UltraScale Devices Integrated Block for 100G Ethernet v2.1

LogiCORE IP Product Guide

Vivado Design Suite

PG165 April 05, 2017

Table of Contents

IP Facts

Chapter 1: Overview	
Feature Summary	5
Licensing and Ordering Information	7
Chapter 2: Product Specification	
Typical Operation	11
Statistics Gathering	11
Testability Functions	11
Pause Operation	12
Standards	12
Performance	12
Resource Utilization	12
Port Descriptions	13
Attribute Descriptions	41
Chapter 3: Designing with the Core	
Clocking	49
Resets	50
Protocol Description	53
PCS	53
MAC	57
1588v2 Timestamping	78
Transceiver Selection Rules	83
Dynamic Reconfiguration Port	84
Chapter 4: Design Flow Steps	
Customizing and Generating the Core	93
Constraining the Core	104
Simulation 1	105
Synthesis and Implementation	INE

Chapter 5: Example Design

Overview 1	106
User Interface	111
CORE XCI Top Level Port List	113
Modes of Operation	156
Transaction Flow	159
CORE DRP Operation	167
AXI4-Lite Interface Implementation	167
IEEE 802.3bj RS-FEC Integration	190
Core Bring Up Sequence	191
Use Case for Different Modes	193
Simulating the Example Design	199
Synthesizing and Implementing the Example Design	201
Appendix A: Auto-Negotiation and Link Training	
Auto-Negotiation	
Link Training	206
Port Descriptions	209
Appendix B: Upgrading	
Appendix C: Debugging	
Finding Help on Xilinx.com	219
Debug Tools	220
Simulation Debug	221
Hardware Debug	222
Interface Debug	224
Protocol Debug	225
Appendix D: Additional Resources and Legal Notices	
Xilinx Resources	227
References	227
Revision History	228
Please Read: Important Legal Notices	

Introduction

The Xilinx® UltraScale™ Devices Integrated Block for 100G Ethernet IP core provides a high performance, low latency 100 Gb/s Ethernet port that allows for a wide range of user customization and statistics gathering. The dedicated block provides both the 100G Ethernet media access control (MAC) and physical coding sublayer (PCS) logic with support for IEEE 1588-2008 [Ref 1] one-step and two-step hardware timestamping.

The 100G Ethernet IP core provides three configurations: (CAUI-10) 10x10.3125G, (CAUI-4) 4x25.78125G, and runtime switchable between CAUI-4 and CAUI-10 mode. The 100G Ethernet IP core is designed to the IEEE std 802.3-2012 [Ref 2] specification.

Features

- Supports CAUI-10, CAUI-4, and runtime switchable between CAUI-4 and CAUI-10 modes
- 512-bit segmented local bus (LBUS) user interface at ~322 MHz
- 32-bit interface to the serial transceiver for CAUI-10 lanes and 80-bit interface to the serial transceiver for CAUI-4 lanes
- Optional fee-based soft 100G RS-FEC
- IEEE 1588-2008 [Ref 1] one-step and two-step hardware timestamping at ingress and egress at full 80-bits
- Pause frame processing including priority based flow control per IEEE std 802.3-2012 Annex 31 [Ref 2]
- Dynamic and static deskew support
- Optional fee-based Auto-negotiation and Link Training feature for CAUI-4 mode
- Supports 100GBASE-CR4, 100GBASE-KR4, 100GBASE-SR, 100GBASE-LR4, etc.

See Feature Summary in Chapter 1 for a list of additional features.

LogiCORE™ IP Facts Table				
Core Specifics				
Supported Device Family ⁽¹⁾	Kintex® UltraScale, Virtex® UltraScale			
Supported User Interfaces	Segmented LBUS			
Resources	Performance and Resource Utilization web page			
	Provided with Core			
Design Files	Verilog			
Example Design	Verilog			
Test Bench	Verilog			
Constraints File	Xilinx Design Constraints (XDC)			
Simulation Model	Verilog			
Supported S/W Driver	Linux ⁽²⁾			
	Tested Design Flows ⁽³⁾			
Design Entry	Vivado® Design Suite			
Simulation For supported simulators, Xilinx Design Tools: Release Notes				
Synthesis	Vivado synthesis			
Support				
Provided by Xilinx at the Xilinx Support web page				

Notes:

- 1. For a complete list of supported devices, see the Vivado IP catalog.
- 2. Contact Ethernet_mgmt@xilinx.com for 100G Ethernet driver early access.
- 3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Overview

This product guide describes the function and operation of the Xilinx® UltraScale™ Devices Integrated Block for 100G Ethernet IP core, including how to design, customize, and implement it.

The core is designed to the *IEEE std 802.3-2012* [Ref 2] specification with an option for *IEEE 1588-2008* [Ref 1] hardware timestamping. The core instantiates the UltraScale Devices Integrated Block for 100G Ethernet. This core simplifies the design process and reduces time to market.

Although the core is a fully-verified solution, implementing a complete design varies depending on the configuration and functionality of the application. See Chapter 2, Product Specification for details about the core.

RECOMMENDED: For best results, previous experience building high performance, pipelined FPGA designs using Xilinx implementation design tools and constraint files is recommended.

IMPORTANT: CAUI-4 and switchable CAUI-10/CAUI-4 require GTY transceivers that are available in Virtex® UltraScale and Kintex® UltraScale devices.

Feature Summary

- One-step and two-step IEEE 1588-2008 [Ref 1] hardware timestamping with transparent clock support
- 20 PCS lanes (PCSLs) for the 100G Ethernet IP core
- GTY or GTH transceivers used for UltraScale devices
- PCS Lane marker framing and de-framing including reordering of each PCS lane
- Link status and alignment monitoring reporting
- 64B/66B decoding and encoding as defined in IEEE std 802.3-2012 Clause 82 [Ref 2]
- Scrambling and descrambling using $x^{58} + x^{39} + 1$ polynomial
- Standard Inter-Packet gap (IPG) insertion and deletion as required by *IEEE std* 802.3-2012 Clause 82 [Ref 2]

- Optional frame check sequence (FCS) calculation and addition in the transmit direction
- FCS checking and optional FCS removal in the receive direction
- Support for 802.3x and priority-based pause operation
- DRP interface for dynamic reconfiguration of the core
- · Detailed statistics gathering
 - Total bytes
 - Total packets
 - Good bytes
 - Good packets
 - Unicast packets
 - Multicast packets
 - Broadcast packets
 - Pause packets
 - Virtual local area network (VLAN) tagged packets
 - 64B/66B code violations
 - Bad preambles
 - Bad FCS
 - Packet histogram for varied packet sizes.

Licensing and Ordering Information

This Xilinx UltraScale Devices 100G Ethernet MAC and PCS IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License.

The soft IEEE 802.3 RS-FEC is a fee-based license provided under the terms of the Xilinx Core License Agreement.

Information about this and other Xilinx LogiCORE™ IP modules is available at the Xilinx Intellectual Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

For more information on the 100G Ethernet MAC and PCS IP and to generate a no-charge license key, visit the <u>UltraScale Integrated 100G Ethernet MAC/PCS Subsystem</u> page.

For more information on generating a hardware evaluation license and ordering for the soft IEEE 802.3 RS-FEC, visit the <u>IEEE 802.3bj Reed-Solomon Forward Error Correction</u> page.

For more information on generating a hardware evaluation license and ordering for the soft AN/LT, visit the <u>UltraScale Integrated 100G Ethernet MAC/PCS Subsystem</u> page.

The licensing requirements for core features is outlined in Table 1-1.

Table 1-1: Licensing Requirements

Feature	License Fee Required?	License Key
CMAC		No charge license key
Auto-Negotiation and Link Training	Yes	EM-DI-100GE_AN_LT-PROJ
Auto-Negotiation and Link Training	res	EM-DI-100GE_AN_LT-SITE
Section 91 RS-FEC	Yes	EF-DI-100G-RS-FEC-PROJ
Section 31 K3-FEC	res	EF-DI-100G-RS-FEC-SITE

Further licensing details are provided in Table 1-2.

Table 1-2: Licensing Details

Physical Medium	IEEE PMD	Module Interface	Auto Negotiation and	FEC Modes Required for PMD			ID Lineare Descripted
	IEEE PIVID	Module Interface	Link Training	No FEC	KR FEC	RS-FEC	IP License Required
Chip 2 Chip	N/A	CEI-25G-VSR/SR/ MR/LR	N/A	Yes	N/A	Yes	Included with Vivado
Backplane	100GBASE-KR4	N/A	Yes	N/A	N/A	Yes	EM-DI-100GE-AN_LT-PROJ EF-100GE-RS-FEC-PROJ
Twinax Cable	100GBASE-CR4	N/A	Yes	N/A	N/A	Yes	EM-DI-100GE-AN_LT-PROJ EF-100GE-RS-FEC-PROJ
100M MMF	100GBASE-SR4	CAUI-4	N/A	N/A	N/A	Yes	Included with Vivado
Parallel SMF	100GBASE-PSM4	CAUI-4	N/A	N/A	N/A	Yes	Included with Vivado
40KM SMF	100GBASE-ER4	CAUI-4	N/A	N/A	N/A	N/A	Included with Vivado
10KM SMF	100GBASE-LR4	CAUI-4	N/A	N/A	N/A	N/A	Included with Vivado
2KM SMF	100GBASE-CWDM4 100GBASE-CLR4	CAUI-4	N/A	N/A	N/A	Yes	Included with Vivado

Product Specification

Table 2-1 defines the integrated CMAC block for the 100 Gb/s Ethernet solution.

Table 2-1: Integrated CMAC Block for the 100 Gb/s Ethernet Solution

Protocol	Lane Width	Line Rate	SerDes	SerDes Width
CAUI-10	x10	10.3125 Gb/s	GTH GTY	32b
CAUI-4	x4	25.78125 Gb/s ⁽²⁾	GTY ⁽¹⁾	80b
Runtime Switchable CAUI-4/CAUI-10	CAUI-10: x10 CAUI-4: x4	CAUI-10: 10.3125 Gb/s CAUI-4: 25.78125 Gb/s	GTY ⁽¹⁾	CAUI-10: 32b CAUI-4: 80b

Notes:

- CAUI-4 and switchable CAUI-10/CAUI-4 require GTY transceivers that are available only in Virtex® UltraScale™
 devices
- 2. The line rate of 25.78125 Gb/s is available on select devices, Virtex UltraScale devices in typical speed grades.

The core instantiates the CMAC block along with the necessary GTH or GTY transceivers. The core provides an example of how the two blocks are connected together, along with the reset and clocking for those blocks.

The integrated block is designed to IEEE std 802.3-2012 [Ref 2].

Figure 2-1 illustrates the following interfaces to the integrated CMAC block.

- Serial transceiver interface
- User-side transmit and receive LBUS interface
- Pause processing
- IEEE 1588-2008 [Ref 1] timestamping interface
- Status/Control interface
- Dynamic reconfiguration port (DRP) interface used for configuration

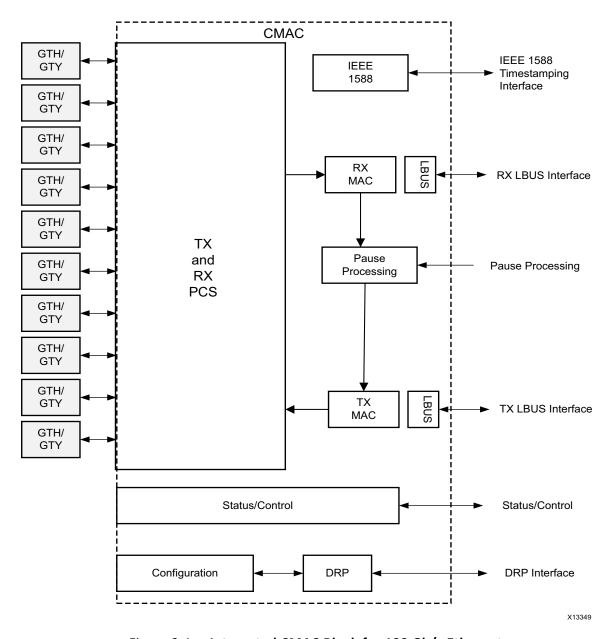


Figure 2-1: Integrated CMAC Block for 100 Gb/s Ethernet

Typical Operation

The 100G Ethernet IP core handles all protocol related functions to communicate to the other devices PCS and Ethernet MAC interface. This includes handshaking, synchronizing and error checking. You provide packet data through the Local Bus (LBUS) TX interface and receive packet data from the LBUS RX interface. The LBUS is designed to match commonly used packet bus protocols made common by the SPI4.2 and Interlaken protocols. A detailed description is given in User Side LBUS Interface in Chapter 3.

The core is designed to be flexible and used in many different applications. The RX path does not perform any buffering other than the pipelining required to perform the required operations. Received data is passed directly to the user interface in a cut-through manner, allowing you the flexibility to implement any required buffering scheme. Also, the core TX path consists of a single pipeline with minimal buffering to provide reliable cut-through operation.

Statistics Gathering

The 100G Ethernet IP core provides a flexible and user-friendly mechanism for gathering statistics. For all the supported statistics, the core has an output signal (or bus if needed) that indicates an increment value for the statistic in a given clock cycle. This allows the increment value to build the required counter mechanism. This mechanism allows you to select which statistics are required in the system without having the cost overhead of a full set of counters. Additionally, and more importantly, you can implement any counter and statistics gathering mechanism required by the system. For example, you can build 32-bit or 64-bit counters as needed, or implement clear-on-read or saturated counters, as required.

For the purposes of TX statistics, good packets are defined as packets without FCS or other errors; bad packets are defined as packets with FCS or any other error.

For the purposes of RX statistics, good packets are defined as packets without FCS or other errors including length error. Bad packets are defined as packets with FCS or any other error. The length field error includes length field error, oversize and undersize packets.

Testability Functions

The 100G Ethernet example design implements the test pattern generation and checking as defined in Clause 82.2.10 (Test-pattern generators) and Clause 82.2.17 (Test-pattern checker). See the IEEE 802.3 documents for details.

Pause Operation

The 100G Ethernet IP core is capable of handling 802.3x and priority-based pause operation. The RX path parses pause packets and presents the extracted quanta on the status interface; the TX path can accept pause packet requests from the control interface and will inject the requested packets into the data stream. Both global pause packets and priority-based pause packets are handled. Details are described in Pause Processing Interface in Chapter 3.

Note: "802.3x" and "global pause" are used interchangeably throughout the document.

Standards

The 100G Ethernet IP core is designed to be compliant with the *IEEE std 802.3-2012* [Ref 2] specification. The timestamping feature is designed to be compliant with *IEEE 1588-2008* [Ref 1].

Performance

The 100G Ethernet IP core is designed to operate with the performance characteristics of the CMAC primitive it instantiates.

See the *Virtex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics* (DS893) [Ref 3] for the maximum frequencies allowed on the 100G Ethernet IP core specified by speed grade.

IMPORTANT: A free-running clock input, $init_clk$, is required for the transceiver portion of the 100G Ethernet IP core. See the UltraScale FPGAs Transceiver Wizards (PG182) [Ref 4] for more information on the $gtwiz_reset_clk_freerun_in$ input port.

Resource Utilization

For full details about performance and resource utilization, visit <u>Performance and Resource Utilization</u>.

Port Descriptions

Table 2-2 provides a detailed description of the Integrated 100G Ethernet block ports. See Table 5-2 for ports at the XCI level of the core.

IMPORTANT: CAUI-4 and switchable CAUI-10/CAUI-4 require GTY transceivers that are available only in Virtex UltraScale devices.

Table 2-2: Transceiver I/O

Name	Direction	Domain	Description
RX_SERDES_ALT_DATA0[15:0]	Input	RX_SERDES_CLK[0]	16-bit group of the Receive data bus from SerDes0. There are 10 RX_SERDES_DATA buses; one bus for each SerDes lane, and each bus has either 80 or 32 bits depending on whether operation is in CAUI-4 or CAUI-10 mode respectively. The first four SerDes lanes can operate at 80 bits or 32 bits, and the remaining six lanes operate at 32 bits. The 32 LSBs of the first four lanes are used in CAUI-10 mode. The mapping of the 80 bits, comprised of a 16-bit group and a 64-bit group, is not obvious. See PCS Lane Multiplexing in Chapter 3 for details.
RX_SERDES_ALT_DATA1[15:0]	Input	RX_SERDES_CLK[1]	16-bit group of the Receive data bus from SerDes1.
RX_SERDES_ALT_DATA2[15:0]	Input	RX_SERDES_CLK[2]	16-bit group of the Receive data bus from SerDes2.
RX_SERDES_ALT_DATA3[15:0]	Input	RX_SERDES_CLK[3]	16-bit group of the Receive data bus from SerDes3.
RX_SERDES_DATA0[63:0]	Input	RX_SERDES_CLK[0]	64-bit group of the Receive data bus from SerDes0
RX_SERDES_DATA1[63:0]	Input	RX_SERDES_CLK[1]	64-bit group of the Receive data bus from SerDes1.
RX_SERDES_DATA2[63:0]	Input	RX_SERDES_CLK[2]	64-bit group of the Receive data bus from SerDes2
RX_SERDES_DATA3[63:0]	Input	RX_SERDES_CLK[3]	64-bit group of the Receive data bus from SerDes3
RX_SERDES_DATA4[31:0]	Input	RX_SERDES_CLK[4]	Data bus from SerDes4.
RX_SERDES_DATA5[31:0]	Input	RX_SERDES_CLK[5]	Data bus from SerDes5.
RX_SERDES_DATA6[31:0]	Input	RX_SERDES_CLK[6]	Data bus from SerDes6.
RX_SERDES_DATA7[31:0]	Input	RX_SERDES_CLK[7]	Data bus from SerDes7.
RX_SERDES_DATA8[31:0]	Input	RX_SERDES_CLK[8]	Data bus from SerDes8.

Table 2-2: Transceiver I/O (Cont'd)

Name	Direction	Domain	Description
RX_SERDES_DATA9[31:0]	Input	RX_SERDES_CLK[9]	Data bus from SerDes9.
TX_SERDES_ALT_DATA0[15:0]	Output	TX_SERDES_CLK[0]	16-bit group of the Transmit data bus to SerDes0. There are 10 TX_SERDES_DATA buses; one bus for each SerDes lane, and each bus has either 80 or 32 bits depending on whether the operation is in CAUI-4 or CAUI-10 mode respectively. The first four SerDes lanes can operate at 80 bits or 32 bits, and the remaining six lanes operate at 32 bits. The 32 LSBs of the first four lanes are used in CAUI-10 mode. The mapping of the 80 bits, comprised of a 16-bit group and a 64-bit group, is not obvious. See PCS Lane Multiplexing in Chapter 3 for details.
TX_SERDES_ALT_DATA1[15:0]	Output	TX_SERDES_CLK[1]	16-bit group of the Transmit data bus to SerDes1.
TX_SERDES_ALT_DATA2[15:0]	Output	TX_SERDES_CLK[2]	16-bit group of the Transmit data bus to SerDes2.
TX_SERDES_ALT_DATA3[15:0]	Output	TX_SERDES_CLK[3]	16-bit group of the Transmit data bus to SerDes3.
TX_SERDES_DATA0[63:0]	Output	TX_SERDES_CLK[0]	64-bit group of the Transmit data bus to SerDes0
TX_SERDES_DATA1[63:0]	Output	TX_SERDES_CLK[1]	64-bit group of the Transmit data bus to SerDes1
TX_SERDES_DATA2[63:0]	Output	TX_SERDES_CLK[2]	64-bit group of the Transmit data bus to SerDes2
TX_SERDES_DATA3[63:0]	Output	TX_SERDES_CLK[3]	64-bit group of the Transmit data bus to SerDes3
TX_SERDES_DATA4[31:0]	Output	TX_SERDES_CLK[4]	Data bus to SerDes4.
TX_SERDES_DATA5[31:0]	Output	TX_SERDES_CLK[5]	Data bus to SerDes5.
TX_SERDES_DATA6[31:0]	Output	TX_SERDES_CLK[6]	Data bus to SerDes6.
TX_SERDES_DATA7[31:0]	Output	TX_SERDES_CLK[7]	Data bus to SerDes7.
TX_SERDES_DATA8[31:0]	Output	TX_SERDES_CLK[8]	Data bus to SerDes8.
TX_SERDES_DATA9[31:0]	Output	TX_SERDES_CLK[9]	Data bus to SerDes9.
RX_SERDES_CLK[9:0]	Input		Recovered clock of each SerDes lane. The RX_SERDES_DATA bus for each lane is synchronized to the positive edge of the corresponding bit of this bus.
RX_SERDES_RESET[9:0]	Input	RX_SERDES_CLK[9:0]	Reset for each RX SerDes lane. The recovered clock for each SerDes lane has associated with it an active-High reset. This signal should be 1 whenever the associated recovered clock is not operating at the correct frequency. Generally this signal is derived from a PLL lock signal. This reset signal should be held in reset until the serial transceiver (GT) is finished its initialization and the RX_SERDES_CLK is stable.

Table 2-3: LBUS Interface – Clock/Reset Signals

Name	Direction	Domain	Description
TX_CLK	Input		TX clock. All TX signals between the 100G Ethernet IP core and the user-side logic are synchronized to the positive edge of this signal. The clock frequency is equal to the line rate divided by the SerDes width. This frequency is nominally 322.265625 MHz.
RX_CLK	Input		RX clock. All RX signals between the 100G Ethernet IP core and the user-side logic are synchronized to the positive edge of this signal. The frequency of this clock should be the same as the TX clock.
RX_RESET	Input	async (5 ns min)	Reset for the RX circuits. This signal is active-High (1 = reset) and must be held High until RX_CLK is stable. The 100G Ethernet IP core handles synchronizing the RX_RESET input to the appropriate clock domains within the 100G Ethernet IP core.
TX_RESET	Input	async (5 ns min)	Reset for the TX circuits. This signal is active-High (1 = reset) and must be held High until TX_CLK is stable. The 100G Ethernet IP core handles synchronizing the TX_RESET input to the appropriate clock domains within the 100G Ethernet IP core.

Table 2-4: LBUS Interface – RX Path Signals

Name	Direction	Domain	Description
RX_DATAOUT0[127:0]	Output	RX_CLK	Receive segmented LBUS Data for segment 0. The value of this bus is only valid in cycles that RX_ENAOUT0 is sampled as 1.
RX_DATAOUT1[127:0]	Output	RX_CLK	Receive segmented LBUS Data for segment1.
RX_DATAOUT2[127:0]	Output	RX_CLK	Receive segmented LBUS Data for segment2.
RX_DATAOUT3[127:0]	Output	RX_CLK	Receive segmented LBUS Data for segment3.
RX_ENAOUT0	Output	RX_CLK	Receive LBUS Enable for segment0. This signal qualifies the other signals of the RX segmented LBUS Interface. Signals of the RX LBUS Interface are only valid in cycles in which RX_ENAOUT is sampled as a 1.
RX_ENAOUT1	Output	RX_CLK	Receive LBUS Enable for segment1.
RX_ENAOUT2	Output	RX_CLK	Receive LBUS Enable for segment2.
RX_ENAOUT3	Output	RX_CLK	Receive LBUS Enable for segment3.
RX_SOPOUT0	Output	RX_CLK	Receive LBUS start of packet (SOP) for segment0. This signal indicates the SOP when it is sampled as a 1 and is only valid in cycles in which RX_ENAOUT is sampled as a 1.
RX_SOPOUT1	Output	RX_CLK	Receive LBUS SOP for segment1.
RX_SOPOUT2	Output	RX_CLK	Receive LBUS SOP for segment2.
RX_SOPOUT3	Output	RX_CLK	Receive LBUS SOP for segment3.

Table 2-4: LBUS Interface – RX Path Signals (Cont'd)

Name	Direction	Domain	Description
RX_EOPOUT0	Output	RX_CLK	Receive LBUS end of packet (EOP) for segment0. This signal indicates the EOP when it is sampled as a 1 and is only valid in cycles in which RX_ENAOUT is sampled as a 1.
RX_EOPOUT1	Output	RX_CLK	Receive LBUS EOP for segment1.
RX_EOPOUT2	Output	RX_CLK	Receive LBUS EOP for segment2.
RX_EOPOUT3	Output	RX_CLK	Receive LBUS EOP for segment3.
RX_ERROUT0	Output	RX_CLK	Receive LBUS Error for segment0. This signal indicates that the current packet being received has an error when it is sampled as a 1. This signal is only valid in cycles when both RX_ENAOUT and RX_EOPOUT are sampled as a 1. When this signal is a value of 0, it indicates that there is no error in the packet being received.
RX_ERROUT1	Output	RX_CLK	Receive LBUS Error for segment1.
RX_ERROUT2	Output	RX_CLK	Receive LBUS Error for segment2.
RX_ERROUT3	Output	RX_CLK	Receive LBUS Error for segment3.
RX_MTYOUT0[3:0]	Output	RX_CLK	Receive LBUS Empty for segment0. This bus indicates how many bytes of the RX_DATAOUT bus are empty or invalid for the last transfer of the current packet. This bus is only valid in cycles when both RX_ENAOUT and RX_EOPOUT are sampled as 1. When RX_ERROUT and RX_ENAOUT are sampled as 1, the value of RX_MTYOUT[2:0] is always 000. Other bits of RX_MTYOUT are as usual.
RX_MTYOUT1[3:0]	Output	RX_CLK	Receive LBUS Empty for segment1.
RX_MTYOUT2[3:0]	Output	RX_CLK	Receive LBUS Empty for segment2.
RX_MTYOUT3[3:0]	Output	RX_CLK	Receive LBUS Empty for segment3.

Table 2-5: LBUS Interface – TX Path Signals

Name	Direction	Domain	Description
TX_RDYOUT	Output	TX_CLK	Transmit LBUS Ready. This signal indicates whether the dedicated 100G Ethernet IP core TX path is ready to accept data and provides back-pressure to the user logic. A value of 1 means the user logic can pass data to the 100G Ethernet IP core. A value of 0 means the user logic must stop transferring data to the 100G Ethernet IP core within four cycles or there will be an overflow.
			If TX_RDYOUT goes to 0, it causes user logic to stop transferring data in the middle of a packet, and user logic must resume transferring data within 4 cycle of TX_RDYOUT returning to a value of 1.
TX_OVFOUT	Output	TX_CLK	Transmit LBUS Overflow. This signal indicates whether you have violated the back-pressure mechanism provided by the TX_RDYOUT signal. If TX_OVFOUT is sampled as a 1, a violation has occurred. It is up to you to design the rest of the user logic to not overflow the TX interface. In the event of an overflow condition, the TX path must be reset.
TX_UNFOUT	Output	TX_CLK	Transmit LBUS Underflow. This signal indicates whether you have under-run the LBUS interface. If TX_UNFOUT is sampled as 1, a violation has occurred meaning the current packet is corrupted. Error control blocks are transmitted as long as the underflow condition persists. It is up to the user logic to ensure a complete packet is input to the core without under-running the LBUS interface.
TX_DATAIN0[127:0]	Input	TX_CLK	Transmit segmented LBUS Data for segment0. This bus receives input data from the user logic. The value of the bus is captured in every cycle that TX_ENAIN is sampled as 1.
TX_DATAIN1[127:0]	Input	TX_CLK	Transmit segmented LBUS Data for segment1.
TX_DATAIN2[127:0]	Input	TX_CLK	Transmit segmented LBUS Data for segment2.
TX_DATAIN3[127:0]	Input	TX_CLK	Transmit segmented LBUS Data for segment3.
TX_ENAIN0	Input	TX_CLK	Transmit LBUS Enable for segment0. This signal is used to enable the TX LBUS Interface. All signals on this interface are sampled only in cycles in which TX_ENAIN is sampled as a 1.
TX_ENAIN1	Input	TX_CLK	Transmit LBUS Enable for segment1.
TX_ENAIN2	Input	TX_CLK	Transmit LBUS Enable for segment2.
TX_ENAIN3	Input	TX_CLK	Transmit LBUS Enable for segment3.
TX_SOPIN0	Input	TX_CLK	Transmit LBUS SOP for segment0. This signal is used to indicate the SOP when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which TX_ENAIN is sampled as a 1.
TX_SOPIN1	Input	TX_CLK	Transmit LBUS SOP for segment1.
TX_SOPIN2	Input	TX_CLK	Transmit LBUS SOP for segment2.
TX_SOPIN3	Input	TX_CLK	Transmit LBUS SOP for segment3.

Table 2-5: LBUS Interface – TX Path Signals (Cont'd)

Name	Direction	Domain	Description
TX_EOPIN0	Input	TX_CLK	Transmit LBUS EOP for segment0. This signal is used to indicate the EOP when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which TX_ENAIN is sampled as a 1.
TX_EOPIN1	Input	TX_CLK	Transmit LBUS EOP for segment1.
TX_EOPIN2	Input	TX_CLK	Transmit LBUS EOP for segment2.
TX_EOPIN3	Input	TX_CLK	Transmit LBUS EOP for segment3.
TX_ERRINO	Input	TX_CLK	Transmit LBUS Error for segment0. This signal is used to indicate a packet contains an error when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which TX_ENAIN and TX_EOPIN are sampled as 1. When this signal is sampled as a 1, the last data word is replaced with the IEEE standard 802.3-2012 Error Code control word that guarantees the partner device receives the packet in error. If a packet is input with this signal set to a 1, the FCS checking and reporting is disabled (only for that packet).
TX_ERRIN1	Input	TX_CLK	Transmit LBUS Error for segment1.
TX_ERRIN2	Input	TX_CLK	Transmit LBUS Error for segment2.
TX_ERRIN3	Input	TX_CLK	Transmit LBUS Error for segment3.
TX_MTYIN0[3:0]	Input	TX_CLK	Transmit LBUS Empty for segment0. This bus is used to indicate how many bytes of the TX_DATAIN bus are empty or invalid for the last transfer of the current packet. This bus is sampled only in cycles that TX_ENAIN and TX_EOPIN are sampled as 1. When TX_EOPIN and TX_ERRIN are sampled as 1, the value of TX_MTYIN[2:0] is ignored as treated as if it was 000. The other bits of TX_MTYIN are used as usual.
TX_MTYIN1[3:0]	Input	TX_CLK	Transmit LBUS Empty for segment1.
TX_MTYIN2[3:0]	Input	TX_CLK	Transmit LBUS Empty for segment2.
TX_MTYIN3[3:0]	Input	TX_CLK	Transmit LBUS Empty for segment3.

Table 2-6: LBUS Interface – TX Path Control/Status Signals

Name	Direction	Domain	Description
CTL_TX_ENABLE	Input	TX_CLK	TX Enable. This signal is used to enable the transmission of data when it is sampled as a 1. When sampled as a 0, only idles are transmitted by the 100G Ethernet IP core. This input should not be set to 1 until the receiver it is sending data to (that is, the receiver in the other device) is fully aligned and ready to receive data (that is, the other device is not sending a remote fault condition). Otherwise, loss of data can occur. If this signal is set to 0 while a packet is being transmitted, the current packet transmission is completed and then the 100G Ethernet IP core stops transmitting anymore packets.
CTL_TX_SEND_RFI	Input	TX_CLK	Transmit Remote Fault Indication (RFI) code word. If this input is sampled as a 1, the TX path only transmits Remote Fault code words. This input should be set to 1 until the RX path is fully aligned and is ready to accept data from the link partner.
CTL_TX_SEND_IDLE	Input	TX_CLK	Transmit Idle code words. If this input is sampled as a 1, the TX path only transmits Idle code words. This input should be set to 1 when the partner device is sending Remote Fault Indication (RFI) code words.
STAT_TX_LOCAL_FAULT	Output	TX_CLK	A value of 1 indicates the receive decoder state machine is in the TX_INIT state. This output is level sensitive.

Table 2-7: LBUS Interface – RX Path Control/Status Signals

Name	Direction	Domain	Description
CTL_RX_ENABLE	Input	RX_CLK	RX Enable. For normal operation, this input must be set to 1. When this input is set to 0, after the RX completes the reception of the current packet (if any), it stops receiving packets by keeping the PCS from decoding incoming data. In this mode, there are no statistics reported and the LBUS interface is idle.
CTL_RX_FORCE_RESYNC	Input	async (5 ns min)	RX force resynchronization input. This signal is used to force the RX path to reset, re-synchronize, and realign. A value of 1 forces the reset operation. A value of 0 allows normal operation. Note: This input should normally be Low and should only be pulsed (one cycle minimum pulse) to force realignment.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_FRAMING_ERR_0[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 0. Each PCS Lane has a four-bit bus that indicates how many sync header errors were received for that PCS Lane. The value of the bus is only valid when the corresponding STAT_RX_FRAMING_ERR_VALID_[19:0] is a 1. The values on these buses can be updated at any time and are intended to be used as increment values for sync header error counters.
STAT_RX_FRAMING_ERR_1[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 1.
STAT_RX_FRAMING_ERR_2[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 2.
STAT_RX_FRAMING_ERR_3[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 3.
STAT_RX_FRAMING_ERR_4[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 4.
STAT_RX_FRAMING_ERR_5[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 5.
STAT_RX_FRAMING_ERR_6[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 6.
STAT_RX_FRAMING_ERR_7[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 7.
STAT_RX_FRAMING_ERR_8[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 8.
STAT_RX_FRAMING_ERR_9[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 9.
STAT_RX_FRAMING_ERR_10[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 10.
STAT_RX_FRAMING_ERR_11[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 11.
STAT_RX_FRAMING_ERR_12[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 12.
STAT_RX_FRAMING_ERR_13[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 13.
STAT_RX_FRAMING_ERR_14[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 14.
STAT_RX_FRAMING_ERR_15[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 15.
STAT_RX_FRAMING_ERR_16[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 16.
STAT_RX_FRAMING_ERR_17[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 17.
STAT_RX_FRAMING_ERR_18[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 18.
STAT_RX_FRAMING_ERR_19[3:0]	Output	RX_CLK	RX sync header bits framing error for lane 19.
STAT_RX_FRAMING_ERR_VALID_0	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_0[3:0]. When this output is sampled as a 1, the value on the corresponding STAT_RX_FRAMING_ERR_0[3:0] is valid.
STAT_RX_FRAMING_ERR_VALID_1	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_1[3:0].
STAT_RX_FRAMING_ERR_VALID_2	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_2[3:0].
STAT_RX_FRAMING_ERR_VALID_3	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_3[3:0].

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_FRAMING_ERR_VALID_4	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_4[3:0].
STAT_RX_FRAMING_ERR_VALID_5	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_5[3:0].
STAT_RX_FRAMING_ERR_VALID_6	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_6[3:0].
STAT_RX_FRAMING_ERR_VALID_7	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_7[3:0].
STAT_RX_FRAMING_ERR_VALID_8	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_8[3:0].
STAT_RX_FRAMING_ERR_VALID_9	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_9[3:0].
STAT_RX_FRAMING_ERR_VALID_10	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_10[3:0].
STAT_RX_FRAMING_ERR_VALID_11	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_11[3:0].
STAT_RX_FRAMING_ERR_VALID_12	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_12[3:0].
STAT_RX_FRAMING_ERR_VALID_13	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_13[3:0].
STAT_RX_FRAMING_ERR_VALID_14	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_14[3:0].
STAT_RX_FRAMING_ERR_VALID_15	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_15[3:0].
STAT_RX_FRAMING_ERR_VALID_16	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_16[3:0].
STAT_RX_FRAMING_ERR_VALID_17	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_17[3:0].
STAT_RX_FRAMING_ERR_VALID_18	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_18[3:0].
STAT_RX_FRAMING_ERR_VALID_19	Output	RX_CLK	Valid indicator for STAT_RX_FRAMING_ERR_19[3:0].
STAT_RX_LOCAL_FAULT	Output	RX_CLK	This output is High when STAT_RX_INTERNAL_LOCAL_FAULT or STAT_RX_RECEIVED_LOCAL_FAULT is asserted. This output is level sensitive.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_SYNCED[19:0]	Output	RX_CLK	Word Boundary Synchronized. These signals indicate whether a PCS lane is word boundary synchronized. A value of 1 indicates the corresponding PCS lane has achieved word boundary synchronization and it has received a PCS lane marker. Corresponds to management data input/output (MDIO) register bit 3.52.7:0 and 3.53.11:0 as defined in Clause 82.3. This output is level sensitive.
STAT_RX_SYNCED_ERR[19:0]	Output	RX_CLK	Word Boundary Synchronization Error. These signals indicate whether an error occurred during word boundary synchronization in the respective PCS lane. A value of 1 indicates that the corresponding PCS lane lost word boundary synchronization due to sync header framing bits errors or that a PCS lane marker was never received. This output is level sensitive.
STAT_RX_MF_LEN_ERR[19:0]	Output	RX_CLK	PCS Lane Marker Length Error. These signals indicate whether a PCS Lane Marker length mismatch occurred in the respective lane (that is, PCS Lane Markers were received not every CTL_RX_VL_LENGTH_MINUS1 words apart). A value of 1 indicates that the corresponding lane is receiving PCS Lane Markers at wrong intervals. This output remains High until the error condition is removed.
STAT_RX_MF_REPEAT_ERR[19:0]	Output	RX_CLK	PCS Lane Marker Consecutive Error. These signals indicate whether four consecutive PCS Lane Marker errors occurred in the respective lane. A value of 1 indicates an error in the corresponding lane. This output remains High until the error condition is removed.
STAT_RX_MF_ERR[19:0]	Output	RX_CLK	PCS Lane Marker Word Error. These signals indicate that an incorrectly formed PCS Lane Marker Word was detected in the respective lane. A value of 1 indicates an error occurred. This output is pulsed for one clock cycle to indicate the error condition. Pulses can occur in back-to-back cycles.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_ALIGNED	Output	RX_CLK	All PCS Lanes Aligned/De-Skewed. This signal indicates whether or not all PCS lanes are aligned and de-skewed. A value of 1 indicates all PCS lanes are aligned and de-skewed. When this signal is a 1, the RX path is aligned and can receive packet data. When this signal is 0, a local fault condition exists. Also corresponds to MDIO register bit 3.50.12 as defined in Clause 82.3. This output is level sensitive.
STAT_RX_STATUS	Output	RX_CLK	PCS status. A value of 1 indicates that the PCS is aligned and not in HI_BER state. Corresponds to Management Data Input/ Output (MDIO) register bit 3.32.12 as defined in Clause 82.3. This output is level sensitive.
STAT_RX_BLOCK_LOCK[19:0]	Output	RX_CLK	Block lock status for each PCS lane. A value of 1 indicates that the corresponding lane has achieved block lock as defined in Clause 82. Corresponds to MDIO register bit 3.50.7:0 and 3.51.11:0 as defined in Clause 82.3. This output is level sensitive.
STAT_RX_ALIGNED_ERR	Output	RX_CLK	Loss of Lane Alignment/De-Skew. This signal indicates that an error occurred during PCS lane alignment or PCS lane alignment was lost. A value of 1 indicates an error occurred. This output is level sensitive.
STAT_RX_MISALIGNED	Output	RX_CLK	Alignment Error. This signal indicates that the lane aligner did not receive the expected PCS lane marker across all lanes. This signal is not asserted until the PCS lane marker has been received at least once across all lanes and at least one incorrect lane marker has been received. This occurs one metaframe after the error.
			This signal is not asserted if the lane markers have never been received correctly. Lane marker errors are indicated by the corresponding STAT_RX_MF_ERR signal.
			This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.
STAT_RX_REMOTE_FAULT	Output	RX_CLK	Remote fault indication status. If this bit is sampled as a 1, it indicates a remote fault condition was detected. If this bit is sampled as a 0, a remote fault condition does not exist. This output is level sensitive.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_VL_NUMBER_0[4:0]	Output	RX_CLK	The signal STAT_RX_VL_NUMBER_0[4:0] indicates which physical lane is receiving PCS lane 0. There are a total of 20 separate STAT_RX_VL_NUMBER[4:0] buses This bus is only valid when the corresponding bit of be STAT_RX_SYNCED[19:0] is a 1. These outputs are level sensitive.
STAT_RX_VL_NUMBER_1[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 1.
STAT_RX_VL_NUMBER_2[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 2.
STAT_RX_VL_NUMBER_3[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 3.
STAT_RX_VL_NUMBER_4[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 4.
STAT_RX_VL_NUMBER_5[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 5.
STAT_RX_VL_NUMBER_6[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 6.
STAT_RX_VL_NUMBER_7[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 7.
STAT_RX_VL_NUMBER_8[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 8.
STAT_RX_VL_NUMBER_9[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 9.
STAT_RX_VL_NUMBER_10[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 10.
STAT_RX_VL_NUMBER_11[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 11.
STAT_RX_VL_NUMBER_12[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 12.
STAT_RX_VL_NUMBER_13[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 13.
STAT_RX_VL_NUMBER_14[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 14.
STAT_RX_VL_NUMBER_15[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 15.
STAT_RX_VL_NUMBER_16[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 16.
STAT_RX_VL_NUMBER_17[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 17.
STAT_RX_VL_NUMBER_18[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 18.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_VL_NUMBER_19[4:0]	Output	RX_CLK	This signal indicates which physical lane is receiving PCS lane 19.
STAT_RX_VL_DEMUXED[19:0]	Output	RX_CLK	PCS Lane Marker found. If a signal of this bus is sampled as 1, it indicates that the receiver has properly de-multiplexed that PCS lane. These outputs are level sensitive.
STAT_RX_BAD_FCS[3:0]	Output	RX_CLK	Bad FCS indicator. A value of 1 indicates a packet was received with a bad FCS, but not a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.
STAT_RX_STOMPED_FCS[3:0]	Output	RX_CLK	Stomped FCS indicator. A value of 1 or greater indicates that one or more packets were received with a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate the stomped condition. Pulses can occur in back-to-back cycles.
STAT_RX_TRUNCATED	Output	RX_CLK	Packet truncation indicator. A value of 1 indicates that the current packet in flight is truncated due to its length exceeding CTL_RX_MAX_PACKET_LEN[14:0]. This output is pulsed for one clock cycle to indicate the truncated condition. Pulses can occur in back-to-back cycles.
STAT_RX_INTERNAL_LOCAL_FAULT	Output	RX_CLK	This signal goes High when an internal local fault is generated due to any one of the following: test pattern generation, bad lane alignment, or high bit error rate. This signal remains High as long as the fault condition persists.
STAT_RX_RECEIVED_LOCAL_FAULT	Output	RX_CLK	This signal goes High when enough local fault words are received from the link partner to trigger a fault condition as specified by the IEEE fault state machine. This signal remains High as long as the fault condition persists.
STAT_RX_BIP_ERR_0	Output	RX_CLK	BIP8 error indicator for PCS lane 0. A non-zero value indicates the BIP8 signature byte was in error for the corresponding PCS lane. A non-zero value is pulsed for one clock cycle. This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.

Table 2-7: LBUS Interface - RX Path Control/Status Signals (Cont'd)

Name	Direction	Domain	Description
STAT_RX_BIP_ERR_1	Output	RX_CLK	BIP8 error indicator for PCS lane 1.
STAT_RX_BIP_ERR_2	Output	RX_CLK	BIP8 error indicator for PCS lane 2.
STAT_RX_BIP_ERR_3	Output	RX_CLK	BIP8 error indicator for PCS lane 3.
STAT_RX_BIP_ERR_4	Output	RX_CLK	BIP8 error indicator for PCS lane 4.
STAT_RX_BIP_ERR_5	Output	RX_CLK	BIP8 error indicator for PCS lane 5.
STAT_RX_BIP_ERR_6	Output	RX_CLK	BIP8 error indicator for PCS lane 6.
STAT_RX_BIP_ERR_7	Output	RX_CLK	BIP8 error indicator for PCS lane 7.
STAT_RX_BIP_ERR_8	Output	RX_CLK	BIP8 error indicator for PCS lane 8.
STAT_RX_BIP_ERR_9	Output	RX_CLK	BIP8 error indicator for PCS lane 9.
STAT_RX_BIP_ERR_10	Output	RX_CLK	BIP8 error indicator for PCS lane 10.
STAT_RX_BIP_ERR_11	Output	RX_CLK	BIP8 error indicator for PCS lane 11.
STAT_RX_BIP_ERR_12	Output	RX_CLK	BIP8 error indicator for PCS lane 12.
STAT_RX_BIP_ERR_13	Output	RX_CLK	BIP8 error indicator for PCS lane 13.
STAT_RX_BIP_ERR_14	Output	RX_CLK	BIP8 error indicator for PCS lane 14.
STAT_RX_BIP_ERR_15	Output	RX_CLK	BIP8 error indicator for PCS lane 15.
STAT_RX_BIP_ERR_16	Output	RX_CLK	BIP8 error indicator for PCS lane 16.
STAT_RX_BIP_ERR_17	Output	RX_CLK	BIP8 error indicator for PCS lane 17.
STAT_RX_BIP_ERR_18	Output	RX_CLK	BIP8 error indicator for PCS lane 18.
STAT_RX_BIP_ERR_19	Output	RX_CLK	BIP8 error indicator for PCS lane 19.
STAT_RX_HI_BER	Output	RX_CLK	High Bit Error Rate (BER) indicator. When set to 1, the BER is too high as defined by the 802.3. Corresponds to MDIO register bit 3.32.1 as defined in Clause 82.3. This output is level sensitive.

Table 2-8: Miscellaneous Status/Control Signals

Name	Direction	Domain	Description
STAT_RX_GOT_SIGNAL_OS	Output	RX_CLK	Signal Ordered Sets (OS) indication. If this bit is sampled as a 1, it indicates that a Signal OS word was received. Signal OS should not be received in an Ethernet network.
CTL_RX_TEST_PATTERN	Input	RX_CLK	Test pattern checking enable for the RX core. A value of 1 enables test mode as defined in Clause 82.2.18. Corresponds to MDIO register bit 3.42.2 as defined in Clause 82.3. Checks for scrambled idle pattern.

Table 2-8: Miscellaneous Status/Control Signals (Cont'd)

Name	Direction	Domain	Description
CTL_TX_TEST_PATTERN	Input	TX_CLK	Test pattern generation enable for the TX core. A value of 1 enables test mode as defined in Clause 82.2.18. Corresponds to MDIO register bit 3.42.3 as defined in Clause 82.3. Generates a scrambled idle pattern.
STAT_RX_TEST_PATTERN_ MISMATCH[2:0]	Output	RX_CLK	Test pattern mismatch increment. A non-zero value in any cycle indicates how many mismatches occurred for the test pattern in the RX core. This output is only active when CTL_RX_TEST_PATTERN is set to a 1. This output can be used to generate MDIO register 3.43.15:0 as defined in Clause 82.3. This output is pulsed for one clock cycle.
CTL_CAUI4_MODE	Input	async state	When this input is High, the dedicated 100G Ethernet IP core operates in CAUI-4 mode and when Low in CAUI-10 mode.
CTL_TX_LANE0_VLM_BIP7_OVERRIDE	Input	TX_CLK	When this input is High, the bip7 byte of the PCS lane0 marker is over-ridden by CTL_TX_LANE0_VLM_BIP7_OVERRIDE_VALUE[7:0]
CTL_TX_LANE0_VLM_BIP7_OVERRIDE _VALUE[7:0]	Input	TX_CLK	This input is the override value of the bip7 byte of PCS lane0 marker when CTL_TX_LANE0_VLM_BIP7_OVERRIDE is asserted.
STAT_RX_LANE0_VLM_BIP7[7:0]	Output	RX_CLK	This output is the received value of the bip7 byte in the PCS lane0 marker.
STAT_RX_LANE0_VLM_BIP7_VALID	Output	RX_CLK	This output, when asserted, indicates that the value of STAT_RX_LANE0_VLM_BIP[7:0] is valid.

