- The clock input (sys_clk) can be input on any CCIO in the column where the memory interface is located; this includes CCIO in banks that do not contain the memory interface, but must be in the same column as the memory interface. The MMCM must be located in the bank containing the clock sent to the memory. To route the input clock to the memory interface MMCM, the CMT backbone must be used. With the MIG implementation, one spare interconnect on the backbone is available that can be used for this purpose.
 - MIG versions 1.4 and later allow this input clocking setup and properly drive the CMT backbone.
 - CLOCK_DEDICATED_ROUTE = BACKBONE constraint is used to implement CMT backbone, following warning message is expected. It can be ignored safely.

WARNING: [Place 30-172] Sub-optimal placement for a clock-capable IO pin and PLL pair. The flow will continue as the CLOCK_DEDICATED_ROUTE constraint is set to BACKBONE.

```
u_mig_7series_0/c0_u_clk_ibuf/diff_input_clk.u_ibufg_sys_clk (IBUFDS.O) is locked
to IOB_X0Y176
u_mig_7series_0/c0_u_infrastructure/mmcm2_i (MMCME2_ADV.CLKIN1) is locked to
MMCME2_ADV_X0Y1
u_mig_7series_0/c1_u_infrastructure/mmcm2_i (MMCME2_ADV.CLKIN1) is locked to
MMCME2_ADV_X0Y5
.....
```

- For LPDDR2 SDRAM interfaces that have the memory system input clock (sys_clk) placed on CCIO pins within one of the memory banks, MIG assigns the DIFF_HSUL_12 I/O standard (VCCO = 1.2V) to the CCIO pins. Because the same differential input receiver is used for both DIFF_HSUL_12 and LVDS inputs, an LVDS clock source can be connected directly to the DIFF_HSTL_I CCIO pins.
- It is acceptable to have differential inputs such as LVDS and LVDS_25 in I/O banks that are powered at voltage levels other than the nominal voltages required for the outputs of those standards (1.8V for LVDS outputs, and 2.5V for LVDS_25 outputs). However, these criteria must be met:
 - a. The optional internal differential termination is not used (DIFF_TERM = FALSE, which is the default value).

Note: This might require manually changing DIFF_TERM parameter located in the top-level module or setting this in the UCF or XDC.

b. The differential signals at the input pins meet the VIN requirements in the Recommended Operating Conditions table of the specific device family data sheet.

c. The differential signals at the input pins meet the VIDIFF (min) requirements in the corresponding LVDS or LVDS_25 DC specifications tables of the specific device family data sheet.

One way to accomplish the above criteria is to use an external circuit that both AC-couples and DC-biases the input signals. The figure shows an example circuit for providing an AC-coupled and DC-biased circuit for a differential clock input. RDIFF provides the 100 Ω differential receiver termination because the internal DIFF_TERM is set to FALSE. To maximize the input noise margin, all RBIAS resistors should be the same value, essentially creating a VICM level of VCCO/2. Resistors in the 10k to 100 k Ω range are recommended. The typical values for the AC coupling capacitors CAC are in the range of 100 nF. All components should be placed physically close to the FPGA inputs.

Figure 4-70: Example Circuit for AC-Coupled and DC-Biased Differential Clock Input

Note: The last set of guidelines on differential LVDS inputs are added within the LVDS and LVDS_25 (Low Voltage Differential Signaling) section of the 7 Series SelectIO Resources User Guide (UG471) [Ref 2] in the next release of the document.

These guidelines are irrespective of Package, Column (HR/HP), or I/O Voltage.

Sharing sys_clk between Controllers

MIG 7 series FPGA designs require sys_clk to be in the same I/O bank column as the memory interface to minimize jitter.

• Interfaces Spanning I/O Columns – A single sys_clk input cannot drive memory interfaces spanning multiple I/O columns. The input clock input must be in the same column as the memory interface to drive the MMCM using the CMT Backbone, which minimizes jitter.

Interfaces in Single I/O Column – If the memory interfaces are entirely contained within the same I/O column, a common sys_clk can be shared among the interfaces. The sys_clk can be input on any CCIO in the column where the memory interfaces are located. This includes CCIO in banks that do not contain the memory interfaces, but must be in the same column as the memory interfaces.

Information on Sharing BUFG Clock (phy_clk)

The MIG 7 series LPDDR2 SDRAM design includes a PLL which outputs the phy_clk on a BUFG route. It is not possible to share this clock amongst multiple controllers to synchronize the user interfaces. This is not allowed because the timing from the FPGA logic to the PHY Control block must be controlled. This is not possible when the clock is shared amongst multiple controllers. The only option for synchronizing user interfaces amongst multiple controllers is to create an asynchronous FIFO for clock domain transfer.

Information on Sync_Pulse

The MIG 7 series LPDDR2 SDRAM design includes one MMCM that generates the necessary design clocks. One of these outputs is the sync_pulse. The sync pulse clock is 1/16 of the mem_refclk frequency and must have a duty cycle distortion of 1/16 or 6.25%. This clock is distributed across the low skew clock backbone and keeps all PHASER_IN/_OUT and PHY_Control blocks in sync with each other. The signal is sampled by the mem_refclk in both the PHASER_INs/_OUTs and PHY_Control blocks. The phase, frequency, and duty cycle of the sync_pulse is chosen to provide the greatest setup and hold margin across PVT.

LPDDR2 Pinout Examples

Table 4-28 shows an example of a 16-bit LPDDR2 interface contained within one bank. This example is for a component interface using a 1 Gb x16 part. If x8 components are used or a higher density part is needed that would require more address pins, these options are possible:

- An additional bank can be used.
- RESET_N can be moved to another bank as long as timing is met. External timing for this signal is not critical and a level shifter can be used.
- DCI cascade can be used to free up the VRN/VRP pins if another bank is available for the DCI master.

TIP: Termination is not required for LPDDR2 memory interfaces. For more information, contact your memory vendor. The termination guidelines can be used in case termination is required.

Internal V_{REF} is used in this example.

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	VRP	-	SE	49	-
1	DQ15	D_11	Р	48	-
1	DQ14	D_10	Ν	47	-
1	DQ13	D_09	Р	46	_
1	DQ12	D_08	Ν	45	_
1	DQS1_P	D_07	Р	44	DQS-P
1	DQS1_N	D_06	Ν	43	DQS-N
1	DQ11	D_05	Р	42	-
1	DQ10	D_04	Ν	41	_
1	DQ9	D_03	Р	40	-
1	DQ8	D_02	Ν	39	_
1	DM1	D_01	Р	38	-
1	-	D_00	Ν	37	-
1	DQ7	C_11	Р	36	_
1	DQ6	C_10	Ν	35	-
1	DQ5	C_09	Р	34	_
1	DQ4	C_08	Ν	33	_
1	DQS0_P	C_07	Р	32	DQS-P
1	DQS0_N	C_06	Ν	31	DQS-N
1	DQ3	C_05	Р	30	-
1	DQ2	C_04	Ν	29	-
1	DQ1	C_03	Р	28	CCIO-P
1	DQ0	C_02	Ν	27	CCIO-N
1	DM0	C_01	Р	26	CCIO-P
1	-	C_00	Ν	25	-
1	RAS_N	B_11	Р	24	CCIO-P
1	-	B_10	Ν	23	-
1	-	B_09	Р	22	-
1	_	B_08	Ν	21	_
1	CK_P	B_07	Р	20	DQS-P
1	CK_N	B_06	Ν	19	DQS-N
1	_	B_05	Р	18	-
1	_	B_04	Ν	17	-
1	CS_N	B_03	Р	16	_

Table 4-28:	16-Bit LPDDR2 Interface Contained in One Bank

Bank	Signal Name	Byte Group	I/О Туре	I/O Number	Special Designation
1	-	B_02	N	15	-
1	CKE	B_01	Р	14	-
1	A12	B_00	Ν	13	-
1	-	A_11	Р	12	-
1	-	A_10	Ν	11	-
1	A9	A_09	Р	10	-
1	A8	A_08	Ν	9	-
1	A7	A_07	Р	8	DQS-P
1	A6	A_06	Ν	7	DQS-N
1	A5	A_05	Р	6	-
1	A4	A_04	Ν	5	-
1	A3	A_03	Р	4	-
1	A2	A_02	Ν	3	-
1	A1	A_01	Р	2	_
1	A0	A_00	Ν	1	-
1	VRN	-	SE	0	-

Table 4-28:	16-Bit LPDDR2 Interface Contained in One Bank (Cont'd)

CLOCK_DEDICATED_ROUTE Constraints

System Clock

If the SRCC/MRCC I/O pin and PLL are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint must be set to BACKBONE. LPDDR2 SDRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on the SRCC/MRCC I/O and PLL allocation needs to be handled manually for the IP flow. LPDDR2 SDRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Reference Clock

If the SRCC/MRCC I/O pin and MMCM are not allocated in the same bank, the CLOCK_DEDICATED_ROUTE constraint is set to FALSE. Reference clock is a 200 MHz clock source used to drive IODELAY CTRL logic (through an additional MMCM). This clock is not utilized, CLOCK_DEDICADE_ROUTE (as they are limited in number), hence the FALSE value is

set. LPDDR2 SDRAM manages these constraints for designs generated with the **System Clock** option selected as **Differential/Single-Ended** (at **FPGA Options > System Clock**).

