
AXI Protocol Checker
v1.1

LogiCORE IP Product Guide

Vivado Design Suite

PG101 June 7, 2017

AXI Protocol Checker v1.1 www.xilinx.com 2
PG101 June 7, 2017

Table of Contents

IP Facts

Chapter 1: Overview

Applications . 6

Licensing and Ordering Information . 6

Chapter 2: Product Specification

Standards . 7

Performance. 7

Port Descriptions . 8

Checks and Descriptions . 15

Register Space . 25

Chapter 3: Designing with the Core

General Design Guidelines . 26

Clocking. 28

Resets . 28

Chapter 4: Design Flow Steps

Customizing and Generating the Core . 30

Constraining the Core . 37

Simulation . 37

Synthesis and Implementation . 38

Appendix A: Debugging

Finding Help on Xilinx.com . 39

General Checks. 40

Debug Tools . 40

Clocks and Resets. 41

Core Size and Optimization . 41

Flags . 41

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=2

AXI Protocol Checker v1.1 www.xilinx.com 3
PG101 June 7, 2017

Appendix B: Migrating and Upgrading

Migrating to the Vivado Design Suite. 43

Upgrading in the Vivado Design Suite . 43

Appendix C: Additional Resources and Legal Notices

Xilinx Resources . 44

References . 44

Revision History . 45

Please Read: Important Legal Notices . 45

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=3

AXI Protocol Checker v1.1 www.xilinx.com 4
PG101 June 7, 2017 Product Specification

Introduction

The AXI Protocol Checker core monitors AXI
interfaces. When attached to an interface, it
actively checks for protocol violations and
provides an indication of which violation
occurred.

The checks are synthesizable versions of the
System Verilog protocol assertions provided by
ARM in the AMBA®4, AXI4™, AXI4-Lite™, and
AXI4-Stream™ Protocol Assertions User Guide
[Ref 2].

Features

• Supports checking for AXI3, AXI4 and
AXI4-Lite protocols

• Interface data widths:

° AXI4 and AXI3: 32, 64, 128, 256, 512 or
1024 bits

° AXI4-Lite: 32 or 64 bits

• Address width: Up to 64 bits

• USER width: Up to 1024 bits (per channel)

• ID width: Up to 32 bits

• Programmable messaging levels for
simulation operation

• Supports monitoring of multiple
outstanding READ and WRITE transactions

• Instrumented to support Vivado® Design
Suite Debug Nets and connections to
Vivado Logic Analyzer monitoring

• AXI4-Lite control register slave interface to
read protocol check status

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1) UltraScale+™, UltraScale™, 7 series

Supported User
Interfaces

AXI4, AXI4-Lite, AXI3

Resources Performance and Resource Utilization web page

Provided with Core

Design Files RTL

Example Design Not Provided

Test Bench Not Provided

Constraints File Not Provided

Simulation
Model Not Provided

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado Design Suite

Simulation
For support simulators, see the

Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis.

Support

Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete list of supported derivative devices, see

Embedded Edition Derivative Device Support.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/ise/embedded/ddsupport.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.2;t=vivado+release+notes
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=axi-protocol-checker.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=axi-protocol-checker.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=4

AXI Protocol Checker v1.1 www.xilinx.com 5
PG101 June 7, 2017

Chapter 1

Overview
The AXI Protocol Checker is used to debug interface signals in systems using AXI4, AXI3, or
AXI4-Lite protocols by monitoring traffic between the AXI Master and AXI Slave Cores.

The interface is checked against the rules outlined in the AXI Specification [Ref 2] to
determine if violations occur. Violations are reported in a simulation log file message, and
as a debug net in the Vivado Logic Analyzer. In addition, the violations appear on the status
vector output port from the core.

X-Ref Target - Figure 1-1

Figure 1‐1: AXI Protocol Checker Block Diagram

AW

W

axi_protocol_checker

core

B

AR

R Simulation
Reporter Error Vector

AXI4/AXI3
Checker

AXI4-Lite
Checker

Control
RegistersS_AXI

X18814-03

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=5

AXI Protocol Checker v1.1 www.xilinx.com 6
PG101 June 7, 2017

Chapter 1: Overview

Applications
The AXI Protocol Checker is typically used by system designers during the debug of systems
and custom AXI IP to ensure that traffic on a given AXI connection complies with the AXI
protocol.

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado
Design Suite under the terms of the Xilinx End User License.

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information on pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=6

AXI Protocol Checker v1.1 www.xilinx.com 7
PG101 June 7, 2017

Chapter 2

Product Specification
The AXI Protocol Checker monitors the connection for AXI4, AXI3, and AXI4-Lite protocol
violations. The AXI Protocol Checker is designed around the ARM System Verilog assertions
that have been converted into synthesizable HDL. When a protocol violation occurs, the AXI
Protocol Checker asserts the corresponding bit on the pc_status output vector. The
output vector bit mapping can be found in Table 2-6 and Table 2-7. The value of the status
vector can also be read via the optional AXI4-Lite control register slave interface.

Bits of the pc_status vector are synchronously set when a protocol violation occurs.
Multiple bits can be triggered on the same or different cycles. When the bit within the
pc_status vector has been set, it remains asserted until the connection has been reset
with aresetn, or the core has been reset with system_resetn. The pc_asserted
output signal is also asserted while any bit of the pc_status vector is asserted.

Standards
The AXI interfaces conform to the Advanced Microcontroller Bus Architecture (AMBA®) AXI
version 4 specification from Advanced RISC Machine (ARM®), including the AXI4-Lite
control register interface subset. See ARM AMBA® AXI Protocol v2.0 [Ref 1].

Performance
For details about performance, visit Performance and Resource Utilization.

Maximum Frequencies

For details Maximum Frequencies, visit Performance and Resource Utilization.

Resource Utilization

For details about Resource Utilization, visit Performance and Resource Utilization.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=axi-protocol-checker.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=axi-protocol-checker.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=axi-protocol-checker.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=7

AXI Protocol Checker v1.1 www.xilinx.com 8
PG101 June 7, 2017

Chapter 2: Product Specification

Port Descriptions
This section contains details about the AXI Protocol Checker ports.

Protocol Independent Port Descriptions

Table 2-1 lists the ports that apply to all protocols.

Table 2‐1: Protocol independent port descriptions

Signal Name Direction Default Width Description

aclk Input Required 1

Interface clock input.
Used by both the AXI PC Monitor
interface, and the optional
AXI4-Lite Control register slave
interface.

aresetn Input Required 1

Interface reset input (active-Low).
Resets both the AXI PC Monitor
interface and the optional
AXI4-Lite Control register slave
interface.

system_resetn Input Optional 1 System reset (active-Low).

pc_status Output
If ENABLE_EXT_CHECKS=0: 97
If ENABLE_EXT_CHECKS=1: 128

Active-High vector of protocol
violations or warnings.

pc_asserted Output 1
Active-High signal is asserted
when any bit of the pc_status
vector is asserted.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=8

AXI Protocol Checker v1.1 www.xilinx.com 9
PG101 June 7, 2017

Chapter 2: Product Specification

Monitor Port Descriptions for AXI4 Protocol

Table 2-2 lists the interface signals for the AXI Protocol Checker monitor interface when it is
configured to check an AXI4 Interface.

Table 2‐2: AXI4 Protocol Port Descriptions

Signal Name Direction Default Width Description

pc_axi_awid Input 0 ID_WIDTH Write Address Channel Transaction ID

pc_axi_awaddr Input Required ADDR_WIDTH Write Address Channel Transaction
Address (12-64)

pc_axi_awlen Input 0 8 Write Address Channel Transaction Burst
Length (0-255)

pc_axi_awsize Input Required 3 Write Address Channel Transfer Size Code
(0-7)

pc_axi_awburst Input Required 2 Write Address Channel Burst Type Code
(0-2)

pc_axi_awlock Input 0b0 1 Write Address Channel Atomic Access
Type (0-1)

pc_axi_awcache Input 0b0000 4 Write Address Channel Cache
Characteristics

pc_axi_awprot Input 0b000 3 Write Address Channel Protection
Characteristics

pc_axi_awqos Input 0b0000 4 Write Address Channel Quality of Service

pc_axi_awregion Input 0b0000 4 Write Address Channel Region Index

pc_axi_awuser Input AWUSER_WIDTH Write Address Channel User-Defined
Signals

pc_axi_awvalid Input Required 1 Write Address Channel Valid

pc_axi_awready Input Required 1 Write Address Channel Ready

pc_axi_arid Input 0 ID_WIDTH Read Address Channel Transaction ID

pc_axi_araddr Input Required ADDR_WIDTH Read Address Channel Transaction
Address (12-64)

pc_axi_arlen Input 0 8 Read Address Channel Transaction Burst
Length (0-255)

pc_axi_arsize Input Required 3 Read Address Channel Transfer Size Code
(0-7)