Table 2-9: Statistics Interface - RX Path

Name	Direction	Domain	Description
STAT_RX_TOTAL_BYTES[7:0]	Output	RX_CLK	Increment for the total number of bytes received.
STAT_RX_TOTAL_PACKETS[3:0]	Output	RX_CLK	Increment for the total number of packets received.
STAT_RX_TOTAL_GOOD_BYTES[13:0]	Output	RX_CLK	Increment for the total number of good bytes received. This value is only non-zero when a packet is received completely and contains no errors.

Table 2-9: Statistics Interface - RX Path (Cont'd)

Name	Direction	Domain	Description
STAT_RX_TOTAL_GOOD_PACKETS	Output	RX_CLK	Increment for the total number of good packets received. This value is only non-zero when a packet is received completely and contains no errors.
STAT_RX_PACKET_BAD_FCS	Output	RX_CLK	Increment for packets between 64 and ctl_rx_max_packet_len bytes that have FCS errors.
STAT_RX_PACKET_64_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 64 bytes.
STAT_RX_PACKET_65_127_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 65 to 127 bytes.
STAT_RX_PACKET_128_255_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 128 to 255 bytes.
STAT_RX_PACKET_256_511_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 256 to 511 bytes.
STAT_RX_PACKET_512_1023_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 512 to 1,023 bytes.
STAT_RX_PACKET_1024_1518_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 1,024 to 1,518 bytes.
STAT_RX_PACKET_1519_1522_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 1,519 to 1,522 bytes.
STAT_RX_PACKET_1523_1548_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 1,523 to 1,548 bytes.
STAT_RX_PACKET_1549_2047_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 1,549 to 2,047 bytes.
STAT_RX_PACKET_2048_4095_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 2,048 to 4,095 bytes.
STAT_RX_PACKET_4096_8191_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 4,096 to 8,191 bytes.
STAT_RX_PACKET_8192_9215_BYTES	Output	RX_CLK	Increment for good and bad packets received that contain 8,192 to 9,215 bytes.
STAT_RX_PACKET_SMALL[3:0]	Output	RX_CLK	Increment for all packets that are less than 64 bytes long.
STAT_RX_PACKET_LARGE	Output	RX_CLK	Increment for all packets that are more than 9,215 bytes long.
STAT_RX_UNICAST	Output	RX_CLK	Increment for good unicast packets.
STAT_RX_MULTICAST	Output	RX_CLK	Increment for good multicast packets.
STAT_RX_BROADCAST	Output	RX_CLK	Increment for good broadcast packets.

Table 2-9: Statistics Interface – RX Path (Cont'd)

Name	Direction	Domain	Description
STAT_RX_OVERSIZE	Output	RX_CLK	Increment for packets longer than CTL_RX_MAX_PACKET_LEN with good FCS.
STAT_RX_TOOLONG	Output	RX_CLK	Increment for packets longer than CTL_RX_MAX_PACKET_LEN with good and bad FCS.
STAT_RX_UNDERSIZE[3:0]	Output	RX_CLK	Increment for packets shorter than STAT_RX_MIN_PACKET_LEN with good FCS.
STAT_RX_FRAGMENT[3:0]	Output	RX_CLK	Increment for packets shorter than stat_rx_min_packet_len with bad FCS.
STAT_RX_VLAN	Output	RX_CLK	Increment for good 802.1Q tagged VLAN packets.
STAT_RX_INRANGEERR	Output	RX_CLK	Increment for packets with Length field error but with good FCS.
STAT_RX_JABBER	Output	RX_CLK	Increment for packets longer than CTL_RX_MAX_PACKET_LEN with bad FCS.
STAT_RX_PAUSE	Output	RX_CLK	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
STAT_RX_USER_PAUSE	Output	RX_CLK	Increment for priority based pause packets with good FCS.
STAT_RX_BAD_CODE[2:0]	Output	RX_CLK	Increment for 64B/66B code violations. This signal indicates that the RX PCS receive state machine is in the RX_E state as specified by the 802.3 specifications. This output can be used to generate MDIO register 3.33:7:0 as defined in Clause 82.3.
STAT_RX_BAD_SFD	Output	RX_CLK	Increment bad SFD. This signal indicates if the Ethernet packet received was preceded by a valid start of frame delimiter (SFD). A value of 1 indicates that an invalid SFD was received.
STAT_RX_BAD_PREAMBLE	Output	RX_CLK	Increment bad preamble. This signal indicates if the Ethernet packet received was preceded by a valid preamble. A value of 1 indicates that an invalid preamble was received.

Table 2-10: Statistics Interface - TX Path

Name	Direction	Domain	Description
STAT_TX_TOTAL_BYTES[6:0]	Output	TX_CLK	Increment for the total number of bytes transmitted.
STAT_TX_TOTAL_PACKETS	Output	TX_CLK	Increment for the total number of packets transmitted.
STAT_TX_TOTAL_GOOD_BYTES[13:0]	Output	TX_CLK	Increment for the total number of good bytes transmitted. This value is only non-zero when a packet is transmitted completely and contains no errors.
STAT_TX_TOTAL_GOOD_PACKETS	Output	TX_CLK	Increment for the total number of good packets transmitted.
STAT_TX_BAD_FCS	Output	TX_CLK	Increment for packets greater than 64 bytes that have FCS errors.
STAT_TX_PACKET_64_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 64 bytes.
STAT_TX_PACKET_65_127_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 65 to 127 bytes.
STAT_TX_PACKET_128_255_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 128 to 255 bytes.
STAT_TX_PACKET_256_511_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 256 to 511 bytes.
STAT_TX_PACKET_512_1023_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 512 to 1,023 bytes.
STAT_TX_PACKET_1024_1518_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 1,024 to 1,518 bytes.
STAT_TX_PACKET_1519_1522_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 1,519 to 1,522 bytes.
STAT_TX_PACKET_1523_1548_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 1,523 to 1,548 bytes.
STAT_TX_PACKET_1549_2047_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 1,549 to 2,047 bytes.
STAT_TX_PACKET_2048_4095_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 2,048 to 4,095 bytes.
STAT_TX_PACKET_4096_8191_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 4,096 to 8,191 bytes.
STAT_TX_PACKET_8192_9215_BYTES	Output	TX_CLK	Increment for good and bad packets transmitted that contain 8,192 to 9,215 bytes.

Table 2-10: Statistics Interface – TX Path (Cont'd)

Name	Direction	Domain	Description
STAT_TX_PACKET_SMALL	Output	TX_CLK	Increment for all packets that are less than 64 bytes long. Packet transfers of less than 64 bytes are not permitted.
STAT_TX_PACKET_LARGE	Output	TX_CLK	Increment for all packets that are more than 9,215 bytes long.
STAT_TX_UNICAST	Output	TX_CLK	Increment for good unicast packets.
STAT_TX_MULTICAST	Output	TX_CLK	Increment for good multicast packets.
STAT_TX_BROADCAST	Output	TX_CLK	Increment for good broadcast packets.
STAT_TX_VLAN	Output	TX_CLK	Increment for good 802.1Q tagged VLAN packets.
STAT_TX_PAUSE	Output	TX_CLK	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
STAT_TX_USER_PAUSE	Output	TX_CLK	Increment for priority based pause packets with good FCS.
STAT_TX_FRAME_ERROR	Output	TX_CLK	Increment for packets with tx_errin set to indicate an EOP abort.

Table 2-11: Pause Interface – Control Signals

Name	Direction	Domain	Description
CTL_RX_PAUSE_ENABLE[8:0]	Input	RX_CLK	RX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority.
	·		This signal only affects the RX user interface, not the pause processing logic.
CTL_TX_PAUSE_ENABLE[8:0]	Input	TX_CLK	TX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority. This signal gates transmission of pause packets.

Table 2-12: Pause Interface - RX Path

Name	Direction	Domain	Description
CTL_RX_ENABLE_GCP	Input	RX_CLK	A value of 1 enables global control packet processing.
CTL_RX_CHECK_MCAST_GCP	Input	RX_CLK	A value of 1 enables global control multicast destination address processing.
CTL_RX_CHECK_UCAST_GCP	Input	RX_CLK	A value of 1 enables global control unicast destination address processing.
CTL_RX_CHECK_SA_GCP	Input	RX_CLK	A value of 1 enables global control source address processing.

Table 2-12: Pause Interface – RX Path (Cont'd)

Name	Direction	Domain	Description
CTL_RX_CHECK_ETYPE_GCP	Input	RX_CLK	A value of 1 enables global control Ethertype processing.
CTL_RX_CHECK_OPCODE_GCP	Input	RX_CLK	A value of 1 enables global control opcode processing.
CTL_RX_ENABLE_PCP	Input	RX_CLK	A value of 1 enables priority control packet processing.
CTL_RX_CHECK_MCAST_PCP	Input	RX_CLK	A value of 1 enables priority control multicast destination address processing.
CTL_RX_CHECK_UCAST_PCP	Input	RX_CLK	A value of 1 enables priority control unicast destination address processing.
CTL_RX_CHECK_SA_PCP	Input	RX_CLK	A value of 1 enables priority control source address processing.
CTL_RX_CHECK_ETYPE_PCP	Input	RX_CLK	A value of 1 enables priority control Ethertype processing.
CTL_RX_CHECK_OPCODE_PCP	Input	RX_CLK	A value of 1 enables priority control opcode processing.
CTL_RX_ENABLE_GPP	Input	RX_CLK	A value of 1 enables global pause packet processing.
CTL_RX_CHECK_MCAST_GPP	Input	RX_CLK	A value of 1 enables global pause multicast destination address processing.
CTL_RX_CHECK_UCAST_GPP	Input	RX_CLK	A value of 1 enables global pause unicast destination address processing.
CTL_RX_CHECK_SA_GPP	Input	RX_CLK	A value of 1 enables global pause source address processing.
CTL_RX_CHECK_ETYPE_GPP	Input	RX_CLK	A value of 1 enables global pause Ethertype processing.
CTL_RX_CHECK_OPCODE_GPP	Input	RX_CLK	A value of 1 enables global pause opcode processing.
CTL_RX_ENABLE_PPP	Input	RX_CLK	A value of 1 enables priority pause packet processing.
CTL_RX_CHECK_MCAST_PPP	Input	RX_CLK	A value of 1 enables priority pause multicast destination address processing.
CTL_RX_CHECK_UCAST_PPP	Input	RX_CLK	A value of 1 enables priority pause unicast destination address processing.
CTL_RX_CHECK_SA_PPP	Input	RX_CLK	A value of 1 enables priority pause source address processing.
CTL_RX_CHECK_ETYPE_PPP	Input	RX_CLK	A value of 1 enables priority pause Ethertype processing.
CTL_RX_CHECK_OPCODE_PPP	Input	RX_CLK	A value of 1 enables priority pause opcode processing.

Table 2-12: Pause Interface – RX Path (Cont'd)

Name	Direction	Domain	Description
STAT_RX_PAUSE_REQ[8:0]	Output	RX_CLK	Pause request signal. When the RX receives a valid pause frame, it sets the corresponding bit of this bus to a 1 and holds at 1 until the pause packet has been processed. See Pause Processing Interface in Chapter 3.
CTL_RX_PAUSE_ACK[8:0]	Input	RX_CLK	Pause acknowledge signal. This bus is used to acknowledge the receipt of the pause frame from the user logic. See Pause Processing Interface in Chapter 3.
STAT_RX_PAUSE_VALID[8:0]	Output	RX_CLK	This bus indicates that a pause packet was received and the associated quanta on the STAT_RX_PAUSE_QUANTA[8:0][15:0] bus is valid and must be used for pause processing. If an 802.3x Ethernet MAC Pause packet is received, bit[8] is set to 1.
STAT_RX_PAUSE_QUANTA0[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 0 in priority based pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta is placed in STAT_RX_PAUSE_QUANTA8[15:0].
STAT_RX_PAUSE_QUANTA1[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 1 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA2[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 2 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA3[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 3 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA4[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 4 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA5[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 5 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA6[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 6 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA7[15:0]	Output	RX_CLK	This bus indicates the quanta received for priority 7 in a priority based pause operation.
STAT_RX_PAUSE_QUANTA8[15:0]	Output	RX_CLK	This bus indicates the value of an 802.3x Ethernet MAC Pause packet when received.

Table 2-13: Pause Interface - TX Path

Name	Direction	Domain	Description
CTL_TX_PAUSE_REQ[8:0]	Input	TX_CLK	If a bit of this bus is set to 1, the dedicated 100G Ethernet IP core transmits a pause packet using the associated quanta value on the CTL_TX_PAUSE_QUANTA[8:0][15:0] bus. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted. Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.
CTL_TX_PAUSE_QUANTA0[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 0 in a priority based pause operation. If an 802.3x Ethernet MAC Pause packet is to be transmitted, the quanta is placed in CTL_TX_PAUSE_QUANTA8[15:0].
CTL_TX_PAUSE_QUANTA1[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 1 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA2[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 2 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA3[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 3 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA4[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 4 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA5[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 5 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA6[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 6 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA7[15:0]	Input	TX_CLK	This bus indicates the quanta to be transmitted for priority 7 in a priority based pause operation.
CTL_TX_PAUSE_QUANTA8[15:0]	Input	TX_CLK	This bus indicates the value of an 802.3x MAC Pause packet to be transmitted.
CTL_TX_PAUSE_REFRESH_TIMER0[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 0 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER1[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 1 in a priority based pause operation.

Table 2-13: Pause Interface – TX Path (Cont'd)

Name	Direction	Domain	Description
CTL_TX_PAUSE_REFRESH_TIMER2[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 2 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER3[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 3 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER4[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 4 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER5[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 5 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER6[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 6 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER7[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for priority 7 in a priority based pause operation.
CTL_TX_PAUSE_REFRESH_TIMER8[15:0]	Input	TX_CLK	This bus sets the retransmission time of pause packets for a global pause operation.
CTL_TX_RESEND_PAUSE	Input	TX_CLK	Re-transmit pending pause packets. When this input is sampled as 1, all pending pause packets are retransmitted as soon as possible (that is, after the current packet in flight is completed) and the retransmit counters are reset. This input should be pulsed to 1 for one cycle at a time.
STAT_TX_PAUSE_VALID[8:0]	Output	TX_CLK	If a bit of this bus is set to 1, the dedicated 100G Ethernet IP core has transmitted a pause packet. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.

Table 2-14: IEEE 1588 Interface - TX Path

Name	Direction	Domain	Description
			System timer input for the TX.
			In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds.
CTL_TX_SYSTEMTIMERIN[80-1:0]	Input	TX_CLK	In transparent clock mode, bit 63 is the sign bit, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to IEEE 1588v2 for the representational definitions.
			This input must be in the TX clock domain.
TX_PTP_TSTAMP_VALID_OUT	Output	TX_CLK	This bit indicates that a valid timestamp is being presented on the TX.
TX_PTP_PCSLANE_OUT[5-1:0]	Output	TX_CLK	This bus identifies which of the 20 PCS lanes that the SOP was detected on for the corresponding timestamp.
TX_PTP_TSTAMP_TAG_OUT[15:0]	Output	TX_CLK	Tag output corresponding to TX_PTP_TAG_FIELD_IN[15:0].
TX_PTP_TSTAMP_OUT[79:0]	Output	TX_CLK	Time stamp for the transmitted packet SOP corresponding to the time at which it passed the capture plane.
			The representation of the bits contained in this bus is the same as the timer input.
		TX_CLK	2'b00 – "No operation": no timestamp will be taken and the frame will not be modified.
TX_PTP_1588OP_IN[1:0]	Input		• 2'b01 – "1-step": a timestamp should be taken and inserted into the frame.
TX_F FF_1300OF_IN[1.0]	input		• 2'b10 – "2-step": a timestamp should be taken and returned to the client using the additional ports of 2-step operation. The frame itself will not be modified.
			• 2'b11 – Reserved.
			The usage of this field is dependent on the 1588 operation
TX_PTP_TAG_FIELD_IN[15:0]		TX_CLK	For "No operation", this field will be ignored.
	Input		• For "1-step" and "2-step", this field is a tag field. This tag value will be returned to the client with the timestamp for the current frame using the additional ports of 2-step operation. This tag value can be used by software to ensure that the timestamp can be matched with the precise timing protocol (PTP) frame that it sent for transmission.

Table 2-14: IEEE 1588 Interface – TX Path (Cont'd)

Name	Direction	Domain	Description
			The usage of this field is dependent on the 1588 operation
			• For "No operation" or "2-step", this bit will be ignored.
TX_PTP_UPD_CHKSUM_IN	Input	TX_CLK	• For "1-step":
TX_FT _OF B_CFTRSOWI_IN	Input	TA_CER	 1'b0: The PTP frame does not contain a UDP checksum.
			 1'b1: The PTP frame does contain a UDP checksum which the core is required to recalculate.
TX_PTP_CHKSUM_OFFSET_IN[15:0]	Input	TX_CLK	The usage of this field is dependent on the "1588 operation" and on the "Update Checksum" bit.
			• For "No operation", for "2-step" or for "1-step" when "Update Checksum" is set to 1'b0, this field will be ignored.
			• For "1-step" when "Update Checksum" is set to 1'b1, this field is a numeric value indicating the number of bytes into the frame to where the first byte of the checksum is located (where a value of 0 represents the first byte of the Destination Address, etc).
			Note: Only even values are supported.
			Note: The IPv6 header size is unbounded, so this field is able to cope with all frames sizes up to 16K jumbo frames. Only even values are supported.

Table 2-14: IEEE 1588 Interface – TX Path (Cont'd)

Name	Direction	Domain	Description
		TX_CLK	The usage of this field is dependent on the 1588 operation
			For "No operation" or "2-step" this field will be ignored.
	Input		• For "1-step", this field is a numeric value indicating the number of bytes into the frame to where the first byte of the timestamp to be inserted is located (where a value of 0 represents the first byte of the Destination Address, etc).
TX_PTP_TSTAMP_OFFSET_IN[15:0]			This input is also used to specify the offset for the correction field in 1-step Transparent Clock mode.
			Note: The IPv6 header size is unbounded, so this field is able to cope with all frames sizes up to 16K jumbo frames.
			Note: Only even values are supported.
			Note: In transparent clock mode and when tx_ptp_upd_chksum_in=1, this value cannot be greater than tx_ptp_chksum_offset_in + 34 (decimal).
CTL_TX_PTP_VLANE_ADJUST_MODE	Input	async state	When asserted, this signal applies an adjustment to the TX timestamps according to the PCS lane on which the SOP occurs. When zero, no adjustment is made.
			This signal only has effect for 1-step operation.
TX_PTP_RXTSTAMP_IN[63:0]	Input	TX_CLK	Reserved
STAT_TX_PTP_FIFO_WRITE_ERROR	Output	TX_CLK	Transmit PTP FIFO write error. A 1 on this status indicates that an error occurred during the PTP Tag write. A TX Path reset is required to clear the error.
STAT_TX_PTP_FIFO_READ_ERROR	Output	TX_CLK	Transmit PTP FIFO read error. A 1 on this status indicates that an error occurred during the PTP Tag read. A TX Path reset is required to clear the error.

Table 2-15: IEEE 1588 Interface - RX Path

Name	Direction	Domain	Description
			System timer input for the RX.
			In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds.
CTL_RX_SYSTEMTIMERIN[80-1:0]	Input	RX_SERDES_CLK[0]	In transparent clock mode, bit 63 is the sign bit, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to IEEE 1588v2 for the representational definitions.
			This input must be in the same clock domain as the lane 0 RX SerDes.
RX_PTP_TSTAMP_OUT[79:0]	Output	RX_CLK	Time stamp for the received packet SOP corresponding to the time at which it passed the capture plane. This signal will be valid starting at the same clock cycle during which the SOP is asserted for one of the LBUS segments.
			The representation of the bits contained in this bus is the same as the timer input.
	Output	RX_CLK	This bus identifies which of the 20 PCS lanes that the SOP was detected on for the corresponding timestamp.
RX_PTP_PCSLANE_OUT[5-1:0]			This signal will be valid starting at the same clock cycle during which the SOP is asserted for one of the LBUS segments.
RX_LANE_ALIGNER_FILL_0[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane0. This information can be used by the PTP application, together with the signal RX_PTP_PCSLANE_OUT[4:0], to adjust for the lane skew of the arriving SOP. The units are SerDes clock cycles.
RX_LANE_ALIGNER_FILL_1[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane1.
RX_LANE_ALIGNER_FILL_2[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane2.
RX_LANE_ALIGNER_FILL_3[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane3.
RX_LANE_ALIGNER_FILL_4[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane4.
RX_LANE_ALIGNER_FILL_5[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane5.
RX_LANE_ALIGNER_FILL_6[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane6.

Table 2-15: IEEE 1588 Interface – RX Path (Cont'd)

Name	Direction	Domain	Description
RX_LANE_ALIGNER_FILL_7[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane7.
RX_LANE_ALIGNER_FILL_8[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane8.
RX_LANE_ALIGNER_FILL_9[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane9.
RX_LANE_ALIGNER_FILL_10[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane10.
RX_LANE_ALIGNER_FILL_11[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane11.
RX_LANE_ALIGNER_FILL_12[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane12.
RX_LANE_ALIGNER_FILL_13[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane13.
RX_LANE_ALIGNER_FILL_14[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane14.
RX_LANE_ALIGNER_FILL_15[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane15.
RX_LANE_ALIGNER_FILL_16[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane16.
RX_LANE_ALIGNER_FILL_17[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane17.
RX_LANE_ALIGNER_FILL_18[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane18.
RX_LANE_ALIGNER_FILL_19[7-1:0]	Output	RX_CLK	This output indicates the fill level of the alignment buffer for PCS lane19.

Table 2-16: DRP Path/Control Signals

Name	Direction	Domain	Description
DRP_DO[15:0]	Output	DRP_CLK	Data bus for reading configuration data from the 100G Ethernet IP core to the FPGA logic resources.
DRP_RDY	Output	DRP_CLK	Indicates operation is complete for write operations and data is valid for read operations.
DRP_ADDR[9:0]	Input	DRP_CLK	DRP address bus.
DRP_CLK	Input		DRP interface clock. When DRP is not used, this can be tied to GND.
DRP_DI[15:0]	Input	DRP_CLK	Data bus for writing configuration data from the FPGA logic resources to the 100G Ethernet IP core.

Table 2-16: DRP Path/Control Signals (Cont'd)

Name	Direction	Domain	Description
			DRP enable signal.
			0: No read or write operations performed.
DRP_EN	Input	DRP_CLK	1: Enables a read or write operation.
		For write operations, DRP_WE and DRP_EN should be driven High for one DRP_CLK cycle only.	
			DRP write enable.
		DRP_CLK	0: Read operation when DRP_EN is 1.
DRP_WE Input	Input		1: Write operation when DRP_EN is 1.
		For write operations, DRP_WE and DRP_EN should be driven High for one DRP_CLK cycle only.	

Attribute Descriptions

Table 2-17 provides detailed descriptions of the 100G Ethernet IP core attributes and their default values.

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes

Name	Туре	Description	Default Value			
LBUS Interface – TX Path Control/Status						
		Enable FCS insertion by the TX core.				
CTL_TX_FCS_INS_ENABLE	Boolean	 TRUE: 100G Ethernet IP core calculates and adds FCS to the packet. FALSE: 100G Ethernet IP core does not add FCS to packet. 	TRUE			
		This attribute cannot be changed dynamically between packets.				

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
		Enable FCS error checking at the LBUS interface by the TX core. This input only has effect when ctl_tx_fcs_ins_enable is FALSE.	
		TRUE: A packet with bad FCS transmitted is binned as good.	
CTL_TX_IGNORE_FCS	Boolean	FALSE: A packet with bad FCS transmitted is not binned as good.	FALSE
		The error is flagged on the signals stat_tx_bad_fcs and STAT_RX_STOMPED_FCS, and the packet is transmitted as it was received.	
		Statistics are reported as if there was no FCS error.	
CTL_TX_VL_LENGTH_MINUS1[15:0]	16-bit Hex	Number of words in between PCS Lane markers minus one. Default value, as defined in IEEE 802.3, should be set to 16,383 (decimal).	16'h3FFF
CTL_TX_VL_MARKER_ID0[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 0. For IEEE 802.3 default values, see the specification.	64'hc16821003e97de00
CTL_TX_VL_MARKER_ID1[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 1.	64'h9d718e00628e7100
CTL_TX_VL_MARKER_ID2[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 2.	64'h594be800a6b41700
CTL_TX_VL_MARKER_ID3[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 3.	64'h4d957b00b26a8400
CTL_TX_VL_MARKER_ID4[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 4.	64'hf50709000af8f600
CTL_TX_VL_MARKER_ID5[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 5.	64'hdd14c20022eb3d00
CTL_TX_VL_MARKER_ID6[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 6.	64'h9a4a260065b5d900
CTL_TX_VL_MARKER_ID7[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 7.	64'h7b45660084ba9900
CTL_TX_VL_MARKER_ID8[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 8.	64'ha02476005fdb8900
CTL_TX_VL_MARKER_ID9[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 9.	64'h68c9fb0097360400
CTL_TX_VL_MARKER_ID10[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 10.	64'hfd6c990002936600

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
CTL_TX_VL_MARKER_ID11[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 11.	64'hb9915500466eaa00
CTL_TX_VL_MARKER_ID12[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 12.	64'h5cb9b200a3464d00
CTL_TX_VL_MARKER_ID13[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 13.	64'h1af8bd00e5074200
CTL_TX_VL_MARKER_ID14[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 14.	64'h83c7ca007c383500
CTL_TX_VL_MARKER_ID15[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 15.	64'h3536cd00cac93200
CTL_TX_VL_MARKER_ID16[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 16.	64'hc4314c003bceb300
CTL_TX_VL_MARKER_ID17[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 17.	64'hadd6b70052294800
CTL_TX_VL_MARKER_ID18[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 18.	64'h5f662a00a099d500
CTL_TX_VL_MARKER_ID19[63:0]	64-bit Hex	This bus sets the TX PCS Lane marker for PCS lane 19.	64'hc0f0e5003f0f1a00
LBUSI	nterface –	RX Path Control/Status Signals	
		When set to TRUE, this attribute	
CTL_RX_CHECK_PREAMBLE	Boolean	causes the Ethernet MAC to check the preamble of the received frame.	FALSE
CTL_RX_CHECK_SFD	Boolean	When set to TRUE, this attribute causes the Ethernet MAC to check the Start of Frame Delimiter of the received frame.	FALSE
		Enable FCS removal by the RX core.	
		TRUE: 100G Ethernet IP core deletes the FCS of the incoming packet.	
CTL_RX_DELETE_FCS	Boolean	FALSE: 100G Ethernet IP core does not remove the FCS of the incoming packet.	TRUE
		FCS is not deleted for packets that are less than or equal to 8 bytes long.	

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
CTL_RX_IGNORE_FCS	Boolean	 Enable FCS error checking at the LBUS interface by the RX core. TRUE: 100G Ethernet IP core does not flag an FCS error at the LBUS interface. FALSE: A packet received with an FCS error is sent with the RX_ERROUT pin asserted during the last transfer (RX_EOPOUT and RX_ENAOUT are sampled as 1). Note: The statistics are reported as if the packet is good. The signal stat_rx_bad_fcs, however, reports the error. 	FALSE
CTL_RX_MAX_PACKET_LEN[14:0]	15-bit Hex	Any packet longer than this value is considered to be oversized. If a packet has a size greater than this value, the packet is truncated to this value and the RX_ERROUT signal is asserted along with the rx_eopout signal. ctl_rx_max_packet_len[14] is reserved and must be set to 0. Packets less than 64 bytes are dropped. The allowed value for this bus can range from 64 to 16,383.	15'h2580
CTL_RX_MIN_PACKET_LEN[7:0]	8-bit Hex	Any packet shorter than the default value of 64 (decimal) is considered to be undersized. If a packet has a size less than this value, the rx_errout signal is asserted during the rx_eopout asserted cycle. Packets less than 64 bytes are dropped. The value of this bus must be less than or equal to the value of CTL_RX_MAX_PACKET_LEN[14:0].	8'h40
CTL_RX_VL_LENGTH_MINUS1[15:0]	16-bit Hex	Number of words in between PCS Lane markers minus one. Default value, as defined in IEEE 802.3, should be set to 16,383 (decimal).	16'h3FFF
CTL_RX_VL_MARKER_ID0[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 0. For IEEE 802.3 default values, see the specification.	64'hc16821003e97de00
CTL_RX_VL_MARKER_ID1[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 1.	64'h9d718e00628e7100
CTL_RX_VL_MARKER_ID2[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 2.	64'h594be800a6b41700

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
CTL_RX_VL_MARKER_ID3[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 3.	64'h4d957b00b26a8400
CTL_RX_VL_MARKER_ID4[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 4.	64'hf50709000af8f600
CTL_RX_VL_MARKER_ID5[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 5.	64'hdd14c20022eb3d00
CTL_RX_VL_MARKER_ID6[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 6.	64'h9a4a260065b5d900
CTL_RX_VL_MARKER_ID7[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 7.	64'h7b45660084ba9900
CTL_RX_VL_MARKER_ID8[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 8.	64'ha02476005fdb8900
CTL_RX_VL_MARKER_ID9[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 9.	64'h68c9fb0097360400
CTL_RX_VL_MARKER_ID10[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 10.	64'hfd6c990002936600
CTL_RX_VL_MARKER_ID11[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 11.	64'hb9915500466eaa00
CTL_RX_VL_MARKER_ID12[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 12.	64'h5cb9b200a3464d00
CTL_RX_VL_MARKER_ID13[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 13.	64'h1af8bd00e5074200
CTL_RX_VL_MARKER_ID14[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 14.	64'h83c7ca007c383500
CTL_RX_VL_MARKER_ID15[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 15.	64'h3536cd00cac93200
CTL_RX_VL_MARKER_ID16[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 16.	64'hc4314c003bceb300
CTL_RX_VL_MARKER_ID17[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 17.	64'hadd6b70052294800
CTL_RX_VL_MARKER_ID18[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 18.	64'h5f662a00a099d500
CTL_RX_VL_MARKER_ID19[63:0]	64-bit Hex	This bus sets the RX PCS Lane marker for PCS lane 19.	64'hc0f0e5003f0f1a00

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
	Miscella	neous Status/Control	
		TRUE: The 100G Ethernet IP core RX core will expect and process LF control codes coming in from the SERDES.	
CTL_RX_PROCESS_LFI	Boolean	FALSE: The 100G Ethernet IP core RX core ignores Local Fault Indication (LFI) control codes coming in from the SERDES.	FALSE
		Note: If an LFI condition is detected, the core will stop receiving packets until the LFI is cleared. Packets in progress will be terminated and an error will be indicated on the LBUS. A START block must be received before packets are received again.	
	Pause	Interface – RX Path	
CTL_RX_PAUSE_DA_UCAST[47:0]	48-bit Hex	Unicast destination address for pause processing.	48'h000000000000
CTL_RX_PAUSE_SA[47:0]	48-bit Hex	Source address for pause processing.	48'h000000000000
CTL_RX_OPCODE_MIN_GCP[15:0]	16-bit Hex	Minimum global control opcode value.	16'h0000
CTL_RX_OPCODE_MAX_GCP[15:0]	16-bit Hex	Maximum global control opcode value.	16'hffff
CTL_RX_ETYPE_GCP[15:0]	16-bit Hex	Ethertype field for global control processing.	16'h8808
CTL_RX_PAUSE_DA_MCAST[47:0]	48-bit Hex	Multicast destination address for pause processing.	48'h0180c2000001
CTL_RX_ETYPE_PCP[15:0]	16-bit Hex	Ethertype field for priority control processing.	16'h8808
CTL_RX_OPCODE_MIN_PCP[15:0]	16-bit Hex	Minimum priority control opcode value.	16'h0000
CTL_RX_OPCODE_MAX_PCP[15:0]	16-bit Hex	Maximum priority control opcode value.	16'hffff
CTL_RX_ETYPE_GPP[15:0]	16-bit Hex	Ethertype field for global pause processing.	16'h8808
CTL_RX_OPCODE_GPP[15:0]	16-bit Hex	Global pause opcode value.	16'h0001
CTL_RX_ETYPE_PPP[15:0]	16-bit Hex	Ethertype field for priority pause processing.	16'h8808
CTL_RX_OPCODE_PPP[15:0]	16-bit Hex	Priority pause opcode value.	16'h0101

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	ALSE			
CTL_RX_CHECK_ACK	Boolean	 Wait for acknowledge. TRUE: 100G Ethernet IP core uses the CTL_RX_PAUSE_ACK[8:0] bus for pause processing. FALSE: CTL_RX_PAUSE_ACK[8:0] is not used. 	TRUE			
CTL_RX_FORWARD_CONTROL	Boolean	TRUE: 100G Ethernet IP core will forward control packets. FALSE: 100G Ethernet IP core will drop control packets. See Pause Processing Interface in Chapter 3.	FALSE			
	Pause	Interface – TX Path				
CTL_TX_DA_GPP[47:0]	48-bit Hex	Destination address for transmitting global pause packets.	48'h0180c2000001			
CTL_TX_SA_GPP[47:0]	48-bit Hex	Source address for transmitting global pause packets.	48'h000000000000			
CTL_TX_ETHERTYPE_GPP[15:0]	16-bit Hex	Ethertype for transmitting global pause packets.	16'h8808			
CTL_TX_OPCODE_GPP[15:0]	16-bit Hex	Opcode for transmitting global pause packets.	16'h0001			
CTL_TX_DA_PPP[47:0]	48-bit Hex	Destination address for transmitting priority pause packets.	48'h0180c2000001			
CTL_TX_SA_PPP[47:0] 48-bit Hex		Source address for transmitting priority pause packets.	48'h000000000000			
CTL_TX_ETHERTYPE_PPP[15:0] 16-bit Hex		Ethertype for transmitting priority pause packets.	16'h8808			
CTL_TX_OPCODE_PPP[15:0]	16-bit Hex	Opcode for transmitting priority pause packets.	16'h0101			

Table 2-17: UltraScale Device 100G Ethernet IP Core Attributes (Cont'd)

Name	Туре	Description	Default Value
	IEEE 158	38 Interface – TX Path	
CTL_TX_PTP_1STEP_ENABLE	Boolean	TRUE: Enable 1-step operation. FALSE: Disable 1-step operation.	FALSE
CTL_PTP_TRANSPCLK_MODE	Boolean	This attribute, when set to TRUE, places the timestamping logic into transparent clock mode and enables correction field updates on the TX. In transparent clock mode, the system timer input is interpreted as the correction value. The TX will sample a TX timestamp for the PTP packet and add it to its correction field value.	FALSE
		It is expected that the incoming PTP packet's original correction field has already been subtracted with its RX timestamp by the user before being transferred to the CMAC TX LBUS interface. Note: Both RX and TX timer inputs are expected to be in correction field format as well as timestamps.	
	11'bit	This bus can be used to adjust the 1-step TX timestamp with respect to the 2-step timestamp. The units of the bus bits [10:3] are nanoseconds. The 3 LSB bits in this input are fractional nanoseconds. In normal mode, the usual value is	
CTL_TX_PTP_LATENCY_ADJUST[10:0]	Hex	705 decimal (2C1 hex), corresponding to the delay between the 1-step logic and the 2-step timestamp capture plane.	11'h2C1
		In transparent clock mode, the value of 802 decimal (322 hex) is recommended.	

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the core.

Clocking

The UltraScale™ devices integrated CMAC block has up to 13 clock inputs for the CAUI-10 interface and up to seven clock inputs for the CAUI-4 interface. These clocks include the RX_SERDES_CLK[9:0] and RX_SERDES_CLK[3:0] respectively for the CAUI-10 and CAUI-4 modes, TX_CLK, RX_CLK and the DRP_CLK. The DRP_CLK is optional and is necessary only during a DRP operation.

The 10 CAUI-10 or 4 CAUI-4 RX_SERDES_CLK clocks must not have an FPGA induced dynamic skew of more than 400 ps. More details on the clocks are provided in the following sections.

The Runtime Switchable mode follows the same clocking structure as the one from CAUI-10 described previously.

RX GT/Lane Logic Clock (RX_SERDES_CLK)

These clocks are provided to the CMAC block from the serial transceiver (GT) to clock the Lane Logic RX interface. The clocks must be 322.266 MHz for both CAUI-10 and CAUI-4 operation. The GT interface datapath is 32 bits per lane for CAUI-10 and 80 bits per lane for CAUI-4.

The other implementation allows only one RX_SERDES_CLK to go to the Ethernet MAC RX_SERDES_CLK inputs. The serial transceiver will also be in raw mode but this time the buffer is used. This mode is used when you can tolerate higher latency and are interested in saving FPGA clocking resources.

TX CLK

This clock is provided to both the CMAC block and serial transceiver to clock the GT/ lane logic TX interface as well as the whole Ethernet MAC. The clock must be 322.266 MHz for both CAUI-10 and CAUI-4 operation. The GT lane logic interface datapath is 32 bits per lane for CAUI-10 and 80 bits per lane for CAUI-4. Only one TX_CLK is needed regardless of the CAUI-10 or CAUI-4 implementation. This clock also clocks the transmit Ethernet MAC, LBUS, interface and the Control/Status port.

RX CLK

This clock is provided to the CMAC block. The clock must be 322.266 MHz for both CAUI-10 and CAUI-4 operation, and must be the same as TX_CLK. This clock is used in the receive Ethernet MAC, LBUS interface, and the Control/Status port.

DRP Clock (drp_clk)

This signal clocks the DRP port. Any convenient frequency can be chosen, up to 250 MHz.

Resets

The integrated CMAC block has a total of 12 resets. They are TX_RESET, RX_RESET, RX_SERDES_RESET[9:0]. During configuration TX_RESET, RX_RESET, and RX_SERDES_RESET[9:0] need to be asserted High and after the clocks are stable, the resets are released. During normal operation the RX and TX paths can be asserted independently. Within the RX and TX logic paths, there are separate resets to the core and the lane logic. The reset procedure is simple and the only requirement is that a reset must be asserted until the corresponding clock(s) are stable. The 100G Ethernet IP core takes care of ensuring that the different resets are properly synchronized to the required domain. It is up to you to ensure a reset is held until the corresponding clock is fully stable.

The 100G Ethernet IP core provides <code>sys_reset</code> input to reset GTs and integrated CMAC block and <code>gtwiz_reset_tx_datapath</code> and <code>gtwiz_reset_rx_datapath</code> to reset GT and CMAC RX and TX datapaths individually.

Note: Some of the control inputs to the 100G Ethernet IP core can only be modified while the core is held in reset. If one of these inputs needs changing, the appropriate RX or TX LBUS reset input (RX_RESET or TX_RESET) must be asserted until the control input is stabilized. All resets within the block are asynchronously asserted, and synchronously deasserted. Standard cell synchronizers are used, where applicable per guidelines to synchronize assertion and release of resets to respective clock inputs.

See Figure 3-1, and Figure 3-2 for diagrams of the clocking and resets. The available modes are based on the Vivado® Integrated Design Environment (IDE) selection and configuration. For Asynchronous mode, TXOUTCLK sources the TXUSRCLK, and RXOUTCLK sources the RXUSRCLK. Asynchronous mode allows per specification PPM difference between clocks.

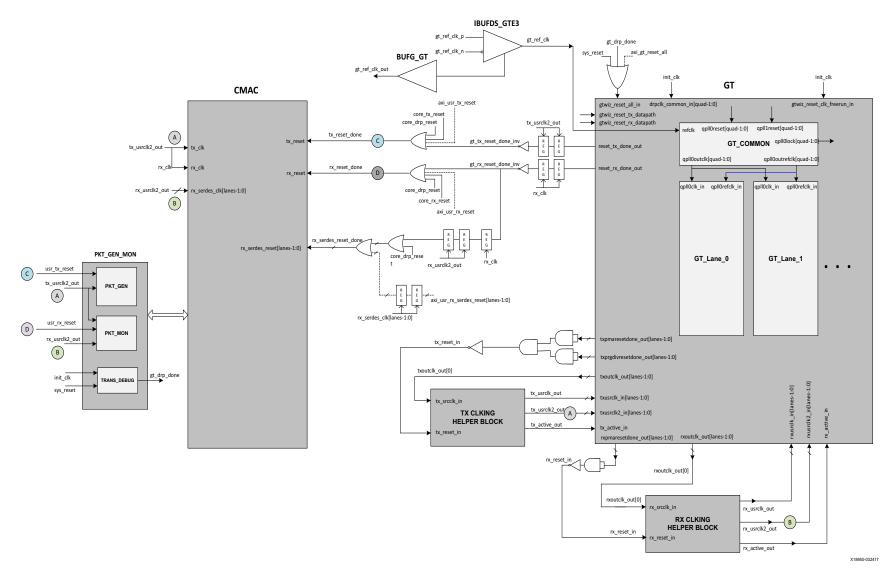


Figure 3-1: CMAC Clocking and Reset - Asynchronous Clock Mode - MultiLane

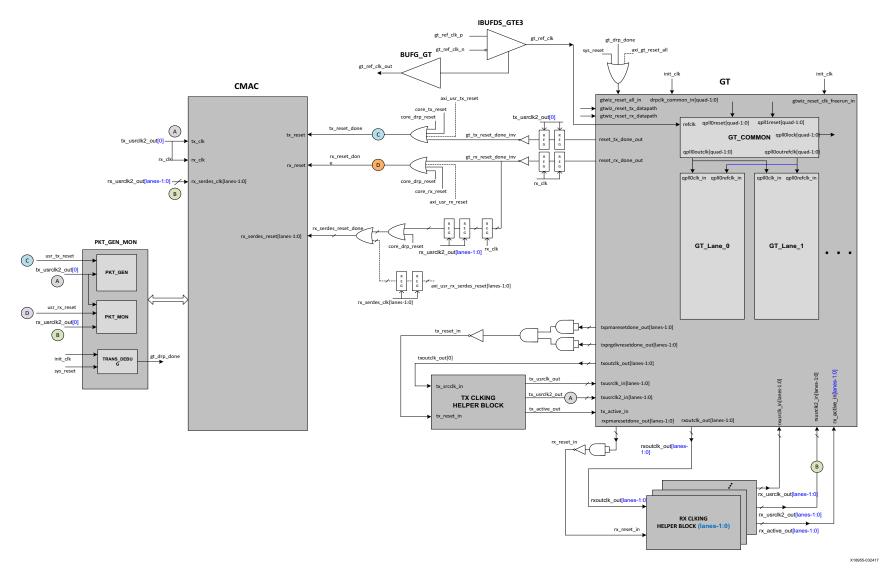


Figure 3-2: CMAC Clocking and Reset - Asynchronous Clock Mode - Single Lane

Protocol Description

The 100G Ethernet IP core is fully designed to IEEE 802.3 specifications for the 100G Ethernet protocol. The 100G Ethernet IP core instantiates the CMAC block, GTH (CAUI-10) or GTY (CAUI-10 or CAUI-4) transceivers and clocking resources to implement the 100G Ethernet IP core protocol.

PCS

This section refers to the PCS lane logic within the CMAC block and not the PCS within the serial transceiver. The PCS lane logic architecture is based on distributing (or striping) parts of a packet over several (relatively) lower speed physical interfaces by the transmitting device.

The receiving device PCS lane logic is then responsible for de-striping the different parts and rebuilding the packet before handing it off to the CMAC block.

The receiver PCS lane logic must also deskew the data from the different physical interfaces as these might see different delays as they are transported throughout the network. Additionally, the core handles PCS lane swapping across all received PCS lanes, allowing the 100G Ethernet IP core to be used with all optical transport systems.

The PCS lane logic includes scrambling/descrambling and 64B/66B encoders/decoders capable of supporting the 100 Gb/s line rate. The frequency at which the PCS runs at is shown in Table 3-1.

Table 3-1: 100G PCS Frequencies

Configuration	GT Interface Width	100G PCS Frequency
100G (4 x 25.78125)	80	322.266 MHz
100G (10 x 10.3125)	32	322.266 MHz

PCS Lane Multiplexing

Between the CAUI-10 and CAUI-4 modes, the PCS multiplexer blocks combine and distribute the Physical Medium Dependent (PMD) lanes from the SerDes to the internal PCS lane logic. Figure 3-3 illustrates the multiplexing and demultiplexing function contained in the RX and TX PCS multiplexer blocks for the SerDes interfaces which are 80-bits wide. The lower 32 bits are used in CAUI-10 mode.

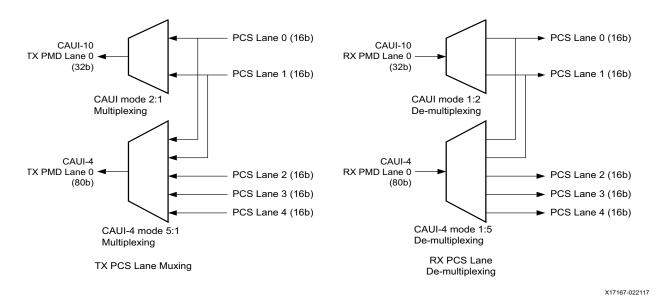


Figure 3-3: PCS Multiplexing in CAUI-10 and CAUI-4 Modes

The preceding pattern is repeated for the other three 80-bit SerDes interfaces.

Each 80-bit SerDes interface is actually composed of a 16-bit group and a 64-bit group. The mapping of these two groups onto the 80-bit interface is illustrated in Figure 3-4 and Figure 3-5 for RX and TX respectively.

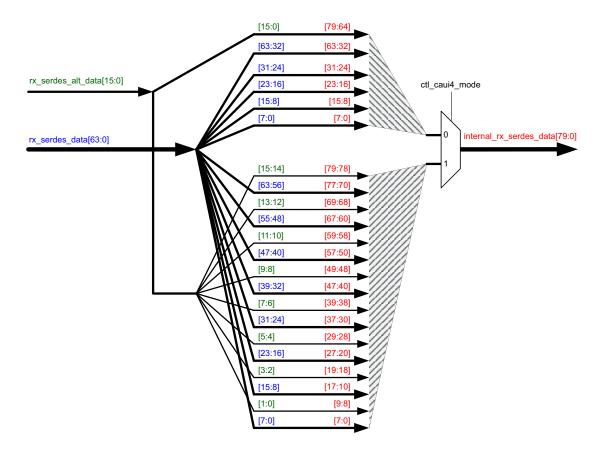


Figure 3-4: RX GTY Mapping

Note: The connectivity between the 100G Ethernet IP RX SerDes data interface to the GTY transceiver RX datapath for CAUI-10 and CAUI-4 operation is taken care of in the 100G Ethernet IP core.

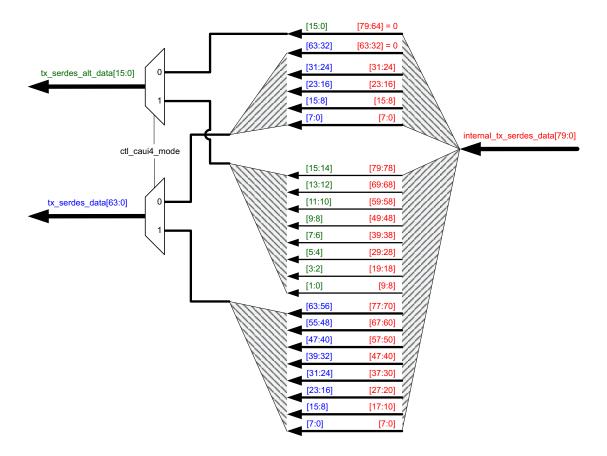


Figure 3-5: TX GTY Mapping

Note: The connectivity between the 100G Ethernet IP TX SerDes data interface to the GTY transceiver TX datapath for CAUI-10 and CAUI-4 operation is taken care of in the 100G Ethernet IP core.

