1G/10G/25G Switching Ethernet Subsystem v2.3

Product Guide

Vivado Design Suite

PG292 May 22, 2019

Table of Contents

IP Facts

Chapter 1: Overview

Feature Summary	5
Applications	6
Licensing and Ordering	6

Chapter 2: Product Specification

Standards	9
Performance and Resource Utilization	. 10
Latency	. 10
Port Descriptions	. 10
Register Space	. 51
Configuration and Status Register Map	. 53

Chapter 3: Designing with the Subsystem

Clocking	70
Resets	74
LogiCORE Example Design Clocking and Resets	76
Support for IEEE Standard 1588v2	79
Status/Control Interface	86
Pause Processing	87
Auto-Negotiation	91
Link Training	97

Chapter 4: Design Flow Steps

Customizing and Generating the Core	101
MAC Options Tab	104
Constraining the Core	107
Simulation	109
Synthesis and Implementation	109

Chapter 5: Example Design

Overview	110	0
----------	-----	---

Example Design Hierarchy (GT in Example Design)	116
User Interface	118
Core XCI Top Level Port List	120
Duplex Mode of Operation	173
AXI4-Lite Interface Implementation	174

Chapter 6: Batch Mode Test Bench

Appendix A: Debugging

Finding Help on Xilinx.com	180
Debug Tools	182
Simulation Debug	182
Hardware Debug	185
Protocol Interface Debug	189

Appendix B: Additional Resources and Legal Notices

Xilinx Resources	190
Documentation Navigator and Design Hubs	190
References	191
Revision History	192
Please Read: Important Legal Notices	194

EXILINX_®

Introduction

The Xilinx® 1G/10G/25G Switching Ethernet Subsystem includes MAC+PCS/PMA switching subsystems in two variants as well as a PCS/ PMA switching subsystem variant. It offers a flexible solution for connection to transmit and receive data interfaces using an AXI4-Stream interface for the MAC+PCS/PMA configuration, and an XGMII/GMII interface for the PCS/PMA configuration.

Features

- Designed to the Ethernet requirements for 1/10 Gb/s operation specified by IEEE 802.3 Clause 49 or Clause 36 [Ref 1]
- Runtime switchable Ethernet MAC and PCS/ PMA functions for 1/10/25 Gb/s operation
- Supports only GTHE3/GTYE3 and GTHE4/GTYE4 transceiver supported devices
- AXI4-Lite interface for control bus
- Simple packet-oriented user interface
- Comprehensive statistics gathering
- Status signals for all major functional indicators
- Delivered with a top-level wrapper including functional transceiver wrapper, IP netlist, sample test scripts, and Vivado® Design Suite tools compile scripts
- PCS operating at 25.78125 Gb/s or 10.3125 Gb/ s or 1.25 Gb/s
- Optional Clause 73 Auto-Negotiation with Parallel Detection support
- Optional Clause 72 Link Training for 64-bit variant
- Optional Clause 74 BASE-KR FEC sublayer for 64-bit variant
- Optional IEEE 1588 two-step hardware timestamping
- Single channel (lane) support

	Facts Table					
	Core Specifics					
Supported Zynq® UltraScale+™ MPS Device Family ⁽¹⁾ UltraSca UltraSca						
Supported User Interfaces	AXI4-Stream and AXI4-Lite for all variants, XGMII and GMII for PCS-only variants.					
Resources	Resources See Performance and Resource Utilization web					
	Provided with Core					
Design Files	Encrypted register transfer level (RTL)					
Example Design	Verilog					
Test Bench	Verilog					
Constraints File	Xilinx Design Constraints (XDC)					
Simulation Model	Verilog					
Supported S/W Driver	N/A					
	Tested Design Flows ⁽²⁾					
Design Entry	Vivado Design Suite					
Simulation	For supported simulators, see the Xilinx Design Tools: Release Notes Guide.					
Synthesis	Vivado Synthesis					
	Support					
Provided b	y Xilinx at the Xilinx Support web page					

Notes:

- 1. For a complete list of supported devices, see the Vivado IP catalog.
- 2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1

Overview

This document details the features of the Ethernet 1G/10G/25G dynamically switching PCS/ PMA and MAC core. The 10G/25G Ethernet Subsystem is defined by the 25G Ethernet Consortium [Ref 2]. 10G PCS functionality is defined by *IEEE Standard 802.3, 2015, Clause 49, Physical Coding Sublayer (PCS) for 64B/66B, type 10GBASE-R* [Ref 1]. 1G PCS functionality is defined in Clause 36. For 25G operation, clock frequencies are increased to provide a serial interface operating at 25.78125 Gb/s to leverage the latest high-speed serial transceivers. The low latency design is optimized for UltraScale+[™] architecture devices.

Feature Summary

See Table 1-1 for compatibility of options with the different variants of the LogiCORE[™] IP core.

1G/10G/25G Supported Features

- Complete MAC and PCS functions
- 10G BASE-R mode based on IEEE 802.3 Clause 49 or 1000BASE-X mode based on IEEE 802.3 Clause 36 [Ref 1]
- 32-bit/64-bit AXI4-Stream user interface for the MAC + PCS mode of operation
- XGMII and GMII interfaces for the PCS-only mode of operation
- AXI4-Lite control and status interface
- Statistics and diagnostics
- Custom preamble and adjustable interframe gap for the 64-bit variant
- Optional Clause 73 Auto-Negotiation with Parallel Detection support
- Optional Clause 72 Link Training for the 64-bit variant
- Optional Clause 74 FEC sublayer: shortened cyclic code (2112, 2080) for the 64-bit variant
- Pause Processing including IEEE Std 802.3 Annex 31D (Priority based Flow Control) for the 64-bit variant

Variant	User Interface	MAC	PCS	Pause Processing	Auto- Negotiation	Link Training	Clause 74 FEC	IEEE 1588 Hardware Time Stamp
1G/10G MAC with PCS ⁽¹⁾	32-bit AXI4-Stream	1	~		4			4
1G/10G/ 25G MAC with PCS ⁽²⁾	64-bit AXI4-Stream	1	~	4	4	4		
1G/10G PCS only	32-bitXGMII and GMII		~		4			

Table 1-1: Feature Compatibility Matrix

Notes:

- 1. Only two-step timestamping is supported.
- 2. The 64-bit option is only available for the 1G/10G/25G targeting GTY Transceiver.

Applications

The IEEE Standard 802.3 [Ref 1] enables several different Ethernet speeds for Local Area Network (LAN) applications. The IP core delivers the capability to switch between 25GBASE-R, 10GBASE-R, and 1000BASE-X PHY.

Licensing and Ordering

License Checkers

If the IP requires a license key, the key must be verified. The Vivado® design tools have several license checkpoints for gating licensed IP through the flow. If the license check succeeds, the IP can continue generation. Otherwise, generation halts with error. License checkpoints are enforced by the following tools:

- Vivado Synthesis
- Vivado Implementation
- write_bitstream (Tcl Console command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does not check IP license level.

License Type

10G/25G Ethernet PCS/PMA (10G/25G BASE-R)

This 1G/10G/25G Ethernet Subsystem module is provided at no additional cost with the Xilinx Vivado[™] Design Suite under the terms of the Xilinx End User License. To use the Subsystem, a 25G Ethernet MAC/PCS license must be purchased governed under the terms of the Xilinx Core License Agreement. For information about pricing and availability of other Xilinx IP modules and tools, contact your local Xilinx sales representative.

For more information, visit the 1G/10G/25G Switching Ethernet Subsystem page.

Ordering Information

To purchase any of these IP cores, contact your local Xilinx Sales Representative referencing the appropriate part number(s) in Table 1-2.

Description	Part Number	License Key
1G/10G/25G Ethernet MAC + BASE-R PCS/ PMA	EF-DI-25GEMAC-PROJ ⁽¹⁾ EF-DI-25GEMAC-SITE ⁽¹⁾	xxv_eth_mac_pcs x_eth_mac
	Note: These part numbers do not include the BASE-KR/CR/SR functionality which is comprised of FEC and AN/LT. To include support for this feature, please order EF-DI-25GBASE-KR-PROJ or EF-DI-25GBASE-KR-SITE.	
1G/10G BASE-KR PCS/PMA (CL74 FEC, AN/LT)	EF-DI-25GBASE-KR-PROJ	xxv_eth_basekr
Standalone PCS/PMA only	EF-DI-25GBASE-KR-SITE	
	Note: The 10G/25G Ethernet MAC is sold separately. To include the Xilinx MAC, also order the EF-DI-25GEMAC-PROJ or EF-DI-25GEMAC-SITE.	
1G/10G BASE-R PCS/PMA	Included with the Vivado™ design tools. No purchase necessary.	No license key

Table 1-2: Ordering Information

Notes:

1. Used for 25GBASE-CR, 25GBASE-KR, or 25GBASE-SR applications.

Product Specification

Figure 2-1 shows the block diagram of the 32-bit 1G/10G MAC and PCS/PMA Switching Ethernet Subsystem.

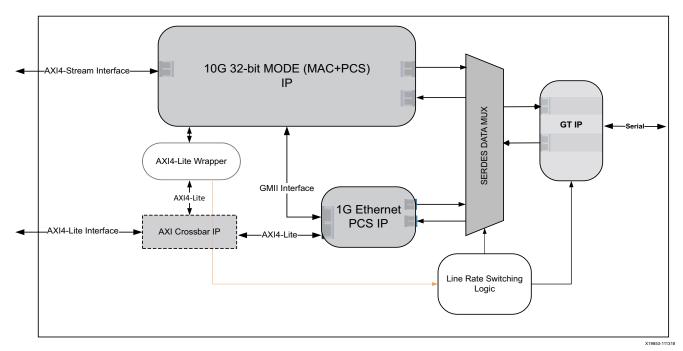


Figure 2-1: Ethernet 1/10/25G Dynamically Switching 32-bit MAC and PCS/PMA IP Block Diagram

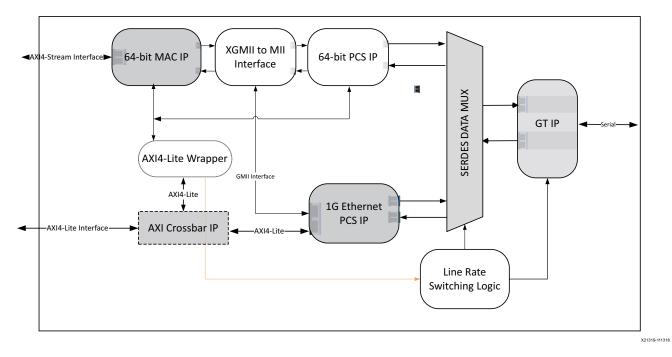


Figure 2-2: Ethernet 1/10/25G Dynamically Switching 64-bit MAC and PCS/PMA IP Block Diagram

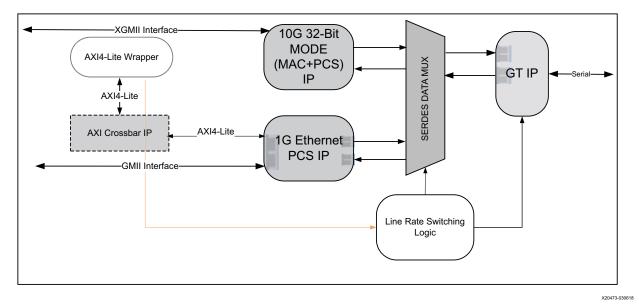


Figure 2-3: Ethernet 1/10G Dynamically Switching 32-bit PCS/PMA IP Block Diagram

Standards

The 1G/10G/25G Switching Ethernet Subsystem is designed to the standard specified in the *IEEE Std 802.3* [Ref 1].

Performance and Resource Utilization

For full details about performance and resource utilization, see the Performance and Resource Utilization web page.

Latency

Table 2-1 provides the measured latency information for the 1G/10G/25G Switching Ethernet Subsystem.

Core	Core Configuration	Latency (ns)	User Bus Width (Bits)	Core Clock Frequency (MHz)
	10G mode TX latency	28.8	32	312.5
	1G mode TX latency	632	32	125
32-bit MAC+PCS/PMA	10G mode RX latency	25.6	32	312.5
	1G mode RX latency	304	32	125
	25G mode TX latency	77	64	390.625
	10G mode TX latency	192	64	156.25
	1G mode TX latency	864	64	125
64-bit MAC+PCS/PMA	25G mode RX latency	113	64	390.625
	10G mode RX latency	281	64	156.25
	1G mode RX latency	568	64	125
	10G mode TX latency	19.2	32	312.5
	1G mode TX latency	80	8	125
32-bit PCS/PMA	10G mode RX latency	19.2	32	312.5
	1G mode RX latency	88	8	125

Table 2-1: Latency

Port Descriptions

The following tables list the ports for the 1G/10G/25G Switching Ethernet Subsystem. These signals are usually found at the wrapper.v hierarchy. These ports are applicable for both the 64-bit integrated MAC + PCS for 25 Gb/s and 10 Gb/s line rates and the low-latency 32-bit integrated MAC + PCS for 10 Gb/s line rate. When the AXI register interface is included, some of these ports are accessed through the registers instead of the broadside bus.

Transceiver Interface

Table 2-2 shows the transceiver I/O ports for the 1G/10G/25G Switching EthernetSubsystem. See Clocking in Chapter 3 for details regarding each clock domain.

Name	Direction	Description	Clock Domain
gt_tx_reset	I	Reset for the gigabit transceiver (GT) TX.	Asynchronous
gt_rx_reset	I	GT RX reset.	Asynchronous
ctl_gt_reset_all	I	Active-High asynchronous reset for the transceiver startup Finite State Machine (FSM). Note that this signal also initiates the reset sequence for the entire 1G/10G/25G Ethernet Subsystem.	Asynchronous
refclk_n0	I	Differential reference clock input for the SerDes, negative phase.	Refer to Clocking.
refclk_p0	I	Differential reference clock input for the SerDes, positive phase.	Refer to Clocking.
rx_serdes_data_n0	I	Serial data from the line; negative phase of the differential signal	Refer to Clocking.
rx_serdes_data_p0	I	Serial data from the line; positive phase of the differential signal	Refer to Clocking.
tx_serdes_data_n0	0	Serial data to the line; negative phase of the differential signal.	Refer to Clocking.
tx_serdes_data_p0	0	Serial data to the line; positive phase of the differential signal.	Refer to Clocking.
tx_serdes_clkout	0	When present, same as tx_clk_out.	Refer to Clocking.

Table 2-2: Transceiver I/O

AXI4-Stream Interface

The 1G/10G/25G Switching Ethernet Subsystem provides 32-bit and 64-bit options of the AXI4-Stream interface for the Ethernet MAC+PCS/PMA core configuration. For the 1G/10G switching IP, the 32-bit and 64-bit interfaces are provided. For the 1G/10G/25G switching IP, only the 64-bit interface is provided.

AXI4-Stream Clocks and Resets

Name	Direction	Description	Clock Domain
rx_clk_out	0	Receive AXI4-Stream clock. All signals between the 1G/10G/ 25G High Speed Ethernet Subsystem and the user-side logic are synchronized to the positive edge of this signal. This clock is 125 MHz for 1G configuration, 156.25 / 312.5 MHz for 10G core configuration and 390.625 MHz for 25G configuration.	Refer to Clocking.
tx_clk_out	0	Transmit AXI4-Stream clock. All signals between the 1G/ 10G/25G High Speed Ethernet Subsystem and the user-side logic are synchronized to the positive edge of this signal. This clock is 125 MHz for 1G configuration, 165.25 / 312.5 MHz for 10G core configuration and 390.625 MHz for 25G configuration.	Refer to Clocking.
rx_reset	I	Reset for the RX circuits. This signal is active-High (1 = reset) and must be held High until clk is stable. The core handles synchronizing the rx_reset input to the appropriate clock domains within the core.	Asynchronous
tx_reset	I	Reset for the TX circuits. This signal is active-High (1 = reset) and must be held High until clk is stable. The core handles synchronizing the tx_reset input to the appropriate clock domains within the core.	Asynchronous
rx_core_clk	I	The rx_core_clk signal is used to clock the receive AXI4- Stream interface. It is an input when the FIFO is included and is not an input port when in low latency mode with FIFO not included; instead it is driven internally by rx_clk_out. Clock Domain: rx_core_clk	rx_core_clk

Table 2-3: AXI4-Stream Interface – Clock/Reset Signals

Transmit AXI4-Stream Interface

Table 2-4 shows the AXI4-Stream transmit interface signals.

Signal	Direction	Description
tx_axis_tdata[63 or 31:0]	I	AXI4-Stream data. 32-bit and 64-bit interfaces are available. Bus width depends on the selection of 64-bit or 32-bit interfaces.
tx_axis_tkeep[7:0 or 3:0]	I	AXI4-Stream Data Control. Bus width depends on selection of 64-bit or 32-bit interfaces.
tx_axis_tvalid	I	AXI4-Stream Data Valid input.
tx_axis_tuser	I	AXI4-Stream User Sideband interface. Equivalent to the tx_errin signal.
		 1 indicates a bad packet. 0 indicates a good packet.
		0 indicates a good packet.

 Table 2-4:
 AXI4-Stream Transmit Interface Signals

Signal	Direction	Description
tx_axis_tlast	I	AXI4-Stream signal indicating End of Ethernet Packet.
tx_axis_tready	0	AXI4-Stream acknowledge signal to indicate to start the data transfer.

Table 2-4: AXI4-Stream Transmit Interface Signals (Cont'd)

Data Lane Mapping

For transmit data tx_axis_tdata , the port is logically divided into lane 0 to lane 3 for the 32-bit interface (see Table 2-5) or lane 0 to lane 7 for the 64-bit interface (see Table 2-6) with the corresponding bit of the tx_axis_tkeep word signifying valid data on tx_axis_tdata .

Table 2-5: tx_axis_tdata Lanes – 32 Bits

Lane/ tx_axis_tkeep	tx_axis_tdata[31:0] Bits
0	7:0
1	15:8
2	23:16
3	31:24

Table 2-6: tx_axis_tdata Lanes – 64 Bits

Lane/ tx_axis_tkeep	tx_axis_tdata[63:0] Bits
0	7:0
1	15:8
2	23:16
3	31:24
4	39:32
5	47:40
6	55:48
7	63:56

Normal Transmission

The timing of a normal frame transfer is shown in Figure 2-4. When the client wants to transmit a frame, it asserts the tx_axis_tvalid signal and places the data and control in tx_axis_tdata and tx_axis_tkeep in the same clock cycle. When this data is accepted by the core, indicated by tx_axis_tready being asserted, the client must provide the next cycle of data. If tx_axis_tready is not asserted by the core, the client must hold the current valid data value until it is. The end of packet is indicated to the core by tx_axis_tlast being asserted for one cycle. The bits of tx_axis_tkeep are set appropriately to indicate the number of valid bytes in the final data transfer. The tx_axis_tuser signal is also asserted to indicate a bad packet.

After tx_axis_tlast is deasserted, any data and control is deemed invalid until tx_axis_tvalid is next asserted.

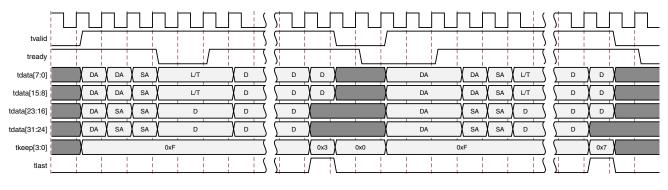
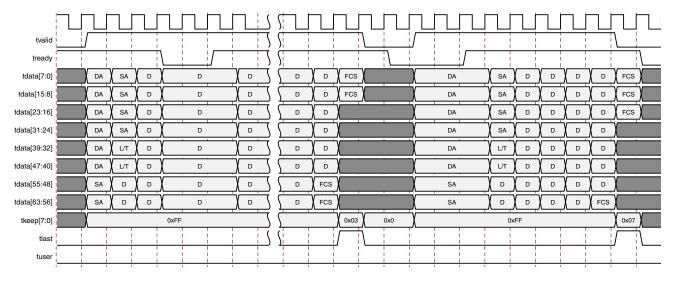



Figure 2-4: Normal Frame Transfer – 32 Bits

Figure 2-5: Normal Frame Transfer – 64 Bits

Back-to-Back Continuous Transfers

Continuous data transfer on the transmit AXI4-Stream interface is possible, as the signal tx_axis_tvalid can remain continuously High, with packet boundaries defined solely by tx_axis_tlast asserted for the end of the Ethernet packet. However, the core can deassert the tx_axis_tready acknowledgment signal to throttle the client data rate as required. See Figure 2-6 and Figure 2-7. The client data logic can update the AXI4-Stream interface with valid data while the core deasserts the tx_axis_tready acknowledgment signal. However, after valid is asserted and new data has been placed on the AXI4-Stream, it should remain there until the core asserts tx_axis_tready signal.

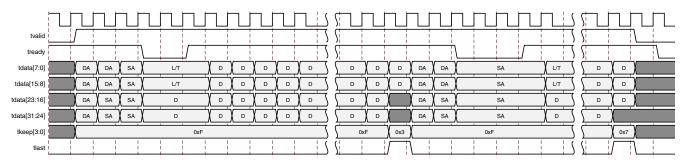


Figure 2-6: Back-to-Back Continuous Transfer on Transmit Client Interface: 32-Bit

tvalid		<u> </u>			<u> </u>		<u> </u>				<u></u>	<u> </u>	<u> </u>	<u> </u>			\int	
tready									Ś	5						Ś	S	
tdata[7:0]	DA	SA	D	D			D	D			D	D	DA	SA	D		D	
tdata[15:8]	DA	SA	D	D	D		D	D		D	D	D	DA	SA	D		D	
tdata[23:16]	DA	SA	D	D	D		D	D			D		DA	SA	D		D	
tdata[31:24]	DA	SA	D	D	D		D	D		D	D		DA	SA	D	D	D	
tdata[39:32]	DA	L/T	D	D	D		D	D			D		DA	L/T	D	D	D	
tdata[47:40]	DA	L/T	D	D	D	D	D	D			D		DA	L/T	D	D	D	
tdata[55:48]	SA	D	D	D	D	D	D	D		D	D		SA	D	D	D	D	
tdata[63:56]	SA	D	D	D	D	D	D	D			D		SA	D	D	D	D	
tkeep[7:0]	0xFF						0xF	F	0x03			0xFF			0x07			
tlast										<u>\</u>		\square					<u></u>	

Figure 2-7: Continuous Transfer on transmit Client Interface: 64-Bit

Aborting a Transmission

The aborted transfer of a packet on the client interface is called an underrun. This can happen if a FIFO in the AXI Transmit client interface empties before a frame is completed. This is indicated to the core in one of two ways:

- An explicit error in which a frame transfer is aborted by asserting tx_axis_tuser High while tx_axis_tlast is High.
- An implicit underrun, in which a frame transfer is aborted by deasserting tx_axis_tvalid without asserting tx_axis_tlast.

When either of the two scenarios occurs during a frame transmission, the core inserts error codes into the data stream to flag the current frame as an errored frame. It remains the responsibility of the client to requeue the aborted frame for transmission, if necessary.

Receive AXI4-Stream Interface

Table 2-7 shows the AXI4-Stream receive interface signals.

Signal	Direction	Description
rx_axis_tdata[63 or 31:0]	0	AXI4-Stream Data to upper layer. Bus width depends on 64-bit or 32-bit selection.
rx_axis_tkeep[7 or 3:0]	0	AXI4-Stream Data Control to upper layer. Bus width depends on 64-bit or 32-bit selection.
rx_axis_tvalid	0	AXI4-Stream Data Valid
		AXI4-Stream User Sideband interface.
rx_axis_tuser	0	1 indicates a bad packet has been received.
		0 indicates a good packet has been received.
rx_axis_tlast	0	AXI4-Stream signal indicating an end of packet.

Table 2-7:	AXI4-Stream	Receive	Interface	Signals
------------	-------------	---------	-----------	---------

Data Lane Mapping

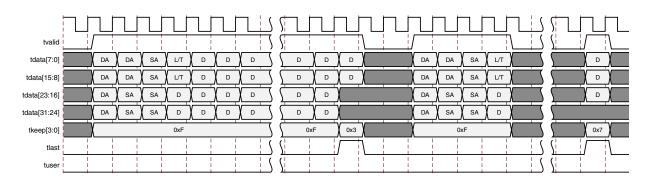
For receive data rx_axis_tdata, the port is logically divided into lane 0 to lane 3 for the 32-bit interface (See Table 2-8) or lane 0 to lane 7 for the 64-bit interface (see Table 2-9) with the corresponding bit of the rx_axis_tkeep word signifying valid data on rx_axis_tdata.

	Table 2-8:	rx_axis_	tdata Lanes	- 32 Bits
--	------------	----------	-------------	-----------

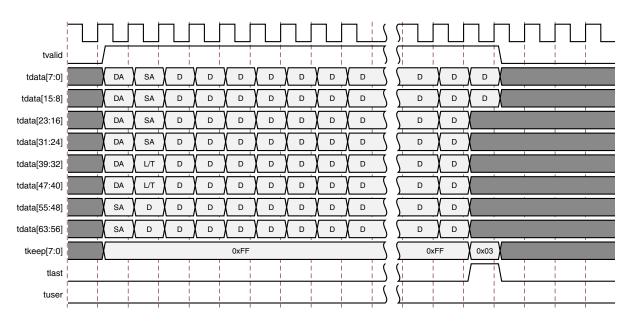
Lane/rx_axis_tkeep	rx_axis_tdata[31:0] Bits
0	7:0
1	15:8
2	23:16
3	31:24

Table 2-9:	rx_axis_tkeep	Lanes - 64 Bits
------------	---------------	-----------------

Lane/ rx_axis_tkeep	rx_axis_tdata Bits
0	7:0
1	15:8
2	23:16
3	31:24
4	39:32
5	47:40
6	55:48
7	63:56


Normal Frame Reception

The client must be prepared to accept data at any time; there is no buffering within the core to allow for latency in the receive client. When frame reception begins, data is transferred on consecutive clock cycles to the receive client.



During frame reception, rx_axis_tvalid is asserted to indicate that valid frame data is being transferred to the client on rx_axis_tdata. All bytes are always valid throughout the frame, as indicated by all rx_axis_tkeep bits being set to 1, except during the final transfer of the frame when rx_axis_tlast is asserted. During this final transfer of data for a frame, rx_axis_tkeep bits indicate the final valid bytes of the frame using the mapping from above. The valid bytes of the final transfer always lead out from rx_axis_tdata[7:0] (rx_axis_tkeep[0]) because Ethernet frame data is continuous and is received least significant byte first.

The rx_axis_tlast is asserted and rx_axis_tuser is deasserted, along with the final bytes of the transfer, only after all frame checks are completed. This is after the frame check sequence (FCS) field has been received. The core keeps the rx_axis_tuser signal deasserted to indicate that the frame was successfully received and that the frame should be analyzed by the client. This is also the end of packet signaled by rx_axis_tlast asserted for one cycle.

Figure 2-9: Normal Frame Reception – 64 Bits

Frame Reception with Errors

An unsuccessful frame reception might take the form of a runt frame or a frame with an incorrect FCS. In this case, the bad frame is received and the signal rx_axis_tuser is asserted to the client at the end of the frame. It is then the responsibility of the client to drop the data already transferred for this frame. The following conditions cause the assertion of rx_axis_tlast along with $rx_axis_tuser = 1$ signifying a bad_frame:

- FCS errors occur.
- Packets are shorter than 64 bytes (undersize or fragment frames).
- Frames of length greater than the maximum transmission unit (MTU) size programmed are received.
- Any control frame that is received is not exactly the minimum frame length.
- tvalid tdata[7:0] DA DA SA L/T D D D D D D tdata[15:8] DA DA SA L/T D D D D D D SA D D D D D tdata[23:16] DA SA D tdata[31:24] DA SA SA D D D D D D tkeep[3:0] 0xF 0x3 0xF tlast tuser
- The XGMII data stream contains error codes.

Figure 2-10: Frame Reception with Errors – 32 Bits

											5			
tvalid	 			l						5	5			
tdata[7:0]	1	DA	SA	D	D	D	D	D	D		5	D	D	
tdata[15:8]		DA	SA	D	D	D	D	D	D		5	D	D	
tdata[23:16]		DA	SA	D	D	D	D	D			S	D	D	
tdata[31:24]		DA	SA	D	D	D	D	D	D		S	D	D	
tdata[39:32]		DA	L/T	D	D	D	D	D		D	5	D	D	
tdata[47:40]	1	DA	L/T	D	D	D	D	D		D	5	D	D	
tdata[55:48]		SA	D	D	D	D	D	D	D		S	D	D	
tdata[63:56]	1	SA	D	D	D	D	D	D	D		S	D	D	
tkeep[7:0]		χ				0xFF					5	0xF	F	0x03
tlast			i	i	i	i	i	i) {		i	
tuser											5		1	
						1			1	1		1 1		

AXI4-Stream Control and Status Ports

Table 2-10:	AXI4-Stream Interfa	ce – TX Path	Control/Status Signals

Name	Direction	Description	Clock Domain
ctl_tx_custom_preamble_enable ⁽¹⁾	I	When asserted, this signal enables the use of tx_preamblein as a custom preamble instead of inserting a standard preamble.	tx_clk_out
		<i>Note:</i> When the core is switched to 1G, this should always be 0.	
tx_preamblein [55:0] ⁽¹⁾	I	This is the custom preamble which is a separate input port rather than being in line with the data. It should be valid during the start of packet.	tx_clk_out
		<i>Note:</i> When the core is switched to 1G, this should always be 0.	
		This signal can be optionally present. The ctl_tx_ipg_value defines the target average minimum	
ctl_tx_ipg_value[3:0] ⁽¹⁾	I	The inter-packet gap (IPG, in bytes) is inserted between AXI4-Stream packets. Valid values are 8 to 12. The ctl_tx_ipg_value can be programmed to a value in the 0 to 7 range, but in that case, it is interpreted as 8 (the minimum valid value).	tx_clk_out
		<i>Note:</i> When the core is switched to 1G, the value must always be 12.	

Name	Direction	Description	Clock Domain
ctl_tx_enable	1	TX Enable. This signal is used to enable the transmission of data when it is sampled as a 1. When sampled as a 0, only idles are transmitted by the core. This input should not be set to 1 until the receiver it is sending data to (that is, the receiver in the other device) is fully synchronized and ready to receive data (that is, the other device is not sending a remote fault condition). Otherwise, loss of data can occur. If this signal is set to 0 while a packet is being transmitted, the current packet transmission is completed and then the core stops transmitting any more packets.	tx_clk_out
ctl_tx_send_rfi ⁽²⁾	I	Transmit Remote Fault Indication (RFI) code word. If this input is sampled as a 1, the TX path only transmits Remote Fault code words. This input should be set to 1 until the RX path is fully synchronized and is ready to accept data from the link partner.	tx_clk_out
ctl_tx_send_lfi ⁽²⁾	I	Transmit Local Fault Indication (LFI) code word. Takes precedence over Remote Fault Indication (RFI).	tx_clk_out
ctl_tx_send_idle	I	Transmit Idle code words. If this input is sampled as a 1, the TX path only transmits Idle code words. This input should be set to 1 when the partner device is sending RFI code words.	tx_clk_out
ctl_tx_fcs_ins_enable	I	Enable FCS insertion by the TX core. If this bit is set to 0, the core does not add FCS to packet. If this bit is set to 1, the core calculates and adds the FCS to the packet. This input cannot be changed dynamically between packets.	tx_clk_out

Table 2-10: AXI4-Stream Interface – TX Path Control/Status Signals (Cont'd)

Name	Direction	Description	Clock Domain
ctl_tx_ignore_fcs	I	Enable FCS error checking at the AXI4-Stream interface by the TX core. This input only has effect when ctl_tx_fcs_ins_enable is Low. If this input is Low and a packet with bad FCS is being transmitted, it is not binned as good. If this input is High, a packet with bad FCS is binned as good. The error is flagged on the signals stat_tx_bad_fcs and stomped_fcs, and the packet is transmitted as it was received.	tx_clk_out
		Note: Statistics are reported as if there was no FCS error.	
stat_tx_local_fault ⁽²⁾	0	A value of 1 indicates the transmit decoder state machine is in the TX_INIT state. This output is level-sensitive.	tx_clk_out

Table 2-10: AXI4-Stream Interface – TX Path Control/Status Signals (Cont'd)

Notes:

1. This signal is valid for 64-bit core configurations only.

2. This signal is not valid in 1G mode.

Table 2-11: AXI4-Stream Interface – RX Path Control/Status Signals

Name	Direction	Description	Clock Domain
rx_preambleout [55:0] ⁽²⁾	0	This is the preamble. It is now a separate output instead of in-line with data as was done with previous releases. Note: When the core is switched to 1G, this should always be 0.	rx_core_clk
ctl_rx_enable	I	RX Enable. For normal operation, this input must be set to 1. When this input is set the to 0, after the RX completes the reception of the current packet (if any), it stops receiving packets by keeping the PCS from decoding incoming data. In this mode, there are no statistics reported and the AXI4-Stream interface is idle.	rx_clk_out
ctl_rx_check_preamble ⁽²⁾	I	When asserted, this input causes the MAC to check the preamble of the received frame.	rx_clk_out
ctl_rx_check_sfd ⁽¹⁾	I	When asserted, this input causes the MAC to check the Start of Frame Delimiter of the received frame.	rx_clk_out

Name	Direction	Description	Clock Domain
ctl_rx_force_resync ⁽¹⁾	I	RX force resynchronization input. This signal is used to force the RX path to reset and re-synchronize. A value of 1 forces the reset operation. A value of 0 allows normal operation. Note that this input should normally be Low and should only be pulsed (1 cycle minimum pulse).	rx_clk_out
ctl_rx_delete_fcs	I	Enable FCS removal by the RX core. If this bit is set to 0, the core does not remove the FCS of the incoming packet. If this bit is set to 1, the core deletes the FCS to the received packet. Note that FCS is not deleted for packets that are less than or equal to 8 bytes long. This input should only be changed while the corresponding reset input is asserted.	rx_clk_out
ctl_rx_ignore_fcs	I	Enable FCS error checking at the AXI4-Stream interface by the RX core. If this bit is set to 0, a packet received with an FCS error is sent with the rx_axis_tuser pin asserted during the last transfer (rx_axis_tlast sampled 1). If this bit is set to 1, the core does not flag an FCS error at the AXI4-Stream interface. Note: The statistics are reported as if the packet is good. The signal stat_rx_bad_fcs,	rx_clk_out
ctl_rx_max_packet_len[14:0]	I	however, reports the error. Any packet longer than this value is considered to be oversized. If a packet has a size greater than this value, the packet is truncated to this value and the rx_axis_tuser signal is asserted along with the rx_axis_tlast signal. Packets less than 4 bytes are dropped. ctl_rx_max_packet_len[14] is reserved and must be set to 0.	rx_clk_out
ctl_rx_min_packet_len[7:0]	I	Any packet shorter than this value is considered to be undersized. If a packet has a size less than this value, the rx_axis_tuser signal is asserted during the rx_axis_tlast asserted cycle. Packets less than 4 bytes are dropped.	rx_clk_out

Table 2-11: AXI4-Stream Interface – RX Path Control/Status Signals (Cont'd)

Name	Direction	Description	Clock Domain
stat_rx_framing_err[1:0] ⁽¹⁾	0	The RX sync header bits framing error is a bus that indicates how many sync header errors were received. The value of the bus is only valid when stat_rx_framing_err_valid is a 1. The values can be updated at any time and are intended to be used as increment values for sync header error counters.	rx_clk_out
stat_rx_framing_err_valid ⁽¹⁾	0	Valid indicator for stat_rx_framing_err. When sampled as a 1, the value on stat_rx_framing_err is valid.	rx_clk_out
stat_rx_local_fault ⁽¹⁾	0	This output is High when stat_rx_internal_local_fault or stat_rx_received_local_fault is asserted. This output is level sensitive.	rx_clk_out
stat_rx_status	0	Indicates current status of the link.	rx_clk_out
stat_rx_block_lock ⁽¹⁾	0	Block lock status. A value of 1 indicates that block lock is achieved as defined in Clause 49.2.14 and MDIO register 3.32.0 This output is level sensitive.	rx_clk_out
stat_rx_remote_fault ⁽¹⁾	0	Remote fault indication status. If this bit is sampled as a 1, it indicates a remote fault condition was detected. If this bit is sampled as a 0, remote fault condition does not exist. This output is level sensitive.	rx_clk_out
stat_rx_bad_fcs[1:0]	0	Bad FCS indicator. The value on this bus indicates packets received with a bad FCS, but not a stomped FCS during a cycle. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate an error condition. Note that pulses can occur in back to back cycles.	rx_clk_out
stat_rx_stomped_fcs[1:0]	0	Stomped FCS indicator. The value on this bus indicates the packets received with a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate the stomped condition. Note that pulses can occur in back to back cycles.	rx_clk_out

Table 2-11: AXI4-Stream Interface – RX Path Control/Status Signals (Cont'd)

Name	Direction	Description	Clock Domain
stat_rx_truncated	0	Packet truncation indicator. A value of 1 indicates that the current packet in flight is truncated due to its length exceeding ctl_rx_max_packet_len[14:0]. This output is pulsed for one clock cycle to indicate the truncated condition. Note that pulses can occur in back to back cycles.	rx_clk_out
stat_rx_internal_local_fault ⁽¹⁾	0	High when an internal local fault is generated due to any one of the following: test pattern generation or high bit error rate. Note that this signal remains High as long as the fault condition persists.	rx_clk_out
stat_rx_received_local_fault ⁽¹⁾	0	High when enough local fault words are received from the link partner to trigger a fault condition as specified by the IEEE fault state machine. Remains High as long as the fault condition persists.	rx_clk_out
stat_rx_hi_ber ⁽¹⁾	0	High Bit Error Rate (BER) indicator. When set to 1, the BER is too high as defined by IEEE Std. 802.3. Corresponds to MDIO register bit 3.32.1 as defined in Clause 49.2.14. This output is level sensitive.	rx_clk_out
ctl_rx_custom_preamble_enable ⁽²⁾	I	When asserted, this signal causes the side band of a packet presented on the AXI4-Stream to be the preamble as it appears on the line. Note: When the core is switched to 1G, this should always be 0.	rx_clk_out

Table 2-11: AXI4-Stream Interface – RX Path Control/Status Signals (Cont'd)

Notes:

1. This signal is not valid in 1G mode.

2. This signal is valid for 64-bit core configurations only.

Miscellaneous Status/Control Signals

Table 2-12 shows the miscellaneous status and control I/O signals.