pc_axi_arburst Input Required 2 Read Address Channel Burst Type Code
(0-2)

pc_axi_arlock Input 0b0 1 Read Address Channel Atomic Access
Type (0-1)

pc_axi_arcache Input 0b0000 4 Read Address Channel Cache
Characteristics

pc_axi_arprot Input 0b000 3 Read Address Channel Protection
Characteristics

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=9

AXI Protocol Checker v1.1 www.xilinx.com 10
PG101 June 7, 2017

Chapter 2: Product Specification

pc_axi_arqos Input 0b0000 4 Read Address Channel Quality of Service

pc_axi_arregion Input 0b0000 4 Read Address Channel Region Index

pc_axi_aruser Input ARUSER_WIDTH Read Address Channel User-Defined
Signals

pc_axi_arvalid Input Required 1 Read Address Channel Valid

pc_axi_arready Input Required 1 Read Address Channel Ready

pc_axi_wlast Input 0b1 1 Write Data Channel Last Data Beat

pc_axi_wdata Input DATA_WIDTH Write Data Channel Data

pc_axi_wstrb Input All Ones DATA_WIDTH/8 Write Data Channel Byte Strobes

pc_axi_wuser Input WUSER_WIDTH Write Data Channel User-Defined Signal

pc_axi_wvalid Input Required 1 Write Data Channel Valid

pc_axi_wready Input Required 1 Write Data Channel Ready

pc_axi_rid Input ID_WIDTH Read Data Channel Transaction ID

pc_axi_rlast Input 1 1 Read Data Channel Last Data Beat

pc_axi_rdata Input DATA_WIDTH Read Data Channel Data

pc_axi_rresp Input 0b00 2 Read Data Channel Response code (0-3)

pc_axi_ruser Input RUSER_WIDTH Read Data Channel User-Defined Signal

pc_axi_rvalid Input Required 1 Read Data Channel Valid

pc_axi_rready Input Required 1 Read Data Channel Ready

pc_axi_bid Input ID_WIDTH Write Response Channel Transaction ID

pc_axi_bresp Input 0b00 2 Write Response Channel Response Code
(0-3)

pc_axi_buser Input BUSER_WIDTH Write Response Channel User-Defined
Signal

pc_axi_bvalid Input Required 1 Write Response Channel Valid

pc_axi_bready Input Required 1 Write Response Channel Ready

Table 2‐2: AXI4 Protocol Port Descriptions (Cont’d)

Signal Name Direction Default Width Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=10

AXI Protocol Checker v1.1 www.xilinx.com 11
PG101 June 7, 2017

Chapter 2: Product Specification

Monitor Port Descriptions for AXI3 Protocol

Table 2-3 lists the interface signals for the AXI Protocol Checker monitor interface when it is
configured to check an AXI3 Interface.

Table 2‐3: AXI3 Protocol Port Descriptions

Signal Name Direction Default Width Description

pc_axi_awid Input 0 ID_WIDTH Write Address Channel Transaction ID

pc_axi_awaddr Input Required ADDR_WIDTH Write Address Channel Transaction
Address (12-64)

pc_axi_awlen Input 0 4 Write Address Channel Transaction Burst
Length (0-16)

pc_axi_awsize Input Required 3 Write Address Channel Transfer Size code
(0-7)

pc_axi_awburst Input Required 2 Write Address Channel Burst Type code
(0-2)

pc_axi_awlock Input 0b00 2 Write Address Channel Atomic Access Type
(0-3)

pc_axi_awcache Input 0b0000 4 Write Address Channel Cache
Characteristics

pc_axi_awprot Input 0b000 3 Write Address Channel Protection
Characteristics

pc_axi_awqos Input 0b0000 4 Write Address Channel Quality of Service

pc_axi_awuser Input AWUSER_WIDTH Write Address Channel User-Defined
Signals

pc_axi_awvalid Input Required 1 Write Address Channel Valid

pc_axi_awready Input Required 1 Write Address Channel Ready

pc_axi_arid Input 0 ID_WIDTH Read Address Channel Transaction ID

pc_axi_araddr Input Required ADDR_WIDTH Read Address Channel Transaction Address
(12-64)

pc_axi_arlen Input 0 4 Read Address Channel Transaction Burst
Length (0-16)

pc_axi_arsize Input Required 3 Read Address Channel Transfer Size Code
(0-7)

pc_axi_arburst Input Required 2 Read Address Channel Burst Type Code
(0-2)

pc_axi_arlock Input 0b00 2 Read Address Channel Atomic Access Type
(0-3)

pc_axi_arcache Input 0b0000 4 Read Address Channel Cache
Characteristics

pc_axi_arprot Input 0b000 3 Read Address Channel Protection
Characteristics

pc_axi_arqos Input 0b0000 4 Read Address Channel Quality of Service

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=11

AXI Protocol Checker v1.1 www.xilinx.com 12
PG101 June 7, 2017

Chapter 2: Product Specification

pc_axi_aruser Input ARUSER_WIDTH Read Address Channel User-Defined
Signals

pc_axi_arvalid Input Required 1 Read Address Channel Valid

pc_axi_arready Input Required 1 Read Address Channel Ready

pc_axi_wid Input ID_WIDTH Write Data Channel Transaction ID

pc_axi_wlast Input 0b1 1 Write Data Channel Last Data Beat

pc_axi_wdata Input DATA_WIDTH Write Data Channel Data

pc_axi_wstrb Input All Ones DATA_WIDTH/8 Write Data Channel Byte Strobes

pc_axi_wuser Input WUSER_WIDTH Write Data Channel User-Defined Signal

pc_axi_wvalid Input Required 1 Write Data Channel Valid

pc_axi_wready Input Required 1 Write Data Channel Ready

pc_axi_rid Input ID_WIDTH Read Data Channel Transaction ID

pc_axi_rlast Input 1 1 Read Data Channel Last Data Beat

pc_axi_rdata Input DATA_WIDTH Read Data Channel Data

pc_axi_rresp Input 0b00 2 Read Data Channel Response code (0-3)

pc_axi_ruser Input RUSER_WIDTH Read Data Channel User-Defined Signal

pc_axi_rvalid Input Required 1 Read Data Channel Valid

pc_axi_rready Input Required 1 Read Data Channel Ready

pc_axi_bid Input ID_WIDTH Write Response Channel Transaction ID

pc_axi_bresp Input 0b00 2 Write Response Channel Response Code
(0-3)

pc_axi_buser Input BUSER_WIDTH Write Response Channel User-Defined
Signal

pc_axi_bvalid Input Required 1 Write Response Channel Valid

pc_axi_bready Input Required 1 Write Response Channel Ready

Table 2‐3: AXI3 Protocol Port Descriptions (Cont’d)

Signal Name Direction Default Width Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=12

AXI Protocol Checker v1.1 www.xilinx.com 13
PG101 June 7, 2017

Chapter 2: Product Specification

Monitor Port Descriptions for AXI4-Lite Protocol

Table 2-4 lists the interface signals for the AXI Protocol Checker monitor interface when it is
configured to check an AXI4-Lite Interface.

Table 2‐4: AXI4-Lite Protocol Port Descriptions

Signal Name Direction Default Width Description

pc_axi_awaddr Input Required ADDR_WIDTH Write Address Channel Transaction
Address (12-64)

pc_axi_awprot Input 0b000 3 Write Address Channel Protection
Characteristics

pc_axi_awvalid Input Required 1 Write Address Channel Valid

pc_axi_awready Input Required 1 Write Address Channel Ready

pc_axi_araddr Input Required ADDR_WIDTH Read Address Channel Transaction
Address (12-64)

pc_axi_arprot Input 0b000 3 Read Address Channel Protection
Characteristics

pc_axi_arvalid Input Required 1 Read Address Channel Valid

pc_axi_arready Input Required 1 Read Address Channel Ready

pc_axi_wdata Input DATA_WIDTH Write Data Channel Data

pc_axi_wstrb Input All Ones DATA_WIDTH/8 Write Data Channel Byte Strobes

pc_axi_wvalid Input Required 1 Write Data Channel Valid

pc_axi_wready Input Required 1 Write Data Channel Ready

pc_axi_rdata Input DATA_WIDTH Read Data Channel Data

pc_axi_rresp Input 0b00 2 Read Data Channel Response code (0-3)

pc_axi_rvalid Input Required 1 Read Data Channel Valid

pc_axi_rready Input Required 1 Read Data Channel Ready

pc_axi_bresp Input 0b00 2 Write Response Channel Response Code
(0-3)

pc_axi_bvalid Input Required 1 Write Response Channel Valid

pc_axi_bready Input Required 1 Write Response Channel Ready

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=13

AXI Protocol Checker v1.1 www.xilinx.com 14
PG101 June 7, 2017

Chapter 2: Product Specification

Control Register Slave Port Descriptions

Table 2-5 lists the interface signals for the AXI4-Lite control register slave interface, when
enabled. The control register slave interface is read-only.