If the design is generated with the **System Clock** option selected as **No Buffer** (at **FPGA Options > System Clock**), the CLOCK_DEDICATED_ROUTE constraints based on SRCC/MRCC I/O and MMCM allocation needs to be handled manually for the IP flow. LPDDR2 SDRAM does not generate clock constraints in the XDC file for the **No Buffer** configurations. You must take care of the clock constraints for the **No Buffer** configurations in the IP flow.

Chapter 5

Multicontroller Design

Introduction

This chapter describes the specifications (including the supported features and unsupported features) and pinout rules for multicontroller designs.

The supported and unsupported features are:

- Supports up to eight controllers
 - Multi-interface support includes the combination of all memory interfaces as DDR3 SDRAM (Native only), QDR II+ SRAM, and RLDRAM II up to total of eight controllers. Multi-interface support with the DDR3 SDRAM AXI interface combined with other memory interfaces is not supported.
 - Multicontroller for DDR3 SDRAM (AXI only) interface is supported up to eight independent controllers. Multicontroller support combining DDR3 SDRAM Native and AXI interface designs is not supported.
- Banks selected for one of the controllers are not allowed for other controllers; that is, across the same memory interfaces and different memory interfaces.
- Memory options (frequency, data width, etc.) and all other options remain the same as for single controller options.
- Sharing of banks across two different controllers is not allowed.
- Rules for all memory interfaces (DDR3 SDRAM, QDR II+ SRAM, and RLDRAM II) remain the same as for single controller designs.

IMPORTANT: Memory Interface Solutions v4.1 only supports the Vivado[®] Design Suite. The ISE[®] Design Suite is not supported in this version.

Using MIG in the Vivado Design Suite

This section provides the steps to generate the Memory Interface Generator (MIG) IP core using the Vivado Design Suite and run implementation.

1. Start the Vivado Design Suite (see Figure 5-1).

Figure 5-1: Vivado Design Suite

2. To create a new project, click the **Create New Project** option shown in Figure 5-1 to open the page as shown in Figure 5-2.

📥 New Project	
	Create a New Vivado Project This wizard will guide you through the creation of a new project To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
VIVADO.	To continue, click Next.
	< <u>Back</u> <u>N</u> ext > Einish Cancel

Figure 5-2: Create a New Vivado Tool Project

3. Click **Next** to proceed to the **Project Name** page (Figure 5-3). Enter the **Project Name** and **Project Location**. Based on the details provided, the project is saved in the directory.

📥 New Proje	ct 🛛 🔀
Project Name Enter a nam	e ne for your project and specify a directory where the project data files will be stored
Project name:	project_1
Project location:	: C:/Vivado
🔽 Create Proje	ect Subdirectory
Project will be cr	reated at: C:/Vivado/project_1
	<u>Back</u> <u>Next</u> > Einish Cancel

Figure 5-3: Project Name

4. Click **Next** to proceed to the **Project Type** page (Figure 5-4). Select the **Project Type** as **RTL Project** because MIG deliverables are RTL files.

🚴 New Project	×
Project Type Specify the type of project to create.	5
 <u>BTL Project</u> You will be able to add sources, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. <u>Do not specify sources at this time</u> <u>Post-synthesis Project</u> You will be able to add sources, view device resources, run design analysis, planning and implementation. <u>Do not specify sources at this time</u> <u>JO Planning Project</u> Do not specify design sources. You will be able to view part/package resources. <u>Imported Project</u> Create a Vivado project from a Synplify, XST or ISE Project File. 	
Cancel	

Figure 5-4: Project Type

5. Click **Next** to proceed to the **Add Sources** page (Figure 5-5). RTL files can be added to the project in this page. If the project was not created earlier, proceed to the next page.

📥 New Project	
Add Sources Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to your project. You can also add and create sources later.	
Id Name Library HDL Source for Location	× *
Add Files Add Directories Create File	
Copy Sources into Project	
Add Sources from Subdirectories	
Target Language: Verilog 💌	
< Back Next > Einish Ca	ncel

Figure 5-5: Add Sources

6. Click **Next** to open the **Add Existing IP (Optional)** page (Figure 5-6). If the IP is already created, the XCI file generated by the IP can be added to the project and the previous created IP files are automatically added to the project. If the IP was not created earlier, proceed to the next page.

A New Project				
Add Existing IP (optional) Specify an existing configurable IP file to add to your project.				
Id IP Name IP File 				
< Back Next > Einish	ancel			

Figure 5-6: Add Existing IP (Optional)

7. Click **Next** to open the **Add Constraints (Optional)** page (Figure 5-7). If the constraints file exists in the repository, it can be added to the project. Proceed to the next page if the constraints file does not exist.

🝌 New Project	
Add Constraints (optional)	D
Specify or create constraint files for physical and timing constraints.	
Constraint File Location	
	X
	L€
	-
Copy Constraints into Project	
< Back Next > Finish	Cancel

Figure 5-7: Add Constraints (Optional)

8. Click **Next** to proceed to the **Default Part** page (Figure 5-8) where the device that needs to be targeted can be selected. The **Default Part** page appears as shown in Figure 5-8.

Choose a default Vilip	or part or board	for your project	t. This can be a	hanged later				1
Choose a deradic Allin.	c part or board	unor your projec	tan ber	nangeu iacei i				
Specify Filter								
Parts Proc	luct category	All		-	Package	All		*
Boards	Eamily	All			Speed grade	All		*
Boards	Sub-Family	All		-	Temp grade	All		-
			r					2
			l	Reset All Fi	ters			
arch: Q-		1						
	tio m	in the second second		1				
evice	Count	IOBs	Elements	FlipFlops	RAMs	DSPs	GD Transceivers	Buses
xc7vx485tffa1157-2L	1.157	600	303600	607200	1030	2800	20	4
xc7vx485tffg1157-1	1,157	600	303600	607200	1030	2800	20	4
xc7vx485tffg1158-3	1,158	350	303600	607200	1030	2800	48	4
xc7vx485tffg1158-2	1,158	350	303600	607200	1030	2800	48	4
xc7vx485tffg1158-2L	1,158	350	303600	607200	1030	2800	48	4
xc7vx485tffg1158-1	1,158	350	303600	607200	1030	2800	48	4
xc7vx485tffg1761-3	1,761	700	303600	607200	1030	2800	28	4
xc7vx485tffg1761-2	1,761	700	303600	607200	1030	2800	28	4
xc7vx485tffg1761-2L	1,761	700	303600	607200	1030	2800	28	4
xc7vx485tffg1761-1	1,761	700	303600	607200	1030	2800	28	4
xc7vx485tffa1927-3	1,927	600	303600	607200	1030	2800	56	4
			1					>

Figure 5-8: Default Part (Default Window)

Select the target **Family**, **Package**, and **Speed Grade**. The valid devices are displayed in the same page, and the device can be selected based on the targeted device (Figure 5-9).

