CLK104 RF Clock Add-on Card

User Guide

UG1437 (v1.1) August 25, 2022

Xilinx is creating an environment where employees, customers, and partners feel welcome and included. To that end, we're removing noninclusive language from our products and related collateral. We've launched an internal initiative to remove language that could exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive language in our older products as we work to make these changes and align with evolving industry standards. Follow this <u>link</u> for more information.

Table of Contents

Chapter 1: Introduction	4
• Overview	
Module Features	
Block Diagram	
Module Specifications	
Chapter 2: Setup and Configuration	8
Component Location	
PLL Mode Configuration	
PLL Loop Filters and Parameters	
Appendix A: SAMTEC LPAM Host Interface Connector	16
Appendix B: CLK104 RF Clock Add-on Card Configuration with	
the ZCU216 SCUI	18
Appendix C: CLK104 RF Clock Add-on Card Configuration with	
the ZCU216 APU	21
Appendix D: Additional Resources and Legal Notices	22
Xilinx Resources	
Documentation Navigator and Design Hubs	

References	22
Revision History	23
Please Read: Important Legal Notices	

AMDA XILINX

Chapter 1

Introduction

Overview

The CLK104 RF clock add-on card is designed for use with Zynq[®] UltraScale+[™] RFSoC Gen3 ZCU216 and ZCU208 evaluation boards. It provides an ultra low-noise, wideband RF clock source for the analog-to-digital and digital-to-ananlog converters (ADCs and DACs).

The clock distribution PLL provides the low frequency reference clock for integrated PLL of RFSoC devices. RFSoC devices accept one RF sampling clock for all ADC channels and one RF sampling clock for all DAC channels. ADCs and DACs have dedicated RF PLLs physically located close to them. The CLK104 supports multi-tile and multi-board synchronization.

Module Features

The CLK104 provides the following features:

- On-module dedicated low noise LDO regulators supply 3.3V power to the GP PLL and RF PLLs.
- I2C serial interface
- TI USB2ANY interface (customized adapter/cable is required)
- LEDs indicate lock status of GP PLL and RF PLLs
- Programmable tracking on-module TCXO clock (10 MHz), or an external reference clock through SMA or a recovered clock from the PL bank
- Clock distribution PLL reference clock options
 - External reference clock
 - Single-ended clock through SMA connector
 - 3 dB attenuation
 - AC coupled

- Free running on-module reference clock
 - 10.0 MHz TCXO
 - Manual mute option
- Recovered clock
 - Differential clock through interface connector
 - Routed to RFSoC PL bank on evaluation board
- Clock distribution PLL output clock options
 - 。 ADC RF PLL and DAC RF PLL differential reference clock signals (two pairs)
 - Two single-ended SYNC signals for the ADC RF PLL and DAC RF PLL
 - 。 RFSoC ADC and DAC differential reference clock signals (two pairs)
 - 。 SYSREF differential clock signal (one pair)
 - 。 RFSoC differential clocks for PL banks (three pairs)
 - Single-ended external reference clock to SMA connector
- RF clock options
 - 。 ADC RF clocks (two pairs)
 - Programmable to any frequency up to 10 GHz
 - Programmable output power level, typical > 4 dBm
 - Phase noise performance: -131 dBc/Hz at 1 MHz offset with 4 GHz carrier
 - 。 DAC clock options (two pairs)
 - Programmable to any frequency up to 10 GHz
 - Programmable output power level, typical > 4 dBm
 - Phase noise performance: -124 dBc/Hz at 1 MHz offset with 10 GHz carrier

Block Diagram

XILINX

The block diagram for the CLK104 is shown in the following figure.