Table 2‐5: Control Register Slave Port Descriptions

Signal
Name

Direction Default Width Description

s_axi_araddr Input Required 12 Read Address

s_axi_arvalid Input Required 1 Read Address Channel Valid

s_axi_arready Output Required 1 Read Address Channel Ready

s_axi_rdata Output 32 Read Data

s_axi_rresp Output 2 Read Response code (always 0)

s_axi_rvalid Output Required 1 Read Data Channel Valid

s_axi_rready Input Required 1 Read Data Channel Ready

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=14

AXI Protocol Checker v1.1 www.xilinx.com 15
PG101 June 7, 2017

Chapter 2: Product Specification

Checks and Descriptions

AXI Protocol Checks and Descriptions

The AXI Protocol Checks and descriptions, listed in Table 2-6, correspond to the assertions
that are found in the ARM AXI assertions.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions

Name of Protocol Check Bit Notes
Protocol
Support Description

AXI_ERRM_AWADDR_BOUNDARY 0 - AXI4/
AXI3 A write burst cannot cross a 4KB boundary.

AXI_ERRM_AWADDR_WRAP_ALIGN 1 - AXI4/
AXI3

A write transaction with burst type WRAP has
an aligned address.

AXI_ERRM_AWBURST 2 - AXI4/
AXI3

A value of 2’b11 on AWBURST is not
permitted when AWVALID is High.

AXI_ERRM_AWLEN_LOCK 3 - AXI4/
AXI3

Exclusive access transactions cannot have a
length greater than 16 beats. This check is
not implemented.

AXI_ERRM_AWCACHE 4 - AXI4/
AXI3

If not cacheable (AWCACHE[1] == 1'b0),
AWCACHE = 2'b00.

AXI_ERRM_AWLEN_FIXED 5 - AXI4/
AXI3

Transactions of burst type FIXED cannot have
a length greater than 16 beats.

AXI_ERRM_AWLEN_WRAP 6 - AXI4/
AXI3

A write transaction with burst type WRAP has
a length of 2, 4, 8, or 16.

AXI_ERRM_AWSIZE 7 L(1) AXI4/
AXI3

The size of a write transfer does not exceed
the width of the data interface.

AXI_ERRM_AWVALID_RESET 8 -
AXI4/
AXI3/
Lite

AWVALID is Low for the first cycle after
ARESETn goes High.

AXI_ERRM_AWADDR_STABLE 9 -
AXI4/
AXI3/
Lite

Handshake Checks: AWADDR must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWBURST_STABLE 10 - AXI4/
AXI3

Handshake Checks: AWBURST must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWCACHE_STABLE 11 - AXI4/
AXI3

Handshake Checks: AWCACHE must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWID_STABLE 12 - AXI4/
AXI3

Handshake Checks: AWID must remain stable
when AWVALID is asserted and AWREADY
Low.

AXI_ERRM_AWLEN_STABLE 13 - AXI4/
AXI3

Handshake Checks: AWLEN must remain
stable when AWVALID is asserted and
AWREADY Low.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=15

AXI Protocol Checker v1.1 www.xilinx.com 16
PG101 June 7, 2017

Chapter 2: Product Specification

AXI_ERRM_AWLOCK_STABLE 14 - AXI4/
AXI3

Handshake Checks: AWLOCK must remain
stable when AWVALID is asserted and
AWREADY Low. This check is not
implemented.

AXI_ERRM_AWPROT_STABLE 15 -
AXI4/
AXI3/
Lite

Handshake Checks: AWPROT must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWSIZE_STABLE 16 - AXI4/
AXI3

Handshake Checks: AWSIZE must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWQOS_STABLE 17 - AXI4/
AXI3

Handshake Checks: AWQOS must remain
stable when AWVALID is asserted and
AWREADY Low.

AXI_ERRM_AWREGION_STABLE 18 - AXI4
Handshake Checks: AWREGION must remain
stable when ARVALID is asserted and
AWREADY Low.

AXI_ERRM_AWVALID_STABLE 19 -
AXI4/
AXI3/
Lite

Handshake Checks: Once AWVALID is
asserted, it must remain asserted until
AWREADY is High.

AXI_RECS_AWREADY_MAX_WAIT 20 L(1)
AXI4/
AXI3/
Lite

Recommended that AWREADY is asserted
within MAXWAITS cycles of AWVALID being
asserted.

AXI_ERRM_WDATA_NUM 21 L(1) AXI4/
AXI3

The number of write data items matches
AWLEN for the corresponding address. This is
triggered when any of the following occurs:
• Write data arrives, WLAST is set, and the

WDATA count is not equal to AWLEN
• Write data arrives, WLAST is not set, and

the WDATA count is equal to AWLEN
• ADDR arrives, WLAST is already received,

and the WDATA count is not equal to
AWLEN

AXI_ERRM_WSTRB 22 - AXI4/
AXI3/
Lite

Write strobes must only be asserted for the
correct byte lanes as determined from the:
Start Address, Transfer Size and Beat Number.

AXI_ERRM_WVALID_RESET 23 -
AXI4/
AXI3/
Lite

WVALID is LOW for the first cycle after
ARESETn goes High.

AXI_ERRM_WDATA_STABLE 24 -
AXI4/
AXI3/
Lite

Handshake Checks: WDATA must remain
stable when WVALID is asserted and WREADY
Low.

AXI_ERRM_WLAST_STABLE 25 - AXI4/
AXI3

Handshake Checks: WLAST must remain
stable when WVALID is asserted and WREADY
Low.

AXI_ERRM_WSTRB_STABLE 26 -
AXI4/
AXI3/
Lite

Handshake Checks: WSTRB must remain
stable when WVALID is asserted and WREADY
Low.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=16

AXI Protocol Checker v1.1 www.xilinx.com 17
PG101 June 7, 2017

Chapter 2: Product Specification

AXI_ERRM_WVALID_STABLE 27 -
AXI4/
AXI3/
Lite

Handshake Checks: Once WVALID is asserted,
it must remain asserted until WREADY is
High.

AXI_RECS_WREADY_MAX_WAIT 28 L(1)
AXI4/
AXI3/
Lite

Recommended that WREADY is asserted
within MAXWAITS cycles of WVALID being
asserted.

AXI_ERRS_BRESP_WLAST 29 L(1) AXI4/
AXI3

A slave must not take BVALID HIGH until after
the last write data handshake is complete.

AXI_ERRS_BRESP_EXOKAY 30 - AXI4/
AXI3

An EXOKAY write response can only be given
to an exclusive write access. This check is not
implemented.

AXI_ERRS_BVALID_RESET 31 -
AXI4/
AXI3/
Lite

BVALID is Low for the first cycle after
ARESETn goes High.

AXI_ERRS_BRESP_AW 32 L(1)
AXI4/
AXI3/
Lite

A slave must not take BVALID HIGH until after
the write address is handshake is complete.

AXI_ERRS_BID_STABLE 33 - AXI4/
AXI3

Handshake Checks: BID must remain stable
when BVALID is asserted and BREADY Low .

AXI_ERRS_BRESP_STABLE 34 -
AXI4/
AXI3/
Lite

Checks BRESP must remain stable when
BVALID is asserted and BREADY Low.

AXI_ERRS_BVALID_STABLE 35 -
AXI4/
AXI3/
Lite

Once BVALID is asserted, it must remain
asserted until BREADY is High.

AXI_RECM_BREADY_MAX_WAIT 36 L(1)
AXI4/
AXI3/
Lite

Recommended that BREADY is asserted
within MAXWAITS cycles of BVALID being
asserted.

AXI_ERRM_ARADDR_BOUNDARY 37 - AXI4/
AXI3 A read burst cannot cross a 4KB boundary.

AXI_ERRM_ARADDR_WRAP_ALIGN 38 - AXI4/
AXI3

A read transaction with a burst type of WRAP
must have an aligned address.

AXI_ERRM_ARBURST 39 - AXI4/
AXI3

A value of 2'b11 on ARBURST is not permitted
when ARVALID is High.

AXI_ERRM_ARLEN_LOCK 40 - AXI4/
AXI3

Exclusive access transactions cannot have a
length greater than 16 beats. This check is
not implemented.

AXI_ERRM_ARCACHE 41 - AXI4/
AXI3

When ARVALID is HIGH, if ARCACHE[1] is
LOW, then ARCACHE[3:2] must also be Low.

AXI_ERRM_ARLEN_FIXED 42 - AXI4/
AXI3

Transactions of burst type FIXED cannot have
a length greater than 16 beats.

AXI_ERRM_ARLEN_WRAP 43 - AXI4/
AXI3

A read transaction with burst type of WRAP
must have a length of 2, 4, 8, or 16.