Table 2-12: Miscellaneous Status/Control Ports

Name	Direction	Description	Clock Domain
dclk	I	Dynamic Reconfiguration Port (DRP) clock input. The required frequency is set by providing the value in the GT DRP Clock field in the Vivado [™] IDE GT Selection and Configuration tab. This must be a free running input clock.	Refer to Clocking.
stat_rx_valid_ctrl_code ⁽¹⁾	0	Indicates that a PCS block with a valid control code was received.	rx_clk_out
ctl_local_loopback	I	Loopback enable. A value of 1 enables loopback as defined in Clause 49. Corresponds to management data input/output (MDIO) register bit 3.0.14 as defined in Clause 45. This input should only be changed while the corresponding reset input is asserted.	Asynchronous
stat_rx_got_signal_os ⁽¹⁾	0	Signal OS indication. If this bit is sampled as a 1, it indicates that a Signal OS word was received. Note that Signal OS should not be received in an Ethernet network.	rx_clk_out
ctl_rx_process_lfi ⁽¹⁾	I	When this input is set to 1, the RX core expects and processes LF control codes coming in from the transceiver. When set to 0, the RX core ignores LF control codes coming in from the transceiver.	rx_clk_out
ctl_rx_test_pattern ⁽¹⁾	1	Test pattern checking enable for the RX core. A value of 1 enables test mode as defined in Clause 49. Corresponds to MDIO register bit 3.42.2 as defined in Clause 45. Checks for scrambled idle pattern.	rx_clk_out
ctl_tx_test_pattern ⁽¹⁾	I	Test pattern generation enable for the TX core. A value of 1 enables test mode as defined in Clause 49. Corresponds to MDIO register bit 3.42.3 as defined in Clause 45. Generates a scrambled idle pattern.	tx_clk_out

Table 2-12: Miscellaneous Status/Control Ports	(Cont'd)
--	----------

Name	Direction	Description	Clock Domain
stat_rx_test_pattern_mismatch ⁽¹⁾	0	Test pattern mismatch increment. A non-zero value in any cycle indicates how many mismatches occurred for the test pattern in the RX core. This output is only active when ctl_rx_test_pattern is set to a 1. This output can be used to generate MDIO register as defined in Clause 45. This output is pulsed for one clock cycle.	rx_clk_out
ctl_rx_data_pattern_select ⁽¹⁾	I	Corresponds to MDIO register bit 3.42.0 as defined in Clause 45.	rx_clk_out
ctl_rx_test_pattern_enable ⁽¹⁾	I	Test pattern enable for the RX core. A value of 1 enables test mode. Corresponds to MDIO register bit 3.42.2 as defined in Clause 45. Takes second precedence.	rx_clk_out
ctl_tx_data_pattern_select ⁽¹⁾	I	Corresponds to MDIO register bit 3.42.0 as defined in Clause 45.	tx_clk_out
ctl_tx_test_pattern_enable ⁽¹⁾	I	Test pattern generation enable for the TX core. A value of 1 enables test mode. Corresponds to MDIO register bit 3.42.3 as defined in Clause 45. Takes second precedence.	tx_clk_out
ctl_tx_test_pattern_seed_a[57:0] ⁽¹⁾	I	Corresponds to MDIO registers 3.34 through to 3.37 as defined in Clause 45.	tx_clk_out
ctl_tx_test_pattern_seed_b[57:0] ⁽¹⁾	I	Corresponds to MDIO registers 3.38 through to 3.41 as defined in Clause 45.	tx_clk_out
ctl_tx_test_pattern_select ⁽¹⁾	I	Corresponds to MDIO register bit 3.42.1 as defined in Clause 45.	tx_clk_out
gig_ethernet_pcs_pma_status_vector_0[15:0] ⁽¹⁾	0	See Status Vector Table in 1G/ 2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 1]	

Name	Direction	Description	Clock Domain
signal_detect	I	This port can be connected to an optical module to detect the presence of light. Logic 1 indicates that the optical module is correctly detecting light; logic 0 indicates a fault. Ensure, therefore, that this is driven with the correct polarity. If not connected to an optical module, the signal must be tied to logic 1. Note: When signal_detect is set to logic 0, this forces the receiver synchronization state machine of the core to remain in the loss of sync state.	N/A

Notes:

1. This signal is not valid in 1G mode.

Statistics Interface Ports

Table 2-13 and Table 2-14 show the Statistics interface I/O ports.

Table 2-13:	Statistics	Interface -	RX Path
-------------	------------	-------------	----------------

Name	Direction	Description	Clock Domain
stat_rx_total_bytes[3:0]	0	Increment for the total number of bytes received.	rx_clk_out
stat_rx_total_packets[1:0]	0	Increment for the total number of packets received.	rx_clk_out
stat_rx_total_good_bytes[13:0]	0	Increment for the total number of good bytes received. This value is only non-zero when a packet is received completely and contains no errors.	rx_clk_out
stat_rx_total_good_packets	0	Increment for the total number of good packets received. This value is only non-zero when a packet is received completely and contains no errors.	rx_clk_out
stat_rx_packet_bad_fcs	0	Increment for packets between 64 and ctl_rx_max_packet_len bytes that have Frame Check Sequence (FCS) errors.	rx_clk_out
stat_rx_packet_64_bytes	0	Increment for good and bad packets received that contain 64 bytes.	rx_clk_out
stat_rx_packet_65_127_bytes	0	Increment for good and bad packets received that contain 65 to 127 bytes.	rx_clk_out

Table 2-13:	Statistics Interface - R	X Path (Cont'd)
-------------	--------------------------	-----------------

Name	Direction	Description	Clock Domain
stat_rx_packet_128_255_bytes	0	Increment for good and bad packets received that contain 128 to 255 bytes.	rx_clk_out
stat_rx_packet_256_511_bytes	0	Increment for good and bad packets received that contain 256 to 511 bytes.	rx_clk_out
stat_rx_packet_512_1023_bytes	Ο	Increment for good and bad packets received that contain 512 to 1,023 bytes.	rx_clk_out
stat_rx_packet_1024_1518_bytes	0	Increment for good and bad packets received that contain 1,024 to 1,518 bytes.	rx_clk_out
stat_rx_packet_1519_1522_bytes	0	Increment for good and bad packets received that contain 1519 to 1522 bytes.	rx_clk_out
stat_rx_packet_1523_1548_bytes	0	Increment for good and bad packets received that contain 1,523 to 1,548 bytes.	rx_clk_out
stat_rx_packet_1549_2047_bytes	0	Increment for good and bad packets received that contain 1,549 to 2,047 bytes.	rx_clk_out
stat_rx_packet_2048_4095_bytes	0	Increment for good and bad packets received that contain 2,048 to 4,095 bytes.	rx_clk_out
stat_rx_packet_4096_8191_bytes	0	Increment for good and bad packets received that contain 4,096 to 8,191 bytes.	rx_clk_out
stat_rx_packet_8192_9215_bytes	0	Increment for good and bad packets received that contain 8,192 to 9,215 bytes.	rx_clk_out
stat_rx_packet_small	0	Increment for all packets that are less than 64 bytes long. Packets that are less than 4 bytes are dropped.	rx_clk_out
stat_rx_packet_large	0	Increment for all packets that are more than 9,215 bytes long.	rx_clk_out
stat_rx_oversize	0	Increment for packets longer than ctl_rx_max_packet_len with good FCS.	rx_clk_out
stat_rx_toolong	0	Increment for packets longer than ctl_rx_max_packet_len with good and bad FCS.	rx_clk_out
stat_rx_undersize	0	Increment for packets shorter than ctl_rx_min_packet_len with good FCS.	rx_clk_out
stat_rx_fragment	0	Increment for packets shorter than ctl_rx_min_packet_len with bad FCS.	rx_clk_out
stat_rx_jabber	0	Increment for packets longer than ctl_rx_max_packet_len with bad FCS.	rx_clk_out
stat_rx_bad_code ⁽¹⁾	0	Increment for 64B/66B code violations. This signal indicates that the RX PCS receive state machine is in the RX_E state as specified by IEEE Std. 802.3. This output can be used to generate MDIO register as defined in Clause 45.	rx_clk_out

28

Table 2-13: Statistics Interface - RX Path (Cont'd)

Name	Direction	Description	Clock Domain
stat_rx_bad_sfd ⁽¹⁾	0	Increment bad SFD. This signal indicates if the Ethernet packet received was preceded by a valid SFD. A value of 1 indicates that an invalid SFD was received.	rx_clk_out
stat_rx_bad_preamble ⁽¹⁾	Ο	Increment bad preamble. This signal indicates if the Ethernet packet received was preceded by a valid preamble. A value of 1 indicates that an invalid preamble was received.	rx_clk_out

Notes:

1. This signal is not valid in 1G mode.

Name	Direction	Description	Clock Domain
		Increment for the total number of bytes transmitted.	
stat_tx_total_bytes[3:0]	0	The signal width for stat_tx_total_bytes is [2:0] when the 32-bit AXI4-Stream option is selected.	tx_clk_out
stat_tx_total_packets	0	Increment for the total number of packets transmitted.	tx_clk_out
stat_tx_total_good_bytes[13:0]	0	Increment for the total number of good bytes transmitted. This value is only non-zero when a packet is transmitted completely and contains no errors.	tx_clk_out
stat_tx_total_good_packets	0	Increment for the total number of good packets transmitted.	tx_clk_out
stat_tx_bad_fcs	0	Increment for packets greater than 64 bytes that have FCS errors.	tx_clk_out
stat_tx_packet_64_bytes	0	Increment for good and bad packets transmitted that contain 64 bytes.	tx_clk_out
stat_tx_packet_65_127_bytes	0	Increment for good and bad packets transmitted that contain 65 to 127 bytes.	tx_clk_out
stat_tx_packet_128_255_bytes	0	Increment for good and bad packets transmitted that contain 128 to 255 bytes.	tx_clk_out
stat_tx_packet_256_511_bytes	0	Increment for good and bad packets transmitted that contain 256 to 511 bytes.	tx_clk_out
stat_tx_packet_512_1023_bytes	0	Increment for good and bad packets transmitted that contain 512 to 1,023 bytes.	tx_clk_out

Table 2-14: Statistics Interface - TX Path

Table 2-14:	Statistics Interface - TX Path (Cont'd)
-------------	---

Name	Direction	Description	Clock Domain
stat_tx_packet_1024_1518_bytes	0	Increment for good and bad packets transmitted that contain 1,024 to 1,518 bytes.	tx_clk_out
stat_tx_packet_1519_1522_bytes	0	Increment for good and bad packets transmitted that contain 1,519 to 1,522 bytes.	tx_clk_out
stat_tx_packet_1523_1548_bytes	0	Increment for good and bad packets transmitted that contain 1,523 to 1,548 bytes.	tx_clk_out
stat_tx_packet_1549_2047_bytes	0	Increment for good and bad packets transmitted that contain 1,549 to 2,047 bytes.	tx_clk_out
stat_tx_packet_2048_4095_bytes	0	Increment for good and bad packets transmitted that contain 2,048 to 4,095 bytes.	tx_clk_out
stat_tx_packet_4096_8191_bytes	0	Increment for good and bad packets transmitted that contain 4,096 to 8,191 bytes.	tx_clk_out
stat_tx_packet_8192_9215_bytes	0	Increment for good and bad packets transmitted that contain 8,192 to 9,215 bytes.	tx_clk_out
stat_tx_packet_small	0	Increment for all packets that are less than 64 bytes long.	tx_clk_out
stat_tx_packet_large	0	Increment for all packets that are more than 9,215 bytes long.	tx_clk_out
stat_tx_frame_error	0	Increment for packets with tx_axis_tuser set to indicate an End of Packet (EOP) abort.	tx_clk_out

XGMII/GMII Interface Ports

Table 2-15 shows the XGMII/GMII Interface ports. These ports are available for the Ethernet PCS/PMA 32-bit core configuration only.

Name	Direction	Description	Clock Domain
rx_mii_d[31:0]	0	Receive XGMII Data bus.	rx_mii_clk
rx_mii_c[3:0]	0	Receive XGMII Control bus.	rx_mii_clk
rx_mii_clk	I	Receive XGMII Clock input.	See Clocking for more information.
tx_mii_d[31:0]	I	Transmit XGMII Data bus.	rx_mii_clk
tx_mii_c[3:0]	I	Transmit XGMII Control bus.	rx_mii_clk

Table 2-15: XGMII/GMII Interface Ports

Name	Direction	Description	Clock Domain
tx_mii_clk	I	Transmit XGMII Clock input.	See Clocking for more information.
gmii_rxd[7:0]	0	Receive GMII Data bus.	rx_core_clk
gmii_rx_dv	0	Receive GMII Control signal.	rx_core_clk
gmii_rx_er	0	Receive GMII error signal.	rx_core_clk
gmii_txd[7:0]	0	Transmit GMII Data bus.	tx_out_clk
gmii_tx_en	0	Transmit GMII enable signal.	tx_out_clk
gmii_rx_er	0	Transmit GMII error signal.	tx_out_clk

Table 2-15: XGMII/GMII Interface Ports (Cont'd)

XGMII Interfaces

Internal 32-bit SDR Client-Side Interface

The mapping of lanes to data bits is shown in Table 2-16. The lane number is also the index of the control bit for that particular lane; for example, $tx_mii_c[2]$ and $tx_mii_d[23:16]$ are the control and data bits respectively for lane 2.

Lane	tx_mii_d, rx_mii_d Bits
0	7:0
1	15:8
2	23:16
3	31:24

Definitions of Control Characters

Reference is regularly made to certain XGMII control characters signifying Start, Terminate, Error, and others. These control characters all have in common that the control line for that lane is 1 for the character and a certain data byte value. The relevant characters are defined in the *IEEE Std. 802.3* [Ref 1] and are reproduced in Table 2-17 for reference.

	Table 2-17:	Partial	List of	XGMII	Characters
--	-------------	---------	---------	-------	------------

Data (Hex)	Control	Name, Abbreviation
00 to FF	0	Data (D)
07	1	Idle (I)
FB	1	Start (S)
FD	1	Terminate (T)
FE	1	Error (E)

Interfacing to the Transmit Client Interface

The timing of a data frame transmission through the internal 32-bit client-side interface is shown in Figure 2-12. The beginning of the data frame is shown by the presence of the Start character (the /S/ codegroup in lane 0 of Figure 2-12) followed by data characters in lanes 1, 2, and 3.

When the frame is complete, it is completed by a Terminate character (the T in lane 1 of Figure 2-12). The Terminate character can occur in any lane; the remaining lanes are padded by the XGMII idle characters.

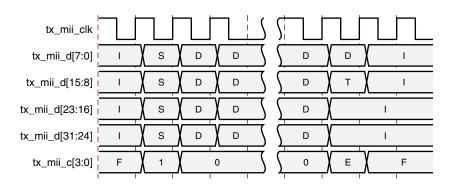
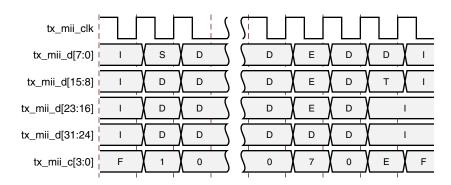
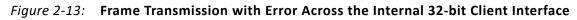




Figure 2-12: Normal Frame Transmission Across the Internal 32-Bit Client Interface

Figure 2-13 shows a similar frame to that in Figure 2-12, with the exception that this frame is propagating an error. The error code is denoted by the letter E, with the relevant control bits set.

Interfacing to the Receive Client Interface

The timing of a normal inbound frame transfer is shown in Figure 2-14. As in the transmit case, the frame is delimited by a Start character (S) and by a Terminate character (T). The Start character in this implementation can occur only on lane 0. The Terminate character, T, can occur in any lane.

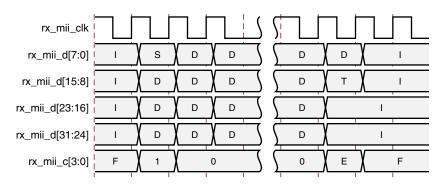
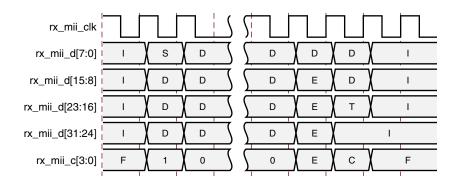



Figure 2-14: Frame Reception Across the Internal 32-Bit Client Interface

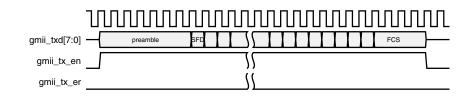
Figure 2-15 shows an inbound frame of data propagating an error. In this instance, the error is propagated in lanes 1 to 3, shown by the letter E.

Figure 2-15: Frame Reception with Error Across the Internal 32-Bit Client Interface

Using the Client-Side GMII Interface

It is not within the scope of this document to define the Gigabit Media Independent Interface (GMII)— see Clause 35 of the IEEE 802.3 specification [Ref 1] for information about the GMII. Timing diagrams and descriptions are provided only as an informational guide.

GMII Transmission


This section includes figures that illustrate GMII transmission. In these figures the clock is not labeled. The source of this clock signal varies, depending on the options selected when the core is generated.

Normal Frame Transmission

Normal outbound frame transfer timing is shown in Figure 2-16. This figure shows that an Ethernet frame is proceeded by an 8-byte preamble field (inclusive of the Start of Frame Delimiter (SFD)), and completed with a 4-byte Frame Check Sequence (FCS) field. This frame is created by the MAC connected to the other end of the GMII. The PCS logic itself does not

recognize the different fields within a frame and treats any value placed on gmii_txd[7:0] within the gmii_tx_en assertion window as data.

Error Propagation

A corrupted frame transfer is shown in Figure 2-17. An error can be injected into the frame by asserting gmii_tx_er at any point during the gmii_tx_en assertion window. The core ensures that all errors are propagated through both transmit and receive paths so that the error is eventually detected by the link partner.

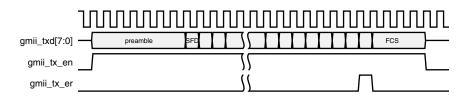


Figure 2-17: GMII Error Propagation Within a Frame

GMII Reception

This section includes figures that illustrate GMII reception. In these figures the clock is not labeled. The source of this clock signal varies, depending on the options used when the core is generated.

Normal Frame Reception

The timing of normal inbound frame transfer is shown in Figure 2-18. This shows that Ethernet frame reception is preceded by a preamble field. The IEEE 802.3 specification (see Clause 35) [Ref 1] allows for up to all of the seven preamble bytes that proceed the Start of Frame Delimiter (SFD) to be lost in the network. The SFD is always present in well-formed frames.

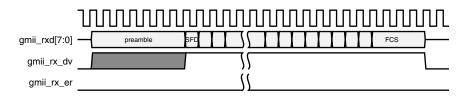


Figure 2-18: GMII Normal Frame Reception

Normal Frame Reception with Extension Field

In accordance with the IEEE 802.3 specification [Ref 1], state machines for the 1000BASE-X PCS, gmii_rx_er can be driven High following reception of the end frame in conjunction with gmii_rxd[7:0] containing the hexadecimal value of 0x0F to signal carrier extension. This is shown in Figure 2-19. This is not an error condition and can occur even for full-duplex frames.

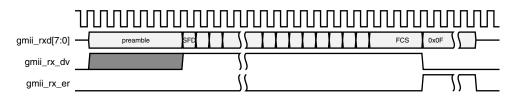


Figure 2-19: GMII Normal Frame Reception with Carrier Extension

Frame Reception with Errors

The signal gmii_rx_er when asserted within the assertion window signals that a frame was received with a detected error (Figure 2-20). In addition, a late error can also be detected during the Carrier Extension interval. This is indicated by gmii_rxd[7:0] containing the hexadecimal value 0x1F, also shown in Figure 2-20.

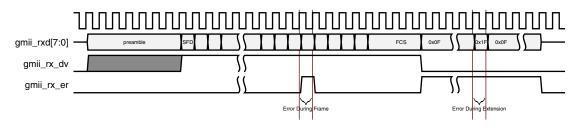


Figure 2-20: GMII Frame Reception with Errors

False Carrier

Figure 2-21 shows the GMII signaling for a False Carrier condition. False Carrier is asserted by the core in response to certain error conditions, such as a frame with a corrupted start code, or for random noise.

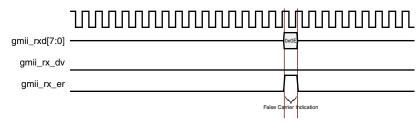


Figure 2-21: False Carrier Indication

Using the Client-Side GMII for the SGMII Standard

GMII Transmission

1/2.5 Gb/s Frame Transmission

The timing of normal outbound frame transfer is shown in Figure 2-22.

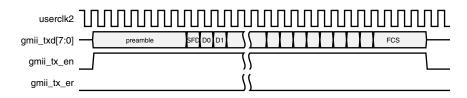


Figure 2-22: GMII Frame Transmission at 1 Gb/s

100 Mb/s Frame Transmission

At 100 Mb/s the operation of the core remains unchanged. It is the responsibility of the client logic (for example, an Ethernet MAC) to enter data at the correct rate. When operating at 100 Mb/s, every byte of the MAC frame (from preamble to the Frame Check Sequence field, inclusive) should be repeated for 10 clock periods to achieve the desired bit rate, as shown in Figure 2-23. The core always expects eight bits from the client logic.

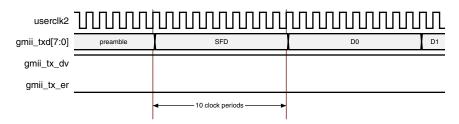
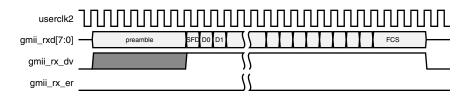
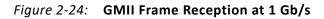


Figure 2-23: GMII Data Transmission at 100 Mb/s

10 Mb/s Frame Transmission

At 10 Mb/s the operation of the core remains unchanged. It is the responsibility of the client logic (for example, an Ethernet MAC), to enter data at the correct rate. When operating at




10 Mb/s, every byte of the MAC frame (from preamble to the frame check sequence field, inclusive) should be repeated for 100 clock periods to achieve the desired bit rate. It is also the responsibility of the client logic to ensure that the interframe gap period is legal for the current speed of operation. The core always expects eight bits from the client logic.

GMII Reception

1/2.5 Gb/s Frame Reception

The timing of a normal inbound frame transfer is shown in Figure 2-24.

100 Mb/s Frame Reception

At 100 Mb/s the operation of the core is unchanged. When operating at a speed of 100 Mb/ s, every byte of the MAC frame (from preamble to the frame check sequence field, inclusive) is repeated for 10 clock periods to achieve the desired bit rate. See Figure 2-25.

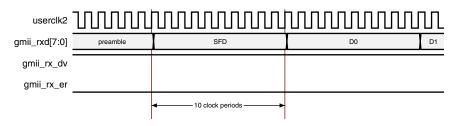


Figure 2-25: GMII Data Reception at 100 Mb/s

10 Mb/s Frame Reception

The operation of the core remains unchanged. When operating at a speed of 10 Mb/s, every byte of the MAC frame (from preamble to the frame check sequence field, inclusive) is repeated for 100 clock periods to achieve the desired bit rate.

Auto-Negotiation Ports

Table 2-18 shows the additional ports used for Auto-Negotiation. These signals are foundat the *wrapper.v hierarchy file.

able 2-18: Additional Ports for Auto-Negotiation					
Port Name	Direction	Description	Clock Domain		
an_clk	I	Input clock for the Auto-Negotiation circuit. The required frequency is indicated in the readme file for the release. It should be a free running clock.	Refer to Clocking.		
		Note: This port is not accessible to you. This is tied to dclk, which is a free-running clock.			
an_reset	I	Asynchronous active-High reset.	Asynchronous		
ctl_autoneg_enable	I	Enable signal for Auto-Negotiation.	an_clk		
ctl_autoneg_bypass	I	Input to disable Auto-Negotiation and bypass the Auto-Negotiation function. If this input is asserted, Auto-Negotiation is turned off, but the PCS is connected to the outputs to allow operation.	an_clk		
ctl_an_nonce_seed[7:0]	I	8-bit seed to initialize the nonce field Polynomial generator. Note: This input should always be set to a unique non-zero value for every instance of the	an_clk		
ctl_an_pseudo_sel	I	auto-negotiator. Selects the polynomial generator for the bit 49 random bit generator. If this input is 1, then the polynomial is x7+x6+1. If this input is zero, then the polynomial is x7+x3+1.	an_clk		
ctl_restart_negotiation	I	This input is used to trigger a restart of the Auto-Negotiation, regardless of what state the circuit is currently in.	an_clk		
ctl_an_local_fault	I	This input signal is used to set the local_fault bit of the transmit link codeword.	an_clk		
Signals	Used for Pa	use Ability Advertising			
ctl_an_pause	I	This input signal is used to set the PAUSE bit, (C0), of the transmit link codeword. This signal might not be present if the core does not support pause.	an_clk		
ctl_an_asmdir	I	This input signal is used to set the ASMDIR bit, (C1), of the transmit link codeword. This signal might not be present if the core does not support pause.	an_clk		

Table 2-18: Additional Ports for Auto-Negotiation

Port Name	Direction	Description	Clock Domain
	Ability S	ignal Inputs	I
ctl_an_ability_1000base_kx	I		an_clk
ctl_an_ability_100gbase_cr10	I		an_clk
ctl_an_ability_100gbase_cr4	I		an_clk
ctl_an_ability_100gbase_kp4	I		an_clk
ctl_an_ability_100gbase_kr4	Ι	-	an_clk
ctl_an_ability_10gbase_kr	I	These inputs identify the Ethernet	an_clk
ctl_an_ability_10gbase_kx4	Ι	protocol abilities that is advertised in	an_clk
ctl_an_ability_25gbase_cr	I	the transmit link codeword to the link partner. A value of 1 indicates that	an_clk
ctl_an_ability_25gbase_cr1	I	the interface advertises that it	an_clk
ctl_an_ability_25gbase_kr	I	supports the protocol.	an_clk
ctl_an_ability_25gbase_kr1	I	-	an_clk
ctl_an_ability_40gbase_cr4	I	-	an_clk
ctl_an_ability_40gbase_kr4	I	-	an_clk
ctl_an_ability_50gbase_cr2	I	-	an_clk
ctl_an_ability_50gbase_kr2	Ι		an_clk
ctl_an_fec_request	I	Used to control the Clause 74 FEC request bit in the transmit link codeword. This signal might not be present if the core does not support Clause 74 FEC.	an_clk
ctl_an_fec_ability_override	I	Used to control the Clause 74 FEC ability bit in the transmit link codeword. If this input is set, then the FEC ability bit in the transmit link codeword is cleared. This signal might not be present if the IP core does not support Clause 74 FEC.	an_clk
ctl_an_cl91_fec_ability	I	This bit is used to indicate Clause 91 FEC ability.	an_clk
ctl_an_cl91_fec_request	I	This bit is used to request Clause 91 FEC.	an_clk

Table 2-18: Additional Ports for Auto-Negotiation (Cont'd)

Port Name	Direction	Description	Clock Domain
stat_an_link_cntl_1000base_kx[1:0]	0		an_clk
stat_an_link_cntl_100gbase_cr10[1:0]	0		an_clk
stat_an_link_cntl_100gbase_cr4[1:0]	0	-	an_clk
stat_an_link_cntl_100gbase_kp4[1:0]	0	-	an_clk
stat_an_link_cntl_100gbase_kr4[1:0]	0	Link Control outputs from the Auto-Negotiation controller for the	an_clk
stat_an_link_cntl_10gbase_kr[1:0]	0	various Ethernet protocols. Settings	an_clk
stat_an_link_cntl_10gbase_kx4[1:0]	0	are as follows:	an_clk
stat_an_link_cntl_25gbase_cr[1:0]	0	 00: DISABLE; PCS is disconnected; 01: SCAN_FOR_CARRIER; RX is 	an_clk
stat_an_link_cntl_25gbase_cr1[1:0]	0	connected to PCS;	an_clk
stat_an_link_cntl_25gbase_kr[1:0]	0	• 11: ENABLE; PCS is connected for mission mode operation.	an_clk
stat_an_link_cntl_25gbase_kr1[1:0]	0	• 10: not used	an_clk
stat_an_link_cntl_40gbase_cr4[1:0]	0	-	an_clk
stat_an_link_cntl_40gbase_kr4[1:0]	0	Used to enable the use of Clause 74 FEC on the link.	an_clk
stat_an_link_cntl_50gbase_cr2[1:0]	0		an_clk
stat_an_link_cntl_50gbase_kr2[1:0]	0		an_clk
stat_an_fec_enable	0		an_clk
stat_an_rs_fec_enable	0	Used to enable the use of Clause 91 FEC on the link.	an_clk
stat_an_tx_pause_enable	ο	Used to enable station-to-station (global) pause packet generation in the transmit path to control data flow in the receive path.	an_clk
stat_an_rx_pause_enable	0	Used to enable station-to-station (global) pause packet interpretation in the receive path, to control data flow from the transmitter.	an_clk
stat_an_autoneg_complete	0	Indicates the Auto-Negotiation is complete and RX link status from the PCS has been received.	an_clk
stat_an_parallel_detection_fault	0	Indicated a parallel detection fault during Auto-Negotiation.	an_clk

Table 2-18: Additional Ports for Auto-Negotiation (Cont'd)

Port Name	Direction	Description	Clock Domain
stat_an_lp_ability_1000base_kx	0		an_clk
stat_an_lp_ability_100gbase_cr10	0		an_clk
stat_an_lp_ability_100gbase_cr4	0		an_clk
stat_an_lp_ability_100gbase_kp4	0	These signals indicate the advertised	an_clk
stat_an_lp_ability_100gbase_kr4	0	protocol from the link partner. They all become valid when the output	an_clk
stat_an_lp_ability_10gbase_kr	0	signal stat_AN_lp_Ability_Valid is	an_clk
stat_an_lp_ability_10gbase_kx4	0	asserted. A value of 1 indicates that the protocol is advertised as	an_clk
stat_an_lp_ability_25gbase_cr	0	supported by the link partner.	an_clk
stat_an_lp_ability_25gbase_kr	0	-	an_clk
stat_an_lp_ability_40gbase_cr4	0	-	an_clk
stat_an_lp_ability_40gbase_kr4	0	-	an_clk
stat_an_lp_ability_25gbase_cr1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_AN_lp_Extended_Ability_Valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.	an_clk
stat_an_lp_ability_25gbase_kr1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_AN_Ip_Extended_Ability_Valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.	an_clk
stat_an_lp_ability_50gbase_cr2	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_AN_lp_Extended_Ability_Valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.	an_clk
stat_an_lp_ability_50gbase_kr2	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_AN_lp_Extended_Ability_Valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.	an_clk
stat_an_lp_pause	0	This signal indicates the advertised value of the PAUSE bit, (C0), in the receive link codeword from the link partner. It becomes valid when the output signal stat_AN_lp_Ability_Valid is asserted.	an_clk

Table 2-18: Additional Ports for Auto-Negotiation (Cont'd)

41

Port Name	Direction	Description	Clock Domain
stat_an_lp_asm_dir	0	This signal indicates the advertised value of the ASMDIR bit, (C1), in the receive link codeword from the link partner. It becomes valid when the output signal stat_AN_Ip_Ability_Valid is asserted.	an_clk
stat_an_lp_fec_ability	0	This signal indicates the advertised value of the FEC ability bit in the receive link codeword from the link partner. It becomes valid when the output signal stat_AN_Ip_Ability_Valid is asserted.	an_clk
stat_an_lp_fec_request	0	This signal indicates the advertised value of the FEC Request bit in the receive link codeword from the link partner. It becomes valid when the output signal stat_AN_Ip_Ability_Valid is asserted.	an_clk
stat_an_lp_autoneg_able	0	This output signal indicates that the link partner is able to perform Auto-Negotiation. It becomes valid when the output signal stat_AN_Ip_Ability_Valid is asserted.	an_clk
stat_an_lp_ability_valid	0	This signal indicates when all of the link partner advertisements become valid.	an_clk
an_loc_np_data[47:0]	I	Local Next Page codeword. This is the 48 bit codeword used if the loc_np input is set. In this data field, the bits NP, ACK, and T, bit positions 15, 14, 12, and 11, are not transferred as part of the next page codeword. These bits are generated in the Auto-Negotiation Intellectual Property Core (ANIPC). However, the Message Protocol bit, MP, in bit position 13, is transferred.	an_clk
an_lp_np_data[47:0]	0	Link Partner Next Page Data. This 48-bit word is driven by the ANIPC with the 48-bit next page codeword from the remote link partner.	an_clk
ctl_an_loc_np	I	Local Next Page indicator. If this bit is 1, the ANIPC transfers the next page word at input loc_np_data to the remote link partner. If this bit is 0, the ANIPC does not initiate the next page protocol. If the link partner has next pages to send, and the loc_np bit is clear, the ANIPC transfers null message pages.	an_clk

Table 2-18: Additional Ports for Auto-Negotiation (Cont'd)

42

Port Name	Direction	Description	Clock Domain
ctl_an_lp_np_ack	1	Link Partner Next Page Acknowledge. This is used to signal the ANIPC that the next page data from the remote link partner at output pin lp_np_data has been read by the local host. When this signal goes High, the ANIPC acknowledges reception of the next page codeword to the remote link partner and initiate transfer of the next codeword. During this time, the ANIPC removes the lp_np signal until the new next page information is available.	an_clk
stat_an_loc_np_ack	0	This signal is used to indicate to the local host that the local next page data, presented at input pin loc_np_data, has been taken. This signal pulses High for 1 clock period when the ANIPC samples the next page data on input pin loc_np_data. When the local host detects this signal High, it must replace the 48 bit next page codeword at input pin loc_np_data with the next 48 bit codeword to be sent. If the local host has no more next pages to send, it must clear the loc_np input.	an_clk
stat_an_lp_np	0	Link Partner Next Page. This signal is used to indicate that there is a valid 48 bit next page codeword from the remote link partner at output pin lp_np_data. This signal is driven Low when the lp_np_ack input signal is driven High, indicating that the local host has read the next page data. It remains Low until the next codeword becomes available on the lp_np_data output pin, the lp_np output is driven High again.	an_clk
stat_an_lp_ability_extended_fec[1:0]	0	This output indicates the extended FEC abilities as defined in Schedule 3.	an_clk
stat_an_lp_extended_ability_valid	0	When this bit is 1, it indicates that the detected extended abilities are valid.	an_clk
stat_an_lp_rf	0	This bit indicates link partner remote fault.	an_clk

Table 2-18:	Additional Ports for Auto-Negotiation (Cont'd)
10010 2 10.	