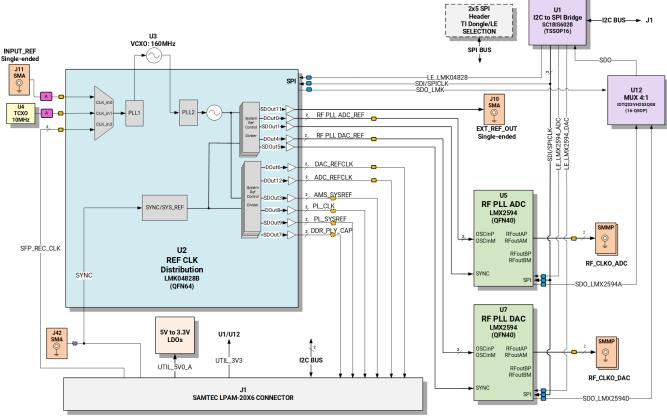


Figure 1: CLK104 RF Clock Add-on Card Block Diagram

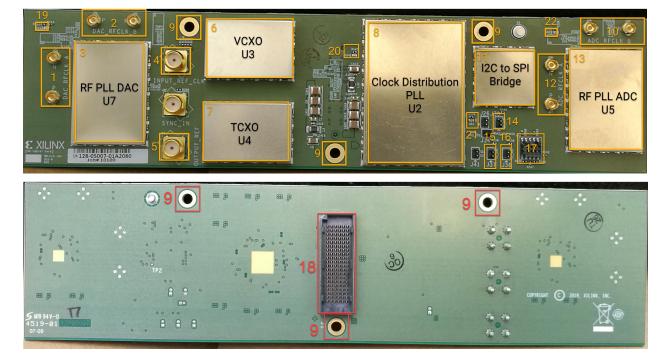
X27001-082422

Module Specifications

Specifications for the CLK104 RF clock add-on card are as follows:

- Dimensions
 - Height: 2.0 inches (50.8 cm)
 - 。 Width: 8.0 inches (203.2 cm)
 - Thickness: 0.068 inches (0.173 cm)
- Environmental
 - 。 Temperature
 - Operating: 0°C to +45°C
 - Storage: -25°C to +60°C
 - Humidity: 10% to 90% non-condensing

Chapter 2


Setup and Configuration

Component Location

The following figure shows the CLK104 RF clock add-on card and its components. Each numbered component referenced in the figure is described in the table and sections that follow.

CAUTION! The CLK104 add-on card must be secured to the evaluation board with three screws before ¹ operation. The mounting holes are shown in the figure.

IMPORTANT! The figure is for reference only and might not reflect the current revision of the board.

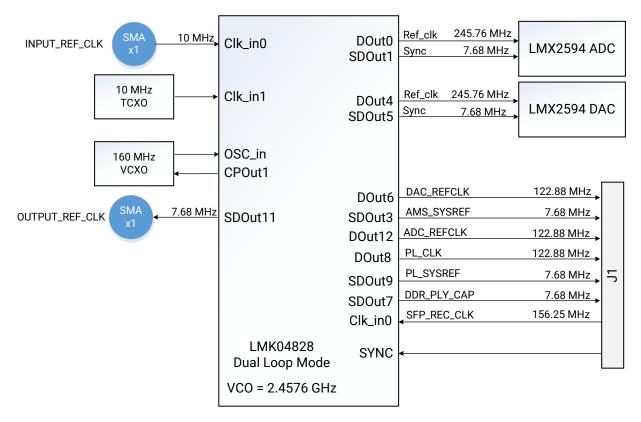
Figure 2: CLK104 Component Locations

Table 1: CLK104 Component Locations (Bac	k)
--	----

Callout	Reference Designation	Description
1	J20, J21	DAC_RFCLK_A, DAC RF PLL output A
2	J31, J32	DAC_RFCLK_B, DAC RF PLL output B
3	U7	RF PLL for DAC (LMX2594) with RF cage
4	J11	INPUT_REF_CLK, (U2 external reference clock)
5	J10	OUTPUT_REF (U2 output reference clock)
6	U3	VCXO 160.00MHz, VX-501-0245-160M0
7	U4	TCXO 10.0MHz, DOT050F-010.0M
8	U2	Clock distribution PLL (LMK04828B) with RF cage
9	MH1, MH2, MH3	Mounting holes
10	J29, J30	ADC_RFCLK_B, ADC RF PLL output B
11	U1, U12	I2C to SPI bridge and multiplexer
12	J27, J28	ADC_RFCLK_A, ADC RF PLL output A
13	U5	RF PLL for ADC (LMX2594) with RF cage
14	J38*	LE_LMK04828 selection, NPB02SVAN-RC
15	J37*	LE_2594_DAC selection, NPB02SVAN-RC
16	J36*	LE_2594_ADC selection, NPB02SVAN-RC
17	J33*	TI USB2ANY interface connector (customized adapter/cables required)
18	J1	Host interface connector (LPAM-20-01.0-L-06-2-K-TR)
19	DS3	U7 PLL lock LED (DAC RF PLL)
20	DS4	5.0V power supply LED
21	DS1	U2 PLL lock LED (clock distribution PLL)
22	DS2	U5 PLL lock LED (ADC RF PLL)

