
Floating-Point
Operator v7.1

LogiCORE IP Product Guide

Vivado Design Suite
PG060 December 16, 2020

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 2
Core Overview . 2
Unsupported Features. 2
Licensing and Ordering . 3

Chapter 2: Product Specification
Standards . 4
Performance. 6
Resource Utilization. 7
Port Descriptions . 8

Chapter 3: Designing with the Core
General Design Guidelines . 14
Accumulator Design Guidelines . 17
Clocking. 19
Resets . 20
Protocol Description . 20

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 28
Constraining the Core . 38
Simulation . 39
Synthesis and Implementation . 39

Chapter 5: C Model
Features . 40
Overview . 40
Unpacking and Model Contents . 41
Installation . 42
C Model Interface. 42
Compiling . 62
Floating-Point Operator v7.1 2
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=2

Linking. 63
Dependent Libraries . 64
Example . 65

Chapter 6: Test Bench
Demonstration Test Bench . 67

Appendix A: Upgrading
Migrating to the Vivado Design Suite. 69
Upgrading in the Vivado Design Suite . 69

Appendix B: Debugging
Finding Help on Xilinx.com . 73
Debug Tools . 74
Simulation Debug. 75
AXI4-Stream Interface Debug . 75

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 76
Documentation Navigator and Design Hubs . 76
References . 76
Revision History . 77
Please Read: Important Legal Notices . 78
Floating-Point Operator v7.1 3
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=3

Floating-Point Operator v7.1 1
PG060 December 16, 2020 www.xilinx.com Product Specification

Introduction
The Xilinx® Floating-Point Operator core
provides you with the means to perform
floating-point arithmetic on an FPGA. The core
can be customized for operation, wordlength,
latency and interface.

Features
• Supported operators:

° Multiply
° Add/subtract
° Accumulator
° Fused multiply-add
° Divide
° Square-root
° Comparison
° Reciprocal
° Reciprocal square root
° Absolute value
° Natural logarithm
° Exponential
° Conversion from floating-point to

fixed-point
° Conversion from fixed-point to

floating-point
° Conversion between floating-point

types
° Unfused multiply-add
° Unfused multiply-accumulator
° Accumulator primitive

• Compliance with IEEE-754 Standard [Ref 1]
(with only minor documented deviations)

• Parameterized fraction and exponent
wordlengths for most operators

• Optimizations for speed and latency

• Fully synchronous design using a single
clock

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported Device
Family(1)

UltraScale+™
UltraScale™

Versal™ ACAP
Zynq®-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web
page

Provided with Core
Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation Model Encrypted VHDL, C Model
Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Release Notes and
Known Issues AR: 54504

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. For the supported versions of third-party tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=floating-point.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=floating-point.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/support/answers/54504.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+release+notes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=4

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions

° Clocking

° Resets

° Customizing and Generating the Core

° C Model

Core Overview
The Xilinx Floating-Point Operator core allows a range of floating-point arithmetic
operations to be performed on FPGA. The operation is specified when the core is
generated, and each operation variant has a common interface. This interface is shown in
Figure 2-1.

Unsupported Features
See Standards.
Floating-Point Operator v7.1 2
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=5

Chapter 1: Overview
Licensing and Ordering
This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx
Vivado® Design Suite under the terms of the Xilinx End User License. Information about
this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property
page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.
Floating-Point Operator v7.1 3
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=6

Chapter 2

Product Specification

Standards
IEEE-754 Support
The Xilinx® Floating-Point Operator core complies with much of the IEEE-754 Standard
[Ref 1]. The deviations generally provide a better trade-off of resources against
functionality. Specifically, the core deviates in the following ways:

• Non-Standard Wordlengths
• Denormalized Numbers
• Rounding Modes
• Signaling and Quiet NaNs

Non-Standard Wordlengths

The Xilinx Floating-Point Operator core supports a different range of fraction and exponent
wordlength than defined in the IEEE-754 Standard.

Basic Formats:

• binary16 (Half Precision Format) – Uses 16 bits, with an 11-bit fraction and 5-bit
exponent.

• binary32 (Single Precision Format) – Uses 32 bits, with a 24-bit fraction and 8-bit
exponent.

• binary64 (Double Precision Format) – Uses 64 bits, with a 53-bit fraction and 11-bit
exponent.

• binary128 (Quadruple Format) – not supported

Extendable Precision Formats (not available on all operators):

• Uses up to 80 bits.
• Exponent width of 4 to 16 bits.
Floating-Point Operator v7.1 4
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=7

Chapter 2: Product Specification
• Fraction width of 4 to 64 bits
Note: Limitations apply based on exponent width. See the Vivado® Integrated Design
Environment for actual ranges.

Denormalized Numbers

The exponent limits the size of numbers that can be represented. It is possible to extend the
range for small numbers using the minimum exponent value (0) and allowing the fraction to
become denormalized. That is, the hidden bit becomes zero such that

. Now the value is given by:

These denormalized numbers are extremely small. For example, with single precision the
value is bounded . As such, in most practical calculation they do not contribute to
the end result. Furthermore, as the denormalized value becomes smaller, it is represented
with fewer bits and the relative rounding error introduced by each operation is increased.

The Xilinx Floating-Point Operator core does not support denormalized numbers for most
operators. In FPGAs, the dynamic range can be increased using fewer resources by
increasing the size of the exponent (and a 1-bit increase for single precision increases the
range by). If necessary, the overall wordlength of the format can be maintained by an
associated decrease in the wordlength of the fraction.

To provide robustness, the core treats denormalized operands as zero with a sign taken
from the denormalized number. Results that would have been denormalized are set to an
appropriately signed zero.

The exception to the above rules is the absolute value operator, which propagates
denormalized operands to the output.

The support for denormalized numbers cannot be switched off on some processors.
Therefore, there might be very small differences between values generated by the
Floating-Point Operator core and a program running on a conventional processor when
numbers are very small. If such differences must be avoided, the arithmetic model on the
conventional processor should include a simple check for denormalized numbers. This
check should set the output of an operation to zero when denormalized numbers are
detected to correctly reflect what happens in the FPGA implementation.

Rounding Modes

Only the default rounding mode, Round to Nearest (as defined by the IEEE-754 Standard
[Ref 1]), is supported on most operators. This mode is often referred to as Round to Nearest
Even, as values are rounded to the nearest representable value, with ties rounded to the
nearest value with a zero least significant bit. The accumulator operator only supports

b0
b0.b1b2…bp 1– 1<

v 1–()s2
2we 1– 2–
 –

0.b1b2…bwf 1–=

v 2 126–<

2256
Floating-Point Operator v7.1 5
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=8

Chapter 2: Product Specification
Round Towards Zero. The float-to-fixed operator uses Round to Nearest which differs from
the behavior of the C language when casting floating-point values to integers.

Signaling and Quiet NaNs

The IEEE-754 Standard requires provision of Signaling and Quiet NaNs. However, the Xilinx
Floating-Point Operator core treats all NaNs as Quiet NaNs. When any NaN is supplied as
one of the operands to the core, the result is a Quiet NaN, and an invalid operation
exception is not raised (as would be the case for signaling NaNs). The exceptions to this rule
are floating-point to fixed-point conversion and the absolute value operator. For detailed
information of the floating-point to fixed-point conversion, see the behavior of
INVALID_OP. For the absolute value operator, Signaling NaNs are propagated from input to
output.

Accuracy of Results

Compliance to the IEEE-754 Standard requires that elementary arithmetic operations
produce results accurate to half of one Unit in the Last Place (ULP). The Xilinx Floating-Point
Operator satisfies this requirement for the multiply, add/subtract, fused multiply-add,
divide, square-root and conversion operators.

• The reciprocal, reciprocal square-root, logarithm and exponential operators produce
results which are accurate to one ULP. The accuracy of the accumulator operator is
variable. See Accumulator Design Guidelines. For half precision format, the reciprocal
and reciprocal square root operators are accurate to one half ULP.

• The unfused multiply-add and unfused multiply-acc implementations using DSP58
incur rounding after both the mult and add/acc stages and therefore have a minimum
accuracy of 1 ULP.

Performance
Latency
The latency of most operators can be set between 0 and a maximum value that is
dependent upon the parameters chosen. The maximum latency of the Floating-Point
Operator core for all operators can be found on the Vivado Integrated Design Environment
(IDE).

Note: The accumulator operator has a minimum latency of 1 clock cycle.

The maximum latency of the divide and square root operations is Fraction Width + 4, and
for compare operation it is two cycles. The float-to-float conversion operation is three
cycles when either fraction or exponent width is being reduced; otherwise it is two cycles. It
Floating-Point Operator v7.1 6
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=9

Chapter 2: Product Specification
is two cycles, even when the input and result widths are the same, as the core provides
conditioning in this situation. For more information, see Cycles per Operation.

Resource Utilization
For details about performance, visit Performance and Resource Utilization.
Floating-Point Operator v7.1 7
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=floating-point.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=10

Chapter 2: Product Specification
Port Descriptions

The ports employed by the core are shown in Figure 2-1. They are described in more detail
in Table 2-1. All control signals are active-High with the exception of aresetn.

X-Ref Target - Figure 2-1

Figure 2-1: Core Schematic Symbol

Table 2-1: Core Signal Pinout
Name Direction Description

aclk Input Rising-edge clock
aclken Input Active-High clock enable (optional)

s_axis_a_tdata

s_axis_a_tvalid

s_axis_a_tready

s_axis_b_tdata

s_axis_b_tvalid

s_axis_b_tready

s_axis_b_tuser

aclk
aresetn
aclken

m_axis_result_tdata

m_axis_result_tvalid

m_axis_result_tready

m_axis_result_tuser

m_axis_result_tlast

X13146

s_axis_a_tuser

s_axis_a_tlast

s_axis_b_tlast

s_axis_operation_tdata

s_axis_operation_tvalid

s_axis_operation_tready

s_axis_operation_tuser

s_axis_operation_tlast

s_axis_c_tdata

s_axis_c_tvalid

s_axis_c_tready

s_axis_c_tuser

s_axis_c_tlast
Floating-Point Operator v7.1 8
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=11

Chapter 2: Product Specification
All AXI4-Stream port names are lower case, but for ease of visualization, upper case is used
in this document when referring to port name suffixes, such as TDATA or TLAST.

aresetn Input Active-Low synchronous clear (optional), always takes
priority over aclken). This signal must be asserted for a
minimum of 2 clock cycles.

s_axis_a_tvalid Input TVALID for channel A
s_axis_a_tready Output TREADY for channel A
s_axis_a_tdata Input TDATA for channel A. See TDATA Packing for internal

structure
s_axis_a_tuser Input TUSER for channel A
s_axis_a_tlast Input TLAST for channel A
s_axis_b_tvalid Input TVALID for channel B
s_axis_b_tready Output TREADY for channel B
s_axis_b_tdata Input TDATA for channel B. See TDATA Packing for internal

structure
s_axis_b_tuser Input TUSER for channel B
s_axis_b_tlast Input TLAST for channel B
s_axis_c_tvalid Input TVALID for channel C
s_axis_c_tready Output TREADY for channel C
s_axis_c_tdata Input TDATA for channel C. See TDATA Packing for internal

structure
s_axis_c_tuser Input TUSER for channel C
s_axis_c_tlast Input TLAST for channel C
s_axis_operation_tvalid Input TVALID for channel OPERATION
s_axis_operation_tready Output TREADY for channel OPERATION
s_axis_operation_tdata Input TDATA for channel OPERATION. See TDATA Packing for

internal structure
s_axis_operation_tuser Input TUSER for channel OPERATION
s_axis_operation_tlast Input TLAST for channel OPERATION
m_axis_result_tvalid Output TVALID for channel RESULT
m_axis_result_tready Input TREADY for channel RESULT
m_axis_result_tdata Output TDATA for channel RESULT. See TDATA Subfield for internal

structure
m_axis_result_tuser Output TUSER for channel RESULT
m_axis_result_tlast Output TLAST for channel RESULT

Table 2-1: Core Signal Pinout (Cont’d)

Name Direction Description
Floating-Point Operator v7.1 9
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=12

Chapter 2: Product Specification
A Channel (s_axis_a_tdata)

Operand A input.

B Channel (s_axis_b_tdata)

Operand B input.

C Channel (s_axis_c_tdata)

Operand C input.

aclk

All signals are synchronous to the aclk input.

aclken

When aclken is deasserted, the clock is disabled, and the state of the core and its outputs
are maintained.

Note: aresetn takes priority over aclken.

aresetn

When aresetn is asserted, the core control circuits are synchronously set to their initial
state. Any incomplete results are discarded, and m_axis_result_tvalid is not
generated for them. While aresetn is asserted m_axis_result_tvalid is
synchronously deasserted. The core is ready for new input one cycle after aresetn is
deasserted, at which point slave channel tvalids are asserted. aresetn takes priority
over aclken. If aresetn is required to be gated by aclken, then this can be done
externally to the core.

Note: See the warning described in Non-Blocking Mode.

IMPORTANT: aresetn must be driven low for a minimum of two clock cycles to reset the core.

Operation Channel (s_axis_operation_tdata)

The operation channel is present when add and subtract operations are selected together,
or when a programmable comparator is selected. The operations are binary encoded as
specified in Table 2-2.
Floating-Point Operator v7.1 10
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=13

Chapter 2: Product Specification
Result Channel (m_axis_result_tdata)

If the operation is compare, then the valid bits within the result depend upon the compare
operation selected. If the compare operation is one of those listed in Table 2-2, then only
the least significant bit of the result indicates whether the comparison is TRUE or FALSE. If
the operation is condition code, then the result of the comparison is provided by 4 bits
using the encoding summarized in Table 2-3.

The following flag signals provide exception information. Additional detail on their
behavior can be found in the IEEE-754 Standard. The exception flags are not presented as
discrete signals in Floating-Point Operator v7.1, but instead are provided in the RESULT
channel m_axis_result_tuser subfield. For more details, see Output Result Channel.

The accumulator operator adds two non-standard exception flags: Accumulator Input
Overflow, and Accumulator Overflow. For more information about these flags, see
Accumulator Design Guidelines.

Table 2-2: Encoding of s_axis_operation_tdata
FP Operation s_axis_operation_tdata(5 : 0)

Add 000000
Subtract 000001

Compare
(Programmable)

Unordered(1) 000100
Less Than 001100
Equal 010100
Less Than or Equal 011100
Greater Than 100100
Not Equal 101100
Greater Than or Equal 110100

Notes:
1. An unordered comparison returns TRUE when either (or both) of the operands are NaN, indicating that the

operands’ magnitudes cannot be put in size order.

Table 2-3: Condition Code Summary

Compare Operation
m_axis_result_tdata(3 : 0)

Result
3 2 1 0

Programmable 0 A OP B = FALSE
1 A OP B = TRUE

Condition Code Unordered > < EQ Meaning
0 0 0 1 A = B
0 0 1 0 A < B
0 1 0 0 A > B
1 0 0 0 A, B or both are NaN.
Floating-Point Operator v7.1 11
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=14

Chapter 2: Product Specification
UNDERFLOW

Underflow is signaled when the operation generates a non-zero result which is too small to
be represented with the chosen precision. The result is set to zero. Underflow is detected
after rounding.

Note: A number that becomes denormalized before rounding is set to zero and underflow signaled.