AXI_ERRM_ARSIZE 44 L(1) AXI4/
AXI3

The size of a read transfer must not exceed
the width of the data interface.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=17

AXI Protocol Checker v1.1 www.xilinx.com 18
PG101 June 7, 2017

Chapter 2: Product Specification

AXI_ERRM_ARVALID_RESET 45 -
AXI4/
AXI3/
Lite

ARVALID is Low for the first cycle after
ARESETn goes High.

AXI_ERRM_ARADDR_STABLE 46 -
AXI4/
AXI3/
Lite

ARADDR must remain stable when ARVALID
is asserted and ARREADY Low.

AXI_ERRM_ARBURST_STABLE 47 - AXI4/
AXI3

ARBURST must remain stable when ARVALID
is asserted and ARREADY Low.

AXI_ERRM_ARCACHE_STABLE 48 - AXI4/
AXI3

ARCACHE must remain stable when ARVALID
is asserted and ARREADY Low.

AXI_ERRM_ARID_STABLE 49 - AXI4/
AXI3

ARID must remain stable when ARVALID is
asserted and ARREADY Low.

AXI_ERRM_ARLEN_STABLE 50 - AXI4/
AXI3

ARLEN must remain stable when ARVALID is
asserted and ARREADY Low.

AXI_ERRM_ARLOCK_STABLE 51 - AXI4/
AXI3

ARLOCK must remain stable when ARVALID is
asserted and ARREADY Low. This check is not
implemented.

AXI_ERRM_ARPROT_STABLE 52 -
AXI4/
AXI3/
Lite

ARPROT must remain stable when ARVALID is
asserted and ARREADY Low.

AXI_ERRM_ARSIZE_STABLE 53 - AXI4/
AXI3

ARSIZE must remain stable when ARVALID is
asserted and ARREADY Low.

AXI_ERRM_ARQOS_STABLE 54 - AXI4/
AXI3

ARQOS must remain stable when ARVALID is
asserted and ARREADY Low.

AXI_ERRM_ARREGION_STABLE 55 - AXI4 ARREGION must remain stable when
ARVALID is asserted and ARREADY Low.

AXI_ERRM_ARVALID_STABLE 56 -
AXI4/
AXI3/
Lite

Once ARVALID is asserted, it must remain
asserted until ARREADY is High.

AXI_RECS_ARREADY_MAX_WAIT 57 L(1)
AXI4/
AXI3/
Lite

Recommended that ARREADY is asserted
within MAXWAITS cycles of ARVALID being
asserted.

AXI_ERRS_RDATA_NUM 58 L(1) AXI4/
AXI3

The number of read data items must match
the corresponding ARLEN.

AXI_ERRS_RID 59 L(1)
AXI4/
AXI3/
Lite

The read data must always follow the address
that it relates to. If IDs are used, RID must also
match ARID of an outstanding address read
transaction. This violation can also occur
when RVALID is asserted with no preceding
AR transfer.

AXI_ERRS_RRESP_EXOKAY 60 - AXI4/
AXI3

An EXOKAY write response can only be given
to an exclusive read access. This check is not
implemented.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=18

AXI Protocol Checker v1.1 www.xilinx.com 19
PG101 June 7, 2017

Chapter 2: Product Specification

AXI_ERRS_RVALID_RESET 61 -
AXI4/
AXI3/
Lite

RVALID is Low for the first cycle after
ARESETn goes High.

AXI_ERRS_RDATA_STABLE 62 -
AXI4/
AXI3/
Lite

RDATA must remain stable when RVALID is
asserted and RREADY Low.

AXI_ERRS_RID_STABLE 63 - AXI4/
AXI3

RID must remain stable when RVALID is
asserted and RREADY Low.

AXI_ERRS_RLAST_STABLE 64 - AXI4/
AXI3

RLAST must remain stable when RVALID is
asserted and RREADY Low.

AXI_ERRS_RRESP_STABLE 65 -
AXI4/
AXI3/
Lite

RRESP must remain stable when RVALID is
asserted and RREADY Low.

AXI_ERRS_RVALID_STABLE 66 -
AXI4/
AXI3/
Lite

Once RVALID is asserted, it must remain
asserted until RREADY is High.

AXI_RECM_RREADY_MAX_WAIT 67 L(1)
AXI4/
AXI3/
Lite

Recommended that RREADY is asserted
within MAXWAITS cycles of RVALID being
asserted.

AXI_ERRM_EXCL_ALIGN 68 - AXI4/
AXI3

The address of an exclusive access is aligned
to the total number of bytes in the
transaction. This check is not implemented.

AXI_ERRM_EXCL_LEN 69 - AXI4/
AXI3

The number of bytes to be transferred in an
exclusive access burst is a power of 2, that is, 1,
2, 4, 8, 16, 32, 64, or 128 bytes. This check is not
implemented.

AXI_RECM_EXCL_MATCH 70 - AXI4/
AXI3

Recommended that the address, size, and
length of an exclusive write with a given ID is the
same as the address, size, and length of the
preceding exclusive read with the same ID. This
check is not implemented.

AXI_ERRM_EXCL_MAX 71 - AXI4/
AXI3

128 is the maximum number of bytes that can
be transferred in an exclusive burst. This check
is not implemented.

AXI_RECM_EXCL_PAIR 72 - AXI4/
AXI3

Recommended that every exclusive write has an
earlier outstanding exclusive read with the same
ID. This check is not implemented.

AXI_ERRM_AWUSER_STABLE 73 - AXI4/
AXI3

AWUSER must remain stable when AWVALID is
asserted and AWREADY Low.

AXI_ERRM_WUSER_STABLE 74 - AXI4/
AXI3

WUSER must remain stable when WVALID is
asserted and WREADY Low.

AXI_ERRS_BUSER_STABLE 75 - AXI4/
AXI3

BUSER must remain stable when BVALID is
asserted and BREADY Low.

AXI_ERRM_ARUSER_STABLE 76 - AXI4/
AXI3

ARUSER must remain stable when ARVALID is
asserted and ARREADY Low.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=19

AXI Protocol Checker v1.1 www.xilinx.com 20
PG101 June 7, 2017

Chapter 2: Product Specification

1. L: This check remains enabled in Lightweight mode.

AXI_ERRS_RUSER_STABLE 77 - AXI4/
AXI3

RUSER must remain stable when RVALID is
asserted and RREADY Low.

AXI_AUXM_RCAM_OVERFLOW 78 L(1)
AXI4/
AXI3/
Lite

Read CAM overflow.
The number of outstanding read transactions
exceeds the capacity of the storage
implemented in the Protocol Checker core. This
does not indicate any failure of the system
being monitored, but it may render any
subsequent monitoring results invalid. To
resolve this, increase MAXRBURSTS parameter.

AXI_AUXM_RCAM_UNDERFLOW 79 -
AXI4/
AXI3/
Lite

Read CAM underflow.

AXI_AUXM_WCAM_OVERFLOW 80 L(1)
AXI4/
AXI3/
Lite

Write CAM overflow. The number of
outstanding write transactions exceeds the
capacity of the storage implemented in the
Protocol Checker core. This does not indicate
any failure of the system being monitored, but
it may render any subsequent monitoring
results invalid. To resolve this, increase
MAXWBURSTS parameter.

AXI_AUXM_WCAM_UNDERFLOW 81 -
AXI4/
AXI3/
Lite

Write CAM underflow.

AXI_AUXM_EXCL_OVERFLOW 82 - AXI4/
AXI3 Exclusive access monitor overflow.

AXI4LITE_ERRS_BRESP_EXOKAY 83 - Lite A slave must not give an EXOKAY response on
an AXI4-Lite interface.

AXI4LITE_ERRS_RRESP_EXOKAY 84 - Lite A slave must not give an EXOKAY response on
an AXI4-Lite interface.

AXI4LITE_AUXM_DATA_WIDTH 85 - Lite DATA_WIDTH parameter is 32 or 64.

Table 2‐6: AXI4/AXI3 and AXI4-Lite Protocol Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=20

AXI Protocol Checker v1.1 www.xilinx.com 21
PG101 June 7, 2017

Chapter 2: Product Specification

Xilinx-Specific Configuration Checks and Descriptions

Table 2-7 lists Xilinx-specific checks for configuration-dependent signaling requirements
and recommendations.

Table 2‐7: Xilinx Configuration Checks and Descriptions

Name of Protocol Check Bit Notes Protocol
Support Description

XILINX_AW_SUPPORTS_NARROW_BURST 86 - AXI4/
AXI3

When the connection does not
support narrow transfers, the
AW Master cannot issue a
transfer with AWLEN > 0 and
AWSIZE is less than the defined
interface DATA_WIDTH.

XILINX_AR_SUPPORTS_NARROW_BURST 87 - AXI4/
AXI3

When the connection does not
support narrow transfers, the
AR Master cannot issue a
transfer with ARLEN > 0 and
ARSIZE is less than the defined
interface DATA_WIDTH.