Note: J38, J37, J36, and J33 headers are only needed for use with the USB2ANY interface. If using I2C programming, shunts are not required.

PLL Mode Configuration


LMK04828B

LMK04828B (U2) is a dual loop jitter cleaner and clock generator. The first stage PLL (PLL1) is driven by either an external reference clock, the on-module TCXO reference clock (10.0 MHz), or the recovered reference clock from the RFSoC. An external 160.00 MHz VCXO provides a frequency-accurate, low-phase noise reference clock for the second stage PLL (PLL2). PLL2 operates with a wide-loop bandwidth and generates the input references and SYNC signal for the ADC/DAC RF PLLs (U5 and U7), the PLL reference clocks, the SYSREF signal for the RFSoC ADC/DAC, the reference clocks for the RFSoC PL banks, and the output reference clock for multi-tile and multi-board synchronization.

U2 can be configured in dual-loop mode if synchronization is not required between the outputs and reference input. If it is configured in nested 0-delay mode, either DCLKout6 or DCLKout8 needs to be selected by the feedback multiplexer, as it establishes a fixed deterministic phase relationship of the phase of PLL1 input reference to the phase of outputs. DCLKoutX can be driven from either the internal VCO or the output divider. The internal PLL2 VCO frequency range is 2,370 to 2,630 MHz and 2,920 to 3,080 MHz. Each DCLKoutX has a single clock output divider (from 2 to 32). The output of this divider can also be directed to SDCLKoutY, where Y=X +1. SDCLKoutY can be driven from either output divider or a common SYSREF divider (from 8 to 8,191).

The following figure shows an example of a typical LMK04828B configuration. Note that no external cables are required.

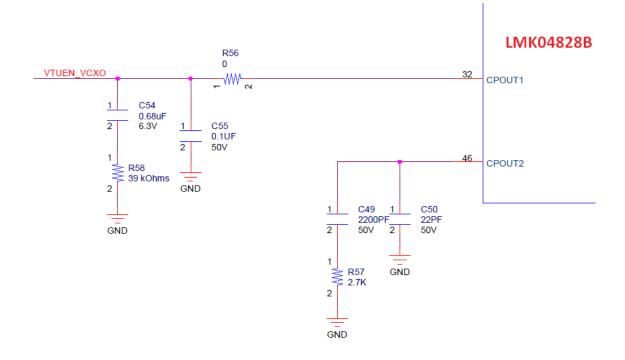
Figure 3: LMK04828B (U2) Configuration Example

X23689-021020

LMX2594

LMX2594 ADC (U5) and LMX2594 DAC (U7) provide dedicated RF PLLs for the RFSoC ADC RFSoC DAC. RF output port A is usually the main RF output, and uses the Carlisle SSMP loopback cable (TM40-0153) to connect it to the RF sampling clock connector on the RFSoC EVM. The following figure shows the RF clock connections between the CLK104 and the ZCU216.

Figure 4: **RF Clock Connections using SSMP Loopback Cables**


As a part of frequency planning, you need to select the proper input frequency for the LMX2594. If possible, use the integer mode as it is preferred to avoid fractional spurs. For example, for a 3.93216 GHz output, select the input frequency at 245.76 MHz. For an 8 GHz output, select the input frequency at 300.00 MHz. New configuration designs should be assessed on the spectrum analyzer before use.

PLL Loop Filters and Parameters

LMK04828B

The following figure shows the external loop filter design for LMK04828B (U2) PLL1 and PLL2.