OVERFLOW

Overflow is signaled when the operation generates a result that is too large to be
represented with the chosen precision. For most operators, the output is set to a correctly
signed .

Due to its different rounding mode, the accumulator operator sets the output to the target
format's largest finite number with the sign of the pre-rounded result.

INVALID_OP

Invalid general-computational or signaling-computational operations are signaled when
the operation performed is invalid. According to the IEEE-754 Standard [Ref 1], the
following are invalid operations:

1. Any operation on a signaling NaN. (This is not relevant to the core as all NaNs are
treated as Quiet NaNs).

2. Addition or subtraction of infinite values where the sign of the result cannot be
determined. For example, magnitude subtraction of infinities such as (+) +(-).

3. Multiplication, or fused multiply-add, where .
4. Division where 0/0 or ∞/∞.

5. Square root if the operand is less than zero. A special case is sqrt(-0), which is defined
to be -0 by the IEEE-754 Standard.

6. When the input of a conversion precludes a faithful representation that cannot
otherwise be signaled (for example NaN or infinity).

7. Logarithm if the input is less than 0. A special case is log(-0) which is defined to be - .

When an invalid operation occurs, the associated result is a Quiet NaN. In the case of
floating-point to fixed-point conversion, NaN and infinity raise an invalid operation
exception. If the operand is out of range, or an infinity, then an overflow exception is raised.
By analyzing the two exception signals it is possible to determine which of the three types
of operand was converted. (See Table 2-4.)

∞

∞ ∞

0 ∞×

∞

Floating-Point Operator v7.1 12
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=15

Chapter 2: Product Specification
When the operand of a Floating-point to fixed-point conversion is a NaN, the result is set
to the most negative representable number. When the operand is infinity or an
out-of-range floating-point number, the result is saturated to the most positive or most
negative number, depending upon the sign of the operand.

Note: Floating-point to fixed-point conversion does not treat a NaN as a Quiet NaN, because NaN
is not representable within the resulting fixed-point format, and so can only be indicated through an
invalid operation exception.

The absolute value operator does not signal an invalid operation when a Signaling NaN is
input, as it is not a general computational or a signaling computational operation.

Note: The fused multiply-add operator does not signal an invalid operation when
 + Quiet NaN is performed.

DIVIDE_BY_ZERO

DIVIDE_BY_ZERO is asserted when a divide operation is performed where the divisor is zero
and the dividend is a finite non-zero number. The result in this circumstance is a correctly
signed infinity.

DIVIDE_BY_ZERO is asserted when a logarithm operation is performed where the operand is
zero. The result in this circumstance is negative infinity.

Table 2-4: Invalid Operation Summary
Operand Invalid Operation Overflow Result

+ Out of Range 0 1 011...11
- Out of Range 0 1 100...00
+ Infinity 1 1 011...11
- Infinity 1 1 100...00
NaN 1 0 100...00

0 ∞×
Floating-Point Operator v7.1 13
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=16

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines
The floating-point and fixed-point representations employed by the core are described in
Floating-Point Number Representation and Fixed-Point Number Representation.

Floating-Point Number Representation
The core employs a floating-point representation that is a generalization of the IEEE-754
Standard [Ref 1] to allow for non-standard sizes. When standard sizes are chosen, the
format and special values employed are identical to those described by the IEEE-754
Standard.

Two parameters have been adopted for the purposes of generalizing the format employed
by the Floating-Point Operator core. These specify the total format width and the width of
the fractional part. For standard single precision types, the format width is 32 bits and
fraction width 24 bits. In the following description, these widths are abbreviated to and

, respectively.

A floating-point number is represented using a sign, exponent, and fraction (which are
denoted as ’s,’ ’E,’ and , respectively).

The value of a floating-point number is given by:

The binary bits, , have weighting , where the most significant bit is a constant 1. As
such, the combination is bounded such that and the number is said
to be normalized. To provide increased dynamic range, this quantity is scaled by a positive
or negative power of 2 (denoted here as E). The sign bit provides a value that is negative
when , and positive when .

The binary representation of a floating-point number contains three fields as shown in
Figure 3-1.

w
wf

b0.b1b2…bwf 1–

v 1–()s2Eb0.b1b2…bwf 1–=

bi 2 i– b0
1 b0.b1b2…bp 1– 2<≤

s 1= s 0=
Floating-Point Operator v7.1 14
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=17

Chapter 3: Designing with the Core
As is a constant, only the fractional part is retained, that is, . This requires
only bits. Of the remaining bits, one bit is used to represent the sign, and
bits represent the exponent.

The exponent field, , employs a biased unsigned integer representation, whose value is
given by:

The index, i, of each bit within the exponent field is shown in Figure 3-1.

The signed value of the exponent, , is obtained by removing the bias, that is,

.

In reality, is not the wordlength of the fraction, but the fraction with the hidden bit, ,
included. This terminology has been adopted to provide commonality with that used to
describe fixed-point parameters (as employed by Xilinx® System Generator™ for DSP).

Special Values

Several values for , and have been reserved for representing special numbers, such
as Not a Number (NaN), Infinity (), Zero (0), and denormalized numbers (see
Denormalized Numbers for an explanation of the latter). These special values are
summarized in Table 3-1.

X-Ref Target - Figure 3-1

Figure 3-1: Bit Fields within the Floating-Point Representation

Table 3-1: Special Values
Symbol for

Special Value s Field e Field f Field

NaN don’t care -1 (that is,)
Any non-zero field.
For results that are NaN the most
significant bit of fraction is set (that
is,)

sign of -1 (that is,)
Zero (that is,)

s e f

Bit position
wf -1

w

0w -1 wf - 1

Bit significance (i)

wf - 2

wf - 10 1 2 3we - 1

X13276-062617

b0 f b1…bwf 1–=
wf 1– we w wf–=

e

e ei2
i

i 0=

we 1–

=

E

E e 2we 1– 1–()–=

wf b0

s e f
∞

2we 1– e 11...11=

f 10...00=

∞± ∞ 2we 1– e 11...11=
f 00...00=
Floating-Point Operator v7.1 15
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=18

Chapter 3: Designing with the Core
In Table 3-1 the sign bit is undefined when a result is a NaN. The core generates NaNs with
the sign bit set to 0 (that is, positive). Also, infinity and zero are signed. Where possible, the
sign is handled in the same way as finite non-zero numbers. For example, ,

 and . A meaningless operation such as raises an invalid
operation exception and produces a NaN as a result.

Fixed-Point Number Representation
For the purposes of fixed-point to floating-point conversion, a fixed-point representation is
adopted that is consistent with the signed integer type used by Xilinx System Generator for
DSP. Fixed-point values are represented using a twos complement number that is weighted
by a fixed power of 2. The binary representation of a fixed-point number contains three
fields as shown in Figure 3-2 (although it is still a weighted twos complement number).

In Figure 3-2, the bit position has been labeled with an index i. Based upon this, the value
of a fixed-point number is given by:

For example, a 32-bit signed integer representation is obtained when a total width of 32
and a fraction width of 0 are specified. Round to Nearest is employed within the conversion
operations. To provide for the sign bit, the width of the integer field must be at least 1,
requiring that the fractional width be no larger than w – 1.

The fixed-to-float operator also has the option to perform 32-bit and 64-bit signed and
unsigned integer conversions to convert standard software integer data formats to floating
point.

sign of 0 Zero (that is,)

denormalized sign of
number 0 Any non-zero field

X-Ref Target - Figure 3-2

Figure 3-2: Bit Fields within the Fixed-Point Representation

Table 3-1: Special Values (Cont’d)

Symbol for
Special Value s Field e Field f Field

0± 0 f 00...00=

0– 0–()+ 0–=
0– 0+ 0= ∞– ∞–()+ ∞–= ∞– ∞+

s integer fraction

Bit position (i)
wf

w

0w -1 wf wf - 1

X13277-062617

v bw 1–()– 2w 1– wf– bw 2– …bwf
.bwf 1– …b1b0+=

bw 1–()– 2w 1– wf– 2i wf– bi

i 0=

w 2–

+=
Floating-Point Operator v7.1 16
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=19

Chapter 3: Designing with the Core
Accumulator Design Guidelines
Configuring the Accumulator
The accumulator operator has been implemented as a floating-point wrapper around a
fixed point accumulator to reduce resources and to allow a throughput of one sample per
clock cycle. Refer to An FPGA-specific Approach to Floating-Point Accumulation and
Sum-of-Products [Ref 17] for more information. Three parameters are required to configure
the accumulator:

• Input MSB – The MSB of the largest number that can be accepted.
• LSB – The LSB of the smallest number that can be accepted. It is also the LSB of the

accumulated result.
• MSB – The MSB of the largest result. It can be up to 54 bits greater than the Input MSB.

These values can be set to fully support the chosen IEEE-754 format, as shown in Table 3-2,
allowing the accumulator to process any floating-point number and accumulate without
introducing any round-off error. For example, to fully accommodate Single Precision, the
Input MSB should be set to 127 and the LSB set to -149.

Resource usage can be reduced if these parameters are set to match the bounds on the
dataset that is used with the accumulator. For example, if the largest value that will be
accumulated is 100,000 then the MSB can be set to 17, substantially reducing the width of
the accumulator.

The LSB controls the accuracy of the accumulator. Input values with an LSB smaller than the
LSB of the accumulator are truncated (Round Towards Zero) introducing a maximum error of
2LSB-1 per accumulation. In the worst case, the lower log2(n) bits of the accumulator are
incorrect after n such accumulations. If accuracy to 2x is required after n accumulations then
the LSB needs to be set to . For example, if accuracy to 2-16 is required after
1000 accumulations, the LSB needs to be set to .

The MSB of the accumulator sets the maximum value that can be accumulated. The set
value can be up to 54 bits greater than the Input MSB, which allows one number to be
accumulated every clock cycle for one year at 400 MHz. If the MSB is set to be greater than
the maximum value of the IEEE-754 format then the result can cause an IEEE-754 overflow

Table 3-2: MSB and LSB of the Largest and Smallest IEEE-754 Floating-Point Numbers
Format MSB LSB
Single 2127 2-149

Double 21023 2-1074

Custom 2(exponent_width-1)-1 2(1-MSB)-(fractional_width-1)

x N()2log–
16– 1000()2log– 26–=
Floating-Point Operator v7.1 17
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=20

Chapter 3: Designing with the Core
unless sufficient subtractions occur to bring it back into range (this is for a positive
accumulated value. For a negative accumulated value, sufficient additions need to occur.)

Denormalized Numbers
The accumulator is consistent with the other operators in its handling of denormalized
values. Denormalized numbers seen on the input are flushed to zero. Denormalized
numbers on the output are flushed to zero and the Underflow flag is set. However,
denormalized numbers generated in the accumulator are retained within the accumulator
to maintain accuracy.

Exceptions
The accumulator handles exceptions in order shown in Table 3-3. All exceptions except for
OVERFLOW and UNDERFLOW are unrecoverable.

Note: OVERFLOW and UNDERFLOW represent the state of the accumulated value after it has been
converted to a floating-point number. Following operations might bring the accumulator back into a
valid range so these exceptions are handled on a per-output basis. All other exceptions represent the
state of the accumulator itself and recovery is only possible by ending the accumulation.

After an unrecoverable exception occurs, the output value and flags remain set until a new
accumulation is started. The output value and flags can subsequently change if an
exception above it in the table occurs.

Example:

• An + summand is seen on the A channel.

Table 3-3: Accumulator Exception Handling
Exception Output Value Flags Notes

NaN Summand NaN None The output is a Quiet NaN, with the
sign bit set to .

Summand MSB >
Input MSB NaN ACCUM_INPUT_OVERFLOW Infinities cannot trigger this exception

Accumulated
value MSB > MSB NaN ACCUM_OVERFLOW

+ and - NaN INVALID_OP
+ or - + or - None

Result larger than
IEEE-754 format
can represent

±MAX OVERFLOW
As truncation is used (Round To)
then the maximum value for the
floating-point format is returned, not

.
Denormalized
result ± UNDERFLOW

0

∞ ∞

∞ ∞ ∞ ∞

0

∞

0

∞

Floating-Point Operator v7.1 18
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=21

Chapter 3: Designing with the Core
° The accumulator now outputs + with no flags until a new accumulation starts,
unless a higher priority exception occurs.

° From this point on OVERFLOW and UNDERFLOW are impossible, but any of the
exceptions above it in the table can still occur.

• Some time later, but within the same block, a - summand is seen on the A channel.

° The output value now changes to NaN and INVALID_OP is set as both + and -
have been accumulated.

• Some time later, but within the same block, a NaN summand is seen on the A channel.

° The output value remains as NaN but INVALID_OP is cleared.
• No other exceptions are possible.

Starting a New Accumulation
A floating-point number on the A channel is the first in a new accumulation when either of
the following conditions are true:

• It is the first summand after aresetn has been asserted and released.
• It is the first summand after s_axis_a_tlast has been asserted on a valid AXI

transfer.

When a new accumulation starts, the exceptions are cleared, the accumulator register is set
to zero, and the new summand is combined (added or subtracted) with zero.

Accumulator Primitive
The Accumulator Primitive operation is an alternative accumulator operation. The
Accumulator Primitive can be considered as an Add/Subtract operator with the result fed
back such that the output P = P +/- A. Due to the difference in internal precision, this
implementation can yield different results to the Accumulator operator and so is considered
to be a separate operator rather than as an alternative use of resources.

Clocking
The Floating-Point Operator core uses a single clock, called aclk. All input and output
interfaces and internal state are subject to this single clock.

∞

∞

∞ ∞
Floating-Point Operator v7.1 19
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=22

Chapter 3: Designing with the Core
Resets
The Floating-Point Operator core uses a single, optional, reset input called aresetn. This
signal is active-Low and must be asserted for a minimum of two clock cycles to ensure
correct operation. aresetn is a global synchronous reset which resets all control states in
the core; all data in transit through the core is lost when aresetn is asserted.

Protocol Description
AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx IP LogiCORE™ solutions. Other than general control signals such as
aclk, aclken and aresetn, all inputs and outputs to and from the Floating-Point
Operator core are conveyed using AXI4-Stream channels. A channel consists of TVALID and
TDATA always, plus several optional ports and fields. In the Floating-Point Operator, the
optional ports supported are TREADY, TLAST and TUSER. Together, TVALID and TREADY
perform a handshake to transfer a message, where the payload is TDATA, TUSER and TLAST.
The Floating-Point Operator operates on the operands contained in the TDATA fields and
outputs the result in the TDATA field of the output channel. The Floating-Point Operator
does not use TUSER and TLAST inputs as such, but the core provides the facility to convey
these fields with the same latency as for TDATA. This facility is expected to ease use of the
Floating-Point Operator in a system. For example, the Floating-Point Operator might be
operating on streaming packetized data. In this example, the core could be configured to
pass the TLAST of the packetized data channel, thus saving the system designer the effort
of constructing a bypass path for this information. For further details on AXI4-Stream
interfaces see [Ref 15] and [Ref 16].

Note: The accumulator does use TLAST as an input. For more information, see TLAST in the
Accumulator and Accumulator Primitive Operators.