Specify Filter	odu <u>c</u> t category	All		*	<u>P</u> ackage	FFG900		Ŧ
Boards	Eamily	Kintex-7		→ Sp	iee <u>d</u> grade	-3		*
	Sub-Family	All Remaining		- I	emp grade	All Remaining		*
			(Reset All Filte	ers			
arch: Q+		3						
wice.	I/O Pin	Available	LUT	FlieFloor	Block	DSDe	Gb	PCI
svice	Count	IOBs	Elements	FilpFlops	RAMs	DOPS	Transceivers	Buses
xc7k325tffg900-3	900	500	203800	407600	445	840	16	1
A CALL STREAM OF A	900	500	254200	508400	795	1540	16	1
cc7k410tffg900-3								
<c7k410tffg900-3< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c7k410tffg900-3<>								
kc7k410tffg900-3								
<c7k410tffg900-3< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c7k410tffg900-3<>								
xc7k410tffg900-3								
cc7k410tffg900-3								
xc7k410tffg900-3								
xc7k410tffg900-3								
xc7k410tffg900-3								

Figure 5-9: Default Part (Customized Window)

Apart from selecting the parts by using the **Parts** option, parts can be selected by choosing the **Boards** option, which brings up the evaluation boards supported by Xilinx[®] (Figure 5-10). With this option, designs can be targeted for the various evaluation boards. If the XCI file of an existing IP was selected in an earlier step, the same part should be selected here.

New Project							L
Default Part Choose a default Xilinx part or boar	d for your project. This c	an be chang	ed later.				A
Specify Filter	Eami				ĩ		
Parts	Packar						
Boards	Speed grad			-			
Search: Q-		Re	set All Filters				
Board	Part	I/O Pin Count	Available IOBs	LUT Elements	FlipFlops	Block RAMs	DSF
Kintex-7 KC705 Evaluation Platform	🔷 xc7k325tffg900-2	900	500	203800	407600	445	840
Virtex-7 VC707 Evaluation Platform	xc7vx485tffg1761-2	1,761	700	303600	607200	1030	2800
ZYNQ-7 ZC702 Evaluation Board	xc7z020clg484-1	484	200	53200	106400	140	220
							×E
					~~ 11		

Figure 5-10: Default Part Boards Option

9. Click **Next** to open the **New Project Summary** page (Figure 5-11). This includes the summary of selected project details.

Figure 5-11: New Project Summary

10. Click **Finish** to complete the project creation.

- 11. Click **IP Catalog** on the **Project Manager** window to open the IP catalog window. The Vivado IP catalog window appears on the right side panel (see Figure 5-12).
- 12. The MIG tool exists in the Memories & Storage Elements > Memory Interface Generators section of the IP catalog window (Figure 5-12) or you can search from the Search tool bar for the string "MIG."

💑 project_22 - [C:/Users/avdhesh	/project_22/project_22.xpr] - Vivado 20	13.3_UB3.0											_	₽×
File Edit Flow Tools Window	ayout View Help										Q+ Set	arch commands		
🯄 😂 📾 💷 🗈 🎼 🗙 🗞	🕨 🚵 🚳 🛞 ∑ 🎯 🔛 Default L	ayout 👻 🗶	ا 🖈 🔅	٤									F	teady
Flow Navigator 🛛 🐇	Project Manager - project_22													×
Q 🔀 🛱	Sources	_ 0	Ŀ"×	Σ Pr	oject Summary 🗙 💷 IP Catalog 🗙								Ο.	×
	역 🛣 😂 📾 🐮 📓 🛃) € S	earch: Q-									
Project Manager					Name	/	1 Version V2	AY14 St	atus	License Evter	nal Re	M NM		
Vis Project Settings	🗈 🤤 Constraints				- RaceIP		(Crown	Boat St		Decred Excer	Marttonn	10111		
Add Sources	Simulation Sources				Basic Elements									
- IP Catalog					Communication & Networking									
 IP Integrator 					Debug & verincation									
🚜 Create Block Design				S .	Embedded Processing									
Dpen Block Design				8	PGA Features and Design									
Senerate Block Design					Mach Punctions Memories & Storage Elements									
	Hierarchy Libraries Compile Order			a	- 🕒 ECC		2.0	Produ	tion Ind	luded D:/Xil	nx/ub	xiinx.com:ip		
 Simulation 	& Sources Templates			6	FIFOs									
🚳 Simulation Settings				i i i i	Memory Interface Generators		2.0 AXI4	Produ	tion Ind	luded D:/Xil	nx/ub	xiinx.com:ip		
Q Run Simulation	IP Propercies	- U	6 1		🗈 🗁 RAMs & ROMs									
4 PTI Analysis			_	E	Constandard Bus Interfaces									2
Deen Elaborated Design	Memory Interface Generator (MIG / Sene Memory Interface Generator)	15)			whate									
	Version: 2.0		<u> </u>	l li										
 Synthesis 	Interfaces: AXI4				Name: Memory Interface Generator (MIG 7 So	eries)								
🚳 Synthesis Settings	Part status: Production				Interfaces: AVI4									
Run Synthesis	License: Included				Description: This Memory Interface Generator is a simple.	menu driven to	ol to generate advance	memory interfaces. This	tool genera	ates HDL and pip p	acement (constraints that	will help	
Open Synthesized Design	TD library in		-		you design your application. Kintex-7 support	s DDR3 SDRAM	1, DDR2 SDRAM, LPDDR	2 SDRAM, QDR II+ SRAM	RLDRAMII	and RLDRAMIII. V	irtex-7 su	pports DDR3 SE	RAM,	2
d Implementation	J remondary. Ip				DDR2 SDRAM, LPDDR2 SDRAM, QDR II+ SRA	M, RLDRAMII	and RLDRAMIII. Artix-7	supports DDR3 SDRAM, D	DR2 SDRAM	1 and LPDDR2 SDR	AM. Zynq	supports DDR3	SDRAM,	
 Implementation Cettings 	Design Runs												- 0 0	×
Dur Implementation	Q Name	Part	Constr	aints	Strategy	Status	Progress	Start	Elapsed	Failed Routes	WNS	TNS WHS	THS 1	rpws
Kan supervised Decision	B-⇔ synth_1	xc7k325tffg900-2	constrs_	1 Vir	rado Synthesis Defaults (Vivado Synthesis 2013)	Not started	0%							
p open implemented besign	impl_1	xc7k325tffg900-2	constrs_	1 Vir	vado Implementation Defaults (Vivado Implementation 2013) Not started	0%							
Program and Debug														
🔞 Bitstream Settings	la													
🚵 Generate Bitstream	his later													
Open Hardware Manager	4													
	*													
	mè .													_
	- 1	1		-										
	Tcl Console 🗋 🖸 Messages 🗌 🗔 Lo	g 🗋 Reports 🛛 🖾 De	sign Runs											

Figure 5-12: IP Catalog Window – Memory Interface Generator

13. Select **MIG 7 Series** to open the MIG tool (Figure 5-13).

	Memory Interface Generator The Memory Interface Generator (MIG customized Verilog or VHDL RTL sour for implementation and simulation.	 creates memory controllers for Xilinx FPGAs. MIG creates complete ce code, pin-out and design constraints for the FPGA selected, and script files
	CORE Generator Options This GUI includes all configurable opti Please note that some of the options s controller. It is very important that the below.	ons along with explanations to aid in generation of the required controller. selected in the CORE Generator Project Options will be used in generation of th correct CORE Generator Project Options are selected. These options are listed
	Selected CORE Generator Project Opti	ions:
Momony	FPGA Family	Kintex-7
wentory	FPGA Part	xc7k325t-ffg900
	Speed Grade	-2
Interface	Synthesis Tool	ISE
	Design Entry	VERILOG
Generator	If any of these options are incorr Options, and restart MIG. This ve not tested with other ISE version	rect, please click on "Cancel", change the CORE Generator Project rrsion of MIG is guaranteed to work with ISE 14.3 and Vivado 2012.3 is or Vivado versions.

Figure 5-13: 7 Series FPGAs Memory Interface Generator FPGA Front Page

Customizing and Generating the Core

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects, defining IP or managed IP projects, and creating block designs.