The following two tables identify typical U2 loop filter configurations for PLL1 in both dual-loop and nested 0-delay modes.

Table 2: Typical U2 PLL1 Loop Filte	r Configuration in Dual-Loop Mode
-------------------------------------	-----------------------------------

Parameter	Value
VCO Gain	8 KHz/V
Loop Bandwidth	29 Hz
Phase Margin	46 deg
C55 (C1_LF)	100 nF
C54 (C2_LF)	680 nF
R58 (R2_LF)	39 ΚΩ
Effective Charge Pump Gain	150 uA
Phase Detector Frequency (MHz)	1.25 MHz
External VCXO Frequency	160 MHz

Parameter	Value
VCO Gain	8 KHz/V
Loop Bandwidth	21 Hz
Phase Margin	50 deg
C55 (C1_LF)	100 nF
C54 (C2_LF)	680 nF
R58 (R2_LF)	39 ΚΩ
Effective Charge Pump Gain	1,050 uA
Phase Detector Frequency (MHz)	0.08 MHz
External VCXO Frequency	160 MHz

Table 3: Typical U2 PLL1 Loop Filter Configuration in Nested 0-Delay Mode

The following table identifies a typical U2 loop filter configuration for PLL2.

Table 4: Typical U2 PLL2 Loop Filter Configuration

Parameter	Value
VCO Gain	21 MHz/V
Loop Bandwidth	79 KHz
Phase Margin	68 deg
C50 (C1_LF)	22 pF
C49 (C2_LF)	2,200 pF
R57 (R2_LF)	2.7 ΚΩ
Internal Loop Filter R3	200 Ω
Internal Loop Filter C3	10 pF
Internal Loop Filter R4	200 Ω
Internal Loop Filter C4	10 pF
Effective Charge Pump Gain	3,200 uA
Phase Detector Frequency (MHz)	6.4 MHz
VCXO Frequency	2,457.6 MHz

LMX2594

The following figures show the external loop filter design for LMX2594 ADC (U5) and DAC (U7).

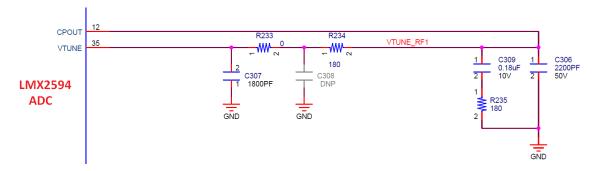
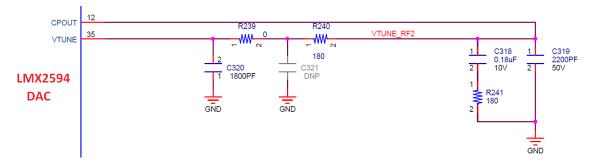



Figure 6: LMX2594 ADC (U5) External Loop Filter Schematic

The following table identifies a typical LMX2594 loop filter configuration.

Parameter	Value
VCO Gain	239 MHz/V
Loop Bandwidth	32.7 kHz
Phase Margin	69 deg
C306, C319 (C1_LF)	2200 pF
C309, C318 (C2_LF)	180 nF
C307, C320 (R2_LF)	1800 pF
R235, R241 (R2)	180 Ω
R234, R240 (R3_LF)	180 Ω
Effective Charge Pump Gain	3 mA
Phase Detector Frequency (MHz)	24.576 MHz
VCXO Frequency	Designed for 15 GHz, but works over the whole frequency range

Appendix A

AMD7 XILINX

SAMTEC LPAM Host Interface Connector

The CLK104 RF clock add-on card mates with RFSoC evaluation boards using a low profile, 120pin, high-speed SAMTEC LPA connector. The following figure shows the mezzanine module connector pin-out and the table that follows identifies the pins.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
В	G	ADC_F	REFCLK	G	CLK_SPI_M	IUX_SEL0/1	G	AMS_I	REFCLK	G	G	PL_S	YSREF	G	PL_	CLK	G	DDL_PL	Y_SYNC	G
с	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
D	G	G	G	G	3V3	3V3	G	G	G	G	G	5V0	5V0	G	G	G	G	G	G	G
E	G	DAC_F	REFCLK	G	3V3	3V3	G		SYNC_IN	G	G	5V0	5V0	G	SFP_RI	EC_CLK	G	SCLK	SDA	G
F	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G