Basic Handshake

Figure 3-3 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are TRUE in
a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.
Floating-Point Operator v7.1 20
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=23

Chapter 3: Designing with the Core
Non-Blocking Mode

The term Non-Blocking means that lack of data on one input channel does not block the
execution of an operation if data is received on another input channel. The full flow control
of AXI4-Stream is not always required. Blocking or Non-Blocking behavior is selected using
the Flow Control parameter or Vivado® Integrated Design Environment field. The core
supports a Non-Blocking mode in which the AXI4-Stream channels do not have TREADY,
that is, they do not support back pressure. The choice of Blocking or Non-Blocking applies
to the whole core, not each channel individually. Channels still have the non-optional
TVALID signal, which is analogous to the New Data (ND) signal on many cores prior to the
adoption of AXI4-Stream interfaces. Without the facility to block dataflow, the internal
implementation is much simplified, so fewer resources are required for this mode.

RECOMMENDED: This mode is recommended when moving to this core version from a pre-AXI4-Stream
core with minimal change.

When all of the present input channels receive an active TVALID, an operation is validated
and the output TVALID (suitably delayed by the latency of the core) is asserted to qualify
the result. Operations occur on every enabled clock cycle and data is presented on the
output channel payload fields regardless of TVALID. This is to allow a minimal migration
from previous core versions. Figure 3-4 shows the Non-Blocking behavior for a case of an
adder with latency of one cycle.

IMPORTANT: For performance, aresetn is registered internally, which delays its action by a clock
cycle. The effect of this is that any transaction input in the cycle following the de-assertion of aresetn
is reset by the action of aresetn, resulting in an output data value of zero.
m_axis_result_tvalid is also inactive for this cycle.

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer in an AXI4-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4
Floating-Point Operator v7.1 21
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=24

Chapter 3: Designing with the Core
Blocking Mode

The term Blocking means that operation execution does not occur until fresh data is
available on all input channels. The full flow control of AXI4-Stream aids system design
because the flow of data is self-regulating. Data loss is prevented by the presence of back
pressure (TREADY), so that data is only propagated when the downstream datapath is ready
to process the data.

The Floating-Point Operator has one, two or three input channels and one output channel.
When all input channels have validated data available, an operation occurs and the result
becomes available on the output. If the output is prevented from off-loading data because
TREADY is low then data accumulates in the output buffer internal to the core. When this
output buffer is nearly full the core stops further operations. This prevents the input buffers
from off-loading data for new operations so the input buffers fill as new data is input. When
the input buffers fill, their respective TREADYs are deasserted to prevent further input. This
is the normal action of back pressure.

The inputs are tied in the sense that each must receive validated data before an operation
is prompted. Therefore, there is an additional blocking mechanism, where at least one input
channel does not receive validated data while others do. In this case, the validated data is
stored in the input buffer of the channel.

After a few cycles of this scenario, the buffer of the channel receiving data fills and TREADY
for that channel is deasserted until the starved channel receives some data. Figure 3-5
shows both blocking behavior and back pressure for the case of an adder. The first data on
channel A is paired with the first data on channel B, the second with the second and so on.
This demonstrates the ‘blocking’ concept. The diagram further shows how data output is
delayed not only by latency, but also by the handshake signal m_axis_result_tready.
This is ‘back pressure’. Sustained back pressure on the output along with data availability on
the inputs eventually leads to a saturation of the core buffers, leading the core to signal that
it can no longer accept further input by deasserting the input channel TREADY signals. The
minimum latency in this example is 2 cycles, but it should be noted that in Blocking
operation latency is not a useful concept. Instead, as the diagram shows, the important idea

X-Ref Target - Figure 3-4

Figure 3-4: Non-Blocking Mode

aclk

s_axis_a_tvalid

s_axis_a_tdata

s_axis_b_tvalid

s_axis_b_tdata

m_axis_result_tvalid

m_axis_result_tdata

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

A1+B1 A2+B2 A3+B3 A4+B4 A5+B5 A6+B6 A7+B7 A8+B8
Floating-Point Operator v7.1 22
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=25

Chapter 3: Designing with the Core
is that each channel acts as a queue, ensuring that the first, second, third data samples on
each channel are paired with the corresponding samples on the other channels for each
operation.

Note: The core buffers have a greater capacity than implied by the diagram.

TDATA Packing

Fields within an AXI4-Stream interface are not given arbitrary names. Normally, information
pertinent to the application is carried in the TDATA field. To ease interoperability with
byte-oriented protocols, each subfield within TDATA which could be used independently is
first extended, if necessary, to fit a bit field which is a multiple of 8 bits. For example, say the
Floating-Point Operator is configured to have an A operand with a custom precision of 11
bits (5 exponent and 6 mantissa bits). The operand would occupy bits (10 : 0). Bits (15 : 11)
would be ignored. The bits added by byte orientation are ignored by the core and do not
result in additional resource use.

A, B, and C Input Channels

TDATA Structure for A, B, and C Channels

Input channels A, B, and C carry data for use in calculations in their TDATA fields. See
Figure 3-6.

X-Ref Target - Figure 3-5

Figure 3-5: Blocking Mode

aclk

s_axis_a_tvalid

s_axis_a_tready

s_axis_a_tdata

s_axis_b_tvalid

s_axis_b_tready

s_axis_b_tdata

m_axis_result_tvalid

m_axis_result_tready

m_axis_result_tdata

A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6 B7 B8

A1+B1 A2+B2 A3+B3 A4+B4 A5+B5 A6+B6 A7+B7

X-Ref Target - Figure 3-6

Figure 3-6: TDATA Structure for A, B, and C Channels

X13147

A, B or C operand
A_Width

TDATA (MSB : 0)
Floating-Point Operator v7.1 23
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=26

Chapter 3: Designing with the Core
Figure 3-7 illustrates how the previous example of a custom precision input with 11 bits
maps to the TDATA channel.

TDATA Structure for OPERATION Channel

The OPERATION channel exists only when add and subtract operations are selected
together, or when a programmable comparator is selected. The binary encoded operation
code, as specified in Table 2-2, are 6 bits in length. However, due to the byte-oriented
nature of TDATA, this means that TDATA has a width of 8 bits.

TLAST and TUSER Handling

This section covers TLAST and TUSER handling in a variety of scenarios.

TLAST in All Operators Apart from the Accumulator and Accumulator Primitive
Operators

TLAST in AXI4-Stream is used to denote the last transfer of a block of data. The
Floating-Point Operator core operates on a per-sample basis where each operation is
independent of any other before or after. Because of this, there is no need for TLAST on a
Floating-Point Operator core.

The TLAST signal is supported on each channel purely as an optional aid to system design
for the scenario in which the data stream being passed through the Floating-Point Operator
core does indeed have some packetization, but which is not relevant to the core operation.
The facility to pass TLAST removes the burden of matching latency to the TDATA path, which
can be variable, through the Floating-Point Operator core.

X-Ref Target - Figure 3-7

Figure 3-7: Custom Precision Input (11 bits) Mapped to TDATA Channel

X-Ref Target - Figure 3-8

Figure 3-8: TDATA Structure for OPERATION Channel

15:11 10 9:6 5:0

Si
gn

Ex
po

ne
nt

M
an

tis
sa

Ig
no

re
d

OPERATION operand
6 bits

TDATA (7 : 0)
Floating-Point Operator v7.1 24
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=27

Chapter 3: Designing with the Core
TLAST in the Accumulator and Accumulator Primitive Operators

TLAST is used in the accumulator to signal the last sample in a block of data. The next
sample received after the one with TLAST asserted is loaded into the accumulator to start a
fresh accumulation.

On the result channel, TLAST is used to signal the last result in a block of data. The result
with TLAST asserted represents the final accumulation of all of the data in the block.

TUSER

TUSER is for ancillary information that qualifies or augments the primary data in TDATA. The
TUSER signal is supported on each channel purely as an optional aid to system design for
the scenario in which the data stream being passed through the Floating-Point Operator
core does indeed have some ancillary field, but which is not relevant to the core operation.
The facility to pass TUSER removes the burden of matching latency to the TDATA path,
which can be variable, through the Floating-Point Operator core.

TLAST Options

All Operators Apart from the Accumulator Operator

TLAST for each input channel is optional. When present, each input channel can be passed
through the Floating-Point Operator core. When more than one channel has TLAST enabled,
each input channel can pass a logical AND or logical OR of the TLASTs input. When no
TLASTs are present on any input channel, the output channel does not have TLAST either.

Accumulator Operator

The accumulator has no TLAST options because TLAST is not optional.

TUSER Options

TUSER for each input channel is optional. Each has user-selectable width. These fields are
concatenated, without any byte-orientation or padding, to form the output channel TUSER
field. The TUSER field from channel A forms the least significant portion of the
concatenation, then TUSER from channel B, TUSER from channel C, and TUSER from channel
OPERATION.

X-Ref Target - Figure 3-9

Figure 3-9: TUSER Structure for A, B, C and OPERATION Channels

User field
User specified width

TUSER (MSB : 0)
Floating-Point Operator v7.1 25
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=28

Chapter 3: Designing with the Core
For example, if channels A and OPERATION both have TUSER subfields with widths of 5 and
8 bits respectively, and no exception flag signals (for example, underflow) are selected, the
output TUSER is a suitably delayed concatenation of A and OPERATION TUSER fields, 13 bits
wide, with A in the least significant 5 bit positions (4 downto 0).

Output Result Channel

TDATA Subfield

The internal structure of the RESULT channel TDATA subfield depends on the operation
performed by the core.

For numerical operations (for example, add, multiply) TDATA contains the numerical result
of the operation and is a single floating-point or fixed-point number. The result width is
sign-extended to a byte boundary if necessary. This is shown in Figure 3-10.

For Comparator operations, the result is either a 4-bit field (Condition Code) or a single bit
indicating TRUE or FALSE. In both cases, the result is zero-padded to a byte boundary, as
shown in Figure 3-11.

TUSER Subfield

The TUSER subfield is present if any of the input channels have an (optional) TUSER
subfield, or if any of the exception flags (underflow, overflow, invalid operation, divide by
zero, Accumulator Input Overflow and Accumulator Overflow) have been selected. The
formatting of the TUSER fields is shown in Figure 3-12.

If any field of TUSER is not present, fields in more significant bit positions move down to fill
the space. For example, if the overflow exception flag is selected, but the underflow
exception flag is not, the overflow exception flag result moves to the least-significant bit
position in the TUSER subfield.

No byte alignment is performed on TUSER fields. All fields present are immediately
adjacent to one another with no padding between them or at the most significant bit.
X-Ref Target - Figure 3-10

Figure 3-10: TDATA Structure for Numerical Result Channel

Result
Result width

TDATA (MSB : 0)
Floating-Point Operator v7.1 26
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=29

Chapter 3: Designing with the Core
X-Ref Target - Figure 3-11

Figure 3-11: TDATA Structure for Comparator Result Channel
X-Ref Target - Figure 3-12

Figure 3-12: TUSER Structure for Result Channel

Result
1 bit or 4 bits

TDATA (7: 0)

X13148

OPERATION

channel
User field

User specified
width, optional

TUSER (MSB : LSB)

B channel

User field

User specified
width, optional

C channel

User field

User specified
width, optional

A channel

User field

User specified
width, optional D

IV
ID

E
BY

 Z
ER

O

IN
VA

LI
D

 O
PE

R
AT

IO
N

(1
 b

it,
 o

pt
io

na
l)

AC
C

U
M

U
LA

TO
R

 IN
PU

T
O

VE
R

FL
O

IW
(1

 b
it,

 o
pt

io
na

l)

AC
C

U
M

U
LA

TO
R

O
VE

R
FL

O
IW

(1
 b

it,
 o

pt
io

na
l)

(1
 b

it,
 o

pt
io

na
l)

O
VE

R
FL

O
W

(1
 b

it,
 o

pt
io

na
l)

U
N

D
ER

FL
O

W

(1
 b

it,
 o

pt
io

na
l)
Floating-Point Operator v7.1 27
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=30

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 8]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 10]

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the
core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 8] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values change, see the
description of the parameter in this chapter. To view the parameter value, run the
validate_bd_design command in the Tcl console.

All fields are visible in the IP Integrator. These fields are set automatically:

• A Precision Type
• Exponent Width
• Fraction Width
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:
1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.
Floating-Point Operator v7.1 28
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=31

Chapter 4: Design Flow Steps
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7].

If you are customizing and generating the core in the Vivado IP integrator, see Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 8] for
detailed information. Vivado Integrated Design Environment (IDE) might auto-compute
certain configuration values when validating or generating the design, as noted in this
section. You can view the parameter value after successful completion of the
validate_bd_design command.

The Floating-Point Operator core provides several tabs with fields to set the parameter
values for the particular instantiation required. This section provides a description of each
field.

The Vivado IDE allows configuration of the following:

• Core operation
• Wordlength
• Implementation optimizations, such as use of slices
• Optional pins

All Configuration Tabs
All configuration tabs allow the Component Name to be specified.

Component Name

The component name is used as the base name of the output files generated for the core.
Names must start with a letter and be composed using the following characters: a to z, 0 to
9, and “_”.

Operation Selection Tab
The floating-point operation can be one of the following:

• Add/Subtract
• Accumulators
• Multiply
• Fused Multiply-Add
• Divide
• Reciprocal
• Square-root
Floating-Point Operator v7.1 29
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=32

Chapter 4: Design Flow Steps
• Reciprocal square root
• Absolute value
• Logarithm
• Exponential
• Compare
• Fixed-to-float
• Float-to-fixed
• Float-to-float
• Unfused multiply-add
• Unfused multiply accumulator
• Accumulator primitive

When Add/Subtract, Accumulators, Unfused Multiply-Add, Accumulator Primitive, Unfused
Multiply-Accumulator or Fused Multiply-Add is selected, it is possible for the core to
perform both operations, or just add or subtract. When both are selected, the operation
performed on a particular set of operands is controlled by the s_axis_operation
channel (with encoding defined in Table 2-2).

When Add/Subtract, Accumulator, Multiply, Fused Multiply-Add, Logarithm or Exponential
is selected, the level of slice usage can be specified according to FPGA family as described
in the AXI4-Stream Channel Options section.

When Compare is selected, the compare operation can be programmable or fixed. If
programmable, then the compare operation performed should be supplied through the
s_axis_operation channel (with encoding defined in Table 2-2). If a fixed operation is
required, then the operation type should be selected.

When Float-to-float conversion is selected, and exponent and fraction widths of the input
and result are the same, the core provides a means to condition numbers, that is, convert
denormalized numbers to zero, and signaling NaNs to quiet NaNs.

Precision of Inputs and Precision of Results Tabs
These tabs let you specify the precision of the operand and the precision of the result.
Availability of the precision of results depends on the configuration selected on the
Operation Selection Tab. (The Precision of Results tab is available only when performing an
operand conversion: Fixed-to-Float, Float-to-Fixed and Float-to-Float.)

When targeting a Versal ACAP device, unfused multiply-add and unfused multiply-acc
operators using the DSP Engines are available. The Multiply and Add/Subtract operators
may also target the native floating-point support of the DSP Engines.
Floating-Point Operator v7.1 30
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=33

Chapter 4: Design Flow Steps
The parameters in these tabs define the number of bits used to represent quantities. The
type of the operands and results depend on the operation requested. For fixed-point
conversion operations, either the operand or result is fixed-point. For all other operations,
the output is specified as a floating-point type.

Note: For the condition-code compare operation, m_axis_result_tdata(3:0) indicates the
result of the comparison operation. For other compare operations m_axis_result_tdata(0:0)
provides the result.