Port Name	Direction	Description	Clock Domain
stat_an_start_tx_disable	0	When ctl_autoneg_enable is High and ctl_autoneg_bypass is Low, this signal, stat_an_start_tx_disable, cycles High for 1 clock cycle at the very start of the TX_DISABLE phase of Auto-Negotiation. That is, when Auto-Negotiation enters state TX_DISABLE, this output cycles High for one clock period. It effectively signals the start of Auto-Negotiation.	an_clk
stat_an_start_an_good_check	0	When ctl_autoneg_enable is High and ctl_autoneg_bypass is Low, this signal, stat_an_start_an_good_check, cycles High for 1 clock cycle at the very start of the AN_GOOD_CHECK phase of Auto-Negotiation. That is, when Auto-Negotiation enters the state AN_GOOD_CHECK, this output cycles High for one clock period. It effectively signals the start of link training. However, if link training is not enabled, that is. if the input ctl_lt_training_enable is Low, the stat_an_start_an_good_check output effectively signals the start of mission-mode operation.	an_clk

Table 2-18:	Additional	Ports for	Auto-Negotiation	(Cont'd)
10010 2 10.	Additional	1 01 03 101	Auto Negotiation	

Link Training Ports

Table 2-19 shows the Link Training ports.

Table 2-19:	Link Training Ports
-------------	---------------------

Port Name	Direction	Description	Clock Domain
ctl_lt_training_enable	I	Enables link training. When link training is disabled, all PCS lanes function in mission mode.	tx_serdes_clk
ctl_lt_restart_training	I	This signal triggers a restart of link training regardless of the current state.	tx_serdes_clk
ctl_lt_rx_trained	I	This signal is asserted to indicate that the receiver finite impulse response (FIR) filter coefficients have all been set, and that the receiver portion of training is complete.	tx_serdes_clk
stat_lt_signal_detect	0	This signal indicates when the respective link training state machine has entered the SEND_DATA state, in which normal PCS operation can resume.	tx_serdes_clk

Port Name	Direction	Description	Clock Domain
stat_lt_training	0	This signal indicates when the respective link training state machine is performing link training.	tx_serdes_clk
stat_lt_training_fail	ο	This signal is asserted during link training if the corresponding link training state machine detects a time-out during the training period.	tx_serdes_clk
stat_lt_frame_lock	0	When link training has begun, these signals are asserted, for each physical medium dependent (PMD) lane, when the corresponding link training receiver is able to establish a frame synchronization with the link partner.	rx_serdes_clk
stat_lt_preset_from_rx	0	This signal reflects the value of the preset control bit received in the control block from the link partner.	rx_serdes_clk
stat_lt_initialize_from_rx	0	This signal reflects the value of the initialize control bit received in the control block from the link partner.	rx_serdes_clk
stat_lt_k_p1_from_rx0[1:0]	0	This 2-bit field indicates the update control bits for the k+1 coefficient, as received from the link partner in the control block.	rx_serdes_clk
stat_lt_k0_from_rx0[1:0]	о	This 2-bit field indicates the update control bits for the k0 coefficient, as received from the link partner in the control block.	rx_serdes_clk
stat_lt_k_m1_from_rx0[1:0]	ο	This 2-bit field indicates the update control bits for the k-1 coefficient, as received from the link partner in the control block.	rx_serdes_clk
stat_lt_stat_p1_from_rx0[1:0]	о	This 2-bit field indicates the update status bits for the k+1 coefficient, as received from the link partner in the status block.	rx_serdes_clk
stat_lt_stat0_from_rx0[1:0]	0	This 2-bit field indicates the update status bits for the k0 coefficient, as received from the link partner in the status block.	rx_serdes_clk
stat_lt_stat_m1_from_rx0[1:0]	0	This 2-bit field indicates the update status bits for the k-1 coefficient, as received from the link partner in the status block.	rx_serdes_clk
ctl_lt_pseudo_seed0[10:0]	I	This 11-bit signal seeds the training pattern generator.	tx_serdes_clk

Table 2-19:	Link Training Ports (Cont'd)	
-------------	------------------------------	--

Port Name	Direction	Description	Clock Domain
ctl_lt_preset_to_tx	I	This signal is used to set the value of the preset bit that is transmitted to the link partner in the control block of the training frame.	tx_serdes_clk
ctl_lt_initialize_to_tx	I	This signal is used to set the value of the initialize bit that is transmitted to the link partner in the control block of the training frame.	tx_serdes_clk
ctl_lt_k_p1_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k+1 coefficient update field that is transmitted to the link partner in the control block of the training frame.	tx_serdes_clk
ctl_lt_k0_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k0 coefficient update field that is transmitted to the link partner in the control block of the training frame.	tx_serdes_clk
ctl_lt_k_m1_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k-1 coefficient update field that is transmitted to the link partner in the control block of the training frame.	tx_serdes_clk
ctl_lt_stat_p1_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k+1 coefficient update status that is transmitted to the link partner in the status block of the training frame.	tx_serdes_clk
ctl_lt_stat0_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k0 coefficient update status that is transmitted to the link partner in the status block of the training frame.	tx_serdes_clk
ctl_lt_stat_m1_to_tx0[1:0]	I	This 2-bit field is used to set the value of the k-1 coefficient update status that is transmitted to the link partner in the status block of the training frame.	tx_serdes_clk
stat_lt_rx_sof[1-1:0]	0	This output is High for 1 RX SerDes clock cycle to indicate the start of the link training frame.	rx_serdes_clk

IEEE 802.3 Clause 74 FEC Interface

Table 2-20 shows the IEEE 802.3 Clause 74 FEC Control/Status and Statistics signals.

Signal	Direction	Clock Domain	Description
ctl_fec_tx_enable	I	tx_serdes_clk	Asserted to enable the Clause 74 FEC encoding on the transmitted data.
ctl_fec_rx_enable	I	rx_serdes_clk	Asserted to enable the Clause 74 FEC decoding of the received data.
ctl_fec_enable_error_to_pcs	I	rx_serdes_clk	Clause 74 FEC enable error to PCS.
stat_fec_inc_correct_count[3:0]	0	rx_serdes_clk	This signal is asserted roughly every 32 words, while the ctl_rx_fec_enable is asserted, if the FEC decoder detected and corrected a bit error in the corresponding frame.
stat_fec_inc_cant_correct_count[3:0]	0	rx_serdes_clk	This signal is asserted roughly every 32 words, while the ctl_rx_fec_enable is asserted, if the FEC decoder detected bit.
stat_fec_lock_error[3:0]	0	rx_serdes_clk	This signal is asserted if the FEC decoder has been unable to detect the frame boundary after about 5 ms. It is cleared when the frame boundary is detected.
stat_fec_rx_lock[3:0]	0	rx_serdes_clk	This signal is asserted while the ctl_fec_rx_enable is asserted when the FEC decoder detects the frame boundary.

Table 2-20:	IEEE 802.3 Clause 74 FEC Interface Control/Status/Statistics Signals
-------------	--

Pause Interface

Table 2-21 through Table 2-23 show the pause interface I/O ports.

Table 2-21: Pause Interface - Control Ports

Name	Direction	Clock Domain	Description
ctl_rx_pause_enable[8:0]	I	clk	RX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority.
			Note: This signal only affects the RX user interface and not the pause processing logic.
ctl_tx_pause_enable[8:0]	I	clk	TX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority. This signal gates transmission of pause packets.

Pause Interface – TX

Table 2-22:	Pause	Interface -	TX Path
-------------	-------	-------------	---------

Name	Direction	Clock Domain	Description
ctl_tx_pause_req[8:0]	I	clk	If a bit of this bus is set to 1, the core transmits a pause packet using the associated quanta value on the ctl_tx_pause_quanta[8:0][15:0] bus. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.
ctl_tx_resend_pause	I.	clk	Retransmit pending pause packets. When this input is sampled as 1, all pending pause packets are retransmitted as soon as possible (that is, after the current packet in flight is completed) and the retransmit counters are reset. This input should be pulsed to 1 for one cycle at a time.
ctl_tx_pause_quanta[8:0][15:0]	I	clk	These nine buses indicate the quanta to be transmitted for each of the eight priorities in priority based and global pause operations. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority based pause operation.
ctl_tx_pause_refresh_timer[8:0][15:0]	I	clk	These nine buses set the retransmission time of pause packets for each of the eight priorities in priority based pause operation and the global pause operation. The values for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation.
ctl_tx_da_gpp[47:0]	I	clk	Destination address for transmitting global pause packets.
ctl_tx_sa_gpp[47:0]	I	clk	Source address for transmitting global pause packets.
ctl_tx_ethertype_gpp[15:0]	I	clk	Ethertype for transmitting global pause packets.
ctl_tx_opcode_gpp[15:0]	I	clk	Opcode for transmitting global pause packets.
ctl_tx_da_ppp[47:0]	I	clk	Destination address for transmitting priority pause packets.
ctl_tx_sa_ppp[47:0]	I	clk	Source address for transmitting priority pause packets.

Table 2-22: Pause Interface - TX Path

Name	Direction	Clock Domain	Description
ctl_tx_ethertype_ppp[15:0]	I	clk	Ethertype for transmitting priority pause packets.
ctl_tx_opcode_ppp[15:0]	I	clk	Opcode for transmitting priority pause packets.
stat_tx_pause_valid[8:0]	Ο	clk	If a bit of this bus is set to 1, the core has transmitted a pause packets. If bit [8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.

Pause Interface – RX

Table 2-23: Pause Interface - RX

Name	Direction	Clock Domain	Description
ctl_rx_pause_ack[8:0]	I	clk	Pause acknowledge signal. This bus is used to acknowledge the receipt of the pause frame from the user logic.
ctl_rx_check_ack	I	clk	Wait for acknowledge. IF this input is set to 1, the core uses the ctl_rx_pause_ack[8:0] bus for pause processing. If this input is set to 0, ctl_rx_pause_ack[8:0] is not used.
ctl_rx_enable_gcp	I	clk	A value of 1 enables global control packet processing.
ctl_rx_check_mcast_gcp	I	clk	A value of 1 enables global control multicast destination address processing.
ctl_rx_check_ucast_gcp	I	clk	A value of 1 enables global control unicast destination address processing.
ctl_rx_pause_da_ucast[47:0]	I	clk	Unicast destination address for pause processing.
ctl_rx_check_sa_gcp	I	clk	A value of 1 enables global control source address processing.
ctl_rx_pause_sa[47:0]	I	clk	Source address for pause processing.
ctl_rx_check_etype_gcp	I	clk	A value of 1 enables global control ethertype processing.
ctl_rx_etype_gcp[15:0]	I	clk	Ethertype field for global control processing.
ctl_rx_check_opcode_gcp	I	clk	A value of 1 enables global control opcode processing.
ctl_rx_opcode_min_gcp[15:0]	I	clk	Minimum global control opcode value.
ctl_rx_opcode_max_gcp[15:0]	I	clk	Maximum global control opcode value.

Table 2-23: Pause Interface - RX (Cont'd)

Name	Direction	Clock Domain	Description
ctl_rx_enable_pcp	I	clk	A value of 1 enables priority control packet processing.
ctl_rx_check_mcast_pcp	I	clk	A value of 1 enables priority control multicast destination address processing.
ctl_rx_check_ucast_pcp	I	clk	A value of 1 enables priority control unicast destination address processing.
ctl_rx_pause_da_mcast[47:0]	I	clk	Multicast destination address for pause processing.
ctl_rx_check_sa_pcp	I	clk	A value of 1 enables priority control source address processing
ctl_rx_check_etype_pcp	I	clk	A value of 1 enables priority control ethertype processing.
ctl_rx_etype_pcp[15:0]	I	clk	Ethertype field for priority control processing.
ctl_rx_check_opcode_pcp	Ι	clk	A value of 1 enables priority control opcode processing.
ctl_rx_opcode_min_pcp[15:0]	I	clk	Minimum priority control opcode value
ctl_rx_opcode_max_pcp[15:0]	I	clk	Maximum priority control opcode value
ctl_rx_enable_gpp	I	clk	A value of 1 enables global pause packet processing.
ctl_rx_check_mcast_gpp	Ι	clk	A value of 1 enables global pause multicast destination address processing.
ctl_rx_check_ucast_gpp	I	clk	A value of 1 enables global pause unicast destination address processing.
ctl_rx_check_sa_gpp	I	clk	A value of 1 enables global pause source address processing.
ctl_rx_check_etype_gpp	I	clk	A value of 1 enables global pause ethertype processing.
ctl_rx_etype_gpp[15:0]	I	clk	Ethertype field for global pause processing.
ctl_rx_check_opcode_gpp	I	clk	A value of 1 enables global pause opcode processing.
ctl_rx_opcode_gpp[15:0]	I	clk	Global pause opcode value.
ctl_rx_enable_ppp	I	clk	A value of 1 enables priority pause packet processing.
ctl_rx_check_mcast_ppp	I	clk	A value of 1 enables priority pause multicast destination address processing.
ctl_rx_check_ucast_ppp	I	clk	A value of 1 enables priority pause unicast destination address processing.
ctl_rx_check_sa_ppp	I	clk	A value of 1 enables priority pause source address processing.

Table 2-23:	Pause	Interface -	RX	(Cont'd)
-------------	-------	-------------	----	----------

Name	Direction	Clock Domain	Description
ctl_rx_check_etype_ppp	I	clk	A value of 1 enables priority pause ethertype processing.
ctl_rx_etype_ppp[15:0]	I	clk	Ethertype field for priority pause processing.
ctl_rx_check_opcode_ppp	I	clk	A value of 1 enables priority pause opcode processing.
ctl_rx_opcode_ppp[15:0]	I	clk	Priority pause opcode value.
ctl_rx_forward_control	I	clk	A value of 1 indicates that the core forwards control packets.
			A value of 0 causes core to drop control packets.
stat_rx_pause_valid [8:0]	0	clk	Indicates that a pause packet was received and the associated quanta on the stat_rx_pause_quanta[8:0][15:0] bus is valid and must be used for pause processing. If an 802.3x MAC Pause packet is received, bit [8] is set to 1.
stat_rx_pause_quanta[8:0] [15:0]	0	clk	These nine buses indicate the quanta received for each of the eight priorities in priority based pause operation and global pause operation. If an 802.3x MAC Pause packet is received, the quanta is placed in value[8].
stat_rx_pause_req [8:0]	0	clk	Pause request signal. When the RX receives a valid pause frame, it sets the corresponding bit of this bus to 1 and keep it at 1 until the pause packet has been processed.

Register Space

The 1G/10G/25G Switching Ethernet Subsystem is configured with AXI4-Lite registers to access the configuration and status signals. For more information, see 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 3] and 10G/25G High Speed Ethernet Subsystem Product Guide (PG210) [Ref 4]. AXI Crossbar module is initiated within the IP to access the AXI4-Lite interface control and statistics registers for Gigabit Ethernet PCS-PMA and 10G MAC+PCS subsystem. This module is provided with a single user AXI-Lite interface.

The AXI Crossbar IP is configured with 1-master and 2-slave interfaces. Both Gigabit Ethernet PCS-PMA and 10G/25G MAC+PCS subsystem control and status registers can be accessed with AXI4-Lite interface through AXI Crossbar. Refer to the AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059) [Ref 16] for AXI Crossbar soft IP functionality.

The following are the configured base address locations for Gigabit Ethernet PCS-PMA and 10G/25G MAC+PCS subsystem control and status registers in the AXI Crossbar soft IP:

- 0x0000_0000 to 0x0000_0FFF: Address locations for 10G/25G MAC+PCS subsystem
- 0x0000_1000 to 0x0000_1FFF: Address locations for Gigabit Ethernet PCS-PMA

AXI4-Lite Ports

Table 2-24 describes the port list for the AXI processor interface.

Signal	Direction	Description
s_axi_aclk	I	AXI4-Lite clock, range between 10 MHz and 300 MHz
s_axi_aresetn	I	Asynchronous active-Low reset
s_axi_awaddr[31:0]	I	Write address bus
s_axi_awvalid	I	Write address valid
s_axi_awready	0	Write address acknowledge
s_axi_wdata[31:0]	I	Write data bus
s_axi_wstrb[3:0]	I	Strobe signal for the data bus byte lane
s_axi_wvalid	0	Write data valid
s_axi_wready	0	Write data acknowledge
s_axi_bresp[1:0]	0	Write transaction response
s_axi_bvalid	0	Write response valid
s_axi_bready	I	Write response acknowledge
s_axi_araddr[31:0]	I	Read address bus
s_axi_arvalid	I	Read address valid
s_axi_arready	0	Read address acknowledge
s_axi_rdata[31:0]	0	Read data output
s_axi_rresp[1:0]	0	Read data response
s_axi_rvalid	0	Read data/response valid
s_axi_rready	I	Read data acknowledge
pm_tick	I	Top level signal to read statistics counters; requires MODE_REG[30] (tick_reg_mode_sel) be set to 0.

Additional information for the operation of the AXI4 bus is found in *Arm AMBA AXI Protocol* v2.0 Specification (Arm IHI 0022C) [Ref 15].

As noted previously, the top level signal pm_tick can be used to read statistics counters instead of the configuration register TICK_REG. In this case, configuration register MODE_REG bit 30 (tick_reg_mode_sel) should be set to 0. If tick_reg_mode_sel is set to 1, tick_reg is used to read the statistics counters.

Configuration and Status Register Map

Configuration Register Map for 1G/10G/25G Ethernet Subsystem

The configuration space provides software with the ability to configure the IP core for various use cases. Certain features are optional and the assigned register might not exist in a particular variant, in which case the applicable registers are considered RESERVED.

Hex Address	Register Name	Notes
0x0000 ⁽¹⁾	GT_RESET_REG: 0000	
0x0004 ⁽¹⁾	RESET_REG: 0004	
0x0008 ⁽¹⁾	MODE_REG: 0008	
0x000C	CONFIGURATION_TX_REG1: 000C	
0x0014 ⁽¹⁾	CONFIGURATION_RX_REG1: 0014	
0x0018 ⁽¹⁾	CONFIGURATION_RX_MTU: 0018	Only in the MAC+PCS variant and MAC-only variants.
0x0020 ⁽¹⁾	TICK_REG: 0020	
0x0024 ⁽¹⁾	CONFIGURATION_REVISION_REG: 0024	
0x0028 ⁽¹⁾	CONFIGURATION_TX_TEST_PAT_SEED_A_LSB: 0028	Only in MAC+PCS and PCS-only variants.
0x002C ⁽¹⁾	CONFIGURATION_TX_TEST_PAT_SEED_A_MSB: 002C	Only in MAC+PCS and PCS-only variants.
0x0030 ⁽¹⁾	CONFIGURATION_TX_TEST_PAT_SEED_B_LSB: 0030	Only in MAC+PCS and PCS-only variants.
0x0034 ⁽¹⁾	CONFIGURATION_TX_TEST_PAT_SEED_B_MSB: 0034	Only in MAC+PCS and PCS-only variants.
0x0040 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REG1: 0040	Only in MAC+PCS and MAC-only variants.
0x0044 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG1: 0044	Only in MAC+PCS and MAC-only variants.
0x0048 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG2: 0048	Only in MAC+PCS and MAC-only variants.
0x004C ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG3: 004C	Only in MAC+PCS and MAC-only variants.
0x0050 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG4: 0050	Only in MAC+PCS and MAC-only variants.

Table 2-25: Configuration Register Map

Table 2-25:	Configuration	Register	Мар	(Cont'd)
-------------	---------------	----------	-----	----------

Hex Address	Register Name	Notes
0x0054 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG5: 0054	Only in MAC+PCS and MAC-only variants.
0x0058 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG1: 0058	Only in MAC+PCS and MAC-only variants.
0x005C ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG2: 005C	Only in MAC+PCS and MAC-only variants.
0x0060 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG3: 0060	Only in MAC+PCS and MAC-only variants.
0x0064 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG4: 0064	Only in MAC+PCS and MAC-only variants.
0x0068 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG5: 0068	Only in MAC+PCS and MAC-only variants.
0x006C ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_PPP_ETYPE_OP_REG: 006C	Only in MAC+PCS and MAC-only variants.
0x0070 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_GPP_ETYPE_OP_REG: 0070	Only in MAC+PCS and MAC-only variants.
0x0074 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_GPP_DA_REG_LSB: 0074	Only in MAC+PCS and MAC-only variants.
0x0078 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_GPP_DA_REG_MSB: 0078	Only in MAC+PCS and MAC-only variant.
0x007C ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_GPP_SA_REG_LSB: 007C	Only in MAC+PCS and MAC-only variants.
0x0080 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_GPP_SA_REG_MSB: 0080	Only in MAC+PCS and MAC-only variants.
0x0084 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_PPP_DA_REG_LSB: 0084	Only in MAC+PCS and MAC-only variants.
0x0088 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_PPP_DA_REG_MSB: 0088	Only in MAC+PCS and MAC-only variants.
0x008C ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_PPP_SA_REG_LSB: 008C	Only in MAC+PCS and MAC-only variants.
0x0090 ⁽¹⁾	CONFIGURATION_TX_FLOW_CONTROL_PPP_SA_REG_MSB: 0090	Only in MAC+PCS and MAC-only variants.
0x0094 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_REG1: 0094	Only in MAC+PCS and MAC-only variants.
0x0098 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_REG2: 0098	Only in MAC+PCS and MAC-only variants.
0x009C ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_PPP_ETYPE_OP_REG: 009C	Only in MAC+PCS and MAC-only variants.
0x00A0 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_GPP_ETYPE_OP_REG: 00A0	Only in MAC+PCS and MAC-only variants.

Table 2-25:	Configuration	Register	Мар	(Cont'd)
-------------	---------------	----------	-----	----------

Hex Address	Register Name	Notes
0x00A4 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_GCP_PCP_TYPE_REG: 00A4	Only in MAC+PCS and MAC-only variants.
0x00A8 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_PCP_OP_REG: 00A8	Only in MAC+PCS and MAC-only variants.
0x00AC ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_GCP_OP_REG: 00AC	Only in MAC+PCS and MAC-only variants.
0x00B0 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_DA_REG1_LSB: 00B0	Only in MAC+PCS and MAC-only variants.
0x00B4 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_DA_REG1_MSB: 00B4	Only in MAC+PCS and MAC-only variants.
0x00B8 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_DA_REG2_LSB: 00B8	Only in MAC+PCS and MAC-only variants.
0x00BC ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_DA_REG2_MSB: 00BC	Only in MAC+PCS and MAC-only variants.
0x00C0 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_SA_REG1_LSB: 00C0	Only in MAC+PCS and MAC-only variants.
0x00C4 ⁽¹⁾	CONFIGURATION_RX_FLOW_CONTROL_SA_REG1_MSB: 00C4	Only in MAC+PCS and MAC-only variants.
0x00D4 ⁽¹⁾	CONFIGURATION_FEC_REG: 00D4	Only in MAC+PCS and PCS-only variants.
0x00E0 ⁽¹⁾	CONFIGURATION_AN_CONTROL_REG1: 00E0	Only in MAC+PCS and PCS-only variants.
0x00E4 ⁽¹⁾	CONFIGURATION_AN_CONTROL_REG2: 00E4	Only in MAC+PCS and PCS-only variants.
0x00F8 ⁽¹⁾	CONFIGURATION_AN_ABILITY: 00F8	Only in MAC+PCS and PCS-only variants.
0x0100 ⁽¹⁾	CONFIGURATION_LT_CONTROL_REG1: 0100	Only in MAC+PCS and PCS-only variants.
0x0104 ⁽¹⁾	CONFIGURATION_LT_TRAINED_REG: 0104	Only in MAC+PCS and PCS-only variants.
0x0108 ⁽¹⁾	CONFIGURATION_LT_PRESET_REG: 0108	Only in MAC+PCS and PCS-only variants.
0x010C ⁽¹⁾	CONFIGURATION_LT_INIT_REG: 010C	Only in MAC+PCS and PCS-only variants.
0x0110 ⁽¹⁾	CONFIGURATION_LT_SEED_REG0: 0110	Only in MAC+PCS and PCS-only variants.
0x0130 ⁽¹⁾	CONFIGURATION_LT_COEFFICIENT_REG0: 0130	Only in MAC+PCS and PCS-only variants.
0x0134 ⁽¹⁾	USER_REG_0: 0134	
0x0190	CONFIGURATION_1588_REG	Only in MAC+PCS and PCS-only variants.

Table 2-25:	Configuration Register Map (Cont'd)	
-------------	-------------------------------------	--

Hex Address	Register Name	Notes
0x0194	TX_CONFIGURATION_1588_REG	Only in MAC+PCS and PCS-only variants.
0x0198	RX_CONFIGURATION_1588_REG	Only in MAC+PCS and PCS-only variants.

Notes:

1. Please refer to 10G/25G High Speed Ethernet Subsystem Product Guide (PG210) [Ref 4].

Status Register Map for the 1G/10G/25G Ethernet Subsystem

The status registers provide an indication of the health of the system. These registers are read-only and a read operation clears the register. Status registers are cleared according to the following conditions:

- When a particular status register is read (clear on read).
- When s_axi_aresetn is applied, both TX and RX status registers are cleared.
- When rx_reset is applied, only the RX status registers are cleared.
- When tx_reset is applied, only the TX status registers are cleared.

Hex Address	Register Name	Notes
0x0180	STAT_CORE_SPEED_REG	
0x0400 ⁽¹⁾	STAT_TX_STATUS_REG1: 0400	
0x0404	STAT_RX_STATUS_REG1: 0404	
0x0408 ⁽¹⁾	STAT_STATUS_REG1: 0408	Only in MAC+PCS and PCS-only variants.
0x040C ⁽¹⁾	STAT_RX_BLOCK_LOCK_REG: 040C	Only in MAC+PCS and PCS-only variants.
0x0448 ⁽¹⁾	STAT_RX_FEC_STATUS_REG: 0448	Only in MAC+PCS and PCS-only variants.
0x0450 ⁽¹⁾	STAT_TX_FLOW_CONTROL_REG1: 0450	Only in the MAC+PCS variant and MAC-only variants.
0x0454 ⁽¹⁾	STAT_RX_FLOW_CONTROL_REG1: 0454	Only in the MAC+PCS variant and MAC-only variants.
0x0458 ⁽¹⁾	STAT_AN_STATUS: 0458	Only in MAC+PCS and PCS-only variants.
0x045C ⁽¹⁾	STAT_AN_ABILITY: 045C	Only in MAC+PCS and PCS-only variants

Table 2-26: Status Register Map

Hex Address	Register Name	Notes
0x0460 ⁽¹⁾	STAT_AN_LINK_CTL: 0460	Only in MAC+PCS and PCS-only variants
0x0464 ⁽¹⁾	STAT_LT_STATUS_REG1: 0464	Only in MAC+PCS and PCS-only variants.
0x0468 ⁽¹⁾	STAT_LT_STATUS_REG2: 0468	Only in MAC+PCS and PCS-only variants.
0x046C ⁽¹⁾	STAT_LT_STATUS_REG3: 046C	Only in MAC+PCS and PCS-only variants.
0x0470 ⁽¹⁾	STAT_LT_STATUS_REG4: 0470	Only in MAC+PCS and PCS-only variants.
0x0474 ⁽¹⁾	STAT_LT_COEFFICIENT0_REG: 0474	Only in MAC+PCS and PCS-only variants.
0x0494 ⁽¹⁾	STAT_RX_VALID_CTRL_CODE: 0494	Only in MAC+PCS and PCS-only variants.

Table 2-26: Status Register Map (Cont'd)

Notes:

1. Please refer to 10G/25G High Speed Ethernet Subsystem Product Guide (PG210) [Ref 4]

Configuration and Status Register Map for 1G Ethernet PCS/ PMA

Table 2-27: Registers for 1G Ethernet PCS/PMA

Register Address	Register Name
0x0000	Register 0: Control Register ⁽¹⁾⁽²⁾
0x0004	Register 1: Status Register ⁽²⁾
0x0008	Register 2: PHY Identifier ⁽²⁾
0x000C	Register 3: PHY Identifier ⁽²⁾
0x0010	Register 4: Auto-Negotiation Advertisement ⁽²⁾
0x0014	Register 5: Auto-Negotiation Link Partner Ability ⁽²⁾
0x0018	Register 6: Auto-Negotiation Expansion Register ⁽²⁾
0x003C	Register 15: Extended Status ⁽²⁾
0x0040	Auto-Negotiation Interrupt Control Register: Vendor Specific Register 16 ⁽²⁾
0x004C	1588 Control: Vendor Specific Register 19
0x0050	RX PHY Fixed Latency: Vendor Specific Register 20
0x0054	RX PHY Variable Latency: Vendor Specific Register 21

Notes:

1. Power down and Loopback feature is not supported.

2. For 1000 BASEX, refer to the MDIO Registers for 1000 BASEX with Auto-Negotiation table in the *1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide* (PG047) [Ref 3]. For SGMII, refer to the MDIO Registers for SGMII with Auto-Negotiation table in the same document.

Register Descriptions

This section contains descriptions of the configuration registers. In the cases where the features described in the bit fields are not present in the IP core, the bit field is assumed to be RESERVED. The below descriptions cover only the registers that have been modified with respect to default operation of the respective IPs in applicable mode. For further information on register interface definitions (not defined in this guide), see 10G/25G High Speed Ethernet Subsystem Product Guide (PG210) [Ref 4] or 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 3].

Configuration Registers for 1G/10G/25G Subsystem

See *10G/25G High Speed Ethernet Subsystem Product Guide* (PG210) [Ref 4] for information on configuration registers for the 1G/10G/25G Subsystem.

CONFIGURATION_TX_REG1: 000C

10010 2 201			
Bits	Default	Туре	Signal
0	1	RW	ctl_tx_enable ⁽¹⁾
1	1	RW	ctl_tx_fcs_ins_enable ⁽¹⁾
2	0	RW	ctl_tx_ignore_fcs ⁽¹⁾
3	0	RW	ctl_tx_send_lfi ⁽¹⁾
4	0	RW	ctl_tx_send_rfi ⁽¹⁾
5	0	RW	ctl_tx_send_idle ⁽¹⁾
7:6	2	RW	ctl_core_speed_sel ⁽³⁾
13:10	12	RW	ctl_tx_ipg_value ⁽¹⁾
14	0	RW	ctl_tx_test_pattern
15	0	RW	ctl_tx_test_pattern_enable
16	0	RW	ctl_tx_test_pattern_select
17	0	RW	ctl_tx_data_pattern_select
18	0	RW	ctl_tx_custom_preamble_enable ⁽¹⁾
23	0	RW	ctl_tx_prbs31_test_pattern_enable ⁽²⁾

Table 2-28: CONFIGURATION_TX_REG1: 000C

Notes:

1. Only in the MAC+PCS variant.

2. Only in the PCS variant.

3. 2'b10: This is the default configuration. You have to write this to configure the core in 10G mode.

2'b01: You have to write this to configure the core in 1G mode.

2'b00: You have to write this to configure the core in 25G mode.

Others: Reserved.

The values provided by these two register bits are ignored when Auto-Negotiation is enabled. Auto-switching is performed according to the resolved speed between the local device and the link partner.

STAT_CORE_SPEED_REG: 0180

Table 2-29: STAT_CORE_SPEED_REG: 0180

Bits	Default	Туре	Signal
1:0	2	RO	stat_core_speed ⁽¹⁾

Notes:

- 1. Each mode indicate different configurations.
- 2'b10: Indicates that the core is configured in 10G mode.
- 2'b01: Indicates that the core is configured in 1G mode.
- 2'b00: Indicates that the core is configured in 25G mode.
- Others: Reserved.

CONFIGURATION_1588_REG: 0x0190

Bits Default Signal Туре 0 1 RW ctl_tx_lat_adj_enb ctl_rx_lat_adj_enb 1 1 RW Note: For 1G mode, this register is Reserved. 2 0 RW ctl_ptp_transpclk_mode 3 0 RW ctl_tx_timestamp_adj_enb ctl_rx_timestamp_adj_enb 4 1 RW Note: For 1G mode, this register is Reserved.

Table 2-30: CONFIGURATION_1588_REG: 0x0190

CONFIGURATION_1588_REG: 0x0194

Table 2-31: CONFIGURATION_1588_REG: 0x0194

Bits	Default	Туре	Signal
31:0	0	RW	ctl_tx_latency

CONFIGURATION_1588_REG: 0x0198

Table 2-32: CONFIGURATION_1588_REG: 0x0198

Bits	Default	Туре	Signal
31:0	0	RW	ctl_rx_latency <i>Note:</i> For 1G mode, this register is Reserved .

STAT_RX_STATUS_REG1: 0404

Bits	Default	Туре	Signal
0	0	LH	stat_rx_status
4	0	RO LH	stat_rx_hi_ber
5	0	RO LH	stat_rx_remote_fault ⁽¹⁾
6	0	RO LH	stat_rx_local_fault
7	0	RO LH	stat_rx_internal_local_fault ⁽¹⁾
8	0	RO LH	stat_rx_received_local_fault ⁽¹⁾
9	0	RO LH	stat_rx_bad_preamble ⁽¹⁾
10	0	RO LH	stat_rx_bad_sfd ⁽¹⁾
11	0	RO LH	stat_rx_got_signal_os ⁽¹⁾

Table 2-33: STAT_RX_STATUS_REG1: 0404

Notes:

1. Only in the MAC+PCS variant.

Status Registers for 1G/10G/25G Subsystem

See 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 3] for information on Status Registers for 1G/10G/25G Subsystem.

Configuration and Status Registers for 1G/2.5G Ethernet PCS/PMA

AXI4-Lite support has been added in the 1G Ethernet PCS/PMA IP to assist you in programming the control and status registers. The addresses of the registers are word aligned for AXI4-Lite accesses. Strobing for data while accessing these registers is disabled.