PCS Lane Clock Distribution

The TX interface uses a common clock for all SerDes lanes. However in the RX direction, similar to the distribution of the data streams from the SerDes interface to the PCS lane, the RX PCS lane clocks also change with the operating mode. A hardened clock multiplexer block is used to change the clocking. Figure 3-6 illustrates this clock multiplexing by looking at the clock multiplexing required for PCS lanes 0 and 1.

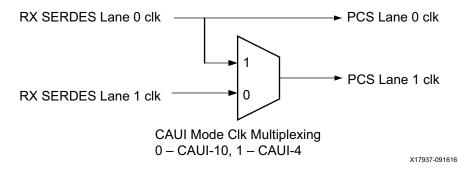


Figure 3-6: RX PCS Lane0 and Lane1 Clocking

MAC

The 100G Ethernet IP core provides several interfaces to interact with it. These consist of the following.

- User Side LBUS Interface (for RX and TX data and RX and TX control signals)
- Pause Processing Interface
- Status and Control Interface

User Side LBUS Interface

The user side interface of the UltraScale Devices Integrated Block for 100G Ethernet IP core is a simple packet interface referred to as the LBUS. The LBUS interface implemented in the 100G Ethernet IP core is 512-bits segmented.

The LBUS consists of three separate interfaces:

- Transmitter (TX) interface
- Receiver (RX) interface
- Status/Control interface

The transmitter accepts packet-oriented data, packages the data in accordance with the IEEE 802.3 Specification and sends that packaged data to the serial transceiver interface. The transmitter has control/configuration inputs to shape the data packaging to meet design-specific requirements.

The receiver accepts IEEE 802.3 data streams from the serial transceiver interface and provides packet-oriented data to the user side.

The status/control interface is used to set the characteristics of the interface and monitor its operation.

The 100G Ethernet IP core employs a segmented LBUS interface to prevent the loss of potential bandwidth that occurs at the end of a packet when the size of the packet is not a multiple of the LBUS width.

The segmented LBUS is a collection of narrower LBUSs, each 128 bits wide, with multiple transfers presented in parallel during the same clock cycle. Each segment has all the control signals associated with a complete 128-bit LBUS. The 512-bit segmented LBUS has four 128-bit segments with the signals for each segment shown in Table 3-2.

Table 3-2: Segmented LBUS Signals

Segment Number	TX Signals	RX Signals
0	tx_datain0[127:0]	rx_dataout0[127:0]
	tx_enain0	rx_enaout0
	tx_sopin0	rx_sopout0
	tx_eopin0	rx_eopout0
	tx_errin0	rx_errout0
	tx_mtyin0[3:0]	rx_mtyout0[3:0]
1	tx_datain1[127:0]	rx_dataout1[127:0]
	tx_enain1	rx_enaout1
	tx_sopin1	rx_sopout1
	tx_eopin1	rx_eopout1
	tx_errin1	rx_errout1
	tx_mtyin1[3:0]	rx_mtyout1[3:0]
2	tx_datain2[127:0]	rx_dataout2[127:0]
	tx_enain2	rx_enaout2
	tx_sopin2	rx_sopout2
	tx_eopin2	rx_eopout2
	tx_errin2	rx_errout2
	tx_mtyin2[3:0]	rx_mtyout2[3:0]
3	tx_datain3[127:0]	rx_dataout3[127:0]
	tx_enain3	rx_enaout3
	tx_sopin3	rx_sopout3
	tx_eopin3	rx_eopout3
	tx_errin3	rx_errout3
	tx_mtyin3[3:0]	rx_mtyout3[3:0]

The transmit and receive signals are defined as follows:

- tx_datain0[127:0]: Transmit LBUS Data. This bus receives input data from the user logic. The value of the bus is captured in every cycle for which tx_enain is sampled as 1.
- tx_enain0: Transmit LBUS Enable. This signal is used to enable the TX LBUS Interface. All signals on the LBUS interface are sampled only in cycles during which tx_enain is sampled as 1.

- tx_sopin0: Transmit LBUS Start Of Packet. This signal is used to indicate the Start Of Packet (SOP) when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles during which tx_enain is sampled as 1.
- tx_eopin0: Transmit LBUS End Of Packet. This signal is used to indicate the EOP when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles during which tx_enain is sampled as 1.
- tx_errin0: Transmit LBUS Error. This signal is used to indicate that a packet contains an error when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles during which tx_enain and tx_eopin are sampled as 1.
- tx_mtyin0[3:0]: Transmit LBUS Empty. This bus is used to indicate how many bytes of the tx_datain bus are empty or invalid for the last transfer of the current packet. This bus is sampled only in cycles that tx_enain and tx_eopin are sampled as 1.
 - When tx_{eprin} and tx_{errin} are sampled as 1, the value of $tx_{mtyin}[2:0]$ is ignored and treated as if it is 000. The other bits of tx_{mtyin} are used as usual.
- rx_dataout0[127:0]: Receive LBUS Data. The value of the bus is only valid in cycles during which rx_enaout is sampled as 1.
- rx_enaout0: Receive LBUS Enable. This signal qualifies the other signal of the RX LBUS Interface. Signals of the RX LBUS Interface are only valid in cycles during which rx_enaout is sampled as 1.
- rx_sopout0: Receive LBUS SOP. This signal indicates the SOP when it is sampled as 1 and is only valid in cycles during which rx_enaout is sampled as a 1.
- rx_eopout0: Receive LBUS EOP. This signal indicates the EOP when it is sampled as 1 and is only valid in cycles during which rx_enaout is sampled as a 1.
- rx_errout0: Receive LBUS Error. This signal indicates that the current packet being received has an error when it is sampled as 1. This signal is only valid in cycles when both rx_enaout and rx_eopout are sampled as a 1. When this signal is 0, it indicates that there is no error in the packet being received.
- rx_mtyout0[3:0]: Receive LBUS Empty. This bus indicates how many bytes of the rx_dataout bus are empty or invalid for the last transfer of the current packet. This bus is only valid in cycles when both rx_enaout and rx_eopout are sampled as 1.
 - When rx_errout and rx_enaout are sampled as 1, the value of rx_mtyout [2:0] is always 000. Other bits of rx_mtyout are as usual.

The transmitter accepts packet-oriented data. The transmitter has control/configuration inputs to shape the data packaging to meet design-specific requirements. The receiver accepts Ethernet bitstreams from the SerDes and provides packet-oriented data to the user side segmented LBUS.

IMPORTANT: In the following section, the term "asserting" is used to mean "assigning a value of 1," and the term "negating" is used to mean "assigning a value of 0."

TX LBUS Interface

The synchronous TX Local bus interface accepts packet-oriented data of an arbitrary length. All signals are synchronous relative to the rising-edge of the clk port. Figure 3-7 shows a sample waveform for data transactions for two consecutive 65-byte packets using a 512-bit segmented bus. Each of the four segments is 128-bits wide.

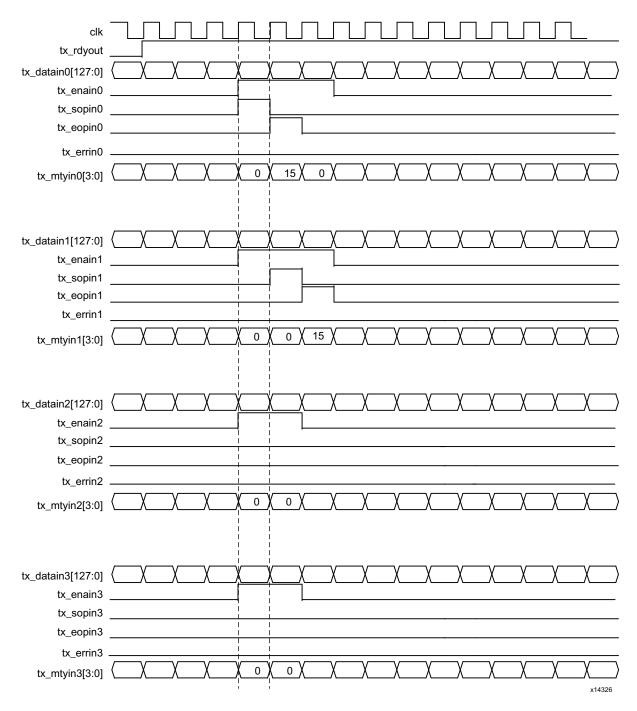


Figure 3-7: Transmit Timing Diagram

TX Transactions

Data is written into the interface on every clock cycle when tx_{enain} is asserted. This signal qualifies the other inputs of the TX Local bus interface. This signal must be valid every clock cycle. When tx_{enain} is deasserted, data on the other buses is ignored.

The start of a packet is identified by asserting tx_sopin with tx_enain. The end of a packet is identified by asserting tx_eopin with tx_enain. Both tx_sopin and tx_eopin can be asserted during the same cycle provided there are no empty segments between them. This is done for packets that are less than or equal to the bus width.

Data is presented on the tx_{datain} inputs. For a given segment, the first byte of the packet is written on bits [127:120], the second byte on bits [119:112], and so forth.

For a 128-bit segment, the first 16 bytes of a packet are presented on the bus during the cycle that tx_sopin and tx_enain are asserted. Subsequent 16-byte chunks are written during successive cycles with tx_sopin negated. The last bytes of the packet are written with tx_eopin asserted. Unless tx_eopin is asserted, all 128 bits must be presented with valid data whenever tx enain is asserted.

During the last cycle of a packet, the tx_mtyin signals might be asserted. The value of tx_mtyin must be 0 for all but the last cycle. The tx_mtyin signals indicate how many byte lanes in the data bus are invalid (or empty). The tx_mtyin signals only have meaning during cycles when both tx_enain and tx_eopin are asserted. For a 128-bit wide segment, tx_mtyin is 4 bits wide.

If tx_mtyin has a value of 0x0, there are no empty byte lanes, or in other words, all bits of the data bus are valid. If tx_mtyin has a value of 0x1, then the 1-byte lane is empty. Specifically bits [7:0] of tx_datain do not contain valid data. If tx_mtyin has a value of 0x2, then the 2-byte lanes are empty. Specifically bits [15:0] do not contain valid data. If tx_mtyin has a value of 0x3, then 3-byte lanes are empty, and specifically bits [23:0] do not contain valid data This pattern continues until 15 of 16 bytes are invalid or empty. Table 3-3 shows the relation of tx_mytin and empty byte lanes.

Table 3-3:	tx_	_mtyin	values
------------	-----	--------	--------

tx_mtyin Value	Empty Byte Lane(s)	Empty Bits of tx_datain
0x0	None	None
0x1	1 byte	[7:0]
0x2	2 byte	[15:0]
0x3	3 byte	[23:0]
0x15	15 byte	[119:0]

During the last cycle of a packet, when tx_{eopin} is asserted with tx_{enain} , tx_{errin} might also be asserted. This marks the packet as being in error and the last data word is replaced with the 802.3 Error Code. When tx_{errin} is asserted, the value of tx_{mtyin} is ignored.

tx_rdyout

Data can be safely written, that is, tx_enain asserted, when tx_rdyout is asserted. After tx_rdyout is negated, additional writes using tx_enain can be safely performed provided tx_ovfout is never asserted. When tx_rdyout is asserted again, additional data can be written. If at any time the back-pressure mechanism is violated, the tx_ovfout is asserted to indicate the violation. Up to four write cycles might be safely performed after tx_rdyout is negated, but no more until tx_rdyout is asserted again.

RX LBUS Interface

The synchronous RX Local bus interface provides packet-oriented data much like the TX Local bus interface accepts. All signals are synchronous with the rising-edge of the Local bus clock. Figure 3-8 shows a sample waveform for two data transactions for 65-byte packets using a 512-bit segmented LBUS.

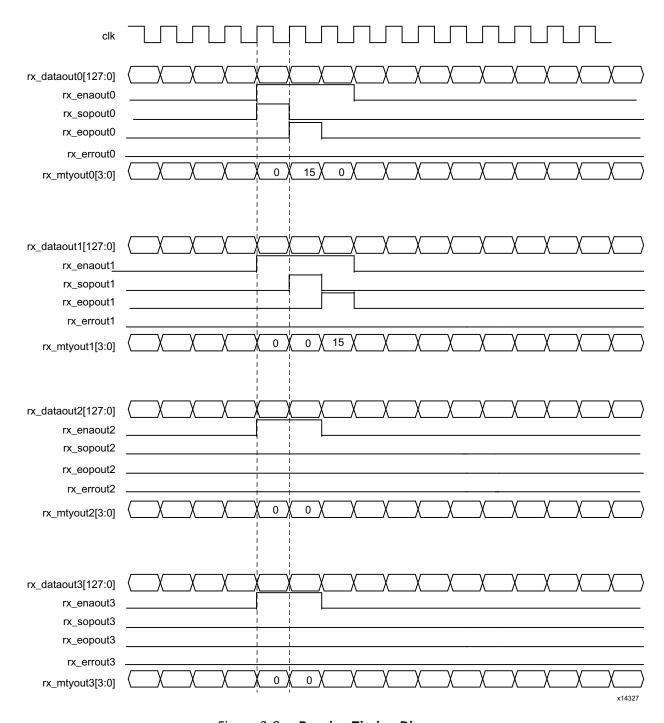


Figure 3-8: Receive Timing Diagram

Data is supplied by the 100G Ethernet IP core on every clk clock cycle when rx_{enaout} is asserted. This signal qualifies the other outputs of the RX Local bus interface.

The RX is similar to the TX, in that rx_sopout identifies the start of a packet and rx_eopout identifies the end of a packet. Both rx_sopout and rx_eopout are asserted during the same cycle for packets that are less than or equal to the bus width.

As in the TX, the first byte of a packet is supplied on the most significant bits of rx_dataout. For a 128-bit wide segment, the first byte of the packet is written on bits [127:120], the second byte on bits [119:112], and so forth.

As in the TX, portions of packets are written on the bus in the full width of the bus unless rx_eopout is asserted. When rx_eopout is asserted, the rx_mtyout bus indicates how many byte lanes in the data bus are invalid. The encoding is the same as for tx_mtyin.

During the last cycle of a packet, when rx_{eopout} is asserted with rx_{enaout} , rx_{errout} might also be asserted. This indicates the packet received had one of the following errors:

- FCS error
- Length out of the valid range (64 to CTL_RX_MAX_PACKET_LEN[14:0] bytes)
- Bad 64B/66B code received during receipt of the packet

There is no mechanism to back-pressure the RX Local bus interface. The user logic must be capable of receiving data when rx_enaout is asserted.

Bus Rules

This section describes the rules that govern the successful use of the segmented LBUS protocol.

Segment Ordering

The 128-bit segments are ordered 0 to 3 (for a 512-bit segmented LBUS). The first of the 128-bit transfers occurs on segment 0, the second on segment 1, and so forth. During each local bus clock cycle that data is transferred on the segmented LBUS, segment 0 must be active. The segmented bus is aligned so that the first bit of the incoming data is placed at the MSB of segment 0.

Active Segments

Data is transferred in a segment on the TX interface when the corresponding tx_{enainS} is a value of 1. The TX interface buffers data, but packets must be written in their entirety unless backpressure is applied (see Gaps). Therefore, it is acceptable to have clock cycles in which none of the tx_{enainS} signals are active during backpressure. However, during a clock cycle with tx_{enain0} active, segments must be filled in sequence with no gaps between active segments. The following are some of the illegal combinations of tx_{enainX} :

- tx_enain0=0, tx_enain1=1, tx_enain2=1, tx_enain3=1
- tx_enain0=1, tx_enain1=0, tx_enain2=1, tx_enain3=1
- tx_enain0=1, tx_enain1=1, tx_enain2=0, tx_enain3=1

Data is transferred in a segment on the RX interface when the corresponding rx_{enainS} is a value of 1. Similarly, the RX interface buffers data and does not forward until it has a sufficient quantity. Therefore, there are clock cycles in which none of the rx_{enainS} signals are active.

TX Backpressure

The optimal use of bandwidth requires that TX local bus data can be written at a rate faster than it can be delivered on the serial interface. This means that there must be backpressure, or flow-control, on the TX segmented LBUS. The signals used to implement backpressure are tx_rdyout and tx_ovfout . These signals are common for all segments. When responding to backpressure during a clock cycle, none of the tx_enainS can be active.

Gaps

The purpose of the segmented LBUS is to provide a means to optimally use the data bus. Therefore, as discussed in Active Segments, segments must be filled in sequence with no gaps between used segments. However, if a segment has an EOP, the following segments might be inactive. For example, the following combinations are permitted during a single clock cycle:

```
    tx_enain0=1 tx_eopin0=0 tx_enain1=1 tx_eopin1=0 tx_enain2=1 tx_eopin2=1 tx_enain3=0 tx_eopin3=0
    tx_enain0=1 tx_eopin0=0 tx_enain1=1 tx_eopin1=1 tx_enain2=0 tx_eopin2=0 tx_enain3=0 tx_eopin3=0
    tx_enain0=1 tx_eopin0=1 tx_enain1=0 tx_eopin1=0 tx_enain2=0 tx_eopin2=0 tx_enain3=0 tx_eopin3=0
```

Examples

This section contains examples that illustrate segmented LBUS cycles covering various combinations of SOP, Dat (data in the middle of a packet), EOP, and idle (no data on the bus). Valid and invalid cycles are shown.

The segmented LBUS is assumed to be 512 bits wide and each segment is 128 bits wide (16 bytes). The TX direction is illustrated. The RX direction has analogous behavior, but there are no invalid cycles on the receive segmented LBUS.

Valid Cycles

Table 3-4 shows possible valid TX segmented LBUS cycles.

Table 3-4: Valid TX Segmented LBUS Cycles

Clock Cycle	1	2	3	4	5	6	7	8	9	10
seg0	Dat	Idle	SOP	SOP	Dat	Dat	Idle	Dat	SOP	Idle
seg1	Dat	Idle	Dat	Dat	EOP	Dat	Idle	Dat	Dat	Idle
seg2	Dat	Idle	Dat	Dat	SOP	Dat	Idle	Dat	Dat	Idle
seg3	EOP	Idle	EOP	Dat	Dat	Dat	Idle	EOP	Dat	Idle
tx_rdyout	1	1	1	1	1	1	0	1	0	0
tx_ovfout	0	0	0	0	0	0	0	0	0	0

Cycle 1 shows the end of a packet transfer. If segment 3 (the EOP) is 16 bytes, then tx_mtyin3 is 0. If segment 3 is less than 16 bytes, then tx_mtyin3 is a value ranging from 0001b to 1111b.

Cycle 2 is idle and no data is transferred.

Cycle 3 shows the transfer of a packet having a length of 64 bytes.

CAUTION! Packets less than 64 bytes are considered undersized according to the Ethernet 802.3-2012 specification, and they are marked as undersized by the signal stat_tx_packet_small (for the transmit direction). Undersized packets might cause the core to lock up and must be avoided.

Cycle 4 shows the first part of the transfer of a packet greater than 64 bytes.

Cycle 5 shows the transfer of the end of the packet started in Cycle 4, as indicated by the EOP in Segment 1. Another packet might start during the same clock cycle, as indicated by the SOP in segment 2. There is no idle segment between the EOP and SOP.

Cycle 6 shows the transfer of additional data corresponding to the packet started during Cycle 5.

Cycle 7 is idle, even though the packet has not been completely transferred, due to the deassertion of tx_rdyout . This is the only instance where a packet transfer might be interrupted by idle cycles.

Cycle 8 shows the completion of the transfer of the packet started during Cycle 5.

During Cycle 9, tx_rdyout is deasserted. It is still possible to write data during that cycle because this is the first cycle it has been deasserted.

IMPORTANT: Xilinx recommends that additional data should not be written for more than 4 clock cycles after the negation of tx_rdyout , or there can be an overflow condition indicated by tx_ovfout . This must be avoided.

Cycle 10 is idle due to the continued deassertion of tx_rdyout.

Invalid Cycles

Table 3-5 shows several invalid TX segmented LBUS cycles as indicated by the shading.

Table 3-5: Invalid Segmented LBUS Cycles

Clock Cycle	1	2	3	4	5	6	7	8	9	10	 14	15
seg0	SOP	Idle	Sop	Dat	Dat	SOP	Idle	Dat	SOP	SOP	Dat	Dat
seg1	Dat	Idle	Dat	Dat	Dat	Dat	Idle	Dat	Dat	Dat	Dat	Dat
seg2	Dat	Idle	EOP	Dat	Dat	Dat	Idle	Dat	Idle	Dat	Dat	Dat
seg3	EOP	Idle	SOP	Dat	Dat	Dat	Idle	EOP	EOP	Dat	 Dat	Dat
tx_rdyout	1	1	1	1	1	1	1	1	1	0	0	0
tx_ovfout	0	0	0	0	0	0	0	0	0	0	0	1

Cycle 3 is not valid because it contains two SOPs.

Cycle 5 does not contain an EOP even though there is an SOP in the next cycle.

Cycle 6 has an SOP even though the preceding packet was not closed with an EOP. This sequence is not permitted by the LBUS rules and results in undefined behavior.

Cycle 7 is idle even though tx_rdyout is asserted, and a packet transfer is already under way. This can result in buffer under-run. If this occurs, the Ethernet packet is not sent in its entirety without interruption, and a malfunction of the FCS calculation occurs.

Cycle 9 contains an idle segment during a packet transfer which is not permitted by the segmented LBUS rules.

Cycle 14 is not recommended because a data transfer is being performed even though tx_rdyout has been deasserted for the fifth consecutive cycle.

Cycle 15 must never be performed because tx_{ovfout} has been asserted. In the event of tx_{ovfout} being asserted, the 100G Ethernet IP core should be reset.

Pause Processing Interface

The dedicated 100G Ethernet IP core provides a comprehensive mechanism for pause packet termination and generation. The TX and RX have independent interfaces for processing pause information as described in this section.

TX Pause Generation

You can request a pause packet to be transmitted using the CTL_TX_PAUSE_REQ[8:0] and CTL_TX_PAUSE_ENABLE[8:0] input buses. Bit 8 corresponds to global pause packets and bits [7:0] correspond to priority pause packets.

Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.

IMPORTANT: The 100G Ethernet IP core does not support assertion of global and priority pause packets at the same time.

The contents of the pause packet are determined using the following input pins.

Global pause packets:

- CTL_TX_DA_GPP[47:0]
- CTL_TX_SA_GPP[47:0]
- CTL_TX_ETHERTYPE_GPP[15:0]
- CTL_TX_OPCODE_GPP[15:0]
- CTL_TX_PAUSE_QUANTA8[15:0]

Priority pause packets:

- CTL_TX_DA_PPP[47:0]
- CTL_TX_SA_PPP[47:0]
- CTL_TX_ETHERTYPE_PPP[15:0]
- CTL_TX_OPCODE_PPP[15:0]
- CTL_TX_PAUSE_QUANTA0[15:0]
- CTL_TX_PAUSE_QUANTA1[15:0]
- CTL_TX_PAUSE_QUANTA2[15:0]
- CTL_TX_PAUSE_QUANTA3[15:0]
- CTL_TX_PAUSE_QUANTA4[15:0]
- CTL_TX_PAUSE_QUANTA5[15:0]
- CTL_TX_PAUSE_QUANTA6[15:0]
- CTL_TX_PAUSE_QUANTA7[15:0]

The dedicated 100G Ethernet IP core automatically calculates and adds the FCS to the packet. For priority pause packets, the dedicated 100G Ethernet IP core also automatically generates the enable vector based on the priorities that are requested.

To request a pause packet, you must set the corresponding bit of the CTL_TX_PAUSE_REQ[8:0] and CTL_TX_PAUSE_ENABLE[8:0] bus to a 1 and keep it at 1 for the duration of the pause request (that is, if these inputs are set to 0, all pending pause packets are cancelled. Pause is cancelled by sending out additional pause packet with pause quanta set to 0).

The dedicated 100G Ethernet IP core will transmit the pause packet immediately after the current packet in flight is completed. Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.

To retransmit pause packets, the dedicated 100G Ethernet IP core maintains a total of nine independent timers: one for each priority and one for global pause. These timers are loaded with the value of the corresponding input buses. After a pause packet is transmitted the corresponding timer is loaded with the corresponding value of the CTL_TX_PAUSE_REFRESH_TIMER[8:0] input bus. When a timer times out, another packet for that priority (or global) is transmitted as soon as the current packet in flight is completed. Additionally, you can manually force the timers to 0, and therefore, force a retransmission by setting the CTL_TX_RESEND_PAUSE input to 1 for one clock cycle.

To reduce the number of pause packets for priority mode operation, a timer is considered "timed out" if any of the other timers time out. Additionally, while waiting for the current packet in flight to be completed, any new timer that times out or any new requests from the you will be merged into a single pause frame. For example, if two timers are counting down, and you send a request for a third priority, the two timers are forced to be timed out and a pause packet for all three priorities is sent as soon as the current in-flight packet (if any) is transmitted.

Similarly, if one of the two timers times out without an additional request from you, both timers are forced to be timed out and a pause packet for both priorities is sent as soon as the current in-flight packet (if any) is transmitted.

You can stop pause packet generation by setting the appropriate bits of CTL TX PAUSE REO[8:0] or CTL TX PAUSE ENABLE[8:0] to 0.

RX Pause Termination

The dedicated 100G Ethernet IP core terminates global and priority pause frames and provides a simple hand-shaking interface to allow user logic to respond to pause packets.

Determining Pause Packets

There are three steps in determining pause packets:

- 1. Checks are performed to see if a packet is a global or a priority control packet. Packets that pass step 1 are forwarded to you only if CTL_RX_FORWARD_CONTROL is set to 1.
- 2. If step 1 passes, the packet is checked to determine if it is a global pause packet.
- 3. If step 2 fails, the packet is checked to determine if it is a priority pause packet.

For step 1, the following pseudo code shows the checking function:

```
assign da_match_gcp = (!ctl_rx_check_mcast_gcp && !ctl_rx_check_ucast_gcp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_gcp) || ((DA == 48'h0180c2000001) &&
ctl_rx_check_mcast_gcp);
assign sa_match_gcp = !ctl_rx_check_sa_gcp || (SA == ctl_rx_pause_sa);
assign etype_match_gcp = !ctl_rx_check_etype_gcp || (ETYPE == ctl_rx_etype_gcp);
assign opcode_match_gcp = !ctl_rx_check_opcode_gcp || ((OPCODE >=
ctl_rx_opcode_min_gcp) && (OPCODE <= ctl_rx_opcode_max_gcp));</pre>
assign global_control_packet = da_match_gcp && sa_match_gcp && etype_match_gcp &&
opcode_match_gcp && ctl_rx_enable_gcp;
assign da_match_pcp = (!ctl_rx_check_mcast_pcp && !ctl_rx_check_ucast_pcp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_pcp) || ((DA ==
ctl_rx_pause_da_mcast) && ctl_rx_check_mcast_pcp);
assign sa_match_pcp = !ctl_rx_check_sa_pcp | (SA == ctl_rx_pause_sa);
assign etype_match_pcp = !ctl_rx_check_etype_pcp || (ETYPE == ctl_rx_etype_pcp);
assign opcode_match_pcp = !ctl_rx_check_opcode_pcp | | ((OPCODE >=
ctl_rx_opcode_min_pcp) && (OPCODE <= ctl_rx_opcode_max_pcp));</pre>
assign priority_control_packet = da_match_pcp && sa_match_pcp && etype_match_pcp &&
opcode_match_pcp && ctl_rx_enable_pcp;
assign control_packet = global_control_packet || priority_control_packet;
```

where DA is the destination address, SA is the source address, OPCODE is the opcode, and ETYPE is the ethertype/length field that is extracted from the incoming packet.

For step 2, the following pseudo code shows the checking function:

```
assign da_match_gpp = (!ctl_rx_check_mcast_gpp && !ctl_rx_check_ucast_gpp) || ((DA == ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_gpp) || ((DA == 48'h0180c2000001) && ctl_rx_check_mcast_gpp);
assign sa_match_gpp = !ctl_rx_check_sa_gpp || (SA == ctl_rx_pause_sa);
assign etype_match_gpp = !ctl_rx_check_etype_gpp || (ETYPE == ctl_rx_etype_gpp);
assign opcode_match_gpp = !ctl_rx_check_opcode_gpp || (OPCODE == ctl_rx_opcode_gpp);
assign global_pause_packet = da_match_gpp && sa_match_gpp && etype_match_gpp && opcode_match_gpp && ctl_rx_enable_gpp;
```

where DA is the destination address, SA is the source address, OPCODE is the opcode, and ETYPE is the ethertype/length field that is extracted from the incoming packet.

For step 3, the following pseudo code shows the checking function:

```
assign da_match_ppp = (!ctl_rx_check_mcast_ppp && !ctl_rx_check_ucast_ppp) || ((DA
== ctl_rx_pause_da_ucast) && ctl_rx_check_ucast_ppp) || ((DA ==
ctl_rx_pause_da_mcast) && ctl_rx_check_mcast_ppp);

assign sa_match_ppp = !ctl_rx_check_sa_ppp || (SA == ctl_rx_pause_sa);

assign etype_match_ppp = !ctl_rx_check_etype_ppp || (ETYPE == ctl_rx_etype_ppp);

assign opcode_match_ppp = !ctl_rx_check_opcode_ppp || (OPCODE == ctl_rx_opcode_ppp);

assign priority_pause_packet = da_match_ppp && sa_match_ppp && etype_match_ppp && opcode_match_ppp && ctl_rx_enable_ppp;
```

where DA is the destination address, SA is the source address, OPCODE is the opcode, and ETYPE is the ethertype/length field that is extracted from the incoming packet.

User Interface

A simple hand-shaking protocol alerts you of the reception of pause packets using the CTL_RX_PAUSE_ENABLE[8:0], STAT_RX_PAUSE_REQ[8:0] and CTL_RX_PAUSE_ACK[8:0] buses. For both buses, bit [8] corresponds to global pause packets and bits [7:0] correspond to priority pause packets.

The following steps occur when a pause packet is received:

1. If the corresponding bit of CTL_RX_PAUSE_ENABLE[8:0] is 0, the quanta is ignored and the dedicated 100G Ethernet IP core stays in step 1. Otherwise, the corresponding bit of the STAT_RX_PAUSE_REQ[8:0] bus is set to 1, and the received quanta is loaded into a timer.

Note: If one of the bits of CTL_RX_PAUSE_ENABLE[8:0] is set to 0 (that is, disabled) when the pause processing is in step 2 or later, the dedicated 100G Ethernet IP core completes the steps as normal until it comes back to step 1.

- 2. If CTL_RX_CHECK_ACK input is 1, the dedicated 100G Ethernet IP core waits for you to set the appropriate bit of the CTL_RX_PAUSE_ACK[8:0] bus to 1.
- 3. After you set the proper bit of CTL_RX_PAUSE_ACK[8:0] to 1, or if CTL_RX_CHECK_ACK is 0, the dedicated 100G Ethernet IP core starts counting down the timer.
- 4. When the timer times out, the dedicated 100G Ethernet sets the appropriate bit of STAT_RX_PAUSE_REQ[8:0] back to 0.
- 5. If CTL_RX_CHECK_ACK input is 1, the operation is complete when you set the appropriate bit of CTL_RX_PAUSE_ACK[8:0] back to 0.

If you do not set the appropriate bit of CTL_RX_PAUSE_ACK[8:0] back to 0, the dedicated 100G Ethernet IP core deems the operation complete after 32 clock cycles.

The preceding steps are demonstrated in Figure 3-9 with each step shown on the wave form.

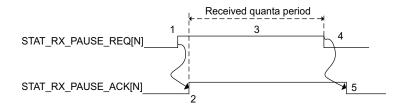


Figure 3-9: RX Pause Interface Example

If at any time during steps 2 to 5 a new pause packet is received, the timer is loaded with the newly acquired quanta value and the and the process continues.

Status and Control Interface

The status/control interface allows you to set up the 100G Ethernet IP core configuration and to monitor the status of the core. The following subsections describe the various status and control signals.

RX and TX

The 802.3-2012 defines the PCS Lane marker values. These are shown in Table 3-6.

Table 3-6: PCS Lane Marker Values

PCS Lane Marker Attributes	Value
CTL_RX_VL_MARKER_ID[0][63:0]	64'hc1_68_21_00_3e_97_de_00
CTL_TX_VL_MARKER_ID[0][63:0]	04 NCI_08_21_00_3e_97_de_00
CTL_RX_VL_MARKER_ID[1][63:0]	64'h9d_71_8e_00_62_8e_71_00
CTL_TX_VL_MARKER_ID[1][63:0]	04 1130_71_86_00_02_86_71_00
CTL_RX_VL_MARKER_ID[2][63:0]	64'h59_4b_e8_00_a6_b4_17_00
CTL_TX_VL_MARKER_ID[2][63:0]	04 1133_45_66_00_80_54_17_00
CTL_RX_VL_MARKER_ID[3][63:0]	64'h4d_95_7b_00_b2_6a_84_00
CTL_TX_VL_MARKER_ID[3][63:0]	04 1140_33_75_00_52_00_04_00
CTL_RX_VL_MARKER_ID[4][63:0]	64'hf5_07_09_00_0a_f8_f6_00
CTL_TX_VL_MARKER_ID[4][63:0]	04 1115_07_05_000_04_10_10_00
CTL_RX_VL_MARKER_ID[5][63:0]	64'hdd_14_c2_00_22_eb_3d_00
CTL_TX_VL_MARKER_ID[5][63:0]	04 Mdd_14_02_00_22_05_5d_00
CTL_RX_VL_MARKER_ID[6][63:0]	64'h9a_4a_26_00_65_b5_d9_00
CTL_TX_VL_MARKER_ID[6][63:0]	04 1134_44_20_00_03_83_43_00
CTL_RX_VL_MARKER_ID[7][63:0]	64'h7b_45_66_00_84_ba_99_00
CTL_TX_VL_MARKER_ID[7][63:0]	04 11/ 5_43_00_00_04_54_55_00
CTL_RX_VL_MARKER_ID[8][63:0]	64'ha0_24_76_00_5f_db_89_00
CTL_TX_VL_MARKER_ID[8][63:0]	0111110_21_70_00_51_05_05
CTL_RX_VL_MARKER_ID[9][63:0]	64'h68_c9_fb_00_97_36_04_00
CTL_TX_VL_MARKER_ID[9][63:0]	011100_05_15_00_57_50_01_00
CTL_RX_VL_MARKER_ID[10][63:0]	64'hfd_6c_99_00_02_93_66_00
CTL_TX_VL_MARKER_ID[10][63:0]	011ma_00_33_000_02_33_000_00
CTL_RX_VL_MARKER_ID[11][63:0]	64'hb9_91_55_00_46_6e_aa_00
CTL_TX_VL_MARKER_ID[11][63:0]	011103_31_33_00_10_00_ uu _00
CTL_RX_VL_MARKER_ID[12][63:0]	64'h5c_b9_b2_00_a3_46_4d_00
CTL_TX_VL_MARKER_ID[12][63:0]	04 N3C_B3_B2_00_u3_40_4u_00
CTL_RX_VL_MARKER_ID[13][63:0]	64'h1a_f8_bd_00_e5_07_42_00
CTL_TX_VL_MARKER_ID[13][63:0]	011114_10_54_00_65_07_12_00
CTL_RX_VL_MARKER_ID[14][63:0]	64'h83_c7_ca_00_7c_38_35_00
CTL_TX_VL_MARKER_ID[14][63:0]	555_c/_cd_55_/5_55
CTL_RX_VL_MARKER_ID[15][63:0]	64'h35_36_cd_00_ca_c9_32_00
CTL_TX_VL_MARKER_ID[15][63:0]	055_50_64_60_64_65_52_60
CTL_RX_VL_MARKER_ID[16][63:0]	64'hc4_31_4c_00_3b_ce_b3_00
CTL_TX_VL_MARKER_ID[16][63:0]	55516_55_55_66_55_66

Table 3-6: PCS Lane Marker Values (Cont'd)

PCS Lane Marker Attributes	Value
CTL_RX_VL_MARKER_ID[17][63:0]	64'had_d6_b7_00_52_29_48_00
CTL_TX_VL_MARKER_ID[17][63:0]	04 Had_d0_b7_00_32_29_48_00
CTL_RX_VL_MARKER_ID[18][63:0]	64'hEf 66 32 00 20 00 dE 00
CTL_TX_VL_MARKER_ID[18][63:0]	64'h5f_66_2a_00_a0_99_d5_00
CTL_RX_VL_MARKER_ID[19][63:0]	64'bc0 f0 of 00 2f 0f 1o 00
CTL_TX_VL_MARKER_ID[19][63:0]	64'hc0_f0_e5_00_3f_0f_1a_00

RX PCS Lane Alignment Status

The 100G Ethernet IP core provides status bits to indicate the state of word boundary synchronization and PCS lane alignment. All signals are synchronous with the rising-edge of RX_CLK. A detailed description of each signal follows.

STAT_RX_SYNCED[19:0]

When a bit of this bus is 0, it indicates that word boundary synchronization of the corresponding lane is not complete or that an error has occurred as identified by another status bit.

When a bit of this bus is 1, it indicates that the corresponding lane is word boundary synchronized and is receiving PCS Lane Marker Words as expected.

STAT_RX_SYNCED_ERR[19:0]

When a bit of this bus is 1, it indicates one of several possible failures on the corresponding lane.

- Word boundary synchronization in the lane was not possible using Framing bits [65:64].
- After word boundary synchronization in the lane was achieved, errors were detected on Framing bits [65:64].
- After word boundary synchronization in the lane was achieved, a valid PCS Lane Marker Word was never received.

The bits of the bus remain asserted until word boundary synchronization occurs or until some other error/failure is signaled for the corresponding lane.

STAT RX MF LEN ERR[19:0]

When a bit of this bus is 1, it indicates that PCS Lane Marker Words are being received but not at the expected rate in the corresponding lane. The transmitter and receiver must be re-configured with the same Meta Frame length.

The bits of the bus remain asserted until word boundary synchronization occurs or until some other error/failure is signaled for the corresponding lane.

STAT_RX_MF_REPEAT_ERR[19:0]

After word boundary synchronization is achieved in a lane, if a bit of this bus is a 1, it indicates that four consecutive invalid PCS Lane Marker Words were detected in the corresponding lane.

The bits of the bus remain asserted until re-synchronization occurs or until some other error/failure is signaled for the corresponding lane.

STAT RX MF ERR[19:0]

When a bit of this bus is 1, it indicates that an invalid PCS Lane Marker Word was received on the corresponding lane. This bit is only asserted after word boundary synchronization is achieved. This output is asserted for one clock period each time an invalid Meta Packet Synchronization Word is detected.

STAT_RX_ALIGNED

When STAT_RX_ALIGNED is a value of 1, all of the lanes are aligned/de-skewed and the receiver is ready to receive packet data.

STAT RX ALIGNED ERR

When STAT_RX_ALIGNED_ERR is a value of 1, one of two things occurred. Lane alignment failed after several attempts, or lane alignment was lost (STAT_RX_ALIGNED was asserted and then it was negated).

STAT RX MISALIGNED

When STAT_RX_MISALIGNED is a value of 1, a valid PCS Lane Marker Word was not received on all PCS lanes simultaneously. This output is asserted for one clock period each time this error condition is detected.

STAT RX FRAMING ERR [0-19][3:0] and STAT RX FRAMING ERR VALID [0-19]

This set of buses is intended to be used to keep track of sync header errors. There is a pair of outputs for each PCS Lane. The STAT_RX_FRAMING_ERR_[0-19] output bus indicates how many sync header errors were received and it is qualified (that is, the value is only valid) when the corresponding STAT_RX_FRAMING_ERR_VALID[0-19] is sampled as a 1.

STAT RX VL NUMBER [0-19][4:0]

Each bus indicates which PCS lane will have its status reflected on a specific status pins. For example, STAT_RX_VLANE_NUMBER_0 indicates which PCS lane will have its status reflected on pin 0 of the other status signals. These buses can be used to detect if a PCS lane has not been found or if one has been mapped to multiple status pins.

In CAUI-10 mode:

- The physical lanes 0, 1 map to GT0,
- The physical lanes 2, 3 map to GT1,
- The physical lanes 4, 5 map to GT2, and so forth.

In CAUI-4 mode:

- The physical lanes 0, 1, 2, 3, 4 map to GT0,
- The physical lanes 5, 6, 7, 8, 9 map to GT1,
- The physical lanes 10, 11, 12, 13, 14 map to GT2, and
- The physical lanes 15, 16, 17, 18, 19 map to GT3.

STAT_RX_VL_DEMUXED[19:0]

After word boundary synchronization is achieved on each lane, if a bit of this bus is 1 it indicates that the corresponding PCS lane was properly found and demultiplexed.

STAT_RX_BLOCK_LOCK[19:0]

Each bit indicates that the corresponding PCS lane has achieved sync header lock as defined by the 802.3-2012. A value of 1 indicates block lock is achieved.

STAT RX STATUS

This output is set to a 1 when STAT_RX_ALIGNED is a 1 and STAT_RX_HI_BER is a 0. This is defined by the 802.3-2012.

STAT RX LOCAL FAULT

This output is High when STAT_RX_INTERNAL_LOCAL_FAULT or STAT_RX_RECEIVED_LOCAL_FAULT is asserted. This output is level sensitive.

RX Error Status

The 100G Ethernet IP core provides status signals to identify 64B/66B words and sequences violations and CRC32 checking failures. All signals are synchronous with the rising-edge of CLK. A detailed description of each signal follows.

STAT RX BAD FCS[3:0]

When this signal is a value of 1, it indicates that the error detection logic has identified a mismatch between the expected and received value of CRC32 in the received packet.

When a CRC32 error is detected, the received packet is marked as containing an error and it is sent with RX_ERROUT asserted during the last transfer (the cycle with RX_EOPOUT

asserted), unless CTL_RX_IGNORE_FCS is asserted. This signal is asserted for one clock period each time a CRC32 error is detected.

STAT_RX_BAD_CODE[2:0]

This signal indicates how many cycles the RX PCS receive state machine is in the RX_E state as defined by the 802.3-2012 specifications.

1588v2 Timestamping

The integrated block for the 100G Ethernet IP core supports 1588v2 timestamping. All the necessary signals are provided to allow external soft logic to make precise corrections to the timestamp captured by the IP. The core supports 2-step 1588v2 clocks through ingress and egress timestamp captures.

According to the IEEE 1588v2 standard, there are various PTP message encapsulations [Ref 1]. In the case of 2-step clocks, all types of encapsulation are possible with the 100G Ethernet IP core if the design includes a PTP-specific (software) implementation.

For a 1-step clock, the encapsulation protocol (PTP message offset) must be defined. Therefore, the integrated CMAC supports the following encapsulations for 1-step operation:

- Ethernet
- IPv4 UDP
- IPv6 UDP

Inputs are provided for the timestamp offset value in the message, and for the RX path timestamp to use for the field adjustment. Further details on the function of the command fields are found in Table 2-2.

Receive Timestamp Function

The ingress logic does not parse the ingress packets to search for 1588 (PTP) frames. Instead, it takes a timestamp for every received frame and outputs this value to the user logic. The feature is always enabled, but the timestamp output can be ignored by users not requiring this function.

See Table 2-2 for a detailed description of signals related to the RX timestamping function.

To compensate for lane skew, the alignment buffer fill levels for each PCS lane are provided as outputs. The RX timestamp function is shown in Figure 3-10.

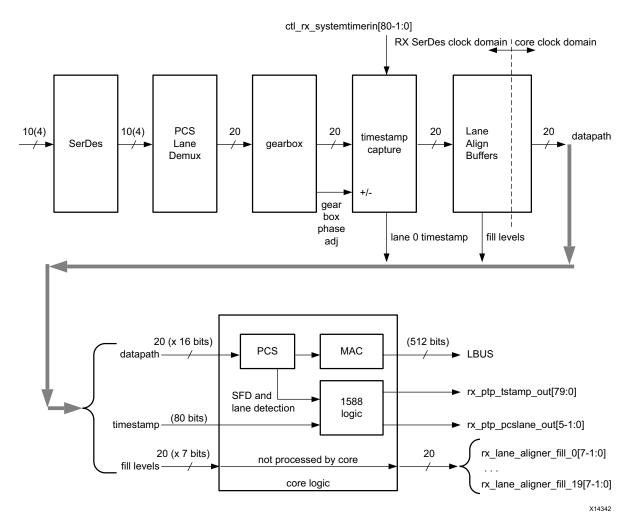


Figure 3-10: RX Timestamping

In Figure 3-10, timestamps are captured for each word of lane 0 which is exiting the gearbox plane. The capture logic accounts for the gearbox dead cycle which occurs every 33 cycles.

IMPORTANT: The RX system timer input must be in lane 0 of the RX SerDes clock domain.

Timestamps are filtered after the PCS decoder to retain only those timestamps corresponding to an SOP. The PCS also identifies the PCS lane on which the SOP occurred.

The lane alignment fill buffers are carried through to the user interface output. These average values of the fill levels are not expected to vary over time. The average value should be taken to the required accuracy to remove the clock cycle jitter. The alignment fill values reflect the static skew present in each lane.

The signals stat_rx_vl_number_0[4:0] to stat_rx_vl_number_19[4:0] can be used to correlate each PCS lane to a physical lane.

Soft logic improves timestamp accuracy and compensate for the lane alignment FIFO fill levels by adding or subtracting the relative fill level of the selected lane. The reference fill level is the average fill level of the RX lane aligner fill after the PCS lane number carried by rx_ptp_pcslane_out is translated to a PMD lane number via the stat_rx_pcsl_number_*. The relationship between the 100G Ethernet IP core and the soft logic is shown in Figure 3-11.

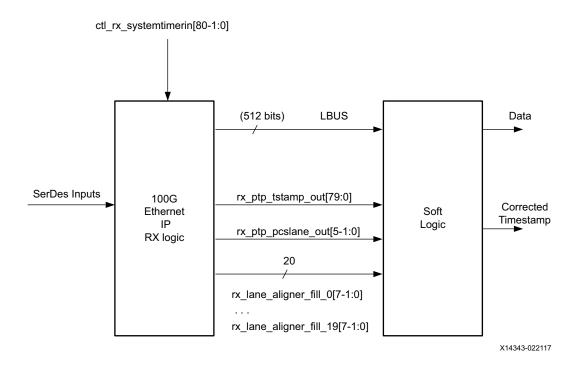


Figure 3-11: Soft Logic

The corrected timestamp is computed as:

rx_ptp_tstamp_out + (Reference Fill Level - rx_lane_aligner_fill_0)

Where:

- rx_ptp_tstamp_out is the timestamp at the first gearbox, and is filtered by the PCS to correspond to the start of the SOP. The rx_ptp_tstamp_out value is a unit of time. Whereas the fill level is not a unit of time. To translate the fill level to time, multiply the fill level by the cycle period.
- rx_lane_aligner_fill_0 is the time average of the alignment buffer fill level for the lane on which the timestamp was taken.
- Reference fill level is the average fill level of the RX lane aligner fill after the PCS lane number carried by rx_ptp_pcslane_out is translated to a PMD lane number via the stat_rx_pcsl_number_*.

Transmit 1588 Insertion and Timestamp Function

The egress logic uses an operation/command bus to identify frames that require time stamping returned to the user, or frames for which a timestamp should be inserted. See Table 2-2 for a description of the command fields.