Table 4-1 defines the general limits of the format widths.

There are also some further limits for specific cases which are enforced by the Vivado IDE:

• The exponent width (that is, Total Width-Fraction Width) should be chosen to support
normalization of the fractional part. This can be calculated using:
Minimum Exponent Width = ceil [log2(Fraction Width+3)] + 1

For example, a 24-bit fractional part requires an exponent of at least 6 bits (for example,
{ceil [log2 (27)]+1}).

• For conversion operations, the exponent width of the floating-point input or output is
also constrained by the Total Width of the fixed-point input or output to be a minimum
of:
Minimum Exponent Width = ceil [log2(Total Width+3)] + 1
For example, a 32-bit integer requires a minimum exponent of 7 bits.

A summary of the width limits imposed by exponent width is provided in Table 4-2.

Table 4-1: General Limits of Width and Fraction Width

Format Type
Fraction Width Exponent/Integer Width Width

Min Max Min Max Min Max
Floating-Point 4 64 4 16 4 64
Fixed-Point 0 63 1 64 4 64

Table 4-2: Summary of Exponent Width Limits
Floating-Point Fraction Width or Fixed-Point Total Width Minimum Exponent Width

4 to 5 4
6 to 13 5

14 to 29 6
30 to 61 7
61 to 64 8
Floating-Point Operator v7.1 31
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=34

Chapter 4: Design Flow Steps
Internal Precision Tab
The Internal Precision tab is used only for the Accumulator. The values in these fields may
be dynamically updated by the Vivado IDE when other operators are selected, but they may
be safely ignored because these values are used only by the Accumulator operator. The tab
allows you specify the following:

• Accumulator MSB
• Accumulator LSB
• Input MSB

See Configuring the Accumulator for more information.

Optimizations Tab

Architecture Optimizations

For multiplication (double precision), addition/subtraction and Accumulator operations, it
is possible to specify a latency optimized architecture, or speed optimized architecture. The
latency optimized architecture offers reduced latency at the expense of increased resources.

Implementation Optimizations

• DSP Slice Usage allows the level of slice multiplier use to be specified.
• Block Memory Usage allows the level of Block Memory use to be specified.

DSP Slice Usage

The level and type of multiplier usage depends upon the operation. See the Vivado IDE for
details on how many DSP Slices are used for each configuration.

Block Memory Usage

Block memory usage can be specified for the Exponential operator. Table 4-3 summarizes
the options for block memory.

A single block memory is also used for the half precision square root, reciprocal and
reciprocal square root implementations.

Table 4-3: Block Memory Usage for Exponential Operator
Block Memory Usage Single Double

No usage Distributed memory Distributed memory
Full usage 1 RAMB36 5 RAMB18
Floating-Point Operator v7.1 32
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=35

Chapter 4: Design Flow Steps
Interface Options Tab

Flow Control Options

These parameters allow the AXI4-Stream interface to be optimized to suit the surrounding
system.

• Flow Control

° Blocking – When the core is configured to a Blocking interface, it waits for valid
data to be available on all input channels before performing a calculation. Back
pressure from downstream modules is possible.

° NonBlocking – When the core is configured to use a NonBlocking interface, a
calculation is performed on each cycle where all input channel TVALIDs are
asserted. Back pressure from downstream modules is not possible.

• Optimize Goal

° Resources – This option reduces the logic resources required by the AXI4-Stream
interface, at the expense of maximum achievable clock frequency.

° Performance – This option allows maximum performance, at the cost of additional
logic required to buffer data in the event of back pressure from downstream
modules.

• RESULT channel has TREADY
° Unchecking this option removes TREADY signals from the RESULT channel,

disabling the ability for downstream modules to signal back pressure to the
Floating-Point Operator core and upstream modules.

Latency and Rate Configuration

This parameter describes the number of cycles between an operand input and result output.
The latency of all operators can be set between 0 and a maximum value that is dependent
upon the parameters chosen. IP cores that are intended for many applications, such as the
Floating-Point Operator core, are designed to run as fast as the DSP primitives. To achieve
this, the fabric logic must be heavily pipelined, leading to relatively high latency. For
designs which run at a relatively low frequency, the latency can be reduced while timing can
still be met. For instance, if the fully pipelined design with latency=12 can meet timing at
400 MHz, then if the system clock in the user design is 70MHz, for example, then latency
can likely be reduced to six and timing can still be met. However, the relationship between
latency and achieveable clock speed is not linear. This is because the amount of logic
between register stages is roughly the same, so if one register is removed, the achieveable
clock frequency drops considerably because one register to register path now has almost
double the amount of logic as other register-to-register delays. The advantage of reducing
latency when clock speed allows is that the result appears sooner. There is no significant
gain in resources other than an inevitable reduction in registers for which there is an ample
Floating-Point Operator v7.1 33
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=36

Chapter 4: Design Flow Steps
supply. For the previous example, Xilinx recommends using latency=12 if the system clock
is > 0.5 * value in the resource and performance section on the Xilinx webpage for the IP
core. Other latency values of use are 6, 3, 2 and 1, though minimum may apply due to FIFOs
and feedback stages. Therefore, there is not much use in setting latency to 11 for this
reason.

Note: The Accumulator operator has a minimum latency of 1.

Cycles per Operation

The Cycles per Operation Vivado IDE parameter describes the minimum number of cycles
that must elapse between inputs. This rate can be specified. A value of 1 allows operands to
be applied on every clock cycle, and results in a fully-parallel circuit. A value greater than 1
enables hardware reuse. The resources consumed by the core reduces as the number of
cycles per operation is increased. A value of 2 approximately halves the resources used. A
fully sequential implementation is obtained when the value is equal to Fraction Width+1 for
the square-root operation, and Fraction Width+2 for the divide operation.

Control Signals

Pins for the following global signals are optional:

• ACLKEN – Active-High clock enable.
• ARESETn – Active-Low synchronous reset. Must be driven low for a minimum of two

clock cycles to reset the core.

Optional Output Fields

The following exception signals are optional and are added to m_axis_result_tuser
when selected:

• UNDERFLOW, OVERFLOW, INVALID_OPERATION, DIVIDE_BY_ZERO, ACCUM_OVERFLOW
(accumulator only) and ACCUM_INPUT_OVERFLOW (accumulator only)

• See TLAST and TUSER Handling for information on the internal packing of the
exception signals in m_axis_result_tuser.

AXI4-Stream Channel Options

The following sections allow configuration of additional AXI4-Stream channel features:

• A Channel Options

° Enables TLAST and TUSER input fields for the A operand channel, and allows
definition of the TUSER field width.

• B Channel Options
Floating-Point Operator v7.1 34
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=37

Chapter 4: Design Flow Steps
° Enables TLAST and TUSER input fields for the B operand channel (when present),
and allows definition of the TUSER field width.

• C Channel Options

° Enables TLAST and TUSER input fields for the C operand channel (when present),
and allows definition of the TUSER field width.

• OPERATION Channel Options

° Enables TLAST and TUSER input fields for the OPERATION channel (when present),
and allows definition of the TUSER field width.

• Output TLAST Behavior

° When at least one TLAST input is present on the core, this option defines how the
m_axis_result_tlast signal should be generated. Options are available to pass
any of the input TLAST signals without modification, or to logically OR or AND all
input TLASTs.

User Parameters
Table 4-4 shows the relationship between the fields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl Console).

Table 4-4: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value

Operation Selection operation_type Add_Subtract
Absolute Value Absolute
Accumulator Accumulator
Add/Subtract Add_Subtract
Compare Compare
Divide Divide
Exponential Exponential
Fixed-to-float Fixed_to_float
Float-to-fixed Float_to_fixed
Float-to-float Float_to_float
Fused Multiply-Add FMA
Logarithm Logarithm
Multiply Multiply
Reciprocal Reciprocal
Reciprocal Square Root Rec_Square_Root
Square-root Square_root
Unfused Multiply-Add Unfused_Multiply_Add
Floating-Point Operator v7.1 35
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=38

Chapter 4: Design Flow Steps
Unfused Multiply Accumulator Unfused_Multiply_Accumulator
Accumulator Primitive Accumulator_Primitive

Add/Subtract and FMA Operator options add_sub_value Both
Compare Operator Options c_compare_operation Programmable
Precision of Inputs: A Precision Type a_precision_type Single
Precision of Inputs: Exponent Width c_a_exponent_width 8
Precision of Inputs: Fraction Width c_a_fraction_width 24
Result Precision Type result_precision_type Single
Precision of Result: Exponent Width c_result_exponent_width 8
Precision of Result: Fraction Width c_result_fraction_width 24
Accumulator MSB c_accum_msb 32
Accumulator LSB c_accum_lsb -31
Input MSB c_accum_input_msb 32
Architecture Optimizations c_optimization Speed_optimized

High_Speed Speed_Optimised
Low_Latency Low_Latency

DSP Slice Usage c_mult_usage No_Usage
Block Memory Usage c_bram_usage No_Usage
Flow Control flow_control Blocking
Optimize Goal axi_optimize_goal Resources
RESULT channel has TREADY has_result_tready True
Use Maximum Latency maximum_latency True
Latency c_latency 12
Cycles/Operation c_rate 1
ACLKEN has_aclken False
ARESETn has_aresetn False
UNDERFLOW c_has_underflow False
OVERFLOW c_has_overflow False
INVALID OP c_has_invalid_op False
DIVIDE BY ZERO c_has_divide_by_zero False
ACCUM OVERFLOW c_has_accum_overflow false
ACCUM INPUT OVERFLOW c_has_accum_input_overflow False
Channel A: Has TLAST has_a_tlast False
Channel A: Has TUSER has_a_tuser False
Channel A: TUSER Width a_tuser_width 1

Table 4-4: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
Floating-Point Operator v7.1 36
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=39

Chapter 4: Design Flow Steps
Using the Floating-Point Operator IP Core

Core Use through Vivado Design Suite

The Vivado Design Suite performs error-checking on all input parameters. Resource
estimation and latency information are also available. Several files are produced when a
core is generated, and customized instantiation templates for Verilog and VHDL design
flows are provided in the .veo and .vho files, respectively. For detailed instructions, see
the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

Core Use through System Generator for DSP

The Floating-Point Operator core is available through Xilinx System Generator, a DSP design
tool that enables the use of The Mathworks model-based design environment Simulink®
for FPGA design. The Floating-Point Operator is used within DSP math building blocks
provided in the Xilinx blockset for Simulink. The blocks that provide floating-point
operations using the Floating-Point Operator core are:

• AddSub
• Accumulator
• Mult
• Fused Multiply-Add
• CMult (Constant Multiplier)
• Divide

Channel B: Has TLAST has_b_tlast False
Channel B: Has TUSER has_b_tuser False
Channel B: TUSER Width b_tuser_width 1
Channel C: Has TLAST has_c_tlast False
Channel C: Has TUSER has_c_tuser False
Channel C: TUSER Width c_tuser_width 1
Channel OPERATION: Has TLAST has_operation_tlast False
Channel OPERATION: Has TUSER has_operation_tuser False
Channel OPERATION: TUSER Width operation_tuser_width 1
TLAST Behavior result_tlast_behv Null

Notes:
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value.

Such values are shown in this table as indented below the associated parameter.

Table 4-4: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter/Value(1) User Parameter/Value(1) Default Value
Floating-Point Operator v7.1 37
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=40

Chapter 4: Design Flow Steps
• Reciprocal
• SquareRoot
• Reciprocal SquareRoot
• Absolute
• Logarithm
• Exponential
• Relational (provides compare operations)
• Convert (provides fixed to float, float to fixed, float to float)
• Accumulator Primitive
• Unfused Multiply-Add
• Unfused Multiply-Accumulate

See the System Generator for DSP User Guide (UG640) [Ref 9] for more information.

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Clock Management
This section is not applicable for this IP core.
Floating-Point Operator v7.1 38
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=41

Chapter 4: Design Flow Steps
Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 10].

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 6].
Floating-Point Operator v7.1 39
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=42

Chapter 5

C Model
The Xilinx® LogiCORE ™ IP Floating-Point Operator core bit accurate C model is a
self-contained, linkable, shared library that models the functionality of this core with finite
precision arithmetic. This model provides a bit accurate representation of the various
modes of the Floating-Point Operator v7.1 core, and it is suitable for inclusion in a larger
framework for system-level simulation or core-specific verification.

The C model is an optional output of the Vivado® Design Suite. For information about
generating IP source outputs, see Vivado Design Suite User Guide: Using the Vivado IDE
(UG893) [Ref 12].

Features
• Bit accurate with Floating-Point Operator core
• Available for 64-bit Linux and Windows platforms
• Supports all features of the Floating-Point Operator core
• Designed for integration into a larger system model
• Example C code showing how to use the C model functions

Overview
This product guide provides information about the Xilinx LogiCORE IP Floating-Point
Operator v7.1 bit accurate C model for 64-bit Linux and Windows platforms.

The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle-accurate; it performs exactly the same operations as
the core. However, it does not model the core latency or its interface signals.
Floating-Point Operator v7.1 40
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=43

Chapter 5: C Model
Unpacking and Model Contents
There are separate ZIP files containing all the files necessary for use with a specific
computing platform. Each ZIP file contains:

• The C model shared library
• Multiple Precision Integers and Rationals (MPIR) [Ref 3] and Multiple Precision

Floating-point Reliable (MPFR) [Ref 4] shared libraries
• The C model header file
• The example code showing customers how to call the C model
Note: The C model uses MPIR and MPFR libraries. MPIR is an interface-compatible version of the
GNU Multiple Precision (GMP) [Ref 2] library, with greater support for Windows platforms. MPIR has
been compiled using its GMP compatibility option, so the MPIR library and header file use GMP file
names. MPFR uses GMP, but here has been configured to use MPIR instead. Source code for the MPIR
library, the MPFR library, and the Visual Studio project files for MPFR can be obtained from
https://www.xilinx.com/products/design-tools/guest-resources.html.

Table 5-1: Example C Model ZIP File Contents – Linux
File Description

floating_point_v7_1_bitacc_cmodel.h Header file which defines the C model API
libIp_floating_point_v7_1_bitacc_cmodel.so Model shared object library
libgmp.so.11 MPIR library, used by the C model
libmpfr.so.4 MPFR library, used by the C model
gmp.h MPIR header file, used by the C model
mpfr.h MPFR header file, used by the C model
run_bitacc_cmodel.c Example program for calling the C model

allfns.c Detailed example C code showing how to call every
C model function

Table 5-2: Example C Model ZIP File Contents – Windows
File Description

floating_point_v7_1_bitacc_cmodel.h Header file which defines the C model API
libIp_floating_point_v7_1_bitacc_cmodel.dll Model dynamically linked library
libIp_floating_point_v7_1_bitacc_cmodel.lib Model .lib file for compiling
libgmp.dll MPIR library, used by the C model
libgmp.lib MPIR .lib file for compiling
libmpfr.dll MPFR library, used by the C model
libmpfr.lib MPFR .lib file for compiling
gmp.h MPIR header file, used by the C model
Floating-Point Operator v7.1 41
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/design-tools/guest-resources.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=44

Chapter 5: C Model
Installation
Linux
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIp_floating_point_v7_1_bitacc_cmodel.so, libgmp.so.11 and
libmpfr.so.4 files reside is included in the path of the environment variable
LD_LIBRARY_PATH.