Any read/write operations to given addresses lead to read/write operations to the corresponding 16-bit register as defined in *1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide* (PG047) [Ref 3].

The following vendor-specific registers have been added to the MDIO PCS Address space when configured for 1000BASE-X operation. See the *1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide* (PG047) [Ref 3].

For registers 0x0000-0x003C, see 1000BASE-X or 2500BASE-X Standard Without Optional Auto-Negotiation Table in *1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide* (PG047) [Ref 3].

Bits	Default Value	Access	Description
15:4	N/A	RO	Reserved
			Timestamp correction enable.
3	1	RW	When 1, the RX timestamp is adjusted to compensate for enabled PHY fixed and variable latencies.
			When 0, no adjustment is made to the timestamp.
			Fixed RX PHY latency correction enable.
2	1	RW	When 1, the RX timestamp is adjusted to compensate for fixed PHY latency by using the correction value specified in Table 2-30.
			When 0, no adjustment is made to compensate for fixed known latencies.
1	0	RO	Reserved
			Variable RX transceiver latency correction enable.
0	1	RW	When 1, the RX timestamp is adjusted to compensate for measurable variable transceiver latency (for 1000BASE-X this is the barrel shift position of the serial-to-parallel converter in the GTX transceiver PMA). This only varies when the subsystem is initialized following a power-on, reset, or recovery from loss of synchronization; it then remains constant for normal operation.
			When 0, no adjustment is made to compensate for measurable variable known latencies.

Table 2-34:1588 Control: Vendor Specific Register 19

Table 2-35: RX PHY Fixed Latency: Vendor Specific Register 20

Bits	Default Value	Access	Description
15:0	0xC8	RW	RX 1000BASE-X Fixed Delay in ns. This value is initialized to the known RX latency from the serial wire input into the FPGA, through the transceiver fixed latency components prior to the timestamping position.

Table 2-36: RX PHY Variable Latency: Vendor Specific Register 21

Bits	Default Value	Access	Description
			RX 1000BASE-X variable RX Delay in UI.
15:0	N/A	RO	This value is measured within the subsystem following RX synchronization (for 1000BASE-X this is the barrel shift position of the serial-to-parallel converted in the transceiver PMA). This only varies when the subsystem is initialized following a power-on, reset, or recovery from loss of synchronization; it then remains constant for normal operation.

See 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 3] for information on Configuration Registers for 1G/2.5G Ethernet PCS-PMA.

Statistics Counters

The statistics counters provide histograms of the classification of traffic and error counts. These counters can be read either by a 1 on pm_tick or by writing a 1 to tick_reg, depending on the value of MODE_REG[30] (tick_reg_mode_sel).pm_tick is used when MODE_REG[30] = 0 and tick_reg is used when MODE_REG[30] = 1 (1 = default).

The counters employ an internal accumulator. A write to the tick_reg register causes the accumulated counts to be pushed to the readable STAT_*_MSB/LSB registers and simultaneously clear the accumulators. The STAT_*_MSB/LSB registers can then be read. In this way all values stored in the statistics counters represent a snap-shot over the same time interval.

The STAT_CYCLE_COUNT_MSB/LSB register contains a count of the number of RX core clock cycles between tick_reg writes. This allows for easy time-interval based statistics. Statistics counter registers are cleared according to the following conditions:

- Applying s_axi_aresetn clears both TX and RX statistics counter registers.
- Applying pm_tick clears both TX and RX statistics counter registers.
- Applying rx_reset clears the RX statistics counter registers only.
- Applying tx_reset clears the TX statistics counter registers only.

Implementation of statistics counters for 1G and 10G modes of operation is common to both the10G/25G Ethernet subsystem and 1G/2.5G Ethernet PCS/PMA. The current values of statistics show the value pertaining to the current mode of operation. When there is a change in line rate, the system resets statistics counters.

The statistics counters, detailed in Table 2-37, are present in the design when the **Include Statistics Counters** option is selected in the **Configuration** tab in the IDE.

Hex Address	Register Name	Notes
0x0500	STATUS_CYCLE_COUNT_LSB: 0500	
0x0504	STATUS_CYCLE_COUNT_MSB: 0504	
0x0648	STAT_RX_FRAMING_ERR_LSB: 0648	Only in MAC+PCS and PCS-only variants.
0x064C	STAT_RX_FRAMING_ERR_MSB: 064C	Only in MAC+PCS and PCS-only variants.
0x0660	STAT_RX_BAD_CODE_LSB: 0660	
0x0664	STAT_RX_BAD_CODE_MSB: 0664	
0x06A0	STAT_TX_FRAME_ERROR_LSB: 06A0	Only in MAC+ PCS and MAC-only variants.

Table 2-37: Statistics Counters

Hex Address	Register Name	Notes
0x06A4	STAT_TX_FRAME_ERROR_MSB: 06A4	Only in MAC+ PCS and MAC-only variants.
0x0700	STAT_TX_TOTAL_PACKETS_LSB: 0700	Only in MAC+ PCS and MAC-only variants.
0x0704	STAT_TX_TOTAL_PACKETS_MSB: 0704	Only in MAC+ PCS and MAC-only variants.
0x0708	STAT_TX_TOTAL_GOOD_PACKETS_LSB: 0708	Only in MAC+ PCS and MAC-only variants.
0x070C	STAT_TX_TOTAL_GOOD_PACKETS_MSB: 070C	Only in MAC+ PCS and MAC-only variants.
0x0710	STAT_TX_TOTAL_BYTES_LSB: 0710	Only in MAC+ PCS and MAC-only variants.
0x0714	STAT_TX_TOTAL_BYTES_MSB: 0714	Only in MAC+ PCS and MAC-only variants.
0x0718	STAT_TX_TOTAL_GOOD_BYTES_LSB: 0718	Only in MAC+ PCS and MAC-only variants.
0x071C	STAT_TX_TOTAL_GOOD_BYTES_MSB: 071C	Only in MAC+ PCS and MAC-only variants.
0x0720	STAT_TX_PACKET_64_BYTES_LSB: 0720	Only in MAC+ PCS and MAC-only variants.
0x0724	STAT_TX_PACKET_64_BYTES_MSB: 0724	Only in MAC+ PCS and MAC-only variants.
0x0728	STAT_TX_PACKET_65_127_BYTES_LSB: 0728	Only in MAC+ PCS and MAC-only variants.
0x072C	STAT_TX_PACKET_65_127_BYTES_MSB: 072C	Only in MAC+ PCS and MAC-only variants.
0x0730	STAT_TX_PACKET_128_255_BYTES_LSB: 0730	Only in MAC+ PCS and MAC-only variants.
0x0734	STAT_TX_PACKET_128_255_BYTES_MSB: 0734	Only in MAC+ PCS and MAC-only variants.
0x0738	STAT_TX_PACKET_256_511_BYTES_LSB: 0738	Only in MAC+ PCS and MAC-only variants.
0x073C	STAT_TX_PACKET_256_511_BYTES_MSB: 073C	Only in MAC+ PCS and MAC-only variants.
0x0740	STAT_TX_PACKET_512_1023_BYTES_LSB: 0740	Only in MAC+ PCS and MAC-only variants.
0x0744	STAT_TX_PACKET_512_1023_BYTES_MSB: 0744	Only in MAC+ PCS and MAC-only variants.
0x0748	STAT_TX_PACKET_1024_1518_BYTES_LSB: 0748	Only in MAC+ PCS and MAC-only variants.

Hex Address	Register Name	Notes
0x074C	STAT_TX_PACKET_1024_1518_BYTES_MSB: 074C	Only in MAC+ PCS and MAC-only variants.
0x0750	STAT_TX_PACKET_1519_1522_BYTES_LSB: 0750	Only in MAC+ PCS and MAC-only variants.
0x0754	STAT_TX_PACKET_1519_1522_BYTES_MSB: 0754	Only in MAC+ PCS and MAC-only variants.
0x0758	STAT_TX_PACKET_1523_1548_BYTES_LSB: 0758	Only in MAC+ PCS and MAC-only variants.
0x075C	STAT_TX_PACKET_1523_1548_BYTES_MSB: 075C	Only in MAC+ PCS and MAC-only variants.
0x0760	STAT_TX_PACKET_1549_2047_BYTES_LSB: 0760	Only in MAC+ PCS and MAC-only variants.
0x0764	STAT_TX_PACKET_1549_2047_BYTES_MSB: 0764	Only in MAC+ PCS and MAC-only variants.
0x0768	STAT_TX_PACKET_2048_4095_BYTES_LSB: 0768	Only in MAC+ PCS and MAC-only variants.
0x076C	STAT_TX_PACKET_2048_4095_BYTES_MSB: 076C	Only in MAC+ PCS and MAC-only variants.
0x0770	STAT_TX_PACKET_4096_8191_BYTES_LSB: 0770	Only in MAC+ PCS and MAC-only variants.
0x0774	STAT_TX_PACKET_4096_8191_BYTES_MSB: 0774	Only in MAC+ PCS and MAC-only variants.
0x0778	STAT_TX_PACKET_8192_9215_BYTES_LSB: 0778	Only in MAC+ PCS and MAC-only variants.
0x077C	STAT_TX_PACKET_8192_9215_BYTES_MSB: 077C	Only in MAC+ PCS and MAC-only variants.
0x0780	STAT_TX_PACKET_LARGE_LSB: 0780	Only in MAC+ PCS and MAC-only variants.
0x0784	STAT_TX_PACKET_LARGE_MSB: 0784	Only in MAC+ PCS and MAC-only variants.
0x0788	STAT_TX_PACKET_SMALL_LSB: 0788	Only in MAC+ PCS and MAC-only variants.
0x078C	STAT_TX_PACKET_SMALL_MSB: 078C	Only in MAC+ PCS and MAC-only variants.
0x07B8	STAT_TX_BAD_FCS_LSB: 07B8	Only in MAC+ PCS and MAC-only variants.
0x07BC	STAT_TX_BAD_FCS_MSB: 07BC	Only in MAC+ PCS and MAC-only variants.
0x07D0	STAT_TX_UNICAST_LSB: 07D0	Only in MAC+ PCS and MAC-only variants.

Hex Address	Register Name	Notes
0x07D4	STAT_TX_UNICAST_MSB: 07D4	Only in MAC+ PCS and MAC-only variants.
0x07D8	STAT_TX_MULTICAST_LSB: 07D8	Only in MAC+ PCS and MAC-only variants.
0x07DC	STAT_TX_MULTICAST_MSB: 07DC	Only in MAC+ PCS and MAC-only variants.
0x07E0	STAT_TX_BROADCAST_LSB: 07E0	Only in MAC+ PCS and MAC-only variants.
0x07E4	STAT_TX_BROADCAST_MSB: 07E4	Only in MAC+ PCS and MAC-only variants.
0x07E8	STAT_TX_VLAN_LSB: 07E8	Only in MAC+ PCS and MAC-only variants.
0x07EC	STAT_TX_VLAN_MSB: 07EC	Only in MAC+ PCS and MAC-only variants.
0x07F0	STAT_TX_PAUSE_LSB: 07F0	Only in MAC+ PCS and MAC-only variants.
0x07F4	STAT_TX_PAUSE_MSB: 07F4	Only in MAC+ PCS and MAC-only variants.
0x07F8	STAT_TX_USER_PAUSE_LSB: 07F8	Only in MAC+ PCS and MAC-only variants.
0x07FC	STAT_TX_USER_PAUSE_MSB: 07FC	Only in MAC+ PCS and MAC-only variants.
0x0808	STAT_RX_TOTAL_PACKETS_LSB: 0808	Only in MAC+ PCS and MAC-only variants.
0x080C	STAT_RX_TOTAL_PACKETS_MSB: 080C	Only in MAC+ PCS and MAC-only variants.
0x0810	STAT_RX_TOTAL_GOOD_PACKETS_LSB: 0810	Only in MAC+ PCS and MAC-only variants.
0x0814	STAT_RX_TOTAL_GOOD_PACKETS_MSB: 0814	Only in MAC+ PCS and MAC-only variants.
0x0818	STAT_RX_TOTAL_BYTES_LSB: 0818	Only in MAC+ PCS and MAC-only variants.
0x081C	STAT_RX_TOTAL_BYTES_MSB: 081C	Only in MAC+ PCS and MAC-only variants.
0x0820	STAT_RX_TOTAL_GOOD_BYTES_LSB: 0820	Only in MAC+ PCS and MAC-only variants.
0x0824	STAT_RX_TOTAL_GOOD_BYTES_MSB: 0824	Only in MAC+ PCS and MAC-only variants.
0x0828	STAT_RX_PACKET_64_BYTES_LSB: 0828	Only in MAC+ PCS and MAC-only variants.

Hex Address	Register Name	Notes
0x082C	STAT_RX_PACKET_64_BYTES_MSB: 082C	Only in MAC+ PCS and MAC-only variants.
0x0830	STAT_RX_PACKET_65_127_BYTES_LSB: 0830	Only in MAC+ PCS and MAC-only variants.
0x0834	STAT_RX_PACKET_65_127_BYTES_MSB: 0834	Only in MAC+ PCS and MAC-only variants.
0x0838	STAT_RX_PACKET_128_255_BYTES_LSB: 0838	Only in MAC+ PCS and MAC-only variants.
0x083C	STAT_RX_PACKET_128_255_BYTES_MSB: 083C	Only in MAC+ PCS and MAC-only variants.
0x0840	STAT_RX_PACKET_256_511_BYTES_LSB: 0840	Only in MAC+ PCS and MAC-only variants.
0x0844	STAT_RX_PACKET_256_511_BYTES_MSB: 0844	Only in MAC+ PCS and MAC-only variants.
0x0848	STAT_RX_PACKET_512_1023_BYTES_LSB: 0848	Only in MAC+ PCS and MAC-only variants.
0x084C	STAT_RX_PACKET_512_1023_BYTES_MSB: 084C	Only in MAC+ PCS and MAC-only variants.
0x0850	STAT_RX_PACKET_1024_1518_BYTES_LSB: 0850	Only in MAC+ PCS and MAC-only variants.
0x0854	STAT_RX_PACKET_1024_1518_BYTES_MSB: 0854	Only in MAC+ PCS and MAC-only variants.
0x0858	STAT_RX_PACKET_1519_1522_BYTES_LSB: 0858	Only in MAC+ PCS and MAC-only variants.
0x085C	STAT_RX_PACKET_1519_1522_BYTES_MSB: 085C	Only in MAC+ PCS and MAC-only variants.
0x0860	STAT_RX_PACKET_1523_1548_BYTES_LSB: 0860	Only in MAC+ PCS and MAC-only variants.
0x0864	STAT_RX_PACKET_1523_1548_BYTES_MSB: 0864	Only in MAC+ PCS and MAC-only variants.
0x0868	STAT_RX_PACKET_1549_2047_BYTES_LSB: 0868	Only in MAC+ PCS and MAC-only variants.
0x086C	STAT_RX_PACKET_1549_2047_BYTES_MSB: 086C	Only in MAC+ PCS and MAC-only variants.
0x0870	STAT_RX_PACKET_2048_4095_BYTES_LSB: 0870	Only in MAC+ PCS and MAC-only variants.
0x0874	STAT_RX_PACKET_2048_4095_BYTES_MSB: 0874	Only in MAC+ PCS and MAC-only variants.
0x0878	STAT_RX_PACKET_4096_8191_BYTES_LSB: 0878	Only in MAC+ PCS and MAC-only variants.

Hex Address	Register Name	Notes
0x087C	STAT_RX_PACKET_4096_8191_BYTES_MSB: 087C	Only in MAC+ PCS and MAC-only variants.
0x0880	STAT_RX_PACKET_8192_9215_BYTES_LSB: 0880	Only in MAC+ PCS and MAC-only variants.
0x0884	STAT_RX_PACKET_8192_9215_BYTES_MSB: 0884	Only in MAC+ PCS and MAC-only variants.
0x0888	STAT_RX_PACKET_LARGE_LSB: 0888	Only in MAC+ PCS and MAC-only variants.
0x088C	STAT_RX_PACKET_LARGE_MSB: 088C	Only in MAC+ PCS and MAC-only variants.
0x0890	STAT_RX_PACKET_SMALL_LSB: 0890	Only in MAC+ PCS and MAC-only variants.
0x0894	STAT_RX_PACKET_SMALL_MSB: 0894	Only in MAC+ PCS and MAC-only variants.
0x0898	STAT_RX_UNDERSIZE_LSB: 0898	Only in MAC+ PCS and MAC-only variants.
0x089C	STAT_RX_UNDERSIZE_MSB: 089C	Only in MAC+ PCS and MAC-only variants.
0x08A0	STAT_RX_FRAGMENT_LSB: 08A0	Only in MAC+ PCS and MAC-only variants.
0x08A4	STAT_RX_FRAGMENT_MSB: 08A4	Only in MAC+ PCS and MAC-only variants.
0x08A8	STAT_RX_OVERSIZE_LSB: 08A8	Only in MAC+ PCS and MAC-only variants.
0x08AC	STAT_RX_OVERSIZE_MSB: 08AC	Only in MAC+ PCS and MAC-only variants.
0x08B0	STAT_RX_TOOLONG_LSB: 08B0	Only in MAC+ PCS and MAC-only variants.
0x08B4	STAT_RX_TOOLONG_MSB: 08B4	Only in MAC+ PCS and MAC-only variants.
0x08B8	STAT_RX_JABBER_LSB: 08B8	Only in MAC+ PCS and MAC-only variants.
0x08BC	STAT_RX_JABBER_MSB: 08BC	Only in MAC+ PCS and MAC-only variants.
0x08C0	STAT_RX_BAD_FCS_LSB: 08C0	Only in MAC+ PCS and MAC-only variants.
0x08C4	STAT_RX_BAD_FCS_MSB: 08C4	Only in MAC+ PCS and MAC-only variants.
0x08C8	STAT_RX_PACKET_BAD_FCS_LSB: 08C8	Only in MAC+ PCS and MAC-only variants.

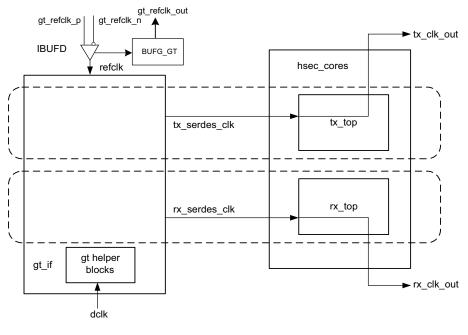
Hex Address	Register Name	Notes
0x08CC	STAT_RX_PACKET_BAD_FCS_MSB: 08CC	Only in MAC+ PCS and MAC-only variants.
0x08D0	STAT_RX_STOMPED_FCS_LSB: 08D0	Only in MAC+ PCS and MAC-only variants.
0x08D4	STAT_RX_STOMPED_FCS_MSB: 08D4	Only in MAC+ PCS and MAC-only variants.
0x08D8	STAT_RX_UNICAST_LSB: 08D8	Only in MAC+ PCS and MAC-only variants.
0x08DC	STAT_RX_UNICAST_MSB: 08DC	Only in MAC+ PCS and MAC-only variants.
0x08E0	STAT_RX_MULTICAST_LSB: 08E0	Only in MAC+ PCS and MAC-only variants.
0x08E4	STAT_RX_MULTICAST_MSB: 08E4	Only in MAC+ PCS and MAC-only variants.
0x08E8	STAT_RX_BROADCAST_LSB: 08E8	Only in MAC+ PCS and MAC-only variants.
0x08EC	STAT_RX_BROADCAST_MSB: 08EC	Only in MAC+ PCS and MAC-only variants.
0x08F0	STAT_RX_VLAN_LSB: 08F0	Only in MAC+ PCS and MAC-only variants.
0x08F4	STAT_RX_VLAN_MSB: 08F4	Only in MAC+ PCS and MAC-only variants.
0x08F8	STAT_RX_PAUSE_LSB: 08F8	Only in MAC+ PCS and MAC-only variants.
0x08FC	STAT_RX_PAUSE_MSB: 08FC	Only in MAC+ PCS and MAC-only variants.
0x0900	STAT_RX_USER_PAUSE_LSB: 0900	Only in MAC+ PCS and MAC-only variants.
0x0904	STAT_RX_USER_PAUSE_MSB: 0904	Only in MAC+ PCS and MAC-only variants.
0x0908	STAT_RX_INRANGEERR_LSB: 0908	Only in MAC+ PCS and MAC-only variants.
0x090C	STAT_RX_INRANGEERR_MSB: 090C	Only in MAC+ PCS and MAC-only variants.
0x0910	STAT_RX_TRUNCATED_LSB: 0910	Only in MAC+ PCS and MAC-only variants.
0x0914	STAT_RX_TRUNCATED_MSB: 0914	Only in MAC+ PCS and MAC-only variants.
0x0918	STAT_RX_TEST_PATTERN_MISMATCH_LSB: 0918	Only in the MAC+PCS variant.
0x091C	STAT_RX_TEST_PATTERN_MISMATCH_MSB: 091C	Only in the MAC+PCS variant.

Hex Address	Register Name	Notes
0x0920	STAT_FEC_INC_CORRECT_COUNT_LSB: 0920	Only in MAC+PCS and PCS-only variants.
0x0924	STAT_FEC_INC_CORRECT_COUNT_MSB: 0924	Only in MAC+PCS and PCS-only variants.
0x0928	STAT_FEC_INC_CANT_CORRECT_COUNT_LSB: 0928	Only in MAC+PCS and PCS-only variants.
0x092C	STAT_FEC_INC_CANT_CORRECT_COUNT_MSB: 092C	Only in MAC+PCS and PCS-only variants.

For description of statistics counters, see the statistics counter tables in the *10G/25G High Speed Ethernet Subsystem Product Guide* (PG210) [Ref 4] for the bit assignments for the statistics counters.

Chapter 3

Designing with the Subsystem


This chapter includes guidelines and additional information to facilitate designing with the subsystem.

Clocking

This section describes the clocking for all the 1G configurations at the component support wrapper layer.

32Bit 1/10/25G Ethernet MAC with PCS/PMA Clocking

The clocking architecture for the 32-bit 1/10/25G Ethernet MAC with PCS/PMA clocking is illustrated in Figure 3-1. Low latency is achieved by omitting the RX FIFOs, which results in a different clocking arrangement. There are two clock domains in the datapath, as illustrated by the dashed lines in Figure 3-1.

X15166-110718

Figure 3-1: 32Bit 1/10/25G Ethernet MAC with PCS/PMA Clocking

refclk_p0, refclk_n0, tx_serdes_refclk

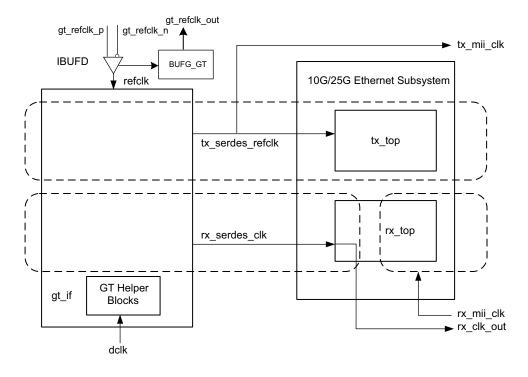
The refclk differential pair is required to be an input to the programmable logic. The example design includes a buffer to convert this clock to a single-ended signal refclk, which is used as the reference clock for the GT block. The tx_serdes_refclk is directly derived from refclk. The refclk signal must be chosen so that the tx_serdes_refclk meets the requirements of 802.3, which is within 100 ppm of 390.625 MHz for 25G, and 156.25 MHz for 10G.

tx_clk_out

This clock is used for clocking data into the TX AXI4-Stream Interface and it is also the reference clock for the TX control and status signals. It is the same frequency as tx_serdes_refclk. Because there is no TX FIFO, you must respond immediately to the tx_axis_tready signal.

rx_clk_out

The rx_clk_out output signal is presented as a reference for the RX control and status signals processed by the RX core. It is the same frequency as the rx_serdes_clk . Because there is no RX FIFO, this is also the clock which drives the RX AXI4-Stream Interface. In this arrangement, rx_clk_out and tx_clk_out are different frequencies and have no defined phase relationship to each other.


dclk

The dclk signal must be a convenient stable clock. It is used as a reference frequency for the GT helper blocks which initiate the GT itself. In the example design, a typical value is 75 MHz, which is readily derived from the 300 MHz clock available on the VCU107 evaluation board. The actual frequency must be known to the GT helper blocks for proper operation.

PCS/PMA Only Clocking

The clocking architecture for the 10G/25G PCS is illustrated below. There are three clock domains in the datapath, as illustrated by the dashed lines in Figure 3-2.

refclk_p0, refclk_n0, tx_serdes_refclk

The refclk differential pair is required to be an input to the programmable logic. The example design includes a buffer to convert this clock to a single-ended signal refclk, which is used as the reference clock for the GT block. The tx_serdes_refclk is directly derived from refclk. Note that refclk must be chosen so that the tx_mii_clk meets the requirements of 802.3, which is within 100 ppm of 390.625 MHz for 25G and 156.25 MHz for 10G.

tx_mii_clk

The tx_mii_clk is an output which is the same as the tx_serdes_refclk. The entire TX path is driven by this clock. You must synchronize the TX path mii bus to this clock output. All TX control and status signals are referenced to this clock.

rx_serdes_clk

The rx_serdes_clk is derived from the incoming data stream within the GT block. The incoming data stream is processed by the RX core in this clock domain.

rx_clk_out

The rx_clk_out output signal is presented as a reference for the RX control and status signals processed by the RX core. It is the same frequency as the rx_serdes_clk.

rx_mii_clk

The rx_mii_clk input is required to be synchronized to the RX XGMII/25GMII data bus. This clock and the RX XGMII/25GMII bus must be within 100 ppm of the required frequency, which is 390.625 MHz for 25G and 156. 25 MHz for 10G.

dclk

The dclk signal must be a convenient stable clock. It is used as a reference frequency for the GT helper blocks which initiate the GT itself. In the example design, a typical value is 75 MHz, which is readily derived from the 300 MHz clock available on the VCU107 evaluation board. Note that the actual frequency must be known to the GT helper blocks for proper operation.

Auto-Negotiation Clocking

The clocking architecture for the Auto-Negotiation and Link Training blocks is illustrated in Figure 3-3. These blocks are not included unless the BASE-KR feature is selected. The Auto-Negotiation and Link Training blocks function independently from the MAC and PCS, and are therefore on different clock domains.

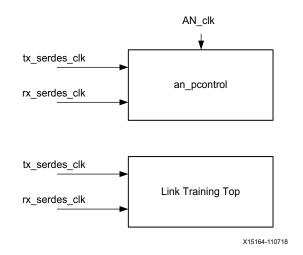


Figure 3-3: Auto-Negotiation and Link Training Clocking

tx_serdes_clk

The tx_serdes_clk drives the TX line side logic for the Auto-Negotiation. The DME frame is generated on this clock domain.

rx_serdes_clk

The rx_serdes_clk drives the RX line side logic for the Auto-Negotiation.

AN_clk

The AN_clk drives the Auto-Negotiation state machine. All ability signals are on this clock domain. The AN_clk can be any convenient frequency. In the example design, AN_clk is connected to the dclk input, which has a typical frequency of 75 MHz. The AN_clk frequency must be known to the Auto-Negotiation state machine because it is the reference for all timers.

Resets

Figure 3-4 shows the reset structure for the 10G/25G Ethernet MAC with PCS/PMA as implemented at the component support wrapper layer. Clocks are not shown for clarity.

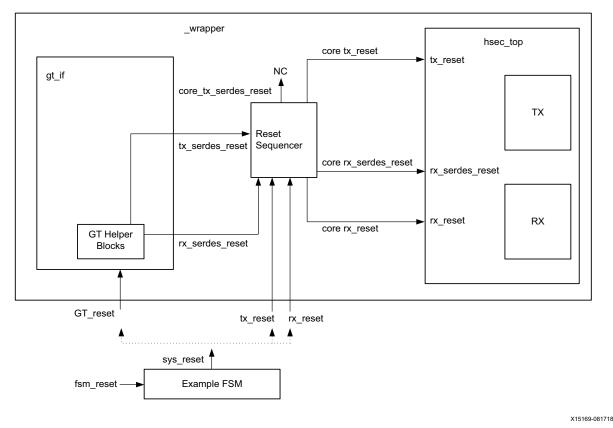


Figure 3-4: Reset Structure

Component Support Layer Resets

In the example design, a single reset is used to reset the entire wrapper layer. Using the external stimulus fsm_reset, the example_fsm block issues the signal sys_reset which is connected to the three _wrapper resets. The example design demonstrates that all three wrapper resets can be released simultaneously and correct operation follows.

Wrapper Resets

The _wrapper layer of the hierarchy is assumed to be what you instantiate in your own design. There are three resets to be handled as follows:

- GT_reset
- tx_reset
- rx_reset

Timing of the reset signals is handled by the reset sequencer block.

GT_reset

The GT_reset is the asynchronous active-High reset input to the GT. Internal resets of the GT are handled by the GT helper blocks.

tx_reset

The tx_reset is the asynchronous active-High reset for the TX path logic of the 10G/25G Ethernet IP core. While it is connected to the GT reset in the example design, this reset can be asserted at any time to reset the TX path independently without disturbing the RX path.

rx_reset

The rx_reset is the asynchronous active-High reset for the RX path logic of the 10G/25G Ethernet IP core. While it is connected to the GT reset in the example design, this reset can be asserted at any time to reset the RX path independently without disturbing the TX path.

LogiCORE Example Design Clocking and Resets



Figure 3-5: Detailed diagram of 32-bit MAC+PCS/PMA Single Core

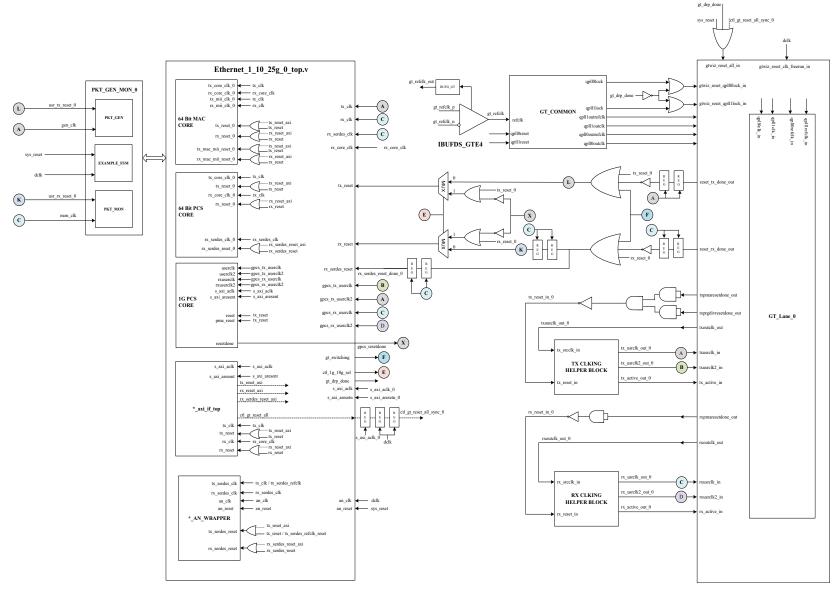


Figure 3-6: Detailed diagram of 64-bit MAC+PCS/PMA Single Core

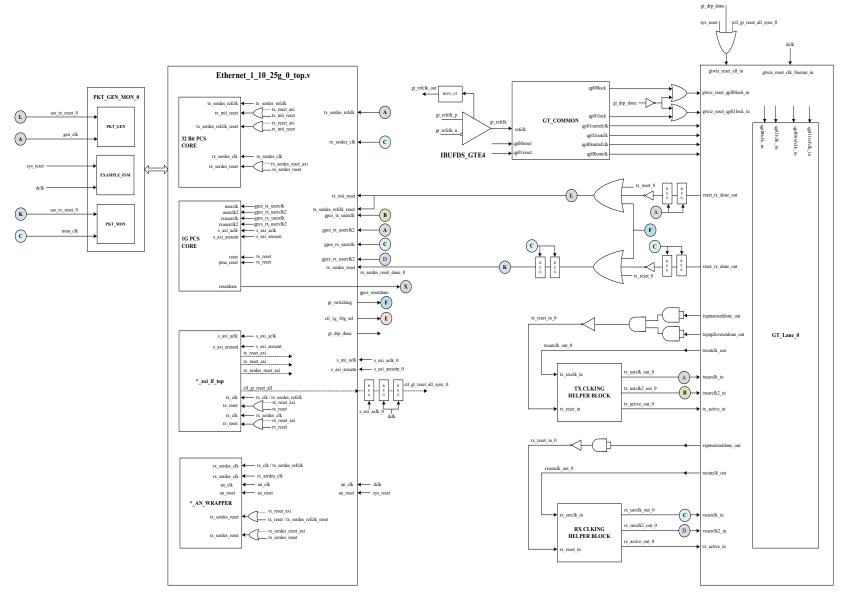


Figure 3-7: Detailed diagram of 32-bit PCS-Only Single Core

Support for IEEE Standard 1588v2

Overview

This section details the packet timestamping function of the 1G/10G/25G Switching Ethernet Subsystem when the MAC layer is included. The timestamping option must be specified at the time of generating the subsystem from the IP catalog or ordering the IP core asynchronously. This feature provides support only for two-step IEEE 1588v2 functionality.

Ethernet frames are timestamped at both ingress and egress. The option can be used for implementing all kinds of IEEE 1588v2 clocks: Ordinary, Transparent, and Boundary. It can also be used for the generic timestamping of packets at the ingress and egress ports of a system. While this feature can be used for a variety of packet timestamping applications, the rest of this section assumes that you are also implementing the IEEE 1588v2 Precision Time Protocol (PTP).

IEEE 1588v2 defines a protocol for performing timing synchronization across a network. A 1588 network has a single master clock timing reference, usually selected through a best master clock algorithm. Periodically, this master samples its system timer reference counter, and transmits this sampled time value across the network using defined packet formats. This timer should be sampled (a timestamp) when the start of a 1588 timing packet is transmitted. Therefore, to achieve high synchronization accuracy over the network, accurate timestamps are required. If this sampled time value (the timestamp) is placed into the packet that triggered the timestamp, this is known as one-step operation. Alternatively, the timestamp value can be placed into a follow up packet; this is known as two-step operation.

Other timing slave devices on the network receive these timing reference packets from the network timing master and attempt to synchronize their own local timer references to it. This mechanism relies on these Ethernet ports also taking timestamps (samples of their own local timer) when the 1588 timing packets are received. Further explanation of the operation of 1588 is out of scope of this document. This document now describes the 1588 hardware timestamping features of the subsystem.

The 1588 timer provided to the subsystem and the consequential timestamping taken from it are available in one of two formats which are selected during subsystem generation.

- Time-of-Day (ToD) format: IEEE 1588-2008 format consisting of an unsigned 48-bit second field and a 32-bit nanosecond field.
- Correction Field format: IEEE 1588-2008 numerical format consisting of a 64-bit signed field representing nanoseconds multiplied by 2¹⁶ (see IEEE 1588 Clause 13.3.2.7

[Ref 12]). This timer should count from 0 through the full range up to 2^{64} -1 before wrapping around.