Transmit timestamping is illustrated in Figure 3-12.

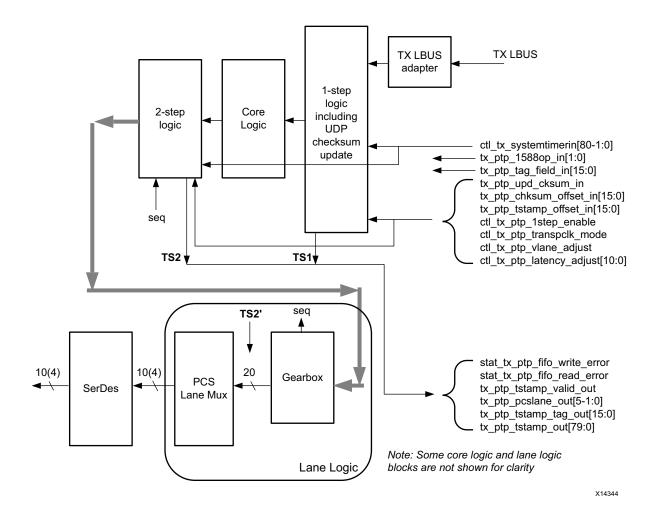


Figure 3-12: TX Timestamping

As seen on the diagram, timestamping logic exists in two locations depending on whether 1-step or 2-step operation is desired. 1-step operation requires user datagram protocol (UDP) checksum and FCS updates and therefore the FCS core logic is re-used.

The TS references are defined as follows:

- TS1: The output timestamp signal when a 1-step operation is selected.
- TS2: The output timestamp signal when a 2-step operation is selected.
- TS2': The plane to which both timestamps are corrected.

TS2 always has a correction applied so that it is referenced to the TS2' plane. TS1 might or might not have the TS2' correction applied, depending on the value of the signal $ctl_tx_ptp_latency_adjust[10:0]$. The default value of this signal is 705 (decimal).

Transmit 1588 Gearbox Jitter Compensation

The 1588 timestamp capture on the TX accounts for the jitter introduced by the transmit gearbox. The gearbox takes in 66-bit timestamped frames in 34/32 bit chunks and outputs data 32 bits at a time. Because 66 bits is not a multiple of 32, the gearbox accumulates excess data that is added to the beginning of subsequent cycles of data output. When data is appended from the gearbox buffer, jitter is introduced to the timestamped frames received by the gearbox. The gearbox has a state that is called the sequence number. For each sequence number, the gearbox has a specific number of bits buffered for adding to the beginning of the output data. The amount of jitter introduced by the gearbox can be represented by the graph in Figure 3-13.

TIP: The timestamp of a frame aligns with the control bits at the start of the 66-bit frame. As a result, timestamp jitter compensation is applied according to the arrival time of the control bits at the gearbox. The actual compensation is done by multiplying the cycle period (3.103 ns) by the n/32 fraction based on the sequence number and adding that to the timestamp already associated with the 66-bit frame.

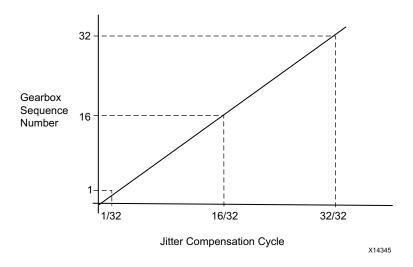


Figure 3-13: Jitter Compensation

Transceiver Selection Rules

The design must meet the following rules when connecting the 100G Ethernet IP core to the transceivers.

If implementing CAUI-10:

- CAUI-10 GTs have to be contiguous
- CAUI-10 must include two or four GTs from the quad in the same horizontal Clock Region (CR) as the 100G Ethernet IP
- CAUI-10 must be implemented within an Super Logic Region (SLR)

If implementing CAUI-4:

- CAUI-4 GTs have to be contiguous
- CAUI-4 must use GTs from the same horizontal CR or two above or below
- CAUI-4 all GTs must come from the same GT quad
- CAUI-4 is only supported in Lanes 1-4
- CAUI-4 must be implemented within an SLR

If implementing Runtime Switchable CAUI-10/CAUI-4, follow the preceding rules for both CAUI-10 and CAUI-4 rules.

IMPORTANT: For Runtime Switchable mode, if the GT group is selected as two GTs from bottom quad, four GTs from middle and four GTs from upper quad, then when it switches from CAUI10 to CAUI4, the upper GT quad is used for CAUI4.

Note that the 100G Ethernet IP core is optimized to use GTY transceiver locations. Therefore GTH transceiver locations relative to the CMAC block span a significant distance. Timing closure can be affected.

RECOMMENDED: For transceiver selections outside of these rules, contact Xilinx support or your local FAE.

See the *UltraScale Architecture Clocking Resource User Guide* (UG572) [Ref 5] for more information on clock region.

Dynamic Reconfiguration Port

The dynamic reconfiguration port (DRP) allows the dynamic change of attributes to the 100G Ethernet IP core. The DRP interface is a processor-friendly synchronous interface with an address bus (DRP_ADDR) and separated data buses for reading (DRP_DO) and writing (DRP_DI) configuration data to the CMAC block. An enable signal (DRP_EN), a read/write signal (DRP_WE), and a ready/valid signal (DRP_RDY) are the control signals that implement read and write operations, indicate that the operation is completion, or indicate the availability of data.

For the DRP to work, a clock must be provided to the DRP_CLK port. See the *Virtex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics Data Sheet* (DS893) [Ref 3], for the maximum allowed clock frequency.

The CMAC block must be held in reset when you want to dynamically change the attributes through the DRP. That is, TX_RESET, RX_RESET, and the RX_SERDES_RESET[9:0] need to be asserted High.

DRP Write Operation

Figure 3-14 shows the DRP write operation timing diagram. New DRP operations can be initiated when the DRP_RDY signal is asserted.

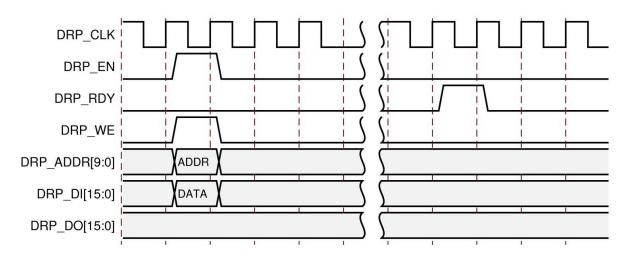


Figure 3-14: DRP Write Operation Timing Diagram

DRP Read Operation

Figure 3-15 shows the DRP read operation timing diagram. New DRP operations can be initiated when the DRP_RDY signal is asserted.

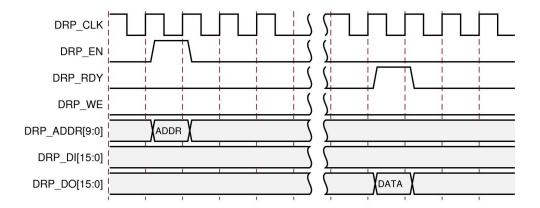


Figure 3-15: DRP Read Operation Timing Diagram

DRP Address Map of the CMAC Block

Table 3-7 lists the DRP map of the CMAC block sorted by address.

Table 3-7: DRP Map of the CMAC Block

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
0	0	R/W	CTL_TX_PTP_1STEP_ENABLE	FALSE	0
0	U	IX/ VV	CIL_IX_FIF_ISTEF_LIVABLE	TRUE	1
1	0	R/W	CTL_TX_IGNORE_FCS	FALSE	0
	U	K/ W	CIL_IX_IGNORE_FCS	TRUE	1
2	0	R/W	CTL_TX_FCS_INS_ENABLE	FALSE	0
2	U	K/ W		TRUE	1
8	[15:0]	R/W	CTL_TX_OPCODE_GPP[15:0]	0-FFFF	0-FFFF
9	[15:0]	R/W	CTL_TX_ETHERTYPE_PPP[15:0]]	0-FFFF	0-FFFF
Α	[15:0]	R/W	CTL_TX_OPCODE_PPP[15:0]	0-FFFF	0-FFFF
10	[15:0]	R/W	CTL_TX_VL_LENGTH_MINUS1[15:0]	0-FFFF	0-FFFF
18	[15:0]	R/W	CTL_TX_SA_GPP[15:0]	0-FFFF	0-FFFF
19	[15:0]	R/W	CTL_TX_SA_GPP[31:16]	0-FFFF	0-FFFF
1A	[15:0]	R/W	CTL_TX_SA_GPP[47:32]	0-FFFF	0-FFFF
20	[15:0]	R/W	CTL_TX_DA_PPP[15:0]	0-FFFF	0-FFFF
21	[15:0]	R/W	CTL_TX_DA_PPP[31:16]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
22	[15:0]	R/W	CTL_TX_DA_PPP[47:32]	0-FFFF	0-FFFF
28	[15:0]	R/W	CTL_TX_SA_PPP[15:0]	0-FFFF	0-FFFF
29	[15:0]	R/W	CTL_TX_SA_PPP[31:16]	0-FFFF	0-FFFF
2A	[15:0]	R/W	CTL_TX_SA_PPP[47:32]	0-FFFF	0-FFFF
30	[15:0]	R/W	CTL_TX_DA_GPP[15:0]	0-FFFF	0-FFFF
31	[15:0]	R/W	CTL_TX_DA_GPP[31:16]	0-FFFF	0-FFFF
32	[15:0]	R/W	CTL_TX_DA_GPP[47:32]	0-FFFF	0-FFFF
38	[15:0]	R/W	CTL_TX_VL_MARKER_ID0[15:0]	0-FFFF	0-FFFF
39	[15:0]	R/W	CTL_TX_VL_MARKER_ID0[31:16]	0-FFFF	0-FFFF
3A	[15:0]	R/W	CTL_TX_VL_MARKER_ID0[47:32]	0-FFFF	0-FFFF
3B	[15:0]	R/W	CTL_TX_VL_MARKER_ID0[63:48]	0-FFFF	0-FFFF
40	[15:0]	R/W	CTL_TX_VL_MARKER_ID1[15:0]	0-FFFF	0-FFFF
41	[15:0]	R/W	CTL_TX_VL_MARKER_ID1[31:16]	0-FFFF	0-FFFF
42	[15:0]	R/W	CTL_TX_VL_MARKER_ID1[47:32]	0-FFFF	0-FFFF
43	[15:0]	R/W	CTL_TX_VL_MARKER_ID1[63:48]	0-FFFF	0-FFFF
48	[15:0]	R/W	CTL_TX_VL_MARKER_ID2[15:0]	0-FFFF	0-FFFF
49	[15:0]	R/W	CTL_TX_VL_MARKER_ID2[31:16]	0-FFFF	0-FFFF
4A	[15:0]	R/W	CTL_TX_VL_MARKER_ID2[47:32]	0-FFFF	0-FFFF
4B	[15:0]	R/W	CTL_TX_VL_MARKER_ID2[63:48]	0-FFFF	0-FFFF
50	[15:0]	R/W	CTL_TX_VL_MARKER_ID3[15:0]	0-FFFF	0-FFFF
51	[15:0]	R/W	CTL_TX_VL_MARKER_ID3[31:16]	0-FFFF	0-FFFF
52	[15:0]	R/W	CTL_TX_VL_MARKER_ID3[47:32]	0-FFFF	0-FFFF
53	[15:0]	R/W	CTL_TX_VL_MARKER_ID3[63:48]	0-FFFF	0-FFFF
58	[15:0]	R/W	CTL_TX_VL_MARKER_ID4[15:0]	0-FFFF	0-FFFF
59	[15:0]	R/W	CTL_TX_VL_MARKER_ID4[31:16]	0-FFFF	0-FFFF
5A	[15:0]	R/W	CTL_TX_VL_MARKER_ID4[47:32]	0-FFFF	0-FFFF
5B	[15:0]	R/W	CTL_TX_VL_MARKER_ID4[63:48]	0-FFFF	0-FFFF
60	[15:0]	R/W	CTL_TX_VL_MARKER_ID5[15:0]	0-FFFF	0-FFFF
61	[15:0]	R/W	CTL_TX_VL_MARKER_ID5[31:16]	0-FFFF	0-FFFF
62	[15:0]	R/W	CTL_TX_VL_MARKER_ID5[47:32]	0-FFFF	0-FFFF
63	[15:0]	R/W	CTL_TX_VL_MARKER_ID5[63:48]	0-FFFF	0-FFFF
68	[15:0]	R/W	CTL_TX_VL_MARKER_ID6[15:0]	0-FFFF	0-FFFF
69	[15:0]	R/W	CTL_TX_VL_MARKER_ID6[31:16]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
6A	[15:0]	R/W	CTL_TX_VL_MARKER_ID6[47:32]	0-FFFF	0-FFFF
6B	[15:0]	R/W	CTL_TX_VL_MARKER_ID6[63:48]	0-FFFF	0-FFFF
70	[15:0]	R/W	CTL_TX_VL_MARKER_ID7[15:0]	0-FFFF	0-FFFF
71	[15:0]	R/W	CTL_TX_VL_MARKER_ID7[31:16]	0-FFFF	0-FFFF
72	[15:0]	R/W	CTL_TX_VL_MARKER_ID7[47:32]	0-FFFF	0-FFFF
73	[15:0]	R/W	CTL_TX_VL_MARKER_ID7[63:48]	0-FFFF	0-FFFF
78	[15:0]	R/W	CTL_TX_VL_MARKER_ID8[15:0]	0-FFFF	0-FFFF
79	[15:0]	R/W	CTL_TX_VL_MARKER_ID8[31:16]	0-FFFF	0-FFFF
7A	[15:0]	R/W	CTL_TX_VL_MARKER_ID8[47:32]	0-FFFF	0-FFFF
7B	[15:0]	R/W	CTL_TX_VL_MARKER_ID8[63:48]	0-FFFF	0-FFFF
80	[15:0]	R/W	CTL_TX_VL_MARKER_ID9[15:0]	0-FFFF	0-FFFF
81	[15:0]	R/W	CTL_TX_VL_MARKER_ID9[31:16]	0-FFFF	0-FFFF
82	[15:0]	R/W	CTL_TX_VL_MARKER_ID9[47:32]	0-FFFF	0-FFFF
83	[15:0]	R/W	CTL_TX_VL_MARKER_ID9[63:48]	0-FFFF	0-FFFF
88	[15:0]	R/W	CTL_TX_VL_MARKER_ID10[15:0]	0-FFFF	0-FFFF
89	[15:0]	R/W	CTL_TX_VL_MARKER_ID10[31:16]	0-FFFF	0-FFFF
8A	[15:0]	R/W	CTL_TX_VL_MARKER_ID10[47:32]	0-FFFF	0-FFFF
8B	[15:0]	R/W	CTL_TX_VL_MARKER_ID10[63:48]	0-FFFF	0-FFFF
90	[15:0]	R/W	CTL_TX_VL_MARKER_ID11[15:0]	0-FFFF	0-FFFF
91	[15:0]	R/W	CTL_TX_VL_MARKER_ID11[31:16]	0-FFFF	0-FFFF
92	[15:0]	R/W	CTL_TX_VL_MARKER_ID11[47:32]	0-FFFF	0-FFFF
93	[15:0]	R/W	CTL_TX_VL_MARKER_ID11[63:48]	0-FFFF	0-FFFF
98	[15:0]	R/W	CTL_TX_VL_MARKER_ID12[15:0]	0-FFFF	0-FFFF
99	[15:0]	R/W	CTL_TX_VL_MARKER_ID12[31:16]	0-FFFF	0-FFFF
9A	[15:0]	R/W	CTL_TX_VL_MARKER_ID12[47:32]	0-FFFF	0-FFFF
9B	[15:0]	R/W	CTL_TX_VL_MARKER_ID12[63:48]	0-FFFF	0-FFFF
Α0	[15:0]	R/W	CTL_TX_VL_MARKER_ID13[15:0]	0-FFFF	0-FFFF
A1	[15:0]	R/W	CTL_TX_VL_MARKER_ID13[31:16]	0-FFFF	0-FFFF
A2	[15:0]	R/W	CTL_TX_VL_MARKER_ID13[47:32]	0-FFFF	0-FFFF
А3	[15:0]	R/W	CTL_TX_VL_MARKER_ID13[63:48]	0-FFFF	0-FFFF
A8	[15:0]	R/W	CTL_TX_VL_MARKER_ID14[15:0]	0-FFFF	0-FFFF
A9	[15:0]	R/W	CTL_TX_VL_MARKER_ID14[31:16]	0-FFFF	0-FFFF
AA	[15:0]	R/W	CTL_TX_VL_MARKER_ID14[47:32]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
АВ	[15:0]	R/W	CTL_TX_VL_MARKER_ID14[63:48]	0-FFFF	0-FFFF
В0	[15:0]	R/W	CTL_TX_VL_MARKER_ID15[15:0]	0-FFFF	0-FFFF
B1	[15:0]	R/W	CTL_TX_VL_MARKER_ID15[31:16]	0-FFFF	0-FFFF
В2	[15:0]	R/W	CTL_TX_VL_MARKER_ID15[47:32]	0-FFFF	0-FFFF
В3	[15:0]	R/W	CTL_TX_VL_MARKER_ID15[63:48]	0-FFFF	0-FFFF
В8	[15:0]	R/W	CTL_TX_VL_MARKER_ID16[15:0]	0-FFFF	0-FFFF
В9	[15:0]	R/W	CTL_TX_VL_MARKER_ID16[31:16]	0-FFFF	0-FFFF
ВА	[15:0]	R/W	CTL_TX_VL_MARKER_ID16[47:32]	0-FFFF	0-FFFF
ВВ	[15:0]	R/W	CTL_TX_VL_MARKER_ID16[63:48]	0-FFFF	0-FFFF
C0	[15:0]	R/W	CTL_TX_VL_MARKER_ID17[15:0]	0-FFFF	0-FFFF
C1	[15:0]	R/W	CTL_TX_VL_MARKER_ID17[31:16]	0-FFFF	0-FFFF
C2	[15:0]	R/W	CTL_TX_VL_MARKER_ID17[47:32]	0-FFFF	0-FFFF
C3	[15:0]	R/W	CTL_TX_VL_MARKER_ID17[63:48]	0-FFFF	0-FFFF
C8	[15:0]	R/W	CTL_TX_VL_MARKER_ID18[15:0]	0-FFFF	0-FFFF
C 9	[15:0]	R/W	CTL_TX_VL_MARKER_ID18[31:16]	0-FFFF	0-FFFF
CA	[15:0]	R/W	CTL_TX_VL_MARKER_ID18[47:32]	0-FFFF	0-FFFF
СВ	[15:0]	R/W	CTL_TX_VL_MARKER_ID18[63:48]	0-FFFF	0-FFFF
D0	[15:0]	R/W	CTL_TX_VL_MARKER_ID19[15:0]	0-FFFF	0-FFFF
D1	[15:0]	R/W	CTL_TX_VL_MARKER_ID19[31:16]	0-FFFF	0-FFFF
D2	[15:0]	R/W	CTL_TX_VL_MARKER_ID19[47:32]	0-FFFF	0-FFFF
D3	[15:0]	R/W	CTL_TX_VL_MARKER_ID19[63:48]	0-FFFF	0-FFFF
D8	0	D /\A/	CTL DV CLIFCY DDFAMBLE	FALSE	0
Do	0	R/W	CTL_RX_CHECK_PREAMBLE	TRUE	1
D9	0	R/W	CTL RX IGNORE FCS	FALSE	0
D3	U	r/ vv	CTL_KA_IGNORE_FCS	TRUE	1
DA	0	R/W	CTL RX FORWARD CONTROL	FALSE	0
DA	U	r/ vv	CTL_KX_FORWARD_CONTROL	TRUE	1
DB	0	R/W	CTL_RX_DELETE_FCS	FALSE	0
DΒ	U	r./ VV	CIL_NA_DELETE_FC3	TRUE	1
EO	0	R/W	CTL RX CHECK ACK	FALSE	0
EU	U	r./ VV	CTL_NA_CHECK_ACK	TRUE	1
E1	0	D /\A/	CTL_RX_CHECK_SFD	FALSE	0
ΕŢ	U	R/W	CIL_NA_CHECK_3FD	TRUE	1

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
E2	0	D //A/	CTL DV DDOCESS LEI	FALSE	0
EZ	0	R/W	CTL_RX_PROCESS_LFI	TRUE	1
E8	[7:0]	R/W	CTL_RX_MIN_PACKET_LEN[7:0]	0-FF	40-FF
E9	[14:0]	R/W	CTL_RX_MAX_PACKET_LEN[14:0]	0-7FFF	0-3FFF
EA	[15:0]	R/W	CTL_TX_ETHERTYPE_GPP[15:0]	0-FFFF	0-FFFF
EB	[15:0]	R/W	CTL_RX_OPCODE_GPP[15:0]	0-FFFF	0-FFFF
F0	[15:0]	R/W	CTL_RX_OPCODE_MAX_GCP[15:0]	0-FFFF	0-FFFF
F1	[15:0]	R/W	CTL_RX_ETYPE_PPP[15:0]	0-FFFF	0-FFFF
F2	[15:0]	R/W	CTL_RX_ETYPE_GCP[15:0]	0-FFFF	0-FFFF
F3	[15:0]	R/W	CTL_RX_VL_LENGTH_MINUS1[15:0]	0-FFFF	0-FFFF
F8	[15:0]	R/W	CTL_RX_OPCODE_MAX_PCP[15:0]	0-FFFF	0-FFFF
F9	[15:0]	R/W	CTL_RX_OPCODE_MIN_GCP[15:0]	0-FFFF	0-FFFF
FA	[15:0]	R/W	CTL_RX_ETYPE_GPP[15:0]	0-FFFF	0-FFFF
FB	[15:0]	R/W	CTL_RX_OPCODE_MIN_PCP[15:0]	0-FFFF	0-FFFF
100	[15:0]	R/W	CTL_RX_ETYPE_PCP[15:0]	0-FFFF	0-FFFF
101	[15:0]	R/W	CTL_RX_OPCODE_PPP[15:0]	0-FFFF	0-FFFF
108	[15:0]	R/W	CTL_RX_PAUSE_DA_MCAST[15:0]	0-FFFF	0-FFFF
109	[15:0]	R/W	CTL_RX_PAUSE_DA_MCAST[31:16]	0-FFFF	0-FFFF
10A	[15:0]	R/W	CTL_RX_PAUSE_DA_MCAST[47:32]	0-FFFF	0-FFFF
110	[15:0]	R/W	CTL_RX_PAUSE_DA_UCAST[15:0]	0-FFFF	0-FFFF
111	[15:0]	R/W	CTL_RX_PAUSE_DA_UCAST[31:16]	0-FFFF	0-FFFF
112	[15:0]	R/W	CTL_RX_PAUSE_DA_UCAST[47:32]	0-FFFF	0-FFFF
118	[15:0]	R/W	CTL_RX_PAUSE_SA[15:0]	0-FFFF	0-FFFF
119	[15:0]	R/W	CTL_RX_PAUSE_SA[31:16]	0-FFFF	0-FFFF
11A	[15:0]	R/W	CTL_RX_PAUSE_SA[47:32]	0-FFFF	0-FFFF
120	[15:0]	R/W	CTL_RX_VL_MARKER_ID0[15:0]	0-FFFF	0-FFFF
121	[15:0]	R/W	CTL_RX_VL_MARKER_ID0[31:16]	0-FFFF	0-FFFF
122	[15:0]	R/W	CTL_RX_VL_MARKER_ID0[47:32]	0-FFFF	0-FFFF
123	[15:0]	R/W	CTL_RX_VL_MARKER_ID0[63:48]	0-FFFF	0-FFFF
128	[15:0]	R/W	CTL_RX_VL_MARKER_ID1[15:0]	0-FFFF	0-FFFF
129	[15:0]	R/W	CTL_RX_VL_MARKER_ID1[31:16]	0-FFFF	0-FFFF
12A	[15:0]	R/W	CTL_RX_VL_MARKER_ID1[47:32]	0-FFFF	0-FFFF
12B	[15:0]	R/W	CTL_RX_VL_MARKER_ID1[63:48]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
130	[15:0]	R/W	CTL_RX_VL_MARKER_ID2[15:0]	0-FFFF	0-FFFF
131	[15:0]	R/W	CTL_RX_VL_MARKER_ID2[31:16]	0-FFFF	0-FFFF
132	[15:0]	R/W	CTL_RX_VL_MARKER_ID2[47:32]	0-FFFF	0-FFFF
133	[15:0]	R/W	CTL_RX_VL_MARKER_ID2[63:48]	0-FFFF	0-FFFF
138	[15:0]	R/W	CTL_RX_VL_MARKER_ID3[15:0]	0-FFFF	0-FFFF
139	[15:0]	R/W	CTL_RX_VL_MARKER_ID3[31:16]	0-FFFF	0-FFFF
13A	[15:0]	R/W	CTL_RX_VL_MARKER_ID3[47:32]	0-FFFF	0-FFFF
13B	[15:0]	R/W	CTL_RX_VL_MARKER_ID3[63:48]	0-FFFF	0-FFFF
140	[15:0]	R/W	CTL_RX_VL_MARKER_ID4[15:0]	0-FFFF	0-FFFF
141	[15:0]	R/W	CTL_RX_VL_MARKER_ID4[31:16]	0-FFFF	0-FFFF
142	[15:0]	R/W	CTL_RX_VL_MARKER_ID4[47:32]	0-FFFF	0-FFFF
143	[15:0]	R/W	CTL_RX_VL_MARKER_ID4[63:48]	0-FFFF	0-FFFF
148	[15:0]	R/W	CTL_RX_VL_MARKER_ID5[15:0]	0-FFFF	0-FFFF
149	[15:0]	R/W	CTL_RX_VL_MARKER_ID5[31:16]	0-FFFF	0-FFFF
14A	[15:0]	R/W	CTL_RX_VL_MARKER_ID5[47:32]	0-FFFF	0-FFFF
14B	[15:0]	R/W	CTL_RX_VL_MARKER_ID5[63:48]	0-FFFF	0-FFFF
150	[15:0]	R/W	CTL_RX_VL_MARKER_ID6[15:0]	0-FFFF	0-FFFF
151	[15:0]	R/W	CTL_RX_VL_MARKER_ID6[31:16]	0-FFFF	0-FFFF
152	[15:0]	R/W	CTL_RX_VL_MARKER_ID6[47:32]	0-FFFF	0-FFFF
153	[15:0]	R/W	CTL_RX_VL_MARKER_ID6[63:48]	0-FFFF	0-FFFF
158	[15:0]	R/W	CTL_RX_VL_MARKER_ID7[15:0]	0-FFFF	0-FFFF
159	[15:0]	R/W	CTL_RX_VL_MARKER_ID7[31:16]	0-FFFF	0-FFFF
15A	[15:0]	R/W	CTL_RX_VL_MARKER_ID7[47:32]	0-FFFF	0-FFFF
15B	[15:0]	R/W	CTL_RX_VL_MARKER_ID7[63:48]	0-FFFF	0-FFFF
160	[15:0]	R/W	CTL_RX_VL_MARKER_ID8[15:0]	0-FFFF	0-FFFF
161	[15:0]	R/W	CTL_RX_VL_MARKER_ID8[31:16]	0-FFFF	0-FFFF
162	[15:0]	R/W	CTL_RX_VL_MARKER_ID8[47:32]	0-FFFF	0-FFFF
163	[15:0]	R/W	CTL_RX_VL_MARKER_ID8[63:48]	0-FFFF	0-FFFF
168	[15:0]	R/W	CTL_RX_VL_MARKER_ID9[15:0]	0-FFFF	0-FFFF
169	[15:0]	R/W	CTL_RX_VL_MARKER_ID9[31:16]	0-FFFF	0-FFFF
16A	[15:0]	R/W	CTL_RX_VL_MARKER_ID9[47:32]	0-FFFF	0-FFFF
16B	[15:0]	R/W	CTL_RX_VL_MARKER_ID9[63:48]	0-FFFF	0-FFFF
170	[15:0]	R/W	CTL_RX_VL_MARKER_ID10[15:0]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
171	[15:0]	R/W	CTL_RX_VL_MARKER_ID10[31:16]	0-FFFF	0-FFFF
172	[15:0]	R/W	CTL_RX_VL_MARKER_ID10[47:32]	0-FFFF	0-FFFF
173	[15:0]	R/W	CTL_RX_VL_MARKER_ID10[63:48]	0-FFFF	0-FFFF
178	[15:0]	R/W	CTL_RX_VL_MARKER_ID11[15:0]	0-FFFF	0-FFFF
179	[15:0]	R/W	CTL_RX_VL_MARKER_ID11[31:16]	0-FFFF	0-FFFF
17A	[15:0]	R/W	CTL_RX_VL_MARKER_ID11[47:32]	0-FFFF	0-FFFF
17B	[15:0]	R/W	CTL_RX_VL_MARKER_ID11[63:48]	0-FFFF	0-FFFF
180	[15:0]	R/W	CTL_RX_VL_MARKER_ID12[15:0]	0-FFFF	0-FFFF
181	[15:0]	R/W	CTL_RX_VL_MARKER_ID12[31:16]	0-FFFF	0-FFFF
182	[15:0]	R/W	CTL_RX_VL_MARKER_ID12[47:32]	0-FFFF	0-FFFF
183	[15:0]	R/W	CTL_RX_VL_MARKER_ID12[63:48]	0-FFFF	0-FFFF
188	[15:0]	R/W	CTL_RX_VL_MARKER_ID13[15:0]	0-FFFF	0-FFFF
189	[15:0]	R/W	CTL_RX_VL_MARKER_ID13[31:16]	0-FFFF	0-FFFF
18A	[15:0]	R/W	CTL_RX_VL_MARKER_ID13[47:32]	0-FFFF	0-FFFF
18B	[15:0]	R/W	CTL_RX_VL_MARKER_ID13[63:48]	0-FFFF	0-FFFF
190	[15:0]	R/W	CTL_RX_VL_MARKER_ID14[15:0]	0-FFFF	0-FFFF
191	[15:0]	R/W	CTL_RX_VL_MARKER_ID14[31:16]	0-FFFF	0-FFFF
192	[15:0]	R/W	CTL_RX_VL_MARKER_ID14[47:32]	0-FFFF	0-FFFF
193	[15:0]	R/W	CTL_RX_VL_MARKER_ID14[63:48]	0-FFFF	0-FFFF
198	[15:0]	R/W	CTL_RX_VL_MARKER_ID15[15:0]	0-FFFF	0-FFFF
199	[15:0]	R/W	CTL_RX_VL_MARKER_ID15[31:16]	0-FFFF	0-FFFF
19A	[15:0]	R/W	CTL_RX_VL_MARKER_ID15[47:32]	0-FFFF	0-FFFF
19B	[15:0]	R/W	CTL_RX_VL_MARKER_ID15[63:48]	0-FFFF	0-FFFF
1A0	[15:0]	R/W	CTL_RX_VL_MARKER_ID16[15:0]	0-FFFF	0-FFFF
1A1	[15:0]	R/W	CTL_RX_VL_MARKER_ID16[31:16]	0-FFFF	0-FFFF
1A2	[15:0]	R/W	CTL_RX_VL_MARKER_ID16[47:32]	0-FFFF	0-FFFF
1A3	[15:0]	R/W	CTL_RX_VL_MARKER_ID16[63:48]	0-FFFF	0-FFFF
1A8	[15:0]	R/W	CTL_RX_VL_MARKER_ID17[15:0]	0-FFFF	0-FFFF
1A9	[15:0]	R/W	CTL_RX_VL_MARKER_ID17[31:16]	0-FFFF	0-FFFF
1AA	[15:0]	R/W	CTL_RX_VL_MARKER_ID17[47:32]	0-FFFF	0-FFFF
1AB	[15:0]	R/W	CTL_RX_VL_MARKER_ID17[63:48]	0-FFFF	0-FFFF
1B0	[15:0]	R/W	CTL_RX_VL_MARKER_ID18[15:0]	0-FFFF	0-FFFF
1B1	[15:0]	R/W	CTL_RX_VL_MARKER_ID18[31:16]	0-FFFF	0-FFFF

Table 3-7: DRP Map of the CMAC Block (Cont'd)

DRP Address (Hex)	DRP Bits	R/W	Attribute Name	Attribute Encoding (Hex)	DRP Encoding (Hex)
1B2	[15:0]	R/W	CTL_RX_VL_MARKER_ID18[47:32]	0-FFFF	0-FFFF
1B3	[15:0]	R/W	CTL_RX_VL_MARKER_ID18[63:48]	0-FFFF	0-FFFF
1B8	[15:0]	R/W	CTL_RX_VL_MARKER_ID19[15:0]	0-FFFF	0-FFFF
1B9	[15:0]	R/W	CTL_RX_VL_MARKER_ID19[31:16]	0-FFFF	0-FFFF
1BA	[15:0]	R/W	CTL_RX_VL_MARKER_ID19[47:32]	0-FFFF	0-FFFF
1BB	[15:0]	R/W	CTL_RX_VL_MARKER_ID19[63:48]	0-FFFF	0-FFFF
1C1	0	R/W	CTL_PTP_TRANSPCLK_MODE	FALSE	0
101	0	rs/ VV	CIL_FIF_INANSFCEK_MODE	TRUE	1
1C8	[10:0]	R/W	CTL_TX_PTP_LATENCY_ADJUST[10:0]	0-7FF	0-7FF

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows and the IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 6]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 9]

Customizing and Generating the Core

This section includes information about using Xilinx tools to customize and generate the core in the Vivado Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the *Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator* (UG994) [Ref 6] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value, run the validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

- 1. Select the IP from the Vivado IP catalog.
- 2. Double-click the selected IP or select the Customize IP command from the toolbar or right-click menu.

For details, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 7] and the *Vivado Design Suite User Guide: Getting Started* (UG910) [Ref 8].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE). This layout might vary from the current version.

When the 100G Ethernet IP is selected from the IP catalog, a window displays showing the different available configurations. These are organized in various tabs for better readability and configuration purposes. The details related to these tabs follow:

General Tab

The General tab, shown in Figure 4-1, is used to configure the 100G Ethernet core features.

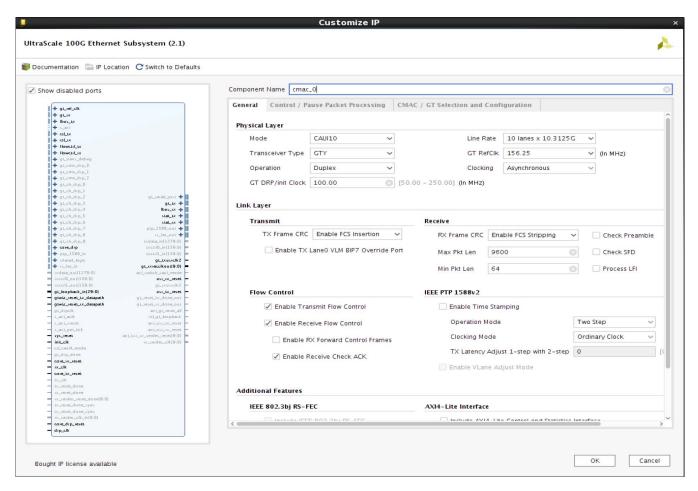


Figure 4-1: General Tab

Table 4-1 describes the General tab options.

Table 4-1: General Tab

Parameter	Description	Default Value	Range				
Physical Layer							
			CAUI 10				
Mode	100G Ethernet Mode	CAUI 10	CAUI 4				
	1333 Line. Mode		Runtime Switchable				

Table 4-1: General Tab (Cont'd)

Parameter	Description	Default Value	Range
Line Rate	Number of lanes and line	10 lanes x 10.3125 Gb/s	10 lanes x 10.3125 Gb/s
	rate		4 lanes x 25.78125 Gb/s
Transceiver Type	Transceiver Type	GTY	GTH
Transcerver Type	Transcerver Type	011	GTY
			103.12 MHz
			128.90 MHz
			161.13 MHz
			156.25 MHz
			161.13 MHz
GT RefClk	Reference clock for the GTs	156.25 MHz	195.31 MHz
GT REICIK	used	150.25 MHZ	201.41 MHz
			206.25 MHz
			257.81 MHz
			309.37 MHz
			312.50 MHz
			322.266 MHz
			Simplex TX
Operation	Operating mode	Duplex	Simplex RX
			Duplex
Clocking	Clocking mode	Asynchronous	Asynchronous
GT DRP/Init Clock	This specifies the frequency (in MHz) that is used to provide a free running clock to GT and also for the DRP operations	100.00	50 to 250 MHz
	Link Layer — Trans	mit	
TX Frame CRC ⁽¹⁾	TX Frame CRC checking	Enable FCS insertion	Enable FCS Insertion Disable FCS Insertion
Enable TX Lane0 VLM BIP7			0: Disabled
Override Port (1)	TX Lane0 VLM BIP7 Override	0	1: Enabled
	Link Layer — Recei	ve	
RX Frame CRC ⁽²⁾	RX Frame CRC checking	RX Frame CRC ⁽²⁾	RX Frame CRC checking

Table 4-1: General Tab (Cont'd)

Parameter	Description	Default Value	Range
Max Pkt Len ⁽²⁾	Maximum Packet Length	Enable FCS stripping	Enable FCS stripping Disable FCS stripping
Min Pkt Len ⁽²⁾	Minimum Packet Length	9,600	0x00FF to 0x3FFF
Check Preamble ⁽²⁾	Check Preamble	64	0x40 to 0xFF
Check SFD ⁽²⁾	Check SFD	0	0: Disabled 1: Enabled
Process LFI ⁽²⁾	RX Process LFI (Local Fault Indication)	0	0: Disabled 1: Enabled
	Link Layer — Flow Co	ntrol	
Enable Transmit Flow Control	Enable Transmit Flow Control		
Enable Receive Flow Control	Enable Receive Flow Control	1	0: Disabled 1: Enabled
Enable RX Forward Control Frames ⁽³⁾	Forward Control Frames	1	0: Disabled 1: Enabled
Enable Receive Check ACK	Enable Receive Check ACK	0	0: Disabled 1: Enabled
	Link Layer — IEEE PTP	1588v2	
Enable Time Stamping	Enables timestamping		
Operation Mode	Select the Operation Mode. Unavailable when Enable Time Stamping = 0	0	0: Disabled 1: Enabled
Clocking Mode	Select the Clocking Mode. Unavailable when Enable Time Stamping = 0	Two Step	One Step Two Step Both
TX Latency Adjust 1-step with 2-step	Unavailable when Enable Time Stamping = 0 with default value as 0. Only available when Operation Mode is Both . If the clocking mode is ordinary clock, default value is 705. If clocking mode is transparent clock, default value should be 802.	Ordinary Clock	Ordinary Clock Transparent Clock

Table 4-1: General Tab (Cont'd)

Parameter	Description	Default Value	Range
Enable VLane Adjust Mode	Unavailable when Enable Time Stamping = 0. Available whenoperation	0	0 to 2,047
	mode is One Step or Both .		
	Additional Featur	es	
Include IEEE 802.3bj RS-FEC	Selecting this option will include IEEE 802.3bj RS-FEC in between CMAC and GT.		
	Note: This feature is available in CAUI-4 mode only.		
Include AXI4-Lite Control	When you enable, the	0	0: Disabled
and Statistics Interface	AXI4-Lite interface is provided in the core.	0	1: Enabled
Include AN/LT Logic	Selecting this option will include AN/LT soft logic.		0: Disabled
	Note: This feature is available in CAUI-4 mode only.	0	1: Enabled

Notes:

- 1. Requires TX to be enabled. Operation = Simplex TX or Duplex modes only.
- 2. Requires RX to be enabled. Operation = Simplex RX or Duplex modes only.
- 3. Option is disabled when receive flow control is disabled.

Control Pause/Packet Processing Tab

Figure 4-2 shows the Control Pause/Packet Processing tab for the core.

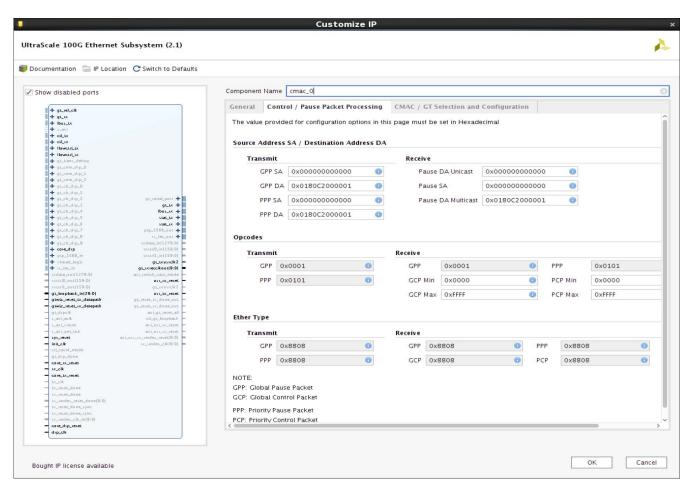


Figure 4-2: Control Pause/Packet Processing Tab

Table 4-2 describes the Control/Pause Packet Processing tab options.

Table 4-2: Control/Pause Packet Processing

Parameter	Description	Default Value	Range
Source Address (SA)/ Destination Address (DA) — Transmit			
TX GPP SA[47:0] ⁽¹⁾	Transmit Global Pause Packet Source Address	0x00000000000	0x00000000000 - 0xFFFFFFFFFF
TX GPP DA[47:0] ⁽¹⁾	Transmit Global Pause Packet Destination Address	0x0180C2000001	0x00000000000 - 0xFFFFFFFFFF
TX PPP SA[47:0] ⁽¹⁾	Transmit Priority Pause Packet Source Address	0x000000000000	0x00000000000 - 0xFFFFFFFFFF
TX PPP DA[47:0] ⁽¹⁾	Transmit Priority Pause Packet Destination Address	0x0180C2000001	0x00000000000 - 0xFFFFFFFFFF
Source A	Address (SA)/ Destination Add	dress (DA) — Receive	
RX Pause DA Unicast[47:0] ⁽²⁾	Receive Pause Destination Address Unicast	0x00000000000	0x00000000000 - 0xFFFFFFFFFF
RX Pause SA[47:0] ⁽²⁾	Receive Source Address	0x00000000000	0x00000000000 - 0xFFFFFFFFFF
RX Pause DA Multicast[47:0] ⁽²⁾	Receive Pause Destination Address Multicast	0x0180C2000001	0x00000000000 - 0xFFFFFFFFF
	Opcodes — Transm	nit	
TX Opcode GPP[15:0]	Transmit Opcode for Global Pause Packet	0x0001	
TX Opcode PPP[15:0]	Transmit Opcode for Priority Pause Packet	0x0101	
	Opcodes — Receiv	re	
RX Opcode GPP[15:0]	Receive Opcode for Global Pause Packet	0x0001	
RX Opcode GCP[15:0] Min ⁽²⁾	Receive Minimum Opcode for Global Control Packet	0x0000	0x0000 - 0xFFFF
RX Opcode GCP[15:0] Max ⁽²⁾	Receive Maximum Opcode for Global Control Packet	0xFFFF	0x0000 - 0xFFFF
RX Opcode PPP[15:0]	Receive Opcode for Priority Pause Packet	0x0101	
RX Opcode PCP[15:0] Min ⁽²⁾	Receive Minimum Opcode for Priority Control Packet	0x0000	0x0000 - 0xFFFF
RX Opcode PCP[15:0] Max ⁽²⁾	Receive Maximum Opcode for Priority Control Packet	0xFFFF	0x0000 - 0xFFFF

Table 4-2: Control/Pause Packet Processing (Cont'd)

Parameter	Description	Default Value	Range
EtherType — Transmit			
TX EtherType GPP[15:0]	Transmit EtherType for Global Pause Packet	0x8808	
TX EtherType PPP[15:0]	Transmit EtherType for Priority Pause Packet	0x8808	
EtherType — Receive			
RX EtherType GPP[15:0]	Receive EtherType for Global Pause Packet	0x8808	
RX EtherType GCP[15:0]	Receive EtherType for Global Control Packet	0x8808	
RX EtherType PPP[15:0]	Receive EtherType for Priority Pause Packet	0x8808	
RX EtherType PCP[15:0]	Receive EtherType for Priority Control Packet	0x8808	

Notes:

- 1. TX flow control must be enabled to use this feature.
- 2. RX flow control must be enabled to use this feature.

CMAC / GT Selections and Configuration Tab

The CMAC / GT Selection and Configuration tab, shown in Figure 4-3, is used to configure transceiver resources. The window loads with default values pre-populated.

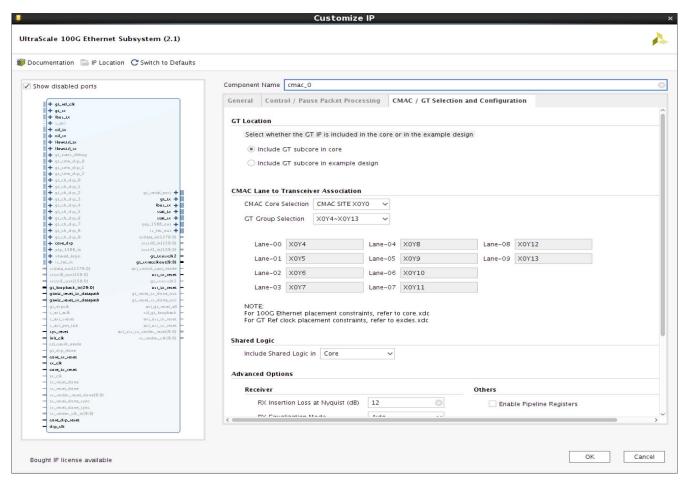


Figure 4-3: CMAC / GT Selections and Configuration Tab

Table 4-3 describes the CMAC / GT Selection and Configuration tab options.

Table 4-3: CMAC / GT Selections and Configuration

Parameter	Description	Default Value	Range
GT Location			
GT Location Selection	Select whether the GT IP is included in the core or in the	Include GT subcore in core	Include GT subcore in core Include GT subcore in
	example design		example design
	CMAC Lane to Transceive	r Association	
CMAC Core Selection	Select 100G Ethernet Hard IP core location	Based on the FPGA, part number, CMAC Mode and GT type selected	Based on the FPGA, part number, CMAC Mode and GT type selected, all the usable/configurable 100G Ethernet IP cores for that particular device/package will be listed.
GT Group Selection	Select the GT Group	Based on the FPGA, part number, CMAC Mode, GT type selected and also based on GT selection guidelines	Based on the FPGA, part number, CMAC Mode, GT type selected and also based on GT selection guidelines.
Lane-00 to Lane-09	Auto fill GT lanes based on the GT Group selected	The best combination of transceivers will be auto filled based on the 100G Ethernet IP core location chosen	Based on the Mode selection (CAUI-10, CAUI-4 or Runtime Switchable), the GT selection guidelines are followed. See Transceiver Selection Rules in Chapter 3 for more details.
Shared Logic			
Include Shared Logic in	Determines the location of the transceiver shared logic	Core	Core Example Design
Advanced Options			
Receiver			
RX Insertion Loss at Nyquist (dB)	Specify the insertion loss of the channel between the transmitter and receiver at the Nyquist frequency in dB	12	Depends on GT

Table 4-3: CMAC / GT Selections and Configuration (Cont'd)

Parameter	Description	Default Value	Range	
RX Equalization Mode	When Auto is specified, the equalization mode implemented by the Wizard depends on the value specified for insertion loss at Nyquist. Refer to Xilinx UG576/UG578 to determine the appropriate equalization mode for your system.	Auto	Auto DFE LPM	
	Clocking Optio	ns		
RX GT Buffer	Controls whether the GT receiver elastic buffer bypass operates in multi-lane mode or single-lane mode.	Enable	Enable Bypass	
RX GT Buffer Bypass Mode	RX GT Buffer Bypass Mode	Multi-Lane	Multi-Lane	
			Single-Lane	
	GT QPLL			
PLL Type	GT PLL Type	QPLL0	QPLL0	
			QPLL1	
Others				
Enable Pipeline Register	Selecting this option will include one stage pipeline register between the CMAC core and the GT to ease timing.	0	0-Disable 1-Enable	
Enable Additional GT Control/Status and DRP Ports	Enable Additional GT Control/Status and DRP Ports	0	0-Disable 1-Enable	

User Parameters

This section does not apply to this core.