Windows
• Unpack the contents of the ZIP file.
• Ensure that the directory where the

libIp_floating_point_v7_1_bitacc_cmodel.dll, libgmp.dll and
libmpfr.dll files reside is
a. included in the path of the environment variable PATH or
b. the directory in which the executable that calls the C model is run.

C Model Interface
The Floating-Point Operator C model has a C function based Application Programming
Interface (API), which is very similar to the APIs of other floating-point arithmetic libraries
MPIR (Multiple Precision Integers and Rationals) and MPFR (GNU Multiple Precision
Floating-point Reliable library). The C model uses these libraries internally and provides
functions to convert between their data types.

Note: MPIR [Ref 3] and MPFR [Ref 4] are free, open source software libraries, distributed under the
GNU Lesser General Public License. A compiled version of each library is provided with the C model.
MPIR is a compatible alternative to GMP (GNU Multiple Precision Arithmetic) [Ref 2] that provides
greater support for Windows platforms. MPIR and GMP can be used interchangeably.

mpfr.h MPFR header file, used by the C model
run_bitacc_cmodel.c Example program for calling the C model

allfns.c Detailed example C code showing how to call every
C model function

Table 5-2: Example C Model ZIP File Contents – Windows (Cont’d)

File Description
Floating-Point Operator v7.1 42
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=45

Chapter 5: C Model
Two example C files, run_bitacc_cmodel.c and allfns.c, are included, that
demonstrate how to call the C model. See these files for examples of using the interface
described in the following sections.

The Application Programming Interface (API) of the C model is defined in the header file
floating_point_v7_1_bitacc_cmodel.h. The interface consists of data structures
and functions as described in the following sections.

Data Types
The C types defined for the Floating-Point Operator C model are shown in Table 5-3.

xip_fpo_prec_t is used for initializing variables of type xip_fpo_t and
xip_fpo_fix_t.

xip_fpo_prec_t and xip_fpo_exp_t are of type long for compatibility with MPFR, not
because they need a greater numerical range than provided by int.

Table 5-3: Floating-Point Operator C Model Data Types
Name Type Description

xip_fpo_prec_t long Precision of mantissa or exponent (bits)
xip_fpo_sign_t int Sign bit of a floating-point number
xip_fpo_exp_t long Exponent of a floating-point number

xip_fpo_t struct[1] Custom precision floating-point number (internally defined as a
one-element array of a structure)

xip_fpo_fix_t struct[1] Custom precision fixed-point number (internally defined as a
one-element array of a structure)

xip_fpo_ptr struct *
Pointer to underlying custom precision floating-point struct. Equivalent
to xip_fpo_t but easier to use in certain situations (for example,
terminator in xip_fpo_inits2 function).

xip_fpo_fix_ptr struct *
Pointer to underlying custom precision fixed-point struct. Equivalent to
xip_fpo_fix_t but easier to use in certain situations (for example,
terminator in xip_fpo_fix_inits2 function).

xip_fpo_exc_t int

Bitwise flags which when set indicate exceptions that occurred during an
operation:
bit 0: underflow
bit 1: overflow
bit 2: invalid operation
bit 3: divide by zero
bit 4: operation not supported by Floating-Point Operator v7.1 core (for
example, add with different precision operands)
bit 5: accumulator input overflow
bit 6: accumulator overflow
Floating-Point Operator v7.1 43
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=46

Chapter 5: C Model
The Floating-Point Operator C model functions use xip_fpo_t and xip_fpo_fix_t for
input and output variables. Users should use these types for all custom precision
floating-point and fixed-point variables. Defining this type as a one-element array of the
underlying struct means that when a user declares a variable of this type, the memory for
the struct members is automatically allocated, and you can pass the variable as-is to
functions with no need to add a * to pass a pointer, and it is automatically passed by
reference. This is the same method as used by MPIR [Ref 3] and MPFR [Ref 4].

xip_fpo_t is an IEEE-754 compatible floating-point type, except that signaling NaNs and
denormalized numbers are not supported. If a signaling NaN is stored in an xip_fpo_t
variable, the value becomes a quiet NaN. Similarly, denormalized numbers are converted to
zero (with an underflow exception, if appropriate).

xip_fpo_exc_t is the return value type of most functions.

The C model API also provides versions of its operation functions for single and double
precision, using standard C data types float and double respectively. This provides an
easy use model for applications that do not require custom precision.

Because there is no standard C data type to model half precision (binary16) data, the
custom precision variant of each C model function should be used with appropriately
defined xip_fpo_t variables to describe a half precision datapath.

Functions
There are several C model functions accessible to you.

Information Functions

The Floating-Point Operator C model information functions are shown in Table 5-4.

Initialization Functions

The Floating-Point Operator C model initialization functions are shown in Table 5-5. Most
functions have variants to handle floating-point and fixed-point variables.

Table 5-4: Floating-Point Operator C Model Information Functions
Name Return Arguments Description

xip_fpo_get_version const char * void Return the Floating-Point Operator C model version, as
a null-terminated string. For v7.1 this is “7.1”.
Floating-Point Operator v7.1 44
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=47

Chapter 5: C Model
Table 5-5: Floating-Point Operator C Model Initialization Functions
Name Return Arguments Description

xip_fpo_init2 void
xip_fpo_t x,
xip_fpo_prec_t exp,
xip_fpo_prec_t mant

Initialize floating-point variable x,
set its exponent precision to exp, its
mantissa precision to mant, and its
value to NaN.

xip_fpo_fix_init2 void
xip_fpo_fix_t x,
xip_fpo_prec_t i,
xip_fpo_prec_t frac

Initialize fixed-point variable x, set
its integer precision to i, its fraction
precision to frac, and its value to
zero.

xip_fpo_inits2 void
xip_fpo_prec_t exp,
xip_fpo_prec_t mant,
xip_fpo_t x,
...

Initialize all xip_fpo_t variables
pointed to by the argument list, set
their exponent precision to exp, their
mantissa precision to mant, and their
value to NaN. The last item in the list
must be a null pointer of type
xip_fpo_t (or equivalently
xip_fpo_ptr).

xip_fpo_fix_inits2 void
xip_fpo_prec_t i,
xip_fpo_prec_t frac,
xip_fpo_fix_t x,
...

Initialize all xip_fpo_fix_t
variables pointed to by the argument
list, set their integer precision to i,
their fraction precision to frac, and
their value to zero. The last item in
the list must be a null pointer of type
xip_fpo_fix_t (or equivalently
xip_fpo_fix_ptr).

xip_fpo_clear void xip_fpo_t x Free the memory used by x.
xip_fpo_fix_clear void xip_fpo_fix_t x Free the memory used by x.

xip_fpo_clears void xip_fpo_t x,...

Free the memory used by all
xip_fpo_t variables pointed to by
the argument list. The last item in the
list must be a null pointer of type
xip_fpo_t (or equivalently
xip_fpo_ptr).

xip_fpo_fix_clears void xip_fpo_fix_t x,...

Free the memory used by all
xip_fpo_fix_t variables pointed
to by the argument list. The last item
in the list must be a null pointer of
type xip_fpo_fix_t (or
equivalently xip_fpo_fix_ptr).

xip_fpo_set_prec void
xip_fpo_t x,
xip_fpo_prec_t exp,
xip_fpo_prec_t mant

Reset x to an exponent precision of
exp, a mantissa precision of mant,
and set its value to NaN. The
previous value of x is lost.

xip_fpo_fix_set_prec void
xip_fpo_fix_t x,
xip_fpo_prec_t i,
xip_fpo_prec_t frac

Reset x to an integer precision of i, a
fraction precision of frac, and set its
value to zero. The previous value of x
is lost.
Floating-Point Operator v7.1 45
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=48

Chapter 5: C Model
A floating-point number has a minimum exponent required to support normalization:

If the exponent width specified for xip_fpo_init2 or xip_fpo_set_prec for
initializing or resetting a floating-point variable is too small, it is internally increased to the
minimum permitted width.

A variable should be initialized only once, or be cleared using xip_fpo_clear between
initializations. To change the precision of a variable that has already been initialized, use
xip_fpo_set_prec.

An example of initializing and clearing floating-point variables is shown:

xip_fpo_t x, y, z;
xip_fpo_init2 (x, 11, 53); // double precision
xip_fpo_inits2 (7, 17, y, z, (xip_fpo_ptr) 0); // custom precision
// perform operations
xip_fpo_set_prec (8, 24, y); // change to single precision
// more operations
xip_fpo_clears (x, y, z, (xip_fpo_ptr) 0);

Assignment Functions

The Floating-Point Operator C model assignment functions are shown in Table 5-6. Most
functions have variants to handle both floating-point and fixed-point variables. Functions
are provided for assigning Floating-Point Operator C model variables from MPIR and MPFR
variables for ease of use alongside these existing libraries.

xip_fpo_get_prec_mant xip_fpo_prec_t xip_fpo_t x Return the mantissa precision (in
bits) of x.

xip_fpo_get_prec_exp xip_fpo_prec_t xip_fpo_t x Return the exponent precision (in
bits) of x.

xip_fpo_fix_get_prec_frac xip_fpo_prec_t xip_fpo_fix_t x Return the fraction precision (in bits)
of x.

xip_fpo_fix_get_prec_int xip_fpo_prec_t xip_fpo_fix_t x Return the integer precision (in bits)
of x.

Table 5-5: Floating-Point Operator C Model Initialization Functions (Cont’d)

Name Return Arguments Description

minimum exponent width ceil 2 fraction width 3+()log() 1+=
Floating-Point Operator v7.1 46
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=49

Chapter 5: C Model
Table 5-6: Floating-Point Operator C Model Assignment Functions
Name Return Arguments Description

xip_fpo_set xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set the value of rop to op.(1)

xip_fpo_fix_set xip_fpo_exc_t xip_fpo_fix_t rop,
xip_fpo_fix_t op

xip_fpo_set_ui xip_fpo_exc_t xip_fpo_t rop,
unsigned long op

xip_fpo_fix_set_ui xip_fpo_exc_t xip_fpo_fix_t rop,
unsigned long op

xip_fpo_set_si xip_fpo_exc_t xip_fpo_t rop,
signed long op

xip_fpo_fix_set_si xip_fpo_exc_t xip_fpo_fix_t rop,
signed long op

xip_fpo_set_uj xip_fpo_exc_t xip_fpo_t rop,
uintmax_t op

xip_fpo_fix_set_uj xip_fpo_exc_t xip_fpo_fix_t rop,
uintmax_t op

xip_fpo_set_sj xip_fpo_exc_t xip_fpo_t rop,
intmax_t op

xip_fpo_fix_set_sj xip_fpo_exc_t xip_fpo_fix_t rop,
intmax_t op

xip_fpo_set_flt xip_fpo_exc_t xip_fpo_t rop,
float op

xip_fpo_fix_set_flt xip_fpo_exc_t xip_fpo_fix_t rop,
float op

xip_fpo_set_d xip_fpo_exc_t xip_fpo_t rop,
double op

xip_fpo_fix_set_d xip_fpo_exc_t xip_fpo_fix_t rop,
double op

xip_fpo_set_z xip_fpo_exc_t xip_fpo_t rop,
mpz_t op Set the value of rop to the value of GMP/MPIR

integer op.(1)
xip_fpo_fix_set_z xip_fpo_exc_t xip_fpo_fix_t rop,

mpz_t op

xip_fpo_set_q xip_fpo_exc_t xip_fpo_t rop,
mpq_t op Set the value of rop to the value of GMP/MPIR

rational number op.(1)
xip_fpo_fix_set_q xip_fpo_exc_t xip_fpo_fix_t rop,

mpq_t op

xip_fpo_set_f xip_fpo_exc_t xip_fpo_t rop,
mpf_t op Set the value of rop to the value of GMP/MPIR

floating-point number op.(1)
xip_fpo_fix_set_f xip_fpo_exc_t xip_fpo_fix_t rop,

mpf_t op
Floating-Point Operator v7.1 47
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=50

Chapter 5: C Model
xip_fpo_set_str and xip_fpo_fix_set_str

The functions xip_fpo_set_str and xip_fpo_fix_set_str take a string argument
(actually const char *) and an integer base. They have the same usage as the MPFR function
mpfr_set_str.

The base is a value between 2 and 62 or zero. The string is a representation of numeric data
to be read and stored in the floating-point variable. The whole string must represent a valid
floating-point number.

xip_fpo_set_fr xip_fpo_exc_t xip_fpo_t rop,
mpfr_t op Set the value of rop to the value of MPFR

floating-point number op.(1)
xip_fpo_fix_set_fr xip_fpo_exc_t xip_fpo_fix_t rop,

mpfr_t op

xip_fpo_set_ui_2exp xip_fpo_exc_t
xip_fpo_t rop,
unsigned long op,
xip_fpo_exp_t e

Set the value of rop to op multiplied by two to
the power of e.(1)

xip_fpo_set_si_2exp xip_fpo_exc_t
xip_fpo_t rop,
signed long op,
xip_fpo_exp_t e

xip_fpo_set_uj_2exp xip_fpo_exc_t
xip_fpo_t rop,
uintmax_t op,
intmax_t e

xip_fpo_set_sj_2exp xip_fpo_exc_t
xip_fpo_t rop,
intmax_t op,
intmax_te

xip_fpo_set_str xip_fpo_exc_t
xip_fpo_t rop,
const char *s,
int base Set the value of rop to the string in s which is

in the base base. See xip_fpo_set_str and
xip_fpo_fix_set_str for details.(1)

xip_fpo_fix_set_str xip_fpo_exc_t
xip_fpo_fix_t rop,
const char *s,
int base

xip_fpo_set_nan void xip_fpo_t x Set the value of x to NaN.

xip_fpo_set_inf void xip_fpo_t x,
int sign

Set the value of x to plus infinity if sign is
non-negative, minus infinity otherwise.

xip_fpo_set_zero void xip_fpo_t x,
int sign

Set the value of x to plus zero if sign is
non-negative, minus zero otherwise.

Notes:
1. Any exceptions that occur are signaled in the return value.

When assigning to a fixed-point variable, if overflow occurs, the result is saturated and the return value is the
largest representable fixed-point number of the correct sign. Converting a NaN returns the most negative
representable fixed-point number and the invalid operation exception is signaled in the return value.

Table 5-6: Floating-Point Operator C Model Assignment Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 48
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=51

Chapter 5: C Model
The form of numeric data is a non-empty sequence of significand digits with an optional
decimal point, and an optional exponent consisting of an exponent prefix followed by an
optional sign and a non-empty sequence of decimal digits. A significand digit is either a
decimal digit or a Latin letter (62 possible characters), with A = 10, B = 11, ..., Z = 35; case
is ignored in bases less or equal to 36, in bases larger than 36, a = 36, b = 37, ..., z = 61. The
value of a significant digit must be strictly less than the base. The decimal point can be
either the one defined by the current locale or the period (the first one is accepted for
consistency with the C standard and the practice, the second one is accepted to allow the
programmer to provide numbers from strings in a way that does not depend on the current
locale). The exponent prefix can be e or E for bases up to 10, or @ in any base; it indicates
a multiplication by a power of the base. In bases 2 and 16, the exponent prefix can also be
p or P, in which case the exponent, called binary exponent, indicates a multiplication by a
power of 2 instead of the base (there is a difference only for base 16); in base 16 for example
1p2 represents 4 whereas 1@2 represents 256.