Egress

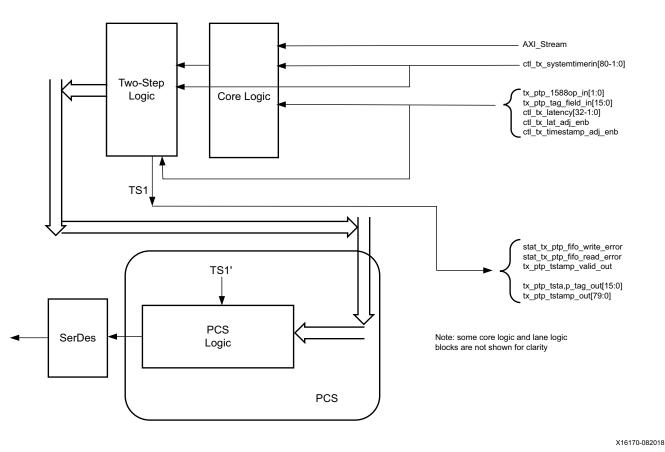


Figure 3-8: Egress

The TS references are defined as follows:

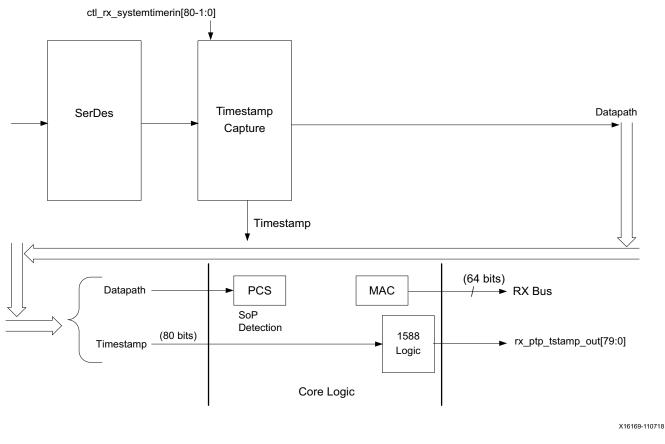
- TS1: The output timestamp signal when a two-step operation is selected.
- TS1': The plane to which both timestamps are corrected.

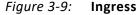
TS1 always has a correction applied so that it is referenced to the TS1' plane.

Note: For 10G 1588, registers defined at address 0x0190, 0x0194 and 0x0198 must be programmed. For 1G 1588, registers defined at address 0x0190, 0x0194, 0x004C, 0x0050 and 0x0054 must be programmed.

If using the ToD format, the full captured 80-bit ToD timestamp is returned to the client logic using the additional ports defined in Table 3-1.

If using the Correction Field format, the full captured 64-bit timestamp is returned to the client logic using the additional ports defined in Table 3-1 (with the upper bits of data set to zero as defined in the table).


For two-step transmit operation, all Precision Time Protocol (PTP) frame types are supported.


Frame-by-Frame Timestamping Operation

The operational mode of the egress timestamping function is determined by the settings on the 1588 command port. The information contained within the command port indicates one of the following:

- No operation: the frame is not a PTP frame and no timestamp action should be taken.
- Two-step operation is required and a tag value (user-sequence ID) is provided as part of the command field; the frame should be timestamped, and the timestamp made available to the client logic, along with the provided tag value for the frame. The additional MAC transmitter ports provide this function.

Ingress

The ingress logic does not parse the ingress packets to search for 1588 (PTP) frames. Instead, it takes a timestamp for every received frame and outputs this value to the programmable logic. The feature is always enabled, but the timestamp output can be ignored if you do not require this function.

Timestamps are filtered after the PCS decoder to retain only those timestamps corresponding to a Start of Packet (SOP). These 80-bit timestamps are output on the system side. The timestamp is valid during the SoP cycle and when ena_out = 1.

Port Descriptions

The following table details the additional signals present when the packet timestamping feature is included.

Name	Direction	Description	Clock Domain	
СОММОЛ				
systemtimerin	I	Common System timer input. In TOD mode, the 32 LSBs carry nsec and the 48 MSBs carry seconds. In transparent clock mode, bit 63 is expected to be zero, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to IEEE 1588v2 [Ref 12] for the representational definitions.		
	IEEE	1588 Interface – TX Path		
tx_ptp_tstamp_valid_out	0	This bit indicates that a valid timestamp is being presented on the TX system interface.	tx_clk_out	
tx_ptp_tstamp_tag_out[15:0]	0	Tag output corresponding to tx_ptp_tag_field_in[15:0]	tx_clk_out	
tx_ptp_tstamp_out[80-1:0] O		Timestamp for the transmitted packet SOP corresponding to the time at which it passed the capture plane. Time format same as timer input.	tx_clk_out	
	I	The signal should be valid on the first cycle of the packet. For PCS cores, the first cycle corresponds with the first data word of the packet.		
		2'b00: No operation: no timestamp is taken and the frame is not modified.	tx_clk_out	
tx_ptp_1588op_in[1:0]		2'b01: Reserved.		
		2'b10: Two-step: a timestamp should be taken and returned to the client using the additional ports of 2-step operation. The frame itself is not modified.		
		2'b11: Reserved: act as No operation.		

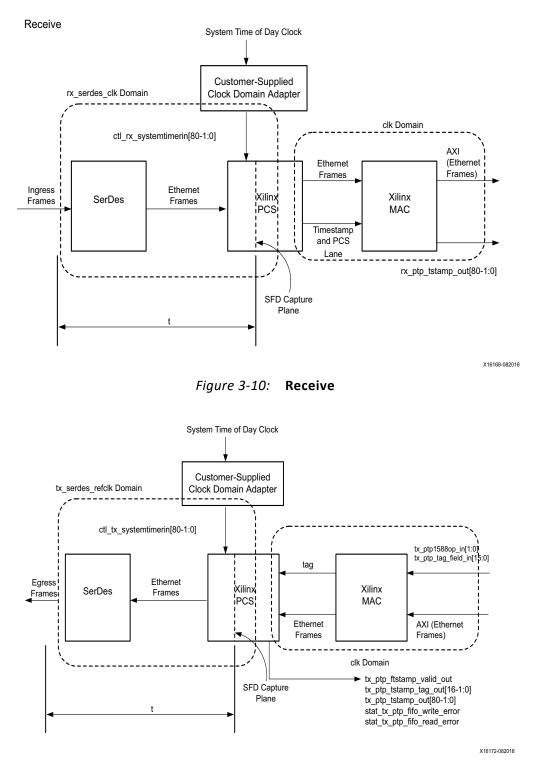
Table 3-1: 1588v2 Port List and Descriptions

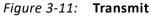
Name	Direction	Description	Clock Domain	
		The usage of this field is dependent on the 1588 operation. The signal should be valid on the first cycle of the packet.		
		 For No operation, this field is ignored. 		
tx_ptp_tag_field_in[15:0]	I	• For one-step and two-step, this field is a tag field. This tag value is returned to the client with the timestamp for the current frame using the additional ports of two-step operation. This tag value can be used by software to ensure that the timestamp can be matched with the PTP frame that it sent for transmission.	tx_clk_out	
stat_tx_ptp_fifo_write_error	О	Transmit PTP FIFO write error. A value of 1 on this status indicates that an error occurred during the PTP Tag write. A TX Path reset is required to clear the error.	tx_clk_out	
stat_tx_ptp_fifo_read_error	0	Transmit PTP FIFO read error. A value of 1 on this status indicates that an error occurred during the PTP Tag read. A TX Path reset is required to clear the error.	tx_clk_out	
ctl_tx_latency	I This is the static latency of the TX path of the core including the GT. The MSB 16 bits indicate the delay in ns and the LSB 16 bits indicate sub ns values. The latency is in binary Q16.16 format.		tx_clk_out	
ctl_tx_lat_adj_enb	When this signal is enabled, the delayIcomputation on the TX path takes into accounttx_cllthe value provided by the ctl_tx_latency_0 register.		tx_clk_out	
ctl_tx_timestamp_adj_enb	I	When this signal is enabled, the delay computation on the TX path takes into account the value got from GT DRP read for latency of TX gearbox FIFO. Since the design does not use TX gearbox FIFO, this signal need not be updated.	tx_clk_out	
	IEEE	1588 Interface – RX Path		
ctl_rx_systemtimerin[80-1:0]	I	System timer input for the RX. Same time format as the TX. This input must be in the same clock domain as the RX SerDes.	rx_serdes_clk	
rx_ptp_tstamp_out[80-1:0]	0	Timestamp for the received packet SOP corresponding to the time at which it passed the capture plane. This signal is valid on the first cycle of the packet.	rx_clk_out	
rx_ptp_tstamp_valid_out	0	This bit indicates that a valid timestamp is being presented on the RX.		
ctl_rx_latency	I	This is the static latency of the RX path of the core including the GT. The MSB 16 bits indicate the delay in ns and the LSB 16 bits indicate sub ns values. The latency is in binary Q16.16 format. Note: This signal is not valid in 1G mode.	rx_clk_out	

Table 3-1:	1588v2 Port List and Descriptions (Cont'd)
------------	--

Name	Direction	Description	Clock Domain
ctl_rx_lat_adj_enb	I	When this signal is enabled, the delay computation on the RX path takes into account the value provided by the ctl_rx_latency_0 register.	rx_clk_out
		<i>Note:</i> This signal is not valid in 1G mode.	
ctl_rx_timestamp_adj_enb I		When this signal is enabled, the delay computation on the RX path takes into account the value obtained from the GT DRP read for latency of the RX gearbox FIFO. Note: This signal is not valid in 1G mode.	rx_clk_out

IEEE 1588v2 PTP Functional Description


The IEEE 1588v2 feature of the 10G/25G High Speed Ethernet subsystem provides accurate timestamping of Ethernet frames at the hardware level for both the ingress and egress directions. Timestamps are captured according to the input clock source above. However, it is required that this time source be in the same clock domain as the SerDes. This might require retiming by an external circuit.


All ingress frames receive a timestamp. Interpret the received frames and determine whether a particular frame contains PTP information (by means of its Ethertype) and if the timestamp needs to be retained or discarded. Egress frames are timestamped if they are tagged as PTP frames. The timestamps of egress frames are matched to their user-supplied tags.

Timestamps for incoming frames are presented at the user interface during the same clock cycle as the start of packet. You can then append the timestamp to the packet as required.

By definition, a timestamp is captured coincident with the passing of the SOP through the capture plane within the 10G/25G High Speed Ethernet Subsystem. This is illustrated in the following schematic diagrams:

Performance

In a typical application, the difference between the ingress and egress capture times is important for determining absolute time. The PTP algorithm can use asymmetry information to improve accuracy.

The 1588v2 feature requires that all clock frequencies be known in order to make internal calculations. The clock frequencies should be specified at the time the PTP IP core is ordered in order for the timestamp correction to work properly.

In a typical application, the PTP algorithm (or servo, not part of this IP) removes the jitter over the course of time (many packet samples). It is advantageous for the jitter to be as small as possible in order to minimize the convergence time as well as minimizing slave clock drift.

Status/Control Interface

The Status/Control interface allows you to set up the 10G/25G Ethernet core configuration and to monitor its status. This sections describes in more detail some of the Status and Control signals.

stat_rx_framing_err and stat_rx_framing_err_valid

These signals are used to keep track of sync header errors. This set of buses is used to keep track of sync header errors. The stat_rx_framing_err output indicates how many sync header errors were received and it is qualified (that is, the value is only valid) when the corresponding stat_rx_framing_err_valid is sampled as a 1.

stat_rx_block_lock

This bit indicates that the interface has achieved sync header lock as defined by IEEE Std. 802.3. A value of 1 indicates block lock is achieved.

stat_rx_local_fault

This output is High when stat_rx_internal_local_fault or stat_rx_received_local_fault is asserted. This is output is level sensitive.

RX Error Status

The core provides status signals to identify 64b/66b words and sequences violations and CRC32 checking failures.

All signals are synchronous with the rising-edge of clk and a detailed description of each signal follows.

stat_rx_bad_fcs[1:0]

When this signal is positive, it indicates that the error detection logic has identified mismatches between the expected and received value of CRC32 in the received packet. When a CRC32 error is detected, the received packet is marked as containing an error and is sent with rx_errout asserted during the last transfer (the cycle with rx_eopout asserted), unless ctl_rx_ignore_fcs is asserted. This signal is asserted for one clock period for each CRC32 error detected.

stat_rx_bad_code

This signal indicates how many cycles the RX PCS receive state machine is in the RX_E state as defined by IEEE Std. 802.3.

Pause Processing

The 10G/25G High Speed Ethernet Subsystem provides a comprehensive mechanism for pause packet termination and generation. The TX and RX have independent interfaces for processing pause information as described in this section.

TX Pause Generation

You can request a pause packet to be transmitted using the ctl_tx_pause_req[8:0] and ctl_tx_pause_enable[8:0] input buses. Bit [8] corresponds to global pause packets and bits [7:0] correspond to priority pause packets.

Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.

CAUTION! Requesting both global and priority pause packets at the same time results in unpredictable behavior and must be avoided.

The contents of the pause packet are determined using the following input pins:

Global pause packets:

```
ctl_tx_da_gpp[47:0]
ctl_tx_sa_gpp[47:0]
ctl_tx_ethertype_gpp[15:0]
ctl_tx_opcode_gpp[15:0]
ctl_tx_pause_quanta8[15:0]
```


Priority pause packets:

ctl_tx_da_ppp[47:0] ctl_tx_sa_ppp[47:0] ctl_tx_ethertype_ppp[15:0] ctl_tx_opcode_ppp[15:0] ctl_tx_pause_quanta0[15:0] ctl_tx_pause_quanta1[15:0] ctl_tx_pause_quanta2[15:0] ctl_tx_pause_quanta3[15:0] ctl_tx_pause_quanta4[15:0] ctl_tx_pause_quanta5[15:0] ctl_tx_pause_quanta6[15:0] ctl_tx_pause_quanta7[15:0]

The 10G/25G Ethernet core automatically calculates and adds the FCS to the packet. For priority pause packets the 10G/25G Ethernet core also automatically generates the enable vector based on the priorities that are requested.

To request a pause packet, you must set the corresponding bit of the ctl_tx_pause_req[8:0] and ctl_tx_pause_enable[8:0] bus to 1 and keep it at 1 for the duration of the pause request (that is, if these inputs are set to 0, all pending pause packets are canceled). The 10G/25G Ethernet core transmits the pause packet immediately after the current packet in flight is completed.

IMPORTANT: Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.

To retransmit pause packets, the 10G/25G Ethernet core maintains a total of nine independent timers; one for each priority and one for global pause. These timers are loaded with the value of the corresponding input buses. After a pause packet is transmitted, the corresponding timer is loaded with the corresponding value of the ctl_tx_pause_refresh_timer[8:0] input bus. When a timer times out, another packet for that priority (or global) is transmitted as soon as the current packet in flight is completed. Additionally, you can manually force the timers to 0, and therefore force a retransmission, by setting the ctl_tx_resend_pause input to 1 for one clock cycle.

To reduce the number of pause packets for priority mode operation, a timer is considered timed out if any of the other timers time out. Additionally, while waiting for the current packet in flight to be completed, any new timer that times out or any new requests are merged into a single pause frame. For example, if two timers are counting down, and you send a request for a third priority, the two timers are forced to be timed out and a pause packet for all three priorities is sent as soon as the current in-flight packet (if any) is transmitted. Similarly, if one of the two timers times out without an additional request, both timers are forced to be timed out and a pause packet for both priorities is sent as soon as the current in-flight packet (if any) is the two timers times out without an additional request, both timers are forced to be timed out and a pause packet for both priorities is sent as soon as the current in-flight packet (if any) is transmitted.

You can stop pause packet generation by setting the appropriate bits of ctl_tx_pause_reg[8:0] or ctl_tx_pause_enable[8:0] to 0.

RX Pause Termination

The 10G/25G Ethernet core terminates global and priority pause frames and provides a simple hand-shaking interface to allow user logic to respond to pause packets.

Determining Pause Packets

There are three steps in determining pause packets:

1. Checks are performed to see if a packet is a global or a priority control packet.

Packets that pass step one are forwarded to you only if $ctl_rx_forward_control$ is set to 1.

- 2. If step 1 passes, the packet is checked to determine if it is a global pause packet.
- 3. If step 2 fails, the packet is checked to determine if it is a priority pause packet.

For step 1, the following pseudo-code shows the checking function:

```
assign da_match_gcp = (!ctl_rx_check_mcast_gcp && !ctl_rx_check_ucast_gcp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_gcp) || ((DA == 48'h0180c2000001) &&
ctl_rx_check_mcast_gcp);
assign sa_match_gcp = !ctl_rx_check_sa_gcp || (SA == ctl_rx_pause_sa);
assign etype_match_gcp = !ctl_rx_check_etype_gcp || (ETYPE == ctl_rx_etype_gcp);
assign opcode_match_gcp = !ctl_rx_check_opcode_gcp || ((OPCODE >=
ctl_rx_opcode_min_gcp) && (OPCODE <= ctl_rx_opcode_max_gcp));</pre>
assign global_control_packet = da_match_gcp && sa_match_gcp && etype_match_gcp &&
opcode_match_gcp && ctl_rx_enable_gcp;
assign da_match_pcp = (!ctl_rx_check_mcast_pcp && !ctl_rx_check_ucast_pcp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_pcp) || ((DA ==
ctl_rx_pause_da_mcast) && ctl_rx_check_mcast_pcp);
assign sa_match_pcp = !ctl_rx_check_sa_pcp || (SA == ctl_rx_pause_sa);
assign etype_match_pcp = !ctl_rx_check_etype_pcp || (ETYPE == ctl_rx_etype_pcp);
assign opcode_match_pcp = !ctl_rx_check_opcode_pcp || ((OPCODE >=
ctl_rx_opcode_min_pcp) && (OPCODE <= ctl_rx_opcode_max_pcp));</pre>
assign priority_control_packet = da_match_pcp && sa_match_pcp && etype_match_pcp &&
opcode_match_pcp && ctl_rx_enable_pcp;
assign control_packet = global_control_packet || priority_control_packet;
```

DA is the destination address, SA is the source address, OPCODE is the opcode, and ETYPE is the ethertype/length field that is extracted from the incoming packet.

For step 2, the following pseudo code shows the checking function:

```
assign da_match_gpp = (!ctl_rx_check_mcast_gpp && !ctl_rx_check_ucast_gpp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_gpp) || ((DA == 48'h0180c2000001) &&
ctl_rx_check_mcast_gpp);
assign sa_match_gpp = !ctl_rx_check_sa_gpp || (SA == ctl_rx_pause_sa);
assign etype_match_gpp = !ctl_rx_check_etype_gpp || (ETYPE == ctl_rx_etype_gpp);
assign opcode_match_gpp = !ctl_rx_check_opcode_gpp || (OPCODE == ctl_rx_opcode_gpp);
assign global_pause_packet = da_match_gpp && sa_match_gpp && etype_match_gpp &&
opcode_match_gpp && ctl_rx_enable_gpp;
```

Send Feedback

89

where DA is the destination address, SA is the source address, OPCODE is the opcode and ETYPE is the ethertype/length field that are extracted from the incoming packet.

For step 3, the following pseudo code shows the checking function:

```
assign da_match_ppp = (!ctl_rx_check_mcast_ppp && !ctl_rx_check_ucast_ppp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_ppp) || ((DA ==
ctl_rx_pause_da_mcast) && ctl_rx_check_mcast_ppp);
assign sa_match_ppp = !ctl_rx_check_sa_ppp || (SA == ctl_rx_pause_sa);
assign etype_match_ppp = !ctl_rx_check_etype_ppp || (ETYPE == ctl_rx_etype_ppp);
assign opcode_match_ppp = !ctl_rx_check_opcode_ppp || (OPCODE == ctl_rx_opcode_ppp);
assign priority_pause_packet = da_match_ppp && sa_match_ppp && etype_match_ppp &&
opcode_match_ppp && ctl_rx_enable_ppp;
```

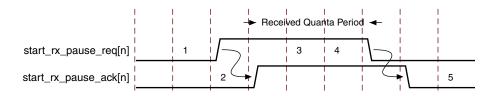
DA is the destination address, SA is the source address, OPCODE is the opcode, and ETYPE is the ethertype/length field that is extracted from the incoming packet.

User Interface

A simple handshaking protocol is used to alert you of the reception of pause packets using the ctl_rx_pause_enable[8:0], stat_rx_pause_req[8:0] and ctl_rx_pause_ack[8:0] buses. For these buses, bit [8] corresponds to global pause packets and bits [7:0] correspond to priority pause packets.

The following steps occur when a pause packet is received:

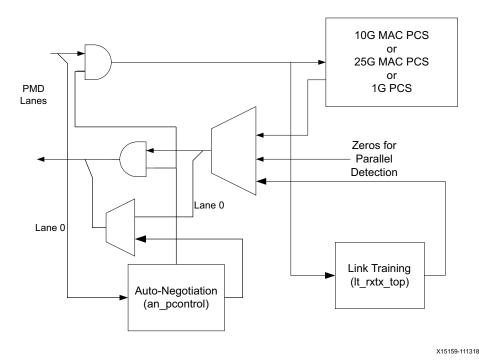
 If the corresponding bit of ctl_rx_pause_enable[8:0] is 0, the quanta is ignored and the hard CMAC stays in step 1. Otherwise, the corresponding bit of the stat_rx_pause_reg[8:0] bus is set to 1, and the received quanta is loaded into a timer.


If one of the bits of $ctl_rx_pause_enable[8:0]$ is set to 0 (disabled) when the pause processing is in step 2 or later, the core completes the steps as normal until it comes back to step 1.

- 2. If ctl_rx_check_ack input is 1, the core waits for you to set the appropriate bit of the ctl_rx_pause_ack[8:0] bus to 1.
- 3. After you set the proper bit of ctl_rx_pause_ack[8:0] to 1, or if ctl_rx_check_ack is 0, the core starts counting down the timer.
- 4. When the timer times out, the core sets the appropriate bit of stat_rx_pause_req[8:0] back to 0.
- 5. If ctl_rx_check_ack input is 1, the operation is complete when you set the appropriate bit of ctl_rx_pause_ack[8:0] back to 0.

If you do not set the appropriate bit of $ctl_rx_pause_ack[8:0]$ back to 0, the core deems the operation complete after 32 clock cycles.

These steps are demonstrated in Figure 3-12 with each step shown on the waveform. If at any time during step 2 to step 5 a new pause packet is received, the timer is loaded with the newly acquired quanta value and the process continues.



Auto-Negotiation

Auto-Negotiation (Clause 73)

A block diagram of the 10G/25G Ethernet core with Auto-Negotiation (AN) with Parallel Detection (PD) is shown in Figure 3-13. The Parallel Detection is done inside the AN RTL, which is encrypted. As a result of PD, only the AN is resolved to 1G speed.

Figure 3-13: **Core with Auto-Negotiation**

The Auto-Negotiation function allows an Ethernet device to advertise the modes of operation it possesses to another device at the remote end of a backplane Ethernet link and to detect corresponding operational modes the other device might be advertising. The

objective of this Auto-Negotiation function is to provide the means to exchange information between two devices and to automatically configure them to take maximum advantage of their abilities. It has the additional objective of supporting a digital signal detect to ensure that the device is attached to a link partner rather than detecting a signal due to crosstalk. When Auto-Negotiation is complete, ability is reported according to the available modes of operation. When Auto-Negotiation is complete, the datapath is switched to mission mode (the PCS), as shown in Figure 3-13.

Overview

Figure 3-14 shows the position of the Auto-Negotiation function in the OSI reference model.

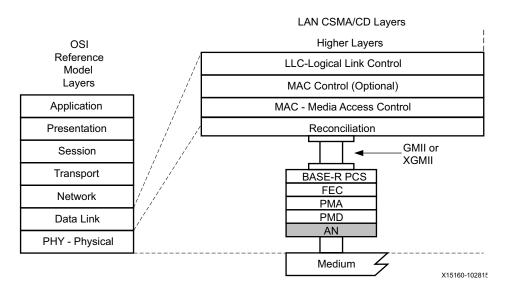


Figure 3-14: Auto-Negotiation Function in the OSI Model

The Auto-Negotiation Intellectual Property Core (ANIPC) implements the requirements as specified in Clause 73, IEEE Std 802.3-2015 [Ref 1], including those amendments specified in IEEE Std. P802.3ba and 802.3ap.

The functions of the ANIPC core are listed in Clause 73, specifically Figure 73-11, Arbitration state diagram, in section 73.10.4, State Diagrams. During normal mission mode operation, with link control outputs set to (bin)11, the bit operating frequency of the transceiver input and output is typically 10.3125 or 25.78125 Gb/s. However, the Dual Manchester Encoding (DME) bit rate used on the lane during Auto-Negotiation is different to the mission mode operation. To accommodate this requirement, the ANIPC core uses over-sampling and over-driving to match the 156.25 Mb/s Auto-Negotiation speed (DME clock frequency 312.5 MHz) with the mission mode 10.3125 or 25.78125 Gb/s physical lane speed.

Functional Description

autoneg_enable

When the autoneg_enable input signal is set to 1, Auto-Negotiation begins automatically at power-up, or if the carrier signal is lost, or if the input restart_negotiation signal is cycled from a 0 to a 1. All of the Ability input signals as well as the two input signals PAUSE and ASM_DIR are tied Low or High to indicate the capability of the hardware. The nonce_seed[7:0] input must be set to a unique non-zero value for every instance of the auto-negotiator. This is important to guarantee that no dead-locks occur at power-up. If two link partners connected together attempt to auto-negotiate with their nonce_seed[7:0] inputs set to the same value, the Auto-Negotiation fails continuously. The pseudo_sel input is an arbitrary selection that is used to select the polynomial of the random bit generator used in bit position 49 of the DME pages used during Auto-Negotiation. Any selection on this input is valid and does not result in any adverse behavior.

Link Control

When Auto-Negotiation begins, the various link control signals are activated, depending on the disposition of the corresponding Ability inputs for those links. Subsequently, the corresponding link status signals are monitored by the ANIPC hardware for an indication of the state of the various links that are connected. If particular links are unused, the corresponding link control outputs are unconnected, and the corresponding link-status inputs should be tied Low. During this time, the ANIPC hardware sets up a communication link with the link partner and uses this link to negotiate the capabilities of the connection.

Auto-Negotiation Complete

When Auto-Negotiation is complete, the autoneg_complete output signal is asserted. In addition, the output signal an_fec_enable is asserted if the Forward Error Correction hardware is to be used; the output signal tx_pause_en is asserted if the transmitter hardware is allowed to generate PAUSE control packets, the output signal rx_pause_en is asserted if the receiver hardware is allowed to detect PAUSE control packets, and the output link control of the selected link is set to its mission mode value (bin)11.

IMPORTANT: The autoneg complete signal is not asserted until *rx_status* is received from the PCS.

Auto-Negotiation (Clause 37)

This section provides general guidelines for using the Auto-Negotiation (Clause 37) function of the core. Auto-Negotiation is controlled and monitored through the PCS management registers.

Overview of Operation

For either standard, when considering Auto-Negotiation between two connected devices, it must be remembered that:

- Auto-Negotiation must be either enabled in both devices, or
- Auto-Negotiation must be disabled in *both* devices.

1000BASE-X Standard

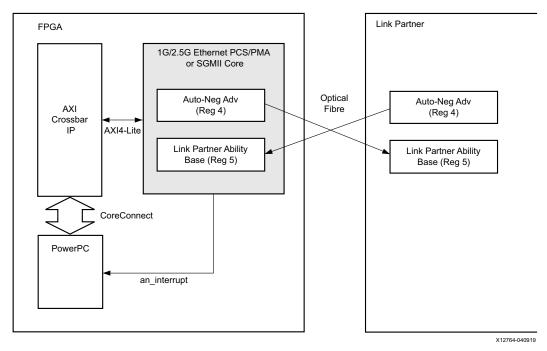


Figure 3-15: 1000BASE-X Auto-Negotiation Overview

IEEE 802.3 Clause 37 [Ref 1] describes the 1000BASE-X Auto-Negotiation function that allows a device to advertise the modes of operation that it supports to a device at the remote end of a link segment (the link partner) and to detect corresponding operational modes that the link partner advertises. Figure 3-15 shows the operation of 1000BASE-X Auto-Negotiation.

The following describes typical operation when Auto-Negotiation is enabled.

- 1. Auto-Negotiation starts automatically when any of the following conditions are met:
 - Power-up/reset.
 - Upon loss of synchronization.
 - The link partner initiates Auto-Negotiation.
 - An Auto-Negotiation restart is requested (see Register 0: Control Register in Table 2-27).

2. During Auto-Negotiation, the contents of the Auto-Negotiation Advertisement register are transferred to the link partner.

This register is writable through AXI4-Lite, therefore enabling software control of the systems advertised abilities. See Register 4: Auto-Negotiation Advertisement in Table 2-27 for more information.

Information provided in this register includes:

- Fault Condition signaling
- Duplex Mode
- Flow Control capabilities for the attached Ethernet MAC.
- 3. The advertised abilities of the Link Partner are simultaneously transferred into the Auto-Negotiation Link Partner Ability Base register.

This register contains the same information as in the Auto-Negotiation Advertisement register. See Register 5: Auto-Negotiation Link Partner Base in Table 2-27 for more information. Remote Fault and pause status bits of this register are also provided in status_vector.

4. Under normal conditions, this completes the Auto-Negotiation information exchange.

It is now the responsibility of system management (for example, software running on an embedded PowerPC[®] or MicroBlaze[™] processor) to complete the cycle. The results of the Auto-Negotiation should be read from Auto-Negotiation Link Partner Ability Base register. OR by reading the remote_fault and pause status bits of status_vector if AXI4-Lite is not present.

There are two methods that a host processor uses to learn of the completion of an Auto-Negotiation cycle:

- Polling the Auto-Negotiation completion bit 1.5 in the Status register (Register 1).
- Using the Auto-Negotiation interrupt port of the core (see Using the Auto-Negotiation Interrupt).

SGMII Standard

Using the SGMII to Interface to an External BASE-T PHY with SGMII Interface

Figure 3-16 shows the operation of SGMII Auto-Negotiation as described in Overview of Operation. Additional information about SGMII Standard Auto-Negotiation is provided in the following sections.

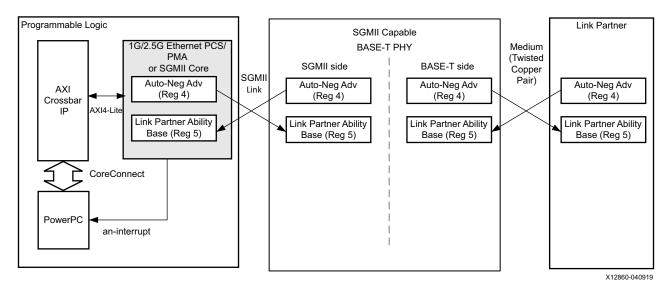


Figure 3-16: SGMII Auto-Negotiation

The SGMII capable PHY has two distinctive sides to Auto-Negotiation.

- The PHY performs Auto-Negotiation with its link partner using the relevant Auto-Negotiation standard for the chosen medium (BASE-T Auto-Negotiation is shown in Figure 3-16, using a twisted copper pair as its medium). This resolves the operational speed and duplex mode with the link partner.
- The PHY then passes the results of the Auto-Negotiation process with the link partner to the core (in SGMII mode), by leveraging the 1000BASE-X Auto-Negotiation specification described in Figure 3-15. This transfers the results of the Link Partner Auto-Negotiation across the SGMII and is the only Auto-Negotiation observed by the core.

This SGMII Auto-Negotiation function, summarized previously, leverages the 1000BASE-X PCS/PMA Auto-Negotiation function but contains two differences.

- The duration of the Link Timer of the SGMII Auto-Negotiation is shrunk from 10 ms to 1.6 ms so that the entire Auto-Negotiation cycle is much faster.
- The information exchanged is different and now contains speed resolution in addition to duplex mode. See Register 5: Auto-Negotiation Link Partner Base in Table 2-27. Speed and Duplex status bits of this register are also provided in status_vector.
- There are no other differences and dealing with the results of Auto-Negotiation can be handled as described previously in Figure 3-15.

Using the Auto-Negotiation Interrupt

The Auto-Negotiation function has an an_interrupt port. This is designed to be used with common microprocessor bus architectures (for example, the CoreConnect bus interfacing to a MicroBlaze[™] processor).

The operation of this port is enabled or disabled and cleared through the AXI4-Lite Register 16, the Vendor-specific Auto-Negotiation Interrupt Control register.

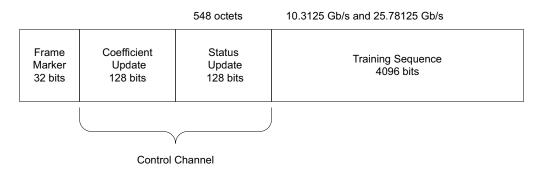
• When disabled, this port is permanently tied to logic 0.

When enabled, this port is set to logic 1 following the completion of an Auto-Negotiation cycle. It remains High until it is cleared by writing 0 to bit 16.1 (Interrupt Status bit) of Register 16: Vendor-Specific Auto-Negotiation Interrupt Control (see Table 2-27).

Link Training

Link Training is performed after Auto-Negotiation converges to a backplane or copper technology. Technology selection can also be the result of a manual entry or parallel detection. Link training might be required due to frequency-dependent losses that can occur as digital signals traverse the backplane or a copper cable. The primary function of the Link Training core is to provide register information and a training sequence over the backplane link which is then analyzed by a receiving circuit which is not part of the core.

The other function of the core is to communicate training feedback from the receiver to the corresponding transmitter so that its equalizer circuit (not part of the core) can be adjusted as required. The two circuits comprising the core are the receive Link Training block and the transmit Link Training block.


IMPORTANT: The logic responsible for adjusting the transmitter pre-emphasis taps must be supplied external to this IP core.

Transmit

The Link Training transmit block constructs a 4,384-bit frame which contains a frame delimiter, control channel, and link training sequence. It is formatted as shown in Figure 3-17.

X15161-111618

Figure 3-17: Link Training Frame Structure

Xilinx recommends that the control channel bits not be changed by the Link Training algorithm while the transmit state machine is in the process of transmitting them, or they can be received incorrectly, possibly resulting in a DME error. This time begins when tx_SOF is asserted and ends at least 288 bit times later, or approximately 30 ns.

Although the coefficient and status contain 128 bit times at the line rate, the actual signaling rate for these two fields is reduced by a factor of eight. Therefore the DME clock rate is one quarter of the line rate.

Frame Marker

The frame marker consists of 16 consecutive 1s followed by 16 consecutive 0s. This pattern is not repeated in the remainder of the frame.

Coefficient and Status

Because the DME signaling rate for these two fields is reduced by a factor of eight, each coefficient and status transmission contains 128/8=16 bits, each numbered from 15:0. Table 3-2 and Table 3-3 define these bits in the order in which they are transmitted starting with bit 15 and ending with bit 0.

Bits	Name	Description
15:14	Reserved	Transmitted as 0, ignored on reception.
13	Preset	1 = Preset coefficients 0 = Normal operation
12	Initialize	1 = Initialize coefficients0 = Normal operation
11:6	Reserved	Transmitted as 0, ignored on reception.

Table 3-2: Coefficient and Update Field Bit Definitions

Bits	Name	Description
5:4	Coefficient (+1) update	1 1 = reserved 0 1 = increment 1 0 = decrease 0 0 = hold
3:2	Coefficient (0) update	1 1 = reserved 0 1 = increment 1 0 = decrease 0 0 = hold
1:0	Coefficient (-1) update	1 1 = reserved 0 1 = increment 1 0 = decrease 0 0 = hold

Table 3-2:	Coefficient and Update Field Bit Definitions (Cont'd)
------------	---

Bits	Name	Description	
15 Receiver ready		1 = The local receiver has determined that training is complete and is prepared to receive data.	
		0 = The local receiver is requesting that training continue.	
14:6	Reserved	Transmitted as 0, ignored on reception.	
5:4	Coefficient (+1) update	0 1 = minimum 1 1 = maximum 1 0 = updated 0 0 = not_updated	
3:2	Coefficient (0) update	1 1 = maximum 0 1 = minimum 1 0 = updated 0 0 = not_updated	
1:0	Coefficient (-1) update	1 1 = maximum 0 1 = minimum 1 0 = updated 0 0 = not_updated	

The functions of each bit are defined in IEEE Std. 802.3, Clause 72. Their purpose is to communicate the adjustments of the transmit equalizer during the process of link training. The corresponding signal names are defined in Table 2-18.