Figure 8: LPA Connector Pin-out

Table 6: LPA Connector Pin Descriptions

Pin	Signal Name	Description	LMK04828 Pin	
E2	DAC_REFCLK_P	DAC REFCLK, routed to RFSoC DAC on board	DCLKout6*	
E3	DAC_REFCLK_N	DAC REFELR, TOULED TO RESOL DAC ON BOARD	DCLKOUL6*	
B2	ADC_REFCLK_P	ADC REFCLK, routed to RFSoC ADC on board	DCLKout12*	
B3	ADC_REFCLK_N	ADC REFELK, FOULED TO RESOL ADC ON BOARD	DCLKOUL12*	
B8	AMS_SYSREF_P	AMS SYSDEF routed to DESpC SYSDEF on board	SDCLKout3*	
B9	AMS_SYSREF_N	AMS SYSREF, routed to RFSoC SYSREF on board	SDCLROULS"	
B15	PL_CLK_P	PL CLK, routed to PL bank on board	DCLKout8*	
B16	PL_CLK_N	PECER, TOULED TO PE Dank of Doard	DCLKOUI8"	
B12	PL_SYSREF_P	PL SYSREF, routed to PL bank on board	SDCLKout9*	
B13	PL_SYSREF_N	PL_STSKEF, TOULED TO PL DAIR OF DOALD	SDCEROUL9"	
B18	DDR_PLY_CAP_SYNC_P	DDR Playback/Capture Sync, routed to PL bank on board	SDCLKout7*	
B19	DDR_PLY_CAP_SYNC_N	Dornayback/ capture Sync, routed to FE bank of board	SUCLKOUT/*	

Table 6: LPA Connector Pin Descriptions (cont'd)

Pin	Signal Name	Description	LMK04828 Pin
E15	SFP_REC_CLK_P	Recovered clock from RFSoC PL banks	CLKin0
E16	SFP_REC_CLK_N		
E9	SYNC_IN	SYNC signal routed to PL bank on board	SYNC
E18	CLK104_SCL	I2C bus SCL	
E19	CLK104_SDA	I2C bus SDA	
B5	CLK_SPI_MUX_SEL0	PLL SPI MUX SEL0	
B6	CLK_SPI_MUX_SEL1	PLL SPI MUX SELO	

Note: The output frequency, power level, and enable/disable of each LMK04828B output are subject to change as determined by the configuration files.

AMDA XILINX

Appendix B

CLK104 RF Clock Add-on Card Configuration with the ZCU216 SCUI

Clock Configuration Files

The PLL configuration files are included with the ZCU216 SCUI. New PLL configuration files can be added to the corresponding clock files folder before launching the SCUI as shown in the following screen capture.

Name ^	Date modified	Туре	Size
8a34001	12/18/2019 11:19	File folder	
Imk04828	12/18/2019 11:19	File folder	
Imx2594_adc	12/18/2019 11:19	File folder	
Imx2594_dac	12/18/2019 11:19	File folder	
si5341	12/18/2019 11:19	File folder	
gitignore	12/18/2019 11:47	GITIGNORE File	1 KB
Revision	12/18/2019 11:47	Text Document	1 KB

The naming convention of the LMK04828B (U2) configuration files are as follows:

• Example:

LMK04828B_BxxxxMx_DualLoop_C0in10M_C1in10M_C2in156M25_DATECODE.txt

- 。 BxxxxMx: PLL2 internal VCO frequency
- $_{\circ}$ DualLoop or Nested: LMK mode
- C0in_xxM: CinO input reference frequency
- Clin_yyM: Cin1 input reference frequency
- C2inzzMzz: Cin2 input reference frequency