XILINX_AW_SUPPORTS_NARROW_CACHE 88 - AXI4/
AXI3

When the connection does not
support narrow transfers, the
AW Master cannot issue a
transfer with AWLEN > 0 and
AWCACHE modifiable bit is not
asserted.

XILINX_AR_SUPPORTS_NARROW_CACHE 89 - AXI4/
AXI3

When the connection does not
support narrow transfers, the
AR Master cannot issue a
transfer with ARLEN > 0 and
ARCACHE modifiable bit is not
asserted.

XILINX_AW_MAX_BURST 90 - AXI4/
AXI3

AW Master cannot issue AWLEN
greater than the configured
maximum burst length.

XILINX_AR_MAX_BURST 91 - AXI4/
AXI3

AR Master cannot issue ARLEN
greater than the configured
maximum burst length.

XILINX_AWREADY_RESET 92 -
AXI4/
AXI3/
Lite

AWREADY is Low for the first
cycle after ARESETn goes High.
Xilinx recommends that slaves
drive all READY outputs low
during reset to avoid dropping a
transfer in case the connected
master recovers from reset
during an earlier cycle.

XILINX_WREADY_RESET 93 -
AXI4/
AXI3/
Lite

WREADY is Low for the first
cycle after ARESETn goes High.
Xilinx recommends that slaves
drive all READY outputs low
during reset to avoid dropping a
transfer in case the connected
master recovers from reset
during an earlier cycle.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=21

AXI Protocol Checker v1.1 www.xilinx.com 22
PG101 June 7, 2017

Chapter 2: Product Specification

1. L: This check remains enabled in Lightweight mode.
2. E: This check is enabled only when Extended Checks are enabled.

XILINX_BREADY_RESET 94 -
AXI4/
AXI3/
Lite

BREADY is Low for the first cycle
after ARESETn goes High.
Xilinx recommends that masters
drive all READY outputs low
during reset.

XILINX_ARREADY_RESET 95 -
AXI4/
AXI3/
Lite

ARREADY is Low for the first
cycle after ARESETn goes High.
Xilinx recommends that slaves
drive all READY outputs low
during reset to avoid dropping a
transfer in case the connected
master recovers from reset
during an earlier cycle.

XILINX_RREADY_RESET 96 -
AXI4/
AXI3/
Lite

RREADY is Low for the first cycle
after ARESETn goes High.
Xilinx recommends that masters
drive all READY outputs low
during reset.

XILINX_RECS_CONTINUOUS_RTRANSFERS_MAX_WAIT 97
L, E
(1)(2)

AXI4/
AXI3/
Lite

RVALID should be asserted
within
MAX_CONTINUOUS_RTRANSFE
RS_WAITS cycles of either the
AR command transfer or the
previous R transfer while there
are outstanding AR commands.

XILINX_RECM_CONTINUOUS_WTRANSFERS_MAX_WAIT 98
L, E
(1)(2)

AXI4/
AXI3/
Lite

WVALID should be asserted
within
MAX_CONTINUOUS_WTRANSFE
RS_WAITS cycles of either the
AW command transfer or
previous W transfer while there
are outstanding AW commands.

XILINX_RECM_WLAST_TO_AWVALID_MAX_WAIT 99
L, E
(1)(2)

AXI4/
AXI3/
Lite

AWVALID should be asserted
within
MAX_WLAST_TO_AWVALID_WAI
TS cycles of a WLAST transfer (or
AXI4-Lite W transfer) or
previous AW transfer if there are
yet more WLAST transfers
outstanding.

XILINX_RECS_WRITE_TO_BVALID_MAX_WAIT 100
L, E
(1)(2)

AXI4/
AXI3/
Lite

BVALID should be asserted
within
MAX_WRITE_TO_BVALID_WAITS
cycles of an AW command
transfer or WLAST transfer (or
AXI4-Lite W transfer), whichever
is later, or previous B transfer if
there are yet more completed
AW and WLAST transfers
outstanding.

Table 2‐7: Xilinx Configuration Checks and Descriptions (Cont’d)

Name of Protocol Check Bit Notes Protocol
Support Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=22

AXI Protocol Checker v1.1 www.xilinx.com 23
PG101 June 7, 2017

Chapter 2: Product Specification

Simulation-Only Assertions

Table Table 2-8 lists signal checks required by AXI protocol that are checked only during
simulation. These checks appear only as assertion messages and do not appear in the
pc_status output signal.

Table 2‐8: Simulation-Only Assertions

Name of Protocol
Check

Protocol
Support Description

AXI_ERRM_ARADDR_X AXI4/AXI3/Lite When ARVALID is high, a value of X on ARADDR is not
permitted.

AXI_ERRM_ARBURST_X AXI4/AXI3 When ARVALID is high, a value of X on ARBURST is not
permitted.

AXI_ERRM_ARCACHE_X AXI4/AXI3 When ARVALID is high, a value of X on ARCACHE is not
permitted.

AXI_ERRM_ARID_X AXI4/AXI3 When ARVALID is high, a value of X on ARID is not
permitted.

AXI_ERRM_ARLEN_X AXI4/AXI3 When ARVALID is high, a value of X on ARLEN is not
permitted.

AXI_ERRM_ARLOCK_X AXI4/AXI3 When ARVALID is high, a value of X on ARLOCK is not
permitted.

AXI_ERRM_ARPROT_X AXI4/AXI3/Lite When ARVALID is high, a value of X on ARPROT is not
permitted.

AXI_ERRM_ARQOS_X AXI4/AXI3 When ARVALID is high, a value of X on ARQOS is not
permitted.

AXI_ERRM_ARREGION_X AXI4 When ARVALID is high, a value of X on ARREGION is not
permitted.

AXI_ERRM_ARSIZE_X AXI4/AXI3 When ARVALID is high, a value of X on ARSIZE is not
permitted.

AXI_ERRM_ARUSER_X AXI4/AXI3 When ARVALID is high, a value of X on ARUSER is not
permitted.

AXI_ERRM_ARVALID_X AXI4/AXI3/Lite When not in reset, a value of X on ARVALID is not permitted.

AXI_ERRM_AWADDR_X AXI4/AXI3/Lite When AWVALID is high, a value of X on AWADDR is not
permitted.

AXI_ERRM_AWBURST_X AXI4/AXI3 When AWVALID is high, a value of X on AWBURST is not
permitted.

AXI_ERRM_AWCACHE_X AXI4/AXI3 When AWVALID is high, a value of X on AWCACHE is not
permitted.

AXI_ERRM_AWID_X AXI4/AXI3 When AWVALID is high, a value of X on AWID is not
permitted.

AXI_ERRM_AWLEN_X AXI4/AXI3 When AWVALID is high, a value of X on AWLEN is not
permitted.

AXI_ERRM_AWLOCK_X AXI4/AXI3 When AWVALID is high, a value of X on AWLOCK is not
permitted.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=23

AXI Protocol Checker v1.1 www.xilinx.com 24
PG101 June 7, 2017

Chapter 2: Product Specification

AXI_ERRM_AWPROT_X AXI4/AXI3/Lite When AWVALID is high, a value of X on AWPROT is not
permitted.

AXI_ERRM_AWQOS_X AXI4/AXI3 When AWVALID is high, a value of X on AWQOS is not
permitted.

AXI_ERRM_AWREGION_X AXI4 When AWVALID is high, a value of X on AWREGION is not
permitted.

AXI_ERRM_AWSIZE_X AXI4/AXI3 When AWVALID is high, a value of X on AWSIZE is not
permitted.

AXI_ERRM_AWUSER_X AXI4/AXI3 When AWVALID is high, a value of X on AWUSER is not
permitted.

AXI_ERRM_AWVALID_X AXI4/AXI3/Lite When not in reset, a value of X on AWVALID is not
permitted.

AXI_ERRM_BREADY_X AXI4/AXI3/Lite When not in reset, a value of X on BREADY is not permitted.

AXI_ERRM_RREADY_X AXI4/AXI3/Lite When not in reset, a value of X on RREADY is not permitted.

AXI_ERRM_WDATA_X AXI4/AXI3/Lite When WVALID is high, a value of X on active byte lanes of
WDATA is not permitted.

AXI_ERRM_WLAST_X AXI4/AXI3 When WVALID is high, a value of X on WLAST is not
permitted.

AXI_ERRM_WSTRB_X AXI4/AXI3/Lite When WVALID is high, a value of X on WSTRB is not
permitted.

AXI_ERRM_WUSER_X AXI4/AXI3 When WVALID is high, a value of X on WUSER is not
permitted.

AXI_ERRM_WVALID_X AXI4/AXI3/Lite When not in reset, a value of X on WVALID is not permitted.

AXI_ERRS_ARREADY_X AXI4/AXI3/Lite When not in reset, a value of X on ARREADY is not
permitted.

AXI_ERRS_AWREADY_X AXI4/AXI3/Lite When not in reset, a value of X on AWREADY is not
permitted.