Training Sequence

The training sequence consists of a pseudo-random bit sequence (PRBS) of 4,094 bits followed by two zeros, for a total of 4,096 bits. The PRBS is transmitted at the line rate of 10.3125 or 25.78125 Gb/s. The PRBS generator receives an 11-bit seed from an external source. Subsequent to the initial seed being loaded, the PRBS generator continues to run with no further intervention required. The PRBS generator is implemented with a circuit which corresponds to the following polynomial:

G(x) = 1 + x9 + x11

Receive

The receive block implements the frame alignment state diagram shown in IEEE Std. 802.3, Clause 72, Figure 72-4.

Frame Lock State Machine

The frame lock state machine searches for the frame marker, consisting of 16 consecutive 1s followed by 16 consecutive 0s. This functionality is fully specified in IEEE Std. 802.3, Clause 72, Fig. 72-4. When frame lock has been achieved, frame_lock is set to a value of TRUE.

Received Data

The receiver outputs the control channel with the bit definitions defined in Table 3-2 and Table 3-3 and signal names defined in Port Descriptions.

If a DME error has occurred during the reception of a particular DME frame, the control channel outputs are not updated but retain the value of the last received good DME frame and are updated when the next good DME frame is received.

Chapter 4

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this core. More detailed information about the standard Vivado® design flows and the Vivado IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 5]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 8]

Customizing and Generating the Core

This section includes information about using Xilinx tools to customize and generate the core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the *Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator* (UG994) [Ref 5] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value, run the validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the core using the following steps:

- 1. Select the IP from the IP catalog.
- 2. Double-click the selected IP or select the Customize IP command from the toolbar or right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6] and the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7].

Note: Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary from the current version.

101

Configuration Tab

The Configuration tab provides the basic core configuration options. Default values are pre-populated in all tabs.

/10G/25G Switching Ethernet Subsystem (2	3)	
ocumentation 🛛 IP Location C Switch to Defaults		
Show disabled ports	Component Name ethernet_1_10_25g_0	
	Configuration MAC Options GT Selection and Configuration Shared Logic	
	General	
	Select Core Ethernet MAC+PCS/PMA 32-bit v Runtime Switch 1G / 10G v	
	Num of Cores 1 v Data Path Interface AXI Stream v	
	PCS/PMA Options	
	Include Auto Negotiation	
+ gt_ref_clk gt_bx + + gt_rx axis_rx_0 +	() None	
+ 9C_In + s_axi_0 + axi_Dc_0 + axi_Dc_0 + ct_bc_0 + ct_bc_0 + bc_ct_out_0 + bc_ct_out_0	O Include Auto Negotiation (Clause-73)	
nc_clk_0 nc_clk_0 nc_clk_out_0 nc_clk_out_0 gt_refclk_out gtwiz_reset_tx_datapath_0 gtpowergood_out_0	Enable Link Training (Clause 72)	
gtviz_reset_n_datapath_0 gtponergous_ou_o sys_reset stat_n_status_0 dclk	Eaching Charles TA FEC (DATE NO FEC)	
s_axi_aclk_0 user_tx_reset_0 = tx_unfout_0 =	United in the form	
pm_tick_0 gig_ethernet_pcs_pma_status_vector_0[15:0] nc_reset_0 stat_core_speed_0[1:0]	Control and Statistics Interface	
signal_detect_0 gpcs_resetdone_0 - gt_switching_0 -	Control and Status Vectors	
	Include AX14-Lite	
	☑ Include Statistics Counters	
	Statistics Resource Type	
	(iii) Registers	
	Slock RAM	

Figure 4-1: Configuration Tab

Table 4-1 shows the configuration options of the 1G/10G/25G Switching Ethernet Subsystem.

Table 4-1:	Configuration	Options
------------	---------------	---------

Option	Values	Default		
General				
Select Core	Ethernet MAC+PCS/PMA 32-bit, Ethernet MAC+PCS/ PMA 64-bit and Ethernet PCS/PMA 32-bit	Ethernet MAC+PCS/PMA 32-bit		
Runtime Switch	1G/10G/25G	1G/10G		

Table 4-1: Configuration Options

Option	Values	Default	
Num of Cores	1	1	
	2		
	3		
	4		
Data Path Interface	AXI4-Stream ⁽¹⁾	AXI4-Stream	
	MII ⁽²⁾		
	PCS/PMA Options		
Include Auto Negotiation	None	None	
	Include Auto Negotiation (Clause-73) ⁽³⁾⁽⁴⁾		
	Include Auto Negotiation (Clause-37) ⁽⁵⁾		
Enable Link Training (Clause 72) ⁽³⁾	0,1	0	
Enable Clause 74 FEC (BASE-KR FEC) ⁽³⁾	0,1	0	
Co	ntrol and Statistics Interface		
Control and Statistics interface	Control and Status Vectors	Include AXI4-Lite	
	Include AXI4-Lite	Include AXI4-Lite	
Include Statistics Counters	0,1 1		
Statistics Resource Type	Registers	Desisters	
	Block RAM ⁽⁶⁾	Registers	

Notes:

1. The AXI Stream interface is visible and is the only option for the Ethernet MAC+PCS/PMA.

2. The MII interface is visible and is the only option for the Ethernet PCS/PMA.

- 3. This feature is visible only for the Ethernet MAC+PCS/PMA 64-bit core configuration.
- 4. This feature is visible only for the Ethernet MAC+PCS/PMA 32-bit core configuration.
- 5. This feature is visible only for the PCS/PMA 32-bit core configuration.
- 6. This feature is not yet supported.

MAC Options Tab

The Options tab provides additional core configuration options.

G/10G/25G Switching Ethernet Subsystem (2.3)		4
Documentation 📄 IP Location C Switch to Defaults		
Decoumentation P Location C Switch to Defaults	Component Name ethernet_1_10_25g_0 Configuration MAC Options GT Selection and Configuration Shared Logic MAC Configuration Flow Control Enable TX Flow Control Logic Enable RX Flow Control Logic Enable Timestamping Logic Operation Mode Two Step Timer Format Time of day	

Figure 4-2: MAC Options Tab

Table 4-2 shows the MAC options of the 1G/10G/25G Switching Ethernet Subsystem.

Table 4-2:	MAC Options	
	MAC Options	

Option	Values	Default		
	Flow Control ⁽¹⁾			
Enable TX Flow Control Logic Checked, Unchecked Unchecked				
Enable RX Flow Control Logic	RX Flow Control Logic Checked, Unchecked			
IEEE PTP 1588v2 ⁽²⁾				
Enable Timestamping Logic	Checked, Unchecked	Unchecked		
Operation Mode	One Step	Two Step		
	Two Step			

Table 4-2: MAC Options

Option	Values	Default	
Timer Format	Time of the day	Time of the day	
	Correction Field Format		

Notes:

- 1. This feature is visible only for the Ethernet MAC+PCS/PMA 64-bit core configuration.
- 2. This feature is visible only for the Ethernet MAC+PCS/PMA 32-bit core configuration.

GT Selection and Configuration Tab

The GT Selection and Configuration tab enables you to configure the serial transceiver features of the core.

	Customize IP (on xhdlc190310)	
1G/10G/25G Switching Ethernet Subsystem (2.	3)	4
Documentation 📄 IP Location C Switch to Defaults		
Show disabled ports	Component Name ethernet_1_10_25g_0	0
	Configuration MAC Options GT Selection and Configuration Shared Logic	
	GT Location	
	Select whether the GT IP is included in the core or in the example design Include GT subcore in core Include GT subcore in example design	
	GT Clocks	
	GT RefClk 156.25 V (In MHz)	
+ gt_ref_clk gt_bt + + gt_ref_clk axis_rc_0 + + st_add_0 stat_bc_0 + + st_st_c0 stat_rc_0 +	GT DRP Clock 50.00 (10.00 - 62.5) (In MHz)	
+ ctl_bc_0 = bc_ck_out_0 =	Core to GT Association	
gtviz_reset_tv_datapath_0 gtpowergood_out_0 =	GT Type GTY 🗸	
- sys_reset use_rx_reset_0 - dclk user_bt_reset_0 - user_bt_reset_0	GT Selection Quad X0Y1 🗸	
<pre>s_axi_aresetn_0 user_reg0_0[31:0] = pm_tick_0 gig_ethernet_pcs_pma_status_vector_0[15:0] =</pre>	Lane-00 X0Y4 🗸	
tc_reset_0 stat_core_speed_0[1:0] = signal_detect_0	Lane-01 NA \vee	
gt_switching_0	Lane-02 NA 🛩	
	Lane-03 NA 🗸	
	Others	
	Enable Additional GT Control/Status and DRP Ports	
Bought IP license available		OK Cancel

Figure 4-3: GT Selection and Configuration Tab

Table 4-3 shows the GT selection and configuration options of the 1G/10G/25G Switching Ethernet Subsystem.

Table 4-3: GT Clock Options

Option	Values	Default		
GT Location				
Select whether the GT IP is included in the core or in the example design	Include GT subcore in core Include GT subcore in example design	Include GT subcore in core		
	GT Clocks			
GT RefClk (in MHz) ⁽¹⁾	156.25	156.25		
GT DRP Clock (in MHz)	10 – 62.5	50.00		
	Core to GT Association			
GT Type	GTY GTH	GTH		
GT Selection	Options based on device/package Quad groups. For example: Quad X0Y1 Quad X0Y2 Quad X0Y3 	Quad X0Y1		
Lane-00 to Lane-03	Auto filled based on device/package. For example, if Num of Core = 4, and GT Selection = Quad X0Y1, four lanes are: X0Y4 X0Y5 X0Y6 X0Y7			
	Others	·		
Enable Additional GT Control/ Status and DRP Ports	Checked, Unchecked	Unchecked		

Notes:

1. This list provides a list of the popular frequencies used. See Vivado IDE in the latest version of the tools for a complete list of supported clock frequencies.

Shared Logic Tab

The Shared Logic tab enables you to use shared logic in either the core or the example design.

		Customize	P IP (on xhdlc190310)		×
1G/10G/25G Switching Ethernet Subsystem (2.3)					2
1 Documentation 📄 IP Location C Switch to Defaults					
Show disabled ports	Component Name	ethernet_1_10_	25g_0		0
	Configuration	MAC Options	GT Selection and Configuration	Shared Logic	
	Shared Logic				î
			er quad PLL, the transceiver differential e reset logic is included in the core itse		
		Shared Logic in c		an or interesting a congre	
	🔘 Include	Shared Logic in e	kample design		
	Shared Logic (
+ qt_rd_cik qt_tk + qt_rd_cik qt_tk + qt_rd_cik qt_tk + qt_rd_cik qt_tk_tk + qt_rd_cik qt_tk_tk_tk_tk_tk_tk_tk_tk_tk_tk_tk_tk_tk	Include Sha - For users - For users Cor	red Logic in core who want a comp	lete single solution. re with Shared Logic to drive multiple co	ores without Shared Logic.	~
Bought IP license available					OK Cancel

Figure 4-4: **Shared Logic Options**

Table 4-4 shows the Shared Logic options of the 1G/10G/25G Switching Ethernet Subsystem.

Table 4-4: Shared Logic Options

Options	Default	
Include Shared Logic in core	Include Shared Logic in core	
Include Shared Logic in example design		

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

This section is not applicable for this core.

Device, Package, and Speed Grade Selections

This section is not applicable for this core.

Clock Frequencies

This section is not applicable for this core.

Clock Management

This section is not applicable for this core.

Clock Placement

This section is not applicable for this core.

Banking

This section is not applicable for this core.

Transceiver Placement

This section is not applicable for this core.

I/O Standard and Placement

This section is not applicable for this core.

Simulation

For comprehensive information about Vivado simulation components, as well as information about using supported third-party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 8].

Simulation Speed Up

The example design contains wait timers. A `define SIM_SPEED_UP is available to improve simulation time by speeding up these wait times.

VCS

Use the vlogan option: +define+SIM_SPEED_UP

ModelSim

Use the vlog option: +define+SIM_SPEED_UP

IES

Use the ncvlog option: +define+SIM_SPEED_UP

Vivado Simulator

Use the xvlog option: -d SIM_SPEED_UP

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 6].

Chapter 5

Example Design

This chapter contains information about the example design provided in the Vivado® Design Suite when using the Vivado Integrated Design Environment (IDE).

Overview

Figure 5-1 shows the instantiation of various modules and their hierarchy for a single core configuration of the ethernet_1_10_25g_0 example design for a 32-bit MAC and PCS/ PMA core. Clocking helper blocks are used to generate the required clock frequency for the core.

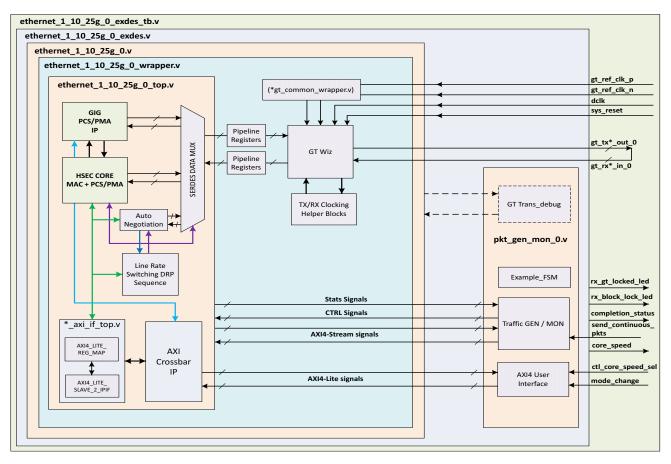


Figure 5-1: 32-Bit MAC and PCS/PMA Single Core Example Design Hierarchy

Figure 5-2 shows the instantiation of various modules and their hierarchy for a single core configuration of the ethernet_1_10_25g_0 example design for a 64-bit MAC and PCS/ PMA core configuration.

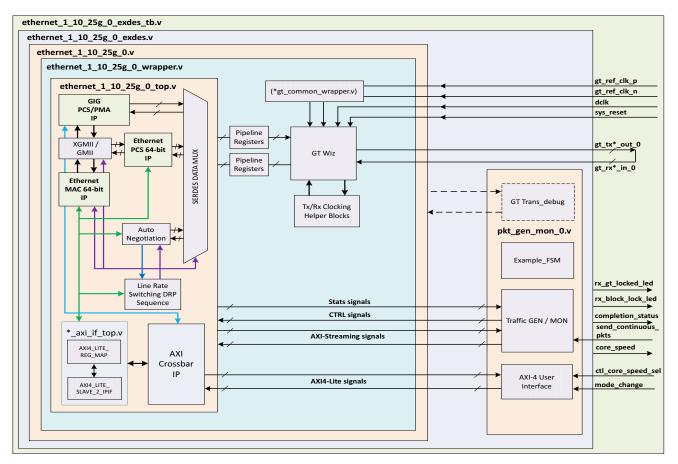


Figure 5-2: 64-Bit MAC and PCS/PMA Single Core Example Design Hierarchy

Figure 5-3 shows the instantiation of various modules and their hierarchy for a single core configuration of the ethernet_1_10_25g_0 example design for a 32-bit PCS/PMA core.

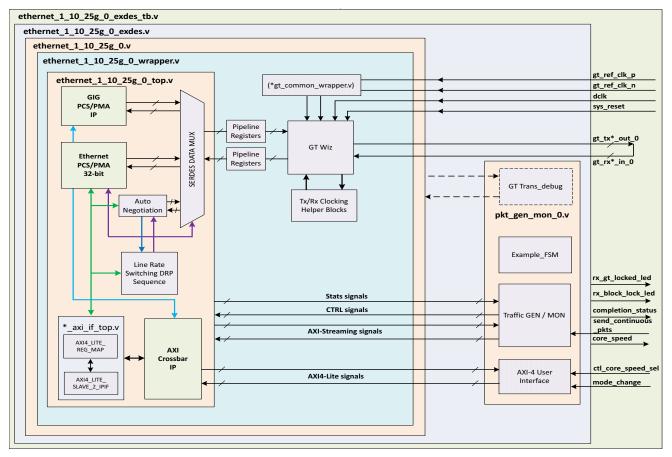


Figure 5-3: 32 -Bit PCS-Only Single Core Example Design Hierarchy

The following user interfaces are available for different configurations:

- MAC/PCS configuration
 - AXI4-Stream for the datapath interface
 - AXI4-Lite for the control and statistics interface
- PCS-only configuration
 - XGMII interface
 - GMII interface
 - AXI4-Lite for the control and statistics interface

The ethernet_1_10_25g_0 module is used to generate the data packets for sanity testing. The packet generation and checking is controlled by a finite state machine (FSM) module.

The optional modules are described as follows:

• **TX / RX pipeline register**: The TX pipeline register double synchronizes the data from the core to the GT with respect to the tx_clk. The RX pipeline register double synchronizes the data from the GT to the core with respect to the rx_serdes_clk.

Note: If you select Auto-Negotiation in the Vivado[™] IDE, the operation is only performed with the 10G data rate. After the Auto-Negotiation is complete, the core is switched to mission mode. For parallel detection, the core is switched to 1G data rate.

Figure 5-4 shows the instantiation of various modules and their hierarchy for the multiple core configuration of the ethernet_1_10_25g_0 example design for a 32-bit MAC and PCS/PMA core.

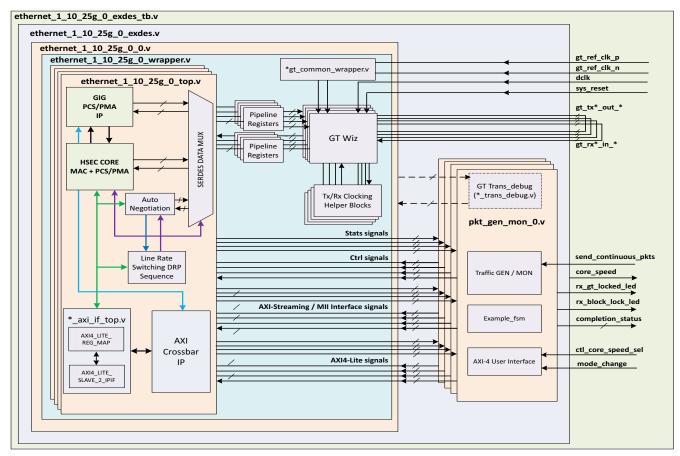
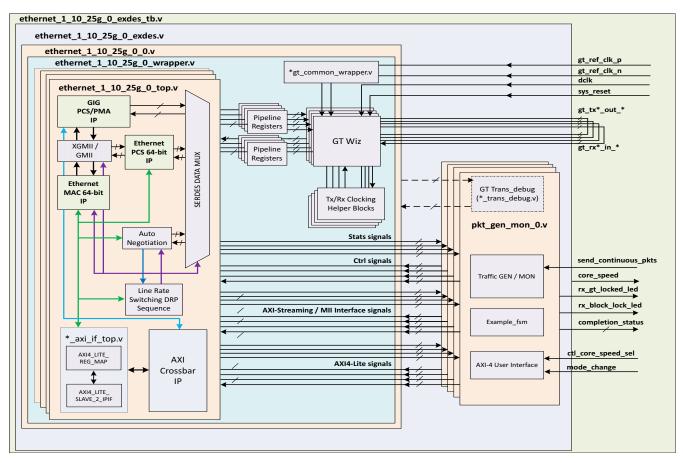



Figure 5-4: 32-Bit MAC and PCS/PMA Multiple Core Example Design Hierarchy

Figure 5-5 shows the instantiation of various modules and their hierarchy for the multiple core configuration of the ethernet_1_10_25g_0 example design for a 64-bit MAC and PCS/PMA core.

Figure 5-5: 64-Bit MAC and PCS/PMA Multiple Core Example Design Hierarchy

Figure 5-6 shows the instantiation of various modules and their hierarchy for the multiple core configuration of the ethernet_1_10_25g_0 example design for a 32-bit PCS/PMA core.

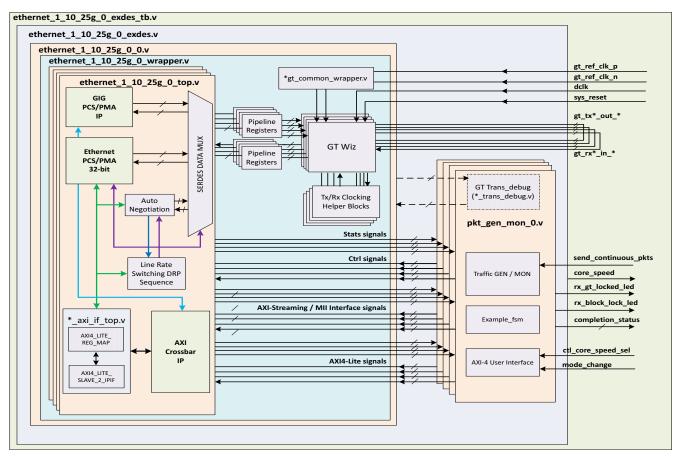
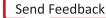
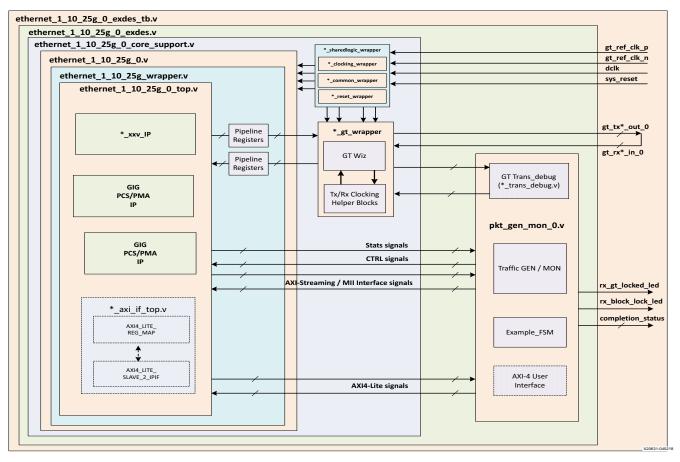




Figure 5-6: 32-Bit PCS/PMA Only Multiple Core Example Design Hierarchy

Example Design Hierarchy (GT in Example Design)

Figure 5-7: Single Core with GT in Example Design Hierarchy

Figure 5-7 shows the instantiation of various modules and their hierarchy for a single core configuration of the ethernet_1_10_25g_0 example design when the GT (serial transceiver) is outside the IP Core; that is, in the example design. This hierarchical example design is delivered when you select the **Include GT subcore in example design** option from the GT Selection and Configuration tab.

The ethernet_1_10_25g_0_core_support.v module is present in the hierarchy when you select the **Include GT subcore in example design** option from the GT Selection and Configuration tab or the **Include Shared Logic in example design** option from the Shared Logic tab. This instantiates the ethernet_1_10_25g_0_sharedlogic_wrapper.v module and the ethernet_1_10_25g_0.v module for the **Include Shared Logic in example design** option. The user interface available for MAC/PCS configuration and PCS configurations is the same as mentioned in the Overview.

The ethernet_1_10_25g_0.v module instantiates the necessary sync registers and retiming pipeline registers for the synchronization of data between the core and the GT.

The ethernet_1_10_25g_0_pkt_gen_mon module is used to generate the data packets for sanity testing. The packet generation and checking is controlled by a finite state machine (FSM) module.

The optional modules are as described below:

• ethernet_1_10_25g_0_sharedlogic_wrapper

This module is present in the example design when you select the **Include GT subcore in example design** option from the GT Selection and Configuration tab or **Include Shared Logic** in the Example Design from the Shared Logic tab. This module brings all modules that can be shared between multiple IP cores and designs outside the IP core.

• ethernet_1_10_25g_0_gt_wrapper

This module is present in the example design when you select the **Include GT subcore in example** design option from the GT Selection and Configuration tab. This module has instantiations of the GT along with various helper blocks. The clocking helper blocks are used to generate the required clock frequency for the core.

Figure 5-8 shows the instantiation of various modules and their hierarchy for the multiple core configuration of the ethernet_1_10_25g_0 example design when the GT is in the example design.

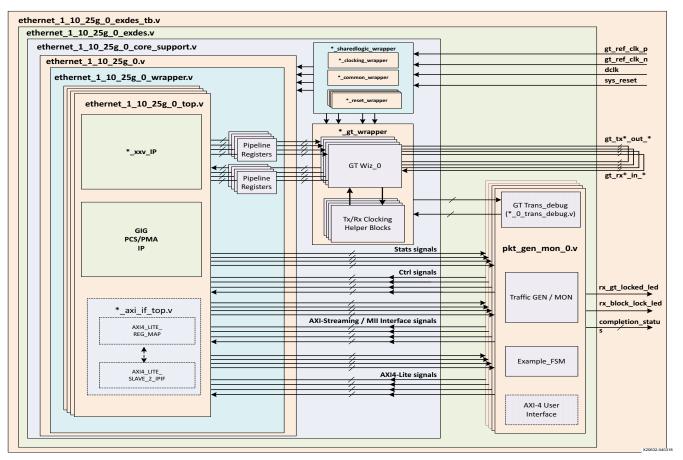


Figure 5-8: Multiple Core with GT in Example Design Hierarchy

User Interface

General purpose I/Os (GPIOs) are provided to control the example design. The user input and user output ports are described in Table 5-1.

Table 5-1: User Input and User Output Ports

Name	Size	Direction	Description
sys_reset	1	I Reset for the ethernet_1_10_25g core.	
gt_ref_clk_p	1	I	Differential input clk to GT. This clock frequency should be equal to the GT RefClk frequency mentioned in the Vivado [™] IDE GT Selection and Configuration tab.
gt_ref_clk_n	1	I	Differential input clk to GT. This clock frequency should be equal to the GT RefClk frequency mentioned in the Vivado IDE GT Selection and Configuration tab.

Table 5-1: User Input and User Output Ports (Cont'd)

Name	Size	Direction	Description	
dclk	1	I	Stable/free running input clk to GT. This clock frequency should be equal to the GT DRP clock frequency mentioned i the Vivado IDE GT Selection and Configuration tab.	
rx_gt_locked_led_0	1	0	Indicates that GT has been locked.	
rx_block_lock_led_0	1	0	Indicates RX block lock has been achieved.	
restart_tx_rx_0	1	I	This signal is used to restart the packet generation and reception for the data sanity test when the packet generator and the packet monitor are in idle state.	
completion_status	5	Ο	 This signal represents the test status/result. 5'd0: Test did not run. 5'd1: PASSED 25GE/10GE CORE TEST SUCCESSFULLY COMPLETED 5'd2: No block lock on any lanes. 5'd3: Not all lanes achieved block lock. 5'd4: Some lanes lost block lock after achieving block lock. 5'd5: No lane sync on any lanes. 5'd6: Not all lanes achieved sync. 5'd7: Some lanes lost sync after achieving sync. 5'd8: No alignment status or rx_status was achieved. 5'd9: Loss of alignment status or rx_status after both were achieved. 5'd11 No TX data was sent. 5'd12 Number of packets received did not equal the number of packets sent. 5'd13 Total number of bytes received did not equal the total number of bytes sent. 5'd15 Bit errors were detected in the received packets. 5'd31 Test is stuck in reset. 	
mode_change_*	1	I	This is used to switch the core speed.	
core_speed_*	2	0	This output signal indicates the speed with which the cor- working: • 2'b00 = 25G • 2'b01 = 1G • 2'b10 = 10G • 2'b11 = Reserved	

Table 5-1:User Input and User Output Ports (Cont'd)

Name	Size	Direction	Description	
			Use this port to send continuous packets for board validation.	
send_continuous_pkts_*	1	1	1'b0: Sends fixed 20 packets for simulation	
			 1'b1: Sends continuous packets for board. 	
			This signal is used to set the operating speed of the core.	
ctl_core_speed_sel	2 1	1	• 2'b00 = 25G	
			• 2'b01 = 1G	
			• 2'b10 = 10G	
			• 2'b11 = Reserved	

Core XCI Top Level Port List

The top-level port list for the core XCI with all features enabled is listed below. An asterisk (*) represents the CORE number, having a value of 0 to 3.

Example: port_name_*

- port_name_0: for the first CORE
- port_name_1: for the second CORE (present when number of cores >=2 is selected)
- port_name_2: for the third CORE (present number of cores >=3 is selected)
- port_name_3: for the fourth CORE (present when number of cores =4 is selected)

Common Clock/Reset Signals

Table 5-2: Common Clock/Reset Signals

Name	Size	Direction	Description
sys_reset	1	I	Reset for the core.
dclk	1	I	Stable input clock to GT.
gt_refclk_p	1	l	Differential input clock to GT. Note: This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab and the Include Shared Logic in core option is selected in the Shared Logic tab.

Table 5-2:	Common C	lock/Reset	Signals	(Cont'd)
------------	----------	------------	---------	----------

Name	Size	Direction	Description
gt_refclk_n	1	I	Differential input clk to GT. <i>Note:</i> This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab and the Include Shared Logic in core option is selected in the Shared Logic tab.
tx_clk_out_*	1	0	TX user clock output from GT. <i>Note:</i> This port is available when the Select Core is Ethernet MAC+PCS/PMA 32/64-bit.
rx_clk_out_*	1	0	RX user clock output from GT.
tx_mii_clk_*	1	0	TX mii clock output from GT. <i>Note:</i> This port is available when Select Core is Ethernet PCS 32-bit.
tx_stats_clk_out_*	1	0	312.5 MHz / 125 MHz out put clock to be used for the tx statistic.
rx_stats_clk_out_*	1	0	312.5 MHz / 125 MHz out put clock to be used for the rx statistics.
tx_reset_*	1	I	TX reset input to the core.
user_tx_reset_*	1	0	TX reset output for the user logic.
rx_reset_*	1	I	RX reset input to the core.
user_rx_reset_*	1	0	RX reset output for the user logic.
gtpowergood_out_*	1	0	See the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 13] for the port description.

Common Transceiver Interface Ports

Table 5-3:	Common Transceiver Interface Ports

Name	Size	Direction	Description
gt_loopback_in_*	3	I	GT loopback input signal. Refer to the GT user guide. <i>Note:</i> This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab.
gt_txp_out	1	0	Differential serial GT TX output Note: This port is available when the Include GT subcore in core option and Board support is selected in the GT Selection and Configuration tab.

Name	Size	Direction	Description
gt_txn_out	1	0	Differential serial GT TX output. Note: This port is available when the Include GT subcore in core option and Board support is selected in the GT Selection and Configuration tab.
gt_rxn_in	1	I	Differential serial GT RX input. Note: This port is available when the Include GT subcore in core option and Board support is selected in the GT Selection and Configuration tab.
gt_rxp_in	1	I	Differential serial GT RX input. <i>Note:</i> This port is available when the Include GT subcore in core option and Board support is selected
gt_rxp_in_0	1	I	Differential serial GT RX input for lane 0. Note: This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab.
gt_rxn_in_0	1	I	Differential serial GT RX input for lane 0. Note: This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab.
gt_txp_out_0	1	0	Differential serial GT TX output for lane 0. <i>Note:</i> This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab.
gt_txn_out_0	1	0	Differential serial GT TX output for lane 0. <i>Note:</i> This port is available when the Include GT subcore in core option is selected in the GT Selection and Configuration tab.

Table 5-3:	Common Transceiver Interface Ports (Cont'd)
------------	---

Transceiver Control and Status Debug Ports

Ports in Table 5-4 are available when the **Include GT subcore in core** option is selected in the GT Selection and Configuration tab, or when **Enable Additional GT Control/Status and DRP Ports** is selected from the GT Selection and Configuration tab. See *UltraScale Architecture GTH Transceivers User Guide* (UG576)[Ref 13]/*UltraScale Architecture GTY Transceivers User Guide* (UG578)[Ref 14] for the port description.

Table 5-4:	Transceiver Control and Status Debug Ports
------------	--

Name	Size	Direction
gt_dmonitorout_*	16	0
gt_eyescandataerror_*	1	0

Name	Size	Direction
gt_eyescanreset_*	1	I
gt_eyescantrigger_*	1	I
gt_pcsrsvdin_*	16	I
gt_rxbufreset_*	1	Ι
gt_rxbufstatus_*	3	0
gt_rxcdrhold_*	1	I
gt_rxcommadeten_*	1	I
gt_rxdfeagchold_*	1	I
gt_rxdfelpmreset_*	1	I
gt_rxlatclk_*	1	I
gt_rxlpmen_*	1	I
gt_rxpcsreset_*	1	I
gt_rxpmareset_*	1	I
gt_rxpolarity_*	1	I
gt_rxprbscntreset_*	1	I
gt_rxprbserr_*	1	I
gt_rxprbssel_*	4	I
gt_rxrate_*	3	I
gt_rxslide_in_*	1	I
gt_rxstartofseq_*	2	0
gt_txbufstatus_*	2	0
gt_txdiffctrl_*	5	I
gt_txinhibit_*	1	I
gt_txlatclk_*	1	I

Table 5-4: Transceiver Control and Status Debug Ports (Cont'd)

Name	Size	Direction
gt_txmaincursor_*	7	I
gt_txpcsreset_*	1	I
gt_txpmareset_*	1	I
gt_txpolarity_*	1	I
gt_txpostcursor_*	5	I
gt_txprbsforceerr_*	1	I
gt_txprbssel_*	4	I
gt_txprecursor_*	5	I
gtwiz_reset_tx_datapath_*	1	I
gtwiz_reset_rx_datapath_*	1	I
gt_ch_drpclk_*	1	I
gt_ch_drpdo_*	16	0
gt_ch_drprdy_*	1	0
gt_ch_drpen_*	1	I
gt_ch_drpwe_*	1	I
gt_ch_drpaddr_*	10	I
gt_ch_drpdi_*	16	I

Table 5-4: Transceiver Control and Status Debug Ports (Cont'd)

Include GT Subcore in Example Design Ports

Ports in Table 5-5 are available when the **Include GT subcore in Example Design** option is selected in the GT Selection and Configuration tab.