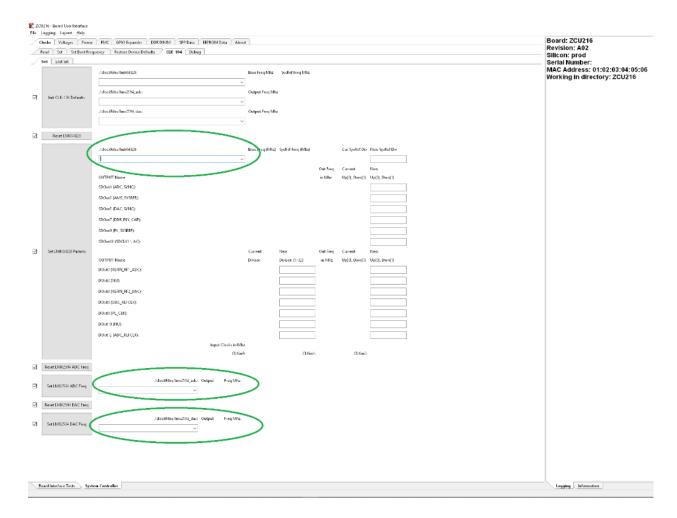
The naming convention of the LMK2594 ADC/DAC RF PLL (U5/U7) configuration files are as follows:

- Example: LMX2594_REF-xxxMxx__OUT-xxxxMxx_DATECODE.txt
 - REF-xxxMxx: Expected input reference frequency
 - OUT-xxxxMxx: RF output frequency

Send Feedback

Note: PLL configuration files that do not follow the naming conventions do not affect the configuration content, but will result in incorrect information in the SCUI.

Configuring Clock PLLs


Proceed as follows to configure the clock PLLs:

1. From the \BoardUI\ working directory, double-click BoardUI.exe. The following is displayed:

Enter Board Information		
Board:	ZCU216	~
Revision:	REV_A02	~
Silicon:	prod	~
Mode:	default	~
Serial Number:	0500301 A 2024	~
MAC Address:	01:02:03:04:05:06	
	OK	

- 2. Click OK.
- 3. Select the System_Controller tab, then the Clocks tab, followed by the CLK-104 tab.
- 4. Select the expected clock file from the pull-down menu adjacent to the *Set LMK04828 Params* button. Click **Set LMK04828 Params** button and wait until the DS1 LED illuminates (green).
- 5. Select the expected clock file from the pull-down menu adjacent to the *Set LMX2594 ADC freq* button. Click **Set LMX2594 ADC freq** button and wait until the DS2 LED illuminates (green).
- 6. Select the expected clock file from the pull-down menu adjacent to the *Set LMX2594 DAC freq* button. Click **LMX2594 DAC freq** button and wait until the DS2 LED illuminates (green).

Appendix C

CLK104 RF Clock Add-on Card Configuration with the ZCU216 APU

The CLK104 RF clock add-on card can be programmed and controlled by the RFCLK driver implemented in the Linux/baremetal application of the APU on the ZCU216 evaluation board. This excludes the external programming dongle. An example demonstrating how the RFCLK driver can control the CLK104 is provided in the Zynq[®] UltraScale+[™] RFSoC RF data converter evaluation tool (see *Zynq UltraScale+ RFSoC ZCU208 and ZCU216 RF Data Converter Evaluation Tool User Guide* (UG1433)). The example code with a simple application that controls the CLK104 is available at: https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/board_common/src/rfclk.

Appendix D

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open DocNav:

- From the Vivado[®] IDE, select Help → Documentation and Tutorials.
- On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In DocNav, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this guide:

- 1. ZCU208 Evaluation Board User Guide (UG1410)
- 2. ZCU216 Evaluation Board User Guide (UG1390)

These websites provide supplemental material useful with this guide:

- 1. Texas Instruments: https://www.ti.com/
- 2. Carlisle Interconnect Technologies: https://www.carlisleit.com/

Revision History

The following table shows the revision history for this document.

Section	Revision Summary			
08/25/2022 Version 1.1				
Appendix C: CLK104 RF Clock Add-on Card Configuration with the ZCU216 APU	Added link to example code.			
03/19/2020 Version 1.0				
Initial release.	N/A			

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials

without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

Copyright

© Copyright 2020-2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.