Multiple Controllers

Select the number of controllers from the **MIG Output Options** page (Figure 5-14). The number of controllers that can be accommodated varies based on the number of banks available in the device and depends on the memory interface configuration chosen (that is, the selected data width and number of banks).

🏹 Xilinx Memory Interface Generator	
Xilinx Memory Interface Generator	MIG Output Options Create Design Select this option to generate a memory controller. Generating a memory controller will create RTL, design constraints (UCF), implementation and simulation files. Verify Pin Changes and Update Design Selecting this feature verifies the modified UCF for a design already generated through MIG. This option will allow you to change the pin out and validate it instantly. It updates the input UCF fit to be compatible with the current version of MIG. While updating the UCF it preserves the pin outs of the input UCF. This option will allow you to change the pin out and validate it instantly. It updates the input UCF fit to be compatible with the Component Name you selected in this page. Component Name Please specify the component name for the memory interface. The design directories will be generated under a directory with this name. Three directories will be created "example_design", 'user_design" and 'doc'. The user_design will contain the generated memory interface. The example application connected to the generated memory interface. Component Name Multi-Controller Up to maximum of 8 controllers with a combination of DDR3 SDRAM, QDRII + SRAM or RLDRAM II can be generated. The number of controllers that can be accommodated may be limited by the data width and the number of banks available in device. Refer user guide for more information Multi-Controller Aumber of Controllers
User Guide Version Info	< Back Next> Cancel

Figure 5-14: MIG Output Options Page

Creating 7 Series FPGA Multicontroller Block Design

Memory Selection

Memory interface selection is different for a multicontroller design compared with a single controller design. Select the number of controllers for each memory interface on the **Memory Selection** page (Figure 5-15).

🏹 Xilinx Memory Interface Generator	
	Memory Selection Select the type of memory interface. Please refer to the User Guide for a detailed list of supported controllers for each FPGA family. The list below shows currently available interface(s) for the specific FPGA and speed grade chosen.
Pin Compatible FPGAs Memory Selection Controller Options C0 C1 C2 C3 AXI Parameter C0 C1 C2 C3 Memory Options C0 C1 C2 C3 Memory Options C0 C1 C2 C3 FPGA Options Extended FPGA Options IO Planning Options Back Selection	Select the Controller Type: DDR3 SDRAM 2 - Enable AXI interface QDRII+ SRAM 1 - RLDRAM II 1 -
CO C1 C2 C3 System Signals Selection Summary Simulation Options PCB Information Design Notes	
User Guide Version Info	< Back Next> Cancel

Figure 5-15: Memory Selection Page

FPGA Options

The Debug option can be selected for one controller only. Debug logic is generated for the selected controller (Figure 5-16).

🍕 Xilinx Memory Interface Generator			×
REFERENCE DESIGN 出	System Clock Choose the desired input clock configuration. Design clock can be Differential System Clock	or Single-Ended. Differential	
Pin Compatible FPGAs 🛛 🖌	Reference Clock Choose the desired reference clock configuration. Reference clock can be Diff Reference Clock Debug Signals Control	erential or Single-Ended. Differential	
Memory Selection	This feature allows various debug signals present in the IP to be monitored on calibration stages. Enabling this feature will connect all the debug signals to th each bus in the debug interface has been grounded so that users can replace Debug Signals for Memory Controller	the ChipScope tool. The debug signals include status signals of various PHY the ChipScope ILA and VIO cores in the example design top module. A part of the grounded signals with the required signals.	
CO C1 C2 C3 Memory Options	This selects the value of Sample Data depth for Chipscope ILA used in Debug Sample Data Depth	Disable C0 - DDR3 SDRAM C1 - DDR3 SDRAM C2 - QDRIIPLUS SRAM C3 - RLDRAM II	
PPGA Options Extended FPGA Options IO Planning Options Bank Selection	Internal Vref Internal Vref can be used to allow the use of the Vref pins as normal IO pins. 2 pins per bank where inputs are used. This setting has no effect on banks wi Internal Vref	This option can only be used at 800 Mbps and lower data rates. This can free th only outputs.	
LU LI L2 L3 System Signals Selection Summary Simulation Options PCB Information Decime Notes	IO Power Reduction	UFs and internal terminations during WRITEs and periods of inactivity	
Design notes	IO Power Reduction	ON	
User Guide Version Info		< <u>B</u> ack <u>N</u> ext> <u>C</u> ancel	

Figure 5-16: FPGA Options Page

Extended FPGA Options Page

Figure 5-17 shows the **Extended FPGA Options** page for a multicontroller design with all three memory interfaces chosen.

🖏 Xilinx Memory Interface Generator		
	Internal Termination for High Range Banks Select the internal termination (IN_TERM) impedance for the H	igh Range (HR) banks. This setting applies only to the HR banks used in the interface.
	Internal Termination Impedance	50 Ohms
Pin Compatible FPGAs Memory Selection Controller Options C0 C1 C2 C3 AXI Parameter C0 C1 C2 C3 Memory Options C0 C1 C2 C3 FPGA Options Extended FPGA Options Bank Selection C0 C1 C2 C3 FPGA Options Extended FPGA Options Bank Selection C0 C1 C2 C3 System Signals Selection Summary Simulation Options PCB Information Design Notes	DDR3 SDRAM Digitally Controlled Impedance (DCI) The DCI (Digitally Controlled Impedance) I/O standards are a standards (SSTL15_T_DCI for DQ's and DIFF_SSTL15_T_DCI User Guide for more information and use IBIS simulation to d DCI Cascading Information Select the DCI Cascade for cascading the DCI reference pins selecting the Master-Slave banks. DCI Cascade QDRII + SRAM Digitally Controlled Impedance (DCI) The DCI (Digitally Controlled Impedance) I/O standards are a standards (HSTL_I_DCI). DCI is not used for Address/Contro IBIS simulation to determine the best termination strategy. DCI for Data and Read Clocks RLDRAM II Digitally Controlled Impedance (DCI) The DCI (Digitally Controlled Impedance) I/O standards are a standards (HSTL_I_DCI). DCI is not used for the Address/Contro IBIS simulation to determine the best termination strategy. DCI for Data and Read Clocks CI for Data and Read Clocks DCI for Data and Read Clocks DCI for Data and Read Clocks	pplied appropriately in High Performance banks. DQ and DQS/DQS# signals utilize DCI for DQS and DQS#). DCI is not used for the Address/Control output signals. Consult the termine the best termination strategy. in the banks to obtain pin efficiency. Refer to the MIG User Guide to know the rules for in the banks to obtain pin efficiency. Refer to the MIG User Guide to know the rules for in the banks to obtain pin efficiency. Refer to the MIG User Guide to know the rules for in the banks to obtain pin efficiency. Refer to the MIG User Guide to know the rules for in and Data Write output signals. Consult the User Guide for more information and use if if upplied appropriately in High Performance banks. Q, CQ/CQ# and QVLD signals utilize DCI is and Data Write output signals. Consult the User Guide for more information and use if upplied appropriately in High Performance banks. DQ and QK/QK# signals utilize DCI ontrol output signals. Consult the User Guide for more information and use IBIS simulation if
User Guide Version Info		< Back Next> Cancel

Figure 5-17: Extended FPGA Options Page

System Clock Pins Selection

Select the system clock pins on the **System Pins Selection** page. System clock pins can be selected for each controller; this varies based on the number of controllers (Figure 5-18).

not e	rential (P/N) pair for b enough pins available s	est performance. This sig such as when fitting a 16 l	nal should be in the address/ bit interface in a single bank.	control	bank, but may be placed in an adjacent bank if ther
	Signal Name	Bank Number	Pin Number]
1	c0_sys_clk_p/n	39 🗸	J13/H13(CC_P/N)	•	
2	c1_sys_clk_p/n	38 -	K19/J18(CC_P/N)	•	
3	c2_sys_clk_p/n	36 🗸	K24/K25(CC_P/N)	•	
4	c3_sys_clk_p/n	18 -	V35/V36(CC_P/N)	-	

Figure 5-18: System Clock Pins Selection Page

System Clock Sharing

The criteria for sharing a system clock pin is as follows:

- System clock pins can be shared across the controllers when the input frequency is the same for the controllers.
- Pins can be shared across the controllers as long as the memory interface chosen banks are in the same column.