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7].

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

The UltraScale™ Devices Integrated Block for 100G Ethernet IP core solution requires the specification of timing and other physical implementation constraints to meet the specified performance requirements. These constraints are provided in a Xilinx® Device Constraints (XDC) file. Pinouts and hierarchy names in the generated XDC correspond to the provided example design of the 100G Ethernet IP core.

To achieve consistent implementation results, an XDC containing these original, unmodified constraints must be used when a design is run through the Xilinx tools. For additional details on the definition and use of an XDC or specific constraints, see the *Vivado Design Suite User Guide: Using Constraints* (UG903) [Ref 10].

Constraints provided in the 100G Ethernet IP core have been verified through implementation and provide consistent results. Constraints can be modified, but modifications should only be made with a thorough understanding of the effect of each constraint.

Device, Package, and Speed Grade Selections

This section is not applicable for this IP core.

Clock Frequencies

This section is not applicable for this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Simulation

For comprehensive information about Vivado simulation components, as well as information about using supported third-party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 9].

For information regarding simulating the example design, see Simulating the Example Design in Chapter 5.

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide*: *Designing with IP* (UG896) [Ref 7].

For information regarding synthesizing and implementing the example design, see Synthesizing and Implementing the Example Design in Chapter 5.

Example Design

Overview

This chapter briefly explains the 100G Ethernet IP core example design and the various test scenarios implemented within the example design.

Example Design Hierarchy (GT Subcore in Core)

Figure 5-1 shows the example design hierarchy (GT subcore in core).

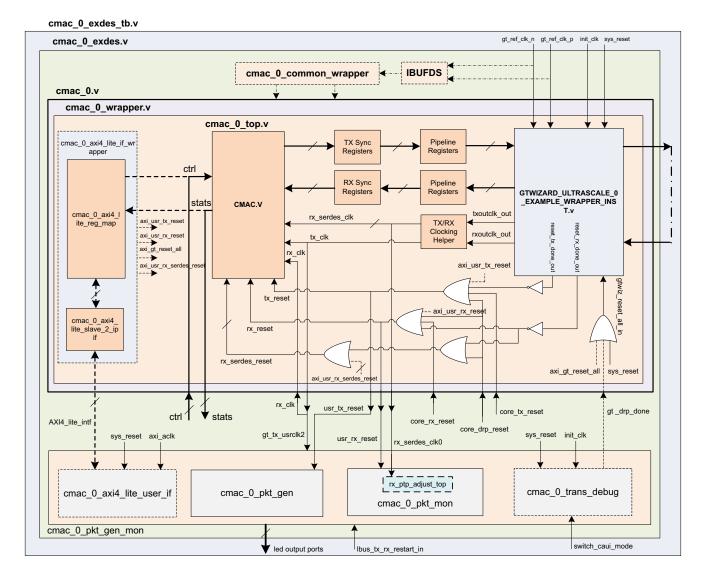


Figure 5-1: Example Design Hierarchy (GT Subcore in Core)

Figure 5-1 shows the instantiation of various modules and their hierarchy in the example design for GT subcore in core configuration. The <code>cmac_0</code> module instantiates the 100G Ethernet IP core and GT along with various helper blocks. Sync registers and pipeline registers are used for the synchronization of data between the 100G Ethernet IP core and the GT. Clocking helper blocks are used to generate the required clock frequency for the 100G Ethernet IP core. The <code>cmac_0_pkt_gen_mon</code> module instantiates <code>cmac_0_pkt_gen</code> (packet generator) and <code>cmac_0_pkt_mon</code> (packet monitor).

The cmac_0_pkt_gen_mon and cmac_0 handshake with each other using few signals such as GT locked, RX alignment, and data transfer signals as per the LBUS protocol (more on this will be described in later sections). The cmac_0_pkt_gen module is mainly responsible for the generation of packets. It contains a state machine that monitors the status of the GT and the 100G Ethernet IP core (that is, GT lock and RX alignment) and sends

traffic to the core. Similarly the <code>cmac_0_pkt_mon</code> module is mainly responsible for the reception and checking of packets from the core. It also contains a state machine that monitors the status of the GT and 100G Ethernet IP core (that is, GT lock and RX alignment) and receives traffic from the core.

Other optional modules instantiated in the example design are as follows:

- **cmac_0_trans_debug**: This module brings out all the DRP ports of the transceiver module out of the 100G Ethernet IP core. This module is present in the example design for the following conditions:
 - When you select the **Runtime Switchable** mode in the 100G Ethernet IP Vivado® Integrated Design Environment (IDE), this module is used to perform the GT DRP writes to change the GT configuration (that is, from CAUI-4 to CAUI-10 / CAUI-10 to CAUI-4). After completion of the DRP write, this module generates the gt_drp_done signal that is used to reset the GT.
 - When you select Enable Additional GT Control/Status and DRP Ports in the CMAC/GT Selection and Configuration Tab of the 100G Ethernet IP Vivado IDE.
- cmac_0_shared_logic_wrapper: When you select Include Shared Logic in example design in the CMAC / GT Selections and Configuration Tab of the 100G Ethernet IP Vivado IDE, this module will be available in the example design. This wrapper contains three modules: cmac_0_clocking_wrapper, cmac_0_reset_wrapper, and cmac_0_common wrapper. The cmac_0_clocking_wrapper has the instantiation of the IBUFDS for the gt_ref_clk, and the cmac_0_reset_wrapper brings out the reset architecture instantiated between the core and the GT. The cmac_0_common_wrapper brings the transceiver common module out of the 100G Ethernet IP core.
- **Pipeline registers**: Single-stage pipeline registers are introduced between the 100G Ethernet IP core and the transceiver when you select **Enable Pipeline register** in the CMAC / GT Selections and Configuration Tab. This includes a one-stage pipeline register between the 100G Ethernet IP core macro and the transceiver to ease timing, using the gt_txusrclk2 and gt_rxusrclk2 for the TX and RX paths respectively.
- TX / RX Sync register: The TX Sync register double synchronizes the data between the 100G Ethernet IP core and the transceiver with respect to the tx_clk. The RX Sync register double synchronizes the data between the transceiver and the 100G Ethernet IP core with respect to rx_serdes_clk.
- **rx_ptp_adjust_top**: When you select **Enable time stamping** in the General Tab, this module is present inside the packet monitor module. This soft logic improves timestamp accuracy and compensate for the lane alignment FIFO fill levels by adding or subtracting the relative fill level of the selected lane. This module has a window averaging block with fixed window size of 32.
- cmac_0_axi4_lite_if_wrapper: When selected with the Include AXI4-Lite Control and Statistics Interface option from the General Tab, this module will be included inside the cmac_0_wrapper. This wrapper contains two modules

- cmac_0_axi4_lite_reg_map and cmac_0_axi4_lite_slave_2_ipif. The details of these modules are described in AXI4-Lite Interface Implementation.
- cmac_0_axi4_lite_user_if: When selected with the Include AXI4-Lite Control and Statistics option from the General Tab, this module will be present inside the cmac_0_pkt_gen_mon. The details about this module are described in section AXI4-Lite Interface Implementation.
- cmac_0_rs_fec: In CAUI-4 mode of operation, when you select the Include IEEE 802.3bj RS-FEC option from the General Tab, the IEEE 802.3bj RS-FEC soft IP will be instantiated inside the cmac_0_wrapper. This module is meant for forward error correction coding. The RS-FEC IP will be integrated in between CMAC and GT. The details of this module are described in IEEE 802.3bj RS-FEC Integration.
- cmac_0_xbar: In CAUI-4 mode of operation, when you select Include IEEE 802.3bj RS-FEC along with the Include AXI4-Lite Control and Statistics Interface option from the General Tab, the AXI Crossbar soft IP will be instantiated inside the cmac_0_wrapper. The AXI4-Lite interface for both CMAC and RS-FEC will be accessed through the AXI Crossbar IP. The details of this module are described in IEEE 802.3bj RS-FEC Integration.

Example Design Hierarchy (GT Subcore in Example Design)

Figure 5-2 shows the instantiation of various modules and their hierarchy in the example design when the GT (serial transceiver) is outside the IP core, that is, in the example design. This hierarchical example design is delivered when you select the **Include GT subcore in example design** option from the CMAC / GT Selections and Configuration Tab.

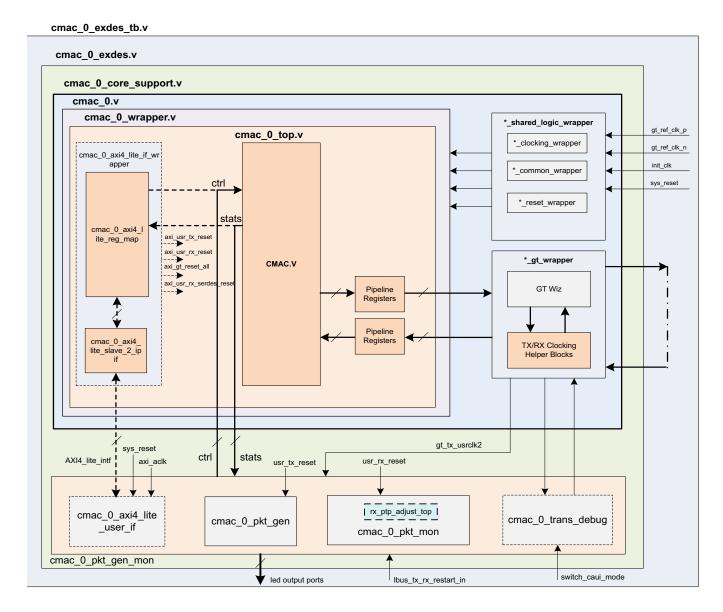


Figure 5-2: Example Design Hierarchy (GT Subcore in Example Design)

The cmac_0_core_support.v is present in the hierarchy when you select the **Include GT** subcore in example design option from the CMAC / GT Selections and Configuration Tab or the **Include Shared Logic** in example design option from the CMAC / GT Selections and Configuration Tab. This instantiates the cmac_0_shared_logic_wrapper.v module and the cmac_0.v module for the **Include Shared Logic** in example design option. The cmac_0_gt_wrapper.v module is present when you select the GT subcore in example design option.

The cmac_0 module instantiates cmac_0_wrapper module that contains the CMAC and Sync registers along with the pipeline registers to synchronize the data between the CMAC core and the GT subcore (in the example design). The GT subcore generates the required clock frequencies with help of the clocking helper blocks for the CMAC core. The

cmac_0_pkt_gen_mon module instantiates cmac_0_pkt_gen (packet generator) and cmac_0_pkt_mon (packet monitor). The cmac_0_pkt_gen_mon and cmac_0_core_support handshake with each other using several signals such as GT locked, RX alignment and data transfer signals as per LBUS protocol (described in more detail later). The cmac_0_pkt_gen module is mainly responsible for the generation of packets. It contains a state machine that monitors the status of GT and CMAC (that is, GT lock and RX alignment) and sends traffic to the core. Similarly the cmac_0_pkt_mon module is mainly responsible for reception and checking of packets from the core. It also contains a state machine that monitors the status of GT and CMAC (that is, GT lock and RX alignment) and receives traffic from the core.

Other optional modules instantiated in the example design are as follows:

- cmac_0_shared_logic_wrapper: When you select Include GT subcore in example design or Include Shared Logic in example design in the CMAC / GT Selections and Configuration Tab of the 100G Ethernet IP Vivado IDE, this module will be available in the example design. This wrapper contains three modules: cmac_0_clocking_wrapper, cmac_0_reset_wrapper, and cmac_0_common_wrapper. The cmac_0_clocking_wrapper has the instantiation of the IBUFDS for the gt_ref_clk, and the cmac_0_reset_wrapper brings out the reset architecture instantiated between the core and the GT. The cmac_0_common_wrapper brings the transceiver common module out of the 100G Ethernet IP core.
- cmac_0_gt_wrapper: This module is present in the example design when you select the Include GT subcore in example design option from the CMAC / GT Selections and Configuration Tab. This module is having instantiations of the GT along with various helper blocks. The clocking helper blocks are used to generate the required clock frequency for the core.

User Interface

General purpose I/Os (GPIOs. have been provided to control the example design. I/Os are as listed in Table 5-1.

Note: For all the input and output signals mentioned in Table 5-1, a three-stage registering has been done internally.

Table 5-1: User I/O Ports

Name	Size	Direction	Description
sys_reset	1	Input	Reset for cmac_0
gt_ref_clk_p	1	Input	Differential clk input to GT.
gt_ref_clk_n	1	Input	Differential clk input to GT.

Table 5-1: User I/O Ports (Cont'd)

Name	Size	Direction	Description
init_clk	1	Input	Stable and free-running clk input to GT.
			PM tick input for AXI4-Lite read operations.
s_axi_pm_tick	1	Input	Note: This input is available when Include AXI4-Lite Control and Statistics Interface is selected in the General Tab.
simplex_mode_rx_aligned	1	Input	This signal is used to indicate to the generator module that the simplex RX module is aligned and the generator can now start the packet generation.
			Note: This input is available only for simplex TX.
			This signal is used to initiate the GT DRP write operation to switch the operation mode of CMAC.
switch_caui_mode	1	Input	After the GT DRP operation, a normal data sanity check will be performed for the switched mode.
			Note: This input is available only for the mode Runtime Switchable . This input should be a single pulse. Do not apply another pulse before RX is aligned.
lbus_tx_rx_restart_in	1	Input	This signal is used to restart the packet generation and reception for the data sanity test, when the packet generator and the packet monitor are in idle state.
			(that is, tx_busy_led = 0 and rx_busy_led = 0.
tx_gt_locked_led	1	Output	Indicates that the GT has been locked. Note: This input is available only for simplex TX mode.
tx_done_led	1	Output	Indicates that the packet generator has sent all the packets.
			Indicates the CMAC operation mode (CAUI-10/CAUI-4).
caui_mode_led	1	Output	1'b0: CAUI-10
caai_mode_iea	_	Оигрис	1'b1: CAUI-4
			Note: This output is available only for the mode Runtime Switchable .
tx_busy_led	1	Output	Indicates that the generator is busy and is not able to respond to the lbus_tx_rx_restart_in command.
rx_gt_locked_led	1	Output	Indicates that the GT has been locked.
rx_aligned_led	1	Output	Indicates that RX alignment has been achieved.
rx_done_led	1	Output	Indicates that the monitor has received all packets.

Table 5-1: User I/O Ports (Cont'd)

Name	Size	Direction	Description
rx_data_fail_led	1	Output	Indicates the data comparison failed in the packet monitor.
rx_busy_led	1	Output	Indicates that the monitor is busy and is not able to respond to the lbus_tx_rx_restart_in command.

CORE XCI Top Level Port List

The top-level port list for the core XCI with all features enabled is shown in Table 5-2.

Table 5-2: CORE XCI Top-Level Port List

Name	Size	Direction	Description
sys_reset	1	Input	Reset for the CMAC core.
gt_ref_clk_p	1	Input	Differential clk input to GT.
gt_ref_clk_n	1	Input	Differential clk input to GT.
init_clk	1	Input	Stable and free-running clk input to GT. This is used as the clock for the GT reset state machines, and the GT Channel and Common DRP ports, if included.
		_	GT loopback input signal. Refer to the applicable GT user guide. [Ref 11][Ref 12]
gt_loopback_in	30/12	Input	30-bit width for CAUI-10 or Runtime Switchable case, 12-bit width for CAUI-4 mode.
	10/4 Ou	4 Output	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxrecclkout			Port width: 10-bit for CAUI-10 or Runtime Switchable case and 4-bit width for CAUI-4 mode.
gt0_rxp_in	1	Input	Differential serial GT RX input for lane 0.
gt0_rxn_in	1	Input	Differential serial GT RX input for lane 0.
gt1_rxp_in	1	Input	Differential serial GT RX input for lane 1.
gt1_rxn_in	1	Input	Differential serial GT RX input for lane 1.
gt2_rxp_in	1	Input	Differential serial GT RX input for lane 2.
gt2_rxn_in	1	Input	Differential serial GT RX input for lane 2.
gt3_rxp_in	1	Input	Differential serial GT RX input for lane 3.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
gt3_rxn_in	1	Input	Differential serial GT RX input for lane 3.
			Differential serial GT RX input for lane 4.
gt4_rxp_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode
			Differential serial GT RX input for lane 4.
gt4_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 5.
gt5_rxp_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 5.
gt5_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 6.
gt6_rxp_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 6.
gt6_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
		Input	Differential serial GT RX input for lane 7.
gt7_rxp_in	1		Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 7.
gt7_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 8.
gt8_rxp_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 8.
gt8_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 9.
gt9_rxp_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT RX input for lane 9.
gt9_rxn_in	1	Input	Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt0_txp_out	1	Output	Differential serial GT TX output for lane 0.
gt0_txn_out	1	Output	Differential serial GT TX output for lane 0.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
gt1_txp_out	1	Output	Differential serial GT TX output for lane 1.
gt1_txn_out	1	Output	Differential serial GT TX output for lane 1.
gt2_txp_out	1	Output	Differential serial GT TX output for lane 2.
gt2_txn_out	1	Output	Differential serial GT TX output for lane 2.
gt3_txp_out	1	Output	Differential serial GT TX output for lane 3.
gt3_txn_out	1	Output	Differential serial GT TX output for lane 3.
gt4_txp_out	1	Output	Differential serial GT TX output for lane 4. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt4_txn_out	1	Output	Differential serial GT TX output for lane 4. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt5_txp_out	1	Output	Differential serial GT TX output for lane 5. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt5_txn_out	1	Output	Differential serial GT TX output for lane 5. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt6_txp_out	1	Output	Differential serial GT TX output for lane 6. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt6_txn_out	1	Output	Differential serial GT TX output for lane 6. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt7_txp_out	1	Output	Differential serial GT TX output for lane 7. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt7_txn_out	1	Output	Differential serial GT TX output for lane 7. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt8_txp_out	1	Output	Differential serial GT TX output for lane 8. Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt8_txn_out	1	Output	Differential serial GT TX output for lane 8. Note: This port is available for CAUI-10 and Runtime Switchable mode.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
	1	Outrot	Differential serial GT TX output for lane 9.
gt9_txp_out	1	Output	Note: This port is available for CAUI-10 and Runtime Switchable mode.
			Differential serial GT TX output for lane 9.
gt9_txn_out	1	Output	Note: This port is available for CAUI-10 and Runtime Switchable mode.
gt_txusrclk2	1	Output	TX user clock output from GT.
rx_clk	1	Input	RX clock input.
			TX clock input.
tx_clk	1	Input	Note: This port is available when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			RX user clock output from GT.
gt_rxusrclk2	1	Input	Note: This port is available when Enable Time Stamping is selected from the General tab.
			RX reset input to the core.
core_rx_reset	1	Input	Note: This input is 2-stage synchronized with the respective clock inside the core.
			TX reset input to the core.
core_tx_reset	1	Input	Note: This input is 2-stage synchronized with the respective clock inside the core.
usr_rx_reset	1	Output	RX reset output for the user logic.
usr_tx_reset	1	Output	TX reset output for the user logic.
			Core DRP reset.
core_drp_reset	1	Input	Note: This input is 2-stage synchronized with the respective clock inside the core.
			GT TX user data out when GT is present in example design
gtwiz_userdata_tx_in	320	Output	Note: This port is available for the CAUI10 configuration when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT RX user data in when GT is present in example design
gtwiz_userdata_rx_out	320	Input	Note: This port is available for the CAUI10 configuration when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			GT TX user data out when GT is present in example design
txdata_in	1280	Output	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT TX user control output
txctrl0_in	160	Output	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT TX user control output
txctrl1_in	160	Output	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT RX user data in when GT is present in example design
rxdata_out	1280	Input	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT RX user control input
rxctrl0_out	160	Input	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			GT RX user control input
rxctrl1_out	160	Input	Note: This port is available for CAUI4 / Runtime Switchable configurations when Include GT subcore in example design is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_eyescanreset	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_eyescantrigger	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxcdrhold	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxpolarity	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxrate	30/12	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 30-bit for CAUI-10 or Runtime Switchable case, and 12-bit width for CAUI-4 mode.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txdiffctrl	50/20		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 50-bit for CAUI-10 or Runtime Switchable case, and 20-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txpolarity	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txinhibit	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txpostcursor	50/20		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 50-bit for CAUI-10 or Runtime Switchable case, and 20-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txprbsforceerr	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txprecursor	50/20	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 50-bit for CAUI-10 or Runtime Switchable case, and 20-bit width for CAUI-4 mode.
		Output	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_eyescandataerror	10/4		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txbufstatus	20/8	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 20-bit for CAUI-10 or Runtime Switchable case, and 8-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxdfelpmreset	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxlpmen	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxprbscntreset	10/4	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxprbserr	10/4	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
	40/16	Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxprbssel			Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 40-bit for CAUI-10 or Runtime Switchable case, and 16-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxresetdone	10/4	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txprbssel	40/16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 40-bit for CAUI-10 or Runtime Switchable case, and 16-bit width for CAUI-4 mode.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
		Output	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_txresetdone	10/4		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 10-bit for CAUI-10 or Runtime Switchable case, and 4-bit width for CAUI-4 mode.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_rxbufstatus	30/12	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Port width: 30-bit for CAUI-10 or Runtime Switchable case, and 12-bit width for CAUI-4 mode.
gtwiz_reset_tx_datapath	1	Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gtwiz_reset_rx_datapath	1	Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt_drpclk	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt0_drpen	1		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt0_drpwe	1		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt0_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt0_drpdi	16 Inpu	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.
gt0_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt0_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drpaddr	10		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drpdi	16		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt1_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Output	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt2_drprdy	1		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt3_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt4_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt5_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt6_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt7_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt8_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

<u> </u>	vei Poit List		
Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
gt9_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drpdi	16		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drpwe	1		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Input	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drpen	1		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.
		Output	Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common0_drpdo	16		Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common1_drpdo	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common2_drpaddr	10	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common2_drpdi	16	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common2_drpwe	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common2_drpen	1	Input	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
common2_drprdy	1	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
common2_drpdo			Refer to the applicable GT user guide for the port description.[Ref 11][Ref 12]
	16	Output	Note: This port is available when Enable Additional GT Control/Status and DRP Ports is selected from the CMAC / GT Selection and Configuration tab for CAUI-10 or Runtime Switchable case.
			TX reset done input to the core from the reset wrapper logic.
tx_reset_done	1	Input	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			RX reset done input to the core from the reset wrapper logic.
rx_reset_done	1	Input	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
rx_serdes_reset_done			RX serdes reset done input to the core from the reset wrapper logic.
	10	Input	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
	1 Input		Synchronized TX reset done input to the core from the reset wrapper logic.
tx_reset_done_sync		Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.	

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			Synchronized RX reset done input to the core from the reset wrapper logic.
rx_reset_done_sync	1	Input	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab, and the core Operation is set to Simplex RX in the General tab.
			TX reset done out from the GT.
gt_reset_tx_done_out	1	Output	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			RX reset done out from the GT.
gt_reset_rx_done_out	1	Output	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			User TX reset from the AXI4-Lite register map module.
axi_usr_tx_reset	1	Output	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab, and Include AXI4-Lite Control and Statistics Interface is selected in the General tab.
			User RX reset from the AXI4-Lite register map module.
axi_usr_rx_reset	1	Output	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab, and Include AXI4-Lite Control and Statistics Interface is selected in the General tab.
			User RX serdes reset from the AXI4-Lite register map module.
axi_usr_rx_serdes_reset	10	Output	Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab, and Include AXI4-Lite Control and Statistics Interface is selected in the General tab.
			Reset signal to GT from the AXI4-Lite register map module
axi_gt_reset_all	1	Output	Note: This port is available when the Include GT subcore in example design option is selected in the CMAC / GT Selection and Configuration tab and Include AXI4-Lite Control and Statistics Interface is selected in the General tab.
			Loopback signal to GT from the AXI4-Lite register map module
ctl_gt_loopback	1	Output	Note: This port is available when the Include GT subcore in example design option is selected in the CMAC / GT Selection and Configuration tab and Include AXI4-Lite Control and Statistics Interface is selected in the General tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			RX serdes clock out from the core to the reset wrapper.
rx_serdes_clk	10	Output	Note: This port is available when he Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			RX serdes clock input to the core.
rx_serdes_clk_in	10	Input	Note: This port is available when the Include GT subcore in example design option is selected in the CMAC / GT Selection and Configuration tab.
			QPLL0 clock input. Port width:
			• 10-bit for CAUI10 or Runtime Switchable case.
qpll0clk_in	10/4	Input	4-bit width for CAUI4 mode.
" -	,		Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			QPLL0 ref clock input. Port width:
			• 10-bit for CAUI10 or Runtime Switchable case.
qpll0refclk_in	10/4	Input	4-bit width for CAUI4 mode.
-	,		Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			QPLL1 clock input. Port width:
			• 10-bit for CAUI10 or Runtime Switchable case.
qpll1clk_in	10/4	Input	4-bit width for CAUI4 mode.
" -	,		Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			QPLL1 ref clock input. Port width:
			• 10-bit for CAUI10 or Runtime Switchable case.
qpll1refclk_in	10/4	Input	4-bit width for CAUI4 mode.
	,		Note: This port is available when the Include Shared Logic in option is set to Example Design in the CMAC / GT Selection and Configuration tab.
			QPLL0 lock reset input to the GT. Port width:
			3-bit for CAUI10 or Runtime Switchable case.
gtwiz_reset_qpll0lock_in	3/1 I	Input	• 1-bit width for CAUI4 mode.
3 2001-4biioiock-iii			Note: This port is available when the Include Shared Logic in option is set to Example Design , and PLL Type is set to QPLL0 in the CMAC / GT Selection and Configuration tab.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
gtwiz_reset_qpll0reset_out	3/1	Output	 QPLL0 lock reset output from the GT. Port width: 3-bit for CAUI10 or Runtime Switchable case. 1-bit width for CAUI4 mode. Note: This port is available when the Include Shared Logic in option is set to Example Design, and PLL Type is set to QPLL0 in the CMAC / GT Selection and Configuration tab.
gtwiz_reset_qpll1lock_in	3/1	Input	 QPLL1 lock reset input to the GT. Port width: 3-bit for CAUI10 or Runtime Switchable case. 1-bit width for CAUI4 mode. Note: This port is available when the Include Shared Logic in option is set to Example Design, and PLL Type is set to QPLL1 in the CMAC / GT Selection and Configuration tab.
gtwiz_reset_qpll1reset_out	3/1	Output	 QPLL1 lock reset output from the GT. Port width: 3-bit for CAUI10 or Runtime Switchable case. 1-bit width for CAUI4 mode. Note: This port is available when the Include Shared Logic in option is set to Example Design, and PLL Type is set to QPLL1 in the CMAC / GT Selection and Configuration tab.
rx_dataout0	128	Output	Receive segmented LBUS Data for segment 0. The value of this bus is only valid in cycles that rx_enaout0 is sampled as 1.
rx_dataout1	128	Output	Receive segmented LBUS data for segment1.
rx_dataout2	128	Output	Receive segmented LBUS data for segment2.
rx_dataout3	128	Output	Receive segmented LBUS data for segment3.
rx_enaout0	1	Output	Receive LBUS enable for segment0. This signal qualifies the other signals of the RX segmented LBUS interface. Signals of the RX LBUS Interface are only valid in cycles in which rx_enaout is sampled as a 1.
rx_enaout1	1	Output	Receive LBUS enable for segment1.
rx_enaout2	1	Output	Receive LBUS enable for segment2.
rx_enaout3	1	Output	Receive LBUS enable for segment3.
rx_sopout0	1	Output	Receive LBUS start of packet (SOP). for segment0. This signal indicates the SOP when it is sampled as a 1 and is only valid in cycles in which rx_enaout is sampled as a 1.
rx_sopout1	1	Output	Receive LBUS SOP for segment1.
rx_sopout2	1	Output	Receive LBUS SOP for segment2.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
rx_sopout3	1	Output	Receive LBUS SOP for segment3.
rx_eopout0	1	Output	Receive LBUS end of packet (EOP). for segment0. This signal indicates the EOP when it is sampled as a 1 and is only valid in cycles in which rx_enaout is sampled as a 1.
rx_eopout1	1	Output	Receive LBUS EOP for segment1.
rx_eopout2	1	Output	Receive LBUS EOP for segment2.
rx_eopout3	1	Output	Receive LBUS EOP for segment3.
rx_errout0	1	Output	Receive LBUS error for segment0. This signal indicates that the current packet being received has an error when it is sampled as a 1. This signal is only valid in cycles when both rx_enaout and rx_eopout are sampled as a 1. When this signal is a value of 0, it indicates that there is no error in the packet being received.
rx_errout1	1	Output	Receive LBUS error for segment1.
rx_errout2	1	Output	Receive LBUS error for segment2.
rx_errout3	1	Output	Receive LBUS error for segment3.
rx_mtyout0	4	Output	Receive LBUS empty for segment0. This bus indicates how many bytes of the rx_dataout bus are empty or invalid for the last transfer of the current packet. This bus is only valid in cycles when both rx_enaout and rx_eopout are sampled as 1. When rx_errout and rx_enaout are sampled as 1, the value of rx_mtyout[2:0] is always 000. Other bits of rx_mtyout are as usual.
rx_mtyout1	4	Output	Receive LBUS empty for segment1.
rx_mtyout2	4	Output	Receive LBUS empty for segment2.
rx_mtyout3	4	Output	Receive LBUS empty for segment3.
tx_rdyout	1	Output	Transmit LBUS ready. This signal indicates whether the dedicated 100G Ethernet IP core TX path is ready to accept data and provides back-pressure to the user logic. A value of 1 means the user logic can pass data to the 100G Ethernet IP core. A value of 0 means the user logic
			must stop transferring data to the 100G Ethernet IP core within a certain number of cycles or there will be an overflow.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
tx_ovfout	1	Output	Transmit LBUS overflow. This signal indicates whether you have violated the back-pressure mechanism provided by the tx_rdyout signal. If tx_ovfout is sampled as a 1, a violation has occurred. It is up to you to design the rest of the user logic to not overflow the TX interface. In the event of an overflow condition, the TX path must be reset.
tx_unfout	1	Output	Transmit LBUS underflow. This signal indicates whether you have under-run the LBUS interface. If tx_unfout is sampled as 1, a violation has occurred meaning the current packet is corrupted. Error control blocks are transmitted as long as the underflow condition persists. It is up to the user logic to ensure a complete packet is input to the core without under-running the LBUS
			interface.
tx_datain0	128	Input	Transmit segmented LBUS data for segment0. This bus receives input data from the user logic. The value of the bus is captured in every cycle that tx_enain is sampled as 1.
tx_datain1	128	Input	Transmit segmented LBUS data for segment1.
tx_datain2	128	Input	Transmit segmented LBUS data for segment2.
tx_datain3	128	Input	Transmit segmented LBUS data for segment3.
tx_enain0	1	Input	Transmit LBUS enable for segment0. This signal is used to enable the TX LBUS interface. All signals on this interface are sampled only in cycles in which tx_enain is sampled as a 1.
tx_enain1	1	Input	Transmit LBUS enable for segment1.
tx_enain2	1	Input	Transmit LBUS enable for segment2.
tx_enain3	1	Input	Transmit LBUS enable for segment3.
tx_sopin0	1	Input	Transmit LBUS SOP for segment0. This signal is used to indicate the SOP when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which tx_enain is sampled as a 1.
tx_sopin1	1	Input	Transmit LBUS SOP for segment1.
tx_sopin2	1	Input	Transmit LBUS SOP for segment2.
tx_sopin3	1	Input	Transmit LBUS SOP for segment3.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
tx_eopin0	1	Input	Transmit LBUS EOP for segment0. This signal is used to indicate the EOP when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which tx_enain is sampled as a 1.
tx_eopin1	1	Input	Transmit LBUS EOP for segment1.
tx_eopin2	1	Input	Transmit LBUS EOP for segment2.
tx_eopin3	1	Input	Transmit LBUS EOP for segment3.
tx_errin0	1	Input	Transmit LBUS error for segment0. This signal is used to indicate a packet contains an error when it is sampled as a 1 and is 0 for all other transfers of the packet. This signal is sampled only in cycles in which tx_enain and tx_eopin are sampled as 1. When this signal is sampled as a 1, the last data word is replaced with the IEEE standard 802.3-2012 Error Code control word that guarantees the partner device receives the packet in error. If a packet is input with this signal set to a 1, the FCS checking and reporting is disabled (only for that packet).
tx_errin1	1	Input	Transmit LBUS error for segment1.
tx_errin2	1	Input	Transmit LBUS error for segment2.
tx_errin3	1	Input	Transmit LBUS error for segment3.
tx_mtyin0	4	Input	Transmit LBUS empty for segment0. This bus is used to indicate how many bytes of the tx_datain bus are empty or invalid for the last transfer of the current packet. This bus is sampled only in cycles that tx_enain and tx_eopin are sampled as 1. When tx_eopin and tx_errin are sampled as 1, the value of tx_mtyin[2:0] is ignored as treated as if it was 000. The other bits of tx_mtyin are used as usual.
tx_mtyin1	4	Input	Receive LBUS empty for segment1.
tx_mtyin2	4	Input	Receive LBUS empty for segment2.
tx_mtyin3	4	Input	Receive LBUS empty for segment3.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
ctl_tx_enable	1	Input	TX Enable. This signal is used to enable the transmission of data when it is sampled as a 1. When sampled as a 0, only idles are transmitted by CMAC. This input should not be set to 1 until the receiver it is sending data to (that is, the receiver in the other device) is fully aligned and ready to receive data (that is, the other device is not sending a remote fault condition). Otherwise, loss of data can occur. If this signal is set to 0 while a packet is being transmitted, the current packet transmission is completed and then the CMAC stops transmitting any more packets.
ctl_tx_send_rfi	1	Input	Transmit Remote Fault Indication (RFI) code word. If this input is sampled as a 1, the TX path only transmits Remote Fault code words. This input should be set to 1 until the RX path is fully aligned and is ready to accept data from the link partner.
ctl_tx_send_idle	1	Input	Transmit Idle code words. If this input is sampled as a 1, the TX path only transmits Idle code words. This input should be set to 1 when the partner device is sending Remote Fault Indication (RFI) code words.
stat_tx_local_fault	1	Output	A value of 1 indicates the receive decoder state machine is in the TX_INIT state. This output is level sensitive.
ctl_rx_enable	1	Input	RX Enable. For normal operation, this input must be set to 1. When this input is set to 0, after the RX completes the reception of the current packet (if any), it stops receiving packets by keeping the PCS from decoding incoming data. In this mode, there are no statistics reported and the LBUS interface is idle.
ctl_rx_force_resync	1	Input	RX force resynchronization input. This signal is used to force the RX path to reset, re-synchronize, and realign. A value of 1 forces the reset operation. A value of 0 allows normal operation. *Note: This input should normally be Low and should only be pulsed (one cycle minimum pulse) to force realignment.
stat_rx_framing_err_0	4	Output	RX sync header bits framing error for lane 0. Each PCS Lane has a four-bit bus that indicates how many sync header errors were received for that PCS Lane. The value of the bus is only valid when the corresponding stat_rx_framing_err_valid_[19:0] is a 1. The values on these buses can be updated at any time and are intended to be used as increment values for sync header error counters.
stat_rx_framing_err_1	4	Output	RX sync header bits framing error for lane 1.
stat_rx_framing_err_2	4	Output	RX sync header bits framing error for lane 2.
stat_rx_framing_err_3	4	Output	RX sync header bits framing error for lane 3.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_framing_err_4	4	Output	RX sync header bits framing error for lane 4.
stat_rx_framing_err_5	4	Output	RX sync header bits framing error for lane 5.
stat_rx_framing_err_6	4	Output	RX sync header bits framing error for lane 6.
stat_rx_framing_err_7	4	Output	RX sync header bits framing error for lane 7.
stat_rx_framing_err_8	4	Output	RX sync header bits framing error for lane 8.
stat_rx_framing_err_9	4	Output	RX sync header bits framing error for lane 9.
stat_rx_framing_err_10	4	Output	RX sync header bits framing error for lane 10.
stat_rx_framing_err_11	4	Output	RX sync header bits framing error for lane 11.
stat_rx_framing_err_12	4	Output	RX sync header bits framing error for lane 12.
stat_rx_framing_err_13	4	Output	RX sync header bits framing error for lane 13.
stat_rx_framing_err_14	4	Output	RX sync header bits framing error for lane 14.
stat_rx_framing_err_15	4	Output	RX sync header bits framing error for lane 15.
stat_rx_framing_err_16	4	Output	RX sync header bits framing error for lane 16.
stat_rx_framing_err_17	4	Output	RX sync header bits framing error for lane 17.
stat_rx_framing_err_18	4	Output	RX sync header bits framing error for lane 18.
stat_rx_framing_err_19	4	Output	RX sync header bits framing error for lane 19.
stat_rx_framing_err_valid_0	1	Output	Valid indicator for stat_rx_framing_err_0[3:0]. When this output is sampled as a 1, the value on the corresponding stat_rx_framing_err_0[3:0] is valid.
stat_rx_framing_err_valid_1	1	Output	Valid indicator for stat_rx_framing_err_1[3:0].
stat_rx_framing_err_valid_2	1	Output	Valid indicator for stat_rx_framing_err_2[3:0].
stat_rx_framing_err_valid_3	1	Output	Valid indicator for stat_rx_framing_err_3[3:0].
stat_rx_framing_err_valid_4	1	Output	Valid indicator for stat_rx_framing_err_4[3:0].
stat_rx_framing_err_valid_5	1	Output	Valid indicator for stat_rx_framing_err_5[3:0].
stat_rx_framing_err_valid_6	1	Output	Valid indicator for stat_rx_framing_err_6[3:0].
stat_rx_framing_err_valid_7	1	Output	Valid indicator for stat_rx_framing_err_7[3:0].