AXI_ERRS_BID_X AXI4/AXI3 When BVALID is high, a value of X on BID is not permitted.

AXI_ERRS_BRESP_X AXI4/AXI3/Lite When BVALID is high, a value of X on BRESP is not
permitted.

AXI_ERRS_BUSER_X AXI4/AXI3 When BVALID is high, a value of X on BUSER is not
permitted.

AXI_ERRS_BVALID_X AXI4/AXI3/Lite When not in reset, a value of X on BVALID is not permitted.

AXI_ERRS_RDATA_X AXI4/AXI3/Lite When RVALID is high, a value of X on RDATA valid byte lanes
is not permitted.

AXI_ERRS_RID_X AXI4/AXI3 When RVALID is high, a value of X on RID is not permitted.

AXI_ERRS_RLAST_X AXI4/AXI3 When RVALID is high, a value of X on RLAST is not
permitted.

AXI_ERRS_RRESP_X AXI4/AXI3/Lite When RVALID is high, a value of X on RRESP is not
permitted.

Table 2‐8: Simulation-Only Assertions

Name of Protocol
Check

Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=24

AXI Protocol Checker v1.1 www.xilinx.com 25
PG101 June 7, 2017

Chapter 2: Product Specification

Register Space
The registers listed in Table 2-9 can be read from the AXI4-Lite control register slave
interface.

The Current PC registers indicate the current state of the pc_status vector, which may
accumulate more checks over time.

The Snapshot PC registers indicate the state of the pc_status vector at the time of the
first check assertion (when pc_asserted first becomes asserted). The Snapshot registers
are reset by either aresetn or system_resetn.

AXI_ERRS_RUSER_X AXI4/AXI3 When RVALID is high, a value of X on RUSER is not
permitted.

AXI_ERRS_RVALID_X AXI4/AXI3/Lite When not in reset, a value of X on RVALID is not permitted.

AXI_ERRS_WREADY_X AXI4/AXI3/Lite When not in reset, a value of X on WREADY is not permitted.

Table 2‐9: Control Register Map

Address
Space Offset

Register Name Access
Type

Default
Value

Description

0x000 PC asserted R 0 Bit 0 = Current value of pc_asserted

0x100 Current PC[31:0] R 0 Current value of pc_status[31:0]

0x104 Current PC[63:32] R 0 Current value of pc_status[63:32]

0x108 Current PC[95:64] R 0 Current value of pc_status[95:64]

0x10C Current PC[127:96] R 0 Current value of pc_status[127:96]

0x200 Snapshot PC[31:0] R 0 First event value of pc_status[31:0]

0x204 Snapshot PC[63:32] R 0 First event value of pc_status[63:32]

0x208 Snapshot PC[95:64] R 0 First event value of pc_status[95:64]

0x20C Snapshot PC[127:96] R 0 First event value of pc_status[127:96]

Table 2‐8: Simulation-Only Assertions

Name of Protocol
Check

Protocol
Support

Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=25

AXI Protocol Checker v1.1 www.xilinx.com 26
PG101 June 7, 2017

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

General Design Guidelines
The AXI Protocol Checker should be inserted into a system as shown in Figure 3-1.

X-Ref Target - Figure 3-1

Figure 3‐1: Example Topology

AXI
Master

AXI
Slave

aclk

AXI Protocol Checker

aresetn

AW/W/B

AR/R

system_resetn pc_status

S_AXI

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=26

AXI Protocol Checker v1.1 www.xilinx.com 27
PG101 June 7, 2017

Chapter 3: Designing with the Core

Finding protocol violations in simulation is generally easier. Therefore, it is highly
recommended to debug a system in simulation rather than in hardware. In simulation, it is
possible to instantiate protocol checkers on all AXI interfaces.

Simulation

When simulating, the AXI Protocol Checker can be configured to print display messages in
the form of:

<time>ns : <instance_path> : BIT(<bit_number>) : <log_level> : <violation_message>

For example:

73717.00ns : tb.top.AXI4_0.REP : BIT(59) : ERROR : AXI_ERRS_RID. A slave can only
give read data with an ID to match an outstanding read transaction. Spec: section 8.3
on page 8-4.

In this example, the core provides a debugging capability for simulation where the AXI
Protocol Checker can either finish or stop the simulation at the point of detecting the
violation.

Hardware In-system Monitoring

The AXI Protocol Checker tracks Read and Write transactions by their ARID and AWID
respectively. Therefore, the wider the ID width, the more resources consumed by the
Protocol Checker. The transaction information per ID is stored until the transactions are
completed, and the depth of the memory is directly related to the number of outstanding
transactions that can occur for a given transaction ID.

IMPORTANT: Configure the core to ensure the core is not over-monitoring and wasting resources. An ID
width greater than 6 bits can lead to very large resource utilization by the core.

Table 3‐1: Message Field Descriptions

Message Field Description

<instance_path> The simulation hierarchy to the protocol checker instance that is issuing
the message.

<bit_number> Indicates which bit is asserted in the pc_status vector. This bit can be used
to look up the violation in Table 2-6 and Table 2-7.

<log_level> Messaging level text that can be one of the following values: INFO,
WARNING, or ERROR with the ability to stop or finish the simulation. This
value is set in the configuration Vivado IDE.

<violation_message> Descriptive message indicating the name of the violation (for example,
AXI_ERRS_RID) and violation. In most cases, this includes the location in the
AXI specification where the protocol is described. The violation message
name can be used to look up the violation in Table 2-6 and Table 2-7.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=27

AXI Protocol Checker v1.1 www.xilinx.com 28
PG101 June 7, 2017

Chapter 3: Designing with the Core

Integration into Vivado Logic Analyzer and Vivado Debug Nets

The AXI Protocol Checker core supports probing using the Vivado ILA 2.0 core and the
Vivado Logic Analyzer. All of the protocol checks listed in Table 2-6 and Table 2-7 are
available as Unassigned Debug Nets in the synthesized design. See Vivado Design Suite
Tutorial: Programming and Debugging (UG936) [Ref 5].

Clocking
The same aclk that is connected to the AXI Master and AXI Slave should also be connected
to the AXI Protocol Checker.

The aclk input is also used by the optional AXI4-Lite control register slave interface. By
connecting to the control interface through an AXI Interconnect IP, the Interconnect IP will
automatically convert from the clock domain of the AXI4-Lite network, if different.

Resets

System Reset and AXI Reset

At a minimum, the AXI Protocol Checker requires the aresetn signal. system_resetn
can be configured to clear the pc_status vector without resetting the AXI4 interface. Both
reset inputs are synchronous to aclk. The assertion of either reset clears the pc_status
vector and the pc_asserted output.

TIP: Xilinx recommends asserting aresetn for a minimum of 16 clock cycles.

If system_resetn is enabled, the Protocol Checker can check the AXI4 specification which
defines the state of the interface following the de-assertion of aresetn. Protocol violation
notifications related to the required behavior of interfaces with respect to aresetn are
cleared using system_resetn.

When a system reset is not available, system_resetn should be disabled. When this is
done, the following checks are not possible:

• AXI_ERRM_AWVALID_RESET

• AXI_ERRM_ARVALID_RESET

• AXI_ERRM_WVALID_RESET

• AXI_ERRM_RVALID_RESET

• AXI_ERRM_BVALID_RESET

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=28

AXI Protocol Checker v1.1 www.xilinx.com 29
PG101 June 7, 2017

Chapter 3: Designing with the Core

• XILINX_AWREADY_RESET

• XILINX_WREADY_RESET

• XILINX_BREADY_RESET

• XILINX_ARREADY_RESET

• XILINX_RREADY_RESET

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=29

AXI Protocol Checker v1.1 www.xilinx.com 30
PG101 June 7, 2017

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 3]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado Design Suite environment. You can customize the IP for use in your
design by specifying values for the various parameters associated with the IP core using the
following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
This layout might vary from the current version.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=30

AXI Protocol Checker v1.1 www.xilinx.com 31
PG101 June 7, 2017

Chapter 4: Design Flow Steps

Modify the parameters to meet the requirements of the larger project into which the core is
integrated. The following subsections discuss the options in detail to serve as a guide.

Global Parameters

• Component Name: The base name of the output files generated for the core. Names
must begin with a letter and can be composed of any of the following characters: a to z,
0 to 9, and “_”.

• Connection Protocol: Specifies the type of interface for the AXI Protocol Checker to
monitor: AXI4, AXI3 or AXI4-Lite. Certain protocol checks are not performed based on
this parameter.

Note: This value is automatically set when using IP integrator.

X-Ref Target - Figure 4-1

Figure 4‐1: AXI Protocol Checker Customization IDE

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=31

AXI Protocol Checker v1.1 www.xilinx.com 32
PG101 June 7, 2017

Chapter 4: Design Flow Steps

• READ_WRITE Mode: Indicates which channels of the interface are active. When
READ_WRITE mode is selected, all five channels are active. In WRITE_ONLY mode, only
the AW, W, and B channels are active. In READ_ONLY mode, only AR and R channels are
active.