 \bigcirc

RECOMMENDED: Although the MIG allows system clock selection to be in different super logic regions (SLRs), it is not recommended due to the additional clock jitter in this topology.

- One CCIO port can drive any number of PLLs and there is no restriction on maximum number of PLLs that a system clock pin can drive. So the same pin can be used for any number of controllers.
- MIG validates the rules after clicking **Next** and following the selection for System Clock pins is done.
- Selecting the same pin indicates the same pin is shared across the controllers.
- One PLL and one MMCM are needed for each controller regardless of system clock pin is shared or not. System clock pin can only be shared and no other resources (PLL or MMCM) are shared across controllers.

Vivado Integrated Design Flow for MIG

1. After clicking **Generate**, the **Generate Output Products** window appears. This window has the **Out-of-Context Settings** as shown in Figure 5-19.

ہ مر 1	The following output products <@xf 🗆 🗙
Prev	ew P-IP mig_7series_0.xci Instantiation Template
	Behavioral Simulation Change Log
	Out-of-Context Settings
	Generate Skip

Figure 5-19: Generate Output Products Window

 Click Out-of-Context Settings to configure generation of synthesized checkpoints. To enable the Out-of-Context flow, enable the check box. To disable the Out-of-Context flow, disable the check box. The default option is Enable as shown in Figure 5-20.

i	ut-of-Context Settings <@xhdl 2 3 Configure the generation of synthesized checkpoints (.dcp) for selected IP and set the number of jobs.
Prev	iew 〕⊧ mig_7series_0.xci
Nurr	iber of jobs: 1 👻

Figure 5-20: Out-of-Context Settings Window

- 3. MIG designs comply with "Hierarchical Design" flow in Vivado. For more information, see the *Vivado Design Suite User Guide: Hierarchical Design* (UG905) [Ref 5] and the *Vivado Design Suite Tutorial: Hierarchical Design* (UG946) [Ref 6].
- 4. After generating the MIG design, the project window appears as shown in Figure 5-21.

project_23 - [C:/Users/avdhest	h/proje	ect_23/project_23.xpr] - Vivado 2013.	3											ļ	- 🗆 🗙
File Edit Flow Tools Window	Layout	View Help										[Q,+ Search comn	ands	
🯄 😂 in 🕫 🗟 🏪 🗙 🛇		🛬 🊳 💥 ∑ 🧑 🖽 Default Layo	ut 💌 🕽	۵ 🕺 🔌 🖉											Ready
Flow Navigator	Pro	ect Manager - project_23													×
९ 🖾 🛱	s	Sources	-	- 0 & ×	Σ	Project Summary	× 👎 IP Catalog 🗙								Ŀ* ×
4 Project Manager	pertie	🔍 🛣 🛱 🖄 🖄 💹			2	Search: 🔍									
🚳 Project Settings	Pro				*		Name		△1 Version	√2 AXI4	Status	License	External Re.	. VLNV	
Add Sources		Instantiation Template (1)			8	E Communic	nents stien % Networking								<u> </u>
📮 IP Catalog		Synthesis (52) Simulation (68)			2	E 🗁 Debug & \	Action is networking /erification								
					2	🗄 🗁 Digital Sigi	nal Processing								
4 IP Integrator						Embedded	t Processing bures and Design								
Greate Block Design						🗄 🙆 Math Fund	tions								
popen Block Design						E C Memories	& Storage Elements		2.0		Desidentias	Yes also die al	111.1.1.1.1.1.1.1.1	- day and a	
Generate Block Design					ล้	FIFOs			2.0		Production	Included	w;/xbuilds/	xiinx.comap	····
▲ Simulation					6	🖃 🗁 Memor	y Interface Generators								
🚳 Simulation Settings					1 <u>*</u>	H-IC PAMe	mory Interface Generator (MIG 7 Se 8 ROMa	ries)	2.0	AXI4	Production	Included	W:/xbuilds/	xilinx.com:ip	··· 🗐
🔍 Run Simulation						🗄 🙆 Standard	Bus Interfaces								
4 DTI Applyric	:					Details									
Open Elaborated Design						Name: N	1emory Interface Generator (M	1IG 7 Series)							_
p por blabor dece bosign						Version: 2	1.0 (Rev. 1)								- 11
4 Synthesis		Historychy III Fourcos Ibravios Comp	la Order			Interfaces: A	XI4				4 10 1 1				-1
🚳 Synthesis Settings	1	A Sources O Templater				d description:	hat will help you design your applicat	tion. Kintex-7 sup	ports DDR3 SDRAM,	DDR2 SDRAM, LPDDR	2 SDRAM, QDR II-	+ SRAM, RLDRA	MII and RLDRAM	II. Virtex-7	
Run Synthesis		66 Sources V Templaces			_	,p									
Open Synthesized Design		Design Runs	1					, , ,		1		1		ı	2 ×
 Implementation 		Name	Part vc7k22Eiffa900-2	Constraints	Viunda	Supharic Dafault	Strategy (Vivado Suptheric 2012)	Status Not started	Progress	Start /	Elapsed	Failed Routes	WNS TNS	WHS TH	IS TPI
Implementation Settings		i → synch_1	xc7k325tffg900-2	constrs_1	Vivado	Implementation D	efaults (Vivado Implementation 2013)	3) Not started	0%	6					
Run Implementation															
> Den Implemented Design															
_															
 Program and Debug 															
6 Bitstream Settings															
Generate Bitstream															
Open Hardware Manager					_										
Launch IMPACT		🔚 Tcl Console 🗌 🗭 Messages 🗌 🔍 Lo	ig 📄 Reports 🖸	💲 Design Runs											

Figure 5-21: Vivado Tool Project Window (After IP Generation)

5. After project creation, the XCI file is added to the Project Hierarchy. The same view also displays the module hierarchies of the user design. The list of HDL and XDC files is available in the **IP Sources** view in the **Sources** window. Double-clicking on any module or file opens the file in the Vivado Editor. These files are read only.

Figure 5-22: Vivado Tool Project Sources Window

Design generation from MIG can be generated using the **Create Design** flow or the **Verify Pin Changes** and **Update Design** flow. There is no difference between the flow when generating the design from the MIG tool. Irrespective of the flow by which designs are generated from the MIG tool, the XCI file is added to the Vivado project. The implementation flow is the same for all scenarios because the flow depends on the XCI file added to the project.

6. All MIG generated user design RTL and XDC files are automatically added to the project. If files are modified and you wish to regenerate them, right-click the XCI file and select **Generate Output Products** (Figure 5-23).