If the argument base is 0, then the base is automatically detected as follows. If the
significand starts with 0b or 0B, base 2 is assumed. If the significand starts with 0x or 0X,
base 16 is assumed. Otherwise base 10 is assumed.

Note: The exponent (if present) must contain at least a digit. Otherwise, the possible exponent
prefix and sign are not part of the number (which ends with the significand). Similarly, if 0b, 0B, 0x
or 0X is not followed by a binary/hexadecimal digit, then the subject sequence stops at the character
0, thus 0 is read.

Special data (for infinities and NaN) can be @inf@ or @nan@(n-char-sequence-opt),
and if base <= 16, it can also be infinity, inf, nan or nan(n-char-sequence-opt),
all case insensitive. A n-char-sequence-opt is a possibly empty string containing only
digits, Latin letters and the underscore (0, 1, 2, ..., 9, a, b, ..., z, A, B, ..., Z, _).

Note: There is an optional sign for all data, even NaN. For example, -@nAn@(This_Is_Not_17) is
a valid representation for NaN in base 17.

If the whole string cannot be parsed into a floating-point or fixed-point number, then an
invalid operation exception is signaled. In this case, rop might have changed. Overflow or
underflow can occur if the string is parsed to a floating-point or fixed-point number that is
too large or too small to represent in the floating-point or fixed-point precision of the
variable.

Conversion Functions

The Floating-Point Operator C model conversion functions are shown in Table 5-7. Most
functions have variants to handle both floating-point and fixed-point variables.

Functions that convert to a standard C data type return the converted result as that data
type. Any exceptions that occur are ignored. Functions that convert to GMP or MPFR data
types place the result in the first argument and return exception flags, as with most
Floating-Point Operator C model functions.
Floating-Point Operator v7.1 49
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=52

Chapter 5: C Model
Table 5-7: Floating-Point Operator C Model Conversion Functions
Name Return Arguments Description

xip_fpo_get_ui unsigned long xip_fpo_t op Convert op to an unsigned long int after
rounding.xip_fpo_fix_get_ui unsigned long xip_fpo_fix_t op

xip_fpo_get_si signed long xip_fpo_t op Convert op to a signed long int after
rounding.xip_fpo_fix_get_si signed long xip_fpo_fix_t op

xip_fpo_get_uj uintmax_t xip_fpo_t op Convert op to an unsigned maximum
size integer after rounding.xip_fpo_fix_get_uj uintmax_t xip_fpo_fix_t op

xip_fpo_get_sj intmax_t xip_fpo_t op Convert op to a signed maximum size
integer after rounding.xip_fpo_fix_get_sj intmax_t xip_fpo_fix_t op

xip_fpo_get_flt float xip_fpo_t op
Convert op to a float.

xip_fpo_fix_get_flt float xip_fpo_fix_t op
xip_fpo_get_d double xip_fpo_t op

Convert op to a double.
xip_fpo_fix_get_d double xip_fpo_fix_t op

xip_fpo_get_d_2exp double long *exp,
xip_fpo_t op

Convert the mantissa of op to a double
such that 0.5<=abs(mantissa)<1, and
set the value pointed to by exp to the
exponent of op. If op is zero, zero is
returned and exp is zero. If op is NaN or
infinity, NaN or infinity respectively is
returned and exp is undefined.

xip_fpo_get_z xip_fpo_exc_t mpz_t rop,
xip_fpo_t op

Convert op to a GMP/MPIR integer after
rounding and store in rop.
If op is NaN or infinity, rop is set to 0 and
an invalid operation exception is
returned.

xip_fpo_fix_get_z xip_fpo_exc_t mpz_t rop,
xip_fpo_fix_t op

xip_fpo_get_f xip_fpo_exc_t mpf_t rop,
xip_fpo_t op

Convert op to a GMP/MPIR
floating-point number and store it in
rop.
If op is NaN or infinity, rop is set to 0 and
an invalid operation exception is
returned.

xip_fpo_fix_get_f xip_fpo_exc_t mpf_t rop,
xip_fpo_fix_t op

xip_fpo_get_fr xip_fpo_exc_t mpfr_t rop,
xip_fpo_t op Convert op to an MPFR floating-point

number and store it in rop.
xip_fpo_fix_get_fr xip_fpo_exc_t mpfr_t rop,

xip_fpo_fix_t op

xip_fpo_get_str char *

char * str,
xip_fpo_exp_t * exp,
int base,
int n_digits,
xip_fpo_t op

Convert op to a string of digits in base
base, returning the exponent separately
in the variable pointed to by exp. See
xip_fpo_get_str for details.

xip_fpo_fix_get_str char *
char * str,
int base,
xip_fpo_fix_t op

Convert op to a string of digits in base
base.
See for details.
Floating-Point Operator v7.1 50
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=53

Chapter 5: C Model
xip_fpo_get_str

The function xip_fpo_get_str has the same usage as the MPFR function
mpfr_get_str. n_digits is either zero or the number of significant digits output in the
string; in the latter case, n_digits must be greater or equal to 2. The base can vary from 2 to
62. If the input number is an ordinary number, the exponent is written through the pointer
exp (for input 0, the exponent is set to 0).

The generated string is in the base specified by base. Each string character is either a
decimal digit or a Latin letter (62 possible characters). For base in the range 2 to 36, decimal
digits and lowercase letters are used, with a = 10, b = 11, … z = 35. For base in the range 37
to 62, digits, uppercase, and lowercase letters are used, with A = 10, B = 11, ..., Z = 35, a =
36, b = 37, ..., z = 61.

The generated string is a fraction, with an implicit radix point immediately to the left of the
first digit. For example, the number –3.1416 would be returned as "–31416" in the string
and 1 written at exp. The value is rounded to provide n_digits of output, using round to
nearest even: if op is exactly in the middle of two consecutive possible outputs, the one with
an even significand is chosen, where both significands are considered with the exponent of
op. For an odd base, this might not correspond to an even last digit: for example with 2
digits in base 7, (14) and a half is rounded to (15) which is 12 in decimal, (16) and a half is
rounded to (20) which is 14 in decimal, and (26) and a half is rounded to (26) which is 20 in
decimal.

If n_digits is zero, the number of digits of the significand is chosen large enough so that
re-reading the printed value with the same precision recovers the original value of op. More
precisely, in most cases, the chosen precision of str is the minimal precision m depending
only on p = PREC(op) and b that satisfies the above property, that is,
m = 1 + ceil(p × log(2)/log(b)), with p replaced by p – 1 if b is a power of 2.

xip_fpo_free_str void char * str
Free a string allocated by
xip_fpo_get_str or
xip_fpo_fix_get_str.

xip_fpo_fix_free_str void char * str A synonym for xip_fpo_free_str.

xip_fpo_sizeinbase int xip_fpo_t op,
int base

Return the size of op measured in
number of digits in the given base. base
can vary from 2 to 62. The sign of op is
ignored.
Returns –1 if an error occurs.
Use to determine the space required
when converting op to a string using
xip_fpo_get_str or
xip_fpo_fix_get_str.

xip_fpo_fix_sizeinbase int xip_fpo_fix_t op,
int base

Table 5-7: Floating-Point Operator C Model Conversion Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 51
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=54

Chapter 5: C Model
If str is a null pointer, space for the significand is allocated using the GMP/MPIR current
allocation function which is malloc() by default, and a pointer to the string is returned. To
free the memory used by the returned string, you must use xip_fpo_free_str.

If str is not a null pointer, it should point to a block of storage large enough for the
significand, that is, at least max(n_digits + 2, 7) if n_digits > 0, or xip_fpo_sizeinbase (op,
base) + 2 otherwise. The extra two bytes are for a possible minus sign, and for the
terminating null character, and the value 7 accounts for -@Inf@ plus the terminating null
character.

A pointer to the string is returned, unless there is an error, in which case a null pointer is
returned.

xip_fpo_fix_get_str

The function xip_fpo_fix_get_str has the same usage as the GMP/MPIR function
mpz_get_str. The base can vary from 2 to 62.

The generated string is in the base specified by base. Each string character is either a
decimal digit or a Latin letter (62 possible characters). For base in the range 2 to 36, decimal
digits and lowercase letters are used, with a = 10, b = 11, … z = 35. For base in the range 37
to 62, digits, uppercase, and lowercase letters are used, with A = 10, B = 11, ..., Z = 35, a =
36, b = 37, ..., z = 61.

The generated string is either an integer value with no radix point, or a fraction with an
explicit radix point. All significant digits are returned, but no leading or trailing zeros are
returned. No rounding is carried out.

If str is a null pointer, space for the significand is allocated using the current allocation
function, and a pointer to the string is returned. To free the memory used by the returned
string, you must use xip_fpo_fix_free_str.

If str is not a null pointer, it should point to a block of storage large enough for the result,
that being xip_fpo_fix_sizeinbase (op, base) + 2. The extra two bytes are for a
possible minus sign, and the terminating null character.

Operation Functions

The Floating-Point Operator C model functions that model operations of the core are
shown in Table 5-8. In addition to functions using xip_fpo_t and xip_fpo_fix_t type
arguments to provide custom precision, alternative versions of functions using standard C
data types float and double are also provided to make it easy for customers who do not
need custom precision. For fixed to float and float to fixed functions, float and double to
and from int are provided. For float to float functions, all combinations of float and
double are provided: where these data types are the same, the function provides a means
to condition numbers (convert signaling NaNs to quiet NaNs, convert denormalized
numbers to zero).
Floating-Point Operator v7.1 52
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=55

Chapter 5: C Model
Table 5-8: Floating-Point Operator C Model Operation Functions
Name Return Arguments Description

xip_fpo_add xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 + op2. rop,
op1 and op2 must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_add_flt xip_fpo_exc_t
float * rop,
float op1,
float op2

Set rop = op1 + op2. Single
precision version.

xip_fpo_add_d xip_fpo_exc_t
double * rop,
double op1,
double op2

Set rop = op1 + op2. Double
precision version.

xip_fpo_sub xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 – op2. rop,
op1 and op2 must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_sub_flt xip_fpo_exc_t
float * rop,
float op1,
float op2

Set rop = op1 – op2. Single
precision version.

xip_fpo_sub_d xip_fpo_exc_t
double * rop,
double op1,
double op2

Set rop = op1 – op2. Double
precision version.

xip_fpo_accum_create_state xil_fpo_accum_state *

int exponent_width,
int fractional_width,
int accumulator_msb,
int input_msb,
int accumulator_lsb

Returns a pointer to a
xil_fpo_accum_state object.
This is needed by all the
other accumulator
functions.

xip_fpo_accum_reset_state void xil_fpo_accum_state *state

Resets the
xil_fpo_accum_state object.
Call this to start a new
accumulation. Has the
effect of clearing the
accumulator and resetting
the exception flags.

xip_fpo_accum_destroy_stat
e void xil_fpo_accum_state *state

Destroys the
xil_fpo_accum_state object
and frees any memory
allocated. The
xil_fpo_accum_state object
pointer can no longer be
used.
Floating-Point Operator v7.1 53
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=56

Chapter 5: C Model
xip_fpo_accum_sample xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op,
bool subtract,
xil_fpo_accum_state *state

Add/Subtract op to/from
the accumulator and return
the result.
Adds when subtract =
FALSE; Subtracts when
subtract = TRUE.
rop and op must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_accum_sample_flt xip_fpo_exc_t
float * rop,
float op,
bool subtract,
xil_fpo_accum_state *state

Add/Subtract op to/from
the accumulator and return
the result. Single precision
version.
Adds when subtract =
FALSE; Subtracts when
subtract = TRUE.

xip_fpo_accum_sample_d xip_fpo_exc_t
double * rop,
double op,
bool subtract,
xil_fpo_accum_state *state

Add/Subtract op to/from
the accumulator and return
the result. Double precision
version.
Adds when subtract =
FALSE; Subtracts when
subtract = TRUE.

xip_fpo_mul xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 × op2. rop,
op1 and op2 must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_mul_flt xip_fpo_exc_t
float * rop,
float op1,
float op2

Set rop = op1 × op2. Single
precision version.

xip_fpo_mul_d xip_fpo_exc_t
double * rop,
double op1,
double op2

Set rop = op1 × op2. Double
precision version.

xip_fpo_fma xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2,
xip_fpo_t op3

Set rop = (op1 x op2) + op3.
rop, op1, op2, and op3 must
have identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_fma_flt xip_fpo_exc_t
float * rop,
float op1,
float op2,
float op3

Set rop = (op1 x op2) + op3.
Single precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 54
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=57

Chapter 5: C Model
xip_fpo_fma_d xip_fpo_exc_t
double * rop,
double op1,
double op2,
double op3

Set rop = (op1 x op2) + op3.
Double precision version.

xip_fpo_fms xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2,
xip_fpo_t op3

Set rop = (op1 x op2) – op3.
rop, op1, op2, and op3 must
have identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_fms_flt xip_fpo_exc_t
float * rop,
float op1,
float op2,
float op3

Set rop = (op1 x op2) – op3.
Single precision version.

xip_fpo_fms_d xip_fpo_exc_t
double * rop,
double op1,
double op2,
double op3

Set rop = (op1 x op2) – op3.
Double precision version.

xip_fpo_div xip_fpo_exc_t
xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1/op2. rop, op1
and op2 must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_div_flt xip_fpo_exc_t
float * rop,
float op1,
float op2

Set rop = op1 / op2. Single
precision version.

xip_fpo_div_d xip_fpo_exc_t
double * rop,
double op1,
double op2

Set rop = op1/op2. Double
precision version.

xip_fpo_rec(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = 1/op. rop and op
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_rec_flt xip_fpo_exc_t float * rop,
float op

Set rop = 1/op. Single
precision version.

xip_fpo_rec_d xip_fpo_exc_t double * rop,
double op

Set rop = 1/op. Double
precision version.

xip_fpo_sqrt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = square root of op.
rop and op must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_sqrt_flt xip_fpo_exc_t float * rop,
float op

Set rop = square root of op.
Single precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 55
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=58

Chapter 5: C Model
xip_fpo_sqrt_d xip_fpo_exc_t double * rop,
double op

Set rop = square root of op.
Double precision version.

xip_fpo_recsqrt(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = 1/(square root of
op). rop and op must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_recsqrt_flt xip_fpo_exc_t float * rop,
float op

Set rop = 1/(square root of
op). Single precision
version.

xip_fpo_recsqrt_d xip_fpo_exc_t double * rop,
double op

Set rop = 1/(square root of
op). Double precision
version.

xip_fpo_abs xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = |op|. rop and op
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_abs_flt xip_fpo_exc_t float * rop,
float op

Set rop = |op|. Single
precision version.

xip_fpo_abs_d xip_fpo_exc_t double * rop,
double op

Set rop = |op|. Double
precision version.

xip_fpo_log(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = natural logarithm
of op. rop and op must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_log_flt xip_fpo_exc_t float * rop,
float op

Set rop = natural logarithm
of op. Single precision
version.

xip_fpo_log_d xip_fpo_exc_t double * rop,
double op

Set rop = natural logarithm
of op. Double precision
version.

xip_fpo_exp(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = exponential of op.
rop and op must have
identical precisions,
otherwise an operation not
supported exception is
returned.

xip_fpo_exp_flt xip_fpo_exc_t float * rop,
float op

Set rop = exponential of op.
Single precision version.