Note: This value is automatically set when using IP integrator.

• Address Width: Specifies the width of the awaddr and araddr signals to be
monitored. Protocol checks use these signals for validation of the transactions. For AXI4
and AXI3 protocols, the minimum width is 12 bits, and for AXI4-Lite, the minimum
width is 1 bit.

• Data Width: Specifies the width of the Write and Read data path interfaces and its
companion signals. Protocol checks use these signals for validation of the transactions.
For AXI4 and AXI3 protocols, the value can be any of: 32, 64, 128, 256, 512, or 1024 bits.
For AXI4-Lite, the value can be either 32 or 64 bits.

Note: This value is automatically set when using IP integrator.

• ID Width: This parameter specifies the width of the awid, arid, bid, wid (for AXI3)
and rid signals. This parameter is not available when the protocol is AXI4-Lite. The ID
width is used for transaction completion tracking and checking and will generate one
FIFO for each ID value.

Note: This value is automatically set when using IP integrator.

User Signal Widths

• AWUSER Width: Specifies the width of the awuser signals (if any) to be monitored by
the protocol checker. This value is only available when the protocol is AXI4 or AXI3. If
set to 0, the signal is omitted.

Note: This value is automatically set when using IP integrator.

• ARUSER Width: Specifies the width of the aruser signals (if any) to be monitored by
the protocol checker. This value is only available when the protocol is AXI4 or AXI3. If
set to 0, the signal is omitted.

Note: This value is automatically set when using IP integrator.

• WUSER Width: Specifies the width of the wuser signals (if any) to be monitored by the
protocol checker. This value is only available when the protocol is AXI4 or AXI3. If set to
0, the signal is omitted.

Note: This value is automatically set when using IP integrator.

• RUSER Width: Specifies the width of the ruser signals (if any) to be monitored by the
protocol checker. This value is only available when the protocol is AXI4 or AXI3. If set to
0, the signal is omitted.

Note: This value is automatically set when using IP integrator.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=32

AXI Protocol Checker v1.1 www.xilinx.com 33
PG101 June 7, 2017

Chapter 4: Design Flow Steps

• BUSER Width: Specifies the width of the buser signals (if any) to be monitored by the
protocol checker. This value is only available when the protocol is AXI4 or AXI3. If set to
0, the signal is omitted.

Note: This value is automatically set when using IP integrator.

Parameter Checker Options

• Maximum outstanding READ transactions: Specifies the depth of the FIFOs for
storing the outstanding Read transactions. The value should be equal to or greater than
the number of outstanding Read transactions expected for that connection.

• Maximum outstanding WRITE transactions: Specifies the depth of the FIFOs for
storing the outstanding Write transactions. The value should be equal to or greater
than the number of outstanding Write transactions expected for that connection.

• Maximum number of idle cycles for AWREADY monitoring: This parameter specifies
the maximum number of cycles between the assertion of awvalid to the assertion of
awready before an ERROR is generated. When the value is set to 0, this check is
disabled.

• Maximum number of idle cycles for ARREADY monitoring: This parameter specifies
the maximum number of cycles between the assertion of arvalid to the assertion of
arready before an ERROR is generated. When the value is set to 0, this check is
disabled.

• Maximum number of idle cycles for WREADY monitoring: This parameter specifies
the maximum number of cycles between the assertion of wvalid to the assertion of
wready before an ERROR is generated. When the value is set to 0, this check is
disabled.

• Maximum number of idle cycles for RREADY monitoring: This parameter specifies
the maximum number of cycles between the assertion of rvalid to the assertion of
rready before an ERROR is generated. When the value is set to 0, this check is
disabled.

• Maximum number of idle cycles for BREADY monitoring: This parameter specifies
the maximum number of cycles between the assertion of bvalid to the assertion of
bready before an ERROR is generated. When the value is set to 0, this check is
disabled.

• Maximum number of idle cycles for RVALID monitoring after AR command: This
parameter specifies the maximum number of idle cycles for RVALID monitoring after
AR command transfer. When the value is set to 0, this check is disabled.

• Maximum number of idle cycles for WVALID monitoring after AW command: This
parameter specifies the maximum number of idle cycles for WVALID monitoring after
AW command transfer. When the value is set to 0, this check is disabled.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=33

AXI Protocol Checker v1.1 www.xilinx.com 34
PG101 June 7, 2017

Chapter 4: Design Flow Steps

• Maximum number of idle cycles for AWVALID monitoring after a W-channel burst
completes: This parameter specifies the maximum number of idle cycles for AWVALID
monitoring after a WLAST transfer. When the value is set to 0, this check is disabled.

• Maximum number of idle cycles for BVALID monitoring after a write burst
completes: This parameter specifies the maximum number of idle cycles for BVALID
monitoring after a write burst completes. When the value is set to 0, this check is
disabled.

• Simulation Log Messaging Level: When a violation is triggered, this parameter allows
the core to indicate to the simulation log file different error levels or to disable all
messaging entirely. It is also possible to use this parameter to stop or finish the
simulation upon a protocol violation occurrence.

• Xilinx Connection Checking of Supports Narrow Bursts: If set to no, this parameter
specifies that the protocol checker should trap narrow burst violations on the
connection. This attribute is not available for AXI4-Lite interfaces.

Note: This value is automatically set when using IP integrator.

• Xilinx Maximum Connection Burst Length: The protocol checker should trap
transactions lengths which exceed the value indicated by this parameter. The default
value varies by protocol and is not available for AXI4-Lite interfaces.

Note: This value is automatically set when using IP integrator.

• Enable system reset interface: Enables the system_resetn port. When disabled, the
port is tied High.

• Only check for bus-hang conditions between protocol-compliant IP: Configures
core in Lightweight mode. Only useful when implementing in hardware. Reduces
implementation resources by disabling checks that are not likely to cause the
connected AXI network to hang.

• Enable extended checks: When set to 1, increases the width of the pc_status signal
from the original 97 bits to 128 bits to accommodate additional Xilinx-specific timeout
checks.

• Enable S_AXI status interface: Enable the AXI4-Lite control register slave interface.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=34

AXI Protocol Checker v1.1 www.xilinx.com 35
PG101 June 7, 2017

Chapter 4: Design Flow Steps

User Parameters

Table 4-1 shows the relationship between the fields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl console).

Table 4‐1: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter/Value User Parameter/Value Default Value

Connection Protocol PROTOCOL AXI4

READ_WRITE Mode READ_WRITE_MODE READ_WRITE

Address Width ADDR_WIDTH 32

Data Width DATA_WIDTH 32

ID Width ID_WIDTH 0

AWUSER Width AWUSER_WIDTH 0

ARUSER Width ARUSER_WIDTH 0

WUSER Width WUSER_WIDTH 0

RUSER Width RUSER_WIDTH 0

BUSER Width BUSER_WIDTH 0

Maximum Outstanding Read
Transactions MAX_RD_BURSTS 8

Maximum Outstanding Write
Transactions MAX_WR_BURSTS 8

Maximum Number of Idle Cycles
for AWREADY Monitoring MAX_AW_WAITS 0

Maximum Number of Idle Cycles
for ARREADY Monitoring MAX_AR_WAITS 0

Maximum Number of Idle Cycles
for WREADY Monitoring MAX_W_WAITS 0

Maximum Number of Idle Cycles
for RREADY Monitoring MAX_R_WAITS 0

Maximum Number of Idle Cycles
for BREADY Monitoring MAX_B_WAITS 0

Maximum number of idle cycles
for RVALID monitoring after AR
command

MAX_CONTINUOUS_RTRANSFERS_WAITS 0

Maximum number of idle cycles
for WVALID monitoring after AW
command

MAX_CONTINUOUS_WTRANSFERS_WAITS 0

Maximum number of idle cycles
for AWVALID monitoring after a
W-channel burst completes

MAX_WLAST_TO_AWVALID_WAITS 0

Maximum number of idle cycles
for BVALID monitoring after a
write burst completes

MAX_WRITE_TO_BVALID_WAITS 0

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=35

AXI Protocol Checker v1.1 www.xilinx.com 36
PG101 June 7, 2017

Chapter 4: Design Flow Steps

Output Generation

The AXI Protocol Checker deliverables are organized in the directory <project_name>/
<project_name>.srcs/sources_1/ip/<component_name> and is designed as
the <ip_source_dir>.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

Simulation Log Messaging Level
• Quiet
• Info
• Error
• Stop on error
• Finish on error

MESSAGE_LEVEL
• 0
• 1
• 2
• 3
• 4

2 (Error)

Xilinx Connection Checking of
Supports Narrow Burst
• No
• Yes

SUPPORTS_NARROW_BURST
• 0
• 1

1 (Yes)

Xilinx Maximum Connection
Burst Length MAX_BURST_LENGTH 256

Enable System Reset Interface
• No
• Yes

HAS_SYSTEM_RESET
• 0
• 1

0 (No)

Only check for bus-hang
conditions between
protocol-compliant IP
• No
• Yes

LIGHT_WEIGHT
• 0
• 1

0 (No)

Enable extended checks
• No
• Yes

ENABLE_EXT_CHECKS
• 0
• 1

0 (No)

Enable S_AXI status interface
• No
• Yes

ENABLE_CONTROL
• 0
• 1

0 (No)

Table 4‐1: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter/Value User Parameter/Value Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=36

AXI Protocol Checker v1.1 www.xilinx.com 37
PG101 June 7, 2017

Chapter 4: Design Flow Steps

Constraining the Core
This section contains information about constraining the core in the Vivado® Design Suite.