Figure 5-23: Generate RTL and Constraints

7. Clicking **Generate Output Products** option brings up the **Manage Outputs** window (Figure 5-24).

, project_23 - [C:/Users/avdhesł	h/project_23/project_23.xpr] - Vivado 2013.3		
File Edit Flow Tools Window	Layout View Help		Q+ Search commands
🯄 😂 in 🕫 🖬 🗶 👂	🕨 🕅 🚳 🛞 ∑ 🧔 🔚 Default Layout 💿 🛒 🗮 🔌	€)	Ready
Flow Navigator	Project Manager - project_23		×
९ 🛣 🛱	Sources _ D 🗠 ×	∑ Project Summary × 👂 IP Catalog ×	ि ए ×
Project Manager		±II Search: Q-	
Roject Settings	Design Sources (2) Design Sources (2) Design Sources (2) Design Sources (2)	Name	√ ¹ Version ∇ ² AXI4 Status License External Re VLNV
Add Sources	Configuration Files (1)	Basic Elements	
💶 IP Catalog	Constraints Dec Smulation Sources (1)	B Cobug & Verification	
4 Th Telescoles	⊡ 🔂 sim_1 (1)	Concersion	
Create Block Decision	mig_7series_0 (mig_7series_0.xcl)		
Create block Design		The following output products will be generated.	
Generate Block Design	Hierarchy IP Sources Libraries Compile Order	Generate Options	2.0 Production Included W:/xbuilds/ xilinx.com:ip
	& Sources P Templates	Generate Synthesized Checkpoint (.dcp)	
 Simulation 	Source File Properties _ C X	C Dravinu	2.0 AX14 Production Included W:/xbuilds/ xiinx.com/jp
Simulation Settings		Content	
🔍 Run Simulation	G mig_7series_0.xci	- Instantiation Template	
RTL Analysis	Vendor: Xilinx, Inc.	RTL Sources	
👂 📸 Open Elaborated Design	IP lbrary: ip 🛁		eries)
4 Supplierie	IP state: Customized		
Synthesis Settings			menu driven tool to generate advanced memory interfaces. This tool generates HDL and pin placement constraints that will 🗾
Run Synthesis	General Properties IP		pports DDR3 SDRAM, DDR2 SDRAM, LPDDR2 SDRAM, QDR II+ SRAM, RLDRAMII and RLDRAMIII. Virtex-7 supports DDR3
D Den Synthesized Design	Design Runs		
	Name Part Constraints	Generate Skip	atus Progress Start Elapsed Failed Routes WNS TNS WHS THS TPWS
 Implementation 		Wyado	karted 0%
Construction Settings	mp_1 xc/k325trrg900-2 constrs_1	vivado Implemencación Deradics (vivado Implemencación 2013) Nocis	scarced 0%
Run Implementation	*		
P Br Open implemented besign	14		
Program and Debug	10-		
🔞 Bitstream Settings	4		
🚵 Generate Bitstream			
Open Hardware Manager			
Se Launch IMPACT	🔚 Tcl Console 💭 Messages 🔤 Log 🔚 Reports 🖄 Design Runs		
Generate HDL files			

8. All user-design RTL files and constraints files (XDC files) can be viewed in the **Sources** > **Libraries** tab (Figure 5-25).

🚴 project_23 - [C:/Users/avdhesh/p	roject_23/project_23.xpr] - Vivado 2013.3									
File Edit Flow Tools Window Lay	yout View Help							Γ	Q - Search comm	ands
🯄 😂 10 UT 🗎 🏗 🗙 🗞	🕨 🚵 🚳 🞉 ∑ 🔛 Default Layout 💿 😿 🔌	🔭 🔊								Ready
Flow Navigator	Project Manager - project_23									×
Q 🛣 🖨	Sources _ C	e ×	Σ	Project Summary 🗙 🐓 IP Catalog 🗙						
	🕴 🔍 🛣 🖨 🗃 🔂 🛃		Ξ	Search: Q.v						
4 Project Manager		1		Source In Contraction						
🚳 Project Settings 🗧	B → P → min 7series Ω (122)	-	1	Name	∠1 Versio	n ⊽² AXI•	4 Status	License	External Re	VLNV
Add Sources	Instantiation Template (1)		8	H C Automotive & Industrial						
TD Cabalan	😑 🎲 Synthesis (52)			AXI Infrastructure						
- IP Catalog	- Dig_7series_0.xdc		1	B C BaselP						
	mig_7series_v2_0_ck_ibuf.v		123	Basic Elements						
 IP Integrator 	- 🚱 • mig_7series_v2_0_infrastructure.v			Communication & Networking						
👬 Create Block Design	mig_7series_v2_0_jodelay_ctrl.v		1 54	Contraction Deputy of Venincation						
Coreo Block Design	mig_7series_v2_0_tempmon.v		8	B C Digital Signal Processing						
	mig_/series_v2_0_arb_mux.v			Enclanded Processing						
Generate Block Design	• mig_/series_v2_0_arb_row_col.v			Produces and Design						
	a mig_rseries_v2_0_arb_select.v		9	Mauriculis						
 Simulation 	mig_/series_v2_0_bank_criter.v		A	- Memories & Storage Liements	2.0		Duraduration	Technical	111.1.4.4.4.4.4.4	. Anno 1997 in
Simulation Settings	mig_rseries_v2_0_bank_comment.v		<u> </u>		2.0		Production	Included	w:/xbuilds/	xiinx.com:ip
Due Circulation	- min Zseries v2 0 bank marh.v									
Kur Sindiscon	mig 7series v2 0 bank gueue.v			Henory Internace Generators	0.0	45/74	Due due Mare	to de de d	COLUMN AND ADDRESS	- Barris and the
	- 👔 • mig 7series v2 0 bank state.v			- Memory Internace Generator (MIG / Series)	2.0	AX14	Produccion	Included	w:)xbuilds)	xiinx.com:ip
R IL Analysis	- 20 • mig_7series_v2_0_col_mach.v			E De Chendred Des Teberfanne						
Den Elaborated Design	- 20 • mig_7series_v2_0_mc.v			ter 💋 Standard bus interraces						
	- 😰 • mig_7series_v2_0_rank_cntrl.v			True video a tinage Processing						
A Synthesis	mig_7series_v2_0_rank_common.v									
Synthesis Settings	mig_7series_v2_0_rank_mach.v									
synancis socargo	mig_7series_v2_0_round_robin_arb.v									
Run Synthesis	• mig_/series_v2_0_ecc_bur.v									
Open Synthesized Design	• mig_/series_v2_0_ecc_dec_rix.v									
	mig_rseries_v2_0_ecc_gen.v]						
Implementation	a min Zseries v2 0 memo ui top std v			Details						
A Implementation Settings	• mig_rseries_v2_0_mem.cd_cop_starv			Select an IP to see details						
vo implementation seconds	• mig 7series v2 0 ddr byte group jo.v									
Run Implementation	👔 • mig 7series v2 0 ddr byte lane.v									
Open Implemented Design	mig_7series_v2_0_ddr_calib_top.v									
	- go • mig_7series_v2_0_ddr_if_post_fifo.v									
4 Program and Debug	- 😰 • mig_7series_v2_0_ddr_mc_phy.v	_								
A Photosom Soldinar	mig_7series_v2_0_ddr_mc_phy_wrapper.v	-								
vo bitstream Settings	mig_7series_v2_0_ddr_of_pre_fifo.v									
Cenerate Bitstream	Hierarchy IP Sources Libraries Compile Order									
Open Hardware Manager	& Sources 🖓 Templates			1						
S Launch MPACT	📓 🔎 🔍 🛅 🕰 Design Runs									
Generated Data: mig. Zseries. 0.xdc			_							

Figure 5-25: Vivado Project – RTL and Constraints Files

9. The Vivado Design Suite supports **Open IP Example Design** flow. To create the example design using this flow right-click the IP in the **Source Window**, as shown in Figure 5-26 and select.