Name	Size	Direction	Description
gtwiz_txpllclksel_*	2	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxpllclksel_*	2	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txsysclksel_*	2	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxsysclksel_*	2	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxoutclksel_*	3	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txoutclksel_*	3	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxbufstatus_*	3	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txbufstatus_*	2	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_userclk_tx_usrclk_out_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Table 5-5:	Include GT Subcore in Example Design Ports

Name	Size	Direction	Description
gtwiz_userclk_rx_usrclk_out_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_userclk_tx_usrclk2_out_*	1	1	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_userclk_rx_usrclk2_out_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_tx_reset_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_tx_start_user_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_tx_done_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_rx_reset_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_rx_start_user_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txdiffctrl_*	4	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gtwiz_cplllock_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxresetdone_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txresetdone_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxclkcorcnt_*	2	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxlpmen_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_p_usrclk2_div_*	3	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rx8b10ben_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxcommadeten_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxdlybypass_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gtwiz_tx8b10ben_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxmcommaalignen_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxpcommaalignen_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxphdlypd_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txdlybypass_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txphdlypd_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txpippmpd_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txpippmsel_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txpostcursor_*	5	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gtwiz_cpllpd_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_cplllocken_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxpd_*	2	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txpd_*	2	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txelecidle_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_reset_rx_done_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_reset_tx_done_*	1	1	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txctrl0_*	16	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txctrl1_*	16	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gtwiz_txctrl2_*	8	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxctrl0_*	16	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxctrl1_*	16	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxctrl2_*	8	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxctrl3_*	8	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxgearboxslip_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxdatavalid_*	2	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxheader_*	6	1	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxheadervalid_*	2	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gtwiz_rx_serdes_data_*	128	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_tx_serdes_data_*	128	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txheader_*	6	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txsequence_*	7	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_rxpmaresetdone_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_txpmaresetdone_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_buffbypass_rx_done_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_cpllreset_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gt_reset_all_*	1	0	Reset signal from the core to the GT. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

131

Name	Size	Direction	Description
gtwiz_drpdo_*	16	I	DRP data signal from the GT to the core. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_drprdy_*	1	I	DRP ready signal from the GT to the core. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_drpen_*	1	0	The drpen signal from the core to the GT. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_drpwe_*	1	0	The drpwe signal from the core to the GT. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_drpaddr_*	16	0	The drpaddr signal from the core to the GT. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gtwiz_drpdi_*	16	0	DRP data signal from the core to the GT. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gt_drpdo_*	16	0	DRP read data from GT to the user, using the DRP arbiter within the core. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

132

Name	Size	Direction	Description
			The drprdy signal from GT to the user, using the DRP arbiter within the core.
gt_drprdy_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			DRP grant signal from the DRP arbiter to the user to enable the GT DRP read/write from the user side.
gt_drp_gnt_*	1	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			DRP request from the user to the DRP arbiter to perform the GT read/write operation.
gt_drp_req_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			The drpen signal from the user to the DRP arbiter to perform the GT read/write operation.
gt_drpen_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			The drpwe signal from the user to the DRP arbiter to perform the GT read/write operation.
gt_drpwe_*	1	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
			The drpaddr signal from the user to the DRP arbiter to perform the GT read/write operation.
gt_drpaddr_*	10	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			The drpdi signal from the user to the DRP arbiter to perform the GT read/write operation.
gt_drpdi_*	16	I	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
stat_tx_packet_1024_1518_bytes_*			Increment for good and bad packets transmitted that contain 1,024 to 1,518 bytes.
	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			Increment for good and bad packets transmitted that contain 1,519 to 1,522 bytes.
stat_tx_packet_1519_1522_bytes_*	1	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			Increment for good and bad packets transmitted that contain 1,523 to 1,548 bytes.
stat_tx_packet_1523_1548_bytes_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
			Increment for good and bad packets transmitted that contain 1,549 to 2,047 bytes.
stat_tx_packet_1549_2047_bytes_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			Increment for good and bad packets transmitted that contain 2,048 to 4,095 bytes.
stat_tx_packet_2048_4095_bytes_*	1	0	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
stat_tx_packet_4096_8191_bytes_*	1	0	Increment for good and bad packets transmitted that contain 4,096 to 8,191 bytes.
			See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			Increment for good and bad packets transmitted that contain 8,192 to 9,215 bytes.
stat_tx_packet_8192_9215_bytes_*	1	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
			Increment for all packets that are less than 64 bytes long. Packets that are less than 64 bytes are not transmitted.
stat_tx_packet_small_*	1	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
			Increment for all packets that are more than 9,215 bytes long.
stat_tx_packet_large_*	1	Ο	See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
		0	Increment for packets with tx_errin set to indicate an EOP abort.
stat_tx_frame_error_*	1		See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
	16	0	See Status Vector Table in 1G/2.5G
			Ethernet PCS/PMA or SGMII LogiCORE
			<i>IP Product Guide</i> (PG047)[Ref 1]
gig_ethernet_pcs_pma_status_vector_*			See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
		0	Indicates the operating core speed:
			• 2'b10: Core configured in 10G mode.
stat_core_speed_*			• 2'b01: Core configured in 1G mode.
	2		• 2'b00: Core configured in 25G mode.
	2		See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

Name	Size	Direction	Description
gpcs_resetdone_*	1	0	Indicates the 1G core is out of reset. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.
gt_switching_*	1	0	Indicates the GT DRP operation to switch the line rate is in progress. See UltraScale Architecture GTH Transceivers User Guide (UG576)[Ref 13]/ UltraScale Architecture GTY Transceivers User Guide (UG578)[Ref 14] for the port descriptions.

AXI4-Lite Interface Ports

Ports in Table 5-6 are available when Include AXI4-Lite is selected from the Configuration tab.

Table 5-6: AXI4-Lite Interface Ports

Name	Size	Direction	Description
s_axi_aclk_*	1	I	AXI clock signal.
s_axi_aresetn_*	1	I	AXI reset signal.
pm_tick_*	1	I	PM tick user input.
s_axi_awaddr_*	32	I	AXI write address.
s_axi_awvalid_*	1	I	AXI write address valid.
s_axi_awready_*	1	0	AXI write address ready.
s_axi_wdata_*	32	I	AXI write data.
s_axi_wstrb_*	4	I	AXI write strobe. This signal indicates which byte lanes hold valid data.
s_axi_wvalid_*	1	I	AXI write data valid. This signal indicates that valid write data and strobes are available.
s_axi_wready_*	1	0	AXI write data ready.

Name	Size	Direction	Description
s_axi_bresp_*	2	0	AXI write response. This signal indicates the status of the write transaction. 'b00 = OKAY 'b01 = EXOKAY 'b10 = SLVERR 'b11 = DECERR
s_axi_bvalid_*	1	0	AXI write response valid. This signal indicates that the channel is signaling a valid write response.
s_axi_bready_*	1	I	AXI write response ready.
s_axi_araddr_*	32	I	AXI read address.
s_axi_arvalid_*	1	I	AXI read address valid.
s_axi_arready_*	1	0	AXI read address ready.
s_axi_rdata_*	32	0	AXI read data issued by slave.
s_axi_rresp_*	2	0	AXI read response. This signal indicates the status of the read transfer. 'b00 = OKAY 'b01 = EXOKAY 'b10 = SLVERR 'b11 = DECERR
s_axi_rvalid_*	1	0	AXI read data valid.
s_axi_rready_*	1	I	AXI read ready. This signal indicates the user/master can accept the read data and response information.
user_reg0_*	32	0	User-defined signal from the AXI4 register map USER_REG_0 register.

AXI4-Stream User Interface Signals

Ports in Table 5-7 are available when **Ethernet MAC+PCS/PMA-32 bit** is selected from the Configuration tab.

Name	Size	Direction	Description
tx_unfout_*	1	0	Underflow signal for TX data path from the core. If tx_unfout_* is sampled as 1, a violation has occurred meaning the current packet is corrupted. Error control blocks are transmitted as long as the underflow condition persists.
			It is up to the user logic to ensure a complete packet is input to the core without under-running the TX data path interface.
tx_axis_tready_*	1	0	TX path ready signal from the core.
tx_axis_tvalid_*	1	I	Transmit AXI4-Stream Data valid.
tx_axis_tdata_*	32	I	Transmit AXI4-Stream Data bus.
tx_axis_tlast_*	1	I	Transmit AXI4-Stream tlast.
tx_axis_tkeep_*	8/4	I	Transmit AXI4-Stream tkeep.
tx_axis_tuser_*	1	I	Transmit AXI4-Stream tuser.
tx_preamblein_*	56	I	Transmit AXI4-Stream preamble.
rx_axis_tvalid_*	1	0	Receive AXI4-Stream Data valid.
rx_axis_tdata_*	32	0	Receive AXI4-Stream Data bus.
rx_axis_tlast_*	1	I	Receive AXI4-Stream tlast.
rx_axis_tkeep_*	8/4	I	Receive AXI4-Stream tkeep.
rx_axis_tuser_*	1	I	Receive AXI4-Stream tuser.
rx_preamblein_*	56	I	Receive AXI4-Stream preamble.

TX Path Control / Status / Statistics Signals

Table 5-8: TX Path Control / Status / Statistic

Name	Size	Direction	Description
ctl_tx_send_rfi_*	1	I	Transmit Remote Fault Indication (RFI) code word. If this input is sampled as a 1, the TX path only transmits Remote Fault code words. This input should be set to 1 until the RX path is fully aligned and is ready to accept data from the link partner.
ctl_tx_send_lfi_*	1	I	Transmit Local Fault Indication (LFI) code word. Takes precedence over RFI.
ctl_tx_send_idle_*	1	I	Transmit Idle code words. If this input is sampled as a 1, the TX path only transmits Idle code words. This input should be set to 1 when the partner device is sending Remote Fault Indication (RFI) code words.
stat_tx_local_fault_*	1	0	A value of 1 indicates the receive decoder state machine is in the TX_INIT state. This output is level sensitive.
stat_tx_total_bytes_*	5	0	Increment for the total number of bytes transmitted.
stat_tx_total_packets_*	1	0	Increment for the total number of packets transmitted.
stat_tx_total_good_bytes_*	14	0	Increment for the total number of good bytes transmitted. This value is only non-zero when a packet is transmitted completely and contains no errors.
stat_tx_total_good_packets_*	1	0	Increment for the total number of good packets transmitted.
stat_tx_bad_fcs_*	1	0	Increment for packets greater than 64 bytes that have FCS errors.
stat_tx_packet_64_bytes_*	1	0	Increment for good and bad packets transmitted that contain 64 bytes.
stat_tx_packet_65_127_bytes_*	1	0	Increment for good and bad packets transmitted that contain 65 to 127 bytes.
stat_tx_packet_128_255_bytes_*	1	0	Increment for good and bad packets transmitted that contain 128 to 255 bytes.
stat_tx_packet_256_511_bytes_*	1	0	Increment for good and bad packets transmitted that contain 256 to 511 bytes.
stat_tx_packet_512_1023_bytes_*	1	0	Increment for good and bad packets transmitted that contain 512 to 1,023 bytes.

Table 5-8:	TX Path Control / Status / Statistics Signals (Cont'd)
------------	--

Name	Size	Direction	Description
stat_tx_packet_1024_1518_bytes_*	1	0	Increment for good and bad packets transmitted that contain 1,024 to 1,518 bytes.
stat_tx_packet_1519_1522_bytes_*	1	0	Increment for good and bad packets transmitted that contain 1,519 to 1,522 bytes.
stat_tx_packet_1523_1548_bytes_*	1	Ο	Increment for good and bad packets transmitted that contain 1,523 to 1,548 bytes.
stat_tx_packet_1549_2047_bytes_*	1	0	Increment for good and bad packets transmitted that contain 1,549 to 2,047 bytes.
stat_tx_packet_2048_4095_bytes_*	1	0	Increment for good and bad packets transmitted that contain 2,048 to 4,095 bytes.
stat_tx_packet_4096_8191_bytes_*	1	0	Increment for good and bad packets transmitted that contain 4,096 to 8,191 bytes.
stat_tx_packet_8192_9215_bytes_*	1	0	Increment for good and bad packets transmitted that contain 8,192 to 9,215 bytes.
stat_tx_packet_small_*	1	0	Increment for all packets that are less than 64 bytes long. Packets that are less than 64 bytes are not transmitted.
stat_tx_packet_large_*	1	0	Increment for all packets that are more than 9,215 bytes long.
stat_tx_frame_error_*	1	0	Increment for packets with tx_errin set to indicate an EOP abort.
gig_ethernet_pcs_pma_status_vector_*	16	0	See the Status Vector Table in 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047) [Ref 1].
stat_core_speed_*	2	0	 Indicates the operating core speed: 2'b10: Core configured in 10G mode 2'b01: Core configured in 1G mode 2'b00: Core configured in 25G mode
gpcs_resetdone_*	1	0	Indicates the 1G core is out-of reset
gt_switching_*	1	0	Indicates the GT DRP operation to switch the line rate is in progress.

RX Path Control / Status / Statistics Signals

Table 5-9: RX Path Control / Status / Statistics Sig	nals
--	------

Name	Size	Direction	Description
			Corresponds to MDIO register bit 3.42.0 as defined in Clause 45.
ctl_rx_data_pattern_select_*			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab and Select Core is Ethernet MAC+PCS/ PMA-32 bit and the Include FIFO Logic is disabled.
ctl_rx_test_pattern_enable_*			Test pattern enable for the RX core. A value of 1 enables test mode.
			Corresponds to MDIO register bit 3.42.2 as defined in Clause 45. Takes second precedence.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab and Select Core is Ethernet MAC+PCS/ PMA-32-bit and the Include FIFO Logic is disabled.
stat_rx_block_lock_*	1	0	Block lock status for each PCS lane. A value of 1 indicates that the corresponding lane has achieved block lock as defined in Clause 82. Corresponds to MDIO register bit 3.50.7:0 and 3.51.11:0 as defined in Clause 82.3. This output is level sensitive.
stat_rx_framing_err_valid_*	1	0	Valid indicator for stat_rx_framing_err. When 1 stat_rx_framing_err_0 is valid.
stat_rx_framing_err_*	1	0	RX sync header bits framing error. Each PCS Lane has a four-bit bus that indicates how many sync header errors were received for that PCS Lane. The value of the bus is only valid when the corresponding stat_rx_framing_err_valid is a 1. The values on these buses can be updated at any time and are intended to be used as increment values for sync header error counters.
stat_rx_hi_ber_*	1	0	High Bit Error Rate (BER) indicator. When set to 1, the BER is too high as defined by IEEE Std 802.3-2015. Corresponds to MDIO register bit 3.32.1 as defined in Clause 82.3. This output is level sensitive.

Description

- L				
	stat_rx_bad_code_*	1	0	Increment for 64B/66B code violations. This signal indicates that the RX PCS receive state machine is in the RX_E state as specified by the IEEE Std 802.3-2015. This output can be used to generate MDIO register 3.33:7:0 as defined in Clause 82.3.
	stat_rx_error_valid_*	1	0	Indicates when stat_rx_error is valid.
	stat_rx_total_packets_*	2	0	Increment for the total number of packets received.
	stat_rx_total_good_packets_*	1	0	Increment for the total number of good packets received. This value is only non-zero when a packet is received completely and contains no errors.
	stat_rx_total_bytes_*	6	0	Increment for the total number of bytes received.
	stat_rx_total_good_bytes_*	14	0	Increment for the total number of good bytes received. This value is only non-zero when a packet is received completely and contains no errors.
	stat_rx_packet_small_*	2	0	Increment for all packets that are less than 64 bytes long. Packets that are less than 4 bytes are dropped.
	stat_rx_jabber_*	1	0	Increment for packets longer than ctl_rx_max_packet_len with bad FCS.
	stat_rx_packet_large_*	1	Ο	Increment for all packets that are more than 9,215 bytes long.
	stat_rx_oversize_*	1	0	Increment for packets longer than ctl_rx_max_packet_len with good FCS.
	stat_rx_undersize_*	2	0	Increment for packets shorter than stat_rx_min_packet_len with good FCS.
	stat_rx_toolong_*	1	0	Increment for packets longer than ctl_rx_max_packet_len with good and bad FCS.
	stat_rx_fragment_*	2	0	Increment for packets shorter than stat_rx_min_packet_len with bad FCS.
	stat_rx_packet_64_bytes_*	1	0	Increment for good and bad packets received that contain 64 bytes.
	stat_rx_packet_65_127_bytes_*	1	0	Increment for good and bad packets received that contain 65 to 127 bytes.
ł				

1

0

Table 5-9: RX Path Control / Status / Statistics Signals (Cont'd)

Size

Direction

Name

stat_rx_packet_128_255_bytes_*

Increment for good and bad packets

received that contain 128 to 255 bytes.

Name	Size	Direction	Description
stat_rx_packet_256_511_bytes_*	1	0	Increment for good and bad packets received that contain 256 to 511 bytes.
stat_rx_packet_512_1023_bytes_*	1	0	Increment for good and bad packets received that contain 512 to 1,023 bytes.
stat_rx_packet_1024_1518_bytes_*	1	0	Increment for good and bad packets received that contain 1,024 to 1,518 bytes.
stat_rx_packet_1519_1522_bytes_*	1	0	Increment for good and bad packets received that contain 1,519 to 1,522 bytes.
stat_rx_packet_1523_1548_bytes_*	1	0	Increment for good and bad packets received that contain 1,523 to 1,548 bytes.
stat_rx_packet_1549_2047_bytes_*	1	0	Increment for good and bad packets received that contain 1,549 to 2,047 bytes.
stat_rx_packet_2048_4095_bytes_*	1	0	Increment for good and bad packets received that contain 2,048 to 4,095 bytes.
stat_rx_packet_4096_8191_bytes_*	1	0	Increment for good and bad packets received that contain 4,096 to 8,191 bytes.
stat_rx_packet_8192_9215_bytes_*	1	0	Increment for good and bad packets received that contain 8,192 to 9,215 bytes.
stat_rx_bad_fcs_*	2	0	Bad FCS indicator. The value on this bus indicates packets received with a bad FCS, but not a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.
stat_rx_packet_bad_fcs_*	1	0	Increment for packets between 64 and ctl_rx_max_packet_len bytes that have FCS errors.
stat_rx_stomped_fcs_*	2	0	Stomped FCS indicator. The value on this bus indicates packets were received with a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate the stomped condition. Pulses can occur in back-to-back cycles.

Table 5-9: RX Path Control / Status / Statistics Signals (Cont'd)

Name	Size	Direction	Description
stat_rx_bad_preamble_*	1	0	Increment bad preamble. This signal indicates if the Ethernet packet received was preceded by a valid preamble. A value of 1 indicates that an invalid preamble was received.
stat_rx_bad_sfd_*	1	0	Increment bad SFD. This signal indicates if the Ethernet packet received was preceded by a valid SFD. A value of 1 indicates that an invalid SFD was received.
stat_rx_got_signal_os_*	1	о	Signal OS indication. If this bit is sampled as a 1, it indicates that a Signal OS word was received. Note: Signal OS should not be received in an
			Ethernet network.
stat_rx_test_pattern_mismatch_*	2	0	Test pattern mismatch increment. A nonzero value in any cycle indicates how many mismatches occurred for the test pattern in the RX core. This output is only active when ctl_rx_test_pattern is set to a 1. This output can be used to generate MDIO register 3.43.15:0 as defined in Clause 82.3. This output is pulsed for one clock cycle.
stat_rx_truncated_*	1	0	Packet truncation indicator. A value of 1 indicates that the current packet in flight is truncated due to its length exceeding ctl_rx_max_packet_len[14:0]. This output is pulsed for one clock cycle to indicate the truncated condition. Pulses can occur in back-to-back cycles.
stat_rx_local_fault_*	1	0	This output is High when stat_rx_internal_local_fault or stat_rx_received_local_fault is asserted. This output is level sensitive.
stat_rx_remote_fault_*	1	0	Remote fault indication status. If this bit is sampled as a 1, it indicates a remote fault condition was detected. If this bit is sampled as a 0, a remote fault condition does not exist. This output is level sensitive.
stat_rx_internal_local_fault_*	1	0	This signal goes High when an internal local fault is generated due to any one of the following: test pattern generation, bad lane alignment, or high bit error rate. This signal remains High as long as the fault condition persists.

Table 5-9: RX Path Control / Status / Statistics Signals (Cont'd)

145

Name	Size	Direction	Description
stat_rx_received_local_fault_*	1	0	This signal goes High when enough local fault words are received from the link partner to trigger a fault condition as specified by the IEEE fault state machine. This signal remains High as long as the fault condition persists.
stat_rx_valid_ctrl_code_*	1	Ο	Indicates that a PCS block with a valid control code was received.
stat_rx_status_*	1	0	Indicates the link status.

Table 5-9: RX Path Control / Status / Statistics Signals (Cont'd)

TX Pause Interface Control / Status / Statistics Signals

Ports in Table 5-10 are available when Enable TX Flow Control Logic is selected from the MAC Options tab and Select Core is set to Ethernet MAC+PCS/PMA 64-bit.

Name	Size	Direction	Description
ctl_tx_pause_req_*	9	1	If a bit of this bus is set to 1, the core transmits a pause packet using the associated quanta value on the ctl_tx_pause_quanta[8:0][15:0] bus. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.
ctl_tx_pause_enable_*	9	I	TX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority. This signal gates transmission of pause packets. Note: This port is available when Include AXI4-Lite is not selected in the GT Selection and Configuration tab.
ctl_tx_resend_pause_*	1	I	Retransmit pending pause packets. When this input is sampled as 1, all pending pause packets are retransmitted as soon as possible (that is, after the current packet in flight is completed) and the retransmit counters are reset. This input should be pulsed to 1 for one cycle at a time.

Table 5-10:	TX Pause Interface Control	/ Status / Statistics Signals
10010 201		

Name	Size	Direction	Description
ctl_tx_pause_quanta0_*	16	1	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_quanta1_*	16	1	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration
ctl_tx_pause_quanta2_*	16	1	tab. These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_quanta3_*	16	1	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_tx_pause_quanta4_*	16	I	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_quanta5_*	16	I	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_quanta6_*	16	1	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_quanta7_*	16	I	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_tx_pause_quanta8_*	16	1	These buses indicate the quanta to be transmitted for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_quanta[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer0_*	16	I	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration
ctl_tx_pause_refresh_timer1_*	16	1	tab. This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer2_*	16	1	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_tx_pause_refresh_timer3_*	16	1	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer4_*	16	1	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer5_*	16	I	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer6_*	16	1	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_tx_pause_refresh_timer7_*	16	I	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_pause_refresh_timer8_*	16	I	This bus sets the retransmission time of pause packets for each of the eight priorities in priority-based pause operation and the global pause operation. The value for ctl_tx_pause_refresh_timer[8] is used for global pause operation. All other values are used for priority pause operation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_da_gpp_*	48	I	Destination address for transmitting global pause packets. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_sa_gpp_*	48	I	Source address for transmitting global pause packets. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_ethertype_gpp_*	16	I	Ethertype for transmitting global pause packets. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_opcode_gpp_*	16	I	Opcode for transmitting global pause packets. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_tx_da_ppp_*	48	I	Destination address for transmitting priority pause packets. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

151

Name	Size	Direction	Description
			Source address for transmitting priority pause packets.
ctl_tx_sa_ppp_*	48	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			Ethertype for transmitting priority pause packets.
ctl_tx_ethertype_ppp_*	16	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
		I	Opcode for transmitting priority pause packets.
ctl_tx_opcode_ppp_*	16		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
stat_tx_pause_valid_*	9	0	If a bit of this bus is set to 1, the HSEC core has transmitted a pause packet. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.
stat_tx_unicast_*	1	0	Increment for good unicast packets.
stat_tx_multicast_*	1	0	Increment for good multicast packets.
stat_tx_broadcast_*	1	0	Increment for good broadcast packets.
stat_tx_vlan_*	1	0	Increment for good 802.1Q tagged VLAN packets.
stat_tx_pause_*	1	0	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
stat_tx_user_pause_*	1	0	Increment for priority-based pause packets with good FCS.

RX Pause Interface Control / Status / Statistics Signals

Ports in Table 5-11 are available when Enable RX Flow Control Logic is selected from the MAC Options tab and Select Core is set to Ethernet MAC+PCS/PMA 64-bit.

Name	Size	Direction	Description
ctl_rx_forward_control_*	1	I	A value of 1 indicates that the CORE forwards control packets to you. A value of 0 causes CORE to drop control packets. <i>Note:</i> This port is available when Include
			AXI4-Lite is not selected in the Configuration tab.
ctl_rx_pause_ack_*	9	I	Pause acknowledge signal. This bus is used to acknowledge the receipt of the pause frame from the user logic.
ctl_rx_check_ack_*	1		Wait for acknowledge. If this input is set to 1, the CORE uses the ctl_rx_pause_ack[8:0] bus for pause processing. If this input is set to 0, ctl_rx_pause_ack[8:0] is not used.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
		I	RX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority.
ctl_rx_pause_enable_*	9		<i>Note:</i> This signal only affects the RX user interface, not the pause processing logic.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables global control packet processing.
ctl_rx_enable_gcp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
		1 I	A value of 1 enables global control multicast destination address processing.
ctl_rx_check_mcast_gcp_*	1		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables global control unicast destination address processing.
ctl_rx_check_ucast_gcp_*	1	1	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			Unicast destination address for pause processing.
ctl_rx_pause_da_ucast_*	da_ucast_* 48		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description			
		I	A value of 1 enables global control source address processing.			
ctl_rx_check_sa_gcp_*	1		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
			Source address for pause processing.			
ctl_rx_pause_sa_*	48	Ι	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
			A value of 1 enables global control ethertype processing.			
ctl_rx_check_etype_gcp_*	1	I	ethertype processing. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab. Ethertype field for global control processing. Note: This port is available when Include			
ctl_rx_etype_gcp_*	16	I	AXI4-Lite is not selected in the Configuration			
		I				
ctl_rx_check_opcode_gcp_*	1		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
			Minimum global control opcode value.			
ctl_rx_opcode_min_gcp_*	16	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
			Maximum global control opcode value.			
ctl_rx_opcode_max_gcp_*	16	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
		I	A value of 1 enables priority control packet processing.			
ctl_rx_enable_pcp_*	1		<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			
			A value of 1 enables priority control multicast destination address processing.			
ctl_rx_check_mcast_pcp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.			

Name	Size	Direction	Description
ctl_rx_check_ucast_pcp_*	1	I	A value of 1 enables priority control unicast destination address processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_pause_da_mcast_*	48	I	Multicast destination address for pause processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_sa_pcp_*	1	I	A value of 1 enables priority control source address processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_etype_pcp_*	1	I	A value of 1 enables priority control ethertype processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_etype_pcp_*	16	I	Ethertype field for priority control processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_opcode_pcp_*	1	I	A value of 1 enables priority control opcode processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_opcode_min_pcp_*	16	I	Minimum priority control opcode value. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_opcode_max_pcp_*	16	I	Maximum priority control opcode value. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_enable_gpp_*	1	I	A value of 1 enables global pause packet processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

155

Name	Size	Direction	Description
ctl_rx_check_mcast_gpp_*	1	I	A value of 1 enables global pause multicast destination address processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration
			tab.
			A value of 1 enables global pause unicast destination address processing.
ctl_rx_check_ucast_gpp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables global pause source address processing.
ctl_rx_check_sa_gpp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
		I	A value of 1 enables global pause ethertype processing.
ctl_rx_check_etype_gpp_*	1		Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
		I	Ethertype field for global pause processing.
ctl_rx_etype_gpp_*	16		Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables global pause opcode processing.
ctl_rx_check_opcode_gpp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			Global pause opcode value.
ctl_rx_opcode_gpp_*	16	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables priority pause packet processing.
ctl_rx_enable_ppp_*	ctl_rx_enable_ppp_* 1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			A value of 1 enables priority pause multicast destination address processing.
ctl_rx_check_mcast_ppp_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_rx_check_ucast_ppp_*	1	I	A value of 1 enables priority pause unicast destination address processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_sa_ppp_*	1	I	A value of 1 enables priority pause source address processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_etype_ppp_*	1	1	A value of 1 enables priority pause ethertype processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_etype_ppp_*	16	I	Ethertype field for priority pause processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_check_opcode_ppp_*	1	I	A value of 1 enables priority pause opcode processing. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_rx_opcode_ppp_*	16	I	Priority pause opcode value. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
stat_rx_unicast_*	1	0	Increment for good unicast packets.
stat_rx_multicast_*	1	0	Increment for good multicast packets.
stat_rx_broadcast_*	1	0	Increment for good broadcast packets.
stat_rx_vlan_*	1	0	Increment for good 802.1Q tagged VLAN packets.
stat_rx_pause_*	1	0	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
stat_rx_user_pause_*	1	0	Increment for priority-based pause packets with good FCS.
stat_rx_inrangeerr_*	1	0	Increment for packets with Length field error but with good FCS.

157

Name	Size	Direction	Description
stat_rx_pause_valid_*	9	0	This bus indicates that a pause packet was received and the associated quanta on the stat_rx_pause_quanta[8:0][15:0] bus is valid and must be used for pause processing. If an 802.3x Ethernet MAC Pause packet is received, bit[8] is set to 1.
stat_rx_pause_quanta0_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta1_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta2_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta3_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta4_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta5_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta6_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].

158

Name	Size	Direction	Description
stat_rx_pause_quanta7_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_quanta8_*	16	0	These buses indicate the quanta received for each of the eight priorities in priority-based pause operation and global pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta are placed in value [8].
stat_rx_pause_req_*	9	0	Pause request signal. When the RX receives a valid pause frame, it sets the corresponding bit of this bus to a 1 and keep it at 1 until the pause packet has been processed.

IEEE 1588 TX/RX Interface Control / Status / Statistics Signals

Ports in Table 5-12 are available when **Enable_Time_Stamping** is selected from the MAC Options tab.

Name	Size	Direction	Description
ctl_tx_systemtimerin_*	80	I	System timer input for the TX. In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds. In transparent clock mode, bit 63 is expected to be zero, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to IEEE 1588v2 [Ref 12] for the representational definitions. This input must be in the TX clock domain.
ctl_rx_systemtimerin_*	80	I	System timer input for the RX. In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds. In transparent clock mode, bit 63 is expected to be zero, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to IEEE 1588v2 for the representational definitions. This input must be in the same clock domain as the lane 0 RX SerDes.

Table 5-12: IEEE 1588 TX/RX Interface Control / Status / Statistics Signals

Name	Size	Direction	Description
stat_tx_ptp_fifo_read_error_*	1	0	Transmit PTP FIFO write error. A value of 1 on this status indicates that an error occurred during the PTP Tag write. A TX Path reset is required to clear the error.
stat_tx_ptp_fifo_write_error_*	1	0	Transmit PTP FIFO read error. A value of 1 on this status indicates that an error occurred during the PTP Tag read. A TX Path reset is required to clear the error.
			2'b00: No operation: no timestamp is taken and the frame is not modified.
			2'b01: One-step: a timestamp should be taken and inserted into the frame.
tx_ptp_1588op_in_*	2	I	2'b10: Two-step: a timestamp should be taken and returned to the client using the additional ports of two-step operation. The frame itself is not modified.
			2'b11: Reserved: act as No operation.
			The usage of this field is dependent on the 1588 operation:
tx_ptp_tag_field_in_*	16		 For No operation, this field is ignored. For one-step and two-step, this field is a tag field. This tag value is returned to the client with the timestamp for the current frame using the additional ports of two-step operation. This tag value can be used by software to ensure that the timestamp can be matched with the PTP frame that it sent for transmission.
tx_ptp_tstamp_valid_out_*	1	0	This bit indicates that a valid timestamp is being presented on the tx.
tx_ptp_tstamp_tag_out_*	16	0	Tag output corresponding to tx_ptp_tag_field_in[15:0]
tx_ptp_tstamp_out_*	80	0	Time stamp for the transmitted packet SOP corresponding to the time at which it passed the capture plane.
			The representation of the bits contained in this bus is the same as the timer input.

Table 5-12: IEEE 1588 TX/RX Interface Control / Status / Statistics Signals (Cont'd)

Name	Size	Direction	Description
	1	0	This bit indicates that a valid timestamp is being presented on the rx.
rx_ptp_tstamp_valid_out_*			<i>Note:</i> This is present only when core is Ethernet MAC and PCS/PMA-32/64-bit.
rx_ptp_tstamp_out_*	80	0	Time stamp for the received packet SOP corresponding to the time at which it passed the capture plane. Note that this signal is valid starting at the same clock cycle during which the SOP is asserted for one of the segments. The representation of the bits contained in this bus is the same as the timer input.

Table 5-12: IEEE 1588 TX/RX Interface Control / Status / Statistics Signals (Cont'd)

AN Interface Control / Status / Statistics Signals

Ports in Table 5-13 are available when the **Include AN Logic** option is selected from the Configuration tab.

Name	Size	Direction	Description
an_reset_*	1	I	Asynchronous active-High reset corresponding to an_clk domain.
an_loc_np_data_*	48	Ι	Local Next Page codeword. This is the 48 bit codeword used if the 'loc_np' input is set. In this data field, the bits NP, ACK, & T, bit positions 15, 14, 12, & 11, are not transferred as part of the next page codeword. These bits are generated in the AN IP. However, the Message Protocol bit, MP, in bit position 13, is transferred.
an_lp_np_data_*	48	0	Link Partner Next Page Data. This 48 bit word is driven by the AN IP with the 48 bit next page codeword from the remote link partner.
ctl_autoneg_enable_*	1	I	Enable signal for Auto-Negotiation. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Table 5-13: AN Interface Control / Status / Statistics Signals

Name	Size	Direction	Description
ctl_autoneg_bypass_*	1	I	Input to disable Auto-Negotiation and bypass the Auto-Negotiation function. If this input is asserted, then Auto-Negotiation is turned off, but the PCS is connected to the output to allow operation.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			8-bit seed to initialize the nonce field polynomial generator.
ctl_an_nonce_seed_*	8	I	Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_pseudo_sel_*	1	I	Selects the polynomial generator for the bit 49 random bit generator. If this input is 1, then the polynomial is x7+x6+1. If this input is zero, then the polynomial is x7+x3+1.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
	1		This input is used to trigger a restart of the Auto-Negotiation, regardless of what state the circuit is currently in.
ctl_restart_negotiation_*	1	I	<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			This input signal is used to set the local_fault bit of the transmit link codeword.
ctl_an_local_fault_*	1	I	Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_pause_*	1	I	This input signal is used to set the PAUSE bit, (C0), of the transmit link codeword. This signal might not be present if the core does not support pause.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_an_asmdir_*	1	I	This input signal is used to set the ASMDIR bit, (C1), of the transmit link codeword. This signal might not be present if the core does not support pause. Note: This port is available when Include
			AXI4-Lite is not selected in the Configuration tab.
ctl_an_fec_10g_request_*	1	I	This signal is used to signal the link partner that the local station is requesting Clause 74 FEC on the 10Gb/s lane protocols.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_fec_25g_rs_request_*	1	I	This signal is used to signal the link partner that the local station is requesting rs FEC (Clause 91 or 108) on the 25Gb/s lane protocols.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
			Indicates the baser FEC request.
ctl_an_fec_25g_baser_request_*	1	Ι	Note: Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_fec_ability_override_*	1	I	Used to set the Clause 74 FEC ability bit in the transmit link codeword. If this input is set, then the FEC ability bit in the transmit link codeword is cleared. This signal might not be present if the IP core does not support Clause 74 FEC.
			Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_loc_np_*	1	I	Local Next Page indicator. If this bit is 1, then the AN IP transfers the next page word at input loc_np_data to the remote link partner. If this bit is 0, then the AN IP does not initiate the next page protocol. If the link partner has next pages to send, and the loc_np bit is clear, then the AN IP transfers null message pages.