Required Constraints

There are no required constraints for this core.

Device, Package, and Speed Grade Selections

See IP Facts for details on device support.

Clock Frequencies

There are no clock frequency constraints for this core.

Clock Management

There are no clock management constraints for this core.

Clock Placement

There are no clock placement constraints for this core.

Banking

There are no banking constraints for this core.

Transceiver Placement

There are no transceiver placement constraints for this core.

I/O Standard and Placement

There are no I/O constraints for this core.

Simulation
For details, see Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7].

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=37

AXI Protocol Checker v1.1 www.xilinx.com 38
PG101 June 7, 2017

Chapter 4: Design Flow Steps

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 6].

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=38

AXI Protocol Checker v1.1 www.xilinx.com 39
PG101 June 7, 2017

Appendix A

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the AXI Protocol Checker, the Xilinx
Support web page contains key resources such as product documentation, release notes,
answer records, information about known issues, and links for obtaining further product
support.

Documentation

This product guide is the main document associated with the AXI Protocol Checker. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=39

AXI Protocol Checker v1.1 www.xilinx.com 40
PG101 June 7, 2017

Appendix A: Debugging

Master Answer Record for the AXI Protocol Checker

AR: 57790

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

General Checks
The AXI Protocol Checker design limits the types of problems one may encounter when
using the core. In the case where the interface is not fully specified, the system designer
must ensure that any unused inputs to the AXI Protocol Checker have been correctly tied off
based on the AXI Protocol that is to be monitored using Table 2-2, Table 2-3, or Table 2-4.

Debug Tools

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature represents the functionality in the Vivado IDE that is used for logic
debugging and validation of a design running in Xilinx devices in hardware.

The AXI4 Protocol Checker core supports probing using the Vivado ILA 2.0 core and the
Vivado Logic Analyzer. All of the protocol checks named in Table 2-2, Table 2-3, and
Table 2-4 are available as Unassigned Debug Nets in the synthesized design. More details
can be found in the Vivado Design Suite Tutorial: Programming and Debugging on the Vivado
Design Suite [Ref 5].

It is also possible to monitor all or one bit of the pc_status vector through any other
desired method.

Send Feedback

https://www.xilinx.com/support/answers/57790.htm
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=40

AXI Protocol Checker v1.1 www.xilinx.com 41
PG101 June 7, 2017

Appendix A: Debugging

Clocks and Resets
To resolve clocking and reset issues, verify these items:

• Check that aclk is connected to the same clock that is driving both the Master and
Slave interfaces.

• Check that aresetn is connected to the same reset that is driving both the Master and
Slave interfaces.

• Ensure that both aresetn and system_resetn (if enabled) are connected to
active-Low polarity.

• Ensure that aresetn is both synchronously asserted and released on aclk.

Core Size and Optimization
In some cases the size of the core can become very large. The following tips can reduce the
size of the core:

• When trying to isolate the cause of a bus hang in hardware, configure the IP in
Lightweight mode (select Only check for bus-hang conditions between
protocol-compliant IP). This may also allow you to deploy Protocol Checkers on more
AXI connections in the system.

• Set the Maximum number of idle cycles for (AW|AR|W|R|B) READY monitoring to
0. This disables a recommended *VALID to *READY wait checks.

• If possible, reduce the ID Width. This directly reduces the number of ID tracker and
block RAMs.

• Reduce either or both of Maximum outstanding READ transactions PER ID or
Maximum outstanding WRITE transactions PER ID.

• Each bit of the pc_status vector consumes some amount of resources; therefore,
fewer bits observed reduces the overall foot print of the design.

Flags

No Flags Asserted

One simple test to check to see if the AXI Protocol Checker is correctly connected to the
interface is to not connect the pc_axi_arready or the pc_axi_awready input into the
protocol checker and to tie those ports to 0. This causes the pc_asserted output and

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=41

AXI Protocol Checker v1.1 www.xilinx.com 42
PG101 June 7, 2017

Appendix A: Debugging

multiple bits in the pc_status vector to be asserted when AXI traffic begins because this
will violate all the AXI_ERRS_A*_STABLE protocol checks (bits 46 - 56). See Table 2-6 for the
descriptions of these checks.

Flags Asserted

If there are bits asserted in the pc_status vector and the source/reason of the violation
using Table 2-6 is not clear, move the AXI Protocol Checker “upstream” toward the AXI
Master generating the transactions.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=42

AXI Protocol Checker v1.1 www.xilinx.com 43
PG101 June 7, 2017

Appendix B

Migrating and Upgrading
This appendix contains information about migrating a design from ISE® to the Vivado®
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading in the Vivado Design Suite, important details (where applicable) about any port
changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the Vivado Design Suite
Migration Methodology Guide (UG911) [Ref 9].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes

There are no parameter changes.

Port Changes

There are no port changes.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=43

AXI Protocol Checker v1.1 www.xilinx.com 44
PG101 June 7, 2017

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. ARM® AMBA® AXI Protocol v2.0, ARM IHI 0022C

2. AMBA® 4 AXI4™, AXI4-Lite™, and AXI4-Stream™ Protocol Assertions User Guide

3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

4. Xilinx Vivado AXI Reference Guide (UG1037)

5. Vivado Design Suite Tutorial: Programming and Debugging (UG936)

6. Vivado Design Suite User Guide: Designing with IP (UG896)

7. Vivado Design Suite User Guide: Logic Simulation (UG900)

8. Vivado Design Suite User Guide: Getting Started (UG910)

9. Vivado Design Suite Migration Methodology Guide (UG911)

Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022c/index.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug936-vivado-tutorial-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0534a/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=44

AXI Protocol Checker v1.1 www.xilinx.com 45
PG101 June 7, 2017

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Date Version Revision

06/07/2017 1.1 Added simulation-only assertions.

04/05/2017 1.1 • Added new timeout checks against the next expected assertion of each
VALID handshake output.

• Added LIGHT_WEIGHT mode to reduce synthesis utilization.
• Added AXI4-Lite control register slave interface.

10/05/2016 1.1 Updated “AXI_ERRS_RID” protocol support and description.

11/18/2015 1.1 Added support for UltraScale+ families.

04/01/2015 1.1 • Added “User Parameters” in the Design Flow Steps chapter.

12/18/2013 1.1 • Added support for UltraScale™ architecture.

10/02/2013 1.1 • Added compatibility with AXI Interconnect v2.1.
• Added Chapter 6, Simulation and Chapter 7, Synthesis and

Implementation.

06/19/2013 1.0 • Updated Parameter Checker Options in Chapter 4.
• Clarified bit options for pc_status vector.

12/18/2012 1.0 Initial Xilinx release.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=45

AXI Protocol Checker v1.1 www.xilinx.com 46
PG101 June 7, 2017

Appendix C: Additional Resources and Legal Notices

© Copyright 2012-2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG101&Title=AXI%20Protocol%20Checker%20v1.1&releaseVersion=1.1&docPage=46

	AXI Protocol Checker v1.1
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Applications
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards
	Performance
	Maximum Frequencies
	Resource Utilization

	Port Descriptions
	Protocol Independent Port Descriptions
	Monitor Port Descriptions for AXI4 Protocol
	Monitor Port Descriptions for AXI3 Protocol
	Monitor Port Descriptions for AXI4-Lite Protocol
	Control Register Slave Port Descriptions

	Checks and Descriptions
	AXI Protocol Checks and Descriptions
	Xilinx-Specific Configuration Checks and Descriptions
	Simulation-Only Assertions

	Register Space

	Ch. 3: Designing with the Core
	General Design Guidelines
	Simulation
	Hardware In-system Monitoring
	Integration into Vivado Logic Analyzer and Vivado Debug Nets

	Clocking
	Resets
	System Reset and AXI Reset

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Global Parameters
	User Signal Widths
	Parameter Checker Options
	User Parameters
	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Appx. A: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	General Checks
	Debug Tools
	Vivado Design Suite Debug Feature

	Clocks and Resets
	Core Size and Optimization
	Flags
	No Flags Asserted
	Flags Asserted

	Appx. B: Migrating and Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