🍌 project_23 - [C:/Users/avdhesh/p	oroje	ct_23/project_23.xpr] - Vivado 2013.3											_ 🗆 ×
File Edit Flow Tools Window Lay	ryout	View Help								0	λ+ Search com	mands	
🯄 😂 101 🖓 🗎 🐘 🗙 🗞	▶ 3	🚵 🊳 🐝 ∑ 🧔 🔛 Default Layout	Ŧ	🗶 🚸 🎉 😣									Ready
Flow Navigator 🦇 🖡	Proj	ect Manager - project_23											×
Q 🔀 🛱	~	Sources		_ □ L ² × Droject Summary >	🛿 🞐 IP Catalog 🛛 🗙								Ľª ×
	ette	🔍 🛣 🖨 🗁 🐮 📓 🖪		Search: Q-									
Project Manager	de i	E Spesign Sources (2)			Name		(1 Varcino 52	0.714	Catur	Licence	External Re	VINV	
Kis Project Settings	0	mig_7series_0 (mig_7series_0.xci)			Ivanic		Col Version 10-	Bolt	JAdius	License	External Ko	··· VE144	I
Add Sources		Configuration Files (1) Constraints		Source Node Properties Ctrl+E									
🖵 IP Catalog		Constraints Simulation Sources (1)	£X.	Re-customize IP	& Networking								
d TD Telescoles				Generate Output Products	ación								
Craste Plade Decise				Reset Output Products	essing								
Create block Design				Update IP	and Design								
Open Block Design				Copy IP	una Classada								
Generate Block Design				Open IP Example Design	rage Elements		2.0		Production	Included	W: (shuilds)		
4 Simulation			-	IP Documentation						Li felo de d	in the analytic	in sensered in	
Sinulation Sottings				Replace File	orface Generators								
Bue Conductor				Casu Ela Jaka Duciesti	Interface Generator (MIG 7 Series)	2.0 AX	[4	Production	Included	W:/xbuilds/	xilinx.com:ip	
www.Run Simulation				Copy File Title Tele Dusing Albert	75								
A RTL Analysis				Copy Air Hes Into Project Ait+1									
Den Elaborated Design			^	Remove Hile from Project Delete	ory Interface Generator (MIG	7 Series)							-
				Enable Hie Alt+Equals	ev. 1)								
4 Synthesis		-		Disable File Alt+Minus	_								-1
🚳 Synthesis Settings		Hierarchy IP Sources Libraries Comple Order		Hierarchy Update	emory Interface Generator is a sin Il belo you design your application	npie menu dr . Kintex-7 su	riven tool to generate advar innorts DDR3 SDRAM, DDR2	SDRAM, LPDDR2 SDR	es. This tool RAM. ODR IT-	enerates HDL ar SRAM, RIDRAM	nd pin placeme 111 and RI DRA	nt constraints MIII. Virtex-7	
🔈 Run Synthesis		& Sources V Templates	ø	Refresh Hierarchy	intelp you design your application	riancex 7 se		Servin, a serve ser	CHIN QUICH	Didney reprove		The second se	
Open Synthesized Design		Design Runs		IP Hierarchy	•							_ 🗆	Ľ×.
		Name P		Set as Top	stegy	Status	Progress	Start	Elapsed	Failed Routes	WNS TN	S WHS TH	-IS TP\
4 Implementation				Set File Type	ado Synthesis 2013)	Vot started	0%						
🚳 Implementation Settings		→ impl_1 xc7k325		Set Used In	s (Vivado Implementation 2013)	Not started	0%						
Run Implementation		*		Edit Canatazinta Cata	-								
Den Implemented Design				Edit Constraints Sets									
				Edit Sindiadon Sets	_								
4 Program and Debug			8	Add Sources Alt+A									
6 Bitstream Settings		41											
📸 Generate Bitstream		-7											
Den Hardware Manager		🔤 🔹											
Launch MPACT		🚊 Tcl Console 🗋 🗩 Messages 🖉 Log 🗋 Rep	orts	🔹 Design Runs									
Open Example	_		-										

Figure 5-26: Open IP Example Design

10. This option creates a new Vivado project. Selecting the menu brings up a dialog box, which guides you to the directory for a new design project. Select a directory (or use the defaults) and click **OK**.

This launches a new Vivado project with all example design files and a copy of the IP. This project has example_top as the Implementation top directory, and sim_tb_top as the Simulation top directory, as shown in Figure 5-27.

kmig_7series_0_example - [c:/Users/-	/avdhesh/project_23/nig_7series_0_example/mig_7series_0_example/mig_7series_0_example/xpr]- Vivado 2013.3	
File Edit Flow Tools Window Layou	Qr Search commands	
🯄 😂 📾 🕫 🎼 🐘 🗙 🔈 🕨	🐮 🗞 🛞 ∑ 🤢 🔤 Default Layout 💦 💘 🛞 📉 😫	Ready
Flow Navigator « Pr	roject Manager - mig_7series_0_example	×
Q 🛣 🖨 👘	Sources	2 × 5
Project Manager Genetics Settings Add Sources Proted Settings Proted Settings Protedseg Proted Settings Create Block Design	Image: Section 200 Image: Section 200 Project Settings	*
Open Block Design Generate Block Design Simulation G Simulation Settings M Run Simulation	Ligger Amer: Linker / K./ De traduation Harrow Linker / K./ Harrow Linker / K.	I-FF ash,
 RTL Analysis 	Synthesis A Implementation	
 Den Elaborated Design Synthesis 	Image: Status: → Not started Status: → Not started Image: Status: → Not started Status: → Not started Image: Status: → Not started Status: → Not started	-
Synthesis Settings	A Sources C Tendates	Ľ
Kun Synthesis Onen Synthesized Design	Desim Runs	- ×
Implementation	Name Part Constraints Strategy Status Progress Start Elapsed Failed Routes WN5 TNS WH5 V= 0- synth_1 xx/7323Ffrg00-2 constra_11 Wx80 Synthesis Defaults (Wx80 Synthesis 2013) Not started 0% WK5 TNS WK5 <	THS
Implementation Security Run Implementation Pierror Implemented Design Program and Debug		
 Bitstream Settings Generate Bitstream Goner Hardware Manager Launch IMPACT 	I I Console C Messages Q Log Approtà & Design Runs	

Figure 5-27: Example Design Project

11. Click **Generate Bitstream** under **Project Manager > Program and Debug** to generate the BIT file for the generated design.

The <project directory>/<project directory>.runs/ impl_1 directory includes all report files generated for the project after running the implementation. It is also possible to run the simulation in this project.

12. Recustomization of the MIG IP core can be done by using the **Recustomize IP** option. It is not recommended to recustomize the IP in the example_design project. The correct solution is to close the example_design project, go back to original project and customize there. Right-click the XCI file and click **Recustomize IP** (Figure 5-28) to open the MIG GUI and regenerate the design with the preferred options.

🗼 mig_/series_0_example - [c;/Users/avdhesh/project_23/mig_/series_0_example/mig_/series_0_example/xpr] - Vivado 2013.3																
File Edit Flow Tools Window L	File Edit Flow Tools Window Layout View Help															
🯄 🚵 101 🖓 🗎 🐘 🗙 🗞	🕨 🐮 🚳 🛞 🔽 🥥 🖼	Defau	it Layout 👻 🕷 🔌	3 🍂												Ready
Flow Navigator	Project Manager - mig_7series_	0_exa	mple													×
🔍 🖾 🖨	Sources		- 0 0	× Σ	Project Summa	nry X										1 e × l
Project Manager	🔍 🖾 🛱 🖄 🖏 🛃				Project Settir	igs									Edit	*
🚯 Project Settings	Design Sources (2)	_			Project name:	mig_7series_0_example										
Add Sources	Configuration Files (1)	6	Source Node Properties	Ctrl+E	roduct family:	Kintex-7										
🖵 IP Catalog	Constraints Simulation Sources (1)	£X.	Re-customize IP		Project part:	Kintex-7 KC705 Evaluation Platfor	m (xc7k325tffg	900-2)								
			Generate Output Products		op module nan	ne: <u>miq 7series 0</u>										- 11
IP Integrator			Reset Output Products		Board											*
Greate Block Design			Update IP		Display name:	Kintex-7 KC705 Evaluation Platform										
Open Block Design			Copy IP		loard name:	xiinx.com:kintex7:kc705:1.1										
Generate Block Design	Hierarchy IP Sources Librarie	₩.	Open IP Example Design		loard file:	W:\xbuilds\2013.3_daily_latest\inst	alls\nt64\Vivado	\2013.3\data\boar	ds\kintex7\KC7	05\1_1\board.	xml					
 Simulation 	& Sources V Templates		IP Documentation		JRL:	www.xilinx.com/kc705										
Simulation Settings	Source File Properties		Replace File		loard overview	The KC705 board is intended to sh	wcase and dem	onstrate Kintex-7 t	echnology. The	KC705 board	utilizes Xilinx K	intex-7 XC7K325	T-FFG900 de	vice. The	board	
Run Simulation	🗲 🔶 🍋 🏷	•	Copy File Into Project			includes Gigabit Tri-Mode Ethernet f Debug connectors and R5232 serial	4AC/PHY, 512M port.'	B DDR3 SDRAM SO	DIMM memory,	128MB BPI Line	ear Flash, 128	MB of Platform Fl	ash, 1KB IIC	EEPROM	, CPU	
	Image: wig_7series_0.xci		Copy All Files Into Project	Alt+I												
 RTL Analysis 	Vendor: Xilinx, Inc.	×	Remove File from Project	Delete	synthesis			*	Implement	ation						*
Den Elaborated Design	IP library: ip		Enable File	Alt+Equal	Status: 🛋	Not started			Status:	-	Not started					
4 Synthesis	IP state: Generated		Disable File	Alt+Minus	Messages: No	errors or warnings			Messages:	No e	errors or warn	ings				
🚯 Synthesis Settings			Hierarchy Update		Part: xc	7k325tffg900-2			Part:	×c7	k325tffg900-2					
Run Synthesis	General Properties IP	ø	Refresh Hierarchy		Strategy: Vi	ado Svnthesis Defaults			Orshamz	Uioa	ado Implement	ation Defaulte				<u> </u>
Open Synthesized Design	Design Runs		IP Hierarchy		•										_ 0	e ×
	Q Name	•	Set as Top		_	Strategy	Status	Progress		Start	Elapsed	Failed Routes	WNS T	NS W	HS TH	S TPW
 Implementation 	🔀 ⊡ 🖙 synth_1		Set File Type		Synthesis Defa	ults (Vivado Synthesis 2013)	Not started		0%							
	i⇒ impl_1		Set Used In		Implementation	Defaults (Vivado Implementation 201	Not started		0%							
Run Implementation			Edit Constraints Sets													
Open Implemented Design	M		Edit Simulation Sets		_											
 Program and Debug 	₩	8	Add Sources	Alt+A												
🚳 Bitstream Settings	4															
🚵 Generate Bitstream																
👂 📸 Open Hardware Manager	1 III III IIII IIII IIII IIII IIII III															
Launch iMPACT	Td Console O Message	5 J. 🛛	Log 📘 Reports 🖄 Design	Runs									_			
Re-customize the selected core																