Name	Size	Direction	Description
ctl_an_lp_np_ack_*	1	I	Link Partner Next Page Acknowledge. This is used to signal the AN IP that the next page data from the remote link partner at output pin lp_np_data has been read by the local host. When this signal goes High, the AN IP acknowledges reception of the next page codeword to the remote link partner and initiate transfer of the next codeword. During this time, the AN IP removes the lp_np signal until the new next page information is available.
ctl_an_cl91_fec_request_*	1	I	This bit is used to request Clause 91 FEC. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_cl91_fec_ability_*	1	I	This bit is used to set Clause 91 FEC ability. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_an_ability_1000base_kx_*	1	I	
ctl_an_ability_10gbase_kx4_*	1	I	
ctl_an_ability_10gbase_kr_*	1	I	
ctl_an_ability_40gbase_kr4_*	1	I	
ctl_an_ability_40gbase_cr4_*	1	I	
ctl_an_ability_100gbase_cr10_*	1	Ι	These inputs identify the Ethernet
ctl_an_ability_100gbase_kp4_*	1	I	protocol abilities that are advertised
ctl_an_ability_100gbase_kr4_*	1	I	in the transmit link codeword to the link partner. A value of 1 indicates tha
ctl_an_ability_100gbase_cr4_*	1	I	the interface advertises that it
ctl_an_ability_25gbase_krcr_s_*	1		supports the protocol.
ctl_an_ability_25gbase_krcr_*	1	I	
ctl_an_ability_25gbase_kr1_*	1	I	
ctl_an_ability_25gbase_cr1_*	1	I	
ctl_an_ability_50gbase_kr2_*	1	I	
ctl_an_ability_50gbase_cr2_*	1	I	

Name	Size	Direction	Description
stat_an_link_cntl_1000base_kx_*	2	0	
stat_an_link_cntl_10gbase_kx4_*	2	0	
stat_an_link_cntl_10gbase_kr_*	2	0	
stat_an_link_cntl_40gbase_kr4_*	2	0	
stat_an_link_cntl_40gbase_cr4_*	2	0	Link Control outputs from the Auto-Negotiation controller for the
stat_an_link_cntl_100gbase_cr10_*	2	0	various Ethernet protocols. Settings
stat_an_link_cntl_100gbase_kp4_*	2	0	 are as follows: 00: DISABLE; PCS is disconnected;
stat_an_link_cntl_100gbase_kr4_*	2	0	01: SCAN_FOR_CARRIER; RX is
stat_an_link_cntl_100gbase_cr4_*	2	0	connected to PCS;
stat_an_link_cntl_25gbase_krcr_s_*	2	0	11: ENABLE; PCS is connected for
stat_an_link_cntl_25gbase_krcr_*	2	0	 mission mode operation. 10: not used
stat_an_link_cntl_25gbase_kr1_*	2	0	
stat_an_link_cntl_25gbase_cr1_*			
stat_an_link_cntl_50gbase_kr2_*			
stat_an_link_cntl_50gbase_cr2_*			
stat_an_fec_enable_*	1	0	Used to enable the use of Clause 74 FEC on the link.
stat_an_tx_pause_enable_*	1	Ο	Used to enable station-to-station (global) pause packet generation in the transmit path to control data flow in the receive path.
stat_an_rx_pause_enable_*	1	0	Used to enable station-to-station (global) pause packet interpretation in the receive path, in order to control data flow from the transmitter.
stat_an_autoneg_complete_*	1	0	Indicates the Auto-Negotiation is complete and rx link status from the PCS has been received.
stat_an_parallel_detection_fault_*	1	0	Indicated a parallel detection fault during Auto-Negotiation.

Name	Size	Direction	Description
stat_an_lp_ability_1000base_kx_*	1	0	
stat_an_lp_ability_10gbase_kx4_*	1	0	
stat_an_lp_ability_10gbase_kr_*	1	0	
stat_an_lp_ability_40gbase_kr4_*	1	0	These signals indicate the advertised
stat_an_lp_ability_40gbase_cr4_*	1	0	protocol from the link partner. They all become valid when the output signal
stat_an_lp_ability_100gbase_cr10_*	1	0	stat_an_lp_ability_valid is asserted. A
stat_an_lp_ability_100gbase_kp4_*	1	0	value of 1 indicates that the protocol is advertised as supported by the link
stat_an_lp_ability_100gbase_kr4_*	1	0	partner.
stat_an_lp_ability_100gbase_cr4_*	1	0	
stat_an_lp_ability_25gbase_krcr_s_*	1	0	
stat_an_lp_ability_25gbase_krcr_*	1	0	
stat_an_lp_ability_25gbase_cr1_*	1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_AN_lp_Extended_Ability_Valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_rxcdrhold_*	1	0	Indicates the rxcdr hold signal.
stat_an_lp_pause_*	1	0	This signal indicates the advertised value of the PAUSE bit, (C0), in the receive link codeword from the link partner. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_asm_dir_*	1	0	This signal indicates the advertised value of the ASMDIR bit, (C1), in the receive link codeword from the link partner. It becomes valid when the output signal stat_an_Ip_ability_valid is asserted.
stat_an_lp_rf_*	1	0	This bit indicates link partner remote fault.
stat_an_lp_fec_10g_ability_*	1	0	This signal indicates the Clause 74 FEC ability associated with 10Gb/s lane protocols that is being advertised by the link partner. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.

Name	Size	Direction	Description
stat_an_lp_fec_10g_request_*	1	0	This signal indicates that the link partner is requesting that the Clause 74 FEC be used on the 10Gb/s lane protocols.It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_fec_25g_rs_request_*	1	0	This signal indicates that the link partner is requesting the Clause 91 (or 108) rs FEC be used for the 25gb/s lane protocols. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_fec_25g_baser_request_ *	1	0	This signal indicates that the link partner is requesting the Clause 74 FEC be used for the 25Gb/s lane base-r protocols. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_autoneg_able_*	1	0	This output signal indicates that the link partner is able to perform Auto-Negotiation. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_ability_valid_*	1	0	This signal indicates when all of the link partner advertisements become valid.
stat_an_loc_np_ack_*	1	Ο	This signal is used to indicate to the local host that the local next page data, presented at input pin loc_np_data, has been taken. This signal pulses High for 1 clock period when the AN IP samples the next page data on input pin loc_np_data. When the local host detects this signal High, it must replace the 48 bit next page codeword at input pin 'loc_np_data' with the next 48 bit codeword to be sent. If the local host has no more next pages to send, then it must clear the loc_np input.

Name	Size	Direction	Description
stat_an_lp_np_*	1	Ο	Link Partner Next Page. This signal is used to indicate that there is a valid 48 bit next page codeword from the remote link partner at output pin lp_np_data. This signal is driven low when the lp_np_ack input signal is driven high, indicating that the local host has read the next page data. It remains low until the next codeword becomes available on the lp_np_data output pin, then the lp_np output is driven high again.
stat_an_lp_ability_25gbase_kr1_*	1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_an_lp_extended_ability_valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_link_cntl_25gbase_cr1_*	1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_an_lp_extended_ability_valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_lp_ability_50gbase_kr2_*	1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_an_lp_extended_ability_valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_lp_ability_50gbase_cr2_*	1	0	Indicates the advertised protocol from the link partner. Becomes valid when the output signal stat_an_lp_extended_ability_valid is asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_lp_ability_extended_fec_*	4	0	This output indicates the extended FEC abilities.
stat_an_rs_fec_enable_*	1	0	Used to enable the use of Clause 91 FEC on the link.

Name	Size	Direction	Description
stat_an_lp_extended_ability_valid_*	1	0	When this bit is 1, it indicates that the detected extended abilities are valid.
stat_an_switch_speed_*	1	0	This bit indicates that the AN module requests a speed switch to complete the Auto-Negotiation. Core speed switches between 10G and 1G to perform DME transaction or Parallel detection.

LT Interface Control / Status / Statistics Signals

Name	Size	Direction	Description
ctl_lt_training_enable_*	1	I	Enables link training. When link training is disabled, all PCS lanes function in mission mode. Note: This port is available when Include AXI4-Lite is not selected in the
ctl_lt_restart_training_*	1	I	Configuration tab. This signal triggers a restart of link training regardless of the current state. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_rx_trained_*	4	I	This signal is asserted to indicate that the receiver FIR filter coefficients have all been set, and that the receiver portion of training is complete. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_preset_to_tx_*	4	I	This signal is used to set the value of the preset bit that is transmitted to the link partner in the control block of the training frame. Note: This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_initialize_to_tx_*	4	I	This signal is used to set the value of the initialize bit that is transmitted to the link partner in the control block of the training frame. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Name	Size	Direction	Description
ctl_lt_pseudo_seed0_*	11	I	This 11-bit signal seeds the training pattern generator. <i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_k_p1_to_tx0_*	2	Ι	This 2-bit field is used to set the value of the k+1 coefficient update field that is transmitted to the link partner in the control block of the training frame. Note: This port is available when Include
			AXI4-Lite is not selected in the Configuration tab.
ctl_lt_k0_to_tx0_*	2		This 2-bit field is used to set the value of the k0 coefficient update field that is transmitted to the link partner in the control block of the training frame.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_k_m1_to_tx0_*	2	I	This 2-bit field is used to set the value of the 'k-1' coefficient update field that is transmitted to the link partner in the control block of the training frame.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_stat_p1_to_tx0_*	2	I	This 2-bit field is used to set the value of the 'k+1' coefficient update status that is transmitted to the link partner in the status block of the training frame.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.
ctl_lt_stat0_to_tx0_*	2	I	This 2-bit field is used to set the value of the 'k0' coefficient update status that is transmitted to the link partner in the status block of the training frame.
			<i>Note:</i> This port is available when Include AXI4-Lite is not selected in the Configuration tab.

Table 5-14:	LT Interface Control /	Status /	/ Statistics Signals (Cont'd)
-------------	------------------------	----------	-------------------------------

Name	Size	Direction	Description
ctl_lt_stat_m1_to_tx0_*	2	1	This 2-bit field is used to set the value of the 'k-1' coefficient update status that is transmitted to the link partner in the status block of the training frame. Note: This port is available when Include
			AXI4-Lite is not selected in the Configuration tab.
stat_lt_signal_detect_*	4	0	This signal indicates when the respective link training state machine has entered the SEND_DATA state, in which normal PCS operation can resume.
stat_lt_training_*	4	0	This signal indicates when the respective link training state machine is performing link training.
stat_lt_training_fail_*	4	0	This signal is asserted during link training if the corresponding link training state machine detects a time-out during the training period.
stat_lt_rx_sof_*	4	0	This output is High for 1 RX SerDes clock cycle to indicate the start of the link training frame.
stat_lt_frame_lock_*	4	Ο	When link training has begun, these signals are asserted, for each PMD lane, when the corresponding link training receiver is able to establish a frame synchronization with the link partner.
stat_lt_preset_from_rx_*	4	0	This signal reflects the value of the preset control bit received in the control block from the link partner.
stat_lt_initialize_from_rx_*	4	0	This signal reflects the value of the initialize control bit received in the control block from the link partner.
stat_lt_k_p1_from_rx0_*	2	0	This 2-bit field indicates the update control bits for the 'k+1' coefficient, as received from the link partner in the control block.
stat_lt_k0_from_rx0_*	2	0	This 2-bit field indicates the update control bits for the 'k0' coefficient, as received from the link partner in the control block.
stat_lt_k_m1_from_rx0_*	2	0	This 2-bit field indicates the update control bits for the 'k-1' coefficient, as received from the link partner in the control block.

171

Name	Size	Direction	Description
stat_lt_stat_p1_from_rx0_*	2	0	This 2-bit field indicates the update status bits for the 'k+1' coefficient, as received from the link partner in the status block.
stat_lt_stat0_from_rx0_*	2	0	This 2-bit fields indicates the update status bits for the 'k0' coefficient, as received from the link partner in the status block.
stat_lt_stat_m1_from_rx0_*	2	Ο	This 2-bit field indicates the update status bits for the 'k-1' coefficient, as received from the link partner in the status block.
lt_tx_sof_*	4	0	This is a link training signal that is asserted for one tx_serdes_clk period at the start of each training frame. It is provided for applications that need to count training frames or synchronize events to the output of the training frames.

Clause 74 FEC Interface Control / Status / Statistics Signals

Ports in Table 5-15 are available when Clause 74 (BASE-KR FEC) is selected from the Configuration tab.

Name	Size	Direction	Description
ctl_fec_tx_enable_*	1	I	Asserted to enable the Clause 74 FEC encoding on the transmitted data.
ctl_fec_rx_enable_*	1	I	Asserted to enable the Clause 74 FEC decoding of the received data.
ctl_fec_enable_error_to_pcs_*	1	Ι	Clause 74 FEC enable error to pcs.
stat_fec_inc_correct_count_*	4	0	This signal is asserted roughly every 32 words, while the ctl_rx_fec_enable is asserted, if the FEC decoder detected and corrected a bit errors in the corresponding frame.
stat_fec_inc_cant_correct_count_*	4	0	This signal is asserted roughly every 32 words, while the ctl_rx_fec_enable is asserted, if the FEC decoder detected bit

Table 5-15: Clause 74 FEC Interface Control / Status / Statistics Signals

Name	Size	Direction	Description
stat_fec_lock_error_*	4	0	stat_fec_lock_error_* is asserted if the FEC decoder has been unable to detect the frame boundary after about 5 ms. It is cleared when the frame boundary is detected.
stat_fec_rx_lock_*	4	0	This signal is asserted while the ctl_fec_rx_enable is asserted when the FEC decoder detects the frame boundary.

Table 5-15: Clause 74 FEC Interface Control / Status / Statistics Signals (Cont'd)

Duplex Mode of Operation

In this mode of operation, both the transmitter and receiver of the core are active and loopback is provided at the GT output interface, that is, output is fed back as input. Packet generation and monitor modules are active in this mode. The generator module is responsible for generating the desired number of packets and transmits to the core using the available data interface. The monitor module checks the packets from the receiver.

Figure 5-9 shows the duplex mode of operation.

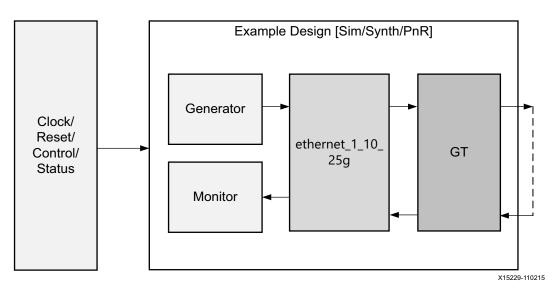


Figure 5-9: Duplex Mode of Operation

AXI4-Lite Interface Implementation

To instantiate the AXI4-Lite interface to access the control and status registers of the ethernet_1_10_25g core, enable the **Include AXI4-Lite** check box in the Configuration tab of the Vivado[™] IDE. This option enables the ethernet_1_10_25g_axi_if_top module (which contains ethernet_1_10_25g_pif_registers with the ethernet_1_10_25g_slave_2_ipif module). You can access the AXI4-Lite interface logic registers (control, status and statistics) from the ethernet_1_10_25g_pkt_gen_mon module.

This mode enables the following features:

- You can configure all the control (CTL) ports of the core through the AXI4-Lite interface. This operation is performed by writing to a set of address locations with the required data to the register map interface.
- You can access all the status and statistics registers from the core through the AXI4-Lite interface. This operation is performed by reading the address locations for the status and statistics registers through register map.

AXI4 Interface User Logic

The following sections provide the AXI4-Lite interface state machine control and ports.

User State Machine

The read and write through the AXI4-Lite slave module interface is controlled by a state machine as shown below:

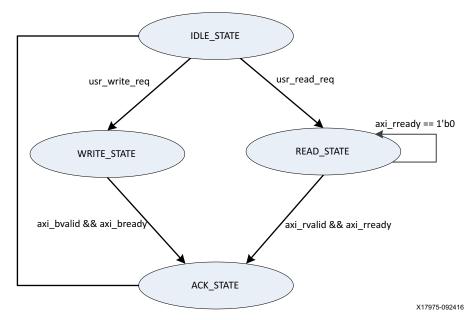


Figure 5-10: User State Machine for AXI4-Lite Interface

A functional description of each state is described below:

- **IDLE_STATE**: By default, the FSM is in IDLE_STATE. When the user_read_req signal becomes High, it moves to the READ_STATE; if the user_write_req signal is High, it moves to WRITE_STATE else it remains in IDLE_STATE.
- WRITE_STATE: You provide S_AXI_AWVALID, S_AXI_AWADDR, S_AXI_WVALID, S_AXI_WDATA, and S_AXI_WSTRB in this state to write to the register map through AXI. When S_AXI_BVALID and S_AXI_BREADY from the AXI slave are High, it moves to ACK_STATE. If any write operation happens in any illegal addresses, the S_AXI_BRESP[1:0] indicates 2 'b10 that asserts the write error signal.
- **READ_STATE**: You provide S_AXI_ARVALID and S_AXI_ARADDR in this state to read from the register map through AXI. When S_AXI_RVALID and S_AXI_RREADY are High, it moves to ACK_STATE. If any read operation happens from any illegal addresses, the S_AXI_RRESP[1:0] indicates 2'b10 that asserts the read error signal.
- **ACK_STATE**: The state moves to IDLE_STATE.

AXI User Interface Ports

Name	Size	Direction	Description
S_AXI_ACLK	1	I	AXI clock signal.
S_AXI_ARESETN	1	I	AXI active-Low synchronous reset.

Table 5-16: AXI User Interface Ports

Table 5-16:	AXI User Interface Ports (Cont'd)
-------------	-----------------------------------

Name	Size	Direction	Description
S_AXI_PM_TICK	1	I	PM tick user input.
S_AXI_AWADDR	32	I	AXI write address.
S_AXI_AWVALID	1	I	AXI write address valid.
S_AXI_AWREADY	1	0	AXI write address ready.
S_AXI_WDATA	32	I	AXI write data.
S_AXI_WSTRB	4	I	AXI write strobe. This signal indicates which byte lanes hold valid data.
S_AXI_WVALID	1	I	AXI write data valid. This signal indicates that valid write data and strobes are available.
S_AXI_WREADY	1	0	AXI write data ready.
S_AXI_BRESP	2	0	AXI write response. This signal indicates the status of the write transaction. 'b00 = OKAY 'b01 = EXOKAY 'b10 = SLVERR 'b11 = DECERR
S_AXI_BVALID	1	0	AXI write response valid. This signal indicates that the channel is signaling a valid write response.
S_AXI_BREADY	1	I	AXI write response ready.
S_AXI_ARADDR	32	I	AXI read address.
S_AXI_ARVALID	1	I	AXI read address valid.
S_AXI_ARREADY	1	0	AXI read address ready.
S_AXI_RDATA	32	0	AXI read data issued by slave.
S_AXI_RRESP	2	0	AXI read response. This signal indicates the status of the read transfer. 'b00 = OKAY 'b01 = EXOKAY 'b10 = SLVERR 'b11 = DECERR
S_AXI_RVALID	1	0	AXI read data valid.
S_AXI_RREADY	1	I	AXI read ready. This signal indicates the user/master can accept the read data and response information.

Valid Write Transactions

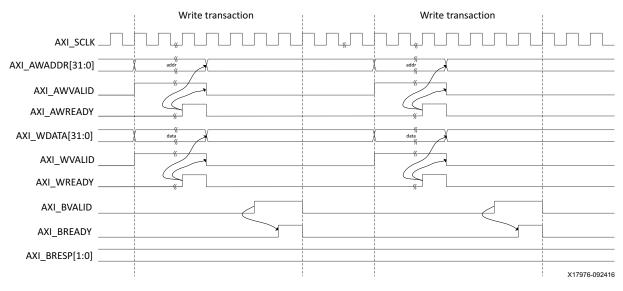
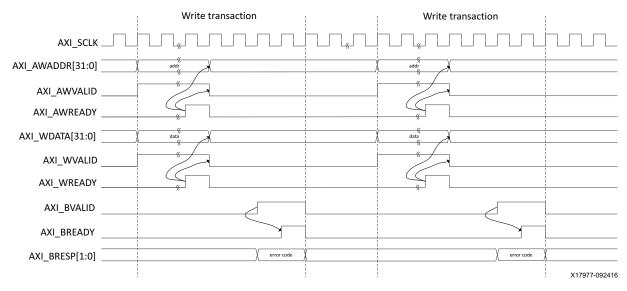
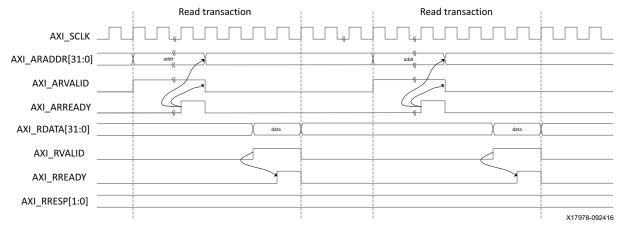



Figure 5-11: AXI4-Lite User Side Write Transaction

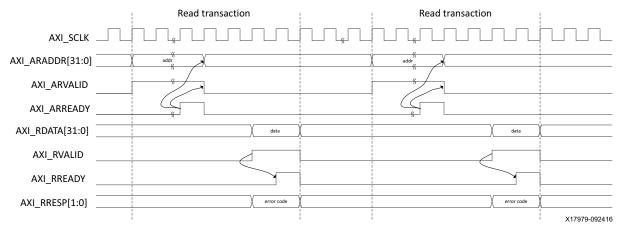


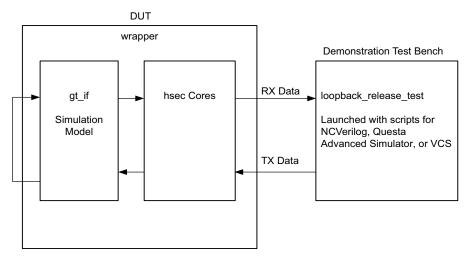
Invalid Write Transactions

Figure 5-12: AXI4-Lite User Side Write Transaction with Invalid Write Address

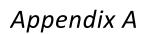
Valid Read Transactions

Invalid Read Transactions




Figure 5-14: AXI4-Lite User Side Read Transaction with Invalid Read Address

Chapter 6


Batch Mode Test Bench

Each batch mode release of the 1G/10G/25G Switching Ethernet Subsystem includes a demonstration test bench that performs a loopback test on the complete subsystem. For your convenience, scripts are provided to launch the test bench from several industry-standard simulators. The test **1G/10G/25G Switching Ethernet Subsystem v2.3** program exercises the datapath to check that the transmitted frames are received correctly. Register Transfer Level (RTL) simulation models for the subsystem are included. You must provide the correct path for the transceiver simulation model according to the latest simulation environment settings in your version of the Vivado® Design Suite.

X15170-110718

Figure 6-1: Test Bench

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in Chapter 1 for more details.

Finding Help on Xilinx.com

To help in the design and debug process when using the 1G/10G/25G Switching Ethernet Subsystem, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the 1G/10G/25G Switching Ethernet Subsystem. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

Refer to the Xilinx Ethernet IP Solution Center.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this subsystem can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Technical Support

Xilinx provides technical support in the Xilinx Support web page for this product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, go to the Xilinx Support web page.

E XILINX_®

Debug Tools

There are many tools available to address 1G/10G/25G Switching Ethernet Subsystem design issues. It is important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature

The Vivado[®] Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 9].

Reference Boards

Various Xilinx development boards support the 1G/10G/25G Switching Ethernet Subsystem. These boards can be used to prototype designs and establish that the core can communicate with the system.

- UltraScale[™] FPGA evaluation boards
 - ZCU102

Simulation Debug

Simulator License Availability

If the simulator does not launch, you might not have a valid license. Ensure that the license is up to date. It is also possible that your organization has a license available for one of the other simulators, so try all the provided scripts.

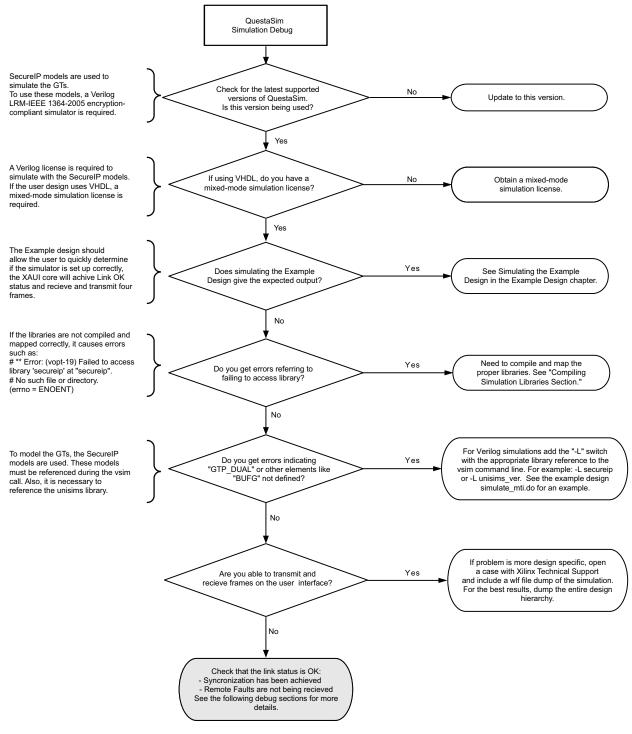
Slow Simulation

Simulations can appear to run slowly under some circumstances. If a simulation is unacceptably slow, the following suggestions might improve the run-time performance.

- 1. Use a faster computer with more memory.
- 2. Make use of a Platform Load Sharing Facility (LSF) if available in your organization.
- 3. Bypass the Xilinx transceiver (this might require that the customer create their own test bench.
- 4. Send fewer packets.
- 5. If using the example design, see Simulation Speed Up in Chapter 4 to speed up wait timers in the example design.

Simulation Fails Before Completion

If the sample simulation fails or hangs before successfully completing, it is possible that a timeout has occurred. Ensure that the simulator timeouts are long enough to accommodate the waiting periods in the simulation, for example during the lane alignment phase.


Simulation Completes But Fails

If the sample simulation completes with a failure, contact Xilinx technical support. Each release is tested prior to shipment and normally completes successfully. Consult the sample simulation log file for the expected behavior.

The simulation debug flow for Questa® SIM is illustrated in Figure A-1. A similar approach can be used with other simulators.

X15378-082018

Send Feedback

Hardware Debug

Hardware issues can range from link bring-up to problems seen after hours of testing. This section provides debug steps for common issues. The Vivado[™] debug feature is a valuable resource to use in hardware debug. The signal names mentioned in the following individual sections can be probed using the debug feature for debugging the specific problems.

General Checks

Ensure that all the timing constraints for the core were properly incorporated from the example design and that all constraints were met during implementation.

- Does it work in post-place and route timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are active and clean.
- If using mixed-mode clock managers (MMCMs) in the design, ensure that all MMCMs have obtained lock by monitoring the LOCKED port.
- If your outputs go to 0, check your licensing.

Timing

Ensure that the timing is met according to the Vivado tools before attempting to implement the IP in hardware.

Transceiver Specific Checks

- Ensure that the polarities of the txn/txp and rxn/rxp lines are not reversed. If they are, these can be fixed by using the TXPOLARITY and RXPOLARITY ports of the transceiver.
- Check that the transceiver is not being held in reset or still being initialized. The RESETDONE outputs from the transceiver indicate when the transceiver is ready.
- Place the transceiver into parallel or serial near-end loopback.
- If correct operation is seen in the transceiver serial loopback, but not when loopback is performed through an optical cable, it might indicate a faulty optical module.
- If the core exhibits correct operation in the transceiver parallel loopback but not in serial loopback, this might indicate a transceiver issue.
- A mild form of bit error rate might be solved by adjusting the transmitter Pre-Emphasis and Differential Swing Control attributes of the transceiver.

Ethernet Specific Checks

A number of issues can commonly occur during the first hardware test of a 1G/10G/25G Switching Ethernet Subsystem. These should be checked as indicated below.

It is assumed that the 1G/10G/25G Switching Ethernet Subsystem has already passed all simulation testing which is being implemented in hardware. This is a prerequisite for any kind of hardware debug.

The usual sequence of debugging is to proceed in the following sequence:

- 1. Clean up signal integrity.
- 2. Ensure that the SerDes achieves clock data recovery (CDR) lock.
- 3. Check that the 1G/10G/25G Ethernet subsystem has achieved word sync.
- 4. Proceed to Interface and Protocol debug.

Signal Integrity

When bringing up a board for the first time and the 1G/10G/25G Ethernet subsystem does not seem to be achieving word sync, the most likely problem is related to signal integrity. Signal integrity issues must be addressed before any other debugging can take place.

Signal integrity should be debugged independently from the 1G/10G/25G Switching Ethernet Subsystem. The following procedures should be carried out. (Note that it assumed that the PCB itself has been designed and manufactured in accordance with the required trace impedances and trace lengths, including the requirements for skew set out in the IEEE 802.3 specification.)

- Transceiver Settings
- Checking For Noise
- Bit Error Rate Testing

If assistance is required for transceiver and signal integrity debugging, contact Xilinx technical support.

N/P Swapping

If the positive and negative signals of a differential pair are swapped, then data cannot be correctly received on that lane. Verify that the link has the correct polarity of each differential pair.

Clocking and Resets

Refer to the Clocking and Resets in Chapter 3 for these requirements.

Ensure that the clock frequencies for both the 1G/10G/25G Switching Ethernet Subsystem as well as the Xilinx Transceiver reference clock match the configuration requested when the subsystem was ordered. The core clock has a minimum frequency associated with it. The maximum core clock frequency is determined by timing constraints. The minimum core clock frequency is derived from the required Ethernet bandwidth plus the margin reserved for clock tolerance, wander and jitter.

The first thing to verify during debugging is to ensure that resets remain asserted until the clock is stable. It must be frequency-stable as well as free from glitches before the 1G/10G/ 25G Switching Ethernet Subsystem is taken out of reset. This applies to both the SerDes clock as well as the core clock.

If any subsequent instability is detected in a clock, the 1G/10G/25G Switching Ethernet Subsystem must be reset. One example of such instability is a loss of CDR lock. The user logic should determine all external conditions which would require a reset (e.g. clock glitches, loss of CDR lock, power supply glitches, etc.).

The GT requires a GTRXRESET after the serial data becomes valid to ensure correct CDR lock to the data. This is required after powering on, resetting or reconnecting the link partner. At the core level to avoid interruption on the TX side of the link, the reset can be triggered using gtwiz_reset_rx_datapath. If available, signal detect or inversion of loss of signal from the optics can be used to trigger the reset. If signal detect or loss of signal are not available, timeout logic can be added to monitor if alignment has not completed and issue the gtwiz_reset_rx_datapath reset.

Configuration changes cannot be made unless the subsystem is reset. An example of a configuration change would be setting a different maximum packet length. Check the description for the particular signal on the port list to determine if this requirement applies to the parameter that is being changed.

RX Debug

Consult the port list section for a description of the diagnostic signals which are available to debug the RX.

stat_rx_block_lock

This signal indicates that the receiver has detected and locked to the word boundaries as defined by a 01 or 10 control or data header. This is the first step to ensure that the 10/25G Ethernet IP is functioning normally.

CAUTION! Under some conditions of no signal input, the SerDes receiver exhibits a steady pattern of alternating 1010101.... This can cause erroneous block lock, but still indicates that the receiver has detected the pattern.

stat_rx_bad_fcs

A bad FCS indicates a bit error in the received packet. An FCS error could be due to any number of causes of packet corruption such as noise on the line.

stat_rx_local_fault

A local fault indication can be locally generated or received. Some causes of a local fault are:

- block lock not complete
- high bit error rate
- overflow or underflow

Loopback Check

If the Ethernet packets are being transmitted properly according to 802.3 [Ref 1], there should not be RX errors. However, the signal integrity of the received signals must be verified first.

To aid in debug, a local loopback can be performed with the signal ctl_local_loopback. This connects the TX transceiver to the RX transceiver, effectively bypassing potential signal integrity problems. The transceiver is placed into "PMA loopback", which is fully described in the transceiver product guide. In this way, the received data can be checked against the transmitted packets to verify that the logic is operating properly.

Protocol Interface Debug

To achieve error-free data transfers with the 1G/10G/25G Switching Ethernet Subsystem, the 802.3 specification [Ref 1] should be followed. Signal integrity should always be ensured before proceeding to the protocol debug.

Diagnostic Signals

There are many error indicators available to check for protocol violations. Carefully read the description of each one to see if it is useful for a particular debugging problem.

The following is a suggested debug sequence:

- 1. Ensure that Word sync has been achieved.
- 2. Make sure there are no descrambler state errors.
- 3. Eliminate CRC32 errors, if any.
- 4. Make sure the protocol is being followed correctly.
- 5. Ensure that there are no overflow or underflow conditions when packets are sent.

Statistics Counters

After error-free communication has been achieved, the statistics indicators can be monitored to ensure that traffic characteristics meet expectations. Note that some signals are strobes only, which means that the counters are not part of the subsystem. This is done so that the counter size can be customized. Counters are optionally available with the AXI interface.

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado[®] IDE, select **Help > Documentation and Tutorials**.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnay.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this product guide:

- 1. *IEEE Standard 802.3-2015: IEEE Standard for Ethernet (*https://standards.ieee.org/ findstds/standard/802.3-2015.html)
- 2. 25G and 50G Ethernet Consortium Schedule 3 version 1.6 (August 18, 2015) (https:// 25gethernet.org)
- 3. 1G/2.5G Ethernet PCS/PMA or SGMII LogiCORE IP Product Guide (PG047)
- 4. 10G/25G High Speed Ethernet Subsystem Product Guide (PG210)
- 5. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
- 6. Vivado Design Suite User Guide: Designing with IP (UG896)
- 7. Vivado Design Suite User Guide: Getting Started (UG910)
- 8. Vivado Design Suite User Guide: Logic Simulation (UG900)
- 9. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 10. Vivado Design Suite User Guide: Implementation (UG904)
- 11. Vivado Design Suite AXI Reference Guide (UG1037)
- 12. IEEE Standard 1588-2008: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (standards.ieee.org/findstds/standard/1588-2008.html)
- 13. UltraScale Architecture GTH Transceivers User Guide (UG576)
- 14. UltraScale Architecture GTY Transceivers User Guide (UG578)
- 15. Arm AMBA AXI Protocol v2.0 Specification (Arm IHI 0022C) (http://infocenter.arm.com/ help/index.jsp?topic=/com.arm.doc.ihi0022c/index.html)
- 16. AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059)

Revision History

The following table shows the revision history for this document.

Section	Revision Summary
05/22/2019 Version 2.3	
Auto-Negotiation (Clause 37)	Added Auto-Negotiation Clause 37 information.
Miscellaneous Status/Control Ports	Added signal_detect port.
Configuration Options	Updated configuration options table with Statistics Resource Type, Include Statistics Counters, and updated Auto-Negotiation options (Clause 73 and Clause 37).
12/05/2018 Version 2.2	
XGMII Interfaces	Added timing diagrams and descriptions.
Using the Client-Side GMII Interface	Added timing diagrams and descriptions.
Table 2-19	Added Link Training Ports table.
Table 2-20	Added IEEE 802.3 Clause 74 FEC Interface Control/ Status/Statistics Signals table.
Pause Interface	Added Pause Interface I/O ports.
Auto-Negotiation Clocking	Added Auto-Negotiation Clocking Architecture figure.
Pause Processing	Added Pause Processing section.
Link Training	Added Link Training section.
Table 2-25	Added items to Configuration Register Map.
Table 2-26	Added items to Status Register Map.
Table 2-37	Added items to Statistics Counters.
Table 4-1	Added further PCS/PMA options.
Table 4-2	Added Flow Control section.
Table 5-5	New table for ports available when the Include GT subcore in Example Design option is selected.
Table 5-10, Table 5-11, and Table 5-15	New tables for TX Pause Interface Control/Status/ Statistics Signals, RX Pause Interface Control/Status/ Statistics Signals, and Clause 74 FEC Interface Control/ Status/Statistics Signals in the Core XCI Top Level Port List.
06/06/2018 Version 2.1	

Section	Revision Summary
General updates Auto-Negotiation and Auto-Negotiation Ports Auto-Negotiation Clocking AN Interface Control / Status / Statistics Signals	 Updated the Example Design Clocking and Reset diagrams. Added Optional Clause 73 Auto-Negotiation with Parallel Detection support. Added the clocking architecture for the Auto-Negotiation function. Added AN Interface Control / Status / Statistics Signals table.
04/04,	/2018 Version 2.0
General updates	Initial Xilinx release.
12/20/2017 Version 1.0	
General updates	EA: Xilinx Confidential Draft. Approved for external release under NDA only.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.