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_framing_err_valid_8	1	Output	Valid indicator for stat_rx_framing_err_8[3:0].
stat_rx_framing_err_valid_9	1	Output	Valid indicator for stat_rx_framing_err_9[3:0].
stat_rx_framing_err_valid_10	1	Output	Valid indicator for stat_rx_framing_err_10[3:0].
stat_rx_framing_err_valid_11	1	Output	Valid indicator for stat_rx_framing_err_11[3:0].
stat_rx_framing_err_valid_12	1	Output	Valid indicator for stat_rx_framing_err_12[3:0].
stat_rx_framing_err_valid_13	1	Output	Valid indicator for stat_rx_framing_err_13[3:0].
stat_rx_framing_err_valid_14	1	Output	Valid indicator for stat_rx_framing_err_14[3:0].
stat_rx_framing_err_valid_15	1	Output	Valid indicator for stat_rx_framing_err_15[3:0].
stat_rx_framing_err_valid_16	1	Output	Valid indicator for stat_rx_framing_err_16[3:0].
stat_rx_framing_err_valid_17	1	Output	Valid indicator for stat_rx_framing_err_17[3:0].
stat_rx_framing_err_valid_18	1	Output	Valid indicator for stat_rx_framing_err_18[3:0].
stat_rx_framing_err_valid_19	1	Output	Valid indicator for stat_rx_framing_err_19[3:0].
stat_rx_local_fault	1	Output	This output is High when stat_rx_internal_local_fault or stat_rx_received_local_fault is asserted. This output is level sensitive.
stat_rx_synced	20	Output	Word Boundary Synchronized. These signals indicate whether a PCS lane is word boundary synchronized. A value of 1 indicates the corresponding PCS lane has achieved word boundary synchronization and it has received a PCS lane marker. This output is level sensitive.
stat_rx_synced_err	20	Output	Word Boundary Synchronization Error. These signals indicate whether an error occurred during word boundary synchronization in the respective PCS lane. A value of 1 indicates that the corresponding PCS lane lost word boundary synchronization due to sync header framing bits errors or that a PCS lane marker was never received. This output is level sensitive.
stat_rx_mf_len_err	20	Output	PCS Lane Marker Length Error. These signals indicate whether a PCS Lane Marker length mismatch occurred in the respective lane (that is, PCS Lane Markers were received not every CTL_RX_VL_LENGTH_MINUS1 words apart). A value of 1 indicates that the corresponding lane is receiving PCS Lane Markers at wrong intervals. This output remains High until the error condition is removed.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_mf_repeat_err	20	Output	PCS Lane Marker Consecutive Error. These signals indicate whether four consecutive PCS Lane Marker errors occurred in the respective lane. A value of 1 indicates an error in the corresponding lane. This output remains High until the error condition is removed.
stat_rx_mf_err	20	Output	PCS Lane Marker Word Error. These signals indicate that an incorrectly formed PCS Lane Marker Word was detected in the respective lane. A value of 1 indicates an error occurred. This output is pulsed for one clock cycle to indicate the error condition. Pulses can occur in back-to-back cycles.
stat_rx_aligned	1	Output	All PCS Lanes Aligned/De-Skewed. This signal indicates whether or not all PCS lanes are aligned and de-skewed. A value of 1 indicates all PCS lanes are aligned and de-skewed. When this signal is a 1, the RX path is aligned and can receive packet data. When this signal is 0, a local fault condition exists. This output is level sensitive.
stat_rx_status	1	Output	PCS status. A value of 1 indicates that the PCS is aligned and not in HI_BER state. This output is level sensitive.
stat_rx_block_lock	20	Output	Block lock status for each PCS lane. A value of 1 indicates that the corresponding lane has achieved block lock as defined in Clause 82. This output is level sensitive.
stat_rx_aligned_err	1	Output	Loss of Lane Alignment/De-Skew. This signal indicates that an error occurred during PCS lane alignment or PCS lane alignment was lost. A value of 1 indicates an error occurred. This output is level sensitive.
stat_rx_misaligned	1	Output	Alignment Error. This signal indicates that the lane aligner did not receive the expected PCS lane marker across all lanes. This signal is not asserted until the PCS lane marker has been received at least once across all lanes and at least one incorrect lane marker has been received. This occurs one meta-frame after the error. This signal is not asserted if the lane markers have never been received correctly. Lane marker errors are indicated by the corresponding stat_rx_mf_err signal. This output is pulsed for one clock cycle to indicate an
stat_rx_remote_fault	1	Output	error condition. Pulses can occur in back-to-back cycles. Remote fault indication status. If this bit is sampled as a 1, it indicates a remote fault condition was detected. If this bit is sampled as a 0, a remote fault condition exist does not exist. This output is level sensitive.
stat_rx_vl_number_0	5	Output	The signal stat_rx_vl_number_0[4:0] indicates which physical lane is receiving PCS lane 0. There are a total of 20 separate stat_rx_vl_number[4:0] buses. This bus is only valid when the corresponding bit of be stat_rx_synced[19:0] is a 1. These outputs are level sensitive.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_vl_number_1	5	Output	This signal indicates which physical lane is receiving PCS lane 1.
stat_rx_vl_number_2	5	Output	This signal indicates which physical lane is receiving PCS lane 2.
stat_rx_vl_number_3	5	Output	This signal indicates which physical lane is receiving PCS lane 3.
stat_rx_vl_number_4	5	Output	This signal indicates which physical lane is receiving PCS lane 4.
stat_rx_vl_number_5	5	Output	This signal indicates which physical lane is receiving PCS lane 5.
stat_rx_vl_number_6	5	Output	This signal indicates which physical lane is receiving PCS lane 6.
stat_rx_vl_number_7	5	Output	This signal indicates which physical lane is receiving PCS lane 7.
stat_rx_vl_number_8	5	Output	This signal indicates which physical lane is receiving PCS lane 8.
stat_rx_vl_number_9	5	Output	This signal indicates which physical lane is receiving PCS lane 9.
stat_rx_vl_number_10	5	Output	This signal indicates which physical lane is receiving PCS lane 10.
stat_rx_vl_number_11	5	Output	This signal indicates which physical lane is receiving PCS lane 11.
stat_rx_vl_number_12	5	Output	This signal indicates which physical lane is receiving PCS lane 12.
stat_rx_vl_number_13	5	Output	This signal indicates which physical lane is receiving PCS lane 13.
stat_rx_vl_number_14	5	Output	This signal indicates which physical lane is receiving PCS lane 14.
stat_rx_vl_number_15	5	Output	This signal indicates which physical lane is receiving PCS lane 15.
stat_rx_vl_number_16	5	Output	This signal indicates which physical lane is receiving PCS lane 16.
stat_rx_vl_number_17	5	Output	This signal indicates which physical lane is receiving PCS lane 17.
stat_rx_vl_number_18	5	Output	This signal indicates which physical lane is receiving PCS lane 18.
stat_rx_vl_number_19	5	Output	This signal indicates which physical lane is receiving PCS lane 19.
stat_rx_vl_demuxed	20	Output	PCS Lane Marker found. If a signal of this bus is sampled as 1, it indicates that the receiver has properly de-multiplexed that PCS lane. These outputs are level sensitive.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_bad_fcs	4	Output	Bad FCS indicator. A value of 1 indicates a packet was received with a bad FCS, but not a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.
stat_rx_stomped_fcs	4	Output	Stomped FCS indicator. A value of 1 or greater indicates that one or more packets were received with a stomped FCS. A stomped FCS is defined as the bitwise inverse of the expected good FCS. This output is pulsed for one clock cycle to indicate the stomped condition. Pulses can occur in back-to-back cycles.
stat_rx_truncated	1	Output	Packet truncation indicator. A value of 1 indicates that the current packet in flight is truncated due to its length exceeding ctl_rx_max_packet_len[14:0]. This output is pulsed for one clock cycle to indicate the truncated condition. Pulses can occur in back-to-back cycles.
stat_rx_internal_local_fault	1	Output	This signal goes High when an internal local fault is generated due to any one of the following: test pattern generation, bad lane alignment, or high bit error rate. This signal remains High as long as the fault condition persists.
stat_rx_received_local_fault	1	Output	This signal goes High when enough local fault words are received from the link partner to trigger a fault condition as specified by the IEEE fault state machine. This signal remains High as long as the fault condition persists.
stat_rx_bip_err_0	1	Output	BIP8 error indicator for PCS lane 0. A non-zero value indicates the BIP8 signature byte was in error for the corresponding PCS lane. A non-zero value is pulsed for one clock cycle. This output is pulsed for one clock cycle to indicate an error condition. Pulses can occur in back-to-back cycles.
stat_rx_bip_err_1	1	Output	BIP8 error indicator for PCS lane 1.
stat_rx_bip_err_2	1	Output	BIP8 error indicator for PCS lane 2.
stat_rx_bip_err_3	1	Output	BIP8 error indicator for PCS lane 3.
stat_rx_bip_err_4	1	Output	BIP8 error indicator for PCS lane 4.
stat_rx_bip_err_5	1	Output	BIP8 error indicator for PCS lane 5.
stat_rx_bip_err_6	1	Output	BIP8 error indicator for PCS lane 6.
stat_rx_bip_err_7	1	Output	BIP8 error indicator for PCS lane 7.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_bip_err_8	1	Output	BIP8 error indicator for PCS lane 8.
stat_rx_bip_err_9	1	Output	BIP8 error indicator for PCS lane 9.
stat_rx_bip_err_10	1	Output	BIP8 error indicator for PCS lane 10.
stat_rx_bip_err_11	1	Output	BIP8 error indicator for PCS lane 11.
stat_rx_bip_err_12	1	Output	BIP8 error indicator for PCS lane 12.
stat_rx_bip_err_13	1	Output	BIP8 error indicator for PCS lane 13.
stat_rx_bip_err_14	1	Output	BIP8 error indicator for PCS lane 14.
stat_rx_bip_err_15	1	Output	BIP8 error indicator for PCS lane 15.
stat_rx_bip_err_16	1	Output	BIP8 error indicator for PCS lane 16.
stat_rx_bip_err_17	1	Output	BIP8 error indicator for PCS lane 17.
stat_rx_bip_err_18	1	Output	BIP8 error indicator for PCS lane 18.
stat_rx_bip_err_19	1	Output	BIP8 error indicator for PCS lane 19.
stat_rx_hi_ber	1	Output	High Bit Error Rate (BER indicator). When set to 1, the BER is too high as defined by the 802.3. This output is level sensitive.
stat_rx_got_signal_os	1	Output	Signal Ordered Sets (OS) indication. If this bit is sampled as a 1, it indicates that a Signal OS word was received. Signal OS should not be received in an Ethernet network.
ctl_rx_test_pattern	1	Input	Test pattern checking enable for the RX core. A value of 1 enables test mode as defined in Clause 82.2.18. Corresponds to MDIO register bit 3.42.2 as defined in Clause 82.3. Checks for scrambled idle pattern.
ctl_tx_test_pattern	1	Input	Test pattern generation enable for the TX core. A value of 1 enables test mode as defined in Clause 82.2.18. Corresponds to MDIO register bit 3.42.3 as defined in Clause 82.3. Generates a scrambled idle pattern.
stat_rx_test_pattern_mismatch	3	Output	Test pattern mismatch increment. A non-zero value in any cycle indicates how many mismatches occurred for the test pattern in the RX core. This output is only active when ctl_rx_test_pattern is set to a 1. This output can be used to generate MDIO register 3.43.15:0 as defined in Clause 82.3. This output is pulsed for one clock cycle.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
ctl_caui4_mode	1	Input	When this input is High, the dedicated 100G Ethernet IP core operates in CAUI-4 mode and when Low in CAUI-10 mode. This port is available for Bustime Switshable case only
			This port is available for Runtime Switchable case only.
ctl_tx_lane0_vlm_bip7_override	1	Input	When this input is High, the bip7 byte of the PCS lane0 marker is over-ridden by ctl_tx_lane0_vlm_bip7_override_value[7:0]
ctl_tx_lane0_vlm_bip7_override_ value	8	Input	This input is the override value of the bip7 byte of PCS lane0 marker when ctl_tx_lane0_vlm_bip7_override is asserted.
stat_rx_lane0_vlm_bip7	8	Output	This output is the received value of the bip7 byte in the PCS lane0 marker.
stat_rx_lane0_vlm_bip7_valid	1	Output	This output, when asserted, indicates that the value of stat_rx_lane0_vlm_bip7[7:0] is valid.
stat_rx_total_bytes	8	Output	Increment for the total number of bytes received.
stat_rx_total_packets	4	Input	Increment for the total number of packets received.
stat_rx_total_good_bytes	14	Output	Increment for the total number of good bytes received. This value is only non-zero when a packet is received completely and contains no errors.
stat_rx_total_good_packets	1	Output	Increment for the total number of good packets received. This value is only non-zero when a packet is received completely and contains no errors.
stat_rx_packet_bad_fcs	1	Output	Increment for packets between 64 and ctl_rx_max_packet_len bytes that have FCS errors.
stat_rx_packet_64_bytes	1	Output	Increment for good and bad packets received that contain 64 bytes.
stat_rx_packet_65_127_bytes	1	Output	Increment for good and bad packets received that contain 65 to 127 bytes.
stat_rx_packet_128_255_bytes	1	Output	Increment for good and bad packets received that contain 128 to 255 bytes.
stat_rx_packet_256_511_bytes	1	Output	Increment for good and bad packets received that contain 256 to 511 bytes.
stat_rx_packet_512_1023_bytes	1	Output	Increment for good and bad packets received that contain 512 to 1,023 bytes.
stat_rx_packet_1024_1518_bytes	1	Output	Increment for good and bad packets received that contain 1,024 to 1,518 bytes.
stat_rx_packet_1519_1522_bytes	1	Output	Increment for good and bad packets received that contain 1,519 to 1,522 bytes.
stat_rx_packet_1523_1548_bytes	1	Output	Increment for good and bad packets received that contain 1,523 to 1,548 bytes.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_packet_1549_2047_bytes	1	Output	Increment for good and bad packets received that contain 1,549 to 2,047 bytes.
stat_rx_packet_2048_4095_bytes	1	Output	Increment for good and bad packets received that contain 2,048 to 4,095 bytes.
stat_rx_packet_4096_8191_bytes	1	Output	Increment for good and bad packets received that contain 4,096 to 8,191 bytes.
stat_rx_packet_8192_9215_bytes	1	Output	Increment for good and bad packets received that contain 8,192 to 9,215 bytes.
stat_rx_packet_small	4	Output	Increment for all packets that are less than 64 bytes long.
stat_rx_packet_large	1	Output	Increment for all packets that are more than 9,215 bytes long.
stat_rx_unicast	1	Output	Increment for good unicast packets.
stat_rx_multicast	1	Output	Increment for good multicast packets.
stat_rx_broadcast	1	Output	Increment for good broadcast packets.
stat_rx_oversize	1	Output	Increment for packets longer than ctl_rx_max_packet_len with good FCS.
stat_rx_toolong	1	Output	Increment for packets longer than ctl_rx_max_packet_len with good and bad FCS.
stat_rx_undersize	4	Output	Increment for packets shorter than stat_rx_min_packet_len with good FCS.
stat_rx_fragment	4	Output	Increment for packets shorter than stat_rx_min_packet_len with bad FCS.
stat_rx_vlan	1	Output	Increment for good 802.1Q tagged VLAN packets.
stat_rx_inrangeerr	1	Output	Increment for packets with Length field error but with good FCS.
stat_rx_jabber	1	Output	Increment for packets longer than ctl_rx_max_packet_len with bad FCS.
stat_rx_pause	1	Output	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
stat_rx_user_pause	1	Output	Increment for priority based pause packets with good FCS.
stat_rx_bad_code	3	Output	Increment for 64B/66B code violations. This signal indicates that the RX PCS receive state machine is in the RX_E state as specified by the 802.3 specifications. This output can be used to generate MDIO register 3.33:7:0 as defined in Clause 82.3.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_bad_sfd	1	Output	Increment bad SFD. This signal indicates if the Ethernet packet received was preceded by a valid start of frame delimiter (SFD). A value of 1 indicates that an invalid SFD was received.
stat_rx_bad_preamble	1	Output	Increment bad preamble. This signal indicates if the Ethernet packet received was preceded by a valid preamble. A value of 1 indicates that an invalid preamble was received.
stat_tx_total_bytes	7	Output	Increment for the total number of bytes transmitted.
stat_tx_total_packets	1	Output	Increment for the total number of packets transmitted.
stat_tx_total_good_bytes	14	Output	Increment for the total number of good bytes transmitted. This value is only non-zero when a packet is transmitted completely and contains no errors.
stat_tx_total_good_packets	1	Output	Increment for the total number of good packets transmitted.
stat_tx_bad_fcs	1	Output	Increment for packets greater than 64 bytes that have FCS errors.
stat_tx_packet_64_bytes	1	Output	Increment for good and bad packets transmitted that contain 64 bytes.
stat_tx_packet_65_127_bytes	1	Output	Increment for good and bad packets transmitted that contain 65 to 127 bytes.
stat_tx_packet_128_255_bytes	1	Output	Increment for good and bad packets transmitted that contain 128 to 255 bytes.
stat_tx_packet_256_511_bytes	1	Output	Increment for good and bad packets transmitted that contain 256 to 511 bytes.
stat_tx_packet_512_1023_bytes	1	Output	Increment for good and bad packets transmitted that contain 512 to 1,023 bytes.
stat_tx_packet_1024_1518_bytes	1	Output	Increment for good and bad packets transmitted that contain 1,024 to 1,518 bytes.
stat_tx_packet_1519_1522_bytes	1	Output	Increment for good and bad packets transmitted that contain 1,519 to 1,522 bytes.
stat_tx_packet_1523_1548_bytes	1	Output	Increment for good and bad packets transmitted that contain 1,523 to 1,548 bytes.
stat_tx_packet_1549_2047_bytes	1	Output	Increment for good and bad packets transmitted that contain 1,549 to 2,047 bytes.
stat_tx_packet_2048_4095_bytes	1	Output	Increment for good and bad packets transmitted that contain 2,048 to 4,095 bytes.
stat_tx_packet_4096_8191_bytes	1	Output	Increment for good and bad packets transmitted that contain 4,096 to 8,191 bytes.
stat_tx_packet_8192_9215_bytes	1	Output	Increment for good and bad packets transmitted that contain 8,192 to 9,215 bytes.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_tx_packet_small	1	Output	Increment for all packets that are less than 64 bytes long. Packet transfers of less than 64 bytes are not permitted.
stat_tx_packet_large	1	Output	Increment for all packets that are more than 9,215 bytes long.
stat_tx_unicast	1	Output	Increment for good unicast packets.
stat_tx_multicast	1	Output	Increment for good multicast packets.
stat_tx_broadcast	1	Output	Increment for good broadcast packets.
stat_tx_vlan	1	Output	Increment for good 802.1Q tagged VLAN packets.
stat_tx_pause	1	Output	Increment for 802.3x Ethernet MAC Pause packet with good FCS.
stat_tx_user_pause	1	Output	Increment for priority based pause packets with good FCS.
stat_tx_frame_error	1	Output	Increment for packets with tx_errin set to indicate an EOP abort.
ctl_rx_pause_enable	9	Input	RX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority. This signal only affects the RX user interface, not the pause processing logic.
ctl_tx_pause_enable	9	Input	TX pause enable signal. This input is used to enable the processing of the pause quanta for the corresponding priority. This signal gates transmission of pause packets.
ctl_rx_enable_gcp	1	Input	A value of 1 enables global control packet processing.
ctl_rx_check_mcast_gcp	1	Input	A value of 1 enables global control multicast destination address processing.
ctl_rx_check_ucast_gcp	1	Input	A value of 1 enables global control unicast destination address processing.
ctl_rx_check_sa_gcp	1	Input	A value of 1 enables global control source address processing.
ctl_rx_check_etype_gcp	1	Input	A value of 1 enables global control Ethertype processing.
ctl_rx_check_opcode_gcp	1	Input	A value of 1 enables global control opcode processing.
ctl_rx_enable_pcp	1	Input	A value of 1 enables priority control packet processing.
ctl_rx_check_mcast_pcp	1	Input	A value of 1 enables priority control multicast destination address processing.
ctl_rx_check_ucast_pcp	1	Input	A value of 1 enables priority control unicast destination address processing.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
ctl_rx_check_sa_pcp	1	Input	A value of 1 enables priority control source address processing.
ctl_rx_check_etype_pcp	1	Input	A value of 1 enables priority control Ethertype processing.
ctl_rx_check_opcode_pcp	1	Input	A value of 1 enables priority control opcode processing.
ctl_rx_enable_gpp	1	Input	A value of 1 enables global pause packet processing.
ctl_rx_check_mcast_gpp	1	Input	A value of 1 enables global pause multicast destination address processing.
ctl_rx_check_ucast_gpp	1	Input	A value of 1 enables global pause unicast destination address processing.
ctl_rx_check_sa_gpp	1	Input	A value of 1 enables global pause source address processing.
ctl_rx_check_etype_gpp	1	Input	A value of 1 enables global pause Ethertype processing.
ctl_rx_check_opcode_gpp	1	Input	A value of 1 enables global pause opcode processing.
ctl_rx_enable_ppp	1	Input	A value of 1 enables priority pause packet processing.
ctl_rx_check_mcast_ppp	1	Input	A value of 1 enables priority pause multicast destination address processing.
ctl_rx_check_ucast_ppp	1	Input	A value of 1 enables priority pause unicast destination address processing.
ctl_rx_check_sa_ppp	1	Input	A value of 1 enables priority pause source address processing.
ctl_rx_check_etype_ppp	1	Input	A value of 1 enables priority pause Ethertype processing.
ctl_rx_check_opcode_ppp	1	Input	A value of 1 enables priority pause opcode processing.
stat_rx_pause_req	9	Output	Pause request signal. When the RX receives a valid pause frame, it sets the corresponding bit of this bus to a 1 and holds at 1 until the pause packet has been processed.
ctl_rx_pause_ack	9	Input	Pause acknowledge signal. This bus is used to acknowledge the receipt of the pause frame from the user logic.
stat_rx_pause_valid	9	Output	This bus indicates that a pause packet was received and the associated quanta on the stat_rx_pause_quanta[8:0][15:0] bus is valid and must be used for pause processing. If an 802.3x Ethernet MAC Pause packet is received, bit[8] is set to 1.
stat_rx_pause_quanta0	16	Output	This bus indicates the quanta received for priority 0 in priority based pause operation. If an 802.3x Ethernet MAC Pause packet is received, the quanta is placed in stat_rx_pause_quanta8[15:0].

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
stat_rx_pause_quanta1	16	Output	This bus indicates the quanta received for priority 1 in a priority based pause operation.
stat_rx_pause_quanta2	16	Output	This bus indicates the quanta received for priority 2 in a priority based pause operation.
stat_rx_pause_quanta3	16	Output	This bus indicates the quanta received for priority 3 in a priority based pause operation.
stat_rx_pause_quanta4	16	Output	This bus indicates the quanta received for priority 4 in a priority based pause operation.
stat_rx_pause_quanta5	16	Output	This bus indicates the quanta received for priority 5 in a priority based pause operation.
stat_rx_pause_quanta6	16	Output	This bus indicates the quanta received for priority 6 in a priority based pause operation.
stat_rx_pause_quanta7	16	Output	This bus indicates the quanta received for priority 7 in a priority based pause operation.
stat_rx_pause_quanta8	16	Output	This bus indicates the quanta received for priority 8 in a priority based pause operation.
ctl_tx_pause_req	9	Input	If a bit of this bus is set to 1, the dedicated 100G Ethernet IP core transmits a pause packet using the associated quanta value on the ctl_tx_pause_quanta[8:0][15:0] bus. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted. Each bit of this bus must be held at a steady state for a minimum of 16 cycles before the next transition.
ctl_tx_pause_quanta0	16	Input	This bus indicates the quanta to be transmitted for priority 0 in a priority based pause operation. If an 802.3x Ethernet MAC Pause packet is to be transmitted, the quanta is placed in ctl_tx_pause_quanta8[15:0].
ctl_tx_pause_quanta1	16	Input	This bus indicates the quanta to be transmitted for priority 1 in a priority based pause operation.
ctl_tx_pause_quanta2	16	Input	This bus indicates the quanta to be transmitted for priority 2 in a priority based pause operation.
ctl_tx_pause_quanta3	16	Input	This bus indicates the quanta to be transmitted for priority 3 in a priority based pause operation.
ctl_tx_pause_quanta4	16	Input	This bus indicates the quanta to be transmitted for priority 4 in a priority based pause operation.
ctl_tx_pause_quanta5	16	Input	This bus indicates the quanta to be transmitted for priority 5 in a priority based pause operation.
ctl_tx_pause_quanta6	16	Input	This bus indicates the quanta to be transmitted for priority 6 in a priority based pause operation.
ctl_tx_pause_quanta7	16	Input	This bus indicates the quanta to be transmitted for priority 7 in a priority based pause operation.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
ctl_tx_pause_quanta8	16	Input	This bus indicates the quanta to be transmitted for priority 8 in a priority based pause operation.
ctl_tx_pause_refresh_timer0	16	Input	This bus sets the retransmission time of pause packets for priority 0 in a priority based pause operation.
ctl_tx_pause_refresh_timer1	16	Input	This bus sets the retransmission time of pause packets for priority 1 in a priority based pause operation.
ctl_tx_pause_refresh_timer2	16	Input	This bus sets the retransmission time of pause packets for priority 2 in a priority based pause operation.
ctl_tx_pause_refresh_timer3	16	Input	This bus sets the retransmission time of pause packets for priority 3 in a priority based pause operation.
ctl_tx_pause_refresh_timer4	16	Input	This bus sets the retransmission time of pause packets for priority 4 in a priority based pause operation.
ctl_tx_pause_refresh_timer5	16	Input	This bus sets the retransmission time of pause packets for priority 5 in a priority based pause operation.
ctl_tx_pause_refresh_timer6	16	Input	This bus sets the retransmission time of pause packets for priority 6 in a priority based pause operation.
ctl_tx_pause_refresh_timer7	16	Input	This bus sets the retransmission time of pause packets for priority 7 in a priority based pause operation.
ctl_tx_pause_refresh_timer8	16	Input	This bus sets the retransmission time of pause packets for priority 8 in a priority based pause operation.
ctl_tx_resend_pause	1	Input	Re-transmit pending pause packets. When this input is sampled as 1, all pending pause packets are retransmitted as soon as possible (that is, after the current packet in flight is completed) and the retransmit counters are reset. This input should be pulsed to 1 for one cycle at a time.
stat_tx_pause_valid	9	Output	If a bit of this bus is set to 1, the dedicated 100G Ethernet IP core has transmitted a pause packet. If bit[8] is set to 1, a global pause packet is transmitted. All other bits cause a priority pause packet to be transmitted.
ctl_tx_systemtimerin	80	Input	System timer input for the TX. In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds. In transparent clock mode, bit 63 is the sign bit, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to the IEEE 1588v2 for the representational definitions. This input must be in the TX clock domain.
tx_ptp_tstamp_valid_out	1	Output	This bit indicates that a valid timestamp is being presented on the TX.
tx_ptp_pcslane_out	5	Output	This bus identifies which of the 20 PCS lanes that the SOP was detected on for the corresponding timestamp.
tx_ptp_tstamp_tag_out	16	Output	Tag output corresponding to tx_ptp_tag_field_in[15:0].

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
tx_ptp_tstamp_out	80	Output	Time stamp for the transmitted packet SOP corresponding to the time at which it passed the capture plane. The representation of the bits contained in this bus is the same as the timer input.
tx_ptp_1588op_in	2	Input	2'b00 – "No operation": no timestamp will be taken and the frame will not be modified. 2'b01 – "1-step": a timestamp should be taken and inserted into the frame. 2'b10 – "2-step": a timestamp should be taken and returned to the client using the additional ports of 2-step operation. The frame itself will not be modified. 2'b11 – Reserved.
tx_ptp_tag_field_in	16	Input	The usage of this field is dependent on the 1588 operation For "No operation", this field will be ignored. For "1-step" and "2-step", this field is a tag field. This tag value will be returned to the client with the timestamp for the current frame using the additional ports of 2-step operation. This tag value can be used by software to ensure that the timestamp can be matched with the precise timing protocol (PTP) frame that it sent for transmission.
tx_ptp_upd_chksum_in	1	Input	The usage of this field is dependent on the 1588 operation. For "No operation" or "2-step", this bit will be ignored. For "1-step": 1'b0: The PTP frame does not contain a UDP checksum. 1'b1: The PTP frame does contain a UDP checksum which the core is required to recalculate.
tx_ptp_chksum_offset_in	16	Input	The usage of this field is dependent on the "1588 operation" and on the "Update Checksum" bit. For "No operation", for "2-step" or for "1-step" when "Update Checksum" is set to 1'b0, this field will be ignored. For "1-step" when "Update Checksum" is set to 1'b1, this field is a numeric value indicating the number of bytes into the frame to where the first byte of the checksum is located (where a value of 0 represents the first byte of the Destination Address, etc). Note: The IPv6 header size is unbounded, so this field is able to cope with all frames sizes up to 16K jumbo frames. Only even values are supported.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			The usage of this field is dependent on the 1588 operation
			For "No operation" or "2-step" this field is ignored.
			For "1-step", this field is a numeric value indicating the number of bytes into the frame to where the first byte of the timestamp to be inserted is located (where a value of 0 represents the first byte of the Destination Address, etc).
tx_ptp_tstamp_offset_in	16	Input	This input is also used to specify the offset for the correction field in 1-step Transparent Clock mode.
			Note: The IPv6 header size is unbounded, so this field is able to cope with all frames sizes up to 16K jumbo frames.
			Note: Only even values are supported.
			Note: In transparent clock mode and when tx_ptp_upd_chksum_in=1, this value cannot be greater than tx_ptp_chksum_offset_in + 34 (decimal).
ctl_tx_ptp_vlane_adjust_mode	1	Input	When asserted, this signal applies an adjustment to the TX timestamps according to the PCS lane on which the SOP occurs. When zero, no adjustment is made. This signal only has effect for 1-step operation.
stat_tx_ptp_fifo_write_error	1	Output	Transmit PTP FIFO write error. A 1 on this status indicates that an error occurred during the PTP Tag write. A TX Path reset is required to clear the error.
stat_tx_ptp_fifo_read_error	1	Output	Transmit PTP FIFO read error. A 1 on this status indicates that an error occurred during the PTP Tag read. A TX Path reset is required to clear the error.
			System timer input for the RX.
			In normal clock mode, the time format is according to the IEEE 1588 format, with 48 bits for seconds and 32 bits for nanoseconds.
ctl_rx_systemtimerin	80	Input	In transparent clock mode, bit 63 is the sign bit, bits 62:16 carry nanoseconds, and bits 15:0 carry fractional nanoseconds. Refer to the IEEE 1588v2 for the representational definitions.
			This input must be in the same clock domain as the lane 0 RX SerDes.
rx_ptp_tstamp_out	80	Output	Time stamp for the received packet SOP corresponding to the time at which it passed the capture plane. This signal will be valid starting at the same clock cycle during which the SOP is asserted for one of the LBUS segments.
			The representation of the bits contained in this bus is the same as the timer input.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
			This bus identifies which of the 20 PCS lanes that the SOP was detected on for the corresponding timestamp.
rx_ptp_pcslane_out	5	Output	This signal will be valid starting at the same clock cycle during which the SOP is asserted for one of the LBUS segments.
rx_lane_aligner_fill_0	7	Output	This output indicates the fill level of the alignment buffer for PCS lane0. This information can be used by the PTP application, together with the signal rx_ptp_pcslane_out[4:0], to adjust for the lane skew of the arriving SOP. The units are SerDes clock cycles.
rx_lane_aligner_fill_1	7	Output	This output indicates the fill level of the alignment buffer for PCS lane1.
rx_lane_aligner_fill_2	7	Output	This output indicates the fill level of the alignment buffer for PCS lane2.
rx_lane_aligner_fill_3	7	Output	This output indicates the fill level of the alignment buffer for PCS lane3.
rx_lane_aligner_fill_4	7	Output	This output indicates the fill level of the alignment buffer for PCS lane4.
rx_lane_aligner_fill_5	7	Output	This output indicates the fill level of the alignment buffer for PCS lane5.
rx_lane_aligner_fill_6	7	Output	This output indicates the fill level of the alignment buffer for PCS lane6.
rx_lane_aligner_fill_7	7	Output	This output indicates the fill level of the alignment buffer for PCS lane7.
rx_lane_aligner_fill_8	7	Output	This output indicates the fill level of the alignment buffer for PCS lane8.
rx_lane_aligner_fill_9	7	Output	This output indicates the fill level of the alignment buffer for PCS lane9.
rx_lane_aligner_fill_10	7	Output	This output indicates the fill level of the alignment buffer for PCS lane10.
rx_lane_aligner_fill_11	7	Output	This output indicates the fill level of the alignment buffer for PCS lane11.
rx_lane_aligner_fill_12	7	Output	This output indicates the fill level of the alignment buffer for PCS lane12.
rx_lane_aligner_fill_13	7	Output	This output indicates the fill level of the alignment buffer for PCS lane13.
rx_lane_aligner_fill_14	7	Output	This output indicates the fill level of the alignment buffer for PCS lane14.
rx_lane_aligner_fill_15	7	Output	This output indicates the fill level of the alignment buffer for PCS lane15.
rx_lane_aligner_fill_16	7	Output	This output indicates the fill level of the alignment buffer for PCS lane16.

Table 5-2: CORE XCI Top-Level Port List (Cont'd)

Name	Size	Direction	Description
rx_lane_aligner_fill_17	7	Output	This output indicates the fill level of the alignment buffer for PCS lane17.
rx_lane_aligner_fill_18	7	Output	This output indicates the fill level of the alignment buffer for PCS lane18.
rx_lane_aligner_fill_19	7	Output	This output indicates the fill level of the alignment buffer for PCS lane19.
drp_clk	1	Input	DRP interface clock. When DRP is not used, this can be tied to GND.
drp_addr	10	Input	DRP address bus.
drp_di	16	Input	Data bus for writing configuration data from the FPGA logic resources to the 100G Ethernet IP core.
			DRP enable signal.
			0: No read or write operations performed.
drp_en	1	Input	1: Enables a read or write operation.
			For write operations, DRP_WE and DRP_EN should be driven High for one DRP_CLK cycle only.
drp_do	16	Output	Data bus for reading configuration data from the 100G Ethernet IP core to the FPGA logic resources.
drp_rdy	1	Output	Indicates operation is complete for write operations and data is valid for read operations.
			DRP write enable.
			0: Read operation when DRP_EN is 1.
drp_we	1	Input	1: Write operation when DRP_EN is 1.
			For write operations, DRP_WE and DRP_EN should be driven High for one DRP_CLK cycle only.

Note: AXI4-Lite interface ports are visible only when you select the **Include AXI4-Lite Control and Statistics Interface** option from the General Tab. Refer to AXI User Interface Ports for the AXI4-Lite port list and descriptions.

Modes of Operation

Three modes of operations are supported for this example design which are:

- Duplex Mode
- Simplex TX Mode
- Simplex RX Mode

Duplex Mode

In this mode of operation both the 100G Ethernet IP core transmitter and receiver are active and loopback is provided at the GT output interface, that is, output is fed back as input. Packet generation and monitor are also active in this mode.

To enable this mode of operation, select the duplex mode from the Vivado IDE parameters. Figure 5-3 shows the duplex mode of operation.

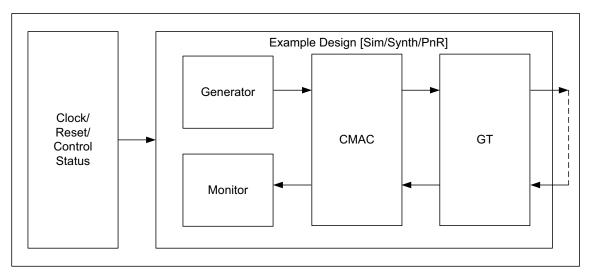


Figure 5-3: Duplex Mode of Operation

Simplex TX Mode

Simplex TX Mode of Operation

In this mode of operation only the 100G Ethernet IP core transmitter is enabled as shown in Figure 5-4. Also, only the packet generator will be enabled for the generation of packets.

To enable this mode of operation, select the simplex TX mode from the Vivado IDE. Figure 5-4 shows the simplex TX mode of operation.

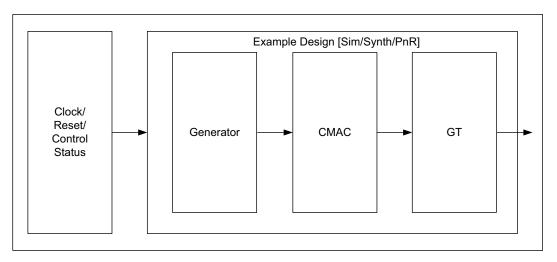


Figure 5-4: Simplex TX Mode of Operation

Simplex TX Mode Simulation

As shown in the Figure 5-4 in this mode of operation only the CMAC transmitter is enabled and the packet generator is enabled for the generation of packets. For simulation a partner test bench is instantiated to perform the functionality of the CMAC receiver. This partner test bench will have a CMAC receiver and a packet monitor to verify the received data from the generator.

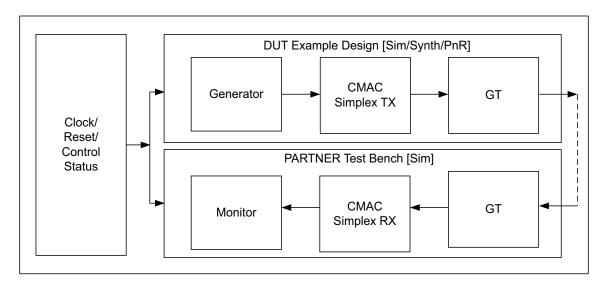


Figure 5-5: Simplex TX Mode Simulation Block Diagram

Simplex RX Mode

Simplex RX Mode of Operation

In this mode of operation only the 100G Ethernet IP core receiver is enabled as shown in Figure 5-6. Also only the packet monitor will be enabled for the reception of packets.

To enable this mode of operation, select the **Simplex Rx** mode from the Vivado IDE parameters.

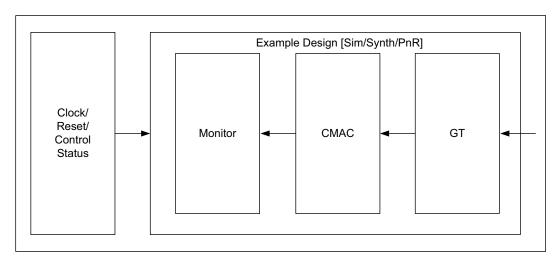


Figure 5-6: Simplex RX Mode of Operation

Simplex RX Mode Simulation

As shown in Figure 5-6, in this mode of operation only the CMAC receiver is enabled and the packet monitor will be enabled to verify the received data. For simulation, a partner test bench is instantiated to perform the functionality of the CMAC transmitter. This partner test bench will have a CMAC transmitter and a packet generator to generate the test data.

Figure 5-7 shows the Simplex RX mode for simulation.

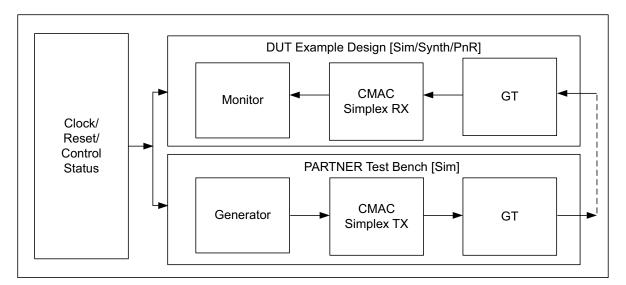


Figure 5-7: Simplex RX Mode Simulation Block Diagram

Transaction Flow

This section describes the flow of data between <code>cmac_0_pkt_gen_mon</code> and <code>cmac_0</code> and various state transitions that happen within <code>cmac_0_pkt_gen</code> and <code>cmac_0_pkt_mon</code>.

Packet Generation

The module cmac_0_pkt_gen is responsible for the generation of LBUS packets. Typically the packet generator waits for the GT to achieve lock and for the core RX to get aligned. After this has occurred, the packet generator sends a predefined number of packets. A Finite State Machine (FSM) is used to generate the LBUS packets. A functional description of each state follows:

- **STATE_TX_IDLE**: By default the controller is in the STATE_TX_IDLE state. When reset_done becomes High, it moves to the STATE_GT_LOCKED state.
- **STATE_GT_LOCKED**: This state sets ctl_tx_send_rfi=1, tx_core_busy_led=1 and gt_lock_led=1. It then moves to the STATE_WAIT_RX_ALIGNED state.
- STATE_WAIT_RX_ALIGNED: This state waits for the 100G Ethernet IP cores to indicate stat_rx_aligned=1, which means that the 100G Ethernet IP RX core is locked. After that, it moves to the STATE_PKT_TRANSFER_INIT state.
- STATE_PKT_TRANSFER_INIT: This state sets rx_aligned_led=1 and tx_core_busy_led=1. It then initializes all signals to start LBUS packet generation and moves to the STATE_LBUS_TX_ENABLE state.

- STATE_LBUS_TX_ENABLE: This state checks for the number of packets to be generated and sends LBUS packets of a predefined size. After sending all the packets, the FSM moves to the STATE_LBUS_TX_DONE state. During transmission of the packets, if tx_rdyout=0, tc_ovfout=1 or tx_unfout=1, the FSM controller moves to the STATE_LBUS_TX_HALT state.
- STATE_LBUS_TX_HALT: In this state, the controller generates the tx_fail_reg flag if tc_ovfout or tx_unfout is High. Then the FSM moves to the STATE_LBUS_TX_DONE state. If tx_rdyout becomes High, the FSM moves to the STATE_LBUS_TX_ENABLE state to proceed with packet generation.
- STATE_LBUS_TX_DONE: This state resets all signals related to packet generation and sets tx_done_led =1. If the 1588 "1-step" or "Both" option with FCS insertion is enabled, FSM moves to the STATE_PTP_PKT_INIT state; otherwise it checks if TX_FLOW_CONTROL is enabled. If enabled, the FSM moves to the STATE_TX_PAUSE_INIT state. If TX_FLOW_CONTROL is now enabled, the FSM moves to the STATE_WAIT_FOR_RESTART state.
- **STATE_WAIT_FOR_RESTART**: In this state, all the packet generator parameters reset to the default values and reset tx_busy_led=0. The FSM moves to STATE_PKT_TRANSFER_INIT at tx_restart_rising_edge.
- STATE_PTP_PKT_INIT: Reset all the signals used for LBUS transactions. Move to the STATE_PTP_PKT_READ state wait until the initialization counter is done and set the ptp_pkt_transfer flag to one. After sending three 1588 PTP packets (Ethernet, IPV4 and IPV6), FSM moves to the STATE_TX_PAUSE_INIT state if the TX_FLOW_CONTROL is enabled; otherwise FSM moves to STATE_WAIT_FOR_RESTART state.
- **STATE_PTP_PKT_READ**: In case of IPV4 or IPV6, increment the tx_ptp_pkt_index and move to the STATE_PTP_PKT_TRANSFER state.
- **STATE_TX_PTP_PKT_TRANSFER**: Read the data from the ptp_pkt_gen module after sending the complete ptp packet, move to the STATE_PTP_PKT_INIT state.
- STATE_TX_PAUSE_INIT: Set the ctl_tx_pause_enable = 9'h100 and ctl_tx_pause_req[8] = 1 and wait for the stat_tx_pause signal to become High and the FSM moves to the STATE_TX_PPP_INIT state.
- STATE_TX_PPP_INIT: In this state, the controller sets ctl_tx_pause_enable = 9'h0ff and ctl_tx_pause_req[7:0] one bit at a time in decrementing order (bit 7 to bit 0). It then waits for stat_tx_pause_valid[0] to become High and moves to the STATE_TX_PAUSE_DONE state.
- **STATE_TX_PAUSE_DONE**: In this state, all the pause signals are reset. The controller then moves to the STATE_WAIT_FOR_RESTART state.

Notes:

- If any time stat_rx_aligned = 0, the FSM moves to STATE_TX_IDLE.
- In the simplex TX mode of operation because RX alignment information will not be available, the state machine waits for you to input simplex_mode_rx_aligned. After you assert this input to High, packet transmission starts.
- If you select the **Disable FCS Insertion** option in the General Tab, the CMAC core will not insert the CRC value for the data packets. So a CRC_Mapping_LUT module will be instantiated inside the cmac_0_pkt_gen module that contains the pre-calculated CRC values for the current LBUS predefined data packet of the packet size 522 bytes. These CRC values will be appended at the end of each LBUS packet.

Therefore, if you are changing the packet size, you must change the CRC values for this new module as appropriate for the new packet and/or packet size.

If the 1588 Transparent Clock **1-step** or **Both** option is selected and if FCS insertion is disabled in Vivado IDE, the 1588 Transparent Clock testing will not be performed in the example design because of the unpredictable PTP frame CRC values as the core will modify the packet.

• If you select the **1-step** or **Both** option in the General Tab, then the ptp_packet_gen module will be instantiated inside the cmac_0_packet_gen module. This module contains three 1588 PTP packets (Ethernet, IPV4 and IPV6) with or without the CRC values based on the **Disable FCS Insertion** or **Enable FCS Insertion** option in the General Tab.

The state transition that occurs during this process is shown in Figure 5-8.

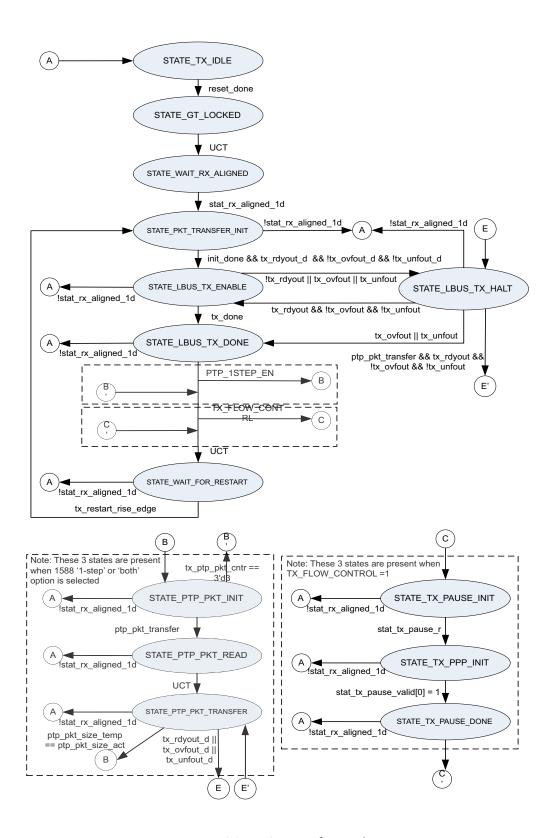


Figure 5-8: State Transition Diagram for Packet Generator

Packet Reception

The module <code>cmac_0_pkt_mon</code> is responsible for reception of packets. Typically the packet monitor waits for transceivers to achieve lock and for the 100G Ethernet IP RX to align. After alignment, the packet monitor receives a predefined number of packets. The FSM is used to monitor the RX LBUS signals. A functional description of each state follows:

- **STATE_RX_IDLE**: By default, the FSM is in the IDLE state. When reset_done goes High, the FSM moves to the STATE_GT_LOCKED state.
- **STATE_GT_LOCKED**: This state sets gt_lock_led=1, rx_core_busy_led=1, and ctl_rx_enable=1. Then the FSM moves to the STATE_WAIT_RX_ALIGNED state.
- **STATE_WAIT_RX_ALIGNED**: This state waits for stat_rx_aligned=1, which indicates that the 100G Ethernet IP RX core is aligned. The FSM then moves to the STATE_PKT_TRANSFER_INIT state.
- STATE_PKT_TRANSFER_INIT: This state sets rx_aligned_led=1, rx_core_busy_led=1, initializes all signals to start LBUS packet generation, and then moves to the STATE_LBUS_RX_ENABLE state.
- **STATE_LBUS_RX_ENABLE**: This state receives LBUS packets and compares them to the expected packets. If there is a mismatch, it sets rx_data_fail_led=1. This flag is reset only when lbus_tx_rx_restart_in=1. After receiving all the packets, the FSM moves to the STATE_LBUS_RX_DONE state.
- STATE_LBUS_RX_DONE: This state resets all the signals related to LBUS packets, sets the rx_done_led=1, and moves to the STATE_WAIT_FOR_RESTART state. If the TX Flow Control and RX Flow Control functions are enabled, it waits for pause_test_done=1 and then moves to the STATE_WAIT_FOR_RESTART state. If 1588 1-step is enabled, the FSM moves to the STATE_RX_PTP_ENABLE state.
- **STATE_RX_PTP_ENABLE**: Receive the three 1588 PTP packets. After receiving the packets, the FSM moves to the STATE_RX_PTP_DONE state.
- **STATE_RX_PTP_DONE**: This state only displays the time stamps received. If the TX Flow Control and RX Flow Control are enabled, wait for the pause_test_done=1 and move to STATE_WAIT_FOR_RESTART.
- STATE_WAIT_FOR_RESTART: This state resets all signals related to the LBUS packet monitor and resets rx_core_busy_led=0. It then waits for rx_restart_rise_edge=1 and stat_rx_aligned=1. The FSM then moves to the STATE_PKT_TRANSFER_INIT state. If any time stat_rx_aligned = 0, the FSM moves to STATE RX IDLE

Notes:

- If any time stat_rx_aligned = 0, then the FSM moves to STATE_RX_IDLE.
- When RX_FLOW_CONTROL is enabled, the corresponding input control signals are initialized to enable Pause and Priority Pause frames reception.
- If you select the **Disable FCS Stripping** option in the General Tab, the CRC_Mapping_LUT module will be instantiated inside the cmac_0_pkt_mon module. This CRC_Mapping_LUT module contains the pre-calculated CRC values for the received LBUS data packets of packet size 522 bytes. These CRC values will be compared with the received LBUS packet CRC.
- If you change the packet size, you must provide the new CRC values as appropriate for the new packet size.

The state transition that occurs during this process is shown in Figure 5-9.

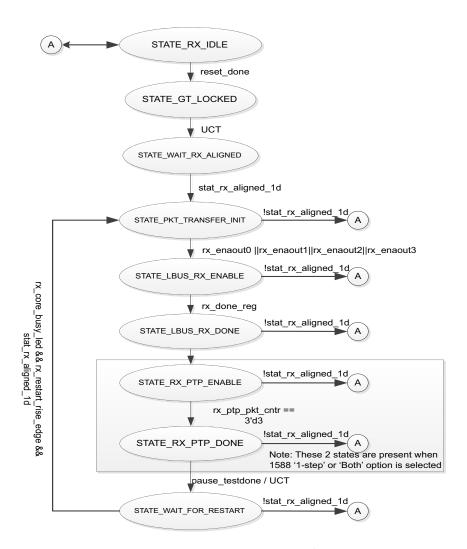


Figure 5-9: State Transition Diagram for Packet Monitor

Runtime Switchable

When you select the Mode option as runtime switchable, the <code>cmac_0_trans_debug</code> module will be present in the example design. This <code>cmac_0_trans_debug</code> module is responsible for performing the DRP write operation to switch the transceiver operation mode, that is, CAUI-10 to CAUI-4/CAUI-4 to CAUI-10. When you set the <code>switch_caui_mode</code> input signal active-High for at least two clock cycles and then make it active-Low, it starts the DRP write operation for the transceiver common and transceiver channel and resets the 100G Ethernet IP core. The state transition occurred during this process is shown in Figure 5-10:

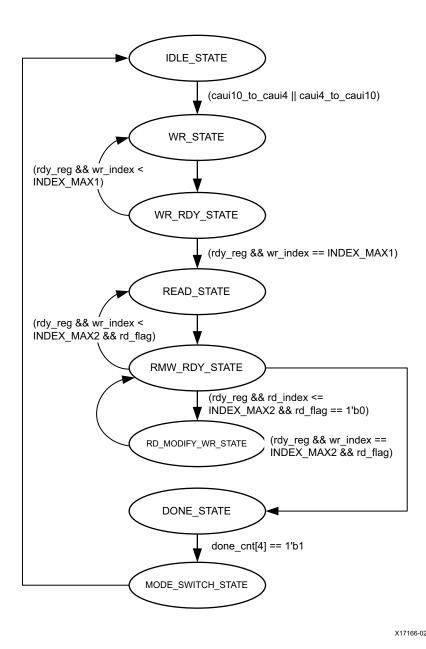


Figure 5-10: State Transition Diagram for Runtime Switchable DRP Operation

Shared Logic Implementation

Shared logic includes the GT common module which can be present as part of GT or in the example design. By default, shared logic is present inside the core. If you want to instantiate shared logic in the example design, select **Include Shared logic in example design** in the Vivado IDE.

Figure 5-11 shows the implementation when shared logic is instantiated in the example design.

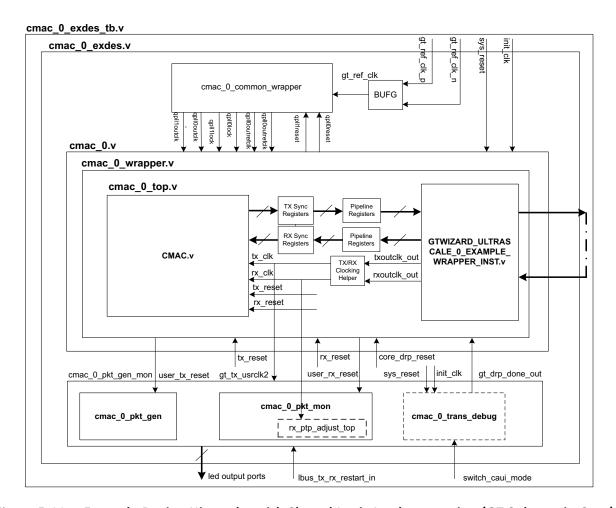


Figure 5-11: Example Design Hierarchy with Shared Logic Implementation (GT Subcore in Core)

CORE DRP Operation

- 1. Make the core_drp_reset signal High.
- 2. Perform the DRP write/read operation.
- 3. After completion of the DRP operation, make the core_drp_reset signal Low.
- 4. Wait for the rx alignment.

AXI4-Lite Interface Implementation

If you wish to instantiate the AXI4-Lite interface to access the control and status registers of the CMAC core, you need to tick mark the **Include AXI4-Lite Control and Statistics Interface** check box in the **General Tab**. It enables the axi4_lite_if_wrapper module (that contains axi4_lite_reg_map along with the axi4_lite_slave_2_ipif module) in the cmac_wrapper. The user interface logic for accessing the registers (control, status and statistics) is present in the pkt_gen_mon module.

Note: In the CAUI-4 mode, if you select **Include IEEE 802.3bj RS-FEC** along with the **Include AXI4-Lite Control and Statistics Interface** option, the AXI Crossbar module is instantiated to access the AXI4-Lite interface control and statistics registers for both CMAC and IEEE 802.3bj RS-FEC IP. Refer to IEEE 802.3bj RS-FEC Integration for more details.

This mode enables the following features:

- You can configure all the CTL ports of the core through the AXI4-Lite interface. This operation is performed by writing to a set of address locations with the required data to the register map interface. The address location with the configuration register list is mentioned in Table 5-5.
- You can access all the status and statistics registers from the core through the AXI4-Lite interface. This is performed by reading the address locations for the status and statistics registers through register map. Table 5-6 shows the address with the corresponding register descriptions.

The following diagram shows the implementation when **Include AXI4-Lite Control and Statistics Interface** is enabled in the General tab.

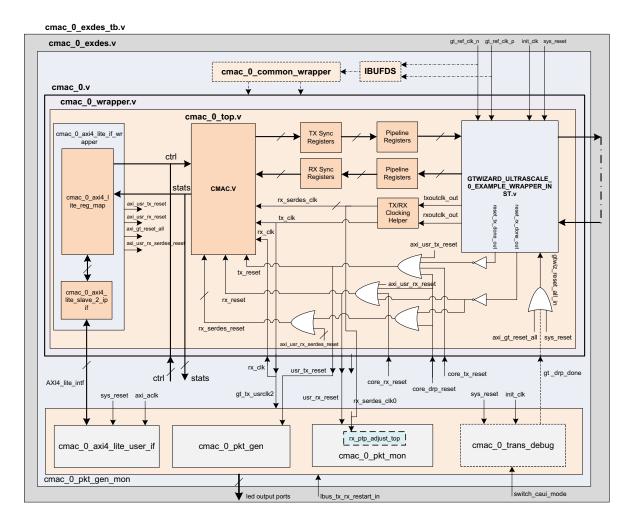


Figure 5-12: Example Design Hierarchy with AXI4-Lite Interface

The following sections provide the AXI4-Lite interface state machine control and ports.