xip_fpo_exp_d xip_fpo_exc_t double * rop,
double op

Set rop = exponential of op.
Double precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 56
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=59

Chapter 5: C Model
xip_fpo_exp_array(1) int
xip_fpo_t * rop,
xip_fpo_t * op,
xip_fpo_exc_t *exceptions,
unsigned long long num_values

Process an array of values
This provides a significant
performance improvement
over calling xip_fpo_exp for
individual values.
Set rop[i] = exponential of
op[i]. All rop[] and op[]
entries must have identical
precisions, otherwise an
operation not supported
exception is returned. The
return value indicates the
last array element
processed (either
successfully or with an
operation not supported
exception)

xip_fpo_exp_flt_array void

float * rop,
float * op,
xip_fpo_exc_t exceptions*,
unsigned long long num_values

Process an array of values.
This provides a significant
performance improvement
over calling xip_fpo_exp_flt
for individual values.
Set rop[i] = exponential of
op[i]. Single precision
version.

xip_fpo_exp_d_array void

double * rop,
double * op,
xip_fpo_exc_t * exceptions,
unsigned long long num_values

Process an array of values.
This provides a significant
performance improvement
over calling xip_fpo_exp_d
for individual values.
Set rop[i] = exponential of
op[i]. Double precision
version.

xip_fpo_unordered xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 or op2 is a
NaN, 0 otherwise. op1 and
op2 must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_unordered_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 or op2 is a
NaN, 0 otherwise. Single
precision version.

xip_fpo_unordered_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 or op2 is a
NaN, 0 otherwise. Double
precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 57
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=60

Chapter 5: C Model
xip_fpo_equal xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 = op2, 0
otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_equal_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 = op2, 0
otherwise. Single precision
version.

xip_fpo_equal_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 = op2, 0
otherwise. Double
precision version.

xip_fpo_less xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 < op2, 0
otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_less_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 < op2, 0
otherwise. Single precision
version.

xip_fpo_less_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 < op2, 0
otherwise. Double
precision version.

xip_fpo_lessequal xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 <= op2, 0
otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_lessequal_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 <= op2, 0
otherwise. Single precision
version.

xip_fpo_lessequal_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 <= op2, 0
otherwise. Double
precision version.

xip_fpo_greater xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 > op2, 0
otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_greater_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 > op2, 0
otherwise. Single precision
version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 58
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=61

Chapter 5: C Model
xip_fpo_greater_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 > op2, 0
otherwise. Double
precision version.

xip_fpo_greaterequal xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 >= op2, 0
otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_greaterequal_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 >= op2, 0
otherwise. Single precision
version.

xip_fpo_greaterequal_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 >= op2, 0
otherwise. Double
precision version.

xip_fpo_notequal xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 <> op2 or
either op1 or op2 are NaN,
0 otherwise. op1 and op2
must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_notequal_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Set res = 1 if op1 <> op2 or
either op1 or op2 are NaN,
0 otherwise. Single
precision version.

xip_fpo_notequal_d xip_fpo_exc_t
int * res,
double op1,
double op2

Set res = 1 if op1 <> op2 or
either op1 or op2 are NaN,
0 otherwise. Double
precision version.

xip_fpo_condcode xip_fpo_exc_t
int * res,
xip_fpo_t op1,
xip_fpo_t op2

Compare op1 and op2, and
set the least significant 4
bits of res to the resulting
condition code. See
Table 5-9 for the condition
code encoding. op1 and
op2 must have identical
precisions, otherwise an
operation not supported
exception is returned.

xip_fpo_condcode_flt xip_fpo_exc_t
int * res,
float op1,
float op2

Compare op1 and op2, and
set the least significant 4
bits of res to the resulting
condition code. See
Table 5-9 for the condition
code encoding. Single
precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 59
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=62

Chapter 5: C Model
xip_fpo_condcode_d xip_fpo_exc_t
int * res,
double op1,
double op2

Compare op1 and op2, and
set the least significant 4
bits of res to the resulting
condition code. See
Table 5-9 for the condition
code encoding. Double
precision version.

xip_fpo_flttofix xip_fpo_exc_t xip_fpo_fix_t rop,
xip_fpo_t op

Set rop = op, rounding as
required. rop and op must
have compatible precisions
(see xip_fpo_flttofix and
xip_fpo_fixtoflt), otherwise
an operation not supported
exception is returned.

xip_fpo_flttofix_int_flt xip_fpo_exc_t int * rop,
float op

Set rop = op, rounding as
required. Single precision
to integer version.

xip_fpo_flttofix_int_d xip_fpo_exc_t int * rop,
double op

Set rop = op, rounding as
required. Double precision
to integer version.

xip_fpo_fixtoflt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_fix_t op

Set rop = op, rounding as
required. rop and op must
have compatible precisions
(see xip_fpo_flttofix and
xip_fpo_fixtoflt), otherwise
an operation not supported
exception is returned.

xip_fpo_fixtoflt_flt_int xip_fpo_exc_t float * rop,
int op

Set rop = op, rounding as
required. Integer to single
precision version.

xip_fpo_fixtoflt_d_int xip_fpo_exc_t double * rop,
int op

Set rop = op, rounding as
required. Integer to double
precision version.

xip_fpo_fixtoflt_flt_int64 xip_fpo_exc_t float * rop
long long op

Set rop = op, rounding as
required. Long long integer
to single precision version.

xip_fpo_fixtoflt_d_int64 xip_fpo_exc_t double * rop
long long op

Set rop = op, rounding as
required. Long long integer
to double precision version.

xip_fpo_fixtoflt_flt_uint xip_fpo_exc_t float * rop
unsigned int op

Set rop = op, rounding as
required. Unsigned integer
to single precision version.

xip_fpo_fixtoflt_d_uint xip_fpo_exc_t double * rop
unsigned int op

Set rop = op, rounding as
required. Unsigned integer
to double precision version.

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 60
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=63

Chapter 5: C Model
For all functions, the result is guaranteed to match exactly the numerical output of the
Floating-Point Operator v7.1 core, and the returned exceptions are guaranteed to match
exactly the signaled exceptions of the Floating-Point Operator v7.1 core, for identical
inputs.

No direct C function is provided for Unfused Multiply Add, Unfused Multiply accumulator
and Accumulator Primitive. This is because these operations are simply combinations of
existing multiply and addition operations.

When the operand and result variables do not meet constraints of the Floating-Point
Operator v7.1 core, an operation not supported exception is returned. In this case, no other
exception bits are set in the return value, and the result variable is not modified.

xip_fpo_condcode functions set the 4 least significant bits of their integer result to a
condition code, which has the encoding shown in Table 5-9. Encodings not shown are
reserved and are not returned by the functions.

xip_fpo_fixtoflt_flt_uint64 xip_fpo_exc_t float * rop
unsigned long long op

Set rop = op, rounding as
required. Unsigned long
long integer to single
precision version.

xip_fpo_fixtoflt_d_uint64 xip_fpo_exc_t double * rop
unsigned long long op

Set rop = op, rounding as
required. Unsigned long
long integer to double
precision version.

xip_fpo_flttoflt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = op, rounding as
required. rop and op can
have different precisions.

xip_fpo_flttoflt_flt_flt xip_fpo_exc_t float * rop,
float op

Set rop = op, rounding as
required. Single to single
precision version (for
conditioning numbers).

xip_fpo_flttoflt_flt_d xip_fpo_exc_t float * rop,
double op

Set rop = op, rounding as
required. Double to single
precision version.

xip_fpo_flttoflt_d_flt xip_fpo_exc_t double * rop,
float op

Set rop = op, rounding as
required. Single to double
precision version.

xip_fpo_flttoflt_d_d xip_fpo_exc_t double * rop,
double op

Set rop = op, rounding as
required. Double to double
precision version (for
conditioning numbers).

Notes:
1. Only supported for xip_fpo_t operands with IEEE-754 half precision (exponent=5, mantissa=11) or IEEE-754 single

precision (exponent=8, mantissa=24) or double precision (exponent=11, mantissa=53).

Table 5-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description
Floating-Point Operator v7.1 61
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=64

Chapter 5: C Model
For all comparison functions, the sign of zero is ignored, such that –0 = +0.

xip_fpo_flttofix and xip_fpo_fixtoflt

xip_fpo_flttofix and xip_fpo_fixtoflt functions have restrictions on the
precisions of the fixed-point and floating-point operand and result. The exponent width of
the floating-point variable must be at least:

minimum floating-point exponent width = ceil(log2(fixed-point total width + 3)) + 1

If the operand and result variable do not meet this condition, an operation not supported
exception is returned and the result variable is not modified.

Compiling
Compilation of user code requires access to the
floating_point_v7_1_bitacc_cmodel.h header file and the header files of the MPIR
and MPFR dependent libraries, gmp.h and mpfr.h. The header files should be copied to a
location where they are available to the compiler. Depending on the location chosen, the
include search path of the compiler might need to be modified.

The floating_point_v7_1_bitacc_cmodel.h header file must be included first,
because it defines some symbols that are used in the MPIR and MPFR header files. The
floating_point_v7_1_bitacc_cmodel.h header file includes the MPIR and MPFR
header files, so these do not need to be explicitly included in source code that uses the C
model. When compiling on Windows, the symbol NT must be defined, either by a compiler
option, or in user source code before the floating_point_v7_1_bitacc_cmodel.h
header file is included.

Table 5-9: Condition Code Encoding

Integer Result
Condition Code Bit

Meaning3 2 1 0
Unordered Greater Than Less Than Equal

1 0 0 0 1 op1 = op2
2 0 0 1 0 op1 < op2
4 0 1 0 0 op1 > op2
8 1 0 0 0 op1, op2 or both are NaN
Floating-Point Operator v7.1 62
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=65

Chapter 5: C Model
Linking
To use the C model, the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses MPIR and MPFR libraries. It is also possible to use GMP or MPIR, and MPFR
libraries from other sources, for example, compiled from source code. For details, see Dependent
Libraries.

Linux
The executable must be linked against the following shared object libraries:

• libgmp.so.11
• libmpfr.so.4
• libIp_floating_point_v7_1_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -Wl,-rpath,. -lIp_floating_point_v7_1_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc -x c++ -I. -L. -lIp_floating_point_v7_1_bitacc_cmodel -Wl,-rpath,. -o
run_bitacc_cmodel run_bitacc_cmodel.c

Windows
The executable must be linked against the following dynamic link libraries:

• libgmp.dll
• libmpfr.dll
• libIp_floating_point_v7_1_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

• libgmp.lib
• libmpfr.lib
• libIp_floating_point_v7_1_bitacc_cmodel.lib
Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.
Floating-Point Operator v7.1 63
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=66

Chapter 5: C Model
Dependent Libraries
The C model uses MPIR and MPFR libraries. They are governed by the GNU Lesser General
Public License. You can obtain source code for the MPIR and MPFR libraries from
https://www.xilinx.com/products/design-tools/guest-resources.html. Pre-compiled MPIR and
MPFR libraries are provided with the C model, using the following versions of the libraries:

• MPIR 2.6.0
• MPFR 3.1.2

Because MPIR is a compatible alternative to GMP, the GMP library can be used in place of
MPIR. It is possible to use GMP or MPIR and MPFR libraries from other sources, for example,
compiled from source code.

GMP and MPIR in particular, and MPFR to a lesser extent, contain many low level
optimizations for specific processors. The libraries provided are compiled for a generic
processor on each platform, using no optimized processor-specific code. These libraries
work on any processor, but run more slowly than libraries compiled to use optimized
processor-specific code. For the fastest performance, compile libraries from source on the
machine on which you run the executables.

Source code and compilation scripts are provided for the versions of MPIR and MPFR that
were used to compile the provided libraries. Source code and compilation scripts for any
version of the libraries can be obtained from the GMP [Ref 2], MPIR [Ref 3] and MPFR [Ref 4]
web sites. Microsoft Visual Studio project files for compiling MPFR on Windows can be
obtained from the website of Brian Gladman [Ref 5].

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so
library and a gmp.h header file that provide full compatibility with the GMP library. This
compatibility is required by the MPFR compilation scripts.
Note: Some Windows compilers, for example Microsoft Visual Studio versions prior to 2010, do not
have full support for the C99 standard of the C programming language. The MPFR library contains
functions that use the C99 types intmax_t and uintmax_t (for example, functions with _sj and
_uj suffixes). When MPFR is compiled, it checks if these types are present, and excludes these
functions if not. The C model requires these functions in MPFR. Therefore, when compiling MPFR
using a Windows compiler without C99 support, include the provided mpfr_nt_stdint.h header
file, which defines the types intmax_t and uintmax_t. Using Microsoft Visual Studio, this header
file can be included without modifying source code by adding it to the Force Includes entry under
the Advanced sub-section of the C/C++ section of Project Properties.
Floating-Point Operator v7.1 64
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/products/design-tools/guest-resources.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=67

Chapter 5: C Model
Example
The run_bitacc_cmodel.c file contains example code to show basic operation of the C
model. Part of this example code is shown here. The comments assist in understanding the
code.

This code calculates e, the base of natural logarithms, in the given precision. The Taylor
Series expansion for the exponential function ex is:

To calculate e, set x = 1:

This code calculates terms iteratively until the accuracy of e no longer improves.
#include <stdio.h>
#include "floating_point_v7_1_bitacc_cmodel.h"
int main()
{
xip_fpo_exp_t exp_prec, mant_prec;
 // The algorithm will work for any legal combination
 // of values for exp_prec and mant_prec
 exp_prec = 16;
 mant_prec = 64;
 printf("Using Taylor Series expansion to calculate e, the base of natural
logarithms, in %d-bit mantissa precision\n", mant_prec);

int i, done;
 xip_fpo_t n, fact, one, term, e, e_old;
 xip_fpo_exc_t ex;
 xip_fpo_exp_t exp;
 char * result = 0;
 double e_d;

xip_fpo_inits2 (exp_prec, mant_prec, n, fact, one, term, e,
 e_old, (xip_fpo_ptr) 0);
 xip_fpo_set_ui (one, 1);

// 0th term
 i = 0;
 xip_fpo_set_ui (fact, 1);
 xip_fpo_set_ui (e, 1);

// Main iteration loop
 do {

// Set up this iteration
 i++;
 xip_fpo_set_ui (n, i);
 xip_fpo_set (e_old, e);

// Calculate the next term: 1/n!

ex 1 x
1!
---- x2

2!
---- x3

3!
---- … xn

n!
---- …+ + + + + +=

ex 1 1
1!
---- 1

2!
---- 1

3!
---- … 1

n!
---- …+ + + + + +=
Floating-Point Operator v7.1 65
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=68

Chapter 5: C Model
 ex = xip_fpo_mul (fact, fact, n); // n!
 ex |= xip_fpo_div (term, one, fact); // 1/n!
 // Note: an alternative to the preceding line is:
 // ex |= xip_fpo_rec (term, fact);
 // but this is only possible if using single or double
 // (exp_prec, mant_prec = 8, 24 or 11, 53 respectively)
 // because xip_fpo_rec only supports single and double

// Calculate the estimate of e
 ex |= xip_fpo_add (e, e, term);

// Are we done?
 ex |= xip_fpo_equal (&done, e, e_old);

// Check for exceptions (none should occur)
 if (ex) {
 printf ("Iteration %d: exception occurred: %d\n", i, ex);
 return 1;
 }

// Print result so far
 result = xip_fpo_get_str (result, &exp, 10, 0, e);
 printf ("After %2d iteration(s), e is 0.%s * 10 ^ %d\n",
 i, result, exp);

} while (!done);

// Convert result to C's double precision type
 e_d = xip_fpo_get_d (e);
 printf ("As a C double, e is %.20f\n", e_d);

// Free up memory
 xip_fpo_clears (n, fact, one, term, e, e_old, xip_fpo_ptr) 0);
 xip_fpo_free_str (result);
return 0;
}

Floating-Point Operator v7.1 66
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=69

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Demonstration Test Bench
When the core is generated using the Vivado Design Suite, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file:
demo_tb/tb_<component_name>.vhd in the Vivado output directory. The source code
is comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Floating-Point Operator core.

Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench signals in your simulator's waveform viewer
to see the operations of the test bench.

Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core
• Generates input data
• Generates a clock signal
• Drives the input signals of the core to demonstrate core features
• Checks that the output signals of he core obey AXI4-Stream protocol rules (data values

are not checked to keep the test bench simple)
• Provides signals showing the separate fields of AXI4-Stream TDATA and TUSER signals
Floating-Point Operator v7.1 67
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=70

Chapter 6: Test Bench
The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core, and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed.
2. Perform a single operation, and wait for the result.
3. Perform 100 consecutive operations with incrementing data.
4. Perform operations while demonstrating the AXI4-Stream control signals’ use and

effects.
5. If aclken is present: Demonstrate the effect of toggling aclken.
6. If aresetn is present: Demonstrate the effect of asserting aresetn.
7. Demonstrate the handling of special floating-point values (NaN, zero, infinity).

Customizing the Demonstration Test Bench
The clock frequency of the core can be modified by changing the clock_period constant.

For instructions on simulating your core, see the Vivado Design Suite User Guide: Logic
Simulation (UG900) [Ref 10].

For instruction on implementing your core, see Vivado Design Suite User Guide:
Implementation (UG904) [Ref 11].
Floating-Point Operator v7.1 68
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=71

Appendix A

 Upgrading
This appendix contains information about migrating a design from ISE® to the Vivado®
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading in the Vivado Design Suite, important details (where applicable) about any port
changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information on migrating to the Vivado Design Suite, see ISE to Vivado Design Suite
Migration Guide (UG911) [Ref 13].

In the Vivado Design Suite, you can update an existing XCO or XCI file from versions 4.0, 5.0,
6.0, 6.1, 6.2 and 7.0 to Floating-Point Operator, v7.1.

IMPORTANT: For v4.0 and v5.0 the upgrade mechanism alone does not create a core compatible with
v7.1. Floating-Point Operator v7.1 has parameters additional to v4.0 and v5.0 for AXI4-Stream support.

Floating-Point Operator v7.1 is backwards compatible with v6.1, v6.2, and v7.0 both in terms
of parameters and ports. Figure A-1 shows the changes to user parameters from versions
4.0, 5.0, 6.0, 6.1, 6.2, and 7.0 to version 7.1. For clarity, user parameters with no changes are
not shown.

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.
Floating-Point Operator v7.1 69
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=72

Appendix A: Upgrading
Parameter Changes
Table A-1: XCO/XCI Parameter Changes from v4.0, v5.0, v6.0, v6.1, v6.2, and v7.0 to v7.1(1)

Version 4.0 and 5.0 Version 7.1 Notes
C_Has_CE Has_ACLKEN Renamed only
C_Has_SCLR Has_ARESETn Renamed only. While the sense of the

aresetn signal has changed (now
active-Low), this XCO parameter
determined whether or not the pin exists
and has not changed.

C_Latency C_Latency Depending on the AXI4-Stream Flow
Control options selected (Blocking/
NonBlocking), a minimum latency greater
than previous core versions might be
imposed.

Flow_Control New as of version 6.0
Axi_Optimize_Goal New as of version 6.0
Has_RESULT_TREADY New as of version 6.0
Has_A_TLAST New as of version 6.0
Has_A_TUSER New as of version 6.0
A_TUSER_Width New as of version 6.0
Has_B_TLAST New as of version 6.0
Has_B_TUSER New as of version 6.0
B_TUSER_Width New as of version 6.0
Has_OPERATION_TLAST New as of version 6.0
Has_OPERATION_TUSER New as of version 6.0
OPERATION_TUSER_Width New as of version 6.0
RESULT_TLAST_Behv New as of version 6.0
Has_C_TLAST New as of version 6.2
Has_C_TUSER New as of version 6.2
C_TUSER_Width New as of version 6.2
C_Has_ACCUM_INPUT_OVERFLOW New as of version 6.2
C_Has_ACCUM_OVERFLOW New as of version 6.2
C_Accum_Msb New as of version 6.2
C_Accum_Lsb New as of version 6.2
C_Accum_Input_Msb New as of version 6.2

Notes:
1. Parameters in v6.0, v6.1, v6.2, v7.0, and v7.1 are unchanged except for the additions required for new operators.
Floating-Point Operator v7.1 70
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=73

Appendix A: Upgrading
Port Changes
Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v4.0, v5.0, v6.0, v6.1, v6.2, and v7.0 to v7.1.

Table A-2: Port Changes from v4.0, v5.0, v6.0, v6.1, v6.2, and v7.0 to v7.1(1)

Versions
4.0 and 5.0 Version 7.1 Notes

CLK aclk Rename only
CE aclken Rename only
SCLR aresetn Rename and change of sense (now active-Low).

Must now be asserted for at least two clock
cycles to effect a reset.

A(N-1:0) s_axis_a_tdata (byte (N)-1:0) byte (N) is to round N up to the next multiple of
8

B(N-1:0) s_axis_b_tdata (byte (N)-1:0) byte (N) is to round N up to the next multiple of
8

OPERATION(5 : 0) s_axis_operation_tdata (7 : 0)
RESULT(R-1:0) m_axis_result_tdata (byte (R)-1:0) byte (R) is to round R up to the next multiple of

8.
OPERATION_ND Deprecated Nearest equivalents are

s_axis_<operand>_tvalid
OPERATION_RFD Deprecated Nearest equivalents are

s_axis_<operand>_tready
RDY Deprecated Nearest equivalent is m_axis_result_tvalid
UNDERFLOW Deprecated Exception signals are now subfields of

m_axis_result_tuser. See Figure 3-12 for data
structure.OVERFLOW Deprecated

INVALID_OP Deprecated
DIVIDE_BY_ZERO Deprecated

s_axis_a_tvalid TVALID (AXI4-Stream channel handshake signal)
for each channels_axis_b_tvalid

s_axis_c_tvalid
s_axis_operation_tvalid
m_axis_result_tvalid
s_axis_a_tready TREADY (AXI4-Stream channel handshake

signal) for each channel.s_axis_b_tready
s_axis_c_tready
s_axis_operation_tready
m_axis_result_tready
Floating-Point Operator v7.1 71
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=74

Appendix A: Upgrading
Other Changes
No change.

s_axis_a_tlast TLAST (AXI4-Stream packet signal indicating the
last transfer of a data structure) for each
channel. The Floating-Point Operator does not
use TLAST, but provides the facility to pass
TLAST with the same latency as TDATA.

s_axis_b_tlast
s_axis_c_tlast
s_axis_operation_tlast
m_axis_result_tlast
s_axis_a_tuser(E-1:0) TUSER (AXI4-Stream ancillary field for

application-specific information) for each
channel. The Floating-Point Operator does not
use TUSER, but provides the facility to pass
TUSER with the same latency as TDATA.

s_axis_b_tuser(F-1:0)
s_axis_c_tuser(G-1:0)
s_axis_operation_tuser (H-1:0)
m_axis_result_tuser (I-1:0)

Notes:
1. Ports in v6.0, v6.1, v6.2, v7.0, and v7.1 are unchanged except for the additions required for new operators and new

precision support for existing operators.

Table A-2: Port Changes from v4.0, v5.0, v6.0, v6.1, v6.2, and v7.0 to v7.1(1) (Cont’d)

Versions
4.0 and 5.0 Version 7.1 Notes
Floating-Point Operator v7.1 72
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=75

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx® Support website
and debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Fast Fourier Transform, the Xilinx
Support web page contains key resources such as product documentation, release notes,
answer records, information about known issues, and links for obtaining further product
support.

Documentation
This product guide is the main document associated with the Floating-Point Operator. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as:

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.
Floating-Point Operator v7.1 73
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=76

Appendix B: Debugging
Master Answer Record for the Floating-Point Operator Core

AR: 54504

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address Floating-Point Operator core design issues. It is
important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug LogiCORE IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 14].

C Model Reference
See Chapter 5, C Model in this guide for tips and instructions for using the provided
C-Model files to debug your design.
Floating-Point Operator v7.1 74
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/54504.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=77

Appendix B: Debugging
Simulation Debug
When the Floating-Point Operator core is configured to use Non-Blocking mode, any
transaction input in the cycle following the deassertion of aresetn is lost. For more
information, see Non-Blocking Mode in the AXI4-Stream Considerations section.

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

• Check that the aclk inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed. See AXI4-Stream

Considerations.
Floating-Point Operator v7.1 75
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=78

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

References
These documents provide supplemental material useful with this product guide:

1. ANSI/IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-2008. IEEE-754.
Floating-Point Operator v7.1 76
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=79

Appendix C: Additional Resources and Legal Notices
2. The GNU Multiple Precision Arithmetic (GMP) Library gmplib.org
3. The GNU Multiple Precision Integers and Rationals (MPIR) library www.mpir.org
4. The GNU Multiple Precision Floating-Point Reliable (MPFR) Library www.mpfr.org
5. Multiple Precision Arithmetic on Windows, Brian Gladman:

http://mpir.org/index.html
6. Vivado Design Suite User Guide: Designing with IP (UG896)
7. Vivado Design Suite User Guide: Getting Started (UG910)
8. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
9. System Generator for DSP User Guide (UG640)
10. Vivado Design Suite User Guide: Logic Simulation (UG900)
11. Vivado Design Suite User Guide: Implementation (UG904)
12. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
13. ISE to Vivado Design Suite Migration Methodology Guide (UG911)
14. Vivado Design Suite User Guide: Programming and Debugging (UG908)
15. Xilinx Vivado AXI Reference Guide (UG1037)
16. AMBA® AXI4-Stream Protocol Specification (Arm IHI 0051A)
17. Florent de Dinechin, Bogdan Pasca, Octavian Cret, Radu Tudoran. An FPGA-specific

Approach to Floating-Point Accumulation and Sum-of-Products. Field-Programmable
Technology, Dec 2008, Taipei, Taiwan. ffensl-00268348v3
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00268348v3/document

18. Versal ACAP DSP Engine Architecture Manual (AM004)

Revision History
The following table shows the revision history for this document.

Date Version Revision
12/16/2020 7.1 • Added Versal ACAP product support.

• Added Accumulator Primitive section.
10/30/2019 7.1 • Internal Precision Tab section updated.

• Latency and Rate Configuration section updated.
10/04/2017 7.1 Fixed Point Number Representation section updated.
11/18/2015 7.1 UltraScale+ device support added.
09/30/2015 7.1 • Addition of Half Precision support for Reciprocal, Reciprocal Square Root,

Exponential and Logarithm operators.
Floating-Point Operator v7.1 77
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://mpir.org/index.html
http://mpir.org/index.html
http://gmplib.org/
http://www.mpir.org
http://www.mpfr.org
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00268348v3/document
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am004-versal-dsp-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=80

Appendix C: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012–2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property of their respective
owners.

04/02/2014 7.0 • Added link to resource utilization figures.
• Updated template.

12/18/2013 7.0 • Added UltraScale and IP Integrator support.
• Added Simulation, Synthesis, Example Design, and Test Bench chapters.
• Updated Migrating chapter and Debugging Appendix.

10/02/2013 7.0 Minor updates to IP Facts table and Migrating appendix. Document version
number advanced to match the core version number.

03/20/2013 3.0 • Updated for core v7.0.
• Added support for Zynq-7000 devices.

12/18/2012 2.0 • Updated to core v6.2 and Vivado Design Suite 2012.4.
• Removed support for ISE Design Suite, and Virtex-6, Spartan-6 and

Zynq-7000 devices.
• Added support for accumulator, fused multiply-add and exponential

operators.
• Updated Resource Utilization numbers.
• Added C Input Channel.
• Added Appendix B, Debugging.

07/25/2012 1.0 • Initial Xilinx release. This Product Guide is derived from DS816 and
UG812.

Date Version Revision
Floating-Point Operator v7.1 78
PG060 December 16, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG060&Title=Floating-Point%20Operator%20v7.1&releaseVersion=7.1&docPage=81

	Floating-Point Operator v7.1
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Core Overview
	Unsupported Features
	Licensing and Ordering

	Ch. 2: Product Specification
	Standards
	IEEE-754 Support
	Non-Standard Wordlengths
	Denormalized Numbers
	Rounding Modes
	Signaling and Quiet NaNs
	Accuracy of Results

	Performance
	Latency

	Resource Utilization
	Port Descriptions
	A Channel (s_axis_a_tdata)
	B Channel (s_axis_b_tdata)
	C Channel (s_axis_c_tdata)
	aclk
	aclken
	aresetn
	Operation Channel (s_axis_operation_tdata)
	Result Channel (m_axis_result_tdata)
	UNDERFLOW
	OVERFLOW
	INVALID_OP
	DIVIDE_BY_ZERO

	Ch. 3: Designing with the Core
	General Design Guidelines
	Floating-Point Number Representation
	Special Values

	Fixed-Point Number Representation

	Accumulator Design Guidelines
	Configuring the Accumulator
	Denormalized Numbers
	Exceptions
	Starting a New Accumulation
	Accumulator Primitive

	Clocking
	Resets
	Protocol Description
	AXI4-Stream Considerations
	Basic Handshake
	Non-Blocking Mode
	Blocking Mode
	TDATA Packing
	A, B, and C Input Channels
	TLAST and TUSER Handling
	TLAST Options
	TUSER Options
	Output Result Channel

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	All Configuration Tabs
	Component Name

	Operation Selection Tab
	Precision of Inputs and Precision of Results Tabs
	Internal Precision Tab
	Optimizations Tab
	Architecture Optimizations
	Implementation Optimizations
	DSP Slice Usage
	Block Memory Usage

	Interface Options Tab
	Flow Control Options
	Latency and Rate Configuration
	Cycles per Operation
	Control Signals
	Optional Output Fields
	AXI4-Stream Channel Options

	User Parameters
	Using the Floating-Point Operator IP Core
	Core Use through Vivado Design Suite
	Core Use through System Generator for DSP

	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Features
	Overview
	Unpacking and Model Contents
	Installation
	Linux
	Windows

	C Model Interface
	Data Types
	Functions
	Information Functions
	Initialization Functions
	Assignment Functions
	Conversion Functions
	xip_fpo_get_str
	xip_fpo_fix_get_str

	Operation Functions

	Compiling
	Linking
	Linux
	Windows

	Dependent Libraries
	Example

	Ch. 6: Test Bench
	Demonstration Test Bench
	Using the Demonstration Test Bench
	Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Other Changes

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Master Answer Record for the Floating-Point Operator Core

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	C Model Reference

	Simulation Debug
	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