Figure 5-28: Recustomize IP

Invoking the MIG tool from the Vivado Design Suite is the same as with single controller designs. See the appropriate memory interface chapter in this document for more information. The MIG GUI pages that are different for multicontroller designs are explained in this chapter.

Directory Structure

The MIG output directory structure is slightly different for the user design RTL folder compared with the single controller design. The user design RTL folder contains the subfolders for each memory interface, and related RTL files are generated in the corresponding memory interface folders. All chosen memory interfaces for multicontroller designs are shown here.

ò	mig_	7seri	es_v	4_1	
		docs			
		exan	nple_	_desi	gn
		ò	par		
		ò	rtl		
				traf	fic_gen
		ò	sim		
		ò	synt	h	
	i	user	_des	ign	
		i	rtl		
			ò	cloc	king
				ò	ddr3_sdram
				ò	controller
				ò	ecc
				ò	ip_top
				ò	phy
				ò	ui
			<u>ت</u>	qdr	iiplus_sram
				ò	phy
			ò	rldr	am_ii
				ò	controller
				ò	ip_top
					phy
				ò	ui
		ò	xdc		

Chapter 6

Upgrading the ISE/CORE Generator MIG Core in Vivado

To upgrade the previous version of the Memory Interface Generator (MIG) IP cores which are generated using either ISE[®] or CORE Generator[™], tools cannot be upgraded in a direct manner similar to other IPs. Here is the process to upgrade the ISE/CORE Generator MIG core in Vivado[®].

- 1. This requires the mig.prj file of the MIG core generated using ISE or CORE Generator.
- 2. Invoke Vivado with the same FPGA part settings that the earlier core is generated with.
- 3. Apply the following command in the Tcl Console of Vivado to create the IP:

create_ip -name mig_7series -version <latest version> -vendor xilinx.com -library ip
-module_name <component_name>

For example,

create_ip -name mig_7series -version 4.1 -vendor xilinx.com -library ip -module_name
mig_7series_0

4. Apply the following command to generate the core with the previous MIG project settings:

set_property CONFIG.XML_INPUT_FILE {<absolute path of the old core mig.prj>}
[get_ips <ip_name>]

For example,

set_property CONFIG.XML_INPUT_FILE
{/proj/mig/users/coregen_core/mig_7series_v4_1/mig.prj} [get_ips mig_7series_0]

5. You can see the core created in the Hierarchy.

Appendix A

General Memory Routing Guidelines

- 1. Include package delay in routing constraints when determining signal trace lengths. When minimum and maximum values are available for the package delay, use the midpoint between the minimum and maximum values.
- 2. DQ and DQS signals in the same byte should be routed in the same layer from FPGA to DRAM, except in the breakout areas.
- 3. For fly-by routing, address, command, control, and clock signals can be routed on different layers but each signal needs to be routed consistently in one layer across all DRAMs. Any signal layer switching via needs to have one ground via within a 50 mil perimeter range.
- 4. Ensure the memory ODT settings match transmission line impedance.

5. ck as shown in Figure A-1.

Figure A-1: System Clock

6. Signal lines must be routed over a solid reference plane. Avoid routing over voids (Figure A-2).

UG583_c2_13_050614

Figure A-2: Signal Routing Over Solid Reference Plane

7. Avoid routing over reference plane splits (Figure A-3).

Figure A-3: Signal Routing Over Reference Plane Split

8. Keep the routing at least 30 mils away from the reference plane and void edges with the exception of breakout regions (Figure A-2).

9. In the breakout region, route signal lines in the middle of the via void aperture. Avoid routing at the edge of via voids (Figure A-4).

Figure A-4: Breakout Region Routing

10. Use chevron-style routing to allow for ground stitch vias (Figure A-5).

Figure A-5: Example of Ground Stitching

11. Add ground vias as much as possible around the edges of the device and inside the device to make a better ground return path for signals and power, especially corners. Corner or edge balls are generally less populated as grounds.

12. For ADDR/CMD/CTRL V_{TT} termination, every four termination resistors should be accompanied by one 1.0 μ F capacitor, physically interleaving among resistors, as shown in Figure A-6.

Figure A-6: Example of V_{TT} Termination Placement

13. To optimize the signal routing, the recommendation for one component placement is shown in Figure A-7.

Figure A-7: Component Placement Recommendations for One Component

For five components, the recommendation is shown in Figure A-8.

Figure A-8: Component Placement Recommendations for Five Components

Note: For more information on routing constraints for total length/delay constraints, see the corresponding memory in *UltraScale Architecture PCB Design User Guide* (UG583) [Ref 25].

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado[®] IDE, select **Help > Documentation and Tutorials**.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnay.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

Unless otherwise noted, IP references are for the product documentation page. These references provide supplemental information useful for this document:

- 1. Zynq-7000 All Programmable SoC and 7 Series Devices Memory Interface Solutions Data Sheet (DS176)
- 2. 7 Series FPGAs SelectIO[™] Resources User Guide (UG471)
- 3. 7 Series FPGAs Packaging and Pinout Specification (UG475)
- 4. ARM[®] AMBA[®] Specifications
- 5. Vivado[®] Design Suite User Guide: Hierarchical Design (UG905)
- 6. Vivado Design Suite Tutorial: Hierarchical Design (UG946)
- 7. Vivado Design Suite User Guide: Designing with IP (UG896)
- 8. Vivado Design Suite User Guide: Logic Simulation (UG900)
- 9. Embedded System Tools Reference Manual (UG111)
- 10. 7 Series FPGAs Clocking Resources User Guide (UG472)
- 11. XADC Wizard v2.4 LogiCORE IP Product Guide (PG091)
- 12. 7 Series FPGAs PCB Design and Pin Planning Guide (UG483)
- 13. 7 Series FPGAs Data Sheets
- 14. DDR2-533 Memory Design Guide For Two-DIMM Unbuffered Systems. Micron Technology, Inc., (TN-47-01)
- 15. Xilinx Timing Constraints User Guide (UG612)
- 16. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 17. Command Line Tools User Guide, COMPXLIB (UG628)
- 18. Synthesis and Simulation Design Guide (UG626)
- 19. PlanAhead[™] Design Analysis tool
- 20. Virtex[®]-5 FPGA ML561 Memory Interfaces Development Board User Guide (UG199)
- 21. JESD79-3E, DDR3 SDRAM Standard, JEDEC® Solid State Technology Association
- 22. "Improving DDR SDRAM Efficiency with a Reordering Controller", XCELL Journal Issue 69
- 23. AXI Multi-Ported Memory Controller (XAPP739)
- 24. ISE[®] to Vivado Design Suite Migration Guide (UG911)
- 25. UltraScale™ Architecture PCB Design User Guide (UG583)

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2011–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.