User State Machine

The read and write through the AXI4-Lite slave module interface is controlled by a state machine as shown in Figure 5-13.

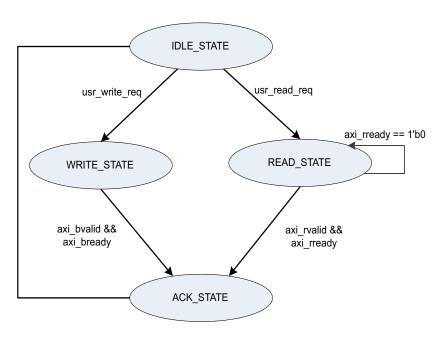


Figure 5-13: User State Machine for AXI4-Lite Interface

Following is the functional description of each state.

- **IDLE_STATE**: By default the FSM will be in the IDLE_STATE state. When the user_read_req signal becomes High, then it moves to READ_STATE; else if the user_write_req signal is High, it moves to the WRITE_STATE; else it remains in IDLE STATE.
- WRITE_STATE: You provide S_AXI_AWVALID, S_AXI_AWADDR, S_AXI_WVALID, S_AXI_WDATA and S_AXI_WSTRB in this state to write to the register map through AXI. When S_AXI_BVALID and S_AXI_BREADY from the AXI slave are High then it moves to ACK_STATE. If there is any write operation than happens in any illegal addresses, the S_AXI_BRESP[1:0] indicates 2 'b10 that asserts the write error signal.
- **READ_STATE**: You provide S_AXI_ARVALID and S_AXI_ARADDR in this state to read from the register map through AXI. When S_AXI_RVALID and S_AXI_RREADY are High then it moves to ACK_STATE. If there is any read operation that occurs from any illegal addresses, the S_AXI_RRESP[1:0] indicates 2 'b10 that asserts the read error signal
- ACK_STATE: The state moves to IDLE_STATE.

AXI User Interface Ports

Table 5-3: AXI User Interface Ports

Name	Size	Direction	Description
S_AXI_ACLK	1	Input	AXI clock signal
S_AXI_SRESET	1	Input	AXI active-High synchronous reset
S_AXI_AWADDR	32	Input	AXI write address
S_AXI_PM_TICK	1	Input	PM tick user input. 1 (for one clock) performs the AXI4-Lite read operation for the statistics/status registers and simultaneously clears the statistics accumulators.
S_AXI_AWVALID	1	Input	AXI write address valid
S_AXI_AWREADY	1	Output	AXI write address ready
S_AXI_WDATA	32	Input	AXI write data
S_AXI_WSTRB	4	Input	AXI write strobe. This signal indicates which byte lanes hold valid data.
S_AXI_WVALID	1	Input	AXI write data valid. This signal indicates that valid write data and strobes are available.
S_AXI_WREADY	1	Output	AXI write data ready
S_AXI_BRESP	2	Output	AXI write response. This signal indicates the status of the write transaction. 'b00 = OKAY 'b01 = EXOKAY 'b10 = SLVERR 'b11 = DECERR
S_AXI_BVALID	1	Output	AXI write response valid. This signal indicates that the channel is signaling a valid write response.
S_AXI_BREADY	1	Input	AXI write response ready.
S_AXI_ARADDR	32	Input	AXI read address
S_AXI_ARVALID	1	Input	AXI read address valid
S_AXI_ARREADY	1	Output	AXI read address ready
S_AXI_RDATA	32	Output	AXI read data issued by slave

Table 5-3: AXI User Interface Ports (Cont'd)

Name	Size	Direction	Description
		Output	AXI read response. This signal indicates the status of the read transfer.
			'b00 = OKAY
S_AXI_RRESP	2		'b01 = EXOKAY
			'b10 = SLVERR
			'b11 = DECERR
S_AXI_RVALID	1	Output	AXI read data valid
S_AXI_RREADY	1	Input	AXI read ready. This signal indicates that the user/master can accept the read data and response information.

User Side AXI4-Lite Write/Read Transactions

Figure 5-14 through Figure 5-17 show timing diagram waveforms for the AXI4-Lite interface.

- Valid Write transactions (Figure 5-14)
- Invalid Write transactions (Figure 5-15)
- Valid Read transactions (Figure 5-16)
- Invalid Read transactions (Figure 5-17)

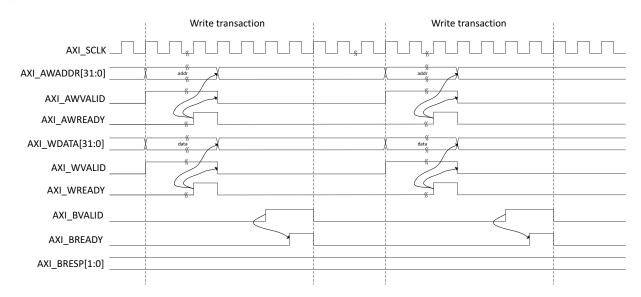


Figure 5-14: AXI4-Lite User Side Write Transaction

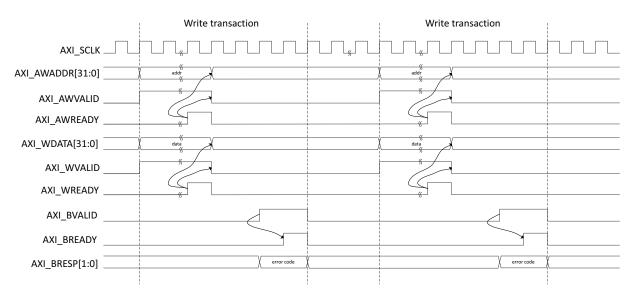


Figure 5-15: AXI4-Lite User Side Write Transaction with Invalid Write Address

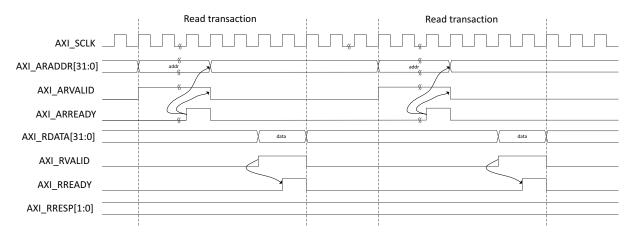


Figure 5-16: AXI4-Lite User Side Read Transaction

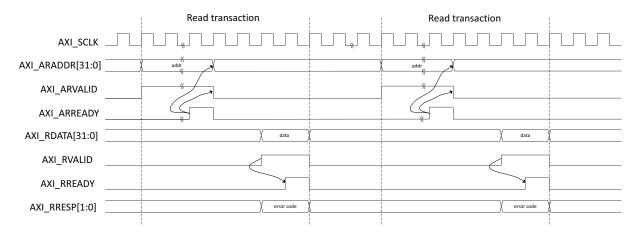


Figure 5-17: AXI4-Lite User Side Read Transaction with Invalid Read Address

Register Map

The following sections provide the register map and register descriptions for the core.

Base Pages

The register map is broken into two 512 base address pages to allow for future development and expansion.

Table 5-4: Register Base Addresses

Base Address	Space Name		
0x0000 0000	IP Configuration Registers		
0x0000 0200	Status and Statistics Registers		

All registers are 32 bytes in size and aligned on 32-byte addressing. In the following register space maps, any holes in the address space should be considered RESERVED and can cause the AXI Control interface IP to respond with an error if accessed.

Configuration Register Space

The configuration space provides the ability to configure the core for various use cases.

The integrated IP UltraScale™ CMAC makes use of a dynamic reconfiguration port (DRP) to provide the ability to configure aspects of the core without the need for fabric logic connections. In this case those configuration bits in the soft AXI Control register set will become RESERVED (unused) and the software should use the DRP operation registers to configure those attributes of the core. See Table 3-7 for the DRP address map.

Table 5-5: Configuration Register Map

Address	Register Name		
0x0000	GT_RESET_REG		
0x0004	RESET_REG		
0x0008	SWITCH_CORE_MODE_REG		
0x000C	CONFIGURATION_TX_REG1		
0x0010	Reserved		
0x0014	CONFIGURATION_RX_REG1		
0x001C	Reserved		
0x001F	CORE_MODE_REG		
0x0020	Reserved		
0x0024	CORE_VERSION_REG		
0x0028	Reserved		
0x002C	CONFIGURATION_TX_BIP_OVERRIDE		
0x0030	CONFIGURATION_TX_FLOW_CONTROL_CONTROL_REG1		
0x0034	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG1		
0x0038	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG2		
0x003C	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG3		
0x0040	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG4		
0x0044	CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG5		
0x0048	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG1		
0x004C	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG2		
0x0050	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG3		
0x0054	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG4		
0x0058	CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG5		

Table 5-5: Configuration Register Map (Cont'd)

Address	Register Name		
0x005C - 0x0080	Reserved		
0x0084	CONFIGURATION_RX_FLOW_CONTROL_CONTROL_REG1		
0x0088	CONFIGURATION_RX_FLOW_CONTROL_CONTROL_REG2		
0x008C	Reserved		
0x0090	GT_LOOPBACK_REG		
0x0094 - 0x01FF	Reserved		

Status and Statistics Register Space

The status and statistics registers indicate the health of the link and histograms counters to provide classification of the traffic and error counts. The status and counters are all read-only.

Status registers are cleared on read and counters are controlled by a "tick" mechanism.

Some bits are sticky, that is, latching their values High or Low after being set. This is indicated by the suffix LH (Latched High) or LL (Latched Low).

The counters accumulate their counts in an internal accumulator. A write to the TICK_REG register (or the input port s_axi_pm_tick is 1'b1) causes the accumulated counts to be pushed to the readable STAT_*_MSB/LSB registers and simultaneously clears the accumulators. The STAT_*_MSB/LSB registers can then be read. In this way all values stored in the statistics counters represent a snapshot over the same time-interval.

The STAT_CYCLE_COUNT_MSB/LSB register contains a count of the number of SerDes clock cycles between TICK_REG register writes. This allows for easy time-interval based statistics. The counters have a default width of 48 bits. The counters saturate to 1s. The values in the counters are held until the next write to the TICK_REG register.

The addresses shown in Table 5-6 for the counters are the addresses of the LSB register or bits 31:0 of the count. The MSB bits 47:32 of the counter are located at +0x4 from the LSB.

Table 5-6: Status and Statistics Register Map

Address	Register Name			
0x0200	STAT_TX_STATUS_REG			
0x0204	STAT_RX_STATUS_REG			
0x0208	STAT_STATUS_REG1			
0x020C	STAT_RX_BLOCK_LOCK_REG			

Table 5-6: Status and Statistics Register Map (Cont'd)

Address	Register Name		
0x0210	STAT_RX_LANE_SYNC_REG		
0x0214	STAT_RX_LANE_SYNC_ERR_REG		
0x0218	STAT_RX_AM_ERR_REG		
0x021C	STAT_RX_AM_LEN_ERR_REG		
0x0220	STAT_RX_AM_REPEAT_ERR_REG		
0x0224	STAT_RX_LANE_DEMUXED		
0x0228	STAT_RX_PCS_LANE_NUM_REG1		
0x022C	STAT_RX_PCS_LANE_NUM_REG2		
0x0230	STAT_RX_PCS_LANE_NUM_REG3		
0x0234	STAT_RX_PCS_LANE_NUM_REG4		
0x0238	STAT_RX_BIP_OVERRIDE_REG		
0x023C - 0x02AF	Reserved		
Histogram / Count	ter Registers		
0x02B0	TICK_REG		
0x02B8	STAT_CYCLE_COUNT		
0x02C0	STAT_RX_BIP_ERR_0		
0x02C8	STAT_RX_BIP_ERR_1		
0x02D0	STAT_RX_BIP_ERR_2		
0x02D8	STAT_RX_BIP_ERR_3		
0x02E0	STAT_RX_BIP_ERR_4		
0x02E8	STAT_RX_BIP_ERR_5		
0x02F0	STAT_RX_BIP_ERR_6		
0x02F8	STAT_RX_BIP_ERR_7		
0x0300	STAT_RX_BIP_ERR_8		
0x0308	STAT_RX_BIP_ERR_9		
0x0310	STAT_RX_BIP_ERR_10		
0x0318	STAT_RX_BIP_ERR_11		
0x0320	STAT_RX_BIP_ERR_12		
0x0328	STAT_RX_BIP_ERR_13		
0x0330	STAT_RX_BIP_ERR_14		

Table 5-6: Status and Statistics Register Map (Cont'd)

Address	Register Name			
0x0338	STAT_RX_BIP_ERR_15			
0x0340	STAT_RX_BIP_ERR_16			
0x0348	STAT_RX_BIP_ERR_17			
0x0350	STAT_RX_BIP_ERR_18			
0x0358	STAT_RX_BIP_ERR_19			
0x0360	STAT_RX_FRAMING_ERR_0			
0x0368	STAT_RX_FRAMING_ERR_1			
0x0370	STAT_RX_FRAMING_ERR_2			
0x0378	STAT_RX_FRAMING_ERR_3			
0x0380	STAT_RX_FRAMING_ERR_4			
0x0388	STAT_RX_FRAMING_ERR_5			
0x0390	STAT_RX_FRAMING_ERR_6			
0x0398	STAT_RX_FRAMING_ERR_7			
0x03A0	STAT_RX_FRAMING_ERR_8			
0x03A8	STAT_RX_FRAMING_ERR_9			
0x03B0	STAT_RX_FRAMING_ERR_10			
0x03B8	STAT_RX_FRAMING_ERR_11			
0x03C0	STAT_RX_FRAMING_ERR_12			
0x03C8	STAT_RX_FRAMING_ERR_13			
0x03D0	STAT_RX_FRAMING_ERR_14			
0x03D8	STAT_RX_FRAMING_ERR_15			
0x03E0	STAT_RX_FRAMING_ERR_16			
0x03E8	STAT_RX_FRAMING_ERR_17			
0x03F0	STAT_RX_FRAMING_ERR_18			
0x03F8	STAT_RX_FRAMING_ERR_19			
0x0400 - 0x0410	Reserved			
0x0418	STAT_RX_BAD_CODE			
0x0420	Reserved			
0x0428	Reserved			
0x0430	Reserved			

Table 5-6: Status and Statistics Register Map (Cont'd)

Address	Register Name		
0x0438	Reserved		
0x0440	Reserved		
0x0448	Reserved		
0x0450	Reserved		
0x0458	STAT_TX_FRAME_ERROR		
0x0460	Reserved		
0x0500	STAT_TX_TOTAL_PACKETS		
0x0508	STAT_TX_TOTAL_GOOD_PACKETS		
0x0510	STAT_TX_TOTAL_BYTES		
0x0518	STAT_TX_TOTAL_GOOD_BYTES		
0x0520	STAT_TX_PACKET_64_BYTES		
0x0528	STAT_TX_PACKET_65_127_BYTES		
0x0530	STAT_TX_PACKET_128_255_BYTES		
0x0538	STAT_TX_PACKET_256_511_BYTES		
0x0540	STAT_TX_PACKET_512_1023_BYTES		
0x0548	STAT_TX_PACKET_1024_1518_BYTES		
0x0550	STAT_TX_PACKET_1519_1522_BYTES		
0x0558	STAT_TX_PACKET_1523_1548_BYTES		
0x0560	STAT_TX_PACKET_1549_2047_BYTES		
0x0568	STAT_TX_PACKET_2048_4095_BYTES		
0x0570	STAT_TX_PACKET_4096_8191_BYTES		
0x0578	STAT_TX_PACKET_8192_9215_BYTES		
0x0580	STAT_TX_PACKET_LARGE		
0x0588	STAT_TX_PACKET_SMALL		
0x0590 - 0x05B0	Reserved		
0x05B8	STAT_TX_BAD_FCS		
0x05C0	Reserved		
0x05C8	Reserved		
0x05D0	STAT_TX_UNICAST		
0x05D8	STAT_TX_MULTICAST		

Table 5-6: Status and Statistics Register Map (Cont'd)

Address	Register Name		
0x05E0	STAT_TX_BROADCAST		
0x05E8	STAT_TX_VLAN		
0x05F0	STAT_TX_PAUSE		
0x05F8	STAT_TX_USER_PAUSE		
0x0600	Reserved		
0x0608	STAT_RX_TOTAL_PACKETS		
0x0610	STAT_RX_TOTAL_GOOD_PACKETS		
0x0618	STAT_RX_TOTAL_BYTES		
0x0620	STAT_RX_TOTAL_GOOD_BYTES		
0x0628	STAT_RX_PACKET_64_BYTES		
0x0630	STAT_RX_PACKET_65_127_BYTES		
0x0638	STAT_RX_PACKET_128_255_BYTES		
0x0640	STAT_RX_PACKET_256_511_BYTES		
0x0648	STAT_RX_PACKET_512_1023_BYTES		
0x0650	STAT_RX_PACKET_1024_1518_BYTES		
0x0658	STAT_RX_PACKET_1519_1522_BYTES		
0x0660	STAT_RX_PACKET_1523_1548_BYTES		
0x0668	STAT_RX_PACKET_1549_2047_BYTES		
0x0670	STAT_RX_PACKET_2048_4095_BYTES		
0x0678	STAT_RX_PACKET_4096_8191_BYTES		
0x0680	STAT_RX_PACKET_8192_9215_BYTES		
0x0688	STAT_RX_PACKET_LARGE		
0x0690	STAT_RX_PACKET_SMALL		
0x0698	STAT_RX_UNDERSIZE		
0x06A0	STAT_RX_FRAGMENT		
0x06A8	STAT_RX_OVERSIZE		
0x06B0	STAT_RX_TOOLONG		
0x06B8	STAT_RX_JABBER		
0x06C0	STAT_RX_BAD_FCS		

Table 5-6: Status and Statistics Register Map (Cont'd)

Address	Register Name			
0x06C8	STAT_RX_PACKET_BAD_FCS			
0x06D0	STAT_RX_STOMPED_FCS			
0x06D8	STAT_RX_UNICAST			
0x06E0	STAT_RX_MULTICAST			
0x06E8	STAT_RX_BROADCAST			
0x06F0	STAT_RX_VLAN			
0x06F8	STAT_RX_PAUSE			
0x0700	STAT_RX_USER_PAUSE			
0x0708	STAT_RX_INRANGEERR			
0x0710	STAT_RX_TRUNCATED			
0x0718 - 0x07FF	Reserved			

Register Descriptions

Table 5-7: **GT_RESET_REG**

Address	Bits	Default	Туре	Description
0x0000	0	0	RW	gt_reset_all. A write of 1 issues a RESET to the GT. This is a clear on write register
	31:1	0	NA	Reserved

Table 5-8: RESET_REG

Address	Bits	Default	Туре	Description
	9:0	0	RW	usr_rx_serdes_reset. Unused PCS bits are RESERVED. A write of 1 in a given bit location puts that PCS lane logic into reset
0x0004	29:10	0	NA	Reserved
	30	0	RW	usr_rx_reset. RX core reset. A write of 1 puts the RX path in reset
	31	0	RW	usr_tx_reset. TX core reset. A write of 1 puts the TX path in reset

Table 5-9: SWITCH_CORE_MODE_REG

Address	Bits	Default	Туре	Description
0x0008	0	0	RW	For Runtime Switch mode only. A write 1 enables the mode switch between CAUI10 and CAUI4. This is a clear on write register.
	31:1	0	NA	Reserved

Table 5-10: CONFIGURATION_TX_REG1

Address	Bits	Default	Туре	Description
	0	0	RW	ctl_tx_enable
	3:1	0	NA	Reserved
	4	0	RW	ctl_tx_send_rfi
0x000C	5	0	RW	ctl_tx_send_idle
	15:6	0	NA	Reserved
	16	0	RW	ctl_tx_test_pattern
	31:17	0	NA	Reserved

Table 5-11: **CONFIGURATION_RX_REG1**

Address	Bits	Default	Туре	Description
	0	0	RW	ctl_rx_enable
	6:1	0	NA	Reserved
0x0014	7	0	RW	ctl_rx_force_resync
	8	0	RW	ctl_rx_test_pattern
	31:9	0	NA	Reserved

Table 5-12: CORE_MODE_REG

Address	Bits	Default	Туре	Description
	1:0	2'b00	R	Core mode register:
				• 2'b00: CAUI10
0x001F				• 2'b01: CAUI4
				• 2'b10: Runtime Switch CAUI10
				• 2'b11: Runtime Switch CAUI4
	31:2	0	NA	Reserved

Table 5-13: CORE_VERSION_REG

Address	Bits	Default	Туре	Description
	7:0	minor	R	Current version of the core in the format "major.minor"
	7.0	IIIIIIIII		For example core version 1.7
0x0024	15:8	major	R	Bits [7:0] represents minor version that is 7 Bits [15:8] represents major version that is 1
	31:16	0	NA	Reserved

Table 5-14: CONFIGURATION_TX_BIP_OVERRIDE

Address	Bits	Default	Туре	Description
	7:0	0	RW	ctl_tx_lane0_vlm_bip7_override_value
0x002C	8	0	RW	ctl_tx_lane0_vlm_bip7_override
	31:9	0	NA	Reserved

Table 5-15: CONFIGURATION_TX_FLOW_CONTROL_CONTROL_REG1

Address	Bits	Default	Туре	Description
0x0030	8:0	0	RW	ctl_tx_pause_enable
0,0000	31:19	0	NA	Reserved

Table 5-16: CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG1

Address	Bits	Default	Type	Description
0x0034	15:0	0	RW	ctl_tx_pause_refresh_timer0
0,0054	31:16	0	RW	ctl_tx_pause_refresh_timer1

Table 5-17: CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG2

Address	Bits	Default	Туре	Description
0x0038	15:0	0	RW	ctl_tx_pause_refresh_timer2
0x0036	31:16	0	RW	ctl_tx_pause_refresh_timer3

Table 5-18: CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG3

Address	Bits	Default	Туре	Description
0x003C	15:0	0	RW	ctl_tx_pause_refresh_timer4
0x003C	31:16	0	RW	ctl_tx_pause_refresh_timer5

Table 5-19: CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG4

Address	Bits	Default	Туре	Description
0x0040	15:0	0	RW	ctl_tx_pause_refresh_timer6
00040	31:16	0	RW	ctl_tx_pause_refresh_timer7

Table 5-20: CONFIGURATION_TX_FLOW_CONTROL_REFRESH_REG5

Address	Bits	Default	Туре	Description
0x0044	15:0	0	RW	ctl_tx_pause_refresh_timer8
0,0044	31:16	0	NA	Reserved

Table 5-21: CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG1

Address	Bits	Default	Туре	Description
0x0048	15:0	0	RW	ctl_tx_pause_quanta0
0.0046	31:16	0	RW	ctl_tx_pause_quanta1

Table 5-22: CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG2

Address	Bits	Default	Type	Description
0x004C	15:0	0	RW	ctl_tx_pause_quanta2
0X004C	31:16	0	RW	ctl_tx_pause_quanta3

Table 5-23: CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG3

Address	Bits	Default	Туре	Description
0x0050	15:0	0	RW	ctl_tx_pause_quanta4
0.0000	31:16	0	RW	ctl_tx_pause_quanta5

Table 5-24: CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG4

Address	Bits	Default	Туре	Description
0x0054	15:0	0	RW	ctl_tx_pause_quanta6
000034	31:16	0	RW	ctl_tx_pause_quanta7

Table 5-25: CONFIGURATION_TX_FLOW_CONTROL_QUANTA_REG5

Address	Bits	Default	Туре	Description
0x0058	15:0	0	RW	ctl_tx_pause_quanta8
0x0036	31:16	0	NA	Reserved

Table 5-26: CONFIGURATION_RX_FLOW_CONTROL_CONTROL_REG1

Address	Bits	Default	Туре	Description
	8:0	0	RW	ctl_rx_pause_enable
	9	0	NA	Reserved
	10	0	RW	ctl_rx_enable_gcp
	11	0	RW	ctl_rx_enable_pcp
0x0084	12	0	RW	ctl_rx_enable_gpp
	13	0	RW	ctl_rx_enable_ppp
	14	0	NA	Reserved
	23:15	0	RW	ctl_rx_pause_ack
	31:24	0	NA	Reserved

Table 5-27: CONFIGURATION_RX_FLOW_CONTROL_CONTROL_REG2

Address	Bits	Default	Туре	Description
	0	0	RW	ctl_rx_check_mcast_gcp
	1	0	RW	ctl_rx_check_ucast_gcp
	2	0	RW	ctl_rx_check_sa_gcp
	3	0	RW	ctl_rx_check_etype_gcp
	4	0	RW	ctl_rx_check_opcode_gcp
	5	0	RW	ctl_rx_check_mcast_pcp
	6	0	RW	ctl_rx_check_ucast_pcp
	7	0	RW	ctl_rx_check_sa_pcp
	8	0	RW	ctl_rx_check_etype_pcp
	9	0	RW	ctl_rx_check_opcode_pcp
0x0088	10	0	RW	ctl_rx_check_mcast_gpp
	11	0	RW	ctl_rx_check_ucast_gpp
	12	0	RW	ctl_rx_check_sa_gpp
	13	0	RW	ctl_rx_check_etype_gpp
	14	0	RW	ctl_rx_check_opcode_gpp
	15	0	RW	ctl_rx_check_opcode_ppp
	16	0	RW	ctl_rx_check_mcast_ppp
	17	0	RW	ctl_rx_check_ucast_ppp
	18	0	RW	ctl_rx_check_sa_ppp
	19	0	RW	ctl_rx_check_etype_ppp
	31:20	0	NA	Reserved

Table 5-28: **GT_LOOPBACK_REG**

Address	Bits	Default	Туре	Description
0x0090	0	0	RW	ctl_gt_loopback 0 is for Normal operation. 1 is for Near End PMA loopback.
	31:1	0	NA	Reserved

Table 5-29: STAT_TX_STATUS_REG

Address	Bits	Default	Type	Description
0x0200	0	0	R/LH	stat_tx_local_fault
0x0200	31:1	0	NA	Reserved

Table 5-30: STAT_RX_STATUS_REG

Address	Bits	Default	Туре	Description
_	0	1	R/LL	stat_rx_status
	1	1	R/LL	stat_rx_aligned
	2	0	R/LH	stat_rx_misaligned
	3	0	R/LH	stat_rx_aligned_err
	4	0	R/LH	stat_rx_hi_ber
	5	0	R/LH	stat_rx_remote_fault
0x0204	6	0	R/LH	stat_rx_local_fault
0x0204	7	0	R/LH	stat_rx_internal_local_fault
	8	0	R/LH	stat_rx_received_local_fault
	11:9	0	R/LH	stat_rx_test_pattern_mismatch
	12	0	R/LH	stat_rx_bad_preamble
	13	0	R/LH	stat_rx_bad_sfd
	14	0	R/LH	stat_rx_got_signal_os
	31:15	0	NA	Reserved

Table 5-31: STAT_STATUS_REG1

Address	Bits	Default	Туре	Description
0x0208	3:0	0	NA	Reserved
	4	0	R/LH	stat_tx_ptp_fifo_read_error
	5	0	R/LH	stat_tx_ptp_fifo_write_error
	31:6	0	NA	Reserved

Table 5-32: STAT_RX_BLOCK_LOCK_REG

Address	Bits	Default	Type	Description
0x020C	19:0	1	R/LL	stat_rx_block_lock
0.0200	31:20	0	NA	Reserved

Table 5-33: STAT_RX_LANE_SYNC_REG

Address	Bits	Default	Type	Description
0x0210	19:0	1	R/LL	stat_rx_synced
0.0210	31:20	0	NA	Reserved

Table 5-34: STAT_RX_LANE_SYNC_ERR_REG

Address	Bits	Default	Type	Description
0x0214	19:0	0	R/LH	stat_rx_synced_err
0,0214	31:20	0	NA	Reserved

Table 5-35: STAT_RX_LANE_AM_ERR_REG

Address	Bits	Default	Type	Description
0x0218	19:0	0	R/LH	stat_rx_mf_err
0.0210	31:20	0	NA	Reserved

Table 5-36: STAT_RX_LANE_AM_LEN_ERR_REG

Address	Bits	Default	Туре	Description
0x021C	19:0	0	R/LH	stat_rx_mf_len_err
UXUZIC	31:20	0	NA	Reserved

Table 5-37: STAT_RX_LANE_AM_REPEAT_ERR_REG

Address	Bits	Default	Туре	Description
0x0220	19:0	0	R/LH	stat_rx_mf_repeat_err
0.0220	31:20	0	NA	Reserved

Table 5-38: STAT_RX_LANE_DEMUXED

Address	Bits	Default	Туре	Description
0x0224 19:0	19:0	0	R	stat_rx_vl_demuxed
0X0224	31:20	0	NA	Reserved

Table 5-39: STAT_RX_PCS_LANE_NUM_REG1

Address	Bits	Default	Туре	Description
	4:0	0	R	stat_rx_vl_number_0
	9:5	0	R	stat_rx_vl_number_1
	14:10	0	R	stat_rx_vl_number_2
0x0228	19:15	0	R	stat_rx_vl_number_3
	24:20	0	R	stat_rx_vl_number_4
	29:25	0	R	stat_rx_vl_number_5
	31:30	0	NA	Reserved

Table 5-40: STAT_RX_PCS_LANE_NUM_REG2

Address	Bits	Default	Туре	Description
	4:0	0	R	stat_rx_vl_number_6
	9:5	0	R	stat_rx_vl_number_7
	14:10	0	R	stat_rx_vl_number_8
0x022C	19:15	0	R	stat_rx_vl_number_9
	24:20	0	R	stat_rx_vl_number_10
	29:25	0	R	stat_rx_vl_number_11
	31:30	0	NA	Reserved

Table 5-41: STAT_RX_PCS_LANE_NUM_REG3

Address	Bits	Default	Туре	Description
	4:0	0	R	stat_rx_vl_number_12
	9:5	0	R	stat_rx_vl_number_13
	14:10	0	R	stat_rx_vl_number_14
0x0230	19:15	0	R	stat_rx_vl_number_15
	24:20	0	R	stat_rx_vl_number_16
	29:25	0	R	stat_rx_vl_number_17
	31:30	0	NA	Reserved

Table 5-42: STAT_RX_PCS_LANE_NUM_REG4

Address	Bits	Default	Туре	Description
	4:0	0	R	stat_rx_vl_number_18
0x0234	9:5	0	R	stat_rx_vl_number_19
	31:10	0	NA	Reserved

Table 5-43: STAT_RX_BIP_OVERRIDE_REG

Address	Bits	Default	Туре	Description
	7:0	0	R	stat_rx_lane0_vlm_bip7
0x0238	8	0	R	stat_rx_lane0_vlm_bip7_valid
	31:9	0	NA	Reserved

Table 5-44: TICK_REG

Address	Bits	Default	Туре	Description
0x02B0	0	0	WO/SC	tick_reg. Writing a 1 to the Tick bit will trigger a snapshot of all the Statistics counters into their readable registers. The bit self-clears, thus only a single write is required by the user
	31:1	0	NA	Reserved

Sample Statistics Counter

A sample statistics counter is illustrated in Table 5-45. The format for the counters is the same for all counter types.

After the 'Tick' is issued, the counters contain their updated value and can be read multiple times without destruction of this data.

Table 5-45:	STAT	RX	BIP	ERR	0[47:0]	l

Address	Bits	Default	Туре	Description
0x02C0	32	0	R	stat_rx_bip_err_0_lsb[31:0]
0x02C4	16	0	R	stat_rx_bip_err_0_msb[47:32]

IEEE 802.3bj RS-FEC Integration

If you want to include IEEE 802.3bj RS-FEC soft IP (for error correction) in between CMAC and GT, you must tick mark the **Include IEEE 802.3bj RS-FEC** check box in the General tab. This option is active for CAUI-4 mode of operation only.

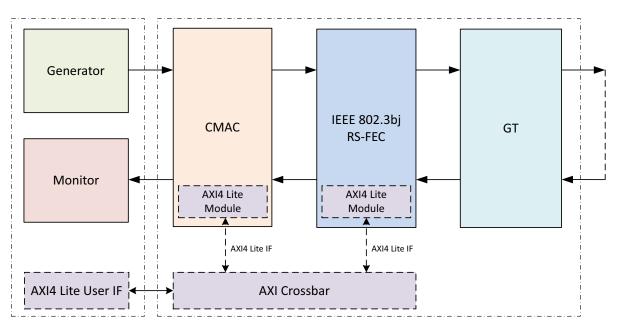


Figure 5-18: Figure 18.RS-FEC Integration between CMAC and GT

This feature enables the IEEE 802.3bj RS-FEC soft IP component instantiated in between the CMAC core and the GT. The TX serdes lines from the CMAC core will be input to the RS-FEC soft IP for forward error correction encoding. The output from the RS-FEC module then fed to GT. Similarly, the RX serdes lines from the GT will be fed to RS-FEC module for error correction decoding then to CMAC core. Refer to the 100G IEEE 802.3bj Reed-Solomon Forward Error Correction LogiCORE IP Product Guide (PG197) [Ref 13].

The AXI Crossbar soft IP along with the AXI4-Lite User Interface modules are instantiated when you select **Include AXI4-Lite Control and Statistics Interface** with RS-FEC enable.

The AXI Crossbar IP is configured with 1-master and 2-slave interfaces. Both CMAC and RS-FEC modules control and status ports registers can be accessed with AXI4-Lite interface through AXI Crossbar. Refer to the AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059) [Ref 14] for AXI Crossbar soft IP functionality.

The base address locations for CMAC control and status registers and RS-FEC control and status registers in the AXI Crossbar soft IP are configured as shown:

- 0x0000_0000 to 0x0000_0FFF: Address locations for CMAC
- 0x0000_1000 to 0x0000_1FFF: Address locations for RS-FEC

For IEEE 802.3bj RS-FEC IP, the address location for the input rs_fec_ctrl_in is 0x0000 1000.

Core Bring Up Sequence

Without AXI4-Lite Interface

1. Assert the below signals:

```
ctl_rx_enable = 1'b1
ctl_tx_send_rfi = 1'b1
```

2. Wait for RX_aligned then deassert / assert the below signals:

```
ctl_tx_send_rfi = 1'b0
ctl_tx_enable = 1'b1
```

3. If TX/RX flow control is enabled in the GUI, perform this step. Otherwise, skip to step 4.

Assert the below signals:

```
ctl_tx_pause_enable = 1'b1
ctl_rx_pause_enable = 1'b1
ctl_tx_pause_quanta8 = 1'b1
ctl_tx_pause_refresh_timer8 = 1'b1
```

4. Data transmission and reception can be performed.

With AXI4-Lite Interface

1. Write the below registers:

```
0x00014 : 32'h00000001 [CONFIGURATION_RX_REG1 for ctl_rx_enable]
0x0000C : 32'h00000010 [CONFIGURATION_TX_REG1 to ctl_tx_send_rfi]
```

2. Wait for RX_aligned then write the below registers:

0x0000C: 32'h00000001 [CONFIGURATION_TX_REG1 for ctl_tx_enable to 1'b1 and ctl_tx_send_rfi to 1'b0]

3. If TX/RX flow control is enabled in the GUI, perform this step. Otherwise, skip to step 4.

Write the below registers:

```
        0x0084 :
        32'h00003DFF [CONFIGURATION_RX_FLOW_CTL_CONTROL_REG1]

        0x0088 :
        32'h0001C631 [CONFIGURATION_RX_FLOW_CTL_CONTROL_REG2]

        0x0048 :
        32'hFFFFFFF [CONFIGURATION_TX_FLOW_CTL_QUANTA_REG1]

        0x0040 :
        32'hFFFFFFF [CONFIGURATION_TX_FLOW_CTL_QUANTA_REG2]

        0x0050 :
        32'hFFFFFFF [CONFIGURATION_TX_FLOW_CTL_QUANTA_REG3]

        0x0054 :
        32'hFFFFFFF [CONFIGURATION_TX_FLOW_CTL_QUANTA_REG4]

        0x0058 :
        32'h0000FFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG1]

        0x0034 :
        32'hFFFFFFFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG2]

        0x0030 :
        32'hFFFFFFFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG3]

        0x0040 :
        32'hFFFFFFFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG4]

        0x0040 :
        32'hFFFFFFFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG5]

        0x0030 :
        32'h00000fFFF [CONFIGURATION_TX_FLOW_CTL_REFRESH_REG5]
```

4. Data transmission and reception can be performed.

Use Case for Different Modes

This section describes the use case for different modes of operation of the 100G Ethernet IP core.

Simulation — Duplex/Simplex RX Mode

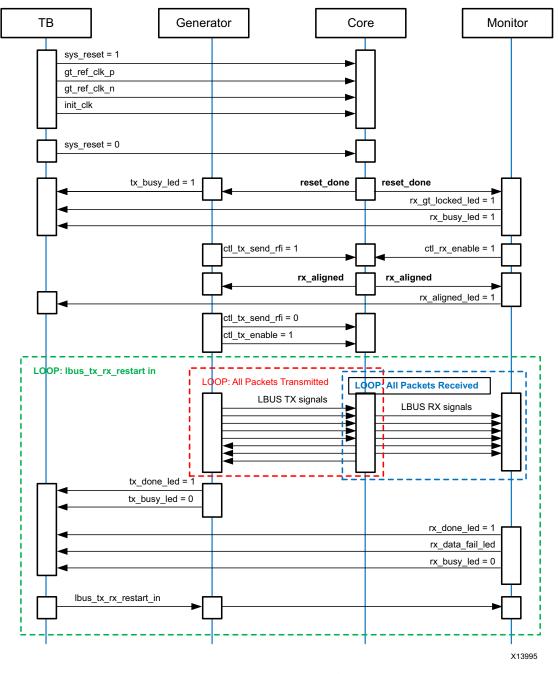


Figure 5-19: Simulation Use Case for Duplex/Simplex RX Configuration

Simulation — Simplex TX Mode

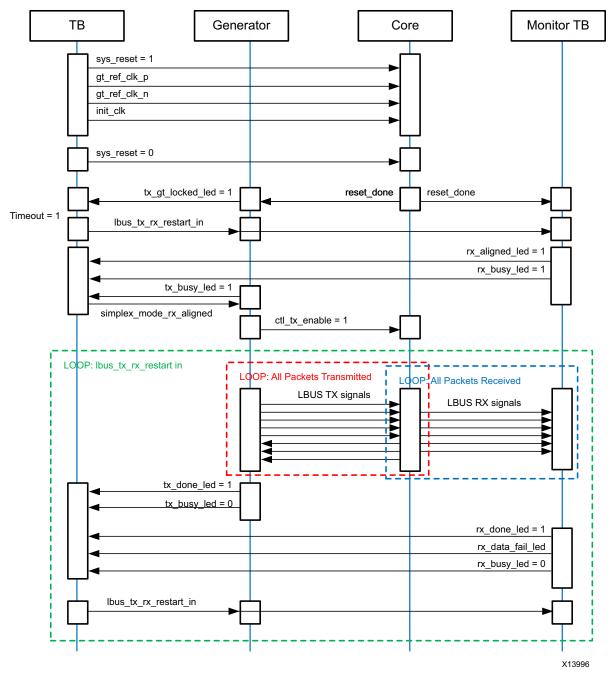


Figure 5-20: Simulation Use Case for Simplex TX Configuration

Simulation — Runtime Switchable

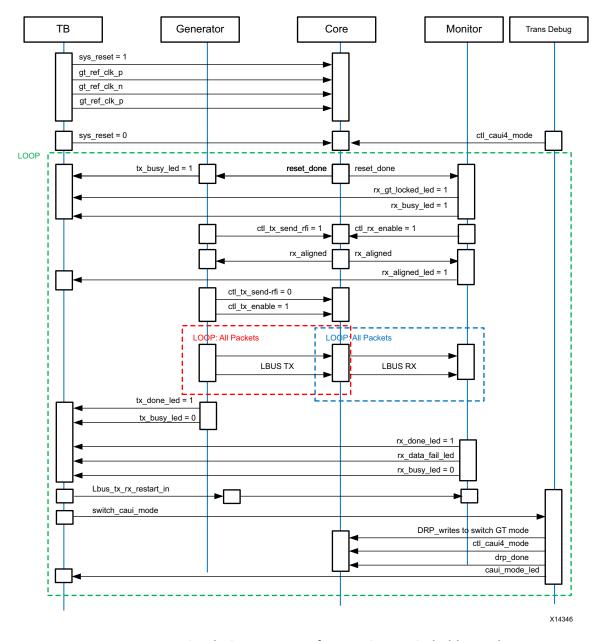


Figure 5-21: Simulation Use Case for Runtime Switchable Mode

Validation — Duplex/Simplex RX mode

Figure 5-22 shows the LED behavior and input switch condition for the validation of the 100G Ethernet IP core on the board for the Duplex/Simplex RX mode configuration.

Green color indicates the successful completion of the respective test.

Red color indicates the current process is busy or respective test failed.

Validation — Passing Scenario Duplex/Simplex RX Mode

rx_gt_locked_led	rx_aligned_led	tx_done_led	rx_done_led	וא_data_fail_led	tx_busy_led	rx_busy_led	sys_reset (Switch)	lbus_tx_restart_in (Switch)	Description
0	0	0	0	0	0	0	ON	Off	Board Bring Up
\bigcirc	0	0	0	0	0	0	Off	Off	On System Reset
	0	0	0	0			Off	Off	After GT Locked
		0	0	0			Off	Off	After Rx_aligned
			0	0	0		Off	Off	All packets Generated by packet generator
				0	O	0	Off	Off	All Packets received by the packet monitor without error
		0	0	0			Off	ON	User restarted the LBUS transaction

X14001

Figure 5-22: Board Validation for Duplex/Simplex RX Configuration - Passing Scenario

Validation — Failing Scenario Duplex/Simplex RX Mode

rx_gt_locked_led	rx_aligned_led	tx_done_led	rx_done_led	rx_data_fail_led	tx_busy_led	rx_busy_led	sys_reset (Switch)	lbus_tx_rx_restart_in (Switch)	Description
0	0	0	0	0	0	0	ON	Off	Board Bring Up
0	0	\bigcirc	0	0	0	0	Off	Off	On System Reset
	0	0	0	0			Off	Off	After GT Locked
		0	0	0			Off	Off	After Rx_aligned
			0	0	0		Off	Off	All packets generated by packet generator
					0	0	Off	Off	All packets received by the packet monitor without error
		0	0	0			Off	ON	User restarted the LBUS transaction

X14002

Figure 5-23: Board Validation for Duplex/Simplex RX Configuration - Failing Scenario

Validation — **Simplex TX Mode**

Figure 5-24 describes the LED behavior and input switch condition for the validation of the 100G Ethernet IP core onboard for Simplex TX mode configuration.

Validation — Passing Scenario Simplex TX Mode

					<u>-</u>	
tx_gt_locked_led	rx_aligned_led	tx_done_led	tx_busy_led	sys_reset (Switch)	lbus_tx_rx_restart_in (Switch)	Description
0	0	0	0	ON	Off	Board Bring Up
0	\bigcirc	0	0	Off	Off	On System Reset
	0	0		Off	Off	After GT Locked
		0		Off	ON	User must decide when generator has to start packet generation by making simplex_mode_rx_aligned=1
			0	Off	Off	All packets generated by packet generator
		O		Off	ON	User restarted the LBUS transaction

X14003

Figure 5-24: Board Validation for Simplex TX Configuration - Passing Scenario

Validation — Runtime Switchable Mode (CAUI-10 to CAUI-4. — Passing Scenario

The following table describes the LED behavior and input condition for the validation of the CMAC core on a board for **Runtime Switchable** mode.

rx_gt_locked_led	rx_aligned_led	tx_done_led	caui_mode_led	rx_done_led	rx_data_fail_led	tx_busy_led	rx_busy_led	sys_reset (Switch)	lbus_tx_rx_restart_in (Switch)	switch_caui_mode (Switch)	Description
0	0	0	0	0	0	0	0	ON	Off	Off	Board Bring Up
0	0	0	0	0	0	0	0	Off	Off	Off	On System Reset
	0	0	0	0	0			Off	Off	Off	After GT Locked (CAUI-10 mode)
		0	0	0	0			Off	Off	Off	After Rx_aligned (CAUI-10 mode)
			0	0	0	0		Off	Off	Off	All packets generated by packet generator for CAUI-10)
			0		0	0	0	Off	Off	Off	All packets received by the packet monitor without error for CAUI-10
		0	0	0	0			Off	ON	Off	User restarted the LBUS transaction
	0	0		0	0			Off	Off	1 Pulse	After GT Locked (CAUI-4 mode)
		0		0	0			Off	Off	Off	After Rx_aligned (CAUI-4 mode)
				0	0	0		Off	Off	Off	All packets generated by packet generator for CAUI-4)
					0	0	0	Off	Off	Off	All packets received by the packet monitor without error for CAUI-4
		0		0	0			Off	ON	Off	User restarted the LBUS transaction

X14004

Figure 5-25: Board Validation for Runtime Switchable Configuration - Passing Scenario

Simulating the Example Design

The example design provides a quick way to simulate and observe the behavior of the 100G Ethernet IP core example design projects generated using the Vivado Design Suite.

Supported Simulators

The currently supported simulators are:

- Vivado simulator (default).
- Mentor Graphics Questa Simulator (QuestaSim) ModelSim (integrated in the Vivado IDE).

- Cadence Incisive Enterprise Simulator (IES).
- Synopsys VCS and VCS MX.

The simulator uses the example design test bench and test cases provided along with the example design.

Running a Simulation

For any project (100G Ethernet IP core) generated out of context (OOC), the simulations can be run in the following ways:

- 1. In the Sources Window, right-click the example project file (.xci), and select **Open IP Example Design**. The example project is created.
- 2. In the Flow Navigator (left-hand pane) under Simulation, right-click **Run Simulation** and select **Run Behavioral Simulation**.

Note: The post-synthesis and post-implementation simulation options are not supported for the 100G Ethernet IP core.

After the Run Behavioral Simulation Option is running, you can observe the compilation and elaboration phase through the activity in the **Tcl Console**, and in the **Simulation** tab of the **Log** Window.

3. In **Tcl Console**, type the run all command and press **Enter**. This runs the complete simulation as per the test case provided in example design test bench.

After the simulation is complete, the result can be viewed in the **Tcl Console**.

Changing the Simulator

To change the simulator:

- 1. In the Flow Navigator, under Simulation, select **Simulation Settings**.
- 2. In the Project Settings for Simulation dialog box, change the Target Simulator to **QuestaSim/ModelSim**.
- 3. When prompted, click **Yes** to change and then run the simulator.

Simulation Speed Up

Simulation can take a long time to complete due to the time required to complete alignment. A `define SIM_SPEED_UP is available to improve simulation time by reducing the PCS lane Alignment Marker (AM) spacing in order to speed up the time the IP will take to achieve alignment. Setting `define SIM_SPEED_UP will change CTL_TX_VL_LENGTH_MINUS1 and CTL_RX_VL_LENGTH_MINUS1 from 16'h3FFF to 16'h03FF.

The SIM_SPEED_UP option can be used for simulation when in serial loopback or if the Alignment Marker spacing can be reduced at both endpoints. This option is compatible with the example design simulation which uses serial loopback.

Notes

- 1. Altering the value of CTL_TX_VL_LENGTH_MINUS1 and CTL_RX_VL_LENGTH_MINUS1 from the default value of 0x3FFF will violate the IEEE 802.3 specification.
- 2. Decreasing the AM spacing will result in less than 100G Ethernet bandwidth being available on the link.
- 3. This change can be made only in simulation. For a design to work in hardware, the default value of 0x3FFF must be used.
- 4. Full-rate simulation without the SIM_SPEED_UP option should still be run.

VCS

Use the vlogan option: +define+SIM_SPEED_UP

QuestaSim

Use the vlog option: +define+SIM_SPEED_UP

IES

Use the ncvlog option: +define+SIM_SPEED_UP

Vivado Simulator

Use the xvlog option: -d SIM_SPEED_UP

Synthesizing and Implementing the Example Design

To run synthesis and implementation on the example design in the Vivado Design Suite, do the following steps:

1. Go to the XCI file, right-click, and select **Open IP Example Design**.

A new Vivado tool window opens with the project name "example_project" within the project directory.

2. In the Flow Navigator, click **Run Synthesis** and **Run Implementation**.

TIP: Click **Run Implementation** first to run both synthesis and implementation.

Click **Generate Bitstream** to run synthesis, implementation, and then bitstream.

Auto-Negotiation and Link Training

Auto-Negotiation

Auto-negotiation (AN) with Link Training (LT) is an optional feature implemented in the FPGA fabric logic that can be selected at the time of configuration. A block diagram of the core with auto-negotiation and link training is illustrated in Figure A-1.

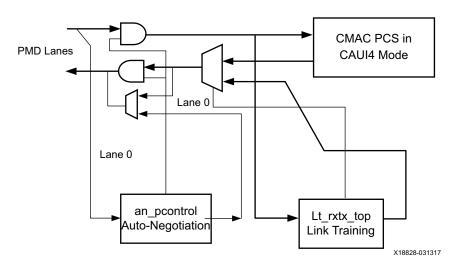


Figure A-1: Core with Auto-Negotiation and Link Training

The auto-negotiation function allows an Ethernet device to:

- advertise the modes of operation it possesses to another device at the remote end of a backplane Ethernet link, and
- detect corresponding operational modes the other device might be advertising.

The objective of this auto-negotiation function is to provide the means to exchange information between two devices and to automatically configure them to take maximum advantage of their abilities. This feature also supports a digital signal detect to ensure that the device is attached to a link partner rather than detecting a signal due to crosstalk. When auto-negotiation is complete, ability is reported according to the available modes of operation.

Link Training is performed after auto-negotiation if the Link Training function is supported by both ends of the link. Link Training is typically required due to frequency-dependent losses which can occur as digital signals traverse the backplane. The primary function of the Link Training block included with this core is to provide register information and a training sequence over the backplane link which is then analyzed by a receiving circuit (part of the transceiver). The other function of the Link Training block is to communicate training feedback from the receiver to the corresponding transmitter so that its equalizer circuit (part of the transceiver) can be adjusted as required. The decision-making algorithm is not part of this core.

When Auto-Negotiation and Link Training are complete, the data path is switched to mission mode (the PCS), as shown in Figure A-1.

Overview

Figure A-2 shows the position of the auto-negotiation function in the OSI reference model.

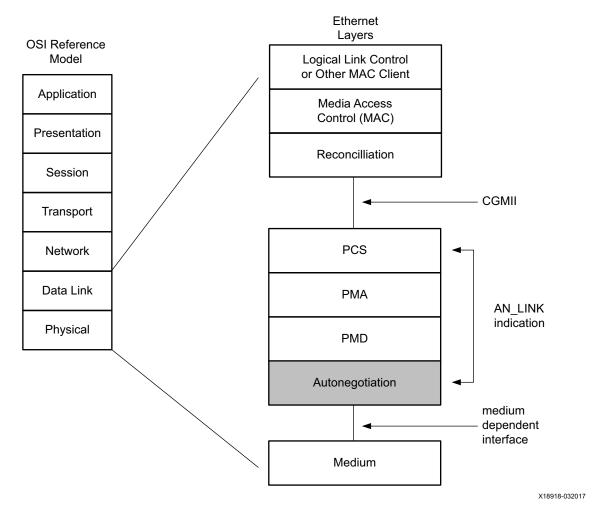


Figure A-2: Auto-Negotiation in OSI Model

The 100G Base-KR4 auto-negotiation logic core implements the requirements as specified in Clause 73, IEEE Std 802.3-2015. The functions of the Auto-Negotiation are listed in clause 73, specifically in "Figure 73-11, Arbitration state diagram" in section 73.10.4, State Diagrams.

During normal mission mode operation, with link control outputs set to 11 (binary), the bit operating frequency of the transceiver input and output is typically 25.78125 Gb/s. However, the Dual Manchester Encoding (DME) bit rate used on the lane during Auto-Negotiation is different to the mission mode operation. To accommodate this requirement, the auto-negotiation core uses over-sampling and over-driving to match the 156.25 Mb/s Auto-Negotiation speed (DME clock frequency 312.5 MHz) with the mission mode 25.78125 Gb/s physical lane speed.

Auto-Negotiation is only performed on one lane. Therefore, by convention, for multi-lane Ethernet protocols lane 0 is used for AN.

IMPORTANT: Some protocols allow lanes to be swapped; however, for AN to work, lane 0 must connect to lane 0 of the link partner.

Functional Description

autoneg_enable

When the ctl_autoneg_enable input signal is set to 1, auto negotiation begins automatically at power-up, or if the carrier signal is lost, or if the input ctl_restart_negotiation signal is cycled from a 0 to a 1. All of the Ability input signals as well as the two input signals pause and asm_dir are tied Low or High to indicate the capability of the hardware. The nonce_seed[7:0] input must be set to a unique non-zero value for every instance of the auto negotiator. This is important to guarantee that no dead-locks occur at power-up. If two link partners connected together attempt to auto-negotiate with their nonce_seed[7:0] inputs set to the same value, the auto-negotiation fails continuously. The ctl_an_pseudo_sel input is an arbitrary selection that is used to select the polynomial of the random bit generator used in bit position 49 of the DME pages used during auto-negotiation. Any selection on this input is valid and does not result in any adverse behavior.

Link Control

When auto negotiation begins, the various link control signals are activated, depending on the disposition of the corresponding Ability inputs for those links. Subsequently, the corresponding link status signals are monitored by the ANIPC hardware for an indication of the state of the various links that are connected. If particular links are unused, the corresponding link control outputs are unconnected, and the corresponding link-status inputs should be tied Low. During this time, AN sets up a communication link with the link partner and uses this link to negotiate the capabilities of the connection.

Autoneg Complete

When Auto-Negotiation is complete, the stat_an_autoneg_complete output signal is asserted. In addition, the ctl_an_fec_enable output signal is asserted if the Forward Error Correction hardware is to be used; the ctl_tx_pause_en output signal is asserted if the transmitter hardware is allowed to generate PAUSE control packets, the output signal ctl_rx_pause_en is asserted if the receiver hardware is allowed to detect PAUSE control packets, and the output link control of the selected link is set to its mission mode value (bin) 11.

The results of the auto negotiation do not directly cause the interface to change its behavior. External logic must determine how the ability information is to be used. For example, the appropriate logic level can be applied to ctl_tx_FEC_enable, ctl_tx_pause_enable, ctl_rx_FEC_enable, or ctl_rx_pause_enable.

Note: The stat_an_autoneg_complete signal is not asserted until rx_status is received from the PCS. That means that, where link training is included, the stat_an_autoneg_complete output signal is not asserted until after link training has completed.

Link Training

Overview

Link training (LT) is performed after auto-negotiation (AN) converges to a backplane or copper technology. Technology selection can also be the result of a manual entry or parallel detection. Link training can be required due to frequency-dependent losses, which can occur as digital signals traverse the backplane or a copper cable. The primary function of the LT IP core is to provide register information and a training sequence over the backplane link, which is then analyzed by a receiving circuit not part of the core. The other function of the core with LT is to communicate training feedback from the receiver to the corresponding transmitter so that its equalizer circuit (not part of the core) can be adjusted as required. The two circuits comprising the core are the receive Link Training block and the transmit Link Training block.

Functional Description

Transmit

The LT transmit block constructs a 4,384-bit frame, which contains a frame delimiter, control channel, and link training sequence. It is formatted as shown in Figure A-3.

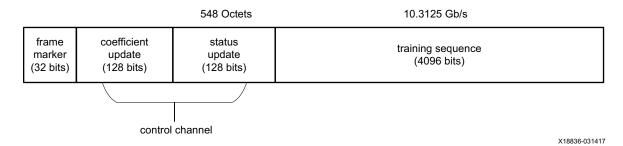


Figure A-3: Link Training Transmit

RECOMMENDED: Xilinx recommends that the control channel bits not be changed by the link training algorithm while the transmit state machine is transmitting them, otherwise, they might be received incorrectly, possibly resulting in a DME error. This time begins when tx_SOF is asserted and ends at least 288 bit times later, or approximately 30 ns.

Note: Although the coefficient and status contain 128 bit times at the line rate, the actual signaling rate for these two fields is reduced by a factor of 8. Therefore, the DME clock rate is one quarter of the line rate.

Frame Marker

The frame marker consists of 16 consecutive 1s followed by 16 consecutive 0s. This pattern is not repeated in the remainder of the frame.

Coefficient and Status

Because the DME signaling rate for these two fields is reduced by a factor of 8, each coefficient and status transmission contain 128 / 8 = 16 bits, each numbered from 15–0. Table A-1 and Table A-2 define these bits in the order in which they are transmitted starting with bit 15 and ending with bit 0.

Table A-1: Coefficient and Update Field Bit Definitions

Bits	Name	Description
15:14	Reserved	Transmitted as 0, ignored on reception.
13	Preset	1 = Preset coefficients 0 = Normal operation
12	Initialize	1 = Initialize coefficients 0 = Normal operation

Table A-1: Coefficient and Update Field Bit Definitions

Bits	Name			Description
11:6	Reserved	Trans	mitted	as 0, ignored on reception.
		<u>5</u>	<u>4</u>	
		1	1=	Reserved
5:4	Coefficient (+1) update	0	1=	Increment
		1	0=	Decrement
		0	0=	Hold
		<u>3</u>	<u>2</u>	
		1	1=	Reserved
3:2	Coefficient	0	1=	Increment
		1	0=	Decrement
		0	0=	Hold
		1	<u>0</u>	
		1	1=	Reserved
1:0	Coefficient (-1) update	0	1=	Increment
		1	0=	Decrement
		0	0=	Hold

Table A-2: Status Report Field Bit Definitions

Bits	Name	Description
15	Receiver ready	 1 = The local receiver has determined that training is complete and is prepared to receive data. 0 = The local receiver is requesting that training continue.
14:6	Reserved	Transmitted as 0, ignored on reception.
5:4	Coefficient (+1) update	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3:2	Coefficient (0) update	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1:0	Coefficient (-1) update	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The functions of each bit are defined in IEEE 802.3 Clause 72, "72.6.10.2 Training frame structure". Their purpose is to communicate the adjustments of the transmit equalizer during the process of link training. The corresponding signal names are defined in Port Descriptions.

Training Sequence

The training sequence consists of a Pseudo Random Bit Sequence (PRBS) of 4094 bits followed by two 0s, for a total of 4096 bits. The PRBS is transmitted at the line rate of 10.3125 Gb/s. The PRBS generator receives an 11-bit seed from an external source. Subsequent to the initial seed being loaded, the PRBS generator continues to run with no further intervention being required.

The PRBS generator itself is implemented with a circuit that corresponds to this polynomial:

$$G(x) = 1 + x^9 + x^{11}$$

Receive

The receive block implements the frame alignment state diagram illustrated in IEEE 802.3, Clause 72, Figure 72-4.

Frame Lock State Machine

The frame lock state machine searches for the frame marker, consisting of 16 consecutive 1s followed by 16 consecutive 0s. This functionality is fully specified in IEEE 802.3, Clause 72, Figure 72-4. When frame lock is achieved, the frame_lock signal is set to a value of TRUE.

Received Data

The receiver outputs the control channel with the bit definitions defined in Table A-1 and Table A-2.

If a DME error occurs during the reception of a particular DME frame, the control channel outputs are not updated but retain the value of the last received good DME frame. They are updated when the next good DME frame is received.

Port Descriptions

Auto-Negotiation Signals

Table A-3 lists the additional signals available when the auto-negotiation feature is present.

Table A-3: Auto-Negotiation Signals

Name	Direction	Clock Domain	Description
ctl_autoneg_enable	Input	init_clk	Enable signal for auto-negotiation.
ctl_autoneg_bypass	Input	init_clk	This input disables auto-negotiation and bypasses the auto-negotiation function. When this input is asserted, auto-negotiation is turned off, but the PCS is connected to the output to allow operation.
ctl_an_nonce_seed[7:0]	Input	init_clk	8-bit seed to initialize the nonce field polynomial generator.
ctl_an_pseudo_sel	Input	init_clk	Selects the polynomial generator for the bit 49 random bit generator. If this input is 1, then the polynomial is $x^7 + x^6 + 1$. When this input is Low, the polynomial is $x^7 + x^3 + 1$.
ctl_restart_negotiation	Input	init_clk	This input triggers a restart of the auto-negotiation, regardless of what state the circuit is currently in.
ctl_an_local_fault	Input	init_clk	This input signal sets the local_fault bit of the transmit link codeword.
S	ignals Used fo	r PAUSE Ab	ility Advertising
ctl_an_pause	Input	init_clk	This input sets the PAUSE bit, (C0), of the transmit link codeword.
ctl_an_asmdir	Input	init_clk	This input sets the ASMDIR bit, (C1), of the transmit link codeword.
ctl_an_loc_np	Input	init_clk	Local Next Page indicator. If this bit is 1, the ANIPC transfers the next page word at input loc_np_data to the remote link partner. If this bit is 0, the ANIPC does not initiate the next page protocol. If the link partner has next pages to send, and the loc_np bit is clear, the ANIPC transfers null message pages.
ctl_an_loc_np_ack	Input	init_clk	Link Partner Next Page Acknowledge. This is used to signal the ANIPC that the next page data from the remote link partner at output pin lp_np_data has been read by the local host. When this signal goes High, the ANIPC acknowledges reception of the next page codeword to the remote link partner and initiates transfer of the next codeword. During this time, the ANIPC removes the lp_np signal until the new next page information is available.

Table A-3: Auto-Negotiation Signals (Cont'd)

Name	Direction	Clock Domain	Description
	Abil	ity Signal Ir	puts
ctl_an_ability_1000base_kx	Input	init_clk	
ctl_an_ability_10gbase_kr	Input	init_clk	
ctl_an_ability_10gbase_kx4	Input	init_clk	
ctl_an_ability_25gbase_krcr	Input	init_clk	
ctl_an_ability_25gbase_krcr_s	Input	init_clk	
ctl_an_ability_25gbase_kr1	Input	init_clk	
ctl_an_ability_25gbase_cr1	Input	init_clk	These inputs identify the Ethernet protocol abilities that are advertised in the transmit link
ctl_an_ability_40gbase_cr4	Input	init_clk	codeword to the link partner. A value of 1
ctl_an_ability_40gbase_kr4	Input	init_clk	indicates that the interface advertises that it supports the protocol.
ctl_an_ability_50gbase_cr2	Input	init_clk	
ctl_an_ability_50gbase_kr2	Input	init_clk	
ctl_an_ability_100gbase_cr10	Input	init_clk	
ctl_an_ability_100gbase_cr4	Input	init_clk	
ctl_an_ability_100gbase_kp4	Input	init_clk	
ctl_an_ability_100gbase_kr4	Input	init_clk	
ctl_an_cl91_fec_request	Input	init_clk	This bit is used to request clause 91 FEC.
ctl_an_cl91_ability	Input	init_clk	This bit is used to indicate clause 91 FEC ability.
stat_an_link_cntl_10gbase_kx4[1:0]	Output	init_clk	
stat_an_link_cntl_10gbase_kr[1:0]	Output	init_clk	
stat_an_link_cntl_40gbase_kr4[1:0]	Output	init_clk	
stat_an_link_cntl_40gbase_cr4[1:0]	Output	init_clk	
stat_an_link_cntl_100gbase_cr10[1:0]	Output	init_clk	Link Control outputs from the auto-negotiation controller auto-negotiation controller. The valid
stat_an_link_cntl_100gbase_kp4[1:0]	Output	init_clk	settings are as follows:
stat_an_link_cntl_100gbase_kr4[1:0]	Output	init_clk	O0: DISABLE; PCS is disconnected; O1: SCAN, FOR CARRIER, RV is connected to
stat_an_link_cntl_100gbase_cr4[1:0]	Output	init_clk	 01: SCAN_FOR_CARRIER; RX is connected to PCS;
stat_an_link_cntl_25gbase_krcr_s[1:0]	Output	init_clk	• 11: ENABLE; PCS is connected for mission mode
stat_an_link_cntl_25gbase_krcr[1:0]	Output	init_clk	operation. • "10: not used.
stat_an_link_cntl_25gbase_kr1[1:0]	Output	init_clk	10.1101 0300.
stat_an_link_cntl_25gbase_cr1[1:0]	Output	init_clk	
stat_an_link_cntl_50gbase_kr2[1:0]	Output	init_clk	
stat_an_lnk_cntl_50gbase_cr2[1:0]	Output	init_clk	
stat_an_fec_enable	Output	init_clk	This output enables the use of clause 74 FEC on the link.

Table A-3: Auto-Negotiation Signals (Cont'd)

Name	Direction	Clock Domain	Description
stat_an_rs_fec_enable	Output	init_clk	This output enables the use of clause 91 FEC on the link.
stat_an_tx_pause_enable	Output	init_clk	This output enables station-to-station (global) pause packet generation in the transmit path to control data flow in the receive path.
stat_an_rx_pause_enable	Output	init_clk	This output enables station-to-station (global) pause packet interpretation in the receive path, in order to control data flow from the transmitter.
stat_an_autoneg_complete	Output	init_clk	This output indicates the auto-negotiation is complete and RX link status from the PCS has been received.
stat_an_parallel_detection_fault	Output	init_clk	This output indicates a parallel detection fault during auto-negotiation.
stat_an_start_tx_disable	Output	init_clk	When ctl_autoneg_enable is High and ctl_autoneg_bypass is Low, this signal cycles High for 1 clock cycle at the very start of the TX_DISABLE phase of auto-negotiation. That is, when auto-negotiation enters state TX_DISABLE, this output will cycle High for 1 clock period. It effectively signals the start of auto-negotiation.
stat_an_start_an_good_check	Output	init_clk	When ctl_autoneg_enable is High and ctl_autoneg_bypass is Low, this signal cycles High for 1 clock cycle at the very start of the AN_GOOD_CHECK phase of auto-negotiation. That is, when auto-negotiation enters the state AN_GOOD_CHECK, this output will cycle High for 1 clock period. It effectively signals the start of link training. However, if link training is not enabled, that is ctl_lt_training_enable is Low, then this output effectively signals the start of the mission-mode operation.

Table A-3: Auto-Negotiation Signals (Cont'd)

Name	Direction	Clock Domain	Description
stat_an_lp_ability_1000base_kx	Output	init_clk	
stat_an_lp_ability_100gbase_cr10	Output	init_clk	
stat_an_lp_ability_100gbase_cr4	Output	init_clk	
stat_an_lp_ability_100gbase_kp4	Output	init_clk	
stat_an_lp_ability_100gbase_kr4	Output	init_clk	
stat_an_lp_ability_10gbase_kr	Output	init_clk	
stat_an_lp_ability_10gbase_kx4	Output	init_clk	These signals indicate the advertised protocol from the link partner. They all become valid when
stat_an_lp_ability_25gbase_krcr	Output	init_clk	the output signal stat_an_lp_ability_valid is
stat_an_lp_ability_25gbase_krcr_s	Output	init_clk	asserted. A value of 1 indicates that the protocol is advertised as supported by the link partner.
stat_an_lp_ability_25gbase_kr1	Output	init_clk	o adversion as supported by the time parties.
stat_an_lp_ability_25gbase_cr1	Output	init_clk	
stat_an_lp_ability_40gbase_cr4	Output	init_clk	
stat_an_lp_ability_40gbase_kr4	Output	init_clk	
stat_an_lp_ability_50gbase_kr2	Output	init_clk	
stat_an_lp_ability_50gbase_cr2	Output	init_clk	
stat_an_lp_pause	Output	init_clk	This signal indicates the advertised value of the PAUSE bit, (C0), in the receive link codeword from the link partner. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_asm_dir	Output	init_clk	This signal indicates the advertised value of the ASMDIR bit, (C1), in the receive link codeword from the link partner. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_rf	Output	init_clk	This bit indicates link partner remote fault.
stat_an_lp_fec_10g_ability	Output	init_clk	This signal indicates the clause 74 FEC ability associated with 10Gb/s lane protocols that is being advertised by the link partner. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_fec_10g_request	Output	init_clk	This signal indicates that the link partner is requesting the clause 74 FEC used on the 10 Gb/s lane protocols. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_fec_25g_rs_request	Output	init_clk	This signal indicates that the link partner is requesting the clause 91 RS-FEC be used for the 25 Gb/s lane protocols. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.

Table A-3: Auto-Negotiation Signals (Cont'd)

Name	Direction	Clock Domain	Description
stat_an_lp_fec_25_baser_request	Output	init_clk	This signal indicates that the link partner is requesting that clause 74 FEC be used for the 25 Gb/s lane base-r protocols. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_autoneg_able	Output	init_clk	This signal indicates that the link partner can perform auto-negotiation. It becomes valid when the output signal stat_an_lp_ability_valid is asserted.
stat_an_lp_ability_valid	Output	init_clk	This signal indicates when all of the link partner advertisements become valid.
stat_an_loc_np_ack	Output	init_clk	This signal is used to indicate to the local host that the local next page data, presented at input pin loc_np_data, has been taken. This signal pulses High for 1 clock period when the auto-negotiation core logic samples the next page data on the input loc_np_data. When the local host detects this signal High, it must replace the 48-bit next page codeword at input pin loc_np_data with the next 48-bit codeword to be sent. If the local host has no more next pages to send, it must clear the loc_np input.
stat_an_lp_np	Output	init_clk	Link Partner Next Page. This signal is used to indicate that there is a valid 48-bit next page codeword from the remote link partner at output pin lp_np_data. This signal is driven Low when the lp_np_ack input signal is driven High, indicating that the local host has read the next page data. It remains Low until the next codeword becomes available on the lp_np_data output pin, the lp_np_output is driven High again.
stat_an_rxcdrhold	Output	init_clk	Indicates the RX CDR Hold signal.
stat_an_lp_ability_extended_fec[3:0]	Output	init_clk	This output indicates the extended FEC abilities.
stat_an_lp_extended_ability_valid	Output	init_clk	When this bit is a 1, it indicates that the detected extended abilities are valid.
an_loc_np_data[47:0]	Input	init_clk	Local Next Page codeword. This is the 48 bit codeword used if the loc_np input is set. In this data field, the bits NP, ACK, & T, bit positions 15, 14, 12, and 11, are not transferred as part of the next page codeword. These bits are generated in the auto negotiation core logic. However, the Message Protocol bit, MP, in bit position 13, is transferred.
an_lp_np_data[47:0]	Output	init_clk	Link Partner Next Page Data. This 48-bit word is driven by the auto negotiation core logic with the 48 bit next page codeword from the remote link partner.

Link Training Signals

Table A-4 describes the additional signals available when the link training feature is present.

Table A-4: Link Training Signals

Name	Direction	Clock Domain	Description
ctl_lt_training_enable	Input	tx_serdes_clk	Enables link training. When link training is disabled, all PCS lanes function in mission mode.
ctl_lt_restart_training	Input	tx_serdes_clk	This signal triggers a restart of link training regardless of the current state.
ctl_lt_rx_trained[3:0]	Input	tx_serdes_clk	This signal is asserted to indicate that the receiver finite impulse response (FIR) filter coefficients have all been set, and that the receiver portion of training is complete.
ctl_lt_preset_to_tx[3:0]	Input	tx_serdes_clk	This signal is used to set the value of the preset bit that is transmitted to the link partner in the control block of the training frame.
ctl_lt_initialize_to_tx[3:0]	Input	tx_serdes_clk	This signal is used to set the value of the initialize bit that is transmitted to the link partner in the control block of the training frame.
ctl_lt_pseudo_seed0[10:0] ctl_lt_pseudo_seed1[10:0] ctl_lt_pseudo_seed2[10:0] ctl_lt_pseudo_seed3[10:0]	Input	tx_serdes_clk	This 11-bit signal seeds the training pattern generator.
ctl_lt_k_p1_to_tx0[1:0] ctl_lt_k_p1_to_tx1[1:0] ctl_lt_k_p1_to_tx2[1:0] ctl_lt_k_p1_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k+1 coefficient update field that is transmitted to the link partner in the control block of the training frame.
ctl_lt_k0_to_tx0[1:0] ctl_lt_k0_to_tx1[1:0] ctl_lt_k0_to_tx2[1:0] ctl_lt_k0_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k0 coefficient update field that is transmitted to the link partner in the control block of the training frame.
ctl_lt_k_m1_to_tx0[1:0] ctl_lt_k_m1_to_tx1[1:0] ctl_lt_k_m1_to_tx2[1:0] ctl_lt_k_m1_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k-1 coefficient update field that is transmitted to the link partner in the control block of the training frame.
ctl_lt_stat_p1_to_tx0[1:0] ctl_lt_stat_p1_to_tx1[1:0] ctl_lt_stat_p1_to_tx2[1:0] ctl_lt_stat_p1_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k+1 coefficient update status that is transmitted to the link partner in the status block of the training frame.
ctl_lt_stat0_to_tx0[1:0] ctl_lt_stat0_to_tx1[1:0] ctl_lt_stat0_to_tx2[1:0] ctl_lt_stat0_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k0 coefficient update status that is transmitted to the link partner in the status block of the training frame.

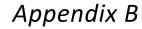

Table A-4: Link Training Signals (Cont'd)

Table 71 7. Link Haming 51g	Idble A-4: Link Training Signals (Cont'd)						
Name	Direction	Clock Domain	Description				
ctl_lt_stat_m1_to_tx0[1:0] ctl_lt_stat_m1_to_tx1[1:0] ctl_lt_stat_m1_to_tx2[1:0] ctl_lt_stat_m1_to_tx3[1:0]	Input	tx_serdes_clk	This 2-bit field is used to set the value of the k-1 coefficient update status that is transmitted to the link partner in the status block of the training frame.				
stat_lt_signal_detect[3:0]	Output	rx_serdes_clk	This signal indicates when the respective link training state machine has entered the SEND_DATA state, in which normal PCS operation can resume.				
stat_lt_training[3:0]	Output	rx_serdes_clk	This signal indicates when the respective link training state machine is performing link training.				
stat_lt_training_fail[3:0]	Output	rx_serdes_clk	This signal is asserted during link training if the corresponding link training state machine detects a time-out during the training period.				
stat_lt_rx_sof[3:0]	Output	rx_serdes_clk	This output is High for 1 RX SerDes clock cycle to indicate the start of the link training frame.				
stat_lt_frame_lock[3:0]	Output	rx_serdes_clk	When link training has begun, these signals are asserted, for each physical medium dependent (PMD) lane, when the corresponding link training receiver is able to establish a frame synchronization with the link partner.				
stat_lt_preset_from_rx[3:0]	Output	rx_serdes_clk	This signal reflects the value of the preset control bit received in the control block from the link partner.				
stat_lt_initialize_from_rx[3:0]	Output	rx_serdes_clk	This signal reflects the value of the initialize control bit received in the control block from the link partner.				
stat_lt_k_p1_from_rx0[1:0] stat_lt_k_p1_from_rx1[1:0] stat_lt_k_p1_from_rx2[1:0] stat_lt_k_p1_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit field indicates the update control bits for the k+1 coefficient, as received from the link partner in the control block.				
stat_lt_k0_from_rx0[1:0] stat_lt_k0_from_rx1[1:0] stat_lt_k0_from_rx2[1:0] stat_lt_k0_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit field indicates the update control bits for the k0 coefficient, as received from the link partner in the control block.				
stat_lt_k_m1_from_rx0[1:0] stat_lt_k_m1_from_rx1[1:0] stat_lt_k_m1_from_rx2[1:0] stat_lt_k_m1_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit field indicates the update control bits for the k-1 coefficient, as received from the link partner in the control block.				
stat_lt_stat_p1_from_rx0[1:0] stat_lt_stat_p1_from_rx1[1:0] stat_lt_stat_p1_from_rx2[1:0] stat_lt_stat_p1_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit field indicates the update status bits for the k+1 coefficient, as received from the link partner in the status block.				

Table A-4: Link Training Signals (Cont'd)

Name	Direction	Clock Domain	Description
stat_lt_stat0_from_rx0[1:0] stat_lt_stat0_from_rx1[1:0] stat_lt_stat0_from_rx2[1:0] stat_lt_stat0_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit fields indicates the update status bits for the k0 coefficient, as received from the link partner in the status block.
stat_lt_stat_m1_from_rx0[1:0] stat_lt_stat_m1_from_rx1[1:0] stat_lt_stat_m1_from_rx2[1:0] stat_lt_stat_m1_from_rx3[1:0]	Output	rx_serdes_clk	This 2-bit field indicates the update status bits for the k-1 coefficient, as received from the link partner in the status block.
lt_tx_sof[3:0]	Output	tx_serdes_clk	This is a link training signal that is asserted for one tx_serdes_clk period at the start of each training frame. It is provided for applications that need to count training frames or synchronize events to the output of the training frames.

Upgrading

This appendix is not applicable to this release of the core, because there are no port or parameter changes.

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

Finding Help on Xilinx.com

To help in the design and debug process when using the 100G Ethernet IP core, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the 100G Ethernet MAC core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the <u>Downloads page</u>. For more information about this tool and the features available, open the online help after installation.

Solution Centers

See the <u>Xilinx Solution Centers</u> for support on devices, design tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

The Solution Center specific to the 100G Ethernet MAC core is Xilinx Ethernet IP Solution Center.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as

- Product name
- Tool message(s)
- Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the 100G Ethernet MAC core

AR: 58696

Technical Support

Xilinx provides technical support at the Xilinx support web page for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allows you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado Integrated Design Environment (IDE) is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 15].

Simulation Debug

The 100G Ethernet IP core example design includes a sample simulation test bench. This consists of a loopback from the TX side of the user interface, through the TX circuit, looping back to the RX circuit, and checking the received packets at the RX side of the user interface.

This section contains details about items that should be checked if the simulation does not run properly from the scripts.

Slow Simulation

Simulations can appear to run slowly under some circumstances. If a simulation is unacceptably slow, the following suggestions can improve the run-time performance.

- Use a faster computer with more memory.
- Make use of a Platform LSF (Load Sharing Facility), if available.
- Bypass the Xilinx transceiver (this might require creating your own test bench).
- Send fewer packets. This can be accomplished by modifying the appropriate parameter in the provided sample test bench.
- Specify a shorter time between alignment markers. This should result in a shorter lane alignment phase at the expense of more overhead. However, when the 100G Ethernet IP core is implemented in hardware, the distance between alignment markers should follow the specification recommendations (after every 16,383 words). For more information, see Simulation Speed Up in Chapter 5.

Simulation Fails Before Completion

If the sample simulation fails or hangs before successfully completing, then it is possible that a timeout has occurred. Ensure that the simulator timeouts are long enough to accommodate the waiting periods in the simulation, for example during the lane alignment phase.

Simulation Completes But Fails

If the sample simulation completes with a failure, contact <u>Xilinx technical support</u>. The test will normally complete successfully. Consult the sample simulation log file for the expected behavior.

Hardware Debug

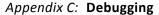
Hardware issues range from link bring-up to problems seen after hours of testing. This section provides debug steps for common issues.

General Checks

Ensure that all the timing constraints for the core are properly incorporated from the example design and that all constraints are met during implementation.

- Does it work in post-place and route timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are active and clean.
- If using mixed-mode clock managers (MMCMs) in the design, ensure that all MMCMs have obtained lock by monitoring the LOCKED port.

Ethernet Specific Checks


Many issues can occur during the first hardware test. This section details the debugging process. It is assumed that the 100G Ethernet IP core has already passed all simulation testing which is being implemented in hardware. This is a pre-requisite for any kind of hardware debug.

The following sequence helps to isolate ethernet-specific problems:

- Clean up Signal Integrity.
- 2. Ensure that each SerDes achieves clock data recovery (CDR) lock.
- 3. Check that each lane has achieved word alignment.
- 4. Check that lane alignment has been achieved.
- 5. Proceed to Interface Debug and Protocol Debug.

Signal Integrity

If you are bringing up a board for the first time and the 100G Ethernet IP core does not seem to be achieving lane alignment, the most likely problem is related to signal integrity. Signal integrity issues must be addressed before any other debugging can take place.

Even if lane alignment is achieved, periodic BIP8 errors create signal integrity issues. Check the BIP8 signals to assist with debugging.

IMPORTANT: It assumed that the PCB itself has been designed and manufactured in accordance with the required trace impedances and trace lengths, including the requirements for skew set out in the IEEE 802.3 specification.)

Signal integrity should be debugged independently from the 100G Ethernet IP core. The following checks should be made:

- Transceiver Settings
- Checking For Noise
- · Bit Error Rate Testing

If assistance is required for transceiver and signal integrity debugging, contact Xilinx technical support.

Lane Swapping

In Ethernet, physical lanes can be swapped and the protocol will align lanes correctly. Therefore lane swapping should not cause any problems.

N/P Swapping

If the positive and negative signals of a differential pair are swapped, data will not be correctly received on that lane. Verify that each link has the correct polarity of each differential pair.

Clocking and Resets

See Clocking and Resets in Chapter 3 for these requirements.

Ensure that the clock frequencies for both the 100G Ethernet IP core as well as the Xilinx transceiver reference clock match the configuration requested when the IP core was ordered. The core clock has a minimum frequency associated with it. The maximum core clock frequency is determined by timing constraints. The minimum core clock frequency is derived from the required Ethernet bandwidth plus the margin reserved for clock tolerance, wander and jitter.

The first thing to verify during debugging is to ensure that resets remain asserted until the clock is stable. It must be frequency-stable as well as free from glitches before the 100G Ethernet IP core is taken out of reset. This applies to both the SerDes clock as well as the IP core clock.

If any subsequent instability is detected in a clock, the 100G Ethernet IP core must be reset. One example of such instability is a loss of CDR lock. The user logic should determine all external conditions that would require a reset (for example, clock glitches, loss of CDR lock, or power supply glitches).

The GT requires a GTRXRESET after the serial data becomes valid to insure correct CDR lock to the data. This is required after a cable pull and re-plug, or after powering on or resetting the link partner. At the core level to avoid interruption on the TX side of the link, the reset can be triggered using gtwiz_reset_rx_datapath. If available, signal detect or inversion of loss of signal from the optics can be used to trigger the reset. If signal detect or loss of signal is not available, timeout logic can be added to monitor if alignment has not completed and to issue the gtwiz_reset_rx_datapath reset.

Configuration changes cannot be made unless the IP core is reset. An example of a configuration change would be setting a different maximum packet length. Check the description for the particular signal on the port list to determine if this requirement applies to the parameter that is being changed (Table 2-2).

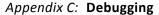
Interface Debug

The 100G Ethernet IP core user interface is the segmented LBUS (Local bus). This section details debugging information for the TX and RX interfaces.

TX Debug

TX debugging is assisted using several diagnostic signals. See Table 2-2 for more details.

Data must be written to the TX LBUS so that there are no overflow or underflow conditions.


The LBUS bandwidth must always be greater than the Ethernet bandwidth to guarantee that data can be sent without interruption.

When writing data to the LBUS, the tx_rdyout signal must always be observed. This signal indicates whether the fill level of the TX buffer is within an acceptable range or not. If this signal is ever asserted, you must stop writing to the TX LBUS until the signal is deasserted. Because the TX LBUS has greater bandwidth than the TX Ethernet interface, it is not unusual to see this signal being frequently asserted and this is not a cause for concern. You must ensure that TX writes are stopped when tx_rdyout is asserted.

The level at which tx_rdyout becomes asserted is set by a pre-determined threshold.

IMPORTANT: If tx_rdyout is ignored, the signal tx_ovfout might be asserted, indicating a buffer overflow. This should be prevented. Xilinx recommends that the core be reset if tx_ovfout is asserted.

Do not attempt to continue debugging after tx_ovfout has been asserted until the cause of the overflow has been addressed.

When a packet data transaction has begun in the TX direction, it must continue until completion or there might be a buffer underflow as indicated by the signal stat_tx_underflow_err. This must not be allowed to occur. Data must be written on the TX LBUS without interruption. Ethernet packets must be present on the line from start to end with no gaps or idles. If stat_tx_underflow_err is asserted, debugging must stop until the condition which caused the underflow has been addressed.

RX Debug

See the port list in Table 2-2 for a complete description of the diagnostic signals that are available to debug the RX.

If the Ethernet packets are being transmitted properly according to the 802.3 protocol, there should not be RX errors. However, the signal integrity of the received signals must be verified first.

The stat_rx_bip_err signals provide a per-lane indicator of signal quality. The stat_rx_hi_ber signal is asserted when the bit error rate is too high, according to the 802.3 protocol. The threshold is BER = 10-4.

To aid in debug, a local loopback can be performed at the transceiver level. This connects the TX SerDes to the RX SerDes and bypasses potential signal integrity problems. The received data can be checked against the transmitted packets to verify that the logic is operating properly.

Protocol Debug

To achieve error-free data transfers with the 100G Ethernet IP core, the 802.3 specification should be followed. Note that signal integrity should always be ensured before proceeding to the protocol debug.

Alignment Marker Spacing

According to the 802.3 specification, the alignment marker spacing should be set to 16,383 for both the TX and RX. Check that both ends of the link are programmed to this value.

Diagnostic Signals

There are many error indicators available to check for protocol violations. Carefully read the description of each one to see if it is useful for a particular debugging issue. See Table 2-2 for more details.

The following is a suggested debug sequence.

- 1. Ensure that Word sync has been achieved.
- 2. Ensure that Lane sync has been achieved (this uses the lane marker alignment words which occur after every 16,383 words).
- 3. Verify that the BIP8 indicators are clean.
- 4. Make sure there are no descrambler state errors.
- 5. Eliminate CRC32 errors, if any.
- 6. Make sure the LBUS protocol is being followed correctly.
- 7. Ensure that there are no overflow or underflow conditions when packets are sent.

Statistics Counters

When error-free communication has been achieved, the statistics indicators can be monitored to ensure that traffic characteristics meet expectations. Some signals are strobes only, which means that the counters are not part of the core. This is done so that the counter size can be customized. The counters are optional.

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

References

These documents provide supplemental material useful with this product guide:

- 1. IEEE 1588-2008 (standards.ieee.org/findstds/standard/1588-2008.html)
- 2. IEEE std 802.3-2012 (standards.ieee.org/findstds/standard/802.3-2012.html)
- 3. Virtex UltraScale Architecture Data Sheet: DC and AC Switching Characteristics (DS893)
- 4. UltraScale FPGAs Transceiver Wizards (PG182)
- 5. UltraScale Architecture Clocking Resource User Guide (UG572)
- 6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
- 7. Vivado Design Suite User Guide: Designing with IP (UG896)
- 8. Vivado Design Suite User Guide: Getting Started (UG910)
- 9. Vivado Design Suite User Guide: Logic Simulation (<u>UG900</u>)
- 10. Vivado Design Suite User Guide: Using Constraints (UG903)
- 11. UltraScale FPGAs GTH Transceivers User Guide (UG576)
- 12. UltraScale FPGAs GTY Transceivers User Guide (UG578)
- 13. 100G IEEE 802.3bj Reed-Solomon Forward Error Correction (PG197) Access in lounge
- 14. AXI Interconnect v2.1 LogiCORE IP Product Guide (PG059)
- 15. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 16. ISE to Vivado Design Suite Migration Guide (UG911)
- 17. Vivado Design Suite User Guide: Implementation (UG904)

Revision History

Date	Version	Revision
04/05/2017	2.1	Added a new appendix for the auto-negotiation and link training features.
11/30/2016	2.0	Chapter 2: Product Specification
		Updated the TX_RDYOUT port description.
		 Updated bus values for STAT_RX_BAD_FCS, STAT_RX_STOMPED_FCS, STAT_RX_UNDERSIZE, STAT_RX_FRAGMENT, and STAT_RX_BAD_CODE.
		Chapter 5: Example Design
		Minor editorial updates.
		Changed the axi_gt_loopback port name to ctl_gt_loopback.
		Updated the drp_addr port description.
		• Updated default values for bit 0 and bit 1 in the STAT_RX_STATUS_REG table.
		 Updated default values for bit 19:0 and bit 31:20 in the STAT_RX_BLOCK_LOCK_REG table.
		 Updated default values for bit 19:0 and bit 31:20 in the STAT_RX_LANE_SYNC_REG table.
10/05/2016	2.0	Facts Table
		Added early access Linux software driver support.
		Chapter 2: Product Specification
		Updated the Clock Domain for CTL_RX_SYSTEMTIMERIN[80-1:0].
		 Updated the Default Value for CTL_RX_OPCODE_PPP[15:0] and CTL_TX_OPCODE_PPP[15:0].
		Chapter 3: Designing with the Core
		Added further details about Synchronous Mode and Asynchronous Mode in the Resets section.
		Chapter 4: Design Flow Steps
		Changed GT Selections and Configuration tab to CMAC / GT Selections and Configuration tab throughout.
		Chapter 5: Example Design
		Added new Example Design Hierarchy (GT Subcore in Example Design) section, and diagram.
		 Added the tx_clk, gtwiz_userdata_tx_in, gtwiz_userdata_rx_out, txdata_in, txctrl0_in, txctrl1_in, rxdata_out, rxctrl0_out, rxctrl1_out, gt_txinhibit, axi_gt_reset_all, and axi_gt_loopback signals.
		Updated the Configuration Register Map table.
		Added the GT_LOOPBACK_REF table.
		Added Simulation Speed Up section.
		Appendix B: Debugging
		 Added GTRXRESET requirement information to the Clocking and Resets section under Hardware Debug.

Date	Version	Revision
06/08/2016	1.10	Chapter 3: Designing with the Core
		Updated the RX PCS lane de-multiplexing details in Figure 3-5.
		Updated the corrected timestamp calculation and explanation in Receive Timestamp Function.
		Chapter 4: Design Flow Steps
		Updated all the tab figures.
		• Updated the last parameter label in the GT Selections and Configuration tab to Enable Additional GT Control/Status and DPR Ports. All references also updated throughout the guide.
		Chapter 5: Example Design
		Removed cmac_0_common_wrapper module.
		Added the cmac_0_shared_logic_wrapper module.
		Updated the description for init_clk in Table 5-2.
04/06/2016	1.9	Changed Runtime Selectable mode to Runtime Switchable mode.
		Added the new parameters: GT DRP/Init Clock, RX Insertion Loss at Nyquist (dB), RX Equalization Mode, PLL Type
		Removed the Channel Topology parameter.
		Added s_axi_pm_tick to the User I/O Port List in the Example Design chapter.
		 Added gt_rxusrclk2 to the CORE XCI Top Level Port List in Example Design chapter.
11/18/2015	1.8	Added licensing and ordering information for the soft IEEE 802.3 RS-FEC.

Date	Version	Revision
09/30/2015	1.7	Chapter 2, Product Specification
		Added the Domain column to all of the tables in the Port Descriptions section
		Chapter 3: Designing with the Core
		• Updated Figure 3-1 through Figure 3-4 and the descriptions of these figures.
		Updated the description of a pause packet in the TX Pause Generation section
		Chapter 4: Design Flow Steps
		Updated all the tab figures and the tables describing these tabs.
		Removed the text in the User Parameters section.
		Chapter 5: Example Design
		• Updated Figure 5-1 and added descriptions of the new blocks, cmac_0_rs_fec and cmac_0_axi4_lite_user_if.
		Added new I/O ports to Table 5-1. Updated other ports.
		Added the new Core XCI ports table to Chapter 5
		Updates throughout based on the new and changed fields in Vivado IDE.
		Added a note about CAUI-4 mode to the AXI4-Lite Interface Implementation
		• Added new Figure 5-10, GT Ref Clock Connectivity when Channels Operating above 16.375 Gb/s.
		• Updated Figure s 5-1, 5-7, 5-8, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16, and 5-17.
		• Updated Tables 5-1, 5-2, 5-5 and all of the tables in the Register Description. section (Table 5-7 through Table 5-43).
		Added the new IEEE 802.3bj RS-FEC Integration section.
		Appendix A: Added Changes from v1.6 to v1.7 section.
06/24/2015	1.6	Chapter 3: Designing with the Core
		Updated Figure 3-1 through Figure 3-4.
		Chapter 4: Design Flow Steps
		• Updated screen captures: Figures 4-1 through 4-3.
		Chapter 5: Example Design
		• Updated Figure 5-1, Figure 5-7, Figure 5-11, Figure 5-17, Figure 5-18, Figure 5-19, Figure 5-20, Figure 5-21, Figure 5-22, Figure 5-23
		Updated switch_caui_mode description in Table 5-1.
		Replaced tx_fail_led with caui_mode_led in Table 5-1.
		 Updated descriptions for STATE_GT_LOCKED, STATE_LBUS_TX_DONE, STATE_WAIT_FOR_RESTART, STATE_LBUS_RX_DONE, STATE_PKT_TRANSFER_INIT.
		Removed STATE_SWITCH_CMAC_MODE
		Changed Figure 5-23 title to "Board Validation for Runtime Selectable configuration - Passing Scenario."

Date	Version	Revision
04/01/2015	1.5	Chapter 4: Design Flow Steps
		• Updated Figures 4-1, 4-2, and 4-3.
		Updated Table 4-3: GT Selections and Configuration
		Added Enable AXI4-Lite Interface parameter to Table 4-1:General Tab
		Chapter 5: Example Design
		Updated Ibus_tx_rx_restart_in description in Table 5-1.
		 Added two new ports to Table 5-1: simplex_mode_rx_aligned and switch_caui_mode.
		 Added cmac_0_axi4_lite_if_wrapper, cmac_0_axi4_lite_user_if, STATE_PTP_PKT_INIT, STATE_PTP_PKT_READ, STATE_TX_PTP_PKT_TRANSFER, STATE_RX_PTP_ENABLE, and STATE_RX_PTP_DONE
		Updated all of the figures.
		Added Simplex TX Mode Simulation, Simplex RX Mode Simulation sections.
		Added extensive Notes.
		Added new section, AXI4-Lite Interface.
01/22/2015	1.4	Updated the Vivado® IDE screen captures.
		Updated the clocking and reset diagram.
		Corrected the maximum packet length.
10/01/2014	1.3	Updated information on the segmented LBUS in Chapter 3, "Designing with the Core."
		Removed Appendix C, Segmented LBUS Protocol.
06/04/2014	1.2	Updated core to v1.2.
		Added example design clocking information.
04/02/2014	1.1	Added DRP blocks to Figure 2-1.
		Added transceiver selection rules.
		Updated General table
		Added resources and performance characteristics.
		• Updated screen displays in Chapter 4, Figure 5-1, and Figure 5-5.
		Provided description of other optional modules instantiated in the example design.
		Updated Control/Pause Packet Processing table.
		Updated GT Selections and Configurations table.
		Added new constraints information.
		Added DRP information.
		Added Shared Logic Implementation and Runtime Selectable sections.
12/18/2013	1.0	Initial Xilinx release.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2013–